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Clap and fling is a particular wing kinematic pattern utilized by some insects and 

birds to produce enhanced aerodynamic forces. It consists of two very distinct phases: 

i) the leading edges of the two wings are brought together near the upper limit of the 

upstroke and subsequently the wings are rotated around their leading edges, 

‘’clapping’’ like a closing book; ii) at the onset of the downstroke, and while they are 

still close, the two wings rotate around their trailing edges ‘’flinging’’ apart. Prior 

theoretical and experimental work suggested that clap-and-fling is responsible for 

production of unusually high lift coefficients.  However, due to limitations of the 

theoretical models and experimental techniques, detailed quantitative results are yet 

to be reported. The primary objective of the present work is to provide a concrete 

description of the underlying physics by means of high-fidelity simulations based on 

the Navier-Stokes equations for incompressible flow.  In particular, the effects of the 

kinematics and the Reynolds number are discussed in detail in the thesis. Thesis’ 



  

results verify the lift enhancement trends observed in experiments and identify the 

particular flow patterns correlated with such increases.  
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Chapter 1: Introduction 
 

1.1 Clap and Fling in Nature 

 
In the early 1970’s, Torkel Weis-Fogh in his classical paper entitled “Quick 

Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for 

Lift Production’’ [83], suggested a new aerodynamic mechanism called “Clap and 

Fling’’, to explain the enhanced aerodynamic forces produced by some insects.  He 

came to this conclusion by observing Encarsia Formosa adults -a tiny chalcid wasp, 

which is an economically important parasite used in the greenhouse aphids- in free 

flight. A simplification in two dimensions of the kinematic pattern characteristic of 

“Clap and Fling”, which occurs at dorsal stroke reversal, is shown in Figure 1.1. 

During the clap, the insect brings the leading edges of the two wings together (Fig. 

1A) and then rotates them until the ‘V-shaped’ gap vanishes and the wings became 

parallel (Fig. 1B-C). During the fling, the wings’ rotation axis switches from the 

leading to the trailing edge creating the ‘V-shaped’ gap shown in Fig. 1D.  When a 

maximum angle is reached the wings start to move apart (Figs. 1E-F) designating the 

onset of the downstroke. Weis-Fogh [83] used the kinematic data from his 

observations (i.e., motion’s frequency, amplitude, angle of attack) together with 

detailed measurements of the sizes and shapes of the wings (see Figure 1.2) to 

calculate the minimum lift coefficient, which must be ascribed to the wings so that 

the insect can sustain its weight. 
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Figure 1.1 Two dimensional representation of clap and fling stages. A. The wings 

approach with constant angle of attack. B. Rotation about the leading edge, denoted 

by a black circle. C. Clap D. Fling E. Rotation about the trailing edges. F. The wings 

translate apart form each other. 

 

For the case of the Encarsia Formosa, for example, his calculations revealed an 

unusually high lift coefficient of value 3.2. Despite the drastic assumptions in the 

computation of CL, he argued that the clap and fling was responsible for this 

enhancement. Ellington [20] recalculated CL from the above kinematics by 

incorporating a more accurate theoretical model, and found it to be significantly 

lower (CL =1.6) but still fairly high.  
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Figure 1.2 Encarsia Formosa. Morphology and wing’s planform, taken by ‘’Quick 

Estimates of Flight Fitness in Hovering Animals, Including Novel  Mechanisms for 

Lift Production’’, by Torkel Weis-Fogh 1973. 

 

Later papers reported kinematic patterns that are identical or similar to the 

ones discussed by Weis-Fogh [83].  In one of the proposed variations, the so called 

“clap and peel’’, the elasticity of the wings plays an important role, It has been 

observed in tethered flying Drosophila [35], various species of butterflies [13], [25], 

[27], [8], [10], bush cricket, mantis [7], [8] [9] and locusts [12].  Ellington [25], [27] 

and later Ennos [31] reported the “near clap-and-fling” pattern, where the two wings 

do not clap completely but come close to each other.  It was observed in the white 

butterfly Pieris barssicae, the bluebottle Calliphora vicina, and the flour moth 
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Ephista, where the wings approach at the dorsal stroke reversal without physically 

touching during the clap.  

 

How extensively clap and fling or variations is utilized by various insects to 

enhance lift is not well understood.  In general, observations show that small insects 

appear to use it more often [25], [27], [31], [84], which led to the hypothesis that clap 

and fling might be vital for adequate lift production in small insects operating at low 

Reynolds numbers. A noteworthy exception is the fruit fly, Drosophila melanogaster, 

which rarely employs clap-and-fling during free flight [31], [34] but frequently 

utilizes this mechanism under tethered conditions [77], [35], [90], [39]. Clap and fling 

by larger insects has not been observed as frequently. They may use it, however, 

under extreme load conditions [47], or power demanding manoeuvres [12]. 

Ellington’s observations of larger insects [25], [27] revealed clap and fling like 

kinematics for the Large Cabbage White Butterfly Pieris brassicae (found as well by 

Weish-Fogh), the plum moth Emmelina and the flour moth Ephestia. He also 

suggested that the lacewing Chrysopa carnea uses clap and fling, not only for lift 

augmentation, but also for steering and flight control. As an unsteady aerodynamic 

mechanism, clap and fling has attracted a lot of attention. Many books written on 

animals’ flight refer to it extensively, as a promising yet not quite explored flying 

pattern [18], [61], [76]. 

1.2 Prior Research 

Experimental, theoretical, and computational approaches have been utilized over the 

years to better understand how the clap and fling kinematics used by various insects 
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may lead to gains in aerodynamic performance.  Lighthill [45] was amongst the first 

to study clap and fling theoretically. He assumed inviscid, two-dimensional flow [37], 

where the wings are represented by rigid plates of zero thickness. He pointed out that 

when the fling phase starts, circulations of same magnitude but opposite sign around 

the two wings are generated so there is no violation of Kelvin’s circulation theorem -

the two circulations have add up to zero around the system of the two wings- while 

the proximity of the trailing edges significantly attenuates effects from starting 

vortices. In effect, the clap and fling was proposed as a possible “cure” to the Wagner 

effect (i.e. the gradual development of the necessary circulation around an 

impulsively started airfoil due to the staring vortex in its wake, [80]).  In particular, he 

found the circulation to vary from infinity at the onset of fling to a minimum value of 

20.69 c   at θ=120o, where θ is the opening angle between the plates, ω is the 

angular velocity, and c the chord length. As a result, when the plates begin to move 

away from each other with velocity U, a lift force corresponding to U   per unit 

span immediately develops. In the case of the classical problem of an impulsively 

started single plate trailing edge vorticity needs to be continuously generated for and 

for the lift force to increase gradually to its asymptotic value. In the above scenario 

the viscous effects, which are important given the low Reynolds number in this flow, 

has been neglected. Lighthill [44], [45] provided a qualitative description of their 

effects. He emphasized that the weight of the insect would be balanced by the 

impulse of a chain of downward moving vortex rings which at large distances below 

the insect would be merged by the action of viscous effects into a laminar jet like 

motion. 
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The theoretical work was continued by Ellington [20] who used Lighthill’s estimates 

for the circulation and concluded that the circulation of clap and fling is way above 

the circulation predicted by steady aerodynamics (i.e. simple translational motion 

with a lift coefficient that satisfies the Kutta condition). He proposed a model to 

estimate the transient circulation building up around the wing inspired by the work of 

Wagner [82] and Walker [79].  Edwards-Cheng [19] extended Lighthil’s [45] inviscid 

analysis by incorporating a vortex shedding model with separation from the salient 

corners of the wings during fling. They also reported that circulation increases with a 

large stroke plane amplitude. A similar approach was proposed by Wu et al. [88] with 

identical findings.  

Given the limitations of theoretical models, which were all based on inviscid flow 

theory, several experimental studies were also conducted in the laboratory in 

simplified configurations.  Bennett [5] conducted two-dimensional experiments on 

clap and fling by using a rectangular plate with 4% thickness and rounded leading 

edge as wing. He simulated the existence of the other wing by using a mirror plane 

(wall). The Reynolds number of his measurements was roughly 83000 and the 

angular velocity ω was in the range of 31-69 r s . His main observations were that the 

lift (of which indicative is the induced velocity) in clap and fling appeared to increase 

15% during the fling compared to a one wing case.  

