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that a longer-length blind equalizer does not necessarily outperform a shorter one, as contrary
to what conventionally conjectured. The theoretical analysis results are confirmed by computer
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1 Introduction

Since the pineering work by Sato[18], lots of blind channel equalization algorithms have been
proposed|[1, 2, 17, 21, 23, 24]. They have been effectively used in digital communication sys-
tems to cancel the inter-symbol interference (ISI). Blind equalization algorithins are usually
designed to minimize some cost functions consisting of higher-order statistics of the channel
output, without using the channel input. They are implemented mostly by stochastic gradi-
ent algorithms. The convergence analysis of blind equalization algorithms is very important to
understand their performance. We may categorize the convergence analyses into two different
kinds, static convergence analysis and dynamic convergence analysis.

The static convergence analysis studies the positions of the minimum points of the cost
functions under various conditions. It has been proved that undesirable local minima may exist
for Godard algorithms [8] implemented with FIR equalizers [4, 5, 11], and for BGR algorithms
[1] and decision-directed algorithms [17] even if implemented with IIR equalizers[6, 10, 14, 16].
Recently, we have found that almost all cost functions of blind equalization algorithms may
have undesirable local minima[13] due to the finite length of equalizers. Although undesirable
local minima exist for blind equalization algorithms, they may be effectively avoided by smart
initialization strategies(7, 11].

On the other hand, the dynamic convergence analysis addresses the stochastic dynamics of
equalization algorithms. Because of the non-linearity in adaptive blind equalization algorithms,
the exact dynamic convergence analysis is often very difficult. Almost all dynamic convergence
analyses are conducted under some assumptions. Several papers [9, 10, 14, 16, 27) have studied
the dynamic convergence of the decision-directed equalizer by assuming that equalizer is in
“open eye pattern”. In [26], Weerackody and his coauthers have presented dynamic convergence
analysis of Sato equalizer. Chan and Shynk [19] have studied the dynamic convergence of the
constant modulus algorithm by assuming that the channel output is Gaussian. Recently, Cusani
and Laurenti [3] have given some new results on the dynamic convergence analysis of the constant
modulus algorithm.

Unlike most of the previous convergence analysis works which specifically focused on some

blind equalization algorithm, we will present the static and dynamic convergence analysis for
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almost all adaptive blind equalization algorithms when the coefficient sets of equalizers are
near the global minima of their cost functions. In our analysis, we only use the independent
assumption, which is widely used in the dynamic convergence analysis of adaptive algorithms
[9, 14, 15, 16, 19, 26, 27]. Our analysis indicates that for a given channel and step-size, there is
an optimum length of equalizer minimizing the intersymbol interference, which implies that the
longer blind equalizer does not necessarily perform better than of the shorter one. This result
can be applied to the design of blind equalizers used in digital communication systems.

This paper is organized as following. Section 2 briefly introduces the blind equalization in
communication systems. Section 3 proves some properties of the prediction error function. Then,
Section 4 briefly analyzes the static convergence of blind equalizers. Next, Section 5 studies the
dynamic convergence of blind equalizers. Finally, computer simulation results are presented in
Section 6 to demonstrate the consistency of our analysis results. Conclusion remarks are given

in Section 7.

2 Adaptive Blind Equalizers

w(t)

Srard(t — kT) z(t) = Trarh(t — kT) + w(t)
— = Channel h(t) —*@

Figure 1: Baseband representation of a PAM communication system.

