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Certain classes of quantum many-body systems, including those supporting

phenomena like high-Tc superconductivity and spin liquids, are believed to be funda-

mentally intractable to classical modeling. Quantum simulations, in which synthetic

materials are engineered by inducing well-controlled quantum systems like ultracold

atoms to obey many-body Hamiltonians of interest, are a promising new approach

to study this type of physics. However, current experiments have not yet simul-

taneously achieved the system sizes and the level of control necessary to observe

and understand novel physics that cannot be classically modeled. In this work, I

present several advances toward this ultimate goal of large-scale, highly controllable

quantum simulations of many-body spin physics. We simulate long-range Ising and

XY spin models in the presence of transverse and longitudinal magnetic fields using

chains of up to 18 ultracold 171Yb+ ions held in a linear Paul trap, where two hy-



perfine levels in each ion encode spin-1/2 states. The tunable spin-spin interactions

and effective magnetic fields are engineered using laser fields, and the individual

spin states are directly imaged with state-dependent fluorescence. The results in

this thesis address several of the ongoing challenges in the development of synthetic

quantum matter platforms. One such challenge is establishing more flexible capa-

bilities in the sorts of Hamiltonians we can model. By observing suppression of

the ground state spin ordering, we have demonstrated our ability to continuously

tune the interaction range in a power-law interaction pattern, and hence the amount

of frustration present in the spin system. We have additionally begun developing

tools to study particles of higher spin, which could eventually be used to create and

study topological phases of matter. Another challenge is the necessity of identifying

problems that the next generation of experiments, with flexible (but not arbitrary)

controls and classically intractable (but not infinitely large) system sizes, can feasi-

bly shed new light on. We have made measurements of how the range of interaction

affects dynamics of spin correlations propagating through the chain, and the excel-

lent agreement between our observations and numerical simulations indicate that at

larger sizes, our experiment can meaningfully contribute to the open question of the

fundamental speed limit on the transfer of information through such a spin chain.

Finally, for classically intractable system sizes, it will be crucial to have multiple

techniques at our disposal for validating our understanding of the exact microscopic

model being implemented. We have developed and demonstrated an MRI-like spec-

troscopic technique for probing the energies of the many-body Hamiltonian, which

serves as a new method for validating quantum simulations of the transverse Ising



model. Our experiments can potentially be scaled up in the near future to study

fully connected lattice spin models with several tens of spins, where classical com-

putation begins to fail, and the results described in this thesis contribute to the

effort to build experiments that can break new ground in the study of quantum

many-body physics.
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Chapter 1: Introduction

In recent years, significant interest has been generated in the use of well-

controlled quantum systems, particularly ultracold atoms, for the study of many-

body physics [1, 2]. Experimental techniques for the control and manipulation of

interacting quantum mechanical degrees of freedom have become sufficiently ad-

vanced that the field may soon be capable of accessing a regime of physics that has

previously been inaccessible. In particular, the problems we are interested in (which

may one day be more fruitfully studied in the context of quantum simulators than

by other means) generally involve large numbers of interacting quantum systems

that exhibit useful or otherwise interesting collective properties; some prototypical

examples include spin liquids and high-Tc superconductors.

While such systems can be studied experimentally in solid-state materials,

such as superconducting cuprates, or herbertsmithite (a material exhibiting charac-

teristics of a spin liquid), these experiments have certain weaknesses. In particular,

it is often of interest to obtain an understanding of the microscopic behavior of these

systems, which can be difficult to do with the tools generally available in these ‘bulk’

experiments, such as measuring currents, studying the response to global applied

magnetic fields, and so on.
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One common method of attack in this situation, where microscopic degrees of

freedom are difficult to access experimentally and the microscopic model is not an-

alytically known, is to perform numerical simulations of various microscopic models

that are guessed to have relevance to the problem in question. Such simulations can

thus lend insight on what properties are key to obtaining the behavior of interest

and what details are unimportant. Unfortunately, in the particular case of interact-

ing quantum mechanical degrees of freedom, such simulations cannot be performed

on a large scale.

The fundamental problem is the exponential scaling of the Hilbert space size:

for example, in order to fully model the dynamics of N spin-1/2 particles, one

must keep track of 2N spin configurations. This is fine in cases where effective

approximations are known to reproduce the behavior of interest, but this is not

always true (and indeed, we don’t necessarily have reason to believe there always

will be ways to approximate the dynamics of a system without dealing with its

entire Hilbert space, especially in cases where large-scale entanglement is present).

In cases where no useful approximations are known, computational techniques break

down for system sizes as small as 30 spin-1/2 particles.

These considerations help paint an outline of the niche that quantum simula-

tion experiments are hoped to soon fill. Simulations done with inherently quantum

mechanical particles, rather than the classical bits of a supercomputer, are hoped

to have much better scaling properties: even if there is a superlinear increase of

resources demanded to add more trapped atoms to an experiment, this increase is

expected to be subexponential. At the same time, the level of control that we now
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have over ultracold atomic systems gives us immediate access to tools that are chal-

lenging or even impossible to implement in more conventional material experiments.

For example, atomic simulations feature control and readout of individual particles

like spins, and a large degree of flexibility in the Hamiltonian implemented, even

allowing us to study phenomena that do not occur in any other known system. As

just one example, it is possible to create a system that effectively has no decoher-

ence or disorder on the relevant timescales and energy scales, and then re-introduce

such ‘noise’ effects in a controllable way. Thus, while I use the word ‘simulation’ as

a shorthand for this class of experiments, it might be more accurate to call them

something like ‘experimental studies of quantum many-body physics’, since there is

more to the field than simply mimicking or simulating known materials.

General-purpose digital quantum simulators (also known as quantum comput-

ers) are still far from being practically achievable, but experiments which induce a

system to obey the dynamics of a particular Hamiltonian of interest are being de-

veloped fairly rapidly. These experiments are sometimes referred to as emulations

and sometimes as analog quantum simulations; here I use the terms interchange-

ably. There are a variety of platforms that can be used for this type of quantum

simulation, which tend to have complementary strengths and weaknesses. For ex-

ample, ultracold neutral alkali atoms are well suited for studies of transport, and

when confined in an optical lattice allow the study of Hubbard-type models that

are believed to have a connection to the phenomenon of high-Tc superconductivity.

However, in these systems typically there are no long-range interactions. By con-

trast, the trapped ion system I will describe is well suited for studies of interacting
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spins, and easily affords not only tunable long-range interactions but also might

enable dynamic changes of the interaction pattern. However, physical transport (as

opposed to transport of spin information) is typically absent. It is thus helpful to

choose a suitable platform for the particular class of models that are of interest.

I will discuss only a specific platform in this thesis (after the introduction)

- namely, the use of trapped ion chains to study spin systems with tunable long-

range interactions. However, a brief survey of other atomic quantum simulation

experiments serves to explicate the broad array of phenomena that can be studied

with AMO techniques. This list is far from complete, and is intended only to convey

the richness of these systems. And of course, even a comprehensive description of

such atomic experiments neglects other promising quantum simulation platforms

such as photons [3] and superconducting circuits [4].

A particularly large community has formed around the use of ultracold atoms

to study many-body physics (for reviews of this field, see [1] and [2]). Quantum

gas microscopes, in which neutral atoms are trapped in a lattice formed from laser

light and imaged with single-site resolution, have enabled studies of fundamental

statistical mechanics topics. Among many other applications, these experiments are

being used to probe nearest-neighbor spin phenomena [5,6] and microscopic studies

of phase transitions like the superfluid to Mott insulator transition [7]. Emulations

that are more closely related to real materials are also possible, such as systems

obeying graphene-like physics with interactions that can be tuned to a degree not

possible in the natural material [8]. Laser fields can be used to induce synthetic gauge

fields that cause the atoms to obey the same physics as electrons in a magnetic [9] or
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electric [10] field, opening a route to study quantum Hall physics in atomic systems.

Strong interactions can be induced in ultracold fermions using a Feshbach resonance

[11–14], which may allow atomic experiments to contribute to the understanding of

such disparate phenomena as high-Tc superconductivity, the interaction of neutrons

in neutron stars, or the quark-gluon plasma believed to have existed at the beginning

of the universe. Another degree of freedom that many experimentalists are beginning

to exploit is the use of long-range interactions, such as the dipolar interactions in

polar molecules [15], or the van der Waals interactions in Rydberg atoms [16, 17].

With trapped ions specifically, a great deal of effort has been invested in developing

the platform I will discuss in this thesis for studying spin systems with long-range

interactions [18–26]. Other applications for using trapped ions to study many-body

physics include simulations of polariton physics [27] and relativistic dynamics [28,29],

with a variety of proposals also existing for the study of topics as varied as spin-

boson models [30], microscopic models of friction [31], and even aspects of quantum

field theories [32].

Currently, state-of-the-art atomic experiments are very close to reaching the

goal of studying many-body physics in a regime inaccessible by other experimental or

computational methods, though the field arguably has not simultaneously achieved

both the system sizes and the level of control necessary to significantly expand the

boundary of what types of physics can be observed. Still, the progress that has

occurred in the past several years is suggestive that this goal can be attained in the

not too distant future. For example, only six years have passed between the first

proof-of-principle experiment demonstrating that trapped ions can be used to simu-
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late spin physics and the current state-of-the-art in which we routinely manipulate

10 or more spins, with a good degree of control over as many as 18 spins so far, and

have characterized many possible ‘knobs’ in our Hamiltonians.

1.1 Trapped ions as a spin emulator

The remainder of my thesis will specifically focus on the use of a chain of

ions to simulate interacting spins. By isolating two hyperfine states in the ground

electronic manifold of a trapped ion, we obtain a highly stable and controllable two-

level system which may be considered as a quantum bit (qubit) for computation or a

spin-1/2 particle for emulating many-body physics. (And as we will see in Chapter

7, we can replace the ‘two’s with ‘three’s to study spin-1 particles, or qutrits.)

Laser beams imparting optical dipole forces can be used to engineer highly tunable

interaction profiles: for example, we can create pairwise interactions which follow a

power-law decay with the separation r between the pair of spins, 1/rα, where we can

continuously vary both the overall strength of the interactions and the parameter

α, and it is also straightforward to apply effective magnetic fields along various

directions. Additionally, the full spin configuration can be read out by collecting

state-dependent fluorescence on a CCD.

At the time that I joined this quantum simulation effort, the then-current team

had demonstrated the ability to map spin models onto trapped ions and thereby ob-

serve interesting many-body physics, and had already carried out several studies of

this nature [18–21]. We are thus in a transitional period where we can no longer
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meaningfully claim to be performing a proof-of-principle experiment. Because of

this, and the fact that we are still at a system size small enough that the spin physics

we see can be easily modeled on a computer, considering what extra value is added

toward our long-term goals is a useful filter in selecting among the many directions

we could explore with this flexible system. While the general principle we follow in

planning the next experiment is usually to simply study the most interesting thing

we can access with whatever capabilities we have at the time, we nevertheless have

managed to make quite a bit of progress on some of the conceptual questions that

arise as we make a serious effort to scale up our system. In particular, we have made

contributions toward identifying useful problems to tackle with a larger simulator,

in the form of measurements that might lead to improving bounds on the speed

of transferring quantum information through systems with long-range interactions;

toward developing validation and measurement techiques, in the form of spectro-

scopic protocols for measuring energies of the effective many-body Hamiltonian and

extracting information about the individual interactions; and toward developing a

less limited, more multipurpose device, in the form of demonstrating manipulation

and entanglement of interacting spin-1 chains. As I leave the project, others are in

the middle of technical upgrades that will soon enable even more exciting physics

studies: the day that the first draft of this thesis was due, one of my colleagues hit

our ion with a laser that will be used to rotate individual spins, and less than two

weeks before that the cryogenic vacuum chamber that (hopefully) will be eventually

used to push the system to 30, 50, or even more spins arrived. Thus, it has been an

exciting time to work with this team.
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1.2 Outline of the thesis

In this introduction, I’ve described why we are excited about quantum simu-

lation in general, and given a brief high-level description of the project as a whole.

Chapter 2 is devoted to the physics of our atom-laser interactions, which are at

the heart of most manipulations we do. In this chapter, we will describe a typical

experimental sequence (assuming that everything has been set up perfectly to this

point), and then describe the physics underlying each step; discussion of experimen-

tal/hardware considerations will, for the most part, be left for the next chapter.

The main focus will be the coherent operations, which involve pure spin rotations,

spin-motion coupling, and the use of the spin-motion coupling to generate spin-spin

interactions. The physics described in this chapter will hence serve as a background

to understand both the experimental details and the studies of spin physics.

Chapter 3 discusses the apparatus, and experimental details that do not be-

long in any other chapter, at some length. The setup has been documented in other

theses [33, 34], so I do not provide a comprehensive description of the hardware. I

instead give an overview, highlighting some of the experimental requirements that

may be unusually stringent, and discuss some aspects of the apparatus that have

been developed or modified since the last thesis was written. Additionally, I doc-

ument several experimental procedures that are essentially intended as answers to

the question “I think we’ve measured this thing before, but how exactly did we

do it?”, and discuss a couple of otherwise-orphaned calculations and measurements

that may have some bearing on future improvements to the current experimental

8



limitations.

Chapter 4 is a discussion of adiabatic preparation of ground states of the Ising

model [23]. This technique was used in our studies of long-range antiferromagnetism,

where we probed our ability to continuously tune the degree of frustration in our

system [22] and in our studies of the addition of a longitudinal field to our Hamilto-

nian [24]. The latter two studies are, however, only briefly discussed, because they

have been well documented not only in the publications but also in the theses of

Rajibul Islam [33] and Simcha Korenblit [34].

Chapter 5 details the measurements we have made of how spin correlations

build up as a function of time and distance after a global quench [25]. These mea-

surements may have implications for the investigation of a fundamental question of

how quickly information can propagate through an interacting spin system depend-

ing on the interaction pattern; our quantum simulator may be poised to immediately

make a useful contribution toward understanding this question as soon as our system

is large enough to measure dynamics that cant be classically simulated.

Chapter 6 covers the method we have developed for performing spectroscopy

on the effective many-body spin system [26]. This technique, which is reasonably

scalable, can be used to measure the individual spin-spin interactions directly, and

also provides us with new ways to prepare interesting states without locally address-

ing individual spins.

Finally, Chapter 7 describes our recent and ongoing efforts to generate a spin-1

Hamiltonian. It may eventually be possible to use the techniques we are currently

developing to create and study interesting topologically protected states; while such

9



techniques may not be necessary for the preservation of quantum information on our

platform, it may be useful to have a clean system like trapped ions to test out these

ideas before attempting to implement them on systems with more decoherence.
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Chapter 2: Atom-laser interactions

This chapter discusses the physics of the various atom-laser interactions that

are at the heart of our experiment. This material is placed ahead of the chapter

detailing the experimental setup because its contents will be important for under-

standing the rationale behind some experimental choices and behind the various

calibrations that will be described later.

Additionally, the concept of spin-motion coupling that forms the meat of this

chapter is an idea that unifies many current experiments in quantum science, and it

therefore merits a thorough discussion. I will point out the similarities between our

Hamiltonians and those of other important quantum systems at appropriate points

in the chapter, but list some examples here to highlight the diversity of topics that

share this low-level connection to our experiments. The operation we refer to as

a red sideband transition takes the form of a Jaynes-Cummings Hamiltonian [35],

where the phonons or motional quanta in the trapped ion system map to photons in a

cavity system. The Jaynes-Cummings model describes a two-level system interacting

with a quantized mode of radiation [36], and underlies much work in cavity QED

with atoms [37] or superconducting qubits [38]. The field of optomechanics also

makes use of very similar ideas, where light is used to couple to and cool harmonic
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modes of a massive object rather than of an ion in a potential well [39], to couple

motion of a micromechanical oscillator to that of ultracold atoms, and to couple

spin degrees of freedom (e.g., in a solid state qubit) to mechanical motion of a

separate object [40]. The spin-dependent force that we generate by driving multiple

motional sidebands resembles the spin-orbit coupling techniques used in ultracold

gases to generate synthetic gauge fields [41], and for a single particle can be mapped

exactly to the Dirac equation for relativistic electrons [28, 42]. And of course, for

us the most relevant application of the spin-dependent force is the generation of

spin-spin interactions mediated by phonons, which is an idea first proposed [43] and

implemented [18, 44] for trapped ion systems, but could also be applied to other

systems with long-range interactions such as polar molecules [45] or other dipolar

particles (for example, atoms like Er or Dy with large magnetic dipole moments).

Before diving into details, I include a note on the rationale behind the orga-

nization of this chapter. I wanted to include full details on how the Hamiltonians

are derived, what approximations are made, and so on. However, in an attempt to

prevent the reader from being lost in the weeds, some of the detailed derivations

have been banished to appendices. This allows me to use this chapter to highlight

what I feel are the important equations and concepts to remember, and to attempt

to provide a more high-level orientation.
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2.1 Description of a typical experiment, providing a brief overview

of the tools we need

The vast majority of the manipulations we do with our Yb+ ions deal with some

sort of laser-atom interaction. Consider the typical experiment setup during a data

run (i.e., assuming that we have already loaded ions into the trap and performed the

necessary calibrations), which consists of many repetitions of a very basic sequence:

1. State preparation

2. Application of a synthetic Hamiltonian

3. Measurement

I will often refer to a single repetition of this sequence as an experiment. It should

hopefully be clear from context whether ‘experiment’ refers to ‘an experiment’ (as

in a single sequence of preparation, time evolution, and measurement), ‘the experi-

ment’(as in the experimental apparatus), or to a collection of single-shot experiments

resulting in some data plot.

During state preparation, we initialize both the motional and the spin states

of the atoms. The motional preparation involves Doppler cooling the ions along all

three principal axes of the trapping potential and sideband cooling the set of trans-

verse motional modes that are used in generating the synthetic Hamiltonian. After

the ions are cooled, the spin states are initialized to the |↓↓ · · · 〉z state with optical

pumping, and depending on the desired experiment, can be coherently rotated to

(e.g.) |↓↓ · · · 〉x or |↓↓ · · · 〉y.

13



To generate an artificial spin Hamiltonian, tunable spin-spin interactions and

effective magnetic fields are applied using laser fields. In particular, the interactions

arise from using spin-dependent optical dipole forces to couple spin states to mo-

tional degrees of freedom, allowing us to modulate the Coulomb interaction between

the ions, while the effective fields arise from lasers coherently driving spin transitions

without affecting the motional state.

After applying the spin Hamiltonian for the desired length of time, we read out

the spin state in the σz basis by capturing spin-dependent fluorescence, generated

by exposing the ions to a laser that resonantly scatters light from |↑〉z but not from

|↓〉z, on a CCD imager that affords spatial resolution of each separate ion. If we

instead wish to measure the spins in a different basis, e.g. σx or σy, we perform a

global rotation that maps (e.g.) |↓〉x and |↑〉x to |↓〉z and |↑〉z before exposing the

ions to the readout light.

To gain a better understanding of these various operations, we will first briefly

discuss the operations performed with near-resonant light, i.e. state preparation

(Doppler cooling and optical pumping) and state measurement (spin-dependent flu-

orescence). We will then discuss in more detail the coherent operations, i.e. the

rotations that may be performed as part of the initialization or the readout proce-

dures and the generation of the effective spin Hamiltonian.
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2.2 Resonant interactions, ytterbium level structure, and considera-

tions regarding the Raman laser wavelength

We encode our spin states in the hyperfine energy levels of the ion 171Yb+.

This isotope has a nuclear spin of 1/2, which simplifies some of the manipulations

that will be described below. For the spin-1/2 systems that I will discuss throughout

most of the thesis, the spin states are defined within the ground 2S1/2 manifold as

|↓〉z ≡ |F = 0,mF = 0〉 and |↑〉z ≡ |F = 1,mF = 0〉, where F and mF are quantum

numbers associated with the total angular momentum of the atom and its projection

along the z axis, respectively.

Doppler cooling, optical pumping, and detection all utilize the 2S1/2 ↔2 P1/2

transition at 369.5 nm. A more complete description of these operations can be

found in the paper [46] or in Steven Olmschenk’s thesis [47]. A sketch of the rel-

evant levels is shown in Figure 2.1. For these operations, we want to use a closed

cycling transition, i.e. a transition where the atom always decays back to the energy

manifold it started in. In Yb+, 0.5% of spontaneous emission events result in the

2P1/2 state decaying to 2D3/2 [48]. While this D state will eventually decay to the S

state, its lifetime is sufficiently long (roughly 53 ms) to disrupt all of these manip-

ulations. We therefore apply another laser at 935 nm to repump the D state into

the S state at a higher rate, using an intermediate state, 3[3/2]1/2, whose lifetime is

only 38 ns.
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Figure 2.1: Diagram of the electronic energy levels of Yb+ that participate in the
cycling transition. The 2D3/2 and 3[3/2]1/2 levels need to be considered because the
2P1/2 state decays to 2D3/2 in 0.5% of spontaneous emission events, and 3[3/2]1/2 is
used for repumping population from 2D3/2 to 2S1/2. Dashed lines represent transi-
tions that are driven with laser fields at the labeled wavelengths, and dotted lines
represent spontaneous decay paths. The population decay rate γ and associated
lifetime τ = 1/γ, along with the hyperfine splittings of each level, are also shown.
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Figure 2.2: Example three level system, where each laser beam has its own fre-
quency ω and single-photon Rabi frequency g; shown here is the case where the two
laser beams have a beat frequency at exactly ωHF , detuned by a large amount from
the excited state |e〉.
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2.2.1 Wavelength considerations for stimulated Raman transitions

As we will see below, the coherent operations on the spin states are all per-

formed with stimulated Raman transitions. The idea here is to tune a pair of laser

beams such that they are detuned from an excited state and their frequency dif-

ference is resonant with the hyperfine transition we wish to drive, as schematically

depicted in Figure 2.2. In the limit of a large detuning from the excited state, this

effectively drives transitions between the lower hyperfine states without significantly

populating the excited state, with an effective Hamiltonian given by

Heff

~
= |gA|2

∆
|A〉〈A|+ |gB |2

∆
|B〉〈B| (2.1)

+
(
gAg
∗
B

∆
ei[(kA−kB)x+(φA−φB)] |B〉〈A|+ gBg

∗
A

∆
ei[(kB−kA)x+(φB−φA)] |A〉〈B|

)
.

Here, the lasers i have single-photon Rabi frequencies gi, wavevectors ki, and phases

φi, and their frequencies are set such that ωA − ωB = ωHF , and ~ωA − Ee ≡ ~∆.

The derivation of this result is presented in Appendix A. When dealing with the

coherent operations between hyperfine states, we thus typically directly write down

the Hamiltonian for a two-level system interacting with a single radiation field of

frequency ωA − ωB, wavevector ∆k = kA − kB, phase φA − φB, and Rabi frequency

gAg
∗
B

∆
.

Importantly, the two-photon Rabi frequency Ω ≡ gAg
∗
B

∆
scales linearly with

laser intensity I (assuming that the laser power is evenly distributed between the

two frequencies), since each single-photon Rabi frequency gi is proportional to the
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Figure 2.3: Plot of the probability of a spontaneous emission event during a reso-
nant π pulse between the clock states, as a function of wavelength. In addition to
the P states, there is a bracket state (discussed in the next section) theoretically
predicted to lie between them. The marked point at 355 nm corresponds to the
wavelength of a frequency-tripled vanadate laser, which is commercially available at
high power; we see here that near this wavelength, the spontaneous emission rate is
less than 10−5 during a π pulse.
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electric field, and inversely linearly with the detuning from the excited state: Ω ∼

I/∆. By contrast, we found that the population in the excited state for ∆� g, γ is

|ae|2 =

∣∣∣∣gAaA + gBaB
∆

∣∣∣∣2 (2.2)

(see the appendix), so the probability of off-resonantly populating the excited state

scales like I/∆2. Spontaneous emission from the off-resonantly populated excited

state could therefore optically pump the atom to a dark state; however, our ex-

periments take place on durations that are orders of magnitude shorter than the

timescale for this optical pumping process.

Since the probability of a spontaneous emission from the excited state scales

with the probability of populating it, we can improve the ratio of coherent interaction

strength (Ω) to spontaneous emission rate by choosing a larger detuning. The

picture gets slightly more complicated when considering multiple excited states,

but this argument is generally true in the wavelength regions we consider, tuned

inside the fine structure splitting. (However, for a detuning far outside the fine

structure splitting, the contributions to the two-photon Rabi frequency from each

excited state destructively interfere, so that there is not a net gain in suppressing

spontaneous emission.) To visualize this dependence, the metric we plot is the

probability of a spontaneous emission event occurring during the time it takes to

perform a π rotation with the Raman beatnote tuned to the hyperfine resonance,

which is independent of the intensity and hence the absolute Rabi frequency. Figure

2.3 shows the dependence on wavelength of this quantity.
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By fortunate coincidence, frequency-tripled Nb:YVO4 lasers that produce sev-

eral watts at 355 nm are readily available commercially, and this wavelength is near

an optimum for suppressing both spontaneous emission errors and differential AC

Stark shifts [49].

2.2.2 Considerations regarding unusual ‘bracket’ states in Yb+

Unlike most of the commonly used ion species, Yb+ has some unusual extra

electron energy levels, such as the ones labeled 2F7/2 and 3[3/2]1/2 in Figure 2.4.

Most trapped ion quantum information experiments (including ours) use singly-

ionized atoms whose electron shell structure consists of a single outer electron and

a set of closed electron shells. In lighter atoms, the energy required to ‘break’ a

closed shell is so high that the outer electron will be torn off the atom at a lower

energy than what is required to promote an inner electron to a higher shell. By

contrast, the 4f electrons in the outermost closed shell in the Yb+ ground state can

be promoted at a relatively low energy cost, resulting in these unusual energy levels.

(While I will be discussing the various coupling schemes and angular momen-

tum states as though they exactly describe the behavior of the atom, in reality these

are only approximate descriptions of the true eigenstates of the atom, especially for

the complicated 69-electron configurations in Yb+. For example, the 3[3/2]1/2 state

that I will discuss in some detail is actually a state that looks like a mixture of

77% of a 3[3/2]1/2 configuration, 13% of a 3[1/2] state, and 10% of some other set

of eigenstates of Jc, K, and J , as defined below.)
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Figure 2.4: Diagram of the electronic energy levels of Yb+ that are relevant for
our experiments. The electronic states, wavelengths, lifetimes, and branching ratios
are all indicated where known. For example, the transition between the 2S1/2 and
2P1/2 states occurs at 369.5261 nm; the lifetime of the 2P1/2 state is 8.12 ns, and it
decays to 2S1/2 99.5% of the time. Historically, the F state has been repumped on
the 638 nm transition to 1[5/2]5/2; however, we have now moved to using the 355
nm Raman laser for this task.
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The states 2S1/2, 2P1/2, 2P3/2, and 2D3/2 all use the conventional LS coupling

scheme. For LS coupling to hold, we require that L, the total orbital angular mo-

mentum of the outer electron(s), and S, the total spin of the electron(s), be good

quantum numbers for the atom, meaning that the operators L2 and S2 approxi-

mately commute with the Hamiltonian of the atom, which is generally true for an

atom with some number of closed shells and only one unpaired outer electron. The

term symbols are then written as 2S+1LJ , where J = L+S is the total angular mo-

mentum and L is conventionally notated with a letter. For these states, the electron

configuration (of the outer shells) is simply given by 4f 146s, 4f 146p, or 4f 145d.

For the more exotic electronic states, different coupling schemes must be used

to obtain the total angular momentum of the electrons. The core electrons now

carry both spin and orbital angular momentum, so the total angular momentum J

will result from coupling multiple angular momenta together in various ways. In

the coupling schemes we will use, we assume that sc and so (the total spin of the

core and outer electrons, respectively) and lc and lo (the orbital angular momentum

of the core and outer electrons) are all good quantum numbers. The total angular

momentum J then results from coupling sc, so, lc, and lo in various orders. In states

where LS coupling holds, the total angular momentum of the electrons is obtained

by coupling the total orbital angular momentum

L = lc + lo (2.3)
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to the total spin

S = sc + so, (2.4)

and finally coupling L to S as above,

J = L+ S. (2.5)

These relations are familiar from states like 2S1/2, though they are simplified when

the core electrons are in closed shells and carry no net angular momentum (sc =

lc = 0).

In order to figure out what these quantum numbers are for a given level, at

least for the states that use more unusual coupling schemes, it is usually necessary

to dig into the electron configuration. For example, the electron configuration of

the 2F7/2 state is

4f 13(2F ) 6s2. (2.6)

This tells us that the core, consisting of 13 electrons in the 4f shell, has total spin

sc = 1/2 and orbital angular momentum lc = 3, as indicated by the (2F ); the outer

electrons consist of a closed 6s shell, which has so = lo = 0. The F state is in

fact another LS coupled state, and is unusual only insofar as an electron has been

promoted from the 4f shell and the angular momenta arise from the core electrons

rather than the outer electron(s).

The other levels that we commonly run into have a different set of good quan-
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tum numbers Jc, K, and J , defined as

Jc = lc + sc, (2.7)

K = Jc + lo, (2.8)

J = K + so. (2.9)

In other words, the angular momenta of the core are coupled together first, after

which the orbital angular momentum of the outer electrons is coupled in, and then

the spin of the outer electrons. The term symbol in this coupling scheme is written

as 2so+1[K]J ; based on this notation, we often informally refer to such states as

bracket states.