Maxworthy [48] conducted two and three-dimensional flow visualization studies with 

trapezoidal wing platforms. The Reynolds number, 2Re oc   , where   is the angle 

rate of change, oc  is the maximum chord length and   is the kinematic viscosity of 

the ambient fluid, varied between 13.000 and 32. He found the following: (i) the 
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circulation was measured to be significantly larger than the one calculated 

theoretically by Lighthill [45]; (ii) the flow is highly three-dimensional; and (iii) clap 

appears to exhibit higher contribution to the generation of lift than fling. All the 

above results were also supported by later work by Spedding et al. [64]. Sunada et al. 

[69] conducted experimental as well as computational work on the near clap and fling 

mechanism. Their wing platforms included rectangular and triangular plates of very 

small thickness (0.05c). The main finding of their work was that the interaction 

between the two plates was substantial only when the maximum angle between the 

two wings was held small.  

In 2005 Lehmann et al.  [43] explored the fluid dynamics of clap-and-fling in great 

detail by using a dynamically scaled two-winged flapper based on the Drosophila 

wing (see also [59], [17]) for Reynolds numbers in the range 50-200.  They measured 

the forces during the entire stroke simultaneously with the resulting flow.  The 

limitation of the distance between the hinges resulted in a clap and fling pattern in 

which the two wings do not stop their rotation while approaching each other when 

they are parallel, but they continue until their tips meet. In general, their results were 

very sensitive to the wing kinematics and suggested a maximum overall lift 

enhancement of 17% compared to a single wing case. Their results demonstrated 

some very interesting differences with previous studies: i) clap contributes less to the 

lift force compared to fling, which is contradictory to Maxworthy’s [35] finding; and 

ii) it was observed that lift increases at the onset of the upstroke, something that was 

not expected. Possibly hence, clap-and-fling wing beat can alter wake structure 

throughout the entire stroke cycle.  
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Given the limitations of experiments, computational studies can provide useful 

insights into the physics of such complex problems.  Sun et al. [68] performed two-

dimensional simulations of clap and fling by using an elliptic planform of 4% 

thickness and leading edge radius of 0.08%. They found that as the smallest distance 

between the wings increases the lift and torque enhancement are severely diminished, 

resulting in almost no interference effects when the distance is about one chord 

length. An interesting conclusion of this paper was that going from a distance of 0.1c 

to 0.2c between the hinges of the ‘’insect’’ the lift enhancement is still considerable 

but the torque coefficient is attenuated, implying that an optimized setting should 

make sure that the wings are close enough, but not so close to have detrimental torque 

requirements.  

Miller et al. [51] performed two-dimensional computations with immersed boundary 

method for an idealized clap and fling and a ‘fling’ half stroke, following the 

experimental setting of Dickinson et al. [14]. They calculated lift coefficients as 

functions of time per wing performing a parametric study for Reynolds number 

between 8 and 128. Their results in general show that the clap and fling is more 

pronounced for low Reynolds number since lift enhancement which is apparent for 

both the rotational and translational phases of the insect’s motion, increases with 

decreasing Reynolds number. Drag coefficients produced during fling are also 

substantially higher for the two winged case than the one wing case. They also 

reported substantially increased lift during the translational part of the motion.  
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1.3 Objectives of the Present Study 

 
From the above literature survey, it is clear that several outstanding questions 

regarding the clap and fling mechanism remain. There are also sceptics who suggest 

that the clap and fling mechanism is simply an attempt by an insect or bird to 

maximize the stroke amplitude, which can significantly enhance lift generation. 

Several studies suggest that peak lift production in both birds [11] and insects [43] is 

constrained by the roughly 180° anatomical limit of stroke amplitude. Animals appear 

to increase lift by gradually expanding stroke angle until the wings either touch or 

reach some other morphological limit with the body. Thus, an insect exhibiting a clap 

may only be attempting to maximize stroke amplitude. Another point of ambiguity 

has also been the Wagner effect, which is not so prominent in small insects. Some of 

the questions the thesis author will attempt to address in this study are the following: 

 

 Why do insects use clap and fling? Is it a cost-efficient mechanism resulting 

to a stable enhancement of lift or it is only useful under extreme load 

conditions? 

 Is clap and fling simply an attempt to maximize the stroke amplitude? 

 How important are the kinematics? 

 What is the effect of the Reynolds number? 

 What is the relation between the aerodynamic forces and the flow patterns that 

develop during clap and fling? 
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In particular we will use a high-fidelity Navier-Stokes solver for viscous 

incompressible flow to simulate the unsteady, three-dimensional flow generated by a 

moving pair of wings at various Reynolds numbers.  We will also examine different 

kinematics patterns by varying two main sets of parameters: (i) parameters 

quantifying the level of proximity of the wings during clap, such as the separation 

angle and the distance between the hinges of the wings and (ii) parameters 

quantifying the time dependence of the motion such as the flapping frequency and 

amplitude, angle of attack and so on. The detailed parametric space we have selected 

will be discussed in the next chapter. 

In the following chapter we will describe the methodology used to counter our 

problem. The mathematical model employed will be given in detail. Then we will 

summarize the numerical methods incorporated into our code which performs the 

simulations.   
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Chapter 2: Methodologies 

2.1 Mathematical Model 

 
Most of the experimental work conduced today points to the fact that the clap 

and fling mechanism is most effective in a fairly low Reynolds number regime, i.e. 

10<Re<103. As a result, the flow can be considered to be incompressible and is 

governed by the Navier-Stokes equations, 

 

0 (2.1)j

j

u
x





                                                    

21 (2.2)
Re

i ji i
i

j i i j

u uu up f
t x x u u

 
    

    
 

 

where ix , jx  (i,j = 1,2,3) are the Cartesian coordinates, iu , ju  are the velocity 

components in the corresponding directions, and if  are the body forces [54]. The 

equations are written in dimensionless form. The velocity components and distances 

have been scaled by a reference velocity U and a reference length l respectively. The 

pressure is normalized by 2U , with ρ being the density of the fluid, and Re is the 

Reynolds number defined as 

Re (2.3)Ul


  
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The Navier Stokes equations need to be solved in a coupled manner with the 

equations governing the dynamics of the wings. Although the latter are membrane 

like, deformable structures in the present work will be assumed to behave as rigid 

plates with zero thickness.  In particular, we will consider two rigid wings termed as 

RW (right wing) and LW (left wing), hinged at points R and L respectively on the 

virtual insects’ thorax (see Figure 1).  From now on, and unless otherwise stated, we 

may also refer to the two wings also as Rigid Body 3 for the right wing (RB3) and 

Rigid Body 4 for the left wing (RB4), while non-existent bodies in the present case 

the head-thorax and abdomen are called with RB1 and RB2, respectively [73].   

In all computations reported in this study we will be prescribing the motion of 

the wings, thus also prescribing the local velocities and accelerations of any point on 

the wings. To facilitate the ‘translation’ of the kinematics to boundary conditions for 

the Navier-Stokes solver we will utilize an Euler angle sequences [3]. Euler angle 

sequences are named after the order of rotation about successive axis starting from a 

coordinate system whose axis are 1, 2 and 3. The 3-1-3 sequence, for example, has 

been frequently used to locate the orbit of a body in space, the 3-2-3 for the 

description of rotating bodies, and 3-2-1 in aerodynamics. The particular angle 

sequence most suitable is problem dependent. The calculation of angular velocities, 

which is a critical part in our case, is always susceptible to the inherent limitations of 

Eulerian angle sequences [3]. Every sequence presents a singularity for the value of 

annihilation of the angle of the second rotation. Here, we selected the 3-2-1 sequence, 

where the singularity for the second angle lies at 90o , which never appears in our 

kinematics. 
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Figure 2.1 Insect model depicting the reference frames used to describe the motion of 

the wings. 

To fully describe the overall kinematic mechanism, we will derive the transformation 

matrices for each member of the kinematical chain shown in Figure 2.1 in terms of 

the relevant Eulerian angles. The derivation of the necessary angular and translational 

velocities and accelerations of each body participating in our system is presented in 

detail in Appendix A. 