Without loss of generality, we consider a baseband representation of the pulse-amplitude-
modulation (PAM) communication system as shown in Figure 1. A sequence of independent,
identically distributed (i.i.d.) digital signal {a, € R} with zero-mean and variance o2 is sent by
the transmitter at the symbol rate of 1/T through a channel exhibiting linear distortion. The

resulting output signal z(¢) can be expressed as

+00

z(t) = z arh(t — kT) + w(t), (2.1)

k=-o00
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whore w(t) is white Gaussian channel noise and h(t) is the impulse response of the linear time-
invariant (LTI) channel. If the channel output is sampled at the baud rate 1/T, a stationary

sequence is obtained, which can be expressed as

+00
Tn £ 2(nT) = Z ap—khy + wy, (2.2)
k=~00
in which we have used the definitions
hn £ h(nT) and wy, £ w(nT). (2.3)

The equalizer parameters {c,} are subject to adaptation via some algorithm to be deter-

mined. The equalizer output as shown in Figure 2 can then be written as

Yn = O CkTn-k (2.4)

where the channel noise is ignored and {s,} is the impulse response of the equalized system

which can be expressed as

Sq 2 thcn—k- (2.5)
k

an Tn . Yn . . an
— Channel Equalizer Decision——>

pd

Algorithm

Figure 2: Diagram of typical channel equalization system.

In blind equalization, the original sequence is unknown to the receiver except for its proba-
bilistic or statistical properties. A blind equalization algorithm is usually devised by minimizing
a cost function consisting of the statistics of the output of the equalizer y,, which is a function

of {---, s_1, S0, s1,---} or {--, c_1, cp, €1, -}, The cost function is usually of the form
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E{®\y,)}, where ®(y,) is a function of y,, which is selected such that the cost function has the

global minimum points at
{sn} = £{b[n — ng]} for all ng = 0,+1,+2,--- (2.6)

A stochastic gradient algorithm is used to minimize the cost function to obtain on-line

equalization algorithm, which adjusts the k-th parameter of the equalizer at time n by
et =& — up(yn)znt, 2.7)
where p is a small step size, ¢(.) relates to the cost function by
o) = [ dla)ds, (28)

and it is sometimes called prediction error function.

If an FIR filter is used as the equalizer, then (2.7) can be expressed as
e+ = &M — px,d(yn), (2.9)
where €™ is the coefficient vector of a blind equalizer after n-th iteration defined as
em &) L gm L dmpT (2.10)
and x,, is the channel output vector at time n defined as
%n & [ZnsNs+ s Tny- -, Tnn]T- (2.11)

Since all channels can be approximated as a moving-average model with appropriate impulse

response {h_ps,---,hg, -+, hp}, the channel output vector can be expressed as
x, = HTa,, (2.12)

where H is a (2N + 2M + 1) x (2N + 1) channel matriz defined as

(h—M 0 0 \
: h_M T
ho 0

e h: A (2.13)

M . . :
0 hM '°. hO
: 0 :

\ o0 ... by )
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and aj, is the input symbol v ctor at time n defined as

8n 2 [Gns(N+M)r "2 Gny 5 B (N4 M) - (2.14)
With the above definitions, the channel output can be expressed in a compact form:
yn = aL8™ (2.15)
= alHe™
where 8(™) is the equalized system vector at time n defined as

O B NIRTRN RN L (2.16)

It is obvious that an FIR channel can not be perfectly equalized by an FIR equalizer, that

is, there is no equalization vector c such that

He = epmanN, (2.17)

where

en+n=1[0,--+,0, 1, 0,---,0] . (2.18)

M+N M+N
But when the length of the equalizer is very large, there exists a € such that || Hé — ey n || is

very small.

3 Properties of Prediction Error Function

Before analyzing the convergence behavior of blind equalizers, we first introduce some properties
of the prediction error function here. The following lemma considers two important properties

to be used in subsequent discussions.

Lemma 3.1 The prediction error function ¢(.) has the following two properties:

1) When the parameters of a finite-length equalizer make its cost function attain one of its

minima, the output of the equalized system, ¥y, satisfies

(i) E{¢(§n)xn} = 0, and
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(it) HTFH s positive-definite,
where the (2M + 2N + 1) x (2M + 2N + 1) matriz F is defined as

F = % B{and/(n)e}, (3.1)

with ¢'(.) being the derivative of ¢(.), fin = Y- CkTn—k and & being the equalizer coefficients

making the cost function attain a minimum.