We can again infer sc, so, lc, and lo from the electron configuration: e.g., the

configuration for the 3[3/2]1/2 state is

4f 13(2F7/2) 5d6s(3D). (2.10)

Here we see that the 13 electrons in the 4f shell have spin sc = 1/2 and lc = 3 and

Jc = 7/2 = lc + sc, all inferred from the (2F7/2); the outer electrons (one in 5d and

one in 6s) together have spin so = 1 and lo = 2, indicated by the (3D). We could

have ascertained so = 1 and K = 3/2 = Jc + lo just from the term symbol; however,

picking out the values for sc, lc, and lo allows us to make some determinations about

which LS-type states have dipole-allowed transitions to and from the bracket state.
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While some nasty math can be done to rewrite a state from the Jc, K, J

eigenbasis in terms of states in the L, S, J eigenbasis, the math itself does not

necessarily lend considerable insight into the nature of the bracket state. It is more

helpful to keep in mind the following two rules of thumb: (A) any state of a given

total angular momentum J will be a combination only of states with the same J ,

and (B) the possible values of L and S are constrained by the four base quantum

numbers sc, lc, so, and lo. For example, the 3[3/2]1/2 bracket state can be written

as a superposition of

∣∣3[3/2]1/2
〉

=
4√
21

∣∣2P1/2

〉
+

1

3

√
6

7

∣∣4P1/2

〉
+

1√
7

∣∣4D1/2

〉
, (2.11)

and while we could not a priori guess these coefficients without resorting to com-

bining lots and lots of Clebsch-Gordan coefficients, it is nevertheless clear why these

are the only constituent LS-type states. Namely, we had lc = 3 and lo = 2, so the

allowed values of L = lc+ lo are 1, 2, 3, 4, or 5, whereas we had sc = 1/2 and so = 1,

so S = sc + so can be 1/2 or 3/2. But in order to have J = L + S = 1/2, we are

further restricted to L = 1 and S = 1/2 (i.e., the 2P1/2 state), L = 1 and S = 3/2

(the 4P1/2 state), or L = 2 and S = 3/2 (the 4D1/2 state). In this case, the 2P1/2

character makes this state a reasonable choice for repumping the 2D3/2 state back

down to the 2S1/2 state, because transitions from 2D3/2 ↔2 P1/2 and 2P1/2 ↔2 S1/2

are both dipole-allowed.

There is another coupling scheme whose term symbol is written in a similar

format to the one discussed above, 2so+1[K]J , but where the quantum numbers are
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coupled in a different order, given by L = lc+ lo, K = L+sc, J = K+so. In the case

of our friend the 3[3/2]1/2 state, we can see that the core electrons have a defined total

angular momentum Jc, which was given in the subscript to the (2F7/2) in the electron

configuration, clueing us in that the Jc, K, J scheme above is the appropriate one.

In fact, all known states in Yb+ that use this square bracket notation for the term

symbol (at least, those listed in the NIST atomic levels database) use the Jc, K, J

scheme.

For completeness, I will mention a fourth and final coupling scheme, where

the good quantum numbers are Jc = lc + sc, Jo = lo + so, and J = Jc + Jo. The

term symbol for this scheme is (Jc, Jo)J . For example, the 355 nm laser frequency

is within a few THz of a transition from the 2F7/2 state to the state (7/2, 1)5/2. We

can analyze the electron configuration of this state:

4f 13(2F7/2) 6s6p(3P1), (2.12)

telling us that sc = 1/2 and lc = 3, which are added to form Jc = 7/2 = lc + sc,

and that so = 1 and lo = 1, which are added to form Jo = 1 = lo + so, and the

term symbol tells us J = 5/2. This state is probably relevant to some of the cases

that cause the ions to go completely ‘dark’ (in this context, meaning that they do

not respond to light at any of the 369 nm transitions). There are several possible

explanations for an ion not responding to resonant light: 171Yb+ could be stuck in

the long-lived F state; it could have become doubly ionized; a collision could have

formed an ytterbium hydride (YbH+) molecule; or it could be a different isotope,
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e.g. 172Yb+ or 174Yb+. We observe that when the dark ions are singly charged, they

can be brought back with the 355 nm light, except on rare occasions when a dark

ion is captured during loading; thus, though we may occasionally load a different

isotope, we don’t seem to have any instances of ions being replaced with different

isotopes from charge exchange.

We can see that excitation from the F state to the (7/2, 1)5/2 state is a plausible

pathway explaining why exposing ‘dark,’ singly-charged ions to 355 nm light brings

them back to the S state. A similar analysis to the one above tells us this (7/2, 1)5/2

state should have some 2D5/2 character, which makes it plausible to drive a transition

from 2F7/2 to (7/2, 1)5/2 and decay from there to 2S1/2. Another possibility when

355 nm light resuscitates a dark ion is that it is dissociating the YbH+ molecule. We

have not performed a literature search to determine whether dissociation lines are

known to exist near this wavelength, and it is unclear what fraction of dark singly-

charged ions are molecular hydride and what fraction are atoms in the F state, so

we do not know with certainty if either or both of these mechanisms explains our

observations. However, we have good evidence that dark ions can sometimes be

repumped with the 638 nm laser, indicating that we do sometimes populate the F

state, so now that we no longer use the 638 nm laser and still see recovery of all

our singly-charged dark ions, it is likely that the 355 nm light is at least repumping

from the F state.

Incidentally, the 355 nm laser’s useful side effect of seemingly repumping the

F state to the ground state is probably not the only unexpected pathway for that

laser to interact with the atom, and there is some evidence for other, more nefarious
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side effects.

One side effect is that 355 nm light seems to not only effectively repump from

the F state, but also to produce the F state more often than happens when the ion

is in the dark. There is a somewhat plausible mechanism for this to occur, involving

off-resonant excitation to the bracket state 3[3/2]3/2 at roughly 348 nm above the

S state, for which the 355 nm light is red detuned by ∼18 THz. This state has a

large component of 2P3/2 character, so the 355 nm light could conceivably couple

to it (albeit at a very slow rate due to the large detuning), and it could plausibly

decay to the 2D5/2 state, which is known to decay to the 2F7/2 state [50].

The other effect, more devastating to the experiments, is the seeming tendency

of the 355 nm light to doubly ionize the atom. This effect is inferred from obser-

vations that an ion will sometimes go dark and simultaneously distort the chain,

displacing the bright ions further from it than when it was bright. We even see that

when the chain is on the verge of buckling into a zigzag configuration, such a dark

ion can cause the zigzag transition to occur. Furthermore, when the trap frequency

is lowered, the dark ion is usually kicked out of the trap entirely; this is also con-

sistent with the ion being doubly charged, since the stability of the trap depends

on the charge-to-mass ratio of the ion, so a trap optimized for singly-ionized Yb

would be expected to be less stable for doubly charged Yb. When these dark ions

are present, the only way to recover is to remove them from the trap entirely and

reload the ion chain.

The most likely mechanism for this occurrence is photoionization due to the

high intensity of the 355 nm light. While the second ionization energy is quite high,

29



it turns out to be only ∼6.04 eV above the (7/2, 1)5/2 state discussed above. The

355 nm photons have an energy of 3.5 eV, so once the ion is in the 2F7/2 state,

ionization could be achieved by absorption of three 355 nm photons, and would be

resonantly enhanced to some degree by the presence of the (7/2, 1)5/2 state.

2.3 Coherent operations

The coherent operations that we perform on our cooled, spin-polarized, de-

tectable ions are some of the most important aspects to understand about the physics

underlying our experiment. Thus, for completeness and to ensure the reader is fa-

miliar with the notation used, I will discuss these operations from a fairly low level.

The first part of the discussion follows a similar approach to that in Wineland et

al. [51], which is an excellent reference on many of the fundamentals of manipulating

trapped ions.

The Hamiltonian for a two-level atom in a harmonic potential interacting with

a laser field may be written as [51]

H =
Ω

2
|↑〉〈↓| exp

(
i
[
η
(
ae−iωtrt + a†eiωtrt

)
− δt+ φ

])
+ h.c. (2.13)

Here, h = 1, Ω is the Rabi frequency, a and a† are the lowering and raising oper-

ators of the harmonic oscillator with frequency ωtr, η = ∆kx0 is the Lamb-Dicke

parameter (where x0 ≡
√

~/2mωtr is the characteristic length scale of the harmonic

oscillator ground state), δ = ωHF−ωL is the detuning of the laser frequency ωL from

the atomic transition frequency ωHF, φ is the phase of the laser field, and h.c. de-
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notes the Hermitian conjugate. Additionally, the interaction Hamiltonian has been

written in a rotating frame with respect to the bare atomic and harmonic oscillator

Hamiltonians.

(As mentioned above, we will be using stimulated Raman transitions rather

than driving the 12.6 GHz transition directly, and so the laser parameters that enter

are those of a pair of laser beams: ωL is the difference frequency of the two lasers, φ

is the difference of their optical phases, i.e. the phase of the beatnote, and ∆k the

difference wavevector. However, the formalism would be identical for a single laser

driving a direct transition.)

Here I will point out the phase convention that we use for all of our pulses and

Hamiltonian terms. We will be applying multiple frequencies for various tasks, as

discussed in more detail below, and it is important to have a consistent definition.

For us, this means we set all phases relative to the starting time of the initial Raman

pulse in the experiment, which we take to be t = 0. Hence, if we set φ = 0 for one

frequency and φ = π for a different frequency, this means that the two frequency

components of the laser fields have a relative phase of π at t = 0 , i.e. at the start of

the first pulse. This sets our convention for the phases of the Pauli matrices σx and

σy: for example, if our first coherent operation in the experiment is taken to be a

rotation about σx (e.g. to prepare a state with all spins along σy), then all other σx

and σy operations are defined relative to this initial rotation. We therefore require

the phases to be consistent throughout any single experiment, but are not sensitive

to the fact that the optical phase at the ion at the start of the experiment may differ

from experiment to experiment.
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We can make the Lamb-Dicke approximation if the ion’s motional wavepacket

is confined to a region much smaller than the wavelength, or in this case the inverse

wavevector, of the light, i.e., if η(2n̄+ 1) << 1. In this limit, the eiη(a+a†) term can

be approximated as 1 + iη(a+ a†) and the above Hamiltonian can be written as

H ≈ Ω

2
|↑〉〈↓|

(
1 + iη

(
ae−iωtrt + a†eiωtrt

))
ei[−δt+φ] + h.c. (2.14)

If δ ≈ 0 (which requires δ � ωtr,Ω), then the phonon terms oscillating at ±ωtr can

be neglected, leaving us with:

Hcarr =
Ω

2

(
|↑〉〈↓| eiφ + |↓〉〈↑| e−iφ

)
. (2.15)

This is called a carrier transition, and allows us to drive pure spin transitions with-

out affecting the motional state. We drive this carrier transition with an appropriate

phase any time we wish to perform a coherent rotation of the spins, e.g. for initial-

ization or for reading out in the σx or σy basis, and we additionally use the carrier

to generate an effective magnetic field term in our simulated Hamiltonian: notice

that the Hamiltonian above is simply a σx or σy operator, and hence maps exactly

to a magnetic field term Bσφ.

If instead the detuning is set to δ ≈ ±ωtr, we will keep only the term with an

a† |↑〉〈↓| or an a |↑〉〈↓|, respectively. The resulting interactions can be written as

Hrsb =
iηΩ

2
|↑〉〈↓| aeiφ − iηΩ

2
|↓〉〈↑| a†e−iφ, (2.16)
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Hbsb =
iηΩ

2
|↑〉〈↓| a†eiφ − iηΩ

2
|↓〉〈↑| ae−iφ. (2.17)

These are referred to as red sideband and blue sideband interactions, respectively,

where the nomenclature is usually to interpret the process involving a lower-frequency

beatnote as red. As mentioned earlier, the red sideband interaction Hrsb is formally

equivalent to the Jaynes-Cummings Hamiltonian [35], while the blue sideband in-

teraction is sometimes referred to by analogy as an anti-Jaynes-Cummings Hamil-

tonian.

The red sideband operation, in conjunction with the optical pumping discussed

earlier, can be used to cool the motion of the atom below the Doppler temperature.

Sideband cooling involves many alternating pulses that optically pump the spin

to |↓〉z before driving the transition |↓〉z ⊗ |n〉 ↔ |↑〉z ⊗ |n− 1〉. In this manner,

vibrational excitations are removed one quantum at a time until the ion reaches the

lowest motional state |n = 0〉, at which point the red sideband will have no effect

and the ion will remain in the |↓〉z ⊗ |n = 0〉 state.

2.3.1 Spin-motion coupling and MS Hamiltonian

The simultaneous application of two beat frequencies, symmetrically detuned

from the carrier (and typically tuned red of the red motional sidebands and blue of

the blue motional sidebands), gives rise to the ‘Mølmer-Sørensen’ [52] Hamiltonian

consisting of an oscillatory force whose direction is dependent on the spin state of

the ion,

HMS = Ω cos(µt+ φm)
[
σφs−π/2 + ησφs

(
ae−iωtt + a†eiωtt

)]
. (2.18)
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Here, σφ ≡ cosφσx + sinφσy. To obtain this Hamiltonian, we have applied frequen-

cies ωr = ωHF − µ and ωb = ωHF + µ, with associated beatnote phases φr and φb,

respectively, which can be combined into the spin and motional phases φs and φm

used in the Hamiltonian,

φs =
φr + φb + π

2
, (2.19)

φm =
φr − φb

2
. (2.20)

The derivation of this Hamiltonian from the fundamental laser-atom interaction

Hamiltonian in 2.13 is shown in detail in Appendix B. We have assumed here that the

experiment is configured in the ‘phase-sensitive’ geometry used in our current setup;

it is possible to instead use a configuration where φs is sensitive to the difference of

φr and φb rather than their sum. This could be advantageous in future experiments,

since the interferometric optical phase that is present in both φr and φb would

then cancel, such that optical phase drifts will no longer affect the spin phase [53].

(However, as discussed in the next chapter, this is not yet a limitation for us.)

In the experiments discussed in this thesis, we set the red sideband and blue

sideband phases to φr = 0, φb = π, for which the spin phase becomes φs = π and

the motional phase φm = −π/2. As a result, σφs = −σx and σφs−π/2 = σy, and we

can rewrite the Hamiltonian above as

HMS = Ω sin(µt)
[
σy − ησx

(
ae−iωtrt + a†eiωtrt

)]
. (2.21)

Usually we drop the off-resonant carrier term (the sin(µt)σy), which is valid for
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Ω� µ, to approximate the Hamiltonian as

HMS = −ηΩ sin(µt)σx
(
ae−iωtrt + a†eiωtrt

)
. (2.22)

This is the form I will use to show how we derive our usual formula for the spin-spin

interactions. If the off-resonant carrier term may be neglected, the counter-rotating

phonon terms that have factors of e±i(µ+ωtr)t could also be dropped, but since their

effect is negligible it doesn’t hurt anything to include them.

2.3.2 Spin-spin interactions arising from slow MS

The above Mølmer-Sørensen Hamiltonian considers only a single ion and a

single mode of motion, but in general we have multiple ions with multiple modes of

motion. The generalization to multiple ions and modes is simply

HMS = −
∑
i,m

ηi,mΩi sin(µt)σxi
(
ame

−iωmt + a†me
iωmt
)
, (2.23)

where i indexes the ions and m the motional modes.

To show that the evolution under this Hamiltonian is roughly equivalent to

that of a pure spin-spin interaction under certain conditions, we use the Magnus

expansion for the evolution operator,

U(t) = T
[
e−i

∫ t
0 dt1H(t1)

]
= eΩ̄1+Ω̄2+Ω̄3+···, (2.24)
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where T is the time-ordering operator and the first few orders of the expansion are

given by

Ω̄1 = −i
∫ t

0

dt1H(t1), (2.25)

Ω̄2 = − 1

2!

∫ t

0

dt1

∫ t1

0

dt2 [H(t1), H(t2)] , (2.26)

Ω̄3 =
i

3!

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 ([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]) .

(2.27)

When we go through the full derivation, shown in Appendix B, we find that

the evolution operator is approximately given by

U ≈ exp

(
−
∑
i,j,m

σxi σ
x
j

iηi,mηj,mΩiΩj

2(µ2 − ω2
m)

ωmt

)
, (2.28)

where the only contribution considered comes from the second-order term Ω̄2. The

key points in the derivation are that the evolution operators will contain terms like

σixam and σixa
†
m coupling spin to motion from the first order, which can be neglected

under the approximation ηi,mΩi � |µ − ωm|, and σixσ
j
x spin-spin interaction terms

from the second order, which arise from commuting σixam with σjxa
†
m. With this

Hamiltonian, there are no further commutators and the evolution operator in the

appendix is exact.

The operator U is exactly the evolution operator of a set of static spin-spin

interactions,

Heff =
∑
i,j

Ji,jσ
x
i σ

x
j , (2.29)
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Figure 2.5: Two-body level diagram for MS interaction in a system of two ions,
each with spin-1/2. There are four possible pathways where a red sideband and a
blue sideband can resonantly couple |↓↓〉 to |↑↑〉 (Not drawn: there are similarly
four pathways coupling |↓↑〉 to |↑↓〉.)

whose interaction strengths are given by

Ji,j =
∑
m

bi,mbj,mΩiΩjΩR

2(µ2 − ω2
m)

, (2.30)

where we have used ηi,m = ∆k
√

~/(2Mωm)bi,m to rewrite the effective couplings

in terms of the recoil frequency ΩR = ~(∆k)2

2M
and the normal mode matrix b that

transforms local displacements of each individual ion into normal mode coordinates.

The full derivation is shown in the second section of Appendix B, and includes the

many small terms we have dropped to approximate the evolution operator as this

static effective Hamiltonian.

2.3.3 Brief note on frequency combs

I discussed earlier the advantages of using a laser near 355 nm for the Raman

transitions. The commercial lasers we use for this application actually have an

additional advantage: they are mode-locked lasers with pulse repetition rates of
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ωr
ωhf

ωA

Figure 2.6: Sketch of two frequency combs, derived from the same laser with
repetition rate ωrep and offset from one another by a frequency ωoffset, such that the
two combs combine to form a beat frequency at ωHF .

80-120 MHz and pulse durations of about 10 ps. Hence, the pulse bandwidths are

on the order of 100 GHz, meaning that the 12.6 GHz hyperfine splitting is readily

spanned by this frequency comb. Hence, we can drive a Raman transition simply by

splitting the laser beam and shifting one arm relative to the other with an acousto-

optic modulator. As depicted in Figure 2.6, the condition for having two comb teeth

on resonance with the hyperfine splitting is

ωHF = nωrep ± ωA, (2.31)

where n is an integer, ωrep the repetition rate, and ωoffset the relative shift from the

modulators. Importantly, the laser itself can be left free-running in the sense that we

do not need to stabilize either the repetition rate or the carrier-envelope phase (which

is fortunate because we don’t have the means to do either of these things). A shift

in the carrier-envelope phase is equivalent to an offset in the absolute frequencies of
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the comb teeth, and since we are using the laser for far-detuned Raman transitions,

we are not sensitive to such shifts. The repetition rate affects the beat frequency,

which does enter into the physics; however, since we only care about one particular

beat frequency, we can stabilize the quantity nωrep + ωoffset by using the modulator

frequency, ωoffset, to compensate for changes in ωrep, as will be discussed in the

next chapter. For our purposes, we need not delve too far into the physics of using

a pulsed laser, rather than continuous-wave lasers, to perform Raman transitions;

there are, however, interesting subtleties relating to this technique, for which the

interested reader is referred to [54,55].

One detail that does matter is the selection of an appropriate repetition rate.

As we saw, we want to be able to drive transitions off-resonantly. For this reason,

we do not want the repetition rate to be a subharmonic of any of the transitions of

interest, i.e. nωrep 6= ωHF (or ωHF±ωtr, etc), for any integer n. Furthermore, we also

do not want these transitions to match any half-integer multiple of the repetition

rate: (n+ 1/2)ωrep 6= ωHF for any n. The reason for this one is a bit more subtle; it

turns out that under this condition, if we tried to drive (for example) a red sideband

at ωHF − ωtr, we would then also have a beat frequency at ωHF + ωtr. This would

cause multiple problems but most obviously would interfere with sideband cooling.

One final point which is worth noting about the physics of the Raman transi-

tions is the presence of strong 4-photon differential AC Stark shifts. (Here, I refer to

the more usual AC Stark shift caused by a single laser field as a two-photon Stark

shift, because the shift results from absorption and emission of a pair of virtual pho-

tons; by a similar token, shifts resulting from the presence of both Raman laser fields
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result from absorption and emission of two pairs of photons.) Because our Raman

laser is at a wavelength where the lowest-order differential AC Stark shifts from the

P states nearly cancel [49], the 2-photon light shift is almost negligible (typically a

few hundred Hz from one arm of the two Raman beams, for our operating parame-

ters). By contrast, the 4-photon differential shifts that (for our polarization setup)

only occur in the presence of both beams can be many tens of kHz. These 4-photon

shifts can be estimated as Ω2/4δ, analogous to the usual formula for an AC Stark

shift, where here Ω is the two-photon Rabi frequency for the Raman transition, and

δ is the detuning of the Raman beatnote from the hyperfine splitting.

2.4 Definitions of common experimental protocols

Finally, because this chapter is intended to provide the background for under-

standing the next chapter on the apparatus, I define a few common terms that we

frequently use in the lab referring to specific experimental protocols. The terms are

mostly self-evident, and are included for completeness. These protocols are used for

a variety of calibrations and initial set-up procedures that will be described in the

next chapter.

2.4.1 Frequency scan

A laser or microwave pulse of fixed duration, amplitude, and frequency is

applied to some initial state and its effect observed, resulting in one point on the

frequency scan. The frequency of the pulse is incremented for each successive point.
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(This is just to say that when I refer to a frequency scan I do not mean that the

frequency is chirped during a single experiment.) Typically this is expected to result

in a sinc2 type Rabi lineshape.

2.4.2 Time scan/Rabi frequency measurement

The duration of a pulse of fixed frequency is incremented for each successive

point on the scan. When the pulse is resonant with a transition between two energy

levels, the populations will oscillate sinusoidally with duration and a function like

A sin(2πΩt+φ) + b can be fit to the resulting data set to obtain the Rabi frequency

Ω.

2.4.3 Ramsey experiment

A pair of π/2 pulses are applied, separated by some amount of time. As

pointed out by Norman Ramsey, this allows the frequency of a reference (e.g. the

beat frequency of the Raman lasers) to be compared to that of an atomic transition

(e.g. the hyperfine ‘clock’ transition in our ion) more precisely by extending the

interrogation time without simultaneously making the measurement more suscepti-

ble to amplitude noise in the applied radiation. The picture that we have in mind

here is of the first π/2 pulse preparing a superposition of the two relevant levels,

e.g. (|↓〉z + |↑〉z)/
√

2. During the waiting time in the dark, the relative phase of the

superposition evolves at the frequency of the hyperfine transition, and this phase

is compared to that of the reference frequency by the second π/2 rotation. It is
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common to vary the frequency of the applied π/2 pulses with a fixed waiting time,

which allows a narrower resolution of the resonance, but for many of our calibrations

we instead fix the frequency and vary the delay time. This turns out to have the

effect that if the radiation is detuned by an amount δ from the atomic transition,

the populations at the end of the Ramsey experiment will oscillate with a frequency

δ.
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Chapter 3: Experimental setup

This chapter discusses details of the experimental implementation of the sim-

ulations discussed in later chapters. Because most experimental considerations in

the trapping and manipulation of 171Yb+ have been documented in other group the-

ses, and our apparatus in particular is well documented in Rajibul Islam’s [33] and

Simcha Korenblit’s [34] theses, this chapter is not an exceedingly thorough record

of the apparatus. I will first give a high-level overview, which serves to highlight

some of the requirements that are unique or unusually stringent compared to other

trapped ion quantum information experiments. I then document the apparatus in a

piecemeal fashion, focusing on the upgrades that have occurred since the last thesis

and the setup procedures that I am personally familiar with, and devote the rest

of the chapter to the suite of diagnostics and calibration procedures that have been

useful to us. A reader who is uninterested in delving into nuts-and-bolts discussions

of details like how we set up the Raman laser beam path or distinguish between

different sources of decoherence may wish to skip all but the overview.
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3.1 Overview and unique requirements

The 171Yb+ ions are held in a linear Paul trap - in our case, a hand-assembled

three-layer trap, with RF voltage on the middle electrode providing the radial con-

finement and DC voltages on the segmented outer electrodes providing the axial

confinement. Figure 3.1 sketches the trap electrodes. The geometry is such that the

RF field has a node along a line at the center of the trap, and the trap voltages are

configured such that the ions self-assemble into a chain along this so-called RF null.

The electrodes are mounted inside an ultra-high vacuum (UHV) chamber. Despite

the low pressure, which we estimate to be of order 10−11 Torr or less, we believe the

background pressure to currently be a major limitation in holding on to long chains

of ions.

The DC voltages for the trap electrodes are drawn from a computer-controlled

power supply, and RF voltage at a frequency of 38 MHz is applied via a quarter-wave

helical resonator attached to a feedthrough on the vacuum chamber. We (as well

as other ion trapping groups) find empirically that in order to coax 2 or more ions

to crystallize, i.e. localize in an ordered pattern along the RF null, it is necessary

to lower both the radial confinement (RF voltage) as well as the axial confinement

(DC voltages), a procedure we refer to as recrystallizing. This results in thermal

changes to the helical resonator, or ‘RF can’, which form the other half of the

current limitation to ion number: every time there is a collision with a background

gas particle, the RF must be lowered to recapture the ions (i.e., to cool them to a

localized phase before they are heated out of the trap), and once it is raised the
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Figure 3.1: Sketch depicting the electrodes used to trap our ions. RF voltage is
carried on the middle electrodes, highlighted in red, and the electrodes highlighted
in blue carry DC voltages, while gray electrodes are held at ground. In this sketch,
+x̂ points in the direction of the imaging system, and small dots represent the ions,
whose spacing is not to scale.
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resonator takes several minutes to settle to a steady state.

The ions are cooled, initialized, and measured using 369.5 nm light resonant

with the 2S1/2-2P1/2 transition, along with 935 nm light that repumps population

from the low-lying 2D3/2 state. One crucial feature of our apparatus is the presence

of beams detuned by roughly 400 and 800 MHz red of the 2S1/2-2P1/2 transition,

which irradiate a larger part of the trapping volume than the near-resonant 369 nm

beams and, in the case of the 800 MHz detuned beam, with quite a bit more power.

There is some evidence that the presence of these beams is important not only for

crystallizing large numbers of ions, but even for keeping a moderate number of ions

localized.

During the measurement process, we collect the state-dependent fluorescence

with a high-numerical-aperture objective (NA = 0.23), discussed in more detail

below, and focus it onto either a photomultiplier tube (PMT) for diagnostics or

an intensified charge-coupled device (ICCD) camera for site-specific readout; this

ability to image the entire spin configuration is critical for essentially all of the

results later presented in this thesis.

We find that in case of a collision causing a long chain of ions to delocalize, it is

necessary to immediately (within 1 second or so) turn on the Doppler cooling beams

and begin lowering the trapping potentials, if we want to recapture all or most of

the ions. This is because, despite the large (several eV) trap depths afforded by the

Paul trap, once the ions are away from the RF null they can easily be heated out

of the trap within a few seconds, due to driving from the RF field. (The mutual

Coulomb interactions seem to also play a role in ejecting ions, since a single ion
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can remain in the trap for hours, even if it is not localized at the RF null.) To

automate the recapture process, roughly 10% of the light collected by the objective

is siphoned off to a second PMT (the ‘dropout PMT’). This signal is monitored

during Doppler cooling, during which the ions consistently fluorescence at a certain

rate regardless of what state they started in, and this allows the control program

to pause data taking and switch to dropout recovery mode if the ions go dark for

several experiments in a row.

To perform coherent operations, a microwave horn can be used to drive the

hyperfine transitions at 12.6 GHz directly (which is sometimes useful for diagnostic

purposes), but the vast majority of our experiments use a mode-locked 355 nm laser

to perform stimulated Raman transitions. As discussed earlier, the bandwidth of the

laser pulses offers a convenient way to bridge the 12.6 GHz hyperfine splitting with-

out having to generate frequency shifts of more than 200 MHz, and the wavelength

is near an optimum to suppress spontaneous emission errors. The stimulated Ra-

man transitions are used to perform the carrier and sideband operations discussed in

the previous chapter. This technique is used in many experiments utilizing 171Yb+,

but its importance is worth underscoring - with the long ion chains that we use,

and the fact that we detune sidebands far from the motional modes to generate our

interactions, we require a great deal of Raman laser power with good spontaneous

emission properties to perform long coherent experiments. It is often easier to attain

high optical power in the UV with mode-locked lasers, since frequency conversion

(i.e. second and third harmonic generation) is usually required, and the efficiency of

these processes depends on the instantaneous rather than the time-averaged power.
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As we saw, the phase relationships among these various carrier and sideband

operations, which correspond to effective magnetic fields and spin-spin interactions

in the simulated Hamiltonian, or the basis in which the spins are prepared or mea-

sured, are crucial for orchestrating the desired simulation. In order to achieve this

necessary phase control, we use an arbitrary waveform generator (AWG) to imprint

the desired frequencies and phases onto the light with an acousto-optic modulator

(AOM).

3.2 More detailed description of the apparatus

3.2.1 Trap and RF resonator

The trap electrodes are held in an ultra-high vacuum (UHV) chamber, to min-

imize unwanted interactions between the ultracold atoms and any stray background

gases.

The application of appropriate RF and DC voltages to the electrodes sketched

in Figure 3.1 leads to an effective pseudopotential that has the form of a 3-dimensional

harmonic oscillator [51, 56]. When the aspect ratio of the trapping potential is set

appropriately, the ions self-organize into a chain roughly at the RF null, where the

time-varying electric fields cancel to zero.

The RF voltage is generated by applying roughly 250 mW at 38 MHz to a

quarter-wave helical resonator, sometimes referred to simply as a can. This has

the effect of increasing the voltage by a factor Q, where Q is the quality factor

of the resonator. The loaded quality factor can be measured by monitoring the
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reflected RF power as a function of frequency, using a directional coupler to pick

off some of the reflection, and is given by Q = ωcenter/FWHM. Here, ωcenter is the

center frequency of the resonator, at which the reflected power is minimized, and

FWHM is the full-width at half-maximum of the resonance, defined as the difference

between the frequencies where the reflected power is half of its maximum value. This

definition is chosen because our cans are nearly critically coupled, meaning that the

reflection is nearly zero at the center of the resonance, so instead of comparing the

reflected amplitude to zero we compare it to its value far away from the resonance.