2.2 Numerical Method 

A high-fidelity Navier-Stokes solver for viscous incompressible flows will be 

utilized for the unsteady three-dimensional flows under consideration. The main 

challenge that needs to be addressed in such computations is the proper treatment of 

dynamically moving boundaries undergoing large displacements.  To address this 

challenge, we will use a highly accurate, cost/efficient strategy, where the dynamics 

of the flow are computed on a fixed Eulerian grid, while a Lagrangian description is 



 

 14 
 

used for the structure(s). The requirement for the Eulerian grid to conform to the body 

is relaxed and boundary conditions are imposed using an embedded-boundary 

approach.  Adaptive mesh refinement (AMR) is also utilized to cluster grid points in 

areas of high velocity gradients.   

In particular, in the current AMR strategy a single-block solver is employed on a 

hierarchy of subgrids with varying spatial resolution. Each of these subgrid blocks 

has a structured Cartesian topology, and is part of a tree data-structure that covers the 

entire computational domain. An example is shown Fig. 2.2 for the flow around a 

hovering wing pair. The grid has been refined near the wings to capture high velocity 

gradients and is relaxed in the wake.  The subgrid block topology is shown at a plane 

approximately parallel to the stroke plane. Each block has a fixed resolution of 163 

grid points and the refinement on each level is achieved by bisection of a coarser 

block in all the coordinate directions. The solution is only computed at the finest 

subgrid block in each point in space (leaf blocks). The grid hierarchy, restriction and 

prolongation operators, and guard-cell filling between neighboring blocks are 

managed by using the PARAMESH toolkit (MacNeice et al.[46]).  
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Figure 2.2 Flow around a pair of wings performing clap and fling. Iso-surfaces of the 

2nd invariant of the velocity gradient tensor identifying the vortical structures in the 

wake are shown at one instant during the flapping cycle. The isosurfaces are colored by 

the streamwise vorticity magnitude. The topology of the AMR grid is also shown. 

In each sub-block a staggered, second-order accurate, central finite difference solver 

is used. The time advancement is done by using an explicit, Adams-Bashforth, 

fractional-step approach [33], [36].  

In the AMR solver, boundary conditions are required at both the physical boundaries 

of the domain and the interior block boundaries, and they are enforced with a layer of 

ghost cells surrounding each subgrid block. These ghost cells on the interior block 
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boundaries are filled by using the solution data from neighbouring subgrid blocks. 

Quadratic interpolation is required in the ghost-cell filling operation to maintain a 

second order spatial accuracy of the method. Also, the mass fluxes between different 

blocks sharing an interface are matched such that inter-block continuity is preserved. 

The overall solver is second order accurate both in space and time.  Details can be 

found in the work by Vanella et al. [75]. 

Due to the structured Cartesian topology of each of the sub-blocks, any body 

immersed into this grid will almost never be aligned with the gridlines. As a result 

imposing boundary conditions is not trivial. To address this issue we use a scheme, 

which is robust and efficient when dealing with fluid-structure interactions amongst 

multiple bodies. It utilizes a “direct forcing” function, which is, however, computed 

on the Largangian markers rather then the Eulerian points as it is done classical direct 

forcing schemes (see for example [2],[89], [32], [70]). We then use transfer operators, 

which are constructed by using moving least squares (MLS) shape functions with 

compact support. A series of tests which have been conducted, show that the above 

scheme maintains the second-order spatial accuracy of the overall numerical method 

and it is very well suited for problems with moving-deforming-colliding bodies. It 

renders a low level of noise on the forces acting on moving bodies and it can handle 

problems where immersed bodies come in to contact. It also reduces dramatically the 

complexities encountered when dealing with membrane like structures such as insect 

wings. Details can be found in the work of Vanella and Balaras [74]. 
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2.3 Parametric Space and Setup of the Computations 

 
As we already discussed the gains from clap and fling appear to be maximized at low 

Reynolds numbers. Based on results already in the literature we will consider two 

values of the Reynolds number, Re=Ul/=64 and 250, where l is the length of the 

wing and U is the maximum velocity on the chord positioned at 0.65R [81].  

Narrowing down the parametric space on the side of the kinematics is a much more 

difficult task, given that in most studies in the literature the detailed kinematics have 

not been recorded. In the present study we will focus on the effects of the level of 

proximity between the two wings during clap, and we will use the case of a single 

wing moving with the same kinematics as the extreme case where no interaction 

occurs.  To vary the level of proximity between the two wings we fixed the distance 

between the two hinges at 5% of the length of the wing, and varied the separation 

angle between the wings,  (see Figure 2.3).   

 

Figure 2.3a Separation angle   on the stroke plane for 2o . The 30o  angle with 

respect to the vertical is angle m . 
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Figure 2.3b Separation angle   on the stroke plane for 10o . The 30o  angle with 

respect to the vertical is angle m . 

 

In table 2.1 a summary of the different cases is considered. For each of these cases, a 

computation with a single wing at the same Re and kinematics has also been 

conducted for comparison. 

 Case I Case II Case III 

Reynolds number 64 64 250 

Separation angle 2o   10o   2o   

Table 2.1 Cases investigated by numerical experiments. 

 

For all calculations, the computational domain is a box with dimensions 4 6 6   

along the x, y and z axes respectively using 2 blocks/length in each direction. The 

runs were made using 4 levels of refinement in our AMR code. The cell size at level 

zero was 0.125oh   and at level 4, 44 0.0781252
ohh    (non-dimensional). We 
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used constant CFL criterion instead of a constant time step. The boundary conditions 

used were Dirichlet in the z direction, and periodic in x and y. The wings are hinged 

at points (0, 0.025, 0) and (0, -0.025, 0), giving a distance of 5% of the length of the 

model wing used. This means that we were able to have 6 points of our grid between 

the two hinges. 

 

2.4 Clap and Fling Kinematics  
 

 

As has been already discussed, there are no detailed kinematics available in 

the literature for insects performing clap and fling. For simplicity, we used symmetric 

and harmonic functions. The out of the stroke plane angle is also assumed to be zero, 

a limitation imposed by the singularity of the Euler angles’ sequence (see below). The 

wing platform that is used is the wing of Drosophila Malanogaster used by 

Dickinson in a series of papers [81], [6], [60], [43].  This wing is shown in Figure 2.4, 

along with a slight modification performed in order to avoid the unphysical condition 

of wings’ crossing each other. The idea for the avoidance of crossing is as follows: if 

one draws a tangent lines from the hinge of the wing to some point on the upper and 

another point on the lower circumference such that all other points of the wing are 

within the region of these two lines, and then make sure that these lines, properly 

constructed for both wings, are the limits of the wings’ contact, this ensures that no 

point of the one wing will make it into the domain of the other.   
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Figure 2.4 Modified drosophila wing and geometrical simplification of wing for 

implementation of clap and fling and avoiding wing crossing  

 

In Figure 2.1, the insect model and the reference frames used to describe the motion 

of the wings are shown.  To simulate hovering and have the insect’s body almost 

vertical, and the stroke plane angle almost horizontal, we performed a 90o  rotation 

about axis 2̂b . It is noted here, that although we have performed a 90o  rotation around 

2̂b  we do not a face a problem from the Eulerian angles singularity, because we do 

not compute any angular velocities for RB1. Now the insect is in an upright position. 
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In this position, we ascribe axes x, y and z, associated with the computational domain, 

as shown in Figure 2.5. 

 

 

Figure 2.5 Wings and x, y, z axes of computational domain. 

 

In the above, x, is along the longitudinal axis of the wing and y is along the 

perpendicular to the wings when they face each other at their closest distance. z 

follows the direction imposed by the right hand rule. In this way, the plane of 

symmetry, i.e. the x-z plane, is a representation of the dorsal-ventral plane and the 

stroke plane is in the x-y plane.   
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The simplified wing geometry defined in Figure 2.4 hinged in R, rotates with line RP 

lying on the stroke plane and the angle described by this line on the x-y plane is angle 

  (see Figure 2.6). This angle is associated with an angle around axis 3 of the R 

coordinate system. The out of plane angle is taken to be zero. Finally, the angle of 

attack   is associated directly to the angle around axis 1 of the R coordinate system, 

 . The amplitude of   is A =30o with respect to two symmetrical axes at a 30o  

angle each with respect to the x negative half-axis, producing in this way symmetrical 

beating of the two wings, are being the mirror image of the other. Two different 

periodic functions could be used as beating angle functions, namely one harmonic 

and one triangular shaped function as shown in Figure 2.7.  

 . 