2) For all integers n and k
E{¢(an)ar} =0, (3.2)
and

E{¢'(an)a}} > 0. (3.3)

Proof:
1) Let {¢,} be the coefficients of an FIR blind equalizer which make the cost function

E{®(y,)} attain one of its minima, then

0

52 E(®(in)} =0 (3.4
and
32
mE{@(gn)} is positive-definite. (3.5)
From (2.4) and (2.8),
52 B8(n)} = Bglin)on-s), 36

therefore, by (3.4), E{¢(§in)Zn—i} = 0, which is Lemma 3.1 1) (i). Using (2.4) and (2.8), direct
calculation yields that

L1 % paG))] = L BT} 3.7)
02" 0¢;0¢; Uil = @ e Xn ’
= S E(Had (o)aTH)

= HTFH.

According to (3.5), HT FH is positive-definite.
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2) If a double-infinite length equalizer is used, then {&} = {A,}, the channel inverse, is a
global minimum of the cost function, and §, = a,. From the proof of the first part, for any
integer k,

E{¢(an)ar} = E{d’(gn)zink—ihi} (3-8)

Z hi E{¢(in)Tr—i}
= 0.

Since matrix [E{¢'(§in)Tn-iTn~;}] is positive-definite, 3=, 3" fziﬁ]E{qS’(gn)mk_ixk_,} > 0, there-

fore

E{#(an)a}} = E{¢'(fn))_ z—ihi Yy zr_sh;} (3.9)
: )
= Z Z Rib; E{¢ (§n)Tk-iTk—j}
>0
o

With the above lemma, we are now able to analyze the static and dynamic convergence of

adaptive blind equalizers.

4 Static Convergence Analysis

If the equalizer is double-infinite, then at the global minimum of the cost function, the parameters

of the equalizer
{ci} = {£hi-n,}, (4.1)

for some integer ny. However, only FIR blind equalizer is used in practical systems. In this
case, smart initialization strategies {6, 7, 11] will make the equalizer coefficients converge to a
minimum {&, : n = —N,---,0,---, N} of the cost function near the channel inverse such that

Un — Gy, is very small. Therefore, using the Taylor expansion, we have

&(¥n) = ¢(an) + ‘Jb’(an)(!}n - an). 4.2)
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According to Lemma 3.1,

E{xnd¢(an)} = HTE{and(an)} (4.3)
= 0,
and
E{xn¢(gn)} = 0. (4.4)
Consequently, from (4.2)
E{xn¢'(an)(@n — an)} =0 (4.5)
If we denote
&£ (6w, G0, EN)T, (4.6)
then
fin = Xp,&. 4.7)

Substituting x, = H” a, into (4.5), we can obtain that
0’Rse = HT E{an¢'(an)an}, (4.8)

where we have used the definitions

Ry 2HTFH (4.9)
and
1
F& EEE{an¢,(an)aZ}' (4.10)
Since we have assumed that {a,} is an i.i.d. sequence with zero-mean and variance o2,
f(0)o? ifn=m=1
E{¢'(an)amai} ={ f(1)o? ifn#m=1, (4.11)
0 otherwise
with
1
f(0) £ —E{¢(an)az} and f(1) £ E{¢'(an)}. (412)
Hence, F is a diagonal matrix and
F = diag[f(1),---, f(1), £(0), f(1),---, F(1)]. (4.13)
N N

M+N M+N
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Furthermore, from Lemma 3.1 2}, f(0) > 0 and f(1) > 0, hence, F is positive-definite, therefore,
Ry is also positive-definite for # is full rank. From (4.8), the coefficient vector at the minimum

of the cost function near the channel inverse is
& = f(0)R;'h, (4.14)
where h is a (2N + 1) x 1 vector given by
h=[0,---,0, hp, -~ ho, -+, hong, 0,-+-, O, (4.15)
The above discussion can be summerized into the following theorem.