For these resonators, quality factors between 100 and 300 are typical.

As described above, the lowering of the RF potential to recapture delocalized

atoms leads to changes in the secular trap frequency once the RF level is raised back

to its normal operating point. This is probably due to thermal/mechanical changes

in the resonator. Typically, the trap frequency changes by 1-5 kHz (out of 4.8 MHz)

and (usually) settles back to its initial value within a few minutes. Our protocol

for alleviating the effects of this change is to wait for a prescribed amount of time

after lowering the RF to resume experiments. If the RF is lowered and raised back

up immediately (e.g., because all the ions were recaptured right away), we wait 30

seconds for the system to re-equilibrate, and if it is left low for a few minutes (e.g.,

because we needed to reload one or more ions), we wait 2-3 minutes. Additionally,

if we are experiencing frequent ion losses, we do not reload the trap more often than

once every ten minutes.

We stabilize the frequency of the trap RF source to the point at which the

reflection from the can is minimized, using a phase-sensitive Pound-Drever-Hall-like
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technique (see figure). This has been helpful because the thermal changes in the can

cause the center frequency to drift far enough to significantly impact the voltage

delivered to the trap. This changing of the RF frequency contributes somewhat to

the change in secular trap frequency, which scales like

ωtr ∝
VRF
ΩRF

, (3.1)

where VRF is the amplitude of RF voltage applied to the trap and ΩRF is its fre-

quency. However, the change in secular frequency is too big to be fully explained

by this - we see the RF frequency (at 38.8 MHz) change by roughly 1-2 kHz as it

follows the can, which would result in changing the secular frequency by only a few

hundred Hz out of 4.8 MHz. This indicates that the amplitude of the RF at the trap

is also changing, since the changes we observe in the secular frequency are an order

of magnitude larger than the frequency shift could explain. We hence speculate

that the thermal effects in the can must change its coupling or quality factor (or

both) in addition to changing its resonant frequency. In the near future, we plan

to implement a capacitive pickoff monitoring the RF voltage at the trap, which will

allow us to stabilize the amplitude directly and leave the RF frequency constant.

This should stabilize the trap frequency much more effectively.

When a stray DC electric field displaces the ions from the RF null, they

experience more micromotion, or driven motion at the frequency ΩRF of the trap

RF, than if they are perfectly aligned to the null. This is undesirable for a variety of

reasons. Chief among them is the effect on the laser operations: due to the Doppler
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effect, this motion will cause modulation of the frequency the atom ‘sees’ from a laser

beam that has some wavevector component along the direction of the micromotion.

Hence, less of the laser power is available at the desired laser frequency, and the

atom perceives sidebands at ±ΩRF away from the actual laser frequency. In our

current trap, we have never been able to fully compensate for micromotion while

still aligning the principal axes in the direction we want them. This is evident when

we lower the RF voltage, which leads to the ions dropping lower on the CCD image,

indicating that the geometric imperfections are such that the ions are vertically

displaced from the RF null. Fortunately, the geometry of the trap is such that a

vertical displacement leads to micromotion in the vertical direction, which does not

significantly affect the ions’ interactions with the lasers that are more or less parallel

to the table surface.

3.2.2 Resonant laser systems

The 369 nm light used for Doppler cooling, optical pumping, and readout is

one of the workhorse systems in the apparatus. This laser system must deliver about

2.5 mW to the ions (split amongst various beams that may be frequency shifted with

AOMs and EOMs), and its absolute frequency must be stable to roughly 1 MHz,

since the atomic transition linewidth is about 20 MHz. As detailed below, this

entails producing tens of mW of 369 nm light, which is attenuated significantly as

it passes through AOMs, optical fibers, beamsplitters, and so on.

There are several possible solutions to these requirements. Right now, we
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generate 739 nm light with a Ti:sapph laser (the Coherent MBR documented in

Appendix C), which is stabilized to an absolute frequency reference using saturated

absorption spectroscopy on the I2 molecule, and frequency doubled with a commer-

cial system (the Spectra Physics Wavetrain). We hope eventually to move to using

diode lasers, which may prove to be a simpler and cheaper light source in the long

run, since diodes that can be pulled to 369 nm have recently come on the market;

however, it may be a few years before these systems reliably produce sufficient power

for our needs. Another advantage of the system we use is the spectral purity: there

is much less amplified spontaneous emission than is sometimes seen in diode lasers,

and the cavity in the frequency doubler serves as a further frequency filter.

Roughly 50 mW of the 739 nm light is coupled into an optical fiber, sent

through a fiber EOM from EOSpace to generate sidebands that are resonant with a

transition in I2, and piped to the iodine spectroscopy setup. The fiber EOM is driven

with the output of an HP8672 frequency synthesizer A detailed description of such

a setup can be found in Andrew Chew’s undergraduate thesis [57]. The remainder

of the light is sent through a polarization-maintaining single-mode optical fiber to

the frequency doubler. As a result of the fiber coupling, the frequency doubler very

rarely needs to be touched.

In the rare event that this cavity needs to be realigned, the manual provides

a nice overview of the alignment procedure. Because the cavity geometry is very

simple, it is generally not difficult to get light circulating once the waist of the input

beam is mode-matched to the cavity. For coarse alignment, we usually look at the

transmitted power on a photodiode as the cavity length is scanned, which will show
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a signal of multiple peaks corresponding to multiple spatial modes of the cavity.

This signal is used to optimize the alignment until most of the power is in the peak

corresponding to the fundamental transverse mode (which is usually the rightmost

peak on the oscilloscope trace) and the peaks corresponding to other transverse

modes are suppressed to <10% of the height of the main peak. At this point,

the signal should be good enough to stabilize the cavity, and final tweaks of the

alignment can be done based on the output (doubled) power. Because the nonlinear

LBO crystal is critically phase matched, meaning that the phase matching condition

is met by tuning the angle of the crystal axis with respect to the polarization and

wavevector of the cavity beam, it is usually necessary to iteratively walk the LBO

angle in addition to the cavity mirrors to obtain the best doubling efficiency.

One trick that I have found for guessing whether there are further gains to be

had by tweaking the alignment of the doubler cavity or input beam makes use of

the setup locking the cavity length to be resonant with the input laser frequency.

This simply involves briefly blocking the input beam while the doubler is locked

and checking whether different lock points produce different output powers. The

cavity is a triangular configuration with a prism forming one of the ‘corners’ (the

other two of which are the mirrors that serve as the input and output couplers),

and this prism is translated with a piezo to stabilize the length of the cavity. There

are several positions within the throw of the piezo that match a resonance condition

with the input wavelength, and the electronics are set up such that if the lock is

lost, the piezo will be scanned to the next resonance. Thus, this trick depends on

blocking the input beam for the right amount of time, allowing the electronics to
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begin scanning when the signal is lost and ‘catch’ on the next lock point before

the piezo returns to the beginning of its throw. If the cavity is well aligned, the

output power should be insensitive to which lock point is chosen, and conversely if

the output power is strongly dependent on the lock point, there are usually gains

to be had with the alignment.

The 369 nm light emerging from the doubler is roughly 430 MHz red detuned

from the 2S1/2, F = 1 to 2P1/2, F = 0 transition. AOMs are used to make up the

frequency difference. The high AOM frequency is desirable because the resulting

larger angular deflection makes it easier to separate 0th and 1st order beams, and

ensures that any 0th order light making its way to the ions is far off resonant.

Furthermore, we require a high-power, far-detuned cooling beam to deal with hot

‘melted’ ion chains, and this should be as far red of resonance as possible; using

AOMs near 400 MHz allows us to generate a beam detuned by > 800 MHz. We

use Brimrose QZF-420-40-370 AOMs unless otherwise noted. The AOMs are driven

with an assortment of HP8640 and PTS-D310 or PTS-500 oscillators, each of which

is amplified to a maximum RF power of 2 W.

A thick glass plate is used to pick off small portions of the 369 nm light for

the Doppler cooling and optical pumping beam paths. The Doppler cooling light is

sent through a resonant New Focus EOM at 7.37 GHz (half of 14.74 GHz, which

is the sum of the hyperfine splittings in the 2S1/2 and 2P1/2 states), such that the

second-order sideband from the EOM is 430 MHz red detuned from the 2S1/2, F = 0

to 2P1/2, F = 1 transition. This EOM is driven with a Vaunix Lab Brick signal

generator, which is amplified to roughly 2 W, which is roughly the maximum RF
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Figure 3.2: Diagram showing the various 369 nm frequencies used in our experiment
relative to the hyperfine structure of the 2S1/2 and 2P1/2 states. Frequencies are
not to scale. Not shown is the component of the optical pumping beam near the
F = 1 to F = 0 transition (the EOM carrier), which is negligible (it does not cause
fluorescence visible on the CCD in 174Yb+).
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power that is safe to apply to these EOMs without actively water cooling them.

The Doppler cooling AOM shifts these frequencies to be roughly 10 MHz (half a

linewidth) red-detuned from the transitions, in order to optimize the temperature of

the Doppler cooled ions. A computer-controlled voltage-variable attenuator is used

to lower the Doppler cooling power while experiments are running, for optimizing

the temperature of the cooled ions, and raise the optical power when the experiments

are not running, which helps in recapturing melted chains. The 0th order from the

Doppler cooling AOM is fiber-coupled directly to the trap. This beam, which we

call ‘protection-plus’, is necessary for recooling melted chains, because hot ions in

the F = 0 state are otherwise not efficiently cooled. However, it is the only beam

not used during a normal experimental cycle: it is blocked with a physical shutter

during experimental runs, rather than being shuttered with an AOM, which saves

some optical power. We believe this to be part of the reason it is so crucial to stop

an experiment immediately after a dropout (melting event): namely, it is necessary

to immediately open the shutter so that ions in F = 0 are cooled.

The optical pumping light is sent through a resonant New Focus EOM at

2.105 GHz EOM, such that the first-order sideband is ∼430 MHz red detuned from

the 2S1/2, F = 1 to 2P1/2, F = 1 transition. The EOM frequency is derived from a

PTS-3200 frequency synthesizer, whose amplified power is set such that the carrier

is zeroed, which nearly maximizes the first-order sidebands. (This can be checked

by redirecting the output of the EOM onto a scanning Fabry-Perot cavity and

monitoring its transmission.) This beam is shifted by its AOM to be directly on

resonance with the F = 1 to F = 1 transition.
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A variable splitter consisting of a λ/2 waveplate and a thin-film polarizer is

used to pick off some light for the detection beam. This beam is shifted to be on

resonance with the F = 1 to F = 0 transition. The remaining transmitted light is

the far-detuned ‘protection’ beam, which is shifted down in frequency by its AOM

(Intraaction ASM-4001LA8.18) to be roughly 800 MHz red detuned from the F = 1

to F = 0 transition. A schematic of the various frequencies present is shown in

Figure 3.2.

All of the beams are sent through optical fibers, which help somewhat to reduce

unwanted resonant light scattering (discussed in a later section), and are eventually

combined into a single beam path. The optical pumping and detection beams are

combined on a nonpolarizing 50/50 beamsplitter before sending them through a

single fiber. The other beams each get their own fiber. The near-resonant cooling

beam is combined with optical pumping and detection on another 50/50 beamsplit-

ter after the fibers. The protection and protection-plus beams are combined on a

polarizing beam splitter, which allows the relative powers of the two to be varied.

These are then combined with the 399 nm photoionization laser on a dichroic optic

from Semrock. Finally, the cooling/optical pumping/detection beams are combined

on yet another 50/50 beamsplitter with the 399/protection beams. Lenses in each

beam path are set to attain beam waists (1/e2 intensity radii) of roughly 100 µm

horizontally by 10 µm vertically, for most of the 369 beams, and 250-300 µm hori-

zontally by 50 µm vertically for the protection beams. This necessity of illuminating

a larger volume with the protection beams is one reason why they require so much

power.
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Historically (meaning, when our MBR was running at full power, which it is

not at the time I am writing this thesis - see Appendix C on this), a typical snapshot

of laser powers coming out of the optical fibers might look like this:

Doppler cooling - 200 µW

Protection-plus - 400 µW

Protection - 3 mW

Optical pumping - 150 µW

Detection - 8 µW

Because the beamsplitters used to combine these beams are downstream from

the optical fibers, the ions see roughly 1/4 of this power for the near-resonant beams,

and roughly 1/2 of this power for the protection and protection-plus beams (which

are ideally combined in a more or less lossless manner with the polarizing beamsplit-

ter). The optical pumping (hopefully) would not suffer much from a reduction in

power, but the Doppler cooling power is important for loading and recooling large

chains.

(As a side note, when the protection beam is this powerful, we typically atten-

uate it to 1-1.5 mW before the beamsplitters. There has been some evidence that

the ions are not cooled as efficiently and the detection count rates go down when

this power is too high. The reason for this remains a mystery; we do not observe

scatter from this beam when the ions are localized, so recoil heating is not likely to

be a problem, and in any case the protection beam is nominally turned off during

detection.)

We can work backward from the power measurements above to reason that
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(with the assumption that we only require 1.5 mW of protection light out of the

fiber) it is necessary to generate at least 16 mW out of the doubler. This calculation

is conservative about what efficiencies can be readily maintained on a daily basis,

using empirical values; for comparison, I also note values that should be achievable

when the optics are new and more effort is expended. We assume transmission

(including insertion loss) of 55% through the fibers (in principle, at least 70-80%

should be achievable), of 50% through the resonant EOMs (meaning 50% of the

total power is transmitted, not that 50% is put into the desired sidebands), and

AOM diffraction efficiencies of 40% (55-60% or better should be achievable when

the AOM is driven with ∼2 W of RF power). Additionally, there are something

like 10-20 mostly-non-lossy optics (mirrors, lenses, waveplates) for each beam, so

if the loss from each of these optics is around 1%, then we lose an additional 20%

of our power from these elements. With these assumptions, we require the 369 nm

source to provide something on the order of 2.3 mW for Doppler cooling, 3 mW for

protection-plus, 1.7 mW for optical pumping, 45 µW for detection, and 8.5 mW for

protection. Note that about half of the power is the off-resonant protection beam,

whose frequency is less critical than the others; hence, it might make sense in the

future to use two separate 369 nm lasers, one for the protection beam and one for

everything else.

We can further calculate the laser power requirements for a longer chain, which

will probably require us to expand the beams in the axial direction. I will assume for

simplicity that the ion positions are dictated by a harmonic axial potential, which

should be a conservative estimate, since in practice we are likely to start using
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anharmonic potentials that allow us to space the ions more evenly. Our current

record is a simulation with 18 171Yb+ ions in an axial potential with characteristic

frequency 0.6 MHz, which corresponds to a chain length of 31 µm. For 50 ions, the

chain length might be between 76 µm (for transverse confinement νx ∼7 MHz and

axial confinement νz ∼ 0.35 MHz - the transverse frequency is taken into account

to ensure we are not picking an axial frequency that will cause the chain to buckle

into a zig-zag configuration) and 96 µm (νx ∼ 5 MHz, νz ∼0.35 MHz). We will

hence probably want to expand the beam by a factor of 3 or so along the horizontal

direction, so we are going to want at least 50 mW of 369 nm light for a chain this

large. A similar calculation yields a 250 µm chain for 100 ions with νx ∼ 7 MHz

and νz ∼ 0.1 MHz, in which case we might want to expand the beam by nearly a

factor of 10, requiring perhaps 150 mW. It is unclear whether we will also need to

expand the beam vertically (which would probably help recooling, but might not be

strictly necessary), so the power budgets may be even more demanding than this.

We have historically produced >100 mW with the frequency-doubled MBR

setup, and commercial systems like the intracavity-doubled M Squared laser can

produce hundreds of mW of stable 369 nm light, so this is realistic for now, though

it is out on the bleeding edge of what can be achieved with direct diode lasers. The

next generation of experiments will probably also reconfigure the beam paths in

some way, which will make the numbers more friendly. For example, there is nothing

preventing us from sending the unused output of the final 50/50 beamsplitter onto

the ions from a slightly different direction. Alternatively, sending detection and

optical pumping light on a separate path along the axis of the ion chain would allow
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us to focus these beams more tightly, and also free up a factor of 2 on the Doppler

cooling power, since one of the 50/50 beamsplitters would no longer be required.

(This will not be a feasible plan for the cooling beams, however, since these must

have components along all three principal trap axes.)

3.2.2.1 Repump laser

As mentioned in the previous chapter, we need to clean up population falling

into the long-lived 2D3/2 state, and we do this by driving the transition at 935 nm

from 2D3/2 to 3[3/2]1/2. This laser system is one of the simplest, consisting of a

grating-tuned external cavity diode laser from Toptica (DL 100). Software is used

to stabilize the frequency reading on a wavemeter that has a precision of 2 MHz

(High Finesse WSU) by feeding back to the grating angle (controlled with a piezo).

(The wavemeter, in turn, is calibrated with respect to the 739 nm light, after this

is stabilized to the molecular iodine transition as an absolute frequency reference.)

The laser is tuned to the 2D3/2, F = 1 to 3[3/2]1/2, F = 0 transition, and sidebands

at 3.0695 GHz to drive the 2D3/2, F = 2 to 3[3/2]1/2, F = 1 transition are applied

with a broadband fiber EOM from EOSpace. These sidebands are roughly 2% of the

height of the carrier when measured using a Fabry-Perot cavity. The fiber outputs

roughly 20 mW, which is combined with the 369 nm and 399 nm beams by sending

it through the back of a dielectric UV mirror that is sufficiently transmissive at 935

nm.
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Figure 3.3: Schematic showing the electronic components used to generate the 195
MHz signal that will set the frequency fA1. Except for the bandpass filter, all part
numbers refer to Minicircuits components.

3.2.3 Raman laser

3.2.3.1 Beatnote stabilization electronics

As we discussed in the previous chapter, it is necessary to stabilize the beat

frequency between the two Raman arms by feeding forward to an AOM frequency.

This setup has been well described in [33] and [58], but here I give specifics of the

current setup, which has changed since Rajibul wrote his thesis. We currently use a

4 W, water-cooled Paladin laser from Coherent, which has a repetition rate of frep ∼

120.215 MHz. For this rep rate, the hyperfine splitting is given by fHF ≈ 105frep +

29.7 MHz. The two AOMs in the Raman arms will thus be driven at different

frequencies fA1 and fA2 such that fA2−fA1 ≈ 29.7 MHz, or fHF ≈ 105frep+fA2−fA1.

We choose fA2 to be the fixed frequency, which is about 225 MHz. Thus, we

will adjust fA1 ≈ 195 MHz such that

fHF − fA2 = 105frep − fA1 = const. (3.2)
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Figure 3.4: Schematic showing the electronic components used in the phase-locked
loop stabilizing the AOM driver to the 195 MHz signal generated by the circuit in
Figure 3.5.

This means that if frep decreases, we want fA1 to decrease with it. In order to ac-

complish this, we mix a signal at 105frep (from a fast photodiode) with a microwave

source (HP8672) which is set such that

105frep − f8672 = fA1. (3.3)

This ensures that fA1 changes in the correct direction with the rep rate. The HP8672

is thus set to 105frep-195 MHz = 12418.091 MHz (for the exact rep rate measured in

July 2013). A schematic of the electronics used for generating this 195 MHz signal

that follows the fluctuations in the rep rate (i.e., the result of mixing the HP8672

signal with the 105th comb tooth) is shown in Figure 3.5.

In order to circumvent issues such as the possibility of a fluctuation in laser

power causing fluctuations in the RF applied to the AOM, the 195 MHz signal

thus generated is used as a frequency reference for a separate frequency source, an

HP8640 that is phase-locked to the output of the mixer circuit described above. The
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schematic for this part of the circuit is shown in Figure 3.4.

3.2.3.2 Optical layout

The first optic in our setup picks off a bit of light to monitor the repetition

rate. This is sent onto a fast photodiode (Alphalas UPD-30-VSG-P), which is used

for the beatnote lock discussed above.

Just after the pickoff we place a variable attenuator consisting of a λ/2 wave-

plate and a polarizing beam splitter (PBS). The waveplate can be rotated to set

the polarization anywhere between (nearly) full transmission through the PBS to

(nearly) full extinction (sending the light out of the other port of the PBS, where

a beam dump captures the unused light). This is very useful for alignment pur-

poses, as such lasers do not always have convenient power knobs, and the several

watts of 355 nm light we work with is sufficient to burn hands and index cards,

drill holes through chiller tubing, and cause sundry other acts of destruction. An

AOM meant to noise-eat the power fluctuations is placed just before the variable

attenuator, though this is not currently used. Then the beam is split with a 50/50

nonpolarizing beam splitter to form the two arms that will eventually impinge on

the ion from different directions.

After the beam splitter, each beam is focused through an AOM with an f =

100 mm lens. As with all lenses in this beam path, we aligned them by setting up

a target downstream, setting their longitudinal (upstream/downstream) position,

then translating them transverse to the propagation direction until they no longer
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Figure 3.5: Partial sketch of the optics in the Raman 2 beam path, with distances
as measured when the beam path was first set up. The Raman 1 beam path has
identical optics, albeit with a different geometry. The distances not listed are 22 cm
from the AOM to L2; 37 cm from L3 to L4; and 75 cm from L3 to L5 (not L4 to L5).
The legend lists the actual focal lengths of each lens at 355 nm and the nominal
focal lengths. All lenses shown here are plano-convex fused silica lenses from either
Thorlabs (TL) with a UV coating or CVI with a 355 nm AR coating.

deflected the beam relative to the target position that is seen without the lens in

place. The focal length was the shortest standard focal length that gave us a spot

size we believed we could tolerate, as too high of an intensity can begin to damage

the AOMs; with a roughly collimated input beam of waist (1/e2 intensity radius) 500

µm, this means the diffraction limited waist is about 21 µm. (The diffraction limit

can be calculated as 1.22 λf/R, where λ is the wavelength of light, f is the focal

length of the lens, and R is the diameter of the input beam. A slightly different, and

(we hope) more accurate, result obtains for Gaussian optics; however, the difference

is usually slight compared to the uncertainty of the measured input beam profile.)

The AOMs (Brimrose QZF-210-40-355) are chosen to be of the type that re-

quires the laser to be focused through them with a relatively small waist (as opposed

to the style manufactured by IntraAction, which operate better with a larger colli-

mated beam) because this allows us to more easily image the front face of the AOM
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directly onto the ions while also having the ions near the focus, or smallest beam

size, so as to maximize the laser intensity. This imaging requirement is important

because we will be applying multiple frequencies to one of these AOMs and we do

not want the difference in angular deflection to be mapped onto a positional shift at

the ions, which could lead to different ions seeing different relative powers of the fre-

quencies. A λ/2 waveplate is placed in front of each AOM and its angle along with

the AOM angle is used to optimize the diffraction efficiency, which should typically

be at least 50% (often we see 70% or better) with an RF power of roughly 2 W (33

dBm). One of the AOMs is driven with a single frequency, and this is the one used

for the feed-forward beatnote lock. The other is driven with multiple frequencies

using an arbitrary waveform generator (discussed below).

A D mirror just before the recollimating lens (f = 250 mm) is used to pick off

the unwanted 0th order light and send it into a beam dump. We have found that

it is necessary to block stray 0th order light further downstream as well, since the

orders are not sufficiently well separated at the recollimating lens to block all of the

0th order light without clipping the 1st order light. The downside of our scheme for

imaging the AOMs is that 0th order light will hit the ions right on top of the 1st

order light, causing unwanted Stark shifts and spontaneous emission.

Two telescopes comprising cylindrical lenses change the beam size to a waist

(1/e2 intensity radius) of roughly 100 µm horizontally and 10 µm vertically. This

beam size is as tightly focused as we can make it vertically without seeing significant

intensity noise at the ion due to pointing instability, and the horizontal waist is

chosen such that the intensity variation is less than ∼3% across the entire ion chain
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(estimated to be 31 µm long for a chain of 18 ions in a harmonic axial potential of

frequency 600 kHz), assuming a perfect Gaussian intensity profile. (Note that this

takes into account the factor of
√

2 from the angle of incidence of the Raman laser

with respect to the ion axis.)

When the optics are set up, the beam size is profiled with a small portable

web camera at the new image plane, which is referred to as the intermediate focus

(IF). The longitudinal positions of the lenses were set such that the longitudinal

position along the beam with the minimum vertical waist (at the intermediate focus)

coincides with the position at which the AOM is well imaged (defined as the position

where the beam shifts 2 µm or less when the AOM frequency is changed by 20

MHz). At the intermediate focus, we measure a waist of 90 µm horizontally and

9 µm vertically, slightly smaller than what we had intended. Note that we have

seen that even when the imaging is done such that the center of the beam profile

does not shift as the AOM frequency is changed, we do see a change in the waist at

the intermediate focus, for example causing the spot size to go down to 80×8.5 µm

when the AOM frequency is shifted 20 MHz. Additionally, we have some evidence

that the horizontal axis of the beam is tilted with respect to the ion chain axis, so

the effective waist along the ions may be smaller than even 80 µm.

A ∼1:1 relay imaging system consisting of spherical lenses with f ≈ 100 mm

images the intermediate focus onto the ions. As the first lens in this relay system

more or less recollimates the beams, the space between these lenses is a convenient

location for the λ/2 and λ/4 waveplates that are installed for full polarization control

at the ion, and for a delay stage in one of the arms. The polarization is set to be
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horizontal (i.e., parallel to the surface of the table) by maximizing its transmission

through a regular PBS (which is not normally part of the beam path, but is inserted

only for the purpose of setting the polarization). We make finer adjustments using

the ion for diagnostics once the beams are aligned, as described below.

Because we use a mode-locked laser with a pulse duration of roughly 10 ps,

we must make the path lengths of the two beams equal to better than the pulse

length of c*(10 ps) = 3 mm. This is the role of the ‘delay stage’ in one arm, which

consists of a pair of mirrors that retroreflect the beam, mounted to a translation

stage that allows fine adjustments of the path length in that arm. The path lengths

can be coarsely estimated with a ruler (or piece of string, etc), after which a more

sophisticated technique is generally necessary. To obtain a more precise estimate,

we place fast (pulse-resolving) photodiodes in each beam path at the same distance

from the ions, which can be accomplished to a precision on the order of 3 mm with

a ruler when the photodiodes are close enough to the trap. We then pick off some

light prior to the beam splitter, which is sent onto another photodiode, and use

a time-to-digital converter (Picoharp 300) to measure the delay between a pulse

hitting this first photodiode and hitting one of the photodiodes near the trap. This

allows us to match the pulse arrival times to the measurement error of the Picoharp

(4 ps) and to the precision of the placement of the photodiodes near the trap. Since

the delay stage can be used to shift the relative path lengths by 100-200 ps, this

procedure usually puts us in range of the stage, after which the ions will be used as

the final signal to tweak the delay.

The final optic before the vacuum chamber in each Raman beam path is a
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so-called bestform lens with effective focal length f = 110 mm at 355 nm. These

lenses are used to help attain a small spot size (e.g. 10 µm in the vertical direction).

A bestform lens has two radii of curvature, which are chosen to minimize coma

and spherical aberration for a given focal length (given the constraint that both

surfaces must be spherical), which helps to attain a spot size closer to the diffraction

limit. In most cases, the beams can be roughly centered near the ions by indexing

them against the trap electrodes (at very low power). After this, fine adjustments

can be made by transverse translations of the lenses on 3-axis stages. This trick

only works when the beam passes unobstructed through the chamber, such that

a card can be used to observe the electrodes’ shadow on the far side of the trap.

Using the electrodes to index the beam also allows the focal position to be set

close to its optimum, since we want the beam to be most tightly focused at the

ions, which are positioned very close to the electrodes. The key idea for this is

that the shadow appearing when a beam is occluded from one side appears on a

different side of the image, depending on whether the obstruction or the focus of

the beam is closer to the image, whereas when the focus of the beam is near the

obstruction the shadow seemingly appears on both sides of the image. Figure 3.6

gives a cartoon illustration of this concept. In practice, when the beam is focused

near the obstruction, the electrode shadow usually causes strange scattering when

the beam is partially occluded, but by dithering the beam toward and away from

the electrode as the longitudinal position of the lens is shifted it is possible to see

at first the shadow coming in from one side, then a transition region where the

shadow doesn’t obviously come in from a particular direction, beyond which the
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Figure 3.6: Qualitative illustration of the use of electrode shadows to roughly align
the focus of the Raman beam. By longitudinally translating the final lens, it should
be possible to observe different regions where the occlusion causes the shadows to
appear from different directions.

shadow comes in from the other side, which gives a good starting point for the focal

position of the beam.

Since the path lengths of the two arms may not be matched sufficiently well to

drive Raman transitions with both arms, it is useful to have a technique for aligning

each beam to the ion separately. This can mean driving the AOM in the beam

with two frequencies that are chosen to drive copropagating Raman transitions, or

using a Ramsey experiment (with microwaves providing the π/2 pulses) to detect

70



the Stark shift of the beam. For either of these procedures, it is important that the

beam we are attempting to align have an excess of σ+ polarization over σ− polar-

ization, or vice versa; with our current geometry, this is most easily accomplished

by (A) using the λ/4 waveplate to make the light circularly polarized, and (B)

temporarily swapping the currents to the magnetic field coils, such that the field is

along the laser’s direction of propagation. Once both beams are transversely aligned

to the ion, reconfiguring the polarizations, frequencies, and magnetic field to drive

non-copropagating Raman transitions and scanning the delay (while rechecking the

transverse alignment of the beam going through the delay stage at each point, if

necessary) should be sufficient to find a signal of Raman transitions.