 

Figure 2.6 Realization of clap and fling 

 

More specifically, the functions given in Figure 2.7 are described by equations (2.4) 

and (2.5).  
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Figure 2.7 Beating angle with time. Time of clap initiation ct and end of fling ft  are 

indicated. 0.15k   

 

In (2.5), k is a constant allowing us to illustrate different functions.  

 As long as the angle of attack is concerned, the variation of which is related 

to the rotation of the clap and fling motion, the kinematical pattern used is composed 
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of five distinct time intervals during each period as defined mathematically in 

equation (2.6) and shown in Figure 2.8. At the start of the period and for wings 

assumed to travel initially apart from each other, we employed a simple harmonic 

cosine function until the half of the period. For 0.5 cT t t   we fixed the value of the 

angle of attack constant to its value at the end of the previous harmonic phase, o . At 

some point ct  in time, depending only on the geometry of the wing as explained later 

on, between the half and three fourths of the period, the clap motion starts. This is 

continued until the three fourths of the period, time at which the fling phase is 

initiated. The end of fling notated as ft  takes place only a while, before the end of the 

first period and the onset of the new one and it is characterized by constant angle of 

attack o    . Obviously we have considered the period of the variation of the two 

angles in any case to be the same.  

1
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Returning to Figure 2.6, we will now describe the clap and fling realization for 

c ft t t   by relating the wing geometry and the timing of rotation. During the clap 

phase, as the wings approach each other with a constant angle of attack they ‘’meet’’ 

the vertical plane of symmetry both with lines 1d  on this plane and a common point T 

(Top) corresponding to distances 1l  and 1b . T is gradually rising bringing the wings 
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more and more to an upright opposition simultaneously causing them to rotate. 

Calling 1  the angle between 1b  and 1d , 

1
1

1

tan( ) (2.7)la
b

 

  

and  

 

1 1 1 1 1sin( tan( ) sin( cot( ) (2.8)c l b l b
          


 

 

Figure 2.8 Angle of attack (non filtered and filtered) varying with time. Time of clap 

initiation ct and end of fling ft  are indicated. The filtering is exactly the same used for 

beating angle as described above. 

 

We find the geometric relation between angle of attack and beating angle for the clap 

phase as:  



 

 26 
 

1

1

( ( )) sin( cot( ( ))) (2.9)bt a t
l

    

 

Equivalently,  

1

1

( ) cot( sin( )) (2.10)la
b

    

 

Denoting by oc  the beating angle that corresponds to o  at clap’s initiation from 

the last equation we get: 

 

1

1

cot( sin( )) (2.11)oc o
la
b

     

As already indicated crucial is the calculation of the time at which clap begins. This is 

accomplished by solving equation (2.4) for time when   is equal to oc . Doing so 

we acquire: 1 sin( )oc m
c

A

t a


 



. Finally, in absolute time scale in the period this 

happens after half the period, hence  

1 sin( ) (2.12)
2

oc m
c

A

Tt a


 
 


 

At the end of clap, fling starts following the same exact principle, letting to point B 

(Bottom) on the plane of symmetry on lines 2d  to move downward with a 

simultaneous rotation of the two wings, only this time the geometric quantities 

involved are b2, d2, a2 and c2 respectively to clap, resulting in the following 

equations: 
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2

tan( ) (2.13)la
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   

 and  

2 2 2 2 2sin( tan( ) sin( cot( ) (2.14)c l b l b
          


 

We find the geometric relation between angle of attack and beating angle for the fling 

phase as:  

2

2

( ( )) sin( cot( ( ))) (2.15)bt a t
l
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Equivalently,  

2

2

( ) cot( sin( )) (2.16)la
b

    

 

Denoting by of  the beating angle that corresponds to o  at the end of fling from 

the last equation we get:  

2

2

cot( sin( )) (2.17)of o
la
b

    

Also in a similar way to calculating ct  we calculate ft , the time that coincides with 

the end of fling phase. This is accomplished by solving equation (2.24) for time when 

  is equal to of . Doing so we acquire: 1 sin( )of m
f

A

t a


 



.  

Finally, in absolute time scale in the period this takes place before the end of the 

period, hence: 
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1 sin( ) (2.18)of m
f

A

t T a


 
 


For the given wing geometrical parameters 1 , 2 , 1b , 2b , 1c , 2c ,( 1d , 2d ) are fixed. This 

means that we can alter the duration of fling and clap phases by changing m , A  

and o . For all our numerical simulations we keep fixed o  and m  and A . We 

note that  A  is related to the motion’s frequency through the Reynolds number by 

the definition of maximum velocity as shown by equation (2.19), 

max max 0.65 (2.19)U x l  



      


  

As seen from Figures 2.7 and 2.8, with the prescribed kinematics used, for 

150o
m   , 30o

A   and  45o
o   the total clap and fling time extends to 35.22% 

of the whole wing motion period and breaks down in 13.45% for the clap and 21.77% 

for the fling phase. The above procedure was coded into a MATLAB program 

producing two files containing positions, velocities and accelerations for angle of 

attack and stroke angle, providing the necessary input for the computations. In Figure 

2.9, successive frames from the resulting wing motion are shown. 
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Figure 2.9 Geometry of kinematic sequence for clap and fling. The 9 instances show 

correspond from left to right in each row to: 1. right after the start of the motion. 2. 0.25T 3. 

0.5T 4. right before the start of clap 5-6 within clap 7-9 within fling. On each graph on the 

lower right, the instant to which the frame corresponds to is indicated. T=2.1384 

 

 

1 2 3 

4 5 6 

7 8 9 
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Chapter 3: Results and analysis 

 

In this chapter we are going to investigate the effects of the chosen parameters on the 

forces acting on the wings throughout a clap and fling. Furthermore, we will 

investigate the relation of these forces with the resulting flow patterns. 

3.1 Force distribution 

In Figure 3.1, the lift coefficient is shown for case I for the first period T of the 

motion. The times of clap’s phase start and fling’s phase end are denoted as ct  and 

ft , respectively, while the time at which change from the clap to the fling phase takes 

place, is 0.75T. At the onset of the motion the lift coefficient starts around the value 

of one and then as the wings move apart it decreases reaching a local negative 

minimum at the instant at which the wings reach their far end separation (t=0.25T). 

The reverse of the motion is followed by a gradual increase of lift which then remains 

almost constant as the wings move back to their original position but with opposite 

moving direction, at t=0.5T. At that time the wings come further closer with constant 

angle of attack. This time interval is characterized by a substantial increase of lift 

starting around 0.58T. Continuously approaching, the wings enter the clap phase at 

t=0.61T and very soon after that the lift force reaches a value of 2.8744 for the two-

wing model and 2.4023 for a single wing. These are also the peak values for the entire 

period. Clap continues until the 75% of the period with an abrupt loss of lift which 

acquires for a short time takes on negative values as the rotating wings become 

practically vertical in their closest position. Fling is very rich in terms of changes in 
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lift generation and loss. It exhibits initially another rise in lift production only very 

moderate this time with peak values of 0.0337 for the two wings and 0.0105 for the 

single one, while its later stages are characterized by a lift drop and yet another 

enhancement interval just prior to the completion of the period. Increasing the 

separation angle from 2o  to 10o   as it is expected, attenuates the interaction 

effect of the two wings resulting in a drop in the lift force produced as indicated in 

Figure 3.2. 

 

Figure 3.1 Lift coefficient for case I 

Thus, a peak value of 2.6489 is achieved for two wings and 2.4021 for one wing 

during clap, while during fling the corresponding peak values are 0.0208 and 0.0112. 

The general trends however of the variation of the lift force over time for both one 

and two wings are along the same lines as for case I.  
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Figure 3.2 Lift coefficient for case II 

 

In Figure 3.3 the effect of the Reynolds number for 2o   is shown. It is apparent 

that an even larger attenuation of the lift force is being experienced for both one and 

two wing cases. The peak values during clap are 1.9858 and 1.6887 respectively.  

However, during fling the peak values are 0.0336 and 0.0172, i.e. higher than the case 

II values for the same time interval. 
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Figure 3.3 Lift coefficient for case III 

 

To summarize, in all cases the lift produced during clap, (initiated around 0.6T and 

ending at 0.75T) is enhanced.  

 

Figure 3.4 Lift coefficient with Reynolds number and separation angle as parameters 

for setup I 
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The percentage increase of the peak is 19.65%, 8.70% and 17.59% for cases I II and 

III when compared to the corresponding one wing case.  