Theorem 4.1 If an FIR equalizer is used to equalize an FIR channel, then at the minima near

the channel inverse, the equalizer coefficient vector can be expressed as
¢ = f(0)R;'h. (4.16)

The optimum equalizer (Wiener-Hopf filter) coefficient vector that minimizes E{(y, — a»)?}
is given by (9]
¢, = R 'h, (4.17)

where

R=HTH. (4.18)
Hence, the sufficient and necessary condition for ¢ = ¢, for any FIR channel is
f(0) = £(1), (4.19)

which means
E{¢'(an)ar} = E{¢'(an)} E{az}. (4.20)

For Sato algorithm[18], decision-directed equalizers[14, 16], ¢'(a,) = 1, and therefore, ¢ = c,.

For Godard algorithm, ¢(y) = y(y* — r)4 with r = g :: , therefore,

E{¢'(an)ai} = 30* — my, (4.21)

and

E{¢'(an)al} = 2my, (4.22)
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where
my = E{al}. (4.23)

Hence, if the channel input is binary, (4.20) is true and € = ¢,. Otherwise, & # c,.

The distortion due to the finite-length of equalizer is

>

Dy I 8- eman |2 (4.24)
= |[HE-emsn |-

With the increase of the length of the blind equalizer, the global minimum of the cost function
adopted by the equalization algorithm will be closer to the channel inverse. Hence, the distortion

D; will decrease.

5 Dynamic Convergence Analysis

In this section, we study the dynamic convergence behavior of blind equalizers when the param-
eters of blind equalizers near the global minimum of the cost function.

From (2.15) and (4.7), the output of the equalizer can be expressed as

Yn = Yn+ (Yn —0n) (5.1)

= gn + az;%ena
where we have used the notation that
en2e™ — g (5.2)

Around the minima of the cost function of the equalizer || €, || is small, therefore y,, — §, is also

small. Applying the Taylor expansion to ¢(y,) at 7, we have
$(yn) = $(in) + ¢'(4n)a] Hen. (5.3)
Subtracting both sides of (2.9) by ¢ and using (5.3), we have that
ent1 = €n = p(Xn(§n) + H' and' (§n)a] Hen). (5.4)

This is the key identity that we are going to apply in the dynamic convergence analysis in this

section.
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In our analysis, we will use the independent assumption {9, 16, 27, 26] which assumes that a,
and ¢, are statistically independent. Similar assumptions have also been used in the convergence
analysis of LMS algorithm, decision-directed equalizer, and Sato algorithm. The references

[9, 16, 27, 26] have given some good justification on the validation of this assumption.
5.1 Convergence in Mean

To study the mean convergence of adaptive blind equalizers, we first take ensemble average on

both sides of (5.4),

E{ent1} = E{en} — p(E{Xnd(iin)} + HT E{and'(in)al YHE{en}). (5.5)

in which we have used the independent assumption. From Lemma 3.1 1) (i), E{x,¢(jn)} = 0.
Thus, (5.5) can be simplified into

E{ent1} = (I - po®HTFH)E{ea}, (5.6)
with
F& gliE{and’,(gn)aZ;}' (5.7)
Hence,
E{en} = (I — po®*HTFH)"E{e}- (5.8)

Let As(™ 25 — 5 then As(™ = He, and €, = (HTH)"1HTAs(™. It follows from (5.8) that
E{As™} = H(I — po?HTFH)"(HTH) ' HTE{As©). (5.9)

Since HT F'H is positive-definite according to Lemma 3.1 1) (i),

Jim || E{en} [|=0 (5.10)
and

; n) =

Jim || E{As™} ||=0 (5.11)

if p satisfies 0 < p < Ti?” where Amqr is the largest eigenvalue of HTFH. The above

discussion can be summerized into the following theorem.
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Theorem 5.1 For any FIR blind equalization algorith.n, mean convergence behavior near the

global minimum of the cost function satisfies
E{en} = (I - po®Ry)"E{eo}, (5.12)
where
R S HTFH. - (5.13)
If the step-size u in iteration formula (2.7) or (2.9) satisfies
2

)‘ma:c

O<pu<

5 (5.14)

then
E{c™} 5 &M and B{s™} = 5", (5.15)

5.2 Consistency

Having proved E{c™} — &™) and E{s™} — §("), we are going to study the consistency of the
convergence here.