When a Raman beam path becomes completely misaligned for whatever rea-

son, it is usually easiest to trace back to the point furthest downstream where the

beam path is still functioning acceptably, and work forward from there to realign

the optics. In anticipation of this happening on occasion, and changes being made

to the beam path, there are several practices we consider in designing the beam path

to start with. Many alignment issues are greatly simplified if all the spherical lenses

are mounted in such a way that they are easily removed and repeatably replaced,

even if this is not necessary for the initial setup. For example, the bestform lenses

are mounted in short lens tubes that screw onto longer lens tubes, and other lenses

use a nested mount wherein the lens is mounted in an inner ring that can be secured

within an outer ring using a set screw. (It would also be nice to do this with the

cylindrical lenses, but it isn’t feasible with the mounts we use.) Likewise, the final

focusing lenses before the trap, as well as any lenses whose position may be used to
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fine-tune the alignment at the ion, are mounted on 3-axis translation stages when

feasible. Finally, alignment is much simpler if there are at least two independent mir-

rors (for full position and angle control) steering the beam into any important region

(e.g., aligning the beam through an AOM or delay stage, or onto the ions). While

beam splitters can be used in place of an additional mirror for aligning the reflected

port, and their presence is better than no additional knobs, this is not ideal because

a beam splitter’s angle is generally not completely decoupled from the alignment of

the transmitted beam. Some of these ideas, especially the two-independent-mirror

criterion, could add to the pointing instability, but in practice adding an extraneous

mirror or three does not seem to appreciably change the coherence time, so in these

setups it is an overall gain to have independent mirrors.

3.2.4 Fluorescence collection and state diagnosis

We discussed in the previous chapter that the spin states can be measured

by exposing the ion to light that is only resonant with one of the spin states, and

collecting the resulting fluorescence. In our experiment, the collection optic is a

commercial objective from CVI with a working distance of 13 mm, effective focal

length of 20 mm, and numerical aperture 0.23. The light is focused through a

400 µm pinhole and imaged with a doublet onto either an ICCD [59] or a PMT.

Interference filters in the imaging path block 355 nm and 935 nm light, as well as

most of the visible spectrum. As mentioned previously, 90% of the collected light is

imaged for state detection, while 10% is sent to a separate PMT that allows us to
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monitor the Doppler cooling fluorescence to detect melting events.

When the imaging is already set up to be focused on the ICCD, the objective

can be aligned to the center of the trap by indexing it against scatter from the trap

electrodes. The procedure that we use is as follows. The protection, protection-

plus, and photoionization beams are blocked from the trap, and the remaining 369

nm beams are translated upward (using a lens on a stage) until they scatter off the

electrodes. The objective is then moved to a position where the edge of the electrode

is in focus. The corners of the center electrode are found by translating both the

objective and the 369 nm light, and their coordinates with respect to the objective

position are noted. We then center the objective horizontally at the average of these

coordinates, translate the objective and lasers vertically to find the coordinates of

the top and bottom electrodes, and use the average of these to position the objective

vertically. For positioning the focal direction, we have found empirically that the

objective needs to be moved roughly 0.009 inches (∼230 µm) closer to the trap than

the position where the electrodes were in focus.

The detection cycle for each experiment consists of exposing the ions to ‘detec-

tion’ light, resonant with the |↑〉z (‘bright’) state but not the |↓〉z (‘dark’) state, for 3

ms. To calibrate the readout, we perform 1000 cycles of preparing and measuring an

all-dark state, |↓↓↓ · · · 〉z, and 1000 cycles of an all-bright state, |↑↑↑ · · · 〉z. Single-

shot discrimination is performed by summing the columns of the resulting image into

a 1-dimensional row, since the vertical direction yields no additional information in

a linear chain, and fitting the resulting profile to a sum of Gaussians whose positions

and widths are determined from the calibration images. The individual ion states
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are then discriminated by comparing the fit amplitudes to calibrated thresholds (see

below).

The calibration also allows us to determine the detection errors for each ion,

i.e. the probability of misidentifying a dark state as bright or vice versa for a given

threshold. These known errors are used to correct the probability distributions for

detection errors, while also considering standard errors from shot noise [60].

The optimal thresholds are determined by performing a Monte Carlo simula-

tion in which certain target states are ‘prepared’ by randomly choosing an amplitude

from the appropriate calibration ensemble (e.g., for the target state |1010 · · · 〉 the

amplitude of the first ion is chosen from the pool of amplitudes which were fit to

the first ion in the bright calibration), discriminated with a given threshold, and

corrected for the detection error given the chosen threshold. A threshold is then

chosen that is insensitive to statistical fluctuations and gives corrected probability

distributions that match the known input ensemble well; the recovered probability

distributions are nearly identical for a wide range of threshold choices.

3.2.5 Arbitrary waveform generation

The amplitudes, frequencies, and phases needed to apply the Ising Hamiltonian

are imprinted on the 355 nm laser beams by driving the AOM in the Raman 2 beam

path with an arbitrary waveform generator (AWG). The AWG (Agilent M9502A)
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is programmed to output a voltage of form

V (t) = V1 sin[2π(fHF − µ− foffset)t] + V2 sin[2π(fHF + µ− foffset)t+ ϕ] (3.4)

+V3(t) sin[2π(fHF − foffset)t+ ϕ/2]

where V1 and V2 are the amplitudes of the components that generate the Ji,j cou-

plings, foffset = 105frep − fA1 takes into account the repetition rate of the laser and

the frequency shift fA1 of the Raman 1 beam path, and by our convention ϕ is set

to π to give a spin-spin interaction σxσx. The time-dependent voltage V3(t) sets

the time-dependent amplitude of the transverse field B(t). The AWG output sig-

nal (Eqn. 3.4) is amplified to a peak power of 1.8 W before being applied to the

AOM, generating frequency components relative to the other beam path at fHF −µ,

ωHF + µ, and ωHF , with corresponding amplitudes set by V1, V2, and V3(t).

Importantly, the laser power required to generate B(t) is on the order of 100×

smaller than that for the interactions, so that the voltage V3 only needs to be

modulated over a small range, allowing us to make the approximation B ∝ V3. If

we were to additionally use time-dependent profiles for V1 and V2, it would probably

be necessary to take the nonlinearities of the system into account. (For example, the

two-photon Rabi frequency scales as the product of the electric fields of the two laser

beams, so we have Ω ∝ E1E2; the power diffracted by the AOM, proportional to E2
2 ,

can be approximated as E2
2 ∝ sin2 VRF , so Ω ∝ E1 sin(πVRF/V0), where V0 is the

voltage at which the diffraction efficiency turns over; and the interaction strengths

Ji,j scale as ΩiΩj ∝ sin2(πVRF/V0).
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3.3 Diagnostics, calibrations, other procedures for getting the system

ready

3.3.1 Loading, and troubleshooting when loading isn’t working

When loading ions, we first lock the 739 nm and 935 nm lasers to the correct

wavelength and set the 399 nm laser wavelength before turning on the oven, where

we run roughly 2.5 A of current through the needle holding the solid ytterbium in

order to resistively heat it and create an atomic beam. Usually, it takes roughly

2 minutes for the oven to heat to the point of delivering a steady flux of neutral

atoms. During loading, we continuously send the photoionization, Doppler cooling,

and 935 repumping beams to the trap: once the 399 nm laser excites a neutral atom

to the P state, the 369 nm photons have sufficient energy to ionize the atom. We

additionally send in long pulses (of order 200 ms) of a 355 nm beam; since these

photons are also sufficiently energetic to ionize an atom, the higher intensity of the

355 nm light leads to a faster loading rate, suggesting that the second photon is the

limiting reagent in loading ions into the trap.

If this procedure fails to produce a trapped atom, the usual culprits are the

lasers and voltages. On occasion, the DC voltages are set incorrectly by the recrys-

tallization program, which can be seen by checking the sensed voltages. When the

DC voltages and laser frequencies are set correctly, the next step is usually to switch

the lasers to the wavelengths used for 174Yb+ and load from the oven containing Yb

in its natural abundance. The even isotopes like 174Yb+ have no nuclear spin and
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hence no hyperfine structure; this drastically simplifies the number of parameters

that must be set correctly to load and detect an ion, because the ions will be much

less sensitive to magnetic fields and laser polarizations, and neither the 7.37 GHz

sidebands on the 369 nm light nor the 3.07 GHz sidebands on the 935 nm light are

necessary to repump to the cycling transition. If loading is still difficult, a common

problem is misalignment of either the 399 nm photoionization beam or one of the

369 nm cooling beams. The 935 nm beam is less sensitive because it illuminates a

larger volume of the trapping region, but its alignment is also a possible suspect. If

loading proceeds normally with 174Yb+, the magnetic field coils and the sidebands

on, and polarizations of, the Doppler cooling light and 935 nm repump light are the

likely culprits.

3.3.2 Daily calibration routine for spin-1/2 Ising experiments

We have developed a standardized routine for a daily tuneup and calibration

of the system when we are taking data for spin-1/2 experiments. After loading a

single ion, we direct the fluorescence to the PMT and check the count rates from

the detection and Doppler cooling beams. Because there is a slight amount of

background scatter from the 369 nm lasers into the detectors, we compare the count

rates with and without the presence of the 935 nm repump beam. We find that

detection is optimized when there are on average 12 counts in a 0.8 ms window,

which is slightly below the saturation count rate; the counts from the Doppler

cooling beam should be roughly half the saturation count rate, so we aim for 7-8
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counts in a 0.8 ms window. We additionally check that optical pumping prepares

the |↓〉z state with fidelity ∼99-99.5% by exposing an optically pumped ion to the

detection light and measuring the probability of the ion scattering more photons

than would be expected from the |↓〉z state. We choose our optical pumping fidelity

goal of 99 − 99.5% somewhat arbitrarily as the best we can typically achieve; in

principle this number can be made arbitrarily good. Right now, our best guess for

the limiting factor on the optical pumping is that repumping of the 3D3/2, F = 2

manifold is limited by the power and/or frequency of the sidebands on the 935

nm light, which affect optical pumping most strongly because detection light should

never couple to the 3D3/2, F = 2 manifold, and because we typically Doppler cool for

3 ms but only optically pump for 10-20 µs (which is already longer than we should

need). Furthermore, exposing the ion to optical pumping light for longer durations

often results in a gradual improvement of the fidelity over several ms, which is also

suggestive of the fidelity being limited by population getting temporarily trapped

in the 3D3/2 state.

We set the Raman AOM frequencies to drive a resonant carrier transition and

check the Rabi frequency of this transition. We usually tweak the alignment of

the Raman beams daily to maximize the Rabi frequency before recording it and

the pulse durations corresponding to π/2 and π rotations. We perform a broad

frequency scan, with a pulse duration roughly equivalent to a π rotation on the

‘Zeeman transitions’ to the mF = ±1 states, as a diagnostic; this scan will display

the locations of the Zeeman transitions and of the motional sidebands, so acts as a

quick check that the magnetic field and trap potential are not drastically different
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than expected and that no unexpected spectral features have appeared. After this

scan, the rest of the calibrations are all performed after sideband cooling to the

ground state of the relevant transverse mode. We next do a time scan looking at

Rabi flopping of a ion out to long durations corresponding to perhaps a 50π rotation;

if there are any significant errors (meaning a deviation from the expected sinusoidal

curve that is larger than the quantum projection noise could explain) before roughly

a 20π rotation, this usually indicates either a cooling problem (which causes the

ion to sample multiple Rabi frequencies based on the motional state, as discussed

further below in the section on Debye-Waller factors) or a problem with intensity

noise, which usually means the Raman beams are not well centered (this amplifies

the effect of any pointing instability on the Rabi frequency, since the slope of the

beam intensity versus position is only zero at the center of the beam).

The motional sidebands drift around day to day, which we believe to be caused

by variations in the helical resonator. Our next calibration is therefore to measure

the exact AOM frequencies at which the sidebands are excited. This is done with

a low AWG voltage, corresponding to a low power in that beam only, in order to

ensure we are not significantly shifting the resonance with a 4-photon Stark shift.

Because we do this with a sideband-cooled ion, it is necessary to add a π pulse

preparing the ion in the |↑〉z state before probing the red sideband. (This is because

the |↓z, n = 0〉 state is unaffected by the red sideband: we can drive |↑z, n = 0〉 to

|↓z, n = 1〉, but there is no |↑z, n = −1〉 state to which |↓z, n = 0〉 can be driven.)

We should know ahead of time how far we will be detuning the Mølmer-

Sørensen interaction from the center-of-mass mode and how high of a sideband
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Rabi frequency we want, based on the interaction profile we want (i.e., what J0

and α in the Ji,j ∼ J0/|i − j|α approximation). So next we detune the sidebands

by this amount (typically of order 100 kHz from the center of mass mode) and

perform a Ramsey experiment on the |↓〉z to |↑〉z transition, with both beams and

two sidebands turned on between the π/2 pulses, in order to characterize the Stark

shift induced by the sidebands. (This assumes that we already know the frequency

of this transition very precisely; we characterize this parameter by performing a

Ramsey experiment in which the ion is not exposed to any light between the π/2

pulses. This rarely changes day to day, so it is not typically part of the calibration

routine). The relative power of the two sideband frequencies is then adjusted so

that the 4-photon Stark shifts roughly cancel, such that the hyperfine frequency is

shifted less than a few hundred Hz by the presence of the light.

We characterize the sideband Rabi frequencies by driving Rabi flopping on each

sideband, so that we can calculate the exact interaction profile we will be generating.

Importantly, this measurement is done by applying both sidebands, leaving one

detuned (by 100 kHz or whatever) while the other is on resonance driving Rabi

flopping. This is necessary because the Rabi frequency is not linear in the AWG

signal for a variety of reasons, as discussed in the section on the AWG above, so we

apply the off-resonant sideband to ensure a more accurate measurement.

Next we load a second ion and drive the Mølmer-Sørensen interaction. This

gives us the best signal to fine-tune the detunings: we scan the frequency of the

red sideband until the |↓↓〉z to |↑↑〉z transition probability is maximized. Ideally

this should occur when the sidebands are detuned by an equal amount from the
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carrier transition; the fact that we often have to shift the red sideband frequency

by of order a few hundred Hz is likely an indication of residual Stark shifts on

that scale. This interpretation is most easily understood by looking at the cartoon

in Figure 2.5, where we can see that Stark shifts will change the energy difference

between |↓↓〉z and |↑↑〉z, and hence the two-sideband resonance, such that one of the

sideband frequencies must be shifted to tweak the interaction back onto resonance.

We then take a trace of ‘brightness’ versus duration to characterize the coherence

time of the interaction. We typically do this calibration with the PMT, which yields

sufficient information to check that the dynamics mostly involves |↓↓〉z and |↑↑〉z (the

histogram of PMT counts will then be bimodal when there is an ‘average brightness’

of 1 ion).

Then we calibrate the effective B field with the new frequency: We take the

average of the two AOM frequencies found with the Mølmer-Sørensen resonance and

set this to be our new carrier frequency, on the assumption that the required shift

in the sideband frequency was due to residual Stark shifts. We then detune the

sidebands by roughly 800 kHz from the center-of-mass mode and calibrate the Rabi

frequency of a simultaneously applied carrier (corresponding to an effective B field)

versus the AWG amplitude used to drive it. It is necessary to calibrate this with the

sidebands on because of nonlinearities in the AOM and in one of the RF amplifiers,

and the larger detuning is used to suppress the spin-motion coupling during this

measurement. Also, we note that the Rabi frequency is dependent on the carrier

phase relative to the Mølmer-Sørensen spin phase, seemingly due to some weird

interference effect. Hence, if we will be using both a transverse and a longitudinal
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effective B field, we need to calibrate these separately.

Finally, we load the number of ions we will be doing experiments with, and

calibrate detection with the CCD by taking 1000 images of the |↓↓ · · · 〉z state (pre-

pared by optical pumping) and 1000 images of the |↑↑ · · · 〉z state (prepared by

optical pumping and a global rotation by π on the carrier).

3.3.3 Less frequent calibrations and measurements

As mentioned above, we do not typically need to calibrate the hyperfine fre-

quency of the |F = 0,mF = 0〉 to |F = 1,mF = 0〉 transition on a daily basis, be-

cause it is quite stable over a period of weeks or months, but we nevertheless need

to have measured this number at some point. Similarly, there are several other im-

portant checks and calibrations that we typically do not look at frequently, which I

will now list here.

3.3.3.1 Thermometry for checking Doppler and sideband cooling

When we change any of the Doppler cooling parameters (e.g. the amplitude of

the RF driving the AOM), we may want to check that the ion is still being efficiently

cooled. The traditional way this is done is by comparing the heights of the red

sideband and blue sideband transitions, which should show an asymmetry of n̄/(n̄+

1), where n̄ is the mean phonon occupation number [61]. This, however, requires

that the power is identical at the red sideband and blue sideband frequencies, which

is not automatically the case in our setup (e.g. due to the frequency dependence
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Figure 3.7: Use of the carrier Rabi flopping envelope to estimate the temperature
of a Doppler cooled ion (here, with unoptimized cooling parameters); the effect of
the temperature is to cause damping of the Rabi flopping.
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of the AWG amplitude and of the AOM diffraction efficiency). Additionally, for

sufficiently large n̄, this requires us to precisely resolve a fairly small asymmetry.

We have been using slight variations on this idea to do our thermometry without

comparing the two motional sidebands.

To measure the temperature of a Doppler cooled ion, we take advantage of the

long coherence time of our Rabi flopping on the carrier, and measure the effect of

the so-called Debye-Waller factors. The idea here is to make use of the corrections to

the Lamb-Dicke approximation that come in as the ion heats up, where the carrier

Rabi frequency has a factor [51]

〈
n|eikx|n

〉
= e−η

2/2L0
n(η2), (3.5)

where Lαn(x) is a generalized Laguerre polynomial. We assume that the ion is in a

thermal state, in which case the occupation of a given level n is given by

P (n, n̄) =
n̄n

(n̄+ 1)n+1
. (3.6)

We can then fit a Rabi flopping trace (i.e., transition probability versus carrier

duration) to the weighted sum over the different Rabi frequencies:

P (↑) =
∑
n

P (n, n̄) sin2(πe−η
2/2Ln(η2)Ωt) (3.7)

to extract the average occupation number n̄. An example trace with its fit is shown

in Figure 3.7. As can be seen in both the data and the fit, the decay due to nonzero
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Figure 3.8: Use of the sideband Rabi flopping envelope to estimate the temperature
of a sideband-cooled ion (again, with unoptimized cooling parameters). The stronger
dependence on n of the sideband Rabi frequency leads to a more distinctive signature
of the phonon occupation than we saw with the carrier Rabi flopping.

ion temperature bears a very strong resemblance to any other kind of decoherence

(for example, due to intensity noise), so this is only a reliable estimate of the temper-

ature when we can already check that a sideband-cooled ion displays a much longer

coherence time, and hence that the decay in contrast is primarily an indication of

the ion temperature (which is typically the case for our experiment).

A more sensitive probe at low temperature (e.g. n̄ < 3−4) takes advantage of

the stronger dependence on n of the sideband Rabi frequency. Instead of measuring

the asymmetry between the sidebands, we simply drive red-sideband Rabi flopping
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on a single ion, and fit the resulting trace (as seen in Figure 3.8) to

P (↑) =
∑
n

P (n, n̄) cos2(η
√
nΩt), (3.8)

using the fact that the red-sideband Rabi frequency depends on n as η
√
nΩ for an

ion in the Lamb-Dicke regime [51]. These two methods tend to agree reasonably well

when n̄ is between perhaps 1 and 4. For lower temperature, the washing out of the

carrier Rabi flopping is so minute as to be difficult to distinguish from other sources

of decoherence in the Rabi flopping, and for higher temperature, the sideband Rabi

flopping is too washed out to get a precise estimate of n̄ (and additionally, higher-

order corrections like the Debye-Waller factors above may start to become relevant).

We also characterize the motional heating rate by measuring the temperature

of a sideband-cooled ion as a function of the time after sideband cooling. This should

be relatively constant, but we’ve seen it change over time for unknown reasons,

perhaps because of stray Yb or some other contaminant settling on the electrodes.

In July 2012, the heating rate was roughly 20 quanta per second, but in November

2013, it was roughly 130 quanta per second. In the November 2013 measurement,

we additionally checked whether the heating rate increased when the Raman lasers

were turned on during the waiting time, and found no difference (i.e., the 355 nm

light did not seem to cause any additional heating).
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3.3.3.2 Sideband parameters for different axial confinements

We change the DC endcap voltages, and hence the axial trap frequency, as one

way of varying the power law with which our interactions decay. When we do so,

there are some other changes that need to be made or calibrated.

Firstly, the axial trap frequency must be characterized. Because we deliber-

ately set the geometry of the Raman lasers to be minimally coupled to this direction

of motion, we must infer this indirectly from the transverse mode spectrum. The

center-of-mass frequencies of the transverse and axial directions and the frequency of

the transverse ‘tilt’ mode are related by ν2
COM,z = ν2

COM,x − ν2
tilt,x. Because increas-

ing the axial confinement in this manner also decreases the transverse confinement,

we additionally need to reset the frequency used for sideband cooling, which we

otherwise leave fixed.

Secondly, we often need to optimize the voltages to minimize micromotion, as

well as to rotate the angle of the principal trap axes to optimize their alignment

with respect to the ∆k of the Raman beams. In practice, we use the same signal for

both of these, and simply adjust the voltages to maximize the carrier Rabi frequency

with the Raman lasers. As detailed above, the Rabi frequency will be suppressed

by any coupling to hot modes of motion, and since we only sideband cool one set of

transverse modes, the modes along other axes (especially the axial modes) will be hot

enough to see a slight effect when ∆k couples to them, so optimizing the alignment

of the trap axes should maximize the Rabi frequency. At the same time, any excess

micromotion along ∆k will also reduce the Rabi frequency because the oscillatory

87



Doppler shifts will modulate the frequencies seen by the ion, so maximizing the Rabi

frequency also ensures that we have minimized the micromotion in this direction.

3.3.3.3 Coupling to unwanted Zeeman levels

Because our Raman beams nominally have horizontal polarization, and the

magnetic field is nominally vertical, the Raman lasers should have no π polariza-

tion and hence should not be able to drive transitions from |F = 0,mF = 0〉 to

|F = 1,mF = ±1〉. We periodically make small adjustments of the currents to the

magnetic field coils and of the polarizations of the Raman beams to minimize the

coupling to these unwanted transitions. We tend to be able to extinguish one of

these transitions very well at the expense of coupling more strongly to the other, so

typically we choose to operate under conditions where the two transition strengths

are roughly equal, with Rabi frequencies of 10-20 kHz (for a power corresponding

to a ∼1 MHz Rabi frequency on the clock transition). We do this mostly to re-

duce unwanted off-resonant coupling to these transitions, since the small tweaks

that we make do not generally increase the Rabi frequency of the clock transition

appreciably.

3.3.3.4 Coherence time of the atom

We perform a variety of checks on the coherence time, in order to distinguish

among the effects of different sources of decoherence. The most basic check is to

perform a simple Ramsey coherence experiment, in which the delay between a pair
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of slightly-detuned π/2 microwave pulses is varied, and the ion is nominally in the

dark between the pulses. An exponential can then be fit to the fringe contrast of

this experiment to extract a quantitative estimate of the coherence time. Generally

speaking, if Rabi oscillations are clean and coherent well past a π rotation, amplitude

noise will not play a role in the dynamics of the Ramsey fringes, and the dominant

contribution to their decay is frequency/phase noise between the qubit and the

oscillator. We should see that the decay is consistent with a 1/e coherence time of

1 second or better (at some point, we measured this to be 1.2 seconds), though we

usually only check out to a delay of a few hundred ms and extrapolate from there,

since this is far longer than what we need for our experiments. If this is not the

case, it is indicative of some problem with magnetic field noise or optical pumping

from residual resonant light, as discussed further below.

We additionally check that when the microwave pulses are replaced by carrier

Raman pulses, the Ramsey coherence time does not suffer, which should be the

case when the beatnote lock is functioning well. (It is not clear a priori that these

coherence times should be the same, since the phase of the carrier rotations is

dependent on an interferometric optical phase, and it is a bit surprising that this

phase is as stable as it seems to be. In practice, though, we are able to attain

nice Ramsey fringes with the laser for delays of several hundred ms, whose contrast

is consistent with a ∼1 second coherence time, so it seems that this optical phase

is actually quite stable over timescales of 100 ms or more.) In the past, we used

this metric (i.e., different coherence times using microwaves versus lasers to perform

the π/2 rotations) to diagnose a noise source in the beatnote lock circuit that was
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affecting the phase stability of the Raman operations.

There are two main sources of decoherence remaining when the ion is nominally

in the dark: magnetic field noise, and spontaneous scattering from residual 369 nm

light. There are a few ways for us to characterize these separately. Magnetic field

noise can be checked by measuring the coherence time of the ±1 magnetic sublevels.

These are typically around half a ms for us, which is much shorter than the timescales

over which we see unwanted spontaneous scattering, so they are limited mainly by

magnetic field noise. The Zeeman shifts of the different transitions are known: ∼1.4

MHz/G for the ±1 sublevels, and 310 Hz/G2 or, at 5 G, ∼3 kHz/G for the clock

transition. Since the ±1 transitions are roughly 500 times more sensitive to field

fluctuations than the clock transition, its coherence time should correspondingly be

roughly 500 times longer, if field noise is its main limitation.

We also characterize the spontaneous scattering directly. Scattering from the

|↓〉z state is easy to measure by leaving an optically pumped ion in the dark for

varying amounts of time and characterizing the rate at which it is pumped to a

bright state in the F = 1 manifold. However, we find that there is much more

scattering from |↑〉z than from |↓〉z. This is measured by preparing |↑〉z with a π

pulse, leaving this state in the dark for varying amounts of time, and rotating |↑〉z

back to |↓〉z with another π pulse. The final rotation is important because most

of the 369 nm light is closest in frequency to the 2S1/2, F = 1 to 2P1/2, F
′ = 0

transition, which, when causing an excitation and spontaneous emission, will still

leave the atom in the F = 1 manifold; however, 2/3 of these scattering events will

swap the population to one of the mF = ±1 states, which is not resonant with the
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π rotation back to |↓〉z.

The spontaneous scattering caused by resonant light leakage is fairly variable,

especially since it seems to depend fairly sensitively on the alignment of the AOMs in

the 369 nm beam paths (presumably, this has something to do with certain spots in

the AOM crystals scattering more light than other spots). To give a rough estimate

of what is typical, the last time the AOMs were tweaked to minimize scattering,

there was roughly a 10% probability of the |↑〉z to be scattered into one of the

mF = ±1 states after 600 ms nominally in the dark.

Currently, a lot of these coherence issues are arguably moot, since our co-

herence time is very drastically reduced in the presence of the Raman lasers (e.g.,

during a simulation). However, when we attempt to improve the coherence of our

system, having narrowed down the possible sources of decoherence may be helpful.

Additionally, as I will discuss a bit later in the chapter, our simulations are begin-

ning to reach a number of spins where we care more about small effects, like the

introduction of spontaneous scattering errors from the 369 nm light leakage.

We quantify the dephasing caused by the Raman lasers by performing yet

another Ramsey experiment, but with the Raman lasers turned on (with far-off-

resonant beatnotes) during the delay between the Raman π/2 pulses. The coherence

time is then reduced to 2-3 ms. This is consistent with other diagnostics we have

done; for example, the contrast of Mølmer-Sørensen Rabi flopping between |↓↓〉z

and |↑↑〉z decays on a similar timescale. Similarly, increasing the length (and hence

decreasing the rate of change) of an adiabatic ramp (like those discussed in the

next chapter) results in higher ground state population up until the length of the
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experiment exceeds ∼3 ms, after which the population prepared in the ground state

again decreases.

There are several indications that the decoherence caused by the Raman lasers

is due to intensity fluctuations, and moreover, we believe that these are currently

limited by power fluctuations rather than pointing instability. One piece of evidence

for this is a measure of the fractional change of the Rabi frequency vs that of a Stark

shift. If the main source of decay in a Rabi flopping fringe (or Ramsey fringe) is due

to noise in the Rabi frequency (or detuning), the shape of the decay envelope can be

estimated with some assumptions about the distribution of the noise. In particular,

we assume that the Rabi frequency is given by Ω = Ω0 + δΩ, where δΩ is normally

distributed with width σ,

P (δΩ) =
1√
2πσ

e−δΩ
2/2σ2

. (3.9)

When performing an average over the entire distribution, the Rabi fringes will have

a Gaussian envelope:

P↑(t) =
1

2

(
1− e2σ2t2 cos(2Ω0t)

)
. (3.10)

We fit this function with free parameters Ω0 and σ to both a long Rabi flopping scan

(on a sideband-cooled ion) and a Ramsey fringe where the detuning was given by

the Stark shift from a detuned red sideband (250 kHz from the center of mass mode

with a strength ηΩ =75 kHz). In the first case, the Rabi frequency was 1085 ± 35
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kHz (i.e., the fit resulted in Ω0 = 1085 kHz and σ = 35 kHz), indicating fluctuations

of 3% in the laser intensity, which is consistent with photodiode measurements of

the Raman laser power noise. In the second case, the Stark shift was 38.4±2.3 kHz,

for a fractional change of 6%; because the measured shift is the 4-photon Stark shift

mentioned earlier, which scales as the square of the intensity, this is also consistent

with the fluctuations being caused by intensity noise on the level of 3%.