In Figure 3.4 the three two-wing cases are directly compared. It is clear that for two 

wings, while for the variation in   LC  does not differ significantly, the increase of 

Reynolds number drastically attenuates the interference effect of the two wings in 

terms of the highest values achieved. However as will be shown, the overall lift 

produced is more enhanced for case III than for case II. The higher Reynolds number 

case also exhibits less abrupt changes throughout the whole period. It is worth 

mentioning that in three specific time intervals, i.e. at 0.25T, at 0.75T (just right 

before and after the transition from clap to fling) and at about 0.93T, LC  values for 

the Re=250 exceed those of the other two cases. In the case of single wing setups for 

the same parametric space (see Figure 3.5), the traces of the two Re=64 cases are 

practically indistinguishable while their difference from Re=250 is along the same 

lines for two wings. 
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Figure 3.5 Lift coefficient with Reynolds number and separation angle as parameters 

for setup II  

 

To estimate more in depth the effect of clap and fling for our parametric 

space, we calculate the integral of lift coefficients over different phases, 

corresponding to impulse, using one of the available numerical methods, as for 

example the trapezoidal rule. By doing so we can then identify the contribution of 

each part to the total lift production. According to these results, the 22%, 18% and 

24% of the lift is produced during clap for setup I and the three different cases. 

During fling the corresponding percentages are 3.2%, 1.5% and 2.3%. It is thus 

further established that lift both during clap and fling is less affected by the change in 

the Reynolds number, than change in the separation angle. 
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   Re 64, 2o   Re 64, 10o   Re 250, 2o   

2 wings 0.1538 0.1380 0.1394 

1 wing 0.1229 0.1218 0.1173 

Exact diff. 0.0309 0.0162 0.0221 

Integral  

over one 

period 

% diff. 25.18 13.28 18.84 

2 wings 0.0338   0.0252 0.0337 Integral  

over clap 1 wing 0.0184 0.0185 0.0228 

2 wings 0.0050 0.0020 0.0079 Integral  

over fling 1 wing -0.0006 -0.0006 0.0034 

2 wings 0.0388 0.0272 0.0416 Integral  

clap-fling 1 wing 0.0178 0.0179 0.0262 

Table 3.1 Integrals for ( )LC f t  for different time intervals within a period with 

trapezoidal rule.  

 

By integrating the curve over one period we can determine the mean lift LC  

coefficient. In addition, calculating the integral of lift coefficient, during clap only, 

fling only and clap and fling altogether and averaging over the corresponding time 

interval we can make find the relative contribution of its one to the total lift 

production. These results are summarized in Tables 4 and 5, where LC  over the 

whole period is enhanced a 25% for case I, 13% for case II and 19% for case III.  
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   Re 64, 2o   Re 64, 10o   Re 250, 2o   

2 wings 0.0719 0.0645 0.0652 

1 wing 0.0575 0.0570 0.0548 

Exact diff. 0.0145 0.0076 0.0103 

LC  

over 

one 

period % diff. 25.18 13.2842 18.84 

2 wings 0.1175 0.0876 0.1172 
LC over 

clap 1 wing 0.0640 0.0643 0.0793 

2 wings 0.0108 0.0042 0.0169 
LC over 

fling 1 wing -0.0013 -0.0012 0.0072 

2 wings 0.0515 0.0361 0.0552 
LC clap 

fling 1 wing 0.0236 0.0238 0.0347 

Table 3.2 Average lift coefficient for different phases indicating the differences 

between one and two wings setups.  

 

Moving along our investigation of the forces, we turn our attention to the 

force in the longitudinal (axial) direction. The graph of the time evolution of this 

force for the first period is shown in Figure 3.6 for both one and two wing 

configurations.  It is apparent that there are 3 local maximums for setup I, one after 

the reversal in beating angle direction at 0.25T, at the onset of clap and another one 

during fling at about 0.93T. The lowest values of xC  are acquired at t=0.15T on the 

way of the wings to their maximum distance and then prior to the onset of clap. 

Another significant drop is also observed around t=0.81T. For setup II another pair of 
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minimum and maximum is observed at t=0.7T and at t=0.75T respectively. The 

lowest values acquired for both setups are around -2 while the highest around 3.3 but 

the curves remain negative for more than 50% of the period. The difference between 

setups I and II for this case regarding the integral of the x force component, and hence 

the difference in the mean force in the x adirection, is still positive but bigger for the 

one wing case. The percentage difference in absolute number is 21.5% .  

 

Figure 3.6 Axial force coefficient for case I 

 

In Figure 3.7 the comparison for two wings setup is being made for our parametric 

space. The trend shown there is that the second case of our runs prior to the clap 

appears to provide overall more enhancement in xC  and the two Re=64 cases the 

same over the Re=250 one, but only after 0.25T. During clap, after local maximum 

being realized, a precipitous drop starts, which continues through fling, reaching a 

minimum around 0.81T. In this loss of xC  the case with higher angular separation 
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exhibits the lowest (highest negative) values compared to the other two cases. As in 

the case of lift, the curve of the Re=250 is smoother. The mean value of xC  denoted 

by xC  is for case I 0.0119, for case II 0.01 and for case III 0.0117 implying that as in 

the case of lift, case II had a more serious effect on the force in the x direction than 

case III. 

 

Figure 3.7 Axial force coefficient with Reynolds number and separation angle as 

parameters for setup I. 

Interestingly, for the one wing setup although the same as above trends are in general 

demonstrated, at t=0.75T the first case of our runs demonstrates a maximum climbing 

higher even from the Re=250 case as seen in Figure 3.8. 
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Figure 3.8 Axial force coefficient with Reynolds number and separation angle as 

parameters for setup II. 

 

The change in force coefficient of the y component of the forces on the wings 

is shown on Figure 3.9 for the base case comparing one to two wings setups. The 

general idea in this Figure is that the force initially stays constant up to t=0.16T and 

then rapidly declines reaching a minimum at t=0.25T to be followed by another time 

interval of almost constant value until just prior to the onset of clap. Entering the clap 

phase is characterized by a fast drop down to -3.572 for the one wing and to -4.355 

for the two wings setup. There follows a spectacular increase for setup I up to 7.67. 

Setup II exhibits a still impressive yet not as high as a setup I increase up to 4.133 and 

a little sooner. This main characteristic is going through to the fling phase, followed 

by yet another precipitous loss of force and a local minimum around t=0.94T with the 

two curves being almost on top of each other. A 0.5yC   for setup I and a 1.13yC     

for setup II are accomplished. Finally, fling appears to be giving a substantial push to 
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the y force, whose coefficient rises up to 1.285 and to 1.6 for one and two wings 

respectively. 

 

Figure 3.9 Lateral force coefficient for case I 

 

One of the interesting features of the y force component’s figure to be pointed out is 

that from t=0.57T to t=0.7T the (negative) y force of setup I is bigger in absolute 

sense than   the force produced by setup II, but from t=0.7T to t=0.74T the trend is 

reversed.  The average lateral force coefficient denoted by yC  is calculated with the 

methodology previously described for x and z forces’ coefficient to be 0.0344 for 

setup I and 0.0214 for serup II, i.e a 61.2% difference. The corresponding percentages 

for cases II and III are 34.1% and 121% between setups I and II. This once more 

verifies that a general force loss is being imposed on our system when switching from 

the case I to case II, but also that is not the case for the higher Reynolds number. 
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Comparing in Figure 3.10 the lateral force coefficients for setup I and all 3 cases 

under study, it is clear that for about the whole cycle the force produced by the case I 

is in absolute sense higher than these of the other two cases. The other two cases 

antagonize each other with different time regimes of dominance for each and exhibit 

more or less the same trends with the exception of the substantial force’s increase at 

the end of fling. This fact results in a higher mean lateral force coefficient for case II, 

0.0319 in comparison to 0.0235 for case III. 

 

Figure 3.10 Lateral force coefficient with Reynolds number and separation angle as 

parameters for setup I. 
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3.2 Qualitative Description of Flow Field 
 

In this section we investigate the instantaneous dynamics of the flow and their 

relation to the forces described above. In Figure 3.11 pressure contours for case I at 

different instances within the first period for a slice vertical to the stroke plane at 65% 

of wing’s length are shown. As the two wings are moving away from each other low 

pressure develops in the area between the wings and high on the outside. As the 

wings then begin to approach each other, pressure at the area between them becomes 

significantly higher than the one of the fluid surrounding the wings reaching a 

maximum at the end of clap. This behavior corresponds to the rise in lift and lateral 

force previously shown. The difference in the trends of the two force’s components is 

that at the onset of clap the projection of surface of the wing in the z axis is high but 

decreasing while the effective surface on the y axis constantly increases during clap. 