From (5.4), we have

Efent16n41} = E{enen} — p(li + I — pl3), (5.16)
where
I = E{(HTan$(jn) + H7 and'(4n)a] Hen)el }, ' (5.17)
I = E{en(H" 2,8(iin) + HT an¢' (§n)a] Hen)"}, (5.18)
and

I3 = E{(H7 8n¢(n) + H" and'(Gn)ay Hen) (H and(iin) + HTand' (§n)ay Hen)T}.  (5.19)
Using Lemma 3.1 1) (i), I; and I3 can be simplified as
I = 0’R4R,,, I, =0’R. R; (5.20)
where R, denotes the correlation matrix of e, i.e.

R., = E{enel}. (5.21)
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The dominant term in I3 is

I3 = 02Rg,
in which
Ry = {%TGH},
and
5 = L B(and(Gn)el).

14

(5.22)

(5.23)

(5.24)

It is obvious that both G and Rg are positive-definite matrix. Substituting (5.20) and (5.22)

into (5.16), we obtain that
Renyy = Re, — p0*(RgRe, + Re, Ry — uRy).
Let R, be the unique positive-definite solution of the Lyapunov equation
RfRf + R(Rf = uRg,

then (5.25) is equivalent to

Revs = Bo= 5A(Rey ~ B+ 3(Rey ~ ROA,
where
A=1-2uc’R;.
Hence,
| Repsr = Re ISHA NIl Re, — Re || -
Therefore,

“ Ren - Rc “S” A “n” Reo - Re ” .
HOo<pu< ﬁ'—y, then || A ||l< 1, and
Jim || Re, = Re||=0.

Therefore,

lim R, = R,.
n—oo €

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

Since R, # 0, E{c™} — & is not consistent. Summerizing the above analysis, the following

theorem is obtained.
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Theorem 5.2 The equalizer coefficient vector ¢\ — & is not consist nt and at the equilibrium
near the minimum of the cost function, the correlation matriz R, of € is uniquely determined by

the following Lyapunov equation
R;R. + R.R; = uR,, (5.33)
fo<u< x;;l:;g.

From the above discussion, the distortion of the equalized system due to gradient noise is

fio

D, E{ls—-5|% (5.34)
= E{|| He|?)
= tr[HTRH)

= tr[RR].

When an FIR equalizer is so long that {¢, = Bn}, {n = a,}, then

R;~R;, R,=~R,, (5.35)
where we used the definitions
R, £ HTGH, (5.36)
and
1
9(0) = —E{¢*(an)an}, 9(1) = B{¢*(an)}, (5.37)
G £ diag[g(1), -+, 9(1),9(0),9(1),- -, g(1)]. (5.38)
R e ———r
M+N M+N
In this case, (5.33) becomes

For the blind equalization algorithms with f(0) = f(1), Ry = f(1)R. Using (5.39), we have

2f(l)utr[R o] = ,u(2N + l)fii; (5.40)

For those blind equalizers with f(0) # f(1), (5.40) can also be used to approximately estimate

Dy =

the average distortion introduced by gradient noise. According to (5.40), D, is proportional
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to the step-size u and the length of equalizer N. But, on the other hand step-size affects the
convergence speed of equalizer, i.e. the larger the faster it converges if x4 is in the allowable
range. Hence, when we select the step-size of an equalizer, we have to consider the trade-off
between these two factors.

As we have seen, there are two sources of distortion. One is Dy in (4.24) due to the finite
length of an equalizer, another is D, in (5.40) due to the gradient noise. Once the step-size of
a blind equalizer is set, there must be an optimum length for an FIR equalizer to minimize the

total distortion D = Dy + D, since with the increase of the equalizer length, D decreases while

D, increases.