We have also made comparisons of the coherence time with the Raman lasers

on as a function of the final lens positions, i.e., the beam waist at the ion. The

assumption made here is that a smaller beam waist is more sensitive to pointing

instability. These measurements were done with beam waists corresponding to peak

Rabi frequencies of ∼2000 kHz, ∼1000 kHz, and ∼500 kHz. We found that at the

tightest focus (Ωmax ∼2000 kHz) with the Raman 2 power set for Ω ∼ 1000 kHz, the

coherence time was shorter than at the lens positions where Ωmax ∼1000 kHz. On

the other hand, a similar comparison between the Ωmax ∼1000 kHz and Ωmax ∼500

kHz lens positions did not show a significant decrease in the coherence time. We

therefore have been operating with the lenses at the Ωmax ∼1000 kHz positions,

and interpret these results as evidence that we are in a regime where the dominant

contribution to intensity noise is laser power noise. (Making the focus as tight as

possible, though, clearly increased the pointing instability.)
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3.4 Fidelity considerations for scaling to larger chains

One consideration that has so far not been a big concern for us is the exponen-

tial compounding of errors with system size. By this I mean the fact that if the error

rate (due to spontaneous emission, imperfect initialization, etc.) is x for a single ion,

the fidelity for an N ion simulation will scale like (1−x)N . This has not been so big

of an issue thus far, both because we tend to work with shortish chains (most of the

experiments in this thesis were performed with 11 or fewer spins) and because the

ion system is inherently fairly clean. For example, in spectroscopy data displayed

in Chapter 6, we see that there is an 80% probability of measuring the |↑↑↑↑↑↑↑↑〉x

state that we expect to be making with good fidelity, and working backwards from

0.81/8 = 0.97, we can infer that the probability of errors is 3% for a single spin,

which we might not consider unreasonable. But for a 30 spin system with this level

of fidelity, the chances of performing the experiment without an error go down to

43%, even without taking into account the fact that the average error per ion may

be higher with so many ions. It will thus become important to optimize all our

parameters more carefully as we work toward larger systems; while errors on the

order of 1% in (e.g.) optical pumping, π rotations, etc, make very little difference

with a few ions,

However, there will be sources of error that may be less amenable to improve-

ment with not-too-major technical upgrades. With the current setup, I believe the

next hard limitation we will run into, where we might be unable to improve the error

without a major reconfiguration of the experiment, may be spontaneous emission
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Figure 3.9: Probability that there are NO spontaneous emission events from the
Raman lasers vs. experiment duration, assuming a laser power corresponding to a
carrier Rabi frequency of 1 MHz.
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Figure 3.10: Probability that there are NO spontaneous emission events from the
Raman lasers vs. ion number, assuming a laser power corresponding to a carrier
Rabi frequency of 1 MHz and an experiment duration of 3 ms.
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due to the Raman lasers. Earlier, we calculated that the spontaneous emission rate

is roughly 4 ×10−6 of the Rabi frequency. With a laser power corresponding to a

carrier Rabi frequency of 1 MHz, this means that if we model the probability of

NOT having a spontaneous emission event from the Raman beams as e−t/τ , we can

estimate the time constant to be τ = 125 ms. This sounds long compared to our

experiment durations, but it means the fidelity of a 3 ms experiment can at best

be ∼98%. Some plots of the dependence on experiment duration and ion number

are shown in Figures 3.9 and 3.10. This issue could potentially be circumvented

to some degree by increasing the laser intensity, since the interaction strengths Ji,j

scale as the square of the intensity and the spontaneous emission rate scales linearly

with intensity, but this solution may be technically and/or fiscally challenging. In

the long run, the solution to the more general fidelity problem will probably be to

circumvent it by choosing robust observables - for example, measuring correlations

between pairs of spins will (ideally) be no more prone to errors in large spin chains

than in smaller ones.
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Chapter 4: Ground state studies in the transverse-field Ising model

For a variety of reasons, most of the first trapped ion quantum simulations

of interacting spins were focused on the study of ground states of the transverse

field Ising model [19–24, 44]. A transverse-field Ising model (one of the easiest spin

systems to create using trapped ions) is one of the simplest models to admit a

quantum phase transition [62], and hence the ability to study the ground states of

this model enables various investigations regarding the physics of quantum phase

transitions. Indeed, one of the explicit goals of quantum simulation experiments

early on was the mapping of phase diagrams of various interesting quantum systems,

although in recent years more emphasis has been placed on studying dynamics.

Furthermore, the ability to prepare nontrivial ground states of the Ising model could

be useful as a starting point for other studies. We will also return to ground states

at the end of the thesis when I discuss our recent experiments in a spin-1 system.

Ground state preparation has been a valuable tool, allowing us to probe the

effects of new ‘knobs’ in the experiment like the ability to continuously tune the in-

teraction range (and hence level of frustration), as discussed further toward the end

of the chapter, or the ability to add a more general effective magnetic field. These

results have been published in [22] (focused on the creation of antiferromagnetic

97



ground states and the detection of variable frustration via the fidelity of the ground

state preparation), [23] (investigating the effects of different ramping schemes on the

errors introduced from non-adiabaticity), and [24] (introducing a global longitudinal

field in addition to the transverse field, and observing the phases resulting from the

dependence of the ground state on the relative strength of the longitudinal field).

Additionally, the studies of antiferromagnetism in [22] are discussed in Rajibul Is-

lam’s thesis, and the studies of the longitudinal field in [24] are discussed in Simcha

Korenblit’s thesis. Here, I very briefly discuss the experiments on frustrated anti-

ferromagnetism to give a flavor of the motivation for pursuing these ground state

studies.

4.1 Brief sketch of the general adiabatic protocol

As discussed previously, the spin model we implement for these studies is given

by

H =
∑
i<j

Ji,jσ
x
i σ

x
j +By(t)

∑
i

σyi = HJ +HB, (4.1)

where σi’s are the spin-1/2 Pauli matrices for the ith spin; sums run from 1 to N ,

the number of ions; By(t) is the time-dependent strength of an effective transverse

magnetic field, and Ji,j’s are the strengths of the spin-spin coupling, which are in

general long-range for a trapped ion experiment and roughly follow a power law

decay with distance, Ji,j ∼ J0/|i− j|α, for the experiments in this thesis.

The protocol for preparing the ground state of the pure Ising model, at By = 0,

exploits the fact that we have access to a trivial Hamiltonian whose ground state
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is known and easily prepared: when the couplings are turned off, Ji,j = 0, we have

merely

HB = By

∑
i

σyi . (4.2)

The ground state of this Hamiltonian is clearly a polarized state with all spins

pointing along y on the Bloch sphere, |ψ0〉 = |→→ · · · →〉y. Conveniently, this is

one of the few states that is easy for us to prepare, by optically pumping the spins

to |↓↓ · · · ↓〉z, then performing a coherent global rotation with the Raman lasers.

Having prepared the known ground state of a trivial Hamiltonian, we can now

slowly turn off the transverse field Hamiltonian and turn on the Ising couplings,

as illustrated in Figure 4.1; if done properly, the spins will adiabatically follow the

instantaneous ground state, and end in the Ising ground state that we were interested

in, i.e. the ground state of

HJ =
∑
i<j

Ji,jσ
x
i σ

x
j . (4.3)

Alternatively, the ramp can be stopped at any value of By/J0, for example, to probe

the region near the phase transition.

For historical reasons, we modify this protocol slightly to leave the Ising cou-

plings continuously on, while ramping only the effective magnetic field (Figure

4.1(b)). We thus start with a large magnetic field, By � J0, such that the po-

larized state we prepare has nearly a 100% overlap with the true ground state. The

initial value of the transverse field is typically chosen to be around 5-10J0, which

for most of the experiments described here corresponds to roughly a 99% overlap

between the polarized state and the true initial ground state. This is chosen as a
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Figure 4.1: Illustrations of two different adiabatic protocols. In (a), the ground
state of HB is prepared, and HB is linearly ramped from full strength to 0 while HJ

is simultaneously ramped from 0 to full strength. In (b), HJ is held fixed, and HB

is started at a value sufficiently large that the ground state of HB that is prepared
has a good overlap with the true ground state, then ramped with an exponential
time dependence.
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reasonable tradeoff among the various sources of error; a larger initial field would

improve the fidelity of the initial ground state at the expense of requiring either a

faster ramp rate (causing diabatic excitations) or a longer ramp (which makes the

experiment more susceptible to decoherence).

The decision to hold HJ static was made because generating the Hamiltonian

in 4.1 requires of order 100× more laser power for the J term than for the By

term, even for By ∼ 10J0. Since uncontrolled Stark shifts, which scale linearly

or quadratically with intensity, can cause dephasing errors, we have historically

preferred to hold Ji,j constant for purposes of minimizing the change in Stark shift,

which unlike a static shift cannot be calibrated for as was described in the previous

chapter. This was a bigger issue before we switched to using a mode-locked 355 nm

Raman laser; in the old setup, the Raman detuning from the 2P1/2 state was only 3

THz (as compared to 33 THz now), and the Stark shifts were much larger.

4.1.1 Different ramp profiles

In theoretical treatments, the Hamiltonian terms are often taken to be linearly

dependent on time, since a constant rate of change simplifies many calculations dra-

matically. However, ramping By linearly in our experiments would either introduce

large diabatic errors or require an experiment duration that far exceeds the coherence

time, as will be discussed more quantitatively below. We therefore take advantage

of the fact that the excitation probability depends not only on the rate of change

of By, but also on the instantaneous energy gap between the ground and first cou-
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Figure 4.2: Low-lying energies for a system of 6 ions, with Ising coupling profile
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cies of νz = 0.7 MHz and νx = 4.8 MHz, ηΩ = 27.5 kHz, and with a detuning of 90
kHz from the center-of-mass mode. Bold lines indicate the ground and first coupled
excited states, and the vertical dashed line indicates the critical field value Bc.

pled excited states, to tailor a time profile for By(t) that decreases the experiment

duration without deviating as far from adiabaticity.

Figure 4.2 shows a typical energy landscape vs. transverse field strength for

a system of 6 spins, with antiferromagnetic Ising couplings whose interaction range

is given by α ∼ 1. At large By, far from the critical (minimum) energy gap ∆c, the

excess energy of the first coupled excited state is roughly linear with By, and then

undergoes an avoided level crossing when the By and Ji,j terms contribute similar

energies. Notably, the first coupled excited state is not equivalent to the state with

the second-lowest energy, as the system can only be excited to a state |e〉 if the
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changing Hamiltonian has a matrix element between |e〉 and |g〉, 〈e|HB|g〉 6= 0.

To quantify the adiabaticity of a particular ramp schedule, we introduce a

parameter

γ =

∣∣∣∣∣∆2(By)

Ḃy(t)

∣∣∣∣∣ , (4.4)

where ∆(By) is the instantaneous energy gap between the ground and first excited

states. A larger value of γ means the ramp is more adiabatic at that value of By, and

hence adiabaticity requires γ � 1. This parameter can be seen to be an appropriate

choice in light of the usual adiabaticity criterion [63],

∣∣∣∣∣Ḃy(t)ε

∆2
c

∣∣∣∣∣� 1, (4.5)

where ε is a number of order 1 parametrizing the coupling between the ground and

excited states, ε =Max[〈e|dH/dB|g〉]. From either of these, we can see that a ramp

deviates further from adiabaticity both as the energy gap shrinks and as the ramp

rate Ḃy(t) increases.

From these considerations, if we look again at Figure 4.2 it is clear that the

field need not be ramped as slowly at large By, where there is a large energy gap, as

at smaller By, near the critical gap. Thus, ramping the field more quickly first and

more slowly as we approach the critical gap allows us to decrease the experiment

duration without sacrificing adiabaticity. This is fortunate in light of experimentally

achievable critical gaps and coherence times. For example, in order to satisfy the

criterion γ � 1 for the parameters shown in Figure 4.2 (for which the largest nearest-
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neighbor coupling is Jmax = 0.78 kHz and ∆c = 0.29 kHz), we would require a linear

ramp,

By(t) = 5Jmax(1−
t

tf
), (4.6)

, to have a duration tf �46 ms, far exceeding the coherence time of the interactions,

which is roughly 2.4 ms. Alternatively, a nearly adiabatic ramp (γ = 1) could be

performed in 2.4 ms if the initial field is By(0) = 0.2 kHz, or roughly 0.25Jmax,

but in this case the true ground state would have less than a 25% overlap with the

prepared ground state of HB - clearly not a good option either.

It follows that we want By(t) to be some decreasing concave-up function of

time. We typically choose a decaying exponential with initial value B0 and time

constant τ ,

By(t) = B0e
−t/τ , (4.7)

chosen because of the simple functional form that displays the desired qualitative

criteria. We thus do not ramp the field all the way to zero, but typically choose ramp

durations on the order of 6τ , such that the field is decreased to e−6 of its initial value.

For B0 ∼ 5J0 to 10J0, this results in a final field value of B ∼ 0.01J0 to 0.02J0, deep

within the ordered phase where the true eigenstates are well approximated by the

HJ eigenstates.

At the critical point of the Hamiltonian shown in Figure 4.2, the rate of change

of the exponential ramp is |Ḃy(t)| = 0.3B0/tf . Adiabaticity then requires tf � 14.5

ms, a factor of 3 less time than the requirement found for linear evolution. Note that

the adiabaticity gains of exponential ramps can be realized whenever the critical gap
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occurs towards the end of a linear ramp (Bc/B0 < τ/tf ), which is generally the case

for the Ising Hamiltonian (Eq. 4.1).

It is possible to further optimize the adiabaticity of a ramp using knowledge

of the energy structure of the Hamiltonian. Such local adiabatic ramps keep the

adiabaticity γ fixed at all points along the evolution by adjusting Ḃ(t) based on the

instantaneous gap ∆(B(t)) [64,65]. Specifically, a local adiabatic ramp would follow

the profile B(t) that solves the differential equation 4.4 with γ fixed.

To solve Eqn. 4.4, it is necessary to know ∆(B) everywhere along the evo-

lution. This requires knowledge of the first coupled excited state of the N -spin

Hamiltonian (Eq. 4.1), which, for the system sizes we have checked, is always the

3rd excited state at small B and the (N+1)th excited state at large B. Determining

the local adiabatic evolution profile therefore relies on calculation of only the lowest

∼ N eigenvalues, which is much more computationally approachable than direct

diagonalization of a 2N × 2N matrix [66].

For a local adiabatic ramp, the critical time tc may be calculated by integrating

Eq. 4.4. Since Ḃ(t) is negative throughout the evolution, we find

tc = γ

∫ B0

Bc

dB

∆2(B)
(4.8)

Similarly, we may calculate the total evolution time

tf = γ

∫ B0

0

dB

∆2(B)
(4.9)
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106



which shows a linear relationship between the total time tf and the adiabaticity

parameter γ. Satisfying the adiabaticity condition γ � 1 for the Hamiltonian in

Figure 4.2 implies tf � 3.6 ms (for these ramps we assume that the field is taken

all the way to zero), a factor of 4 and 12 less time than exponential and linear

ramps, respectively. The fact that local adiabatic evolution can lead to faster ramps

while satisfying adiabaticity has been well-explored in Ref. [64], where it was shown

that local adiabatic ramps could recover the quadratic speedup of Grover’s quantum

search algorithm. In contrast, it was found that linear ramps offer no improvement

over classical search [67].

Figure 4.3(a) compares a linear, exponential, and local adiabatic ramp profile

for the Hamiltonian shown in Figure 4.2. The local adiabatic ramp spends much

of its time evolution in the vicinity of the critical point, since the transverse field

changes slowly on account of the small instantaneous gap. This is further illus-

trated in Figure 4.3(b), which shows that at the critical point, the slope of the local

adiabatic ramp is minimized and smaller than slopes of the exponential or linear

ramps. As a result, the inverse of the adiabaticity parameter, 1/γ, is peaked near

the critical point for exponential and linear ramps, greatly increasing the probabil-

ity of non-adiabatic transitions away from the ground state (see Figure 4.3(d)). By

design, the local adiabatic ramp maintains constant adiabaticity for all values of B

and does not suffer from large non-adiabaticities near Bc.

We theoretically calculate and experimentally measure the ability for each of

the ramp profiles described above to prepare our spin system into the ground state

of Eqn. 4.1 at B = 0. For this measurement, we use N = 6 ions and create antifer-

107



æ

æ

æ

æ

æ

æ

æ

æ

æ æ æ

æ

æ æ

æ

æ

æ æ æ

æ æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ
æ

æ

time HmsL

local adiabatic

exponential

linear

HaL

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

ramp time HmsL

gr
ou

nd
st

at
e

pr
ob

ab
ili

ty

0 1 2
0

1

time HmsL

B
�B

0

æ

æ

æ

æ

æ

æ

æ

æ

æ æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ æ æ æ
æ æ

æ

æ

æ

time HmsL

local adiabatic

exponential

linear HbL

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

evolution time HmsL

gr
ou

nd
st

at
e

pr
ob

ab
ili

ty

0 1 2
0

1

time HmsL

B
�B

0

Figure 4.4: (a) Probability of preparing the AFM ground state (i.e., either of the
|010101〉 or |101010〉 configurations) after local adiabatic, exponential, and linear
ramps with tf varied from 0 to 2.4 ms. The local adiabatic ramp gives the ground
state with highest probability. Solid lines indicate the theoretical prediction. Inset:
0.96 ms local adiabatic ramp profile compared to the 2.4 ms profile (dotted). (b)
Probability of preparing the AFM ground state for various times during tf = 2.4 ms
simulations with three different ramp profiles. The linear ramp takes ∼2.3 ms to
reach the critical point, while the local adiabatic and exponential ramps need only
1.2 ms. The inset shows the 2.4 ms local adiabatic profile evolved for 0.96 ms. The
end points of parts (a) and (b) differ slightly in the experiment because these are
two separate data sets.
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romagnetic spin-spin interactions of the form Ji,j = (0.77 kHz)/|i− j|. These long-

range antiferromagnetic interactions lead to a fully-connected, frustrated system as

all pairwise coupling energies cannot be simultaneously minimized. Nevertheless,

the ground state of the system is easily calculable for 6 spins and is found to be

a superposition of the two Néel-ordered AFM states, (|010101〉 + |101010〉)/
√

2, as

would be the case for nearest-neighbor interactions.

Figure 4.4(a) shows the probability of creating the AFM ground state when

the transverse field B(t) is ramped using linear, exponential, and local adiabatic

profiles. The total ramp time tf is varied from 0 to 2.4 ms, with a new ramp profile

calculated for each tf . Each data point is the result of 4000 repetitions of the same

experiment. In agreement with the predictions above, the data show that local

adiabatic ramps prepare the ground state with higher fidelity than exponential or

linear ramps.

The solid lines in Figure 4.4 plot the theoretical prediction of the ground state

probability with no free parameters. In each case we begin by numerically integrat-

ing the Schrödinger equation using Hamiltonian 4.1 with the desired B(t) and the

initial state |ψ(0)〉 = |000 . . .〉y. At the end of the ramp we calculate |〈ψ(tf )|ψ(tf )〉|2

and extract the probability of the ground state spin configuration. We account for

decoherence-induced decay of the ground state probability by multiplying the cal-

culated probability at time t by exp[−t/td], where td is the measured 1/e coherence

time of our spin-spin interactions.

The fact that local adiabatic ramps do not yield 100% ground state probability

at tf = 2.4 ms is not surprising, given that the adiabatic condition is tf � 3.6 ms for
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our experimental parameters. For comparison, the ∼ 80% ground state population

found with a 2.4 ms local adiabatic ramp would take an exponential (linear) ramp

9.7 ms (29 ms) to achieve – a factor of 4 (12) longer. However, these significantly

longer ramps do not yield high-fidelity ground state preparation in practice, since

significant spin decoherence effects arise in our experiment after about 2.4 ms. Local

adiabatic ramps therefore offer the best way to prepare the ground state with high

probability.

The data in Figure 4.4(b) show how the ground state probability grows during

a single 2.4 ms linear, exponential, or local adiabatic ramp. The ground state

population grows quickly under local adiabatic evolution since the transverse field

B(t) is reduced quickly at first. In contrast, the linear ramp does not approach

the paramagnetic to AFM phase transition until ∼ 2 ms, and the AFM probability

is suppressed until this time. Once again, local adiabatic ramps show the largest

ground state probability at each time.

4.1.2 Prevalence of the ground state

In our experiments, there is typically some diabatic error resulting from the in-

ability to ramp the Hamiltonian slowly enough to prevent excitations, even when we

use optimized local adiabatic ramps. (The ultimate limiting factor from a technical

perspective is the coherence time of the interactions, which prevent us from making

the ramp infinitely long.) This may hinder the identification of unknown ground

states in many cases. However, in the protocol described above, the ground state
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will always be the most prevalent state, subject to certain conditions (in particular,

including that the ramp is not truly instantaneous).

The reasoning behind this claim can be laid out in a qualitative argument. In

the protocol described above, we begin in the state |→→ · · · →〉y. This is an equal

superposition of all of the σx eigenstates, which are clearly eigenstates of the Ising

Hamiltonian HJ above. Hence, in a perfectly instantaneous ramp, i.e. suddenly

turning on HJ with By = 0, every eigenstate is equally probable (and in particular,

measuring the ground state is exactly as likely as measuring any other state). At

the other extreme, if the ramp is perfectly adiabatic, the ground state will be fully

populated. In an intermediate case where the field By(t) is ramped at a fast but

finite rate, the quantum simulation is more adiabatic than in the instantaneous

case, and the ground state is slightly more prevalent than any other state. Thus,

our ability to measure the probability of creating each of the 2N spin configurations

along σx allows us to identify a ground state.

We test this experimentally by measuring the probability for all of the 64 spin

states at each local adiabatic ramp data point in Figure 4.4(a). These probabilities

are shown in Figure 4.5. When the total ramp time is 0.00 ms (i.e. instantaneous),

we measure a distribution with nearly equal probability in each of the possible states,

as expected. As the total ramp time is made longer (up to 2.4 ms), the populations

in the two degenerate AFM ground states emerge as the most probable compared

to any other spin configuration.

A more formal argument for why the ground state should be most prevalent

can be made by way of analogy to a Landau-Zener process [68] in a two-level system
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Figure 4.5: State probabilities of all 26 = 64 spin configurations for each local
adiabatic data point in Figure 4.4(a), ordered in binary notation (e.g., |010101〉 =
21 and |101010〉 = 42). The two degenerate AFM states (solid blue) are the most
prevalent for all times.
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comprised of the ground and first coupled excited states. In the Landau-Zener

framework, a system that starts in the state |→→ · · · →〉y, the ground state of the

Hamiltonian in Eq. 4.1 when By/J0 � 1, will be transformed into the new ground

state |←← · · · ←〉y at By/J0 � −1 if By(t) is ramped adiabatically. Likewise, an

instantaneous switch from B/J � 1 to B/J � −1 will leave the system in an

excited state with 100% probability.

Our experiment most closely resembles half of a Landau-Zener process, in

which By(t) starts with By � J0 and ends at By = 0. One can write an analytic

expression to calculate the transition probability for this half-Landau-Zener evolu-

tion [69], which has a maximum value of 0.5 for an instantaneous ramp. Any fast

but finite ramp will give a transition probability < 0.5, and the ground state will

always be more prevalent than the excited state.

The technique of identifying the most prevalent state as the ground state is

subject to some limitations. First, the initial state (before the ramp) should be a

uniform superposition of all spin states in the measurement basis – a condition satis-

fied by preparing the state |→→ · · · →〉y and measuring along x̂. If some spin states

are more prevalent than the ground state initially, then some non-zero ramp time

will be necessary before the ground state probabilities “catch up” and surpass these

initially prevalent states. Second, the ramp must not pass through any real energy

crossings (as distinct from the avoided level crossing of the Landau-Zener problem),

or first-order phase transitions. Third, the ground state must not contain a higher

number of spin configurations (due to degeneracy or because it is a nondegenerate

superposition of many configurations) than the first coupled excited state, as this
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also places some non-zero limitation on the ramp time.

Another consideration in determining the ground state is that the difference

between the measured ground state probability Pg and next excited state proba-

bility Pe must be large compared with the experimental uncertainty, which is fun-

damentally limited by quantum projection noise ∼ 1/
√
n after n repetitions of the

experiment [70]. That is, we require

Pg − Pe >
√

∆P 2
g + ∆P 2

e , (4.10)

where ∆P 2
i = Pi(1 − Pi)/n is the variance in the estimate of Pi from quantum

projection noise. Manipulating the expression

Pg − Pe >
√
Pg(1− Pg)

n
+
Pe(1− Pe)

n
, (4.11)

we find the required number of experiments is given by

n >
Pg(1− Pg) + Pe(1− Pe

(Pg − Pe)2
. (4.12)

In a large system undergoing a diabatic ramp, the probability of creating the ground

state will be small (Pg � 1, implying that also Pe � 1), allowing us to simplify this

expression to

n >
Pg + Pe

(Pg − Pe)2
. (4.13)

Assuming an exponential distribution of populated states during the ramp (as
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may be expected from Landau-Zener-like transitions), the number of required runs

should then scale as n ∼ (Ē/∆)2 in the limit Ē � ∆, where Ē is the mean energy

imparted to the spins during the ramp, and ∆ is the energy splitting between the

ground and first coupled excited state.

As the system size N grows larger, two effects contribute to a shrinking critical

gap ∆c, further reducing the adiabaticity of transverse-field ramps in the context

of our frustrated AFM system. The first is the well-known result for transverse-

field Ising models that ∆c → 0 as the system size approaches the thermodynamic

limit N → ∞ [62]. The second effect arises from the fact that identical laser and

trap parameters produce longer-range interactions at larger N , which lead to more

frustration and smaller energy gaps in the system [22], as we will discuss further

below.

To show the potential scaling power of local adiabatic evolution, we perform

quantum simulations with up to 14 ions. In this regime, we are unable to directly

calculate the local adiabatic ramp profile using a standard desktop computer due

to the exponential growth of the computation time (just building a 214× 214 matrix

of machine-sized 64-bit numbers requires 2 GB of RAM). Instead, we approximate

the gap ∆(B) by the piecewise function

∆(B) =


∆c if B ≤ Bc

∆c + 4(B −Bc) if B > Bc

(4.14)

with Bc and ∆c extrapolated from calculations for 3-10 ions. This ∆(B) is then used
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Figure 4.6: (a) Camera images of experimentally prepared AFM ground states for
N = 14. (b) State probabilities of all 214 = 16384 spin configurations for the 14-
ion local adiabatic ramp described in the text. The Néel-ordered ground states are
unambiguously the most prevalent, despite a total probability of only 3%.

to solve the differential equation 4.4. For N > 10 the ramp thus found continues to

outperform exponential and linear ramps, as seen in Figure 4.6.

4.2 Studies of variable frustration

The ideas discussed above were used in our experiments demonstrating control

over the amount of frustration in a long-range antiferromagnetic spin chain [22],

though chronologically the frustration studies were performed earlier. In these

experiments, we exploited the fact that for a more long-range interaction profile
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Figure 4.7: (a) Structure function S(k) versus wave vector k for various ranges
of interactions, corresponding to different degrees of frustration, in a system of 10
spins. The increased level of frustration for the longer-range interactions reduces
the antiferromagnetic spin order, here signified by a peak at k = π. The detection
errors may be larger than shown here for the longest range of interactions, for which
the decreased ion spacing may have increased spatial crosstalk. (b) Distribution
of observed states for two different ranges of interaction, sorted according to their
energy, which for 10 spins can be exactly calculated from Eq. 4.1 with B = 0. The
dashed lines indicate the cumulative distribution functions for these two interaction
ranges.
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(smaller α), corresponding to a greater degree of frustration, the critical gap for an-

tiferromagnetic interactions decreases. From the arguments we have already seen,

it is clear that applying ramps with a fixed profile (here, an exponential with ini-

tial value B0/J0 = 5 and time constant τ = 400 µs) will thus result in increased

diabaticity and hence lower ground state fidelity for a more frustrated system.

Figure 4.7(a) shows this effect by plotting the structure function S(k) for

various interaction ranges. The structure function is essentially the spatial Fourier

transform of the averaged two-point correlation functions; it is defined as

S(k) =
1

N − 1

∣∣∣∣∣
N−1∑
r=1

C(r)eikr

∣∣∣∣∣ , (4.15)

where C(r) = 1
N−r

∑
m=1N − rCm,m+r is the average correlation between spins r

sites apart, and the connected correlation function is

Ci,j =
〈
σxi σ

x
j

〉
− 〈σxi 〉

〈
σxj
〉
. (4.16)

Hence, a peak in the structure function at k = π, corresponding to a periodicity of 2

lattice sites, is indicative of the antiferromagnetic order expected in the ground state.

In the data, it is clear that the antiferromagnetic ordering is suppressed as the inter-

actions are made longer range. Other metrics besides the structure function can be

used, including directly measuring the population in the Néel ordered ground states,

which similarly decreases with interaction range. However, the structure function

is a useful metric in that it could more easily be compared to measurements with
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solid-state systems, for example those made by neutron scattering, and because it is

more robust to errors than the N -point correlation function involved in measuring

the population of the ground state directly.

We can additionally order the states by their energy, which is directly calcu-

lable from Eq. 4.1. As seen in Figure 4.7(b), the result is suggestively similar to

the exponential profile that might be expected from a finite-temperature ensemble.

However, there are distinct differences between the state we believe we make and a

thermal state, including the existence of coherences between the different eigenstates

and the fact that states of certain symmetries are not populated at all.
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Chapter 5: Dynamics of spin correlations after a global quench

In the quest to build a quantum simulator that can address questions inacces-

sible to other techniques, it is important that in addition to pushing the envelope of

our technical capabilities and system size, we also search for questions that might

fruitfully be addressed with the next generation of experiments. For example, while

we may have access to several tens of spins within a couple of years, we probably

won’t have access to thousands, and while we may substantially improve the flex-

ibility of the types of operations we can do, we probably won’t have completely

arbitrary control of the Hamiltonian. We therefore want to identify problems that

are well-suited to these parameters that nevertheless may offer us a chance to study

physics that would otherwise be inaccessible.

In this chapter, I describe a global quench experiment with long-range Ising

and XY interactions, which is straightforward to perform, works exceedingly well in

a system of 11 spins, and offers the potential to shed new light on a fundamental

question of how the interaction profile bears on the maximum speed with which

distant spins can become correlated. Since the significance of these results is paritally

in the fact that we have identified a promising open problem to tackle with a larger

system, the story doesn’t neatly tie off all the loose ends. I will discuss the motivation
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for studying these sorts of dynamics, but we cannot yet offer a complete picture

with intuitive cartoons explaining why we should see the exact behavior we do. The

results in this chapter have been published in [25].