This explains why lift force acquires its overall the period maximum sort after the 

initiation of clap while the lateral force keeps well getting higher values. By 

inspection of the pressure contour figures corresponding to the fling (9-12) we see 

that at the start of fling the pressure field is once more reversed, i.e. the pressure of 

the surrounding fluid becomes positive and the one of the ‘’interior’’ negative. This 

explains the drop of the lateral force right after we enter the fling phase. The 

production of new, stronger than before, leading edge vortex couple is dominating the 

initial phase of fling.  
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In Figure 3.12 x vorticity for case I is shown.  The contours shown are 2-color 

contours at different instances within the first period for two vertical to the stroke 

plane slices at 30% and 65% of wing’s length. In frames 3-7 covering the 

approaching of the wings time interval, vorticity is being generated on both the 

leading and the trailing edge resulting in the formation of two new pairs of vortices. 

By inspection of this figure and with the movie made for the flow by successive 

frames as the ones in Figure 3.12, we conclude that vortex separation and subsequent 

shedding into the wake, is a characteristic of the flow at the end of clap and the start 

of fling. As supportive to this statement comes Figure 3.13 of Q iso-surface, frames 

8-10.  In this figure it is indicated that by the end of clap the leading and trailing edge 

vortex on each wing appear to be linked with one another and separate from the wing.  

 

As far as the results for the rest cases and setups are concerned, the relevant 

figures of the flow field are at Appendix B. Summarizing the trends shown there we 

can say that the attenuation of the interference effect is obvious in terms of pressure 

and x .  In the higher Reynolds number case the separation of the leading edge 

vortex appear to be more prominent than the other two cases, while in cases I and II, 

diffusion of vorticity is happening more quickly. 
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Figure 3.11 Pressure contours for case I setup I at different instances within the first period 

for a slice vertical to the stroke plane at 65% of wing’s length. Blue to red for lower to 

higher values from -0.5 to 0.5 and 61 contour levels. The 9 instances shown correspond from 

left to right in each row to: 1. right after the start of the motion. 2. 0.25T 3. right before the 

start of clap 4-5 within clap 6-9 within fling. On each graph on the lower right the instant at 

which the frame corresponds is indicated. T=2.1384  

7 9 8 

6 5 4 

1 2 3 
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Figure 3.12. x  2-color contours for case I setup I at different instances within the first 

period for two vertical to the stroke plane slices at 30% and 65% of wing’s length. Blue to 

red for lower to higher values from -12 to 12 and 55 contour levels. The 9 instances shown 

correspond from left to right in each row to: 1. right after the start of the motion. 2. 0.25T 3. 

right before the start of clap 4-5 within clap 6-9 within fling. On each graph on the lower 

right the instant at which the frame corresponds is indicated. T=2.1384  

1 2 3 

4 5 6 

7 8 9 
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Figure 3.13. Q=5 iso-surfase colored by vorticity in x for case I setup I at different instances 

within the first period. Blue to red for lower to higher values from -12 to 12 and 55 contour 

levels. The 9 instances shown correspond from left to right in each row to: 1. right after the start 

of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 within fling. On each 

graph on the lower right the instant at which the frame corresponds is indicated. T=2.1384 
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Chapter 4 Summary-Conclusions 
 

In the present study we developed prescribed kinematics that mimic the wing 

motion of insects that perform clap and fling. We then performed a series of 

computations using a high-fidelity viscous Navier-Stokes solver, to investigate how 

the aerodynamic forces are generated and if clap and fling results in significant 

enhancements compared to singe wing. The effects of the separation angle between 

the two wings prior to clap and the Reynolds number have been investigated in detail.  

 

The main findings included lift enhancement over a period for clap and fling 

by 25% for case I (Re=64, a=2o), 13.28% for case II (Re=64, a=10o), and 18.84 for 

case III (Re=250, a=2o). The ‘clap’ part of the flapping cycle represents 20% of the 

total lift, while fling represents 1-3% for all the above cases. Hence, for the set of 

kinematics considered in the present work, clap appears to be far more important than 

fling. This result is in agreement with observations by Maxworthy [48] but 

contradicts the results of Lehmann et al.  [43]. In the latter work, however, the wings 

were not stopping when reaching the vertical position but continued to rotate until the 

wings’ tips met. The kinematic in the former case are more similar to the ones we 

used. It must be noted though, that no previous work done so far incorporated an 

active change in the angle of attack as ours.  

 

The effect of separation angle on the production of x and z forces, appears to 

be more detrimental comparing to the effect of Reynolds number. It is thus further 
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established that lift both during clap and fling is less affected by the change in the 

Reynolds number, than change in the separation angle. These features substantiate the 

fact that clap and fling is mainly affected, as suspected, by the interaction of the two 

wings. The effect of Reynolds number is more pronounced than the separation angle 

for the lateral force but the symmetrical forces on the system of the two wings 

eliminate each other. 

 

The study of the flow field reveals that the pressure distribution throughout 

the cycle can be associated with the time evolution of the forces recorded. 

Furthermore the main characteristic if the field is the separation and shedding of 

leading edge vortex as we transition from clap to fling. 

Future work based on the above results could:  

i) investigate if the gains in lift are sustained after several flapping cycles 

and how much they depend on initial conditions. In the present work 

we considered only one set of initial conditions;  

ii) explore what happens at much lower Reynolds numbers (i.e. Re~2) 

which are representative small insects performing clap and fling in 

nature 

iii) extend the kinematical parametric regime to examine the effects of:  

a. the distance between the hinges  

b. frequency of the motion 

c. timing and duration of clap and fling phases by altering the 

geometric quantities that affect them, i.e. the amplitude   of the 
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motion (which is related to the frequency through (2.19)), the axes 

of wingbeat symmetry defined by m , and the constant angle of 

attack at the onset of clap  .  

 

The above study should also be accompanied by a detailed examination of the 

instantaneous dynamics of the flow and how these are related to the generation of 

aerodynamics forces.  
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Appendix A 
 

After the notation used in Figure 2.1 we present the detailed transformation 

sequences of chapter 2 [3]. 

 

Rigid Body 1 

 

The fixed inertial frame used is termed as N 1 2 3ˆ ˆ ˆ( , , )n n n .  Going from the inertial 

frame to frame E following the thorax motion, we assume an 180o rotation about 1̂n  

such that the resulting coordinate system 1 2 3ˆ ˆ ˆ( , , )e e e  is oriented with 1̂e  parallel to the 

longitudinal axis of the insect, 2ê  in the lateral direction pointing towards the right 

wing and 3̂e  perpendicular to the plane of 1̂e and 2ê  with its positives from the dorsal 

to the ventral. By employing the standard practice of aerodynamics for describing the 

motion of RB1 we perform a 3-2-1 Eulerian angles sequence. First the 3 rotation is 

resulting in coordinate system ê  with an angle ψ, then the 2 in ê  with an angle θ 

and the 1 in ˆê b   with an angle φ. This finally results in reference frame B 

1 2 3
ˆ ˆ ˆ( , , )b b b  local on RB1. The convention followed to describe the transformation 

matrices is given by two capital letters denoting first the original and then the final 

frame. Thus the transformation matrix from the inertial frame to E is denoted by NET . 

Here follow the transformation matrices of the so-far mentioned rotations: 
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1 1

2 2

3 3

ˆ ˆ1 0 0
ˆ ˆ0 1 0
ˆ ˆ0 0 1

e n
e n
e n

     
          
         

,  Hence 
1 0 0
0 1 0
0 0 1

NET
 
   
  

. 

 Likewise, 

cos sin 0
sin cos 0
0 0 1

EET
 
 

 
   
  

,
cos 0 sin

0 1 0
sin 0 cos

E ET
 

 
 

 
   
  

,
1 0 0
0 cos sin
0 sin cos

E BT  
 



 
   
  

. 