6 Computer Simulations

Since approximation has been used in our theoretical analysis, we shall check the validity of
our theory by computer simulations. Two computer simulation examples are presented in this
section.

Ezample 1:

The channel input sequence {a,} is independent, uniformly distributed over {+a,+3a} (a =
1/V5 to make E{a2} = 1). The impulse response of the channel is h,, = 0.3"u[n] with u[n] being
unit step function. The channel impulse response and frequency response are shown in Figure
3. An FIR equalizer with coefficients ¢y and c; is used to compensate the channel distortion.

The initial value of the equalizer coefficient vector is set to be
¢ = [V, O =1, 0. (6.1)

The Sato algorithm(18] is first used to adjust the coefficients of the equalizer. When the
step-size u = 0.002, 10 trails of learning curves of ¢(® are shown in Figure 4. In this figure, the
thick solid line is the theoretical average learning curve calculated from (5.8), the thick dot-dash
lines are the theoretical one-standard-deviation lines determined by (5.27). According to this
figure, 10 trails of learning curves are almost within one standard deviation of the theoretical
average learning curves for Sato algorithm. Figure 5 demonstrates the ensemble averages of
learning curves for different step-size based on 100 trails. From Figure 5, our theoretical results

fit to the simulation results very well for Sato algorithm.



Li, Liu: Static and Dynamic Convergence Behavior of A.B.E. 17

Similar simulations have also been done for Godard algorithm(8]. The simulatisn results are
shown in Figure 6 and 7, which also confirm our theoretical analysis.
Ezample 2:

The channel input sequence in this example has the same statistical property as in Example 1.
The channel impulse and frequency response are shown in Figure 8, which is a typical telephone
channel [20]. The center-tap initialization strategy[7] is used for blind equalization algorithm.

When the Sato algorithm is used, the theoretical relationship between the total distortion
and the length of equalizer for different step sizes are illustrated in Figure 9 (a), which indicates
that the optimum length of Sato equalizer for this channel is between 15 and 25 dependent
upon the step-size. Figure 9 (b) demonstrates the comparison between the theoretical results of
Dy + Dy and simulated results for step size u = 0.002.

The calculation and simulation results are given in Figure 10 for Godard algorithm. Because
9(1)/f(1) for Godard algorithm (0.169) is less than that for Sato algorithm (0.250) for 4-level
PAM input, Godard algorithm should have less distortion than Sato should according to (5.40).

which is confirmed by comparing Figure 9 and 10.

7 Conclusion

We have studied the static and dynamic convergence behavior of adaptive blind equalizers based
on the first-order approximation to the cost function of blind algorithms under the independent
assumption. Our analysis indicates that for a given channel and step-size, there is an optimal
length for an equalizer to minimize the intersymbol interference. This result implies that a
longer-length blind equalizer does not necessarily outperform a shorter one, as contrary to what
conventionally conjectured. The theoretical results are confirmed by computer simulation ex-
amples. The analysis method used in this paper can also be applied in the analysis of tracking
performance of the blind equalizers used in time-varying channels, such as mobile radio channel
and HF channel. The analysis results presented in this paper can be directly employed in the

design of blind equalizer in practical communication systems.
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Figure 3: (a) The impulse response, and (b) the frequency response of channel I.
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Figure 4: 10 trails of learning curves of (a) cg, and (b) c; for Sato algorithm using x = 0.002.
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Figure 6: 10 trails of learning curves of (a) cg, and (b) ¢; for Godard algorithm using p = 0.002.
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Figure 8: (a) The impulse response, and (b) the frequency response of channel II.
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Figure 9: Total distortion of equalized system (a) theoretical results for different step size u, (b)
simulation results for 4 = 0.002, using Sato algorithm.
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Figure 10: Total distortion of equalized system (a) theoretical results for different step size y,
(b) simulation results for y = 0.002, using Godard algorithm.