5.1 Motivation: Lieb-Robinson bound and its implications

The maximum speed with which information can propagate in a quantum

many-body system directly affects how quickly disparate parts of the system can

become correlated [71–74] and how difficult the system will be to describe numeri-

cally [75]. For systems with only short-range interactions, Lieb and Robinson derived

a constant-velocity bound that limits correlations to within a linear effective light

cone [76], analogous to causal light cones that arise in relativistic theories. Lieb-

Robinson bounds have strongly influenced our understanding of locally-interacting

quantum many-body systems. These bounds restrict the many-body dynamics to

a well-defined causal region outside of which correlations are exponentially sup-

pressed [77]. Their existence has enabled proofs linking the decay of correlations in

ground states to the presence of a spectral gap [78, 79], as well as the area law for

entanglement entropy [75,80,81], which can indicate the computational complexity

of classically simulating a quantum system. Furthermore, Lieb-Robinson bounds

constrain the timescales on which quantum systems might thermalize [82–84] and

the maximum speed with which information can be sent through a quantum chan-

nel [85]. Recent experimental work has observed an effective Lieb-Robinson (i.e.

linear) light cone in a 1D quantum gas [6].
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Figure 5.1: (a-c): Dependence of correlations on separation and time (a), extracted
light-cone boundary (b), and correlation propagation velocity (c) following a global
quench of a long-range Ising model with α = 0.63. The curvature of the boundary
shows an increasing propagation velocity (b), quickly exceeding the short-range
Lieb-Robinson velocity bound, vLR (c). Solid lines give a power-law fit to the data.
Complementary plots are shown for α = 0.83 (d-f), α = 1.00 (g-i), and α = 1.19
(j-l). As the system becomes shorter-range, correlations do not propagate as far or
as quickly through the chain; the short-range velocity bound vLR is not exceeded for
our shortest-range interaction.

When interactions in a quantum system are long-range, the speed with which

correlations build up between distant particles is no longer guaranteed to obey the

Lieb-Robinson prediction. Indeed, for sufficiently long-ranged interactions, the no-

tion of locality is expected to break down completely [86]. Violation of the Lieb-

Robinson bound means that comparatively little can be predicted about the growth

and propagation of correlations in long-range interacting systems, though there have

been several recent theoretical and numerical advances [72,73,78,86–88].

In this experiment, we have directly measured the shape of the causal region
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Figure 5.2: (a) Nearest- and (b) 10th-nearest-neighbor-correlations in the Ising
model for our shortest- and longest-range interaction compared to the exact solution
(i.e. no free parameters) from Eq. 5.3 (solid). The dashed blue curves show a long-
range bound for any commuting Hamiltonian.

and the speed at which correlations propagate within Ising and XY spin chains. To

induce the spread of correlations, we perform a global quench by suddenly switching

on the spin-spin couplings across the entire chain and allowing the system to coher-

ently evolve. The dynamics following a global quench can be highly non-intuitive;

one picture is that entangled quasi-particles at each site propagate outwards, cor-

relating distant parts of the system through multiple interference pathways. This

process differs substantially from local quenches, where a single site emits quasi-

particles that may travel ballistically [73, 83], resulting in a different causal region

and propagation speed than in a global quench (even for the same spin model). An

experimental study of local quenches appears in [89].

We initialize a chain of 11 ions by optically pumping to the product state

|↓↓↓ . . .〉z. At t = 0, we quench the system by abruptly turning on a Hamiltonian,
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representing either an Ising model

HIsing =
∑
i,j

Ji,jσ
x
i σ

x
j (5.1)

or an XY-type model (with σzσz terms rather than σyσy terms)

HXY =
1

2

∑
i,j

Ji,j
(
σxi σ

x
j + σzi σ

z
j

)
, (5.2)

where as before, the interactions roughly follow a power-law profile, Ji,j ∼ J0/|i −

j|α. The final section in this chapter provides a discussion of how we can extract

the effective dynamics of the XY Hamiltonian HXY above using the transverse-

field Ising model that we are proficient at generating. We choose values of α =

{0.63, 0.83, 1.00, 1.19} for these experiments. For values α < 1, the system is

strongly long-range, since in the thermodynamic limit the interaction energy per

site diverges, and so the generalized Lieb-Robinson-type bound for systems with

power-law interactions in Ref. [78] breaks down.

After quenching to the Ising or XY model with our chosen value of α, we

allow coherent evolution for various lengths of time before resolving the spin state

of each ion using a CCD camera. The experiments at each time step are repeated

4000 times to collect statistics. To observe the buildup of correlations, we use the

measured spin states to construct the connected correlation function

Ci,j(t) = 〈σzi (t)σzj (t)〉 − 〈σzi (t)〉〈σzj (t)〉 (5.3)
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between any pair of ions at any time. This allows us to distinguish between the

trivial, classical correlations in a product state and correlations that could result

from entanglement: for example, the states |↑↑〉z, |↓↓〉z, and (|↑↑〉z + |↓↓〉z)/
√

2 all

result in 〈σzi (t)σzj (t)〉 = 1, whereas the connected correlation Ci,j(t) is nonzero only

for (|↑↑〉z + |↓↓〉z)/
√

2. Since the system is initially in a product state, Ci,j(0) = 0

everywhere. As the system evolves away from a product state, evaluating Eqn. 5.3

at all points in space and time provides the shape of the light-cone boundary and

the correlation propagation velocity for our long-range spin models.

5.1.1 Ising model results

Figures 5.1 and 5.2 show the results of globally quenching the system to a

long-range Ising model for several different interaction ranges. In each case, we

extract the light-cone boundary by observing the time it takes a correlation of fixed

amplitude (here, Ci,j = 0.04 ≈ 0.1Cmax
i,j ) to travel an ion-ion separation distance

r. For strongly long-range interactions (α < 1), the region within the light-cone

grows faster than linearly, which violates the Lieb-Robinson prediction. This fast

propagation of correlations is not surprising, because even the direct long-range

coupling between distant spins produces correlations in a time t ∝ 1/Ji,j ∼ rα.

Thus, faster-than-linear light-cone shapes are expected to be a general feature of

any 1D long-range interacting Hamiltonian with α < 1.

Increasing propagation velocities quickly surpass the Lieb-Robinson velocity

for a system with nearest-neighbor interactions, vLR = 12eJ0 [see Figure 5.1(c,f,i)].
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Such violations indicate that predictions based on the Lieb-Robinson result – in-

cluding those that bound the growth of entanglement or correlation lengths in the

system – can no longer be trusted.

For the specific case of the pure Ising model, the correlations at any time can

be predicted by an exact analytic solution [87,90]:

Ci,j(t) =
1

2

∏
k 6=i,j

cos[2(Ji,k + Jj,k)t]

+
1

2

∏
k 6=i,j

cos[2(Ji,k − Jj,k)t] (5.4)

−
∏
k 6=i

cos[2Ji,kt]
∏
k 6=j

cos[2Jj,kt].

In Eq. 5.4, correlations can only build up between sites i and j that are coupled ei-

ther directly or through a single intermediate spin k; processes which couple through

more than one intermediate site are prohibited. For instance, if the Ji,j couplings

are nearest-neighbor-only, Ci,j(t) = 0 for all |i− j| > 2. This property holds for any

Hamiltonian whose terms all commute with each other, as shown in a later section,

and explains why the spatial correlations shown in Figure 5.1 become weaker for

shorter-range systems.

The products of cosines in Eq. 5.4 with many different oscillation frequencies

result in the observed decay of correlations when t & 0.1/Jmax. At later times,

rephasing of these oscillations creates revivals in the spin-spin correlation. One

such partial revival occurs at t = 2.44/Jmax for the α = 0.63 case; we observe the

revival for this α (Figure 5.3) as verification that our system remains coherent for a
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Figure 5.3: (a), Spatial correlations measured at long times after a global quench
of an Ising model with α = 0.63. (b), A small partial revival in correlation between
sites 1 and 2 is evident, showing quantum coherence at long times. The black line
shows the exact solution predicted from equation 5.4. Error bars, 1 s.d.

timescale much longer than that which determines the light-cone boundary.

5.1.2 XY model results

We repeat the quench experiments for an XY-model Hamiltonian using the

same set of interaction ranges α, as shown in Figures 5.4 and 5.5. Dynamical

evolution and the spread of correlations in long-range interacting XY models are

much more complex than in the Ising case because the Hamiltonian contains non-

commuting terms. As a result, no exact analytic solution comparable to Eq. 5.4

exists.

Compared with the correlations observed for the Ising Hamiltonian, correla-

tions in the XY model are much stronger at longer distances – particularly for short-

range interactions. Processes coupling through multiple intermediate sites (which

were disallowed in the commuting Ising Hamiltonian) now play a critical role in
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Figure 5.4: Global quench of a long-range XY model with four different interaction
ranges. (a-l): Panel descriptions match those in Figure 5.1. In each case, when
compared with the Ising model, correlations between distant sites in the XY model
are stronger and build up more quickly. For the shortest-range interaction [red box,
(j-l)], we observe a faster-than-linear growth of the light-cone boundary, despite
α > 1; no known analytic theory predicts this effect.

building correlations between distant spins. These processes may also explain our

observation of a steeper power-law scaling of the light-cone boundary in the XY

model. However, we note that without an exact solution, there is no a priori reason

to assume a power-law light-cone edge (used for the fits in Figures 5.4 and 5.5), and

deviations from power-law behavior might reveal themselves for larger system sizes.

An important observation in Figure 5.4(j-l) is that of faster-than-linear light-

cone growth for the relatively short-range interaction α = 1.19. Although faster-

than-linear growth is expected for α < 1 (see previous section) and forbidden in

local quenches for α > 2 [73, 88], no theoretical description of the light-cone shape

exists in the intermediate regime 1 < α < 2. Our experimental observation has
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prompted us to numerically check the light-cone shape for α = 1.19; we find that

faster-than-linear scaling persists in systems of up to 22 spins before our calculations

break down, as displayed in Figure 5.6.

Whether such scaling continues beyond∼30 spins is a question that, at present,

quantum simulators are best positioned to answer. In Figures 5.2 and 5.5, the excel-

lent agreement between data and theory demonstrates that experiments produce the

correct results in a regime still solvable by classical computers. For larger systems,

where numerical evolution of the Schrödinger equation fails, the quality of quantum

simulations could still be benchmarked against the exact Ising solution of equation

5.4. Finding close agreement in the Ising case would then build confidence in an XY

model simulation, which cannot be validated by any other known method.

For the XY model, we additionally study the spatial decay of correlations out-

side the light-cone boundary. The data is shown in Figure 5.7 and is well-described

by fits to exponentially decaying functions. Recent theoretical work [88] predicts an

initial decay of spatial correlations bounded by an exponential, followed by a power-

law decay; we speculate that much larger system sizes and several hundred-thousand

repetitions of each data point (to sufficiently reduce the shot-noise uncertainty)

would be necessary to see this effect.

A perturbative treatment of time evolution under the XY Hamiltonian yields

the short-time approximation for the correlation function Ci,j(t) ≈ (Ji,jt)
2. These

values are plotted as dashed lines along with the data in Figure 5.7. While the

perturbative result matches the data early on, it clearly fails to describe the dynam-

ics at longer evolution times. The discrepancies indicate that the light-cone shapes

130



Figure 5.7: Decay of spatial correlations outside the light-cone boundaries for a long-
range XY model with α = {0.63, 0.83, 1.00, 1.19}. The hatched region indicates the
area inside the light-cone boundary Ci,j = 0.15. Solid lines give an exponential fit
to the data while dashed lines show the predictions from a perturbative calculation.
Perturbation theory does not accurately describe the dynamics at later times.
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observed in the XY model are fundamentally non-perturbative; rather, they result

from the build-up of correlations through multiple intermediate sites and cannot be

understood by any known analytical method.

In conclusion, we have made experimental observations of the causal region

and propagation velocities for correlations following global quenches in Ising and XY

spin models. The long-range interactions in our system lead to a breakdown of the

locality associated with Lieb-Robinson bounds, while dynamical evolution in the XY

model leads to results that cannot be described by existing analytic or perturbative

theory. Our work demonstrates that even modestly-sized quantum simulators can

be an important tool for investigating and enriching our understanding of dynamics

in complicated many-body systems.

5.1.2.1 Multi-hop processes are forbidden for commuting Hamiltoni-

ans

Here we prove the claim that for commuting Hamiltonians, distant spins can

only become correlated if they are directly coupled or if they share an intermediate

spin to which they both couple; multi-hop processes (e.g. site A coupling to site D

through sites B and C) are disallowed.

We consider the time evolution of the operator σzi , the Pauli matrix in the z

direction at site i. We can expand the time evolution operator using the Baker-
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Campbell-Hausdorff lemma:

σzi (t) = eiHtσzi e
−iHt

≈ σzi + it[H, σzi ]−
t2

2
[H, [H, σzi ]] + . . . (5.5)

where H is a general commuting spin-spin Hamiltonian that we may write as H =

1
2

∑
p<q hp,q, with terms hp,q acting only on sites p and q. It is immediately clear

that unless p or q is equal to i, these terms in the Hamiltonian cannot contribute

to the time evolution since they commute with the Pauli operator at site i. We can

use this fact to rewrite Eq. 5.5,

σzi (t) ≈ σzi + it

[∑
i<p

hi,p, σ
z
i

]
+ . . . (5.6)

It is clear from Eq. 5.6 that the only terms which influence the time evolution of σzi

are those which are directly connected to site i. Similarly, the time evolution of the

Pauli z operator at site j is given by

σzj (t) ≈ σzj + it

[∑
j<q

hj,q, σ
z
j

]
+ . . . (5.7)

Therefore, the only way for sites i and j to become correlated is either j ∈ p (direct

hops) or p = q (single intermediate point). No multi-hop processs beyond these may

contribute to the buildup of correlations.
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5.2 Technique for doing dynamics of XY without a field

In order to simulate an XY model, we can use our old friend the transverse-

field Ising model with a large field term. In order to show this, I will write our

Hamiltonian in a slightly different basis than what we use in the lab to simplify

the formalism; of course, this is exactly the same physics we expect to see in the

lab, and we will simply need to redefine what we mean by operators like σ+. The

Hamiltonian for this is

H =
∑
i,j

Ji,jσ
i
xσ

j
x +B

∑
i

σiz, (5.8)

and we will take B � Jmax. In order to see the effect of the B term, we can break

up the interaction term into four parts:

σixσ
j
x = σi+σ

j
+ + σi+σ

j
− + σi−σ

j
+ + σi−σ

j
−. (5.9)

But because the σ+σ+ and σ−σ− terms involve flipping a pair of spins along

the strong field, these processes will be energetically disallowed, so

σixσ
j
x ≈ σi+σ

j
− + σi−σ

j
+. (5.10)

A line or two of algebra can be used to show that

σi+σ
j
− + σi−σ

j
+ =

(
σixσ

j
x + σiyσ

j
y

)
/2, (5.11)
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which is the XY interaction we were interested in.

The intuition we have for what is going on here is as follows. In the high B

limit, the eigenstates are roughly the σz eigenstates of the field. The eigenstates are

broken up into different energy manifolds depending on how many spins are pointing

up along the field: for instance, the lowest energy state is (roughly) |↓↓ · · · 〉z, and

the next manifold (an energy 2B away) contains the N states with a single spin in

|↑〉z, etc. Since the Ising interaction term is only a small perturbation, it does not

drive transitions between the different manifolds, but can drive dynamics within a

single manifold. This has the effect of a flip-flop interaction, since J can only couple

(e.g.) |↑↓ · · · 〉z to |↓↑ · · · 〉z, without leaving the manifold via a σ+σ+ or σ−σ− effect.

This line of argument makes it clear that if the system remains within a single

energy manifold (e.g., with a single spin pointing up), the dynamics will be well ap-

proximated by the XY interaction at all times, since the only effect of the transverse

field will be to impart a global phase (e.g., e−2iBt relative to the ground state, in

the manifold with only one spin pointing up).

However, if multiple manifolds are populated, then the presence of the trans-

verse field will cause nontrivial modifications to the XY dynamics, because the

different manifolds will pick up different relative phases. The transverse field can

hence only be neglected under special conditions: namely, at times t = 2πn/B,

where n is an integer, all of the manifolds will ‘rephase’ and the resulting state

will be the same state that would have resulted from evolution under a pure XY

interaction. This argument can be made more formal by looking at the evolution
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operator of the effective Hamiltonian,

U = exp

[
−i

(∑
i,j

Ji,j
(
σi+σ

j
− + σi−σ

j
+

)
+B

∑
i

σiz

)
t

]
. (5.12)

(Since this Hamiltonian is constant, we do not need to resort to the Magnus expan-

sion as we did in deriving the effective spin Hamiltonian.) The Ji,j terms wind up

commuting with the σz terms, as shown below, and we can therefore rewrite the

evolution operator into a product of terms,

U = exp

[
−i
∑
i,j

Ji,j
(
σi+σ

j
− + σi−σ

j
+

)
t

]
exp

[
−iB

∑
i

σizt

]
. (5.13)

We can easily recognize that the rightmost term will be reduced to the identity

operator (modulo perhaps a global phase) at times t = 2πn/B, so at those times

the evolution operator will be exactly that of a pure XY interaction with no fields

present.

In order to gain a bit of understanding into how the approximations we have

made may start to break down, we can go through the formalism of splitting up

the evolution operator using the Zassenhaus formula [91], which is an analog to the

more familiar Baker-Campbell-Hausdorff formula. The Zassenhaus formula gives an

expansion of the exponential of the sum of noncommuting terms,

eX+Y = eXeY e−
1
2

[X,Y ]e
1
3

[Y,[X,Y ]]+ 1
6

[X,[X,Y ]] · · · (5.14)
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Here, we have

X = −i
∑
i,j

Ji,jt
(
σi+σ

j
− + σi−σ

j
+

)
, (5.15)

Y = −iBt
∑

iσiz. (5.16)

To calculate their commutator, we will need the commutators

[σ+, σz] = [|↑〉 〈↓| , |↑〉 〈↑| − |↓〉 〈↓|] = −2σ+, (5.17)

[σ−, σz] = [|↓〉 〈↑| , |↑〉 〈↑| − |↓〉 〈↓|] = 2σ−. (5.18)

So we get

[X, Y ] = −
∑

i,j,k Ji,jBt
2
[
σi+σ

j
− + σi−σ

j
+, σ

k
z

]
= −

∑
i,j,k 2Ji,jBt

2
(
δik
(
−σi+σ

j
− + σi−σ

j
+

)
+ δjk

(
σi+σ

j
− − σi−σ

j
+

))
= 0. (5.19)

So all of the commutators are zero, and we can factorize the evolution operator with-

out worrying about Zassenhaus formulas and whatnot. However, this makes it clear

that handwaving away the B field relies heavily upon having already approximated

away the σ+σ+ and σ−σ− terms; if they still remained, we would have a nonzero

commutator

[X, Y ] =
∑
i,j

4Ji,jBt
2
(
σi+σ

j
+ − σi−σ

j
−
)
. (5.20)

The exponential of this operator will not reduce to the identity at times t = 2πn/B,
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due to the presence of the Ji,j (and of course there are yet further terms to consider);

thus, to the extent that the σ+σ+ and σ−σ− terms contribute to the dynamics, so

too will the effect of the transverse field be non-negligible.
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Chapter 6: Spectroscopy of a quantum many-body spin system

In all of the results presented so far in this thesis, we have been comparing our

dynamics - which can mean hopefully-adiabatic preparation of ground states or the

quench experiments in the previous chapter - to a theoretical model. This has served

as a much-needed validation of our understanding of our experiments. Indeed, our

foreknowledge of the results we expect to obtain has often helped us diagnose subtle

complications, allowing us to work backwards to notice when (for example) the

spin-state readout is mis-calibrated or when the transverse motional modes jump in

frequency due to thermal changes in the helical RF resonator. However, as we scale

our system toward classically-intractable sizes, comparison to exact numerical results

will become impossible by design. We will therefore require as many validation and

verification techniques as possible, such that once we are in a position to attempt

to study new and poorly-understood physics, we have the means to check whether

various aspects of our simulator are working as desired.

Many single-particle diagnostics will remain useful in larger experiments; for

example, it is easy to imagine future generations of the experiment automating

periodic measurements such as checking the Rabi frequencies on each spin, the

frequencies of each normal mode, and the image calibrations. However, it may
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also be useful to have ways of peering more directly into the many-body effects

in our system. This chapter introduces a first step toward validating the many-

body dynamics of the interacting spins, namely, a technique for performing coherent

spectroscopy on the simulated Hamiltonian. By making use of our ability to read

out entire spin configurations, we can implement a protocol for inferring the entire

spin-spin interaction matrix in an Ising Hamiltonian from measurements of energy

splittings. The number of measurements required for this protocol scales linearly

with the number of spins, so this could even be useful for much larger system

sizes. I also discuss some preliminary efforts to measure energy spectra for a fully

quantum Hamiltonian, namely an Ising model with nonzero transverse field, and

demonstrate that we have directly measured the critical energy gap near a quantum

phase transition.

6.1 Description of the general technique, and demonstration of single-

spin-flip spectroscopy

As before, we consider a long-range transverse Ising Hamiltonian,

Heff =
∑
i<j

Ji,jσ
x
i σ

x
j +B(t)

∑
i

σyi , (6.1)

where h = 1, σγi (γ = x, y, z) is the Pauli matrix for spin i along direction γ;

Ji,j ∼ J0|i − j|−α is a long-range coupling strength between spins i and j with

α tunable between 0 and 3 [43]; and B(t) is the energy associated with a time-
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dependent transverse magnetic field. (For consistency with prior publications and

with language typically used in the lab, energies, like Ji,j and B(t), and frequencies

are referred to interchangeably. Additionally, we refer to the transverse field term

B(t) only in terms of its effective energy. We believe this convention is simpler

than assigning a fictitious magnetic moment to our fictitious simulated spins.) The

σx eigenstates are denoted by |1〉 and |0〉, where |1〉 (|0〉) represents the state |↑〉x

(|↓〉x), respectively.

As mentioned previously, the ability to generate antiferromagnetic Ji,j cou-

plings of varying interaction range [22, 43, 92] has recently attracted much inter-

est in a variety of contexts such as studying the spread of correlations after a

quench [72, 73], observing prethermalization of a quantum system [84, 93], and di-

rectly measuring response functions [94]. Developing a general protocol to measure

the spin-spin couplings will be an important validation goal. Previous experiments

have fully characterized the interactions in small systems using techniques which may

be difficult to scale up, such as Fourier decomposition of multi-spin dynamics [18]

or manipulating each of the ∼ N2/2 pairs of spins separately using electromagnetic

field gradients for frequency [95] or spatial addressing [89]. By contrast, the protocol

we introduce below allows the couplings to be measured by taking ∼ N frequency

spectra, with the entire measurement taking a time which has the same scaling with

system size and interaction range α as the gradient techniques in [95] and [89], and

requires only global interactions and site-resolved measurements.

We measure the energy splittings in our spin system using a weakly modulated
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transverse field as a probe,

B(t) = B0 +Bp sin(2πνpt), (6.2)

where Bp � J0 is small compared to the nearest-neighbor interactions. When

the probe frequency νp is matched to the energy difference |Ea − Eb| between two

eigenstates |a〉 and |b〉, the field will drive transitions between the two states if

there is a nonzero matrix element 〈b|B(t)
∑

i σ
y
i |a〉 6= 0 [96]. For example, in the

weak-field regime B(t) � J0, the Hamiltonian eigenstates are well approximated

by symmetric combinations of the σx eigenstates: e.g., |0101 · · · 〉 and |1010 · · · 〉

are degenerate eigenstates at B = 0, but for very weak, nonzero transverse field,

the eigenstates are roughly given by (|0101 · · · 〉+ |1010 · · · 〉)/
√

2 and (|0101 · · · 〉 −

|1010 · · · 〉)/
√

2. In this regime, the matrix element 〈b|B(t)
∑

i σ
y
i |a〉 is nonzero only

when |a〉 and |b〉 differ by the orientation of exactly one spin.

Although we cannot directly measure absorption (or emission) of energy from

(or into) the transverse field, the spatial information afforded by detecting individual

spin states allows us to observe the multiple transitions away from a given initial

state. In the weak-field regime, a transition at a single frequency can easily be

monitored, and the stability of the transition frequency can provide a good proxy

for that of the entire Hamiltonian. Each splitting depends on multiple spin-spin

couplings – for example, a transition from |1111 · · · 〉 to |0111 · · · 〉 requires energy

∆E = 2(J1,2 + J1,3 + · · ·+ J1,N) (6.3)
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As we have seen before, any given interaction Ji,j is sensitive to the laser

intensities at ions i and j, as well as all of the motional mode frequencies:

Ji,j = ΩiΩjΩR

N∑
m=1

bi,mbj,m
µ2 − ν2

m

. (6.4)

Since the energy required to flip any one spin depends on its interactions with every

other spin, any given splitting is therefore sensitive to changes in any of the laser

intensities, as well as changes to the motional mode structure.

We demonstrate the mapping of individual energy splittings in the weak-field

regime B(t)/J0 � 1 in Figures 6.2 and 6.1. Figure 6.1 sketches the concept, demon-

strates the measurement of individual energy splittings, and shows that the measure-

ment is insensitive to state preparation and measurement (SPAM) error: namely,

transition frequencies can be identified in some cases despite loss of contrast from

SPAM errors. Figure 6.2 shows measurements made starting from both ends of the

energy spectrum, i.e. starting in either the ground or the highest excited state. In

all cases, we cannot directly measure absorption of energy from (or stimulated emis-

sion into) the effective transverse field, so we must measure transitions by observing

changes in the spin configurations.

The spins are prepared along the x direction in |111 · · · 〉 or, for Figure 6.2(b)

and (d), prepared in the antiferromagnetic ground states |101010〉 and |010101〉 using

the adiabatic protocol described in Chapter 4 with an exponential ramp (chosen

because of the simplicity in implementing this ramp experimentally). A transverse

probe field corresponding to B(t) = (100 Hz)sin(2πνpt) is applied for 3 ms, which
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Figure 6.1: (A): The transverse field term Bp drives transitions between states
when its modulation frequency matches an allowed energy splitting (such as between
the state with all spins up along x and any single-defect state with a single spin
down). (B): Measured populations in specific spin states (see legend, below, where
a fluorescing (dark) ion represents |↑x〉 ≡ |1〉 (|↓〉x ≡ |0〉)) vs. the frequency of the
probe field for a system of 8 spins initialized in |11111111〉 before probing. Solid
curves are Lorentzians fit to the data sets; the energy splittings predicted from Eq.
6.1 are indicated with colored bars at the top of the frame. Error bars represent
statistical error from performing 1000 repetitions of each experiment. (C): Measured
populations vs. the frequency of the probe field for a system of 18 spins. The left-
right asymmetry is attributed to slight misalignment of the laser beams. Despite
the low fidelity of the initial state (35% in the |111111111111111111〉 state), these
energy splittings are still clearly visible.
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Figure 6.2: (a): Calculated energy spectrum of a long-range antiferromagnetic Ising
Hamiltonian with 6 spins, scaled to the strength of the largest spin-spin coupling
Jmax. Bold colored lines indicate the energies of states probed experimentally. (b)-
(e): Populations in spin states (indicated in the legend on right, where a fluorescing
(dark) ion represents |1〉 (|0〉): e.g., solid black circles denote the sum of populations
in |010101〉 and |101010〉) vs the frequency of a transverse probe field. Panels (b) and
(d) show the results of probing a nominal Neél ordered state |101010〉 + |010101〉.
Dashed lines are to guide the eye. (c) shows the different sets of excited states that
are coupled to the Neél states at 3 different energies. The resonance frequencies are
identified by fitting Lorentzians to the data sets (solid lines). On the bottom axis the
probe frequency is scaled to the calculated Jmax to enable comparison with (a), while
the top axis shows the actual probe frequency. Panels (c) and (e) show a similar
experiment probing a polarized initial state |111111〉. In this case, since we start
from the highest excited state, the bottom axis also subtracts the probe frequency
from the calculated initial energy to enable comparison with (a). Insets (f) and
(g) show the population distributions of the initial states; even in the nominal Neél
state with 40% fidelity, there are no other highly populated states. The horizontal
axis denotes the decimal form of the binary state, e.g. |101010〉 ≡ 42. Insets
(h) and (i) show the populations after applying a probe frequency at a resonance,
demonstrating that the population is only transferred to the expected set of coupled
states.

145



is sufficient to transfer more than 50% of the population between states, before

measuring along x. These parameters allow resolution of the energy differences in a

system of 6 to 8 spins while still accommodating the few ms decoherence timescale

in our system.

Population transfer is clearly seen when νp is resonant with an energy splitting

(e.g. Figure 6.2 (b)-(e); Figure 6.1, (b)-(d)). We quantify the energy of a particular

state relative to the initial state by fitting Lorentzians to the spectra. (While a Rabi-

type sinc function should be a more accurate representation of the lineshape, we find

that the measured line centers are insensitive to whether the fit function chosen is

a Lorentzian, sinc, Gaussian, etc. Thus, we avoid using a sinc simply because it

would slow down the computational analysis of the data.) The reason that only

a few energy peaks are shown for N = 18 is that the population driven into the

other states, e.g., |111111110111111111〉 is on the order of the quantum projection

noise or smaller, because of the close spacing of the energy levels in this region.

Thus, another notable feature in Figure 6.1C is that even when we cannot resolve

individual energy splittings, we can identify regions where energy levels reside from

the depletion of the initial state (e.g., the pronounced dip centered around 4.5 kHz).

6.2 Multiple pulses to implement a scalable validation of the inter-

actions

Measuring a certain number of energy splittings in the weak-field limit provides

sufficient information to obtain the entire Ising coupling matrix Ji,j. The couplings
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Figure 6.3: (a): Sketch of protocol for driving sequential excitations. (b)-(d): plots of
the measured populations in each of the 2N states in a system of N = 8 spins. We apply
sequential pulses of the modulated transverse field to an initial polarized state, shown
in (b). The first pulse drives transitions into states with single defects, |01111111〉 and
|11111110〉 (c), and the second pulse can then create states with two defects (d). (e):
Population in either of the states with a single defect on the end vs. the frequency of the
first pulse. (f): Fixing the first pulse on resonance from (e), we show the population of a
state with two defects, |01111110〉, vs. the frequency of the second pulse.
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can be directly related to the energies as in Eq. 6.3, so measuring an appropriate

set of
(
N
2

)
energy splittings allows us to measure the

(
N
2

)
= N2

2
− N

2
couplings.

For example, the state |1111 · · · 〉 can be prepared and probed, yielding N energy

measurements of the N single-defect states with a single spin in the |0〉 state; then,

each single-defect state can be prepared with a pulse of the modulated transverse

field at the measured frequency and probed with a second pulse of the modulated

transverse field, as shown in Figure 6.3. In this manner, N − 1 further energy

splittings are measured for each single-defect state, yielding N2 measurements (N

from the first probe scan and N(N − 1) from the rest) with only N + 1 scans.

This protocol allows us to fully characterize the spin-spin couplings and directly

demonstrate control over the interaction range; additionally, due to the parallel

processing enabled by monitoring individual spin states, it scales favorably with the

system size, as discussed below in Section 6.2.1.

We measure the interactions for two systems of 8 spins each, using different

laser and trap parameters to generate interactions falling off with different power

law exponent α. For each value of α, frequency scans are performed with ini-

tial states of |11111111〉 and all single-defect states thereof, i.e. |01111111〉, · · · ,

|11111110〉, which are prepared with a pulse of the modulated transverse field. Be-

cause of the left-right symmetry in our system, pairs of the single-defect states (e.g.

|01111111〉and |11111110〉) are degenerate in energy and are populated simultane-

ously, and we therefore require only 5=N/2 + 1 scans to retrieve sufficient energy

measurements to constrain the interaction profile. We thus have sufficient informa-

tion to infer all of the spin-spin interactions, which are plotted in Figure 6.4. For
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Figure 6.4: Experimentally determined spin-spin coupling profiles. The couplings
were measured in a system of 8 spins for two sets of trap parameters, corresponding
to a more long-range or more short-range interaction profile. (A) and (B) depict
the individual elements of the measured coupling matrix. Larger deviations are
present for certain interactions involving middle ions (see, e.g., J5,1 in (A), which is
lower than expected); this is likely due to the fact that the energies of flipping spins
in the middle of the chain are more closely spaced, making them more difficult to
resolve accurately. (C) plots measured average interactions against ion separation
and shows fits to a power law J0/r

α. The error in α is an estimate of the standard
error in the fit parameter; this takes into account the errors in the Ji,j estimates
based on fit error and statistical error in population measurements.

each energy splitting, we know the initial and final spin ordering and use this to

write the energy splitting in terms of the Ji,j’s, as in Eq. 6.3. We use these relations

to build a design matrix A and a response vector ~y such that A.~x = ~y, where ~y

is a vector consisting of the measured energy splittings, ~x is a vector consisting of

the spin-spin couplings, and A is a matrix with rank equal to or greater than the

number of independent couplings (i.e., A has
(
N
2

)
columns corresponding to the(

N
2

)
couplings, and at least

(
N
2

)
independent rows; in fact, since we can in princi-

ple measure N2 energy splittings with this technique, A will in general have more

than
(
N
2

)
independent rows). In practice, we did not measure all N2 of the energy

splittings that could in principle be measured with this protocol, because certain

spin configurations were never populated above the noise floor, as discussed above;
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however, as long as an appropriate set of
(
N
2

)
energy splittings can be measured,

this is sufficient for our purposes. Mathematica’s LinearModelFit routine is used

to perform a linear least-squares analysis determining which vector ~x minimizes the

sum of squares of residuals, min |A~x− ~y|2. In this analysis, the data points (i.e. en-

ergy splittings) are weighted according to 1/σ2
ν0

, where σ2
ν0

is the estimated variance

in the fit center ν0 that was used to determine each splitting. As a side note, we

have taken advantage of the knowledge that our couplings are roughly of the form

J0/r
α (and in particular, all share the same sign), which means that single-defect

states will always be lower energy than the polarized state in our system, and (for

the systems presented here) two-defect states are lower in energy than single-defect

states. Without this knowledge it would be necessary to determine not only the

magnitude of the energy splittings, as we do here, but also the sign, in order to fully

constrain the coupling matrix. This is however achievable by making a second set

of measurements with a known longitudinal field Bx

∑N
i=1 σ

x
i , which will shift the

energies in a known direction. Comparison between the two data sets to determine

whether Bx shifts the levels closer together or further apart would yield the sign of

the energy splitting.

6.2.1 Scaling for validation of a power law interaction profile

It is important to consider how well our technique will scale to larger systems.

Characterizing all N×N interactions among N spins requires only N+1 scans using

the method just described. However, the various energy splittings may become more
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closely spaced for large systems, and hence the required interaction time per scan

will also depend on the system size. Here we estimate the interaction time necessary

to resolve the most closely spaced energy splittings in a system with homogeneous

power-law interactions,

H =
∑
i,j

Ji,jσ
x
i σ

x
j (6.5)

Ji,j =
J0

|i− j|α
, (6.6)

assuming that the system starts in the |1111 · · · 〉 state. In this case, the energy

required to flip the ith spin from the end of an N spin chain is:

Ei = 2

(
i−1∑
k=1

Ji,k +
N∑

k=i+1

Ji,k

)
= 2J0

(
i−1∑
k=1

1

kα
+

N−i∑
k=1

1

kα

)
. (6.7)

The energy cost is lowest for flipping the spin on the end. In this case, the

energy is simply 2×(nearest neighbor coupling + next nearest neighbor coupling

+ ... ) = 2 (1 + 1/2α + 1/3α + · · · + 1/(N − 1)α). For flipping the second spin,

the contribution of the final coupling J1,N = 1/(N − 1)α is replaced by another

nearest neighbor contribution, as we now have 2(J1,2 + J2,3 + J2,4 + ... + J2,N) =

2(1 + 1 + 1/2α + ...+ 1/(N − 2)α). Since 1 ≥ 1/(N − 1)α for finite, positive α (which

includes our limitation of 0 < α < 3), it will always cost more energy to flip the

second spin than the first. By induction, we can see that due to the monotonic

falloff of the couplings, it will always cost more energy to flip a spin closer to the

center than a spin closer to the edge.

The energy of flipping spin i monotonically increases with i (1 ≤ i ≤ N/2).
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However, to estimate the interaction time necessary to resolve neighboring energy

splittings, we must estimate the spacing between these energy splittings. From Eq.

6.7, this is:

Ei − Ei−1 ≡ ∆i = 2J0

(
1

(i− 1)α
− 1

(N − i+ 1)α

)
. (6.8)

One can show that |∆i| = 0 at i = N/2 + 1, which intuitively makes sense

for even N since the energy of flipping either of the middle two spins should be the

same. Furthermore, the derivative is negative:

d∆i

di
= −2J0α

(
1

(i− 1)α+1
+

1

(N − i+ 1)α+1

)
, (6.9)

so the two (nondegenerate) resonances which will be closest together are those with

i = N/2 and i = N/2− 1. In this case,

∆N/2 = 2J0

(
1

(N/2− 1)α
− 1

(N/2 + 1)α

)
, (6.10)

which can be rearranged as

∆N/2 = 2J0

(
2

N

)α(
1

(1− 2
N

)α
− 1

(1 + 2
N

)α

)
, (6.11)

or, for large N ,

∆N/2 ≈ 8J0

(
2

N

)α
α

N
. (6.12)

We therefore see that the smallest energy splitting scales like 1/Nα+1, which
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sets the scale for the frequency resolution necessary to excite individual resonances.

(For purposes of preparing the single-defect states to be used for further scans, we

do not wish to excite multiple resonances simultaneously. This is because popu-

lating many single-defect states simultaneously would prevent us from obtaining

sufficient information to use the protocol described above: e.g., if both |101 · · · 1〉

and |110 · · · 1〉 are populated simultaneously, yet have slightly different energies,

then when we excite this superposition to the |100 · · · 1〉 we cannot tell which of the

single-defect states is the initial state.)

This means that the necessary interaction time for resolving the energies scales

like 1/∆N/2 ∼ Nα+1/J0. Thus, the total time necessary to perform N frequency

scans will scale polynomially as Nα+2. This is a conservative estimate; adaptive

techniques that increase the interaction time only in regions of high energy state

density could decrease the total time necessary to characterize the entire system.

For smaller systems, Eq. 6.11 can be used to estimate this characterization

time more quantitatively – for example, comparing the 8 spin system character-

ized experimentally to a 30 spin system, which is sufficiently large that numerical

simulation of its dynamics will be infeasible. A heavy disclaimer comes with this

estimate, because here we are interested only in the fundamental speed limitation to

the measurement, ignoring all technical difficulties. Typical values for the couplings

might be J0 = 1 kHz and α = 1, for which the necessary probe time 1/∆N/2 to

fully resolve neighboring eigenstates is roughly 4 ms in an 8 spin system or 50 ms in

a 30 spin system. In the absence of factors such as background gas collisions that

limit the experimental repetition rate, this means an 8 spin system could be fully
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characterized in roughly an hour (assuming (A) only 5 frequency scans are required

due to left-right symmetry considerations, (B) each scan probes 50 frequencies, and

(C) 1000 repetitions of each experiment are performed). A similar calculation for a

30 spin system leads to an estimate of 22 hours, still less than a day. We note that

the tactic of choosing interaction times that allow each energy level to be resolved

allows us to hold the number of repetitions of each experiment constant, without the

quantum projection noise affecting the signal-to-noise ratio for the technique (again,

assuming that other technical limitations like initialization error can be dealt with).

This is because in the ideal situation, the population driven into the state of interest

should be the same regardless of the number of spins.

This estimate can be compared to alternative techniques, such as that demon-

strated in [89], where each pair is addressed separately to directly measure its cou-

pling strength. There, the idea is to initialize all ions other than the pair of interest

into an auxiliary state that does not participate in the spin dynamics, then charac-

terize the frequency of oscillation between e.g. |↓↑〉 and |↑↓〉. To accurately estimate

a frequency J in this manner, the system must be allowed to evolve for a time of

at least 1/J , so the longest interaction time will be given by 1/J1,N = (N − 1)α/J0.

To characterize N(N − 1)/2 interactions will therefore take a total time of order

N(N−1)α+1/J0, leading to the same scaling behavior of Nα+2/J0. Thus, though our

method shows similar scaling behavior in this analysis, it still compares favorably

due to the lack of experimental overhead for individual addressing. Additionally,

the method in [89] will need to probe each pair for varying lengths of time in order

to reliably estimate the frequency of oscillation in the time evolution, so it will have

154



a larger constant prefactor associated with the scaling behavior.

6.3 Generation of defect states and entangled states with a global

laser beam

In addition to enabling further energy measurements, the method described

above to prepare single-defect states without individual addressing has the potential

to be useful for further dynamics studies, e.g. [84]. With a sufficient coherence time,

further pulses could be used to prepare any eigenstate of the σxσx Hamiltonian with

global laser beams in no more than bN/2c pulses, by initializing the system in either

|000 · · · 〉 or |111 · · · 〉 (whichever is ‘closer’ to the target state), then applying mul-

tiple pulses of the modulated transverse field at carefully chosen frequencies. (How-

ever, the resulting states can be superpositions of multiple σx eigenstates, as with the

left-right symmetric interaction profile. To overcome this limitation and populate a

single spin configuration without requiring full individual addressing, some sort of

gradient would be needed. As seen from the nondegeneracy of the σx eigenstates

with their reflected partner in Figure 6.1C (e.g., the state |111111111111111110〉

having a different measured energy than |011111111111111111〉), this wouldn’t nec-

essarily be hard to accomplish.)

We have demonstrated this capability to transfer population into any configu-

ration of 5 spins by starting in either the |11111〉 or |00000〉 and applying at most two

pulses of the transverse field. This system is small enough to also measure the entire

relative energy spectrum. We use the frequency measurements obtained by probing
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Figure 6.5: Reconstructed energy spectrum in a system of 5 spins with antiferro-
magnetic Ising couplings. The energy of each spin configuration above the |10101〉
ground state (colored points) is compared to the calculated energies (black lines).
Calculations are based on the spin-spin couplings estimated from the same energy
measurements (inset). Error bars include statistical errors and an estimate of sys-
tematic error due to experimental drifts.
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the |11111〉 and |00000〉 states, and additionally perform spectroscopy on the states

|10101〉 and |01010〉. To initialize these states, we adiabatically prepare the ground

state of the antiferromagnetic couplings using the adiabatic protocol in Chapter 4;

here the transverse field is ramped from 5J to 0.01J with an exponential profile with

time constant 400 µs. Figure 6.5 shows the measured energy spectrum of this 5-spin

system, obtained by direct addition of the measured energy splittings. The estimate

of systematic error is based only on consistency checks when there are multiple ways

to arrive at the same state: e.g., E(|11111〉 ↔ |11110〉)+E(|11110〉 ↔ |01110〉) may

not match E(|11111〉 ↔ |01111〉) + E(|01111〉 ↔ |01110〉). The standard deviation

of all estimates of a given energy is taken to be an estimate of the systematic error

due to experimental drifts. As seen in the figure, this is not quite statistically con-

sistent with the calculations, indicating that we underestimate the systematic error;

this is not entirely surprising, because our estimate will not always be sensitive to

(e.g.) the effective energies changing between frequency scans. Nevertheless, the

spectrum matches reasonably well with that calculated for the coupling matrix es-

timated from the same measurements, which is within 10% of the predicted values.

Such a detailed examination of the full spectrum of a many-body quantum system

is generally difficult to achieve, and shows the versatility of this form of many-body

spectroscopy.

In the absence of spatial gradients, driving the state |111 · · · 〉 with a global

modulated transverse field at any energy resonance will result in a symmetric su-

perposition of σx eigenstates (e.g., (|011 · · · 11〉 + |11 · · · 110〉)/
√

2), which should

exhibit some degree of entanglement. However, the entanglement is difficult to de-
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Figure 6.6: Result from applying the witness operator Wss (Eq. 6.14) to the ideal
N = 4 state 1

2
(|0111〉+eiφ0 |1011〉+eiφ0 |1101〉+ |1110〉). If the phases are set poorly,

it may not be possible to certify entanglement using only global magnetization
measurements.

tect without individual rotations for readout. To prepare a state with certifiable

entanglement, we can instead subject an initial state |111 · · · 11〉 to multiple fre-

quencies simultaneously, such that all of the possible transitions are driven equally.

After an appropriate time, the system will ideally be driven into a W-type state of

the form

|ΨW 〉 = 1√
N

(
eiφ0 |011 · · · 11〉+ eiφ1 |101 · · · 11〉+ (6.13)

· · ·+ eiφ1 |111 · · · 01〉+ eiφ0 |111 · · · 10〉
)
.

The phases φi depend on the relative phase of the applied modulation frequencies.

The entanglement present in such a state can be detected using global measurements

of the magnetization along σx, σy, and σz [97].
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Trace Trace Trace Trace Number ions
over 1? over 2? over 3? over 4? 〈Wss〉 involved, N 〈Wss〉min

No No No No -1.62(22) 4 -3

Yes No No No -0.382(121) 3 -2
No Yes No No -0.847(96) 3 -2
No No Yes No -0.735(101) 3 -2
No No No Yes -0.300(114) 3 -2

Yes Yes No No -0.115(40) 2 -1
Yes No Yes No -0.111(41) 2 -1
Yes No No Yes -0.001(44) 2 -1
No Yes Yes No -0.279(37) 2 -1
No Yes No Yes -0.081(38) 2 -1
No No Yes Yes -0.055(39) 2 -1

Table 6.1: Measured values of the spin-squeezing-type witness Wss described in the
text, compared to theoretical values for a perfect 4-spin state |ΨW 〉 (rightmost column);
a negative value certifies that the state is nonseparable and hence that at least two of the
spins are entangled. By tracing over individual spins, we see that all pairs except ions 2
and 3 are at least 1σ below zero, showing that these pairs are entangled; entanglement
between each possible pair is consistent with the multipartite entanglement that would be
expected for a perfect W state.

We use a witness operator

Wss = (N − 1)(
〈
J2
x

〉
− 〈Jx〉2) +

N

2
−
〈
J2
y

〉
−
〈
J2
z

〉
, (6.14)

where Jγ ≡ 1
2

∑N
i=1 σ

γ
i (with appropriate phases) and angle brackets denote ensemble

averages. This spin-squeezing observable is provably nonnegative for all fully sepa-

rable states, so measurement of a negative value certifies that at least two particles

are entangled. Measuring a negative value is hence a sufficient but not necessary

condition to show entanglement.

One caveat to note is that this witness operator relies on the relative phases

of the state created. E.g., if the phases φi in the state 6.14 are nonzero, the witness
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may be positive, as shown in Figure 6.6, although it is clear by inspection that there

is still multipartite entanglement present.

We prepare an entangled state of 4 spins by applying two simultaneous fre-

quencies of the modulated transverse field to the state |1111〉 with an appropriate

relative phase for 1.8 ms and measure the resulting state along the Bloch sphere

directions σx, σy, and σz to obtain a measurement of the witness shown above. The

negative value thus obtained certifies that the full state is entangled. Moreover, in-

dividual spin state imaging allows us to trace over any given spin or pair of spins and

apply the witness to this reduced density matrix. This data is shown in Table 6.1.

Though this witness does not prove the existence of multipartite entanglement, the

certification of bipartite entanglement between almost every pair of spins is sugges-

tive of a high degree of entanglement. This demonstration that a highly entangled

state can be created with the probe field shows the existence of quantum coherence

in the population transfers.

6.4 Measurement of a critical gap

Finally, we probe energy levels at nonzero transverse field B0, including near

the critical region B0 ≈ 〈J〉. Determining the critical energy gap ∆, at which the

energy difference between the ground and lowest coupled excited states is minimized,

is useful because this parameter limits the ability to perform an adiabatic sweep of

the transverse field, as discussed in Chapter 4. However, measuring the critical

gap is difficult in general because of the inability to measure in or even know the

160



Figure 6.7: A-D: Populations in a polarized state vs modulation frequency of the
transverse field at four different values of the offset field B0. Coloring is according to
the rescaling scheme used in E. In A and B, we subject the state |11111111〉 to the
modulated field, then measure its population. In C and D, we prepare the ground
state via an adiabatic ramp, subject it to the modulated field, and then measure the
population in |↑↑↑↑↑↑↑↑〉φ (see text). E: Rescaled populations in |11111111〉 (left
of the dashed line) or |↑↑↑↑↑↑↑↑〉φ (right of the dashed line) vs. static field offset
B0 and modulation frequency. The rescaling is a linear mapping of the population
to the color scale, such that the largest (smallest) population in any vertical slice
is mapped to the darkest (lightest) shade in the color bar on the right. Calculated
energy levels, based on measurements of trap and laser parameters, are overlaid as
thin white lines, and the lowest coupled excited state as a thick red line, showing
the critical gap ∆ at position C. The energy of the ground state is always taken to
be zero.
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instantaneous eigenbasis.

The protocol that was used to measure energy splittings in Figures 6.1 and

6.2 is effective even when there is a small DC transverse field B0 (Figure 6.7A

and 6.7B), but breaks down near the critical region. This is because |111 · · · 〉 no

longer approximates an eigenstate of the static Hamiltonian: For example, even in

Figure 6.7A and 6.7B (where we can still identify the transitions), we see that the

contrast is reduced because even when the modulated probe drives no transitions,

the static field B0 causes the state to evolve away from |11111111〉. However, for a

finite-size ferromagnetic system, measurements along a different axis of the Bloch

sphere (here, x̂+ ŷ) allow us to still observe transitions from the ground to the first

coupled excited state near the critical gap (Figure 6.7C and 6.7D). This is because

the ground state near the critical gap has a significant overlap with |↑↑↑↑↑↑↑↑〉φ, the

state fully polarized along x̂+ ŷ. (E.g., for the parameters used in Figure 6.7, i.e. 8

spins with ferromagnetic Ising couplings with J0 ∼ 560 kHz and α ∼ 0.63, there is a

51% overlap of the ground state at the gap with |↑↑↑↑↑↑↑↑〉φ) Hence, measuring the

population in |↑↑↑↑↑↑↑↑〉φ allows us to monitor transitions away from the ground

state, at least near the critical gap. As shown in Figure 6.7E, these experiments

allow us to map the lowest coupled excited state from B0 = 0 beyond the critical

energy gap ∆. The downward drift in energies near B0 = 0 can be attributed

to drifts in laser and trap parameters as the experiments progressed from higher to

lower fields; we have independent evidence that drifts have occurred from measuring

the interaction between 2 ions, for nominally identical laser and trap parameters,

to be different before and after the data collection. An alternative protocol, which
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follows the time evolution after a quench, has recently been proposed for measuring

the critical gap and may scale better for larger systems [98].
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Chapter 7: Toolbox for simulating spin-1 particles

The final set of results in this thesis are a set of preliminary investigations into

using our ion chain to study systems of interacting spin-1 particles, a pursuit that

has several potential applications. Antiferromagnetic spin-1 chains support one of

the simplest known examples of a topological phase of matter [99,100], known as the

Haldane phase, a gapped phase that is not defined by a local order parameter but

instead manifests as a special kind of nonlocal order [101]. Such topological phases

are of interest not only from the perspective of many-body physics studies, but also

for their potential connections to measurement-based quantum computation [102].

For example, ground states of the Haldane phase can in principle be used as a

perfect quantum wire, as long as certain symmetries are respected, meaning that

perturbing the ground state to the point where it is no longer useful as a quantum

wire is equivalent to crossing a phase transition [103]. Developing an experimental

platform to realize this phase would therefore be of interest both for fundamental

studies of spin physics but also as a prototype to test ideas about using topologically

ordered states to perform quantum computations.

The model we will study is a spin-1 chain subject to long-range flip-flop (XY)
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interactions,

H =
∑
i,j

Ji,j
(
Si+S

j
− + Si−S

j
+

)
+
∑
i,m

ζi,m
(
2a†mam + 1

)
Siz (7.1)

Here S± are the spin-1 raising and lowering operators satisfying the commutation

relation
[
Siz, S

j
±
]

= ±Si±δij (δij is the Kronecker delta); sums run from 1 to N , the

number of spins present; am (a†m) is the annihilation (creation) operator on the mth

normal mode of motion; and Ji,j is the interaction strength, which follows the same

formula as in the spin-1/2 Ising model we have previously discussed. As before,

we will operate in a regime where the interactions fall off with distance as roughly

Ji,j ∼ J0/|i− j|α (α can be tuned between roughly 0.5 and 1.5 using trap and laser

parameters.) In this work, it is the interaction term on the left that we want to

study, and we will focus on the subspace of states with 〈Sz〉 = 0, such that the

phonon-dependent Sz term on the right can be neglected.

7.1 Experimental implementation

The switch from simulating spin-1/2 particles to spin-1 particles does not in-

volve too much experimental overhead. Indeed, from the standpoint of the hardware

required, the only change is to rotate a waveplate to polarize one of the Raman lasers

in the magnetic field direction, such that the Raman lasers drive transitions between

the |F = 0,mF = 0〉 and |F = 1,mF = ±1〉 states. This situation is depicted in Fig-

ure 7.1.

The Hamiltonian in Eq. 7.1 derives from the application of a pair of beat
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σ+σ−

ππ

∆D1 = 33 THz 

∆FS = 100 THz 

|0>

|+>|->

35
5 

nm

νHF = 12.6 GHz

2P3/2

2P1/2

2S1/2

(a)

B

σ+/σ−π

νlaser

νlaser-∆ν1
νlaser-∆ν2

(b)

δZee ~ 7 MHz

∆ν1 =

νtrap ~ 5 MHz

νHF+δZee
-νtrap-δ ∆ν2 =

νHF-δZee
+νtrap+δ 

(c)

Figure 7.1: (a): Level diagram for 171Yb+, highlighting relevant states. (b): Sketch
of experimental geometry, showing the polarizations used to drive stimulated Raman
transitions relative to laser wavevectors and the real magnetic field. (c): Detailed
level diagram of the 2S1/2 ground state, showing Raman beatnotes in relation to
Zeeman splittings and motional sidebands. Level diagrams are not to scale.

|↓↓>

|↑↓>|↓↑>

|↑↑>

n

n+1

n-1
n

n+1

n-1
n

Figure 7.2: Two-body level diagram for single-sideband XY interaction in the spin-
1/2 system. We can see that while there are resonant two-beatnote transitions from
|↑↓〉 to |↓↑〉, the states |↓↓〉 and |↑↑〉 will not participate in the dynamics.
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n+1

n-1
n

n n

n

n+1

n-1
n

|+->

|-->

|00> |-+>

|+0> |0+>

|0-> |-0>

|++>

|0,n> |-,n+1>

|0,n> |+,n-1>

Figure 7.3: Many-body level diagram for XY interaction in the spin-1 system.

frequencies detuned near the ‘|+〉 red sideband’ transition, corresponding to the

Hamiltonian |+〉〈0| a+h.c., and ‘|−〉 blue sideband’, corresponding to |−〉〈0| a†+h.c..

A derivation of the spin-1 XY Hamiltonian in Eq. 7.1 is presented in Appendix D.

While the frequencies required thus look rather similar to the frequencies for the

spin-1/2 Ising model discussed previously, this is conceptually closer to the idea of

applying a single detuned sideband to the spin-1/2 system, which similarly produces

a flip-flop interaction and a phonon-dependent level shift, as can be seen by following

the discussion of the Magnus expansion in Section D.2 with spin-1/2 operators.

Figure 7.2 sketches a level diagram for this single-sideband XY operation, similar

to the spin-1/2 Mølmer-Sørensen level diagram shown in Figure 2.5, and Figure 7.3

sketches the analogous level diagram for the spin-1 XY operation.
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7.1.1 Dynamics of an XY spin-1 chain

The ions are initialized before each experiment by cooling the transverse modes

of motion to their ground state and optically pumping the spins to the |00 · · · 〉 state.

This restricts the dynamics to the set of states with 〈Sz〉 = 0, which allows the

second term in Eq. 7.1 to be neglected. The subspace is also robust to fluctuations

in the real magnetic field, which result in an unwanted noise term µB∆B
∑

i S
i
z, so

remaining in this decoherence-free subspace [104, 105] allows us to probe coherent

dynamics for experimental durations longer than the T2 coherence time of the |0〉 ↔

|±〉 transitions. Remaining within this subspace does not substantially limit the

size of the accessible Hilbert space: For N = 4 or more spins, the number of states

in the 〈Sz〉 = 0 subspace of N spin-1 particles is greater than the number of states

in a system of N spin-1/2 particles. The number of states in this subspace can be

quantified as

N〈Sz〉=0 = 1 +

bN/2c∑
k=1

(
2k

k

)(
N

k

)
. (7.2)

These numbers are called central trinomial coefficients, because they give the largest

coefficient in the expansion of (1 + x+ x2)N .

After applying the Hamiltonian in Eq. 7.1 for some amount of time, we mea-

sure the probability of each individual spin remaining in state |0〉. Because both of

the |±〉 states respond to the fluorescence laser, and are randomly scattered into all

of the |F = 1〉 states during the detection process, our current setup does not allow

discrimination among all three possible spin states in a single experiment. However,
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Figure 7.4: Dynamics of 2 spin-1 particles subjected to the XY Hamiltonian in Eq.
7.1, where the populations in state |0〉 (a), |+〉 (b), or |−〉 (c) are measured. The
populations are consistent with Rabi flopping between the state |00〉 (appearing as
black triangles in (a) or blue circles in (b) and (c)) and the symmetric superposition
of |+−〉 (blue circles in (a), green diamonds in (b), orange squares in (c)) and |−+〉
(blue circles in (a), orange squares in (b), green diamonds in (c)). Dashed lines
represent theoretical predictions, with no free parameters. Error bars: statistical
uncertainty based on 500 repetitions of the experiment.

we can measure the population in either |+〉 or |−〉 by repeating the experiment and

applying a π rotation to the appropriate transition before the fluorescence imaging.

This is not a fundamental limitation, since future experiments could ‘shelve’ popu-

lation(s) into long-lived states that do not participate in the cycling transition used

for detection.

In the case of 2 spins, the dynamics of applying the Hamiltonian in Eq. 7.1 to

|00〉 can be simply understood as Rabi flopping between the |00〉 and (|+−〉+ |−+〉) /
√

2
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Figure 7.5: Dynamics of 3 spin-1 particles subjected to the XY Hamiltonian in
Eq. 7.1, where the populations in state |0〉 (a), |+〉 (b), or |−〉 (c) are measured. In
panel (a), all of the eight configurations of bright and dark ions are displayed, while
in panels (b) and (c) only those populations consistent with the 〈Sz〉 = 0 subspace
are shown for clarity of presentation.

states. This behavior is shown in Figure 7.4. Though we do not extract the full

spin correlations, there is sufficient information in this case to determine that the

populations remain in the 〈Sz〉 = 0 subspace as expected. Figure 7.4(b) and (c)

show the absence of the |++〉 and |−−〉 states, respectively, while Figure 7.4(a)

shows the absence of the other 〈Sz〉 6= 0 states (|0+〉, |0−〉, |+0〉, and, |−0〉).

The dynamics in systems of more than 2 spins becomes complicated to analyze

because of the many interaction frequencies involved. For 3 spins, the interactions

are few enough to still qualitatively see oscillations at the interaction frequencies,

as shown in Figure 7.5. Even with three spins restricted to the 〈Sz〉 = 0 subspace,

the many-body nature of the system prevents a simple analytical solution to the
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dynamics: rather than simply flopping between |000〉 and the symmetric combina-

tions, (|0 +−〉+ |0−+〉) /
√

2, (|+0−〉+ |−0+〉) /
√

2, and (|+− 0〉+ |−+ 0〉) /
√

2,

the flip-flop exchange term begins coupling (e.g.) |0 +−〉 to |+0−〉 and |−+ 0〉.

One experimental challenge we have had to overcome in observing dynamics

is what we interpret as a stray site-dependent Sz term. Specifically, the observation

is as follows. One of the calibrations we perform is to load two ions, apply the

XY interaction for some fixed amount of time, and scan the frequency of one of

the sidebands generating the interaction. As with the similar calibration done with

the spin-1/2 Ising model, this maps out the resonant frequency of the two-body

transition from |00〉 to |−+〉 or |+−〉, and allows us to fine-tune the symmetric

detunings so as to ensure the transition is not being driven off-resonance. However,

we observe that under many conditions, this results in mapping more than one

resonance: the transition to |+−〉 occurs at a different red-sideband frequency than

the transition to |−+〉. Of course, the XY Hamiltonian we desire requires the

transitions to |+−〉 and |−+〉 to have the same energy splitting. The solution to

this problem has been to change the ‘twist’ DC voltages on the trap, which should

rotate the longitudinal trap axis a small amount. The voltage change required to fix

the nondegeneracy of |+−〉 and |−+〉 does not move the ions sufficiently to see the

effect on the CCD, so we speculate that the unwanted effect is due to micromotion

whose amplitude is position-dependent.
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7.1.2 Measuring entanglement in spin-1 particles or qutrits

Some information about the relative phases of various components of the wave-

function can be extracted using techniques analogous to the parity oscillations that

are used to demonstrate entanglement between two qubits [106].

7.1.2.1 Pedagogical discussion of the qubit case

The general flavor of these analysis sequences can be understood by analogy

to the more usual parity measurement used to verify entanglement in a Bell pair

of qubits, so we will first discuss the details of this measurement before describing

the slightly more complicated measurement done on the spin-1 system. In the more

common parity measurement, a state

|ψ0〉 = (|00〉+ |11〉) /
√

2 (7.3)

is subjected to π/2 rotations of different phases R(π/2, φ). This maps the state to

i√
2

[
e−iφ sinφ |00〉 − eiφ sinφ |11〉+ cosφ |10〉+ cosφ |01〉

]
, (7.4)

where the populations in |00〉 and |11〉 are each 1
2

sin2 φ, and the populations in |01〉

and |10〉 are each 1
2

cos2 φ. If we define the parity operator as the population in
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states with even numbers of |1〉’s minus the population in states with odd numbers,

Π =
2∑
j=0

(−1)jPj, (7.5)

where Pj is the probability of j spins up (in |1〉), then Π will vary with φ in the

ideal case as Π = − cos 2φ. In a nonideal system, the parity oscillation will have

an amplitude corresponding to the coherence (off-diagonal density matrix element)

between |00〉 and |11〉,

Π = −2|ρ00··· ,11···| cos 2φ. (7.6)

This is easily shown, by appropriate application of the rotation matrix above. This

is a simplification based on some assumptions about lack of populations in undesired

states; for a fully general two-qubit density matrix,

ρ =



p0 A01e
iφ01 A02e

iφ02 A03e
iφ03

A01e
−iφ01 p1 A12e

iφ12 A13e
iφ13

A02e
−iφ02 A12e

−iφ12 p2 A23e
iφ23

A03e
−iφ03 A13e

−iφ13 A23e
−iφ23 p3


, (7.7)

the parity function is actually given by

Π = A12 cosφ12 − A03 cos(2φ+ φ03) (7.8)

+2 [A02 sin(φ+ φ02) + A13 sin(φ+ φ13)] [A01 sin(φ+ φ01) + A23 sin(φ+ φ23)] .
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However, in the context of attempting to make the state (|00〉+ |11〉) /
√

2, the

populations in states |1〉 and |2〉 (corresponding to |01〉 and |10〉) are generally

small, and any coherences involving those states are hence also small (|A02| � 1,

|A12| � 1, etc).

It is useful to distinguish among the parity measurement, the fidelity of the

target state, and the criterion for verifying entanglement between the qubits. The

parity measurement demonstrates only the amplitude of the coherence ρ00,11. The

fidelity of creating the state |ψ0〉 given the actual density matrix ρ is given by

F = 〈ψ0|ρ|ψ0〉 (7.9)

= (P0 + P3 + 2|ρ03|)/2. (7.10)

Finally, it can be shown that for all separable states, the fidelity F defined here is

limited by F ≤ 1/2; hence, measuring F > 1/2 demonstrates entanglement in the

system. Here I directly reproduce the argument in [106] leading to this conclusion.

Suppose we have an arbitrary factorizable wavefunction of N particles,

|ψF 〉 = (a |0 · · · 0〉X + b |1 · · · 1〉X + · · · )⊗ (c |0 · · · 0〉Y + d |1 · · · 1〉Y + · · · ) . (7.11)

Here X and Y represent distinct subsystems of the N particles, and in our pedagog-

ical case of two particles would refer simply to the left and right qubits. Because the

factored wavefunctions must be normalized, we can infer the criteria |a|2 + |b|2 ≤ 1
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and |c|2 + |d|2 ≤ 1, from which we obtain

|a|2 + |b|2 + |c|2 + |d|2 ≤ 2. (7.12)

We can rewrite the left hand side of this inequality as

(|a| − |c|)2 + 2|ac|+ (|b| − |d|)2 + 2|bd| ≤ 2. (7.13)

Since the squared terms are positive, we can further write

|ac|+ |bd| ≤ 1 (7.14)

or

(|ac|+ |bd|)2 ≤ 1 (7.15)

giving us

|ac|2 + |bd|2 + 2|abcd| = 2F ≤ 1; (7.16)

here we have used F = P0 + P3 + |ρ03| in the density matrix language above,

|ac|2 = P0, |bd|2 = P3, and |abcd| = |ρ03|. Hence, measuring a fidelity F > 1/2

directly shows entanglement between the subsystems, and the parity measurement

of the coherence |ρ03| is what enables a measurement of F > 1/2.
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7.1.2.2 The more complicated qutrit case

Once the analysis above is understood, it is simple to extend to the case of

three-level systems. This time, we will write our factorizable wavefunction of two

particles as

|ψF 〉 = (a |+〉X + b |0〉X + c |−〉X)⊗ (d |+〉Y + f |0〉Y + g |−〉Y ) . (7.17)

Again, we will have inequalities imposed by normalization, |a|2 + |b|2 + |c|2 ≤ 1 and

|d|2 + |f |2 + |g|2 ≤ 1. This can be rewritten as

(|a| − |g|)2 + 2|ag|+ (|b| − |f |)2 + 2|bf |+ (|c| − |d|)2 + 2|cd| ≤ 2 (7.18)

or

|ag|+ |bf |+ |cd| ≤ 1 (7.19)

Squaring, we get

|ag|2 + |bf |2 + |cd|2 + 2|agcd|+ 2|agbf |+ 2|bfcd| ≤ 1 (7.20)

or

P+− + P00 + P−+ + 2|ρ+−,−+|+ 2|ρ+−,00|+ 2|ρ−+,00| ≤ 1. (7.21)

When we make the state (|+−〉+ |−+〉) /
√

2 we can extract sufficient infor-

mation to demonstrate a violation of this inequality by performing a slightly more

176



complex series of rotations on the |0〉 to |±〉 transitions,

R0±(θ, φ) = exp

[
i
θ

2

(
e±iφ |±〉 〈0| + e∓iφ |0〉 〈±|

)]
. (7.22)

In this notation, we apply the sequence R0+(π/2, φ).R0+(π/2, 0).R0−(π, 0). The

intuition for this sequence is as follows. First, the π rotation R0−(π, 0) maps the ideal

state to (|+0〉+ |0+〉) /
√

2. This step is important only because we do not have the

ability either to directly perform rotations between |+〉 and |−〉, or to discriminate

between them with a measurement, without first mapping one of them to the |0〉

state. Second, the rotation R0+(π/2, 0) maps this state to (|++〉+ |00〉) /
√

2, which

is directly analogous to the Bell state analyzed above. This step is important because

even if the phase of the second rotation were varied as R0+(π/2, φ′), this would

not affect any observables as it would create a state like
(
|++〉+ eiΦ(φ′) |00〉

)
/
√

2.

Finally, the parity will oscillate with the phase of the third rotation, R0+(π/2, φ).

Here we again define the parity as

Π =
2∑
j=0

(−1)jPj, (7.23)

where this time Pj is the probability of creating a state with j spins in the |0〉 state,

which can be directly measured.

By doing lots of algebra with the help of Mathematica, we can show that the

full dependence of the parity observable Π on the phase φ of the final rotation is
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given by

Π(φ) = 1
2

(P−− − P−+ + 2P00 − P+− + P++ + 2|ρ+−,−+|)

+ cosφ (P−0 + P0− − P0+ − P+0)

−2 sinφ (|ρ−0,+0|+ |ρ0−,0+|)

+1
2

cos 2φ (P−− + P++ − P+− − P−+ − 2|ρ+−,−+| − 2|ρ−−,++|)

+ 1
2

sin 2φ (2|ρ−+,++|+ 2|ρ+−,++| − 2|ρ−−,−+| − 2|ρ−+,−−|) . (7.24)

which, in the paper draft, is written as

Π(φ) = C + 1
2

cos 2φ (P−− + P++ − P+− − P−+ − 2|ρ+−,−+| − 2|ρ−−,++|)

+ 1
2

sin 2φ (2|ρ−+,++|+ 2|ρ+−,++| − 2|ρ−−,−+| − 2|ρ−+,−−|) . (7.25)

Here, C is dependent on various coherences but is independent of φ, and the various

density matrix elements refer to those of the input state that is expected to look

roughly like (|+−〉+ |−+〉) /
√

2. In the case where the populations in |++〉 and

|−−〉 are negligible, this can be approximated as

Π(φ) ≈ C +
1

2
cos 2φ [−P+− − P−+ − 2|ρ+−,−+|] ≡ C − F cos 2φ. (7.26)

Here, the amplitude of the cos 2φ oscillation is written as F because it is essen-

tially the fidelity of making the (|+−〉+ |−+〉) /
√

2 state. Hence, by measuring this

amplitude we directly get sufficient information to demonstrate violation of the in-
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Figure 7.6: Measured parity versus phase of the final rotation in the protocol
described in the text. The state being analyzed is the result of applying the XY
Hamiltonian to the state |00〉 for a time π/J1,2. The amplitude of the fitted curve
(red dashed line) is 0.86, well above the threshold of 0.5 required to demonstrate
entanglement.

equality 7.21 above, and a measurement of F > 1/2 certifies entanglement between

the qutrits, or spin-1 systems.

Figure 7.6 displays the experimental measurements of the parity oscillation

with the phase φ of the final rotation pulse, demonstrating entanglement at a time

t = π/J1,2. We can additionally measure the parity amplitude after different dura-

tions of exposure to the XY Hamiltonian: e.g., the fidelity should oscillate with time

as the system Rabi flops between the states |00〉 and (|+−〉+ |−+〉) /
√

2, as seen

in Figure 7.7, and the state should again be fully in (|+−〉+ |−+〉) /
√

2 at times

t = (2n+ 1)π/J1,2 (n integer). The fidelity of such states is plotted in Figure 7.8.

Incidentally, since the T2 coherence time of the |0〉 ↔ |±〉 transitions is mea-

sured to be 0.5 ms (limited by magnetic field noise), the coherence and entanglement
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Figure 7.7: Contrast of parity curves like the one in Figure 7.6, versus duration of
the XY interaction, showing that the entanglement criterion can still be met even
when the state in superpositions of all three states |+−〉, |−+〉, and |00〉.
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Figure 7.8: Contrast of parity curves like the one in Figure 7.6, versus duration of
the XY interaction, where the durations are chosen to satisfy t = (2n+ 1)π/J1,2 (n
integer).

180



demonstrated in Figures 7.4 and 7.8 for two spin-1 ions show the robustness of the

decoherence-free subspace against magnetic field noise.

7.2 Addition of a field term

In order to adiabatically prepare the ground state of the XY model in Eq. 7.1

we can add an effective S2
z field term, D

∑N
i=1 S

i
z, to the Hamiltonian by appropri-

ately shifting the frequencies of the Raman beat frequencies used to generate the

interactions. Namely, the beat frequencies are now set to

∆ν1 = ω+ − µ−D, (7.27)

∆ν2 = ω− + µ−D, (7.28)

where before the beatnotes were set to D=0 (ω±∓µ). This mimics the effect that a

real S2
z term would have of shifting the |−〉 and |+〉 levels higher in energy, leaving

us with the new Hamiltonian

H =
∑
i,j

Ji,j
(
Si+S

j
− + Si−S

j
+

)
+
∑
i,m,n

(
2a†man + δmn

)
Siz +D

∑
i

(Siz)
2. (7.29)

This term can be used to adiabatically prepare the ground state of the XY Hamil-

tonian in Eq. (7.1), with the same sorts of protocols discussed in Chapter 4.

There is a subtlety that is easy to miss (at least, we missed it at first) in

implementing a dynamically changing D term. As discussed previously, the AWG
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may be programmed to produce a waveform looking something like

V (t) = AR sin (2π(ω0 + δZee − µ+D)t+ φR)+AB sin (2π(ω0 − δZee + µ+D)t+ φB) ,

(7.30)

where ω0 is the AOM frequency corresponding to driving a transition from |F = 0,mF = 0〉

to |F = 1,mF = 0〉. The mistake that we made was to plug a time-varying D(t) di-

rectly into this equation, which produces weird effects because it isn’t the right way

to determine the instantaneous frequency. The apparently correct way to think

about the changing frequency is to note that what we really have is a sine with a

time-varying phase, sin(Φ(t)). Then the instantaneous frequency of the waveform

is given by dΦ/dt. So for example, if we want for the instantaneous frequency as a

function of time to have an exponential profile (like for an adiabatic ramp),

2πf(t) = dΦ/dt = 2π
(
f0 +D0e

−tτ) , (7.31)

then the time-varying argument of the sin is given by the integral of f(t),

Φ(t) = 2π
(
f0t−D0τe

−t/τ) . (7.32)

Once we figured out this detail, the experiments worked well with the ad-

ditional D term. For the adiabatic ground state preparation, the spins are again

prepared in |00 · · · 〉, which is the ground state in the presence of a large S2
z field,

after which the field is ramped for 1 ms from a starting value of D = 5 kHz with an
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Figure 7.9: Populations at different points of the S2
z ramp, where the populations

in state |0〉 (a), |+〉 (b), or |−〉 (c) are measured, along with theoretical predictions
for the instantaneous ground state (dashed line).
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Figure 7.10: Populations at different points of the S2
z ramp, where the populations

in state |0〉 (a), |+〉 (b), or |−〉 (c) are measured, along with theoretical predictions
for the instantaneous ground state (dashed line). Note that the system crosses a
first-order phase transition at roughly 0.65 ms, after which the spin populations
follow the first excited state.

exponential profile with time constant 0.167 ms. Figure 7.9 shows the populations

measured at varying points along the S2
z ramp, which match reasonably with the

calculated instantaneous ground state.

Intriguingly, for odd numbers of spins (3 or 5), we find that a real (non-avoided)

level crossing occurs during the S2
z ramp, and we hence prepare not the ground state

but instead a nearby excited state, as seen in Figure 7.10. Ground states of the

spin-1 XY model are known to belong to the Haldane phase in certain cases where

next-nearest-neighbor interactions are present [107], and our calculations provide
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evidence that power-law interactions can also support this phase.

The ground states for odd numbers bear a close qualitative resemblance to

the AKLT states [108, 109], which are a canonical example of ground states in the

Haldane phase. For example, one of the AKLT states can be written as [109]

|ψ〉AKLT =

√
1

6
(|0−+〉 − |0 +−〉+ |−+ 0〉 − |+− 0〉+ |+0−〉 − |−0+〉) ,

(7.33)

while the exact ground state of the 3-spin XY Hamiltonian we implement is approx-

imately

|ψ〉XY =
√

0.16 |0−+〉 −
√

0.16 |0 +−〉+
√

0.16 |−+ 0〉 −
√

0.16 |+− 0〉

+
√

0.18 |+0−〉 −
√

0.18 |−0+〉 . (7.34)

Clearly, the ground state is antisymmetric with respect to either left-right spatial

inversion of the chain or a global rotation by π about Sx (which sends |+〉 to |−〉 and

vice versa), and we cannot reach it with the operation performed here because the

starting state |000〉 is symmetric with respect to either of these operations (and the

D term does not break this symmetry). This is a manifestation of the symmetry

protection afforded to the Haldane phase. Indeed, such symmetries are believed

to be the most fundamental property governing the presence of these nontrivial

topological phases [110, 111]. No such restriction prevents us from preparing the

ground state for even numbers of spins (2 or 4), as our calculations reveal that these

ground states are symmetric with respect to the operations mentioned above, and
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hence can be smoothly connected to the initial state. It is as yet unclear whether

the symmetric ground states for even numbers of spins also belong to the Haldane

phase, or whether it even makes sense to discuss a Haldane phase in such a small

system.

In the future, the toolset we have demonstrated for experimentally simulating

spin-1 systems with tunable long-range interactions and effective fields could be used

to explore a variety of questions that arise when considering particles of spin higher

than 1/2. In particular, we have demonstrated the capability to create ground states

of the spin-1 XY model, and that symmetry considerations prevent us from creating

certain ground states that bear a close resemblance to AKLT states. Future work

will address the question of how to deliberately break this symmetry in such a way

as to allow preparation of a Haldane phase [112], which should allow us to create

interesting edge states and study questions such as the dependence on interaction

range of the presence of topologically nontrivial ground states.
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Chapter A: Stimulated Raman transitions in a Λ system

We are solving for the dynamics in a three level system undergoing stimulated

Raman transition-like behavior. We define three states |A〉, |B〉, |e〉 with energies

0, ωHF , and ωE, respectively. The states |A〉 and |B〉 are not directly coupled, but

each is off-resonantly coupled to the excited state by a monochromatic laser beam.

This situation is briefly sketched in Figure A.1. In this situation, the Hamiltonian

for the atom is given by

H0 = ωe |e〉〈e|+ ωHF |B〉〈B| (A.1)

The interaction caused by the light fields will be written as

Hint = gAe
i(kA·x−ωAt+φA) |e〉〈A|+ gBe

i(kB ·x−ωBt+φB) |e〉〈B|+ h.c. (A.2)

We have chosen the laser frequencies such that ωA − ωB = ωHF , and ωA − Ee ≡ ∆

(such that ∆ < 0 for a red detuned beam). Now we define the state vector as

|ψ〉 = cA(t) |A〉+ cB(t) |B〉+ ce(t) |e〉 . (A.3)
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A

B

e

gA , ωA

gB , ωB

ωHF

∆

Figure A.1: Example three level system, for the case where the two laser beams
have a beat frequency at exactly ωHF , detuned by a large amount from the excited
state |e〉.
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Applying the Schrodinger equation to this state ket and equating coefficients

of the (orthogonal) eigenstates |A〉 , |B〉 , |e〉, we wind up with three differential equa-

tions:

i ˙cA = g∗Ae
−i(kA·x−ωAt+φA)ce (A.4)

i ˙cB = g∗Be
−i(kB ·x−ωBt+φB)ce + ωHF cB (A.5)

iċe = gAe
i(kA·x−ωAt+φA)cA + gBe

i(kB ·x−ωBt+φB)cB + ωece (A.6)

We will now go to a different frame by making the following definitions:

aA = cA (A.7)

aB = eiωHF tcB (A.8)

ae = eiωAtce (A.9)

It is straightforward to find the new Schrodinger equations, as follows:

iȧA = i ˙cA (A.10)

iȧA = g∗Ae
−i(kA·x−ωAt+φA)ce (A.11)

iȧA = iȧA = g∗Ae
−i(kA·x−ωAt+φA)aee

−iωAt (A.12)

iȧA = g∗Ae
−i(kA·x+φA)ae (A.13)
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For the second equation, we get

iȧB = ieiωHF t (iωHF cB + ˙cB) (A.14)

iȧB = eiωHF t
(
−ωHF cB + g∗Be

−i(kB ·x−ωBt+φB)ce + ωHF cB
)

(A.15)

iȧB = eiωHF tg∗Be
−i(kB ·x−ωBt+φB)ce (A.16)

iȧB = eiωHF tg∗Be
−i(kB ·x−ωBt+φB)aee

−iωAt (A.17)

iȧB = g∗Be
−i(kB ·x+φB)ae (A.18)

And finally, we get

iȧe = ieiωAt (iωAce + ċe) (A.19)

iȧe = eiωAt
(
−ωAce + gAe

i(kA·x−ωAt+φA)cA + gBe
i(kB ·x−ωBt+φB)cB + ωece

)
(A.20)

iȧe = eiωAt
(
gAe

i(kA·x−ωAt+φA)cA + gBe
i(kB ·x−ωBt+φB)cB −∆ce

)
(A.21)

iȧe =
(
gAe

i(kA·x+φA)aA + gBe
i(kB ·x+φB)aB −∆ae

)
(A.22)

The resulting equations are:

iȧA = g∗Ae
−i(kA·x+φA)ae (A.23)

iȧB = g∗Be
−i(kB ·x+φB)ae (A.24)
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iȧe =
(
gAe

i(kA·x+φA)aA + gBe
i(kB ·x+φB)aB −∆ae

)
(A.25)

and we have cleverly gotten rid of all the explicit time dependences to get here.

Now we must do an approximation known as adiabatic elimination, wherein we

assume ȧe � ∆ae and make the approximation ȧe ≈ 0. In particular, one also

typically assumes that there is no population in the excited state to begin with,

and a negligible amount of the population is ever driven there. This gives us an

expression for ae:

ae =
gAe

i(kA·x+φ0)aA + gBe
i(kB ·x+φB)aB

∆
(A.26)

This allows us to write the dynamics of aA and aB in a form that looks like a

closed two-level system:

iȧA =
gBg

∗
A

∆
ei[(kB−kA)x+(φB−φA)]aB +

|gA|2

∆
aA (A.27)

iȧB =
gAg

∗
B

∆
ei[(kA−kB)x+(φA−φB)]aA +

|gB|2

∆
aB (A.28)

In particular, this is the set of equations one would get for an effective Hamil-

tonian looking like

Heff = |gA|2
∆
|A〉〈A|+ |gB |2

∆
|B〉〈B| (A.29)

+
(
gAg
∗
B

∆
ei[(kA−kB)x+(φA−φB)] |B〉〈A|+ gBg

∗
A

∆
ei[(kB−kA)x+(φB−φA)] |A〉〈B|

)
.
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Chapter B: Derivation of spin-dependent force from red and blue

sidebands

In this appendix, we show the derivation of the Mølmer-Sørensen Hamiltonian

from the application of symmetrically detuned red and blue sidebands to a single ion

interacting with a single mode of motion, after which we use the this Hamiltonian

(generalized to treat multiple ions and modes of motion) to derive the effective

spin-1/2 Ising Hamiltonian we use in most of our experiments.

B.1 Single-atom spin-dependent force from two sidebands

We start from the atom-laser interaction Hamiltonian

H =
Ω

2
σ+ei(∆k·r−δt+φ) +

Ω

2
σ−e−i(∆k·r−δt+φ). (B.1)

Here ∆k is the difference between the wavevectors of a pair of lasers at difference

frequency ω, δ = ω−ω0 is the detuning from the hyperfine transition frequency ω0,

we have set Planck’s constant h = 1, and we have gone into the interaction picture
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with respect to the bare atomic and harmonic oscillator Hamiltonians,

Hatom =
ω0

2
σz, (B.2)

HH.O. = ωta
†a, (B.3)

and made a rotating wave approximation. We can also write

∆k · r = η
(
ae−iωtt + a†eiωtt

)
, (B.4)

where η = ∆kx0 is the Lamb-Dicke parameter and x0 =
√

~
2Mωt

is the ground-state

wavefunction spread of the ion. In the case of multiple ions, we can instead write

this as

∆k · r = ηi,m
(
ame

−iωmt + a†me
iωmt
)
, (B.5)

where am is the creation operator for the mth normal mode with frequency ωm, and

ηi,m =
√
~/(2Mωm)bi,m is dependent on the mode frequency m and the element of

the matrix b gives the component of normal mode m at ion i. The remainder of the

appendix will stick with the single-ion, single-mode case, but in Chapter 2 we will

need to use this to generalize the result to multiple ions.

From this interaction Hamiltonian, we will further make the approximation

that we are in the Lamb-Dicke limit, η(2n̄+1)� 1, where the motional wavepacket

is confined to a size much smaller than the inverse of the difference wavevector,
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which lets us write

ei∆k·r ≈ 1 + iη
(
ae−iωtt + a†eiωtt

)
. (B.6)

To generate the spin-dependent force we want, we apply a red sideband and

blue sideband Hamiltonian simultaneously:

Hrsb =
Ω

2
σ+
(
1 + iη

[
ae−iωtt + a†eiωtt

])
e−iδrt+iφr

+
Ω

2
σ−
(
1− iη

[
ae−iωtt + a†eiωtt

])
eiδrt−iφr , (B.7)

Hbsb =
Ω

2
σ+
(
1 + iη

[
ae−iωtt + a†eiωtt

])
e−iδbt+iφb

+
Ω

2
σ−
(
1− iη

[
ae−iωtt + a†eiωtt

])
eiδbt−iφb . (B.8)

The Mølmer-Sørensen Hamiltonian is then the sum of the red and the blue

sidebands, with Ω taken to be equal for each sideband, and the detunings taken to

be equal and opposite, µ ≡ δb = −δr:

HMS =
Ω

2
σ+
(
1 + iη

[
ae−iωtt + a†eiωtt

]) (
eiµt+iφr + e−iµt+iφb

)
+

Ω

2
σ−
(
1− iη

[
ae−iωtt + a†eiωtt

]) (
e−iµt−iφr + eiµt−iφb

)
. (B.9)

What we want is for a σφ operator, where σφ = eiφσ+ + e−iφσ−, to factor out

from the phonon terms. To achieve this, let’s start by rewriting HMS into three
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separate terms: a term without phonon operators,

HMS,NP =
Ω

2

(
σ+
[
eiµt+iφr + e−iµt+iφb

]
+ σ−

[
e−iµt−iφr + eiµt−iφb

])
; (B.10)

a term with factors of ei(µ−ωt)t, which is the one we will keep if we want to do another

rotating wave approximation,

HMS,RWA = iηΩ
2

(
σ+
[
aei(µ−ωt)t+iφr + a†e−i(µ−ωt)t+iφb

]
−σ−

[
aei(µ−ωt)t−iφb + a†e−i(µ−ωt)t−iφr

])
, (B.11)

and a counter-rotating term with factors of ei(µ+ωt)t,

HMS,CR = iηΩ
2

(
σ+
[
ae−i(µ+ωt)t+iφb + a†ei(µ+ωt)t+iφr

]
−σ−

[
ae−i(µ+ωt)t−iφr + a†ei(µ+ωt)t−iφb

])
. (B.12)

So what we want now is to rewrite the terms with phonons, e.g.

HMS,RWA ≡
ηΩ

2
σφs
(
aei(µ−ωt)t+iφm + a†e−i(µ−ωt)t−iφm

)
. (B.13)

If true, this means

HMS,RWA = ηΩ
2

(
eiφsσ+ + e−iφsσ−

) (
aei(µ−ωt)t+iφm + a†e−i(µ−ωt)t−iφm

)
= ηΩ

2

(
σ+aei(µ−ωt)tei(φs+φm) + σ+a†e−i(µ−ωt)tei(φs−φm)

+σ−aei(µ−ωt)te−i(φs−φm) + σ+a†e−i(µ−ωt)te−i(φs+φm)
)

(B.14)
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but from before we had

HMS,RWA = ηΩ
2

(
σ+
[
aei(µ−ωt)t+iφr+iπ/2 + a†e−i(µ−ωt)t+iφb+iπ/2

]
+σ−

[
aei(µ−ωt)t−iφb−iπ/2 + a†e−i(µ−ωt)t−iφr−iπ/2

])
. (B.15)

So clearly this holds iff the phase relationships φs+φm = φr+π/2 and φs−φm =

φb + π/2 hold, or

φs =
φr + φb + π

2
, (B.16)

φm =
φr − φb

2
. (B.17)

With these definitions, we can rewrite the Hamiltonian as

HMS = Ω
2

(
σ+
[
eiµt+iφr + e−iµt+iφb

]
+ σ−

[
e−iµt−iφr + eiµt−iφb

])
+ηΩ

2
σφs
(
aei(µ−ωt)t+iφm + a†e−i(µ−ωt)t−iφm

)
+ηΩ

2
σφs
(
ae−i(µ+ωt)t−iφm + a†ei(µ+ωt)t+iφm

)
. (B.18)

Further, the off-resonant carrier term (i.e., the term with no phonon operators)
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can be rewritten in terms of the spin phase φs and the motional phase φm:

HMS,NP = Ω
2
σ+
[
eiµt+i(φs+φm−π/2) + e−iµt+i(φs−φm−π/2)

]
+Ω

2
σ−
[
e−iµt−i(φs+φm−π/2) + eiµt−(φs−φm−π/2)

]
= Ω

2
σ+ei(φs−π/2)

[
ei(µt+φm) + e−i(µt+φm)

]
+Ω

2
σ−e−i(φs−π/2)

[
e−i(µt+φm) + ei(µt+φm)

]
HMS,NP = Ω cos(µt+ φm)σφs−π/2. (B.19)

So we wind up with

HMS = Ω cos(µt+ φm)σφs−π/2

+ηΩ
2
σφs
(
aei(µ−ωt)t+iφm + a†e−i(µ−ωt)t−iφm

)
+ηΩ

2
σφs
(
ae−i(µ+ωt)t−iφm + a†ei(µ+ωt)t+iφm

)
. (B.20)

Finally, the phonon terms can be rewritten as

HMS = Ω cos(µt+ φm)σφs−π/2

+ηΩσφs cos (µt+ φm)
(
ae−iωtt + a†eiωtt

)
, (B.21)

or
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HMS = Ω cos(µt+ φm)
[
σφs−π/2 + ησφs

(
ae−iωtt + a†eiωtt

)]
. (B.22)

B.2 Ising Hamiltonian from spin-dependent force

The above Mølmer-Sørensen Hamiltonian is written for a single ion interacting

with a single mode of motion, but in general we have multiple