 

The transformation matrix NBT  describing the relation between unit vectors of frames 

B and N :    ˆ ˆE B E E EE NEb T T T T n         is obviously given as: 

NB E B E E EE NET T T T T       . After performing the matrices’ multiplications we get, 

c
c c ( .1)

c
NB

c c s s
T s s c s s s s c s c A

s c s s c s s s c c c

    
           
           

 
      
     

.  

 

As in the last equation form here after we will use for more compact forms of our 

formulas c( ) instead of cos( ) and s( ) instead of sin( ).  

 

Then the velocities and accelerations can be computed. The angular velocity of the 

thorax as known by dynamics is the vector sum of the angular velocities of each 

intermediate rotation. Thus: 

 

3 2 1ˆˆ ˆ eN B e e       


, where 
.

( ) t
   . 
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Again the convention is that in the index in the upper left corner accounts for the 

starting frame while the one at the right corner for the concluding one. We need to 

express this angular velocity in the B frame, i.e we need to get N B
B


 where the lower 

right index is understood to describe the frame with respect to which we are currently 

expressing the particular vector. Making advantage of the afore-mentioned rotation 

matrices we get: 

   
s 0 1

ˆ c 0 ( .2)
c 0

TTN B
B b s c A

c s

 
    

   

   
       
     




 

 

In the above expression the presence of the unit vector of B is redundant since we 

have already declared that the angular velocity is expressed in this reference frame. 

However we keep it to more lively demonstrate the following differentiations. 

 

We set 
s 0 1

( ( ), ( ), ( ) c 0
c 0

BN
BM t t t s c

c s


     

  

 
    
  

 and N B
B





 
    
 
 






 

The angular acceleration is given by: 
N N B

N B B
B

d
dt
  


. By application of the 

definition we get: 

   ˆˆ ( ) ( )

N
N N NN B N B N BT B BN B N B N T N N BB B B

B B B B B

d bd d M db M M
dt dt dt dt





      


 

 

     
ˆ

ˆ ˆ( ) ( ) ( .3)

B

T B BN B N B N B N B N N B T N N B
B B B B B B B B

d b
b M M b M A

dt
          
 
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     ˆ ˆ( ) ( )
( )

T BN B N B T N N B
B B B B

c s
b s s s c c c s c b M

c c s s c c c

    
               

           

   
          
      

  

     
     

 

Calculation of the last term in the above formula gives: 

   
0 ( )

ˆ ˆ( ) 0 ( )
0

N B
B

c s c c s c
b c s c s b

c s c s

         
        

       

   
        
    

  

  
   

 

 

 

Rigid Body 3 

 

The general motion of the right wing fixed on the body of our insect model at point R 

is given by the following kinematical sequence:  

 
3 1 1

90 90 3 2 1
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
o o

r r
r r rb b b

b b b b r  
 

       

Angle 3  describes the stroke plane variance with respect to the 1r̂b  axis. 

 

The corresponding transformation matrices are: 

 

0 1 0
1 0 0

0 0 1
rB BT 

 
   
  

,
1 0 0
0 0 1
0 1 0

r rB BT  

 
   
  

,
1 0 0
0
0

r rrB B
T c s

s c
 
 

 

 
    
    

,

3 3 3 3 3

3 2 1 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

c
c c

c

c c s s
T s s c s s s s c s c

s c s s c s s c c c

    
           
          

 

 
     
   

.  
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The transformation matrix describing the whole 6 rotational sequence is: 

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

c
( ) c ( )
( ) ( )

BR

s s s c c c c s c s s
T s s s c c s s c c s s c s s s s c c c s c s

c s s s c s c c c c s c s s c s s s c c c c s

           
                      
                      

 
     

    

( .4)A


 
 
 

 

 

The angular velocity can be written as: 

 

3 3 33 2 1
ˆ ˆ ˆIV VR B
r r rb b b      


 

 

Same as above: 

 

   
3 3 3 3

3 3 3 3

3 3

s c
ˆ 0 c ( .5)

1 0

TTB R
B

c
b c s A

s

   
    

 

    
       
     






 

We set 
3 3 3

3 3 3

3

s c
( 3( ), 3( ), 3( ) 0 c

1 0

RB
B

c
M t t t c s

s

  
     



  
    
  

 and 
3

3

3

B R
B





 
    
 
 



  

 

By its definition angular acceleration is given by: 
N B R

N B R B
B

d
dt
  


. We emphasize 

once more that according to our notation this is the derivative of the angular velocity 

of right wing with respect to the thorax, while the differentiation takes place in the 

inertial frame N and it is expressed in terms of the B frame. By application of the 

definition of differentiation we get:  
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   ˆˆ ( ) ( )

N
N N NB R B R B RTN R RB R B R B T B B RB B B

B B B B B

d bd d M db M M
dt dt dt dt





      


 

 

     
ˆ

ˆ ˆ( ) ( )

B

TN R RB R B R B R B R B N B T B B R
B B B B B B B B

d b
b M M b M

dt
         
 

 

Equivalently, we can employ directly the transport theorem for the differentiation of 

angular velocity: 

 

N BB R B R
N B R N B B RB B

B B B
d d

dt dt
        

  
 

 

 ˆ ( ) ( .6)
TN RB R B R B R B R B N B B R

B B B B B B Bb M M A         
  

 

   
3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3

( ) [ ) ]
ˆ( ) [ ) ]N B R N B B R

B B B

s c c s c
c c s s c b

c s

          
             

     

      
         
    

     

     
    

 

 

 

Rigid Body 4 

 

The general motion of the right wing fixed on the body of our insect model at point L 

is given by the following kinematical sequence:  

4

3 1 1

90 90 3 2 1
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆo o

l l
l l lb b b

b b b b l   
 

       
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Angle 4  describes the stroke plane variance with respect to the 1l̂b  axis. To make 

sure that the two wings beat in the same stroke plane we have to impose: 

4 3 ( .7)A   .  

Symmetry in flapping is ensured by the following connection between the Euler 

sequence angles of the two wings: 

3( ) ( ) ( .8)t t A     

3( ) ( ) ( .9)t t A    

3( ) ( ) ( .10)t t A     

The corresponding transformation matrices for the left wing are: 

 

0 1 0
1 0 0
0 0 1

lB BT 

 
   
  

,
1 0 0
0 0 1
0 1 0

l lB BT  

 
   
  

,
1 0 0
0 4 4
0 4 4

r rrB B
T c s

s c
 
 

 

 
   
  

,.  

4 4 4 4 4

3 2 1 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4

c
c c

c

c c s s
T s s c s s s s c s c

s c s s c s s c c c

    
           
           

 

 
     
   

 

The transformation matrix describing the whole 6 rotational sequence is: 

4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

c
( ) c ( )
( ) ( )

BL

s s s c c c c s c s s
T s s s c c s s c c s s c s s s s c c c s c s

c s s s c s c c c c s c s s c s s s c c c c

           
                      
                     

   
       

       4 4

( .11)A
s

 
 
 
  

 

 

Angular velocity 
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4 4 43 2 1
ˆ ˆ ˆIV VB L
l l lb b b      


 

 

Same as before: 

   
4 4 4 4

4 4 4 4

4 4

s c
ˆ 0 c ( .12)

1 0

TTR B
B

c
b c s A

s

   
    

 

    
       
     




 

  

We set 
4 4 4

4 4 4

4

s c
( 4( ), 4( ), 4( ) 0 c

1 0

LB
B

c
M t t t c s

s

  
     



  
    
  

 and 
4

4

4

B L
B





 
    
 
 






 

Angular acceleration 

By its definition angular acceleration is given by: 
N B L

N B L B
B

d
dt
  


. We emphasize 

once more that in according to our notation this is the derivative of the angular 

velocity of right wing with respect to the thorax, while the differentiation takes place 

in the inertial frame N and it is expressed in terms of the B frame. By application of 

the definition of differentiation we get: 

   ˆˆ ( ) ( )

N
N N NB L B L B LTN L LB L B L B T B B LB B B

B B B B B

d bd d M db M M
dt dt dt dt





      


 

 

     
ˆ

ˆ ˆ( ) ( )

B

TN L LB L B L B L B L B N B T B B L
B B B B B B B B

d b
b M M b M

dt
         
 

 

 

 

Again, calculating alternatively the derivative of the angular velocity: 
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N BB L B L
N B L N B B LB B

B B B
d d

dt dt
        

  
 

 

 ˆ ( ) ( .13)
TN LB L B L B L B L B N L B L

B B B B B B Bb M M A         
  

 

 

   
4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4

( ) [ ) ]
ˆ( ) [ ) ]N B L N B B L

B B B

s c c s c
c c s s c b

c s

          
             

     

      
         
    

     

     
    

 

 

With the angular velocities and accelerations in our possession, we can move further 

on to calculate the indispensable for the computing of forces on our model linear 

velocities and accelerations of each body, starting from the description of the position 

vector of a random point P on each body with respect to the stated each time frame 

and corresponding coordinate system, expressed in the inertial frame N. According to 

our notation for example, P B
Nr

 declares a point P on body RB1 with respect to the 

origin of frame B expressed in the coordinates of the N frame. Applying the proper 

transformations we get the following expressions for the position vectors on RB1, 

RB3 and RB4 respectively: 

P N B N P B B N P B
N N N N NB Br r r r T r   
    

 

P N B N R B P R B N R B P R
N N N N N NB B NR Rr r r r r T r T r     
      

 

P N B N L B P L B N L B P L
N N N N N NB B NL Lr r r r r T r T r     
      

 

The linear velocities emerge from differentiation in N of the above expressions, 

namely: 
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Rigid Body 1 

 

( .14)P N B N N B P Br A    
  

 

( ) ( .15)P N B N N B P B N B N B P Ba a a r r A      
     

 

 

Rigid Body 3 

 

( .16)P N B N N B R B N R P Rr r A       
    

 

( ) ( ) ( .17)P N B N N B P B N B N B R B N R P R N R N R P Ra a r r a r r A              
           

 

Rigid Body 4 

 

( .18)P N B N N B L B N R Lr r A       
    

 

( ) ( ) ( .19)P N B N N B P B N B N B R B N L P L N L N L P La a r r r r A               
           

 

According to Dynamics’ addition theorems: 

( .20)N R N B B R A   
  

, 

( .21)N L N B B L A   
  

,

( .22)N R N B B R N B B R A       
    

, 

( .23)N L N B B L N B B L A       
    

. 
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Appendix B 

 

 In this Appendix we give for completeness, additional figures with results for 

all cases and setups not presented in the main text of the thesis. 

 

Forces 

 

 

Figure A.1 Axial force coefficient for case II 
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Figure A.2 Axial coefficient for case III 

 

 

Figure A.3 Lateral force coefficient case II 
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Figure A.4. Lateral force coefficient for case III 

 

 

Figure A.5. Lateral force coefficient with Reynolds number and separation angle as 

parameters for setup II. 
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Flow field 

   

   

   

Figure A.6. Pressure contours for case I setup I at different instances within the first period 

for a slice vertical to the stroke plane  at 65% of wing’s length. Blue to red for lower to 

higher values from  0.5 to 0.5 and 61 contour levels. Three dimensional velocity vectors are 

also plotted. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  

 

7 9 8 

6 5 4 

1 2 3 
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Figure A.7. Pressure contours for case I setup II at different instances within the first period 

for a slice vertical to the stroke plane at 65% of wing’s length. Blue to red for lower to 

higher values from 0.5 to 0.5 and 61 contour levels. Three dimensional velocity vectors are 

also plotted.  The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. Right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  

1 2 3 

4 5 6 

9 8 7 
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 Figure A.8. Pressure contours for case II setup I at different instances within the first period 

for a slice vertical to the stroke plane at 65% of wing’s length. Blue to red for lower to 

higher values from -0.5 to 0.5 and 61 contour levels. Three dimensional velocity vectors are 

also plotted. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  

1 3 2 

6 5 4 

8 7 9 
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Figure A.9. Pressure contours for case II setup II at different instances within the first period 

for a slice vertical to the stroke plane at 65% of wing’s length. Blue to red for lower to 

higher values from -0.5 to 0.5 and 61 contour levels. Three dimensional velocity vectors are 

also plotted. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  

 

1 2 3 

4 5 6 

7 8 9 
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Figure A.10. Pressure contours for case III setup I at different instances within the first 

period for a slice vertical to the stroke plane at 65% of wing’s length. Blue to red for lower 

to higher values from 0.5 to 0.5 and 61 contour levels. Three dimensional velocity vectors 

are also plotted. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  

 

1 2 3 

4 5 6 

7 8 9 
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Figure A.11. Pressure contours for case III setup II at different instances within the first 

period for a slice vertical to the stroke plane at 65% of wing’s length. Blue to red for lower 

to higher values from 0.5 to 0.5 and 61 contour levels. Three dimensional velocity vectors 

are also plotted. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  

1 2 3 

4 5 6 

7 8 9 
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Figure A.13. Q=5 iso-surfase colored by vorticity in x for case I setup II at different 

instances within the first period. Blue to red for lower to higher values from 12 to 12 and 55 

contour levels. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  

1 2 3 

4 5 6 

7 8 9 



 

 71 
 

   

   

   

Figure A.14. Q=5 iso-surfase colored by vorticity in x for case II setup I at different 

instances within the first period. Blue to red for lower to higher values from 12 to 12 and 55 

contour levels. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  

 

1 2 3 

4 5 6 

7 8 9 
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Figure A.15. Q=5 isosurfase colored by vorticity in x for case II setup II at different 

instances within the first period. Blue to red for lower to higher values from 12 to 12 and 55 

contour levels. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling.On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  
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Figure A.16. Q=5 iso-surfase colored by vorticity in x for case III setup I at different 

instances within the first period. Blue to red for lower to higher values from 12 to 12 and 55 

contour levels. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  
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Figure A.17. Q=5 iso-surfase colored by vorticity in x for case III setup II at different 

instances within the first period. Blue to red for lower to higher values from 12 to 12 and 55 

contour levels. The 9 instances shown correspond from left to right in each row to: 1. right 

after the start of the motion. 2. 0.25T 3. right before the start of clap 4-5 within clap 6-9 

within fling. On each graph on the lower right the instant at which the frame corresponds is 

indicated. T=2.1384  
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Figure A.18. x  contours for case I setup II at different instances within the first period for 

two vertical to the stroke plane slices at 30% and 65% of wing’s length. Blue to red for 

lower to higher values from -12 to 12 and 55 contour levels. The 9 instances shown 

correspond from left to right in each row to: 1. right after the start of the motion. 2. 0.25T 3. 

right before the start of clap 4-5 within clap 6-9 within fling. On each graph on the lower 

right the instant at which the frame corresponds is indicated. T=2.1384  
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Figure A.19. x  contours for case II setup I at different instances within the first period for 

two vertical to the stroke plane slices at 30% and 65% of wing’s length. Blue to red for 

lower to higher values from -12 to 12 and 55 contour levels. The 9 instances shown 

correspond from left to right in each row to: 1. right after the start of the motion. 2. 0.25T 3. 

right before the start of clap 4-5 within clap 6-9 within fling. On each graph on the lower 

right the instant at which the frame corresponds is indicated. T=2.1384  
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Figure A.20. x  contours for case II setup Ii at different instances within the first period for 

two vertical to the stroke plane slices at 30% and 65% of wing’s length. Blue to red for 

lower to higher values from -12 to 12 and 55 contour levels. The 9 instances shown 

correspond from left to right in each row to: 1. right after the start of the motion. 2. 0.25T 3. 

right before the start of clap 4-5 within clap 6-9 within fling. On each graph on the lower 

right the instant at which the frame corresponds is indicated. T=2.1384  
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Figure A.21. x  contours for case III setup I at different instances within the first period for 

two vertical to the stroke plane slices at 30% and 65% of wing’s length. Blue to red for 

lower to higher values from -12 to 12 and 55 contour levels. The 9 instances shown 

correspond from left to right in each row to: 1. right after the start of the motion. 2. 0.25T 3. 

right before the start of clap 4-5 within clap 6-9 within fling. On each graph on the lower 

right the instant at which the frame corresponds is indicated. T=2.1384  
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Figure A.22. x  contours for case III setup II at different instances within the first period 

for two vertical to the stroke plane slices at 30% and 65% of wing’s length. Blue to red for 

lower to higher values from -12 to 12 and 55 contour levels. The 9 instances shown 

correspond from left to right in each row to: 1. right after the start of the motion. 2. 0.25T 3. 

right before the start of clap 4-5 within clap 6-9 within fling. On each graph on the lower 

right the instant at which the frame corresponds is indicated. T=2.1384  
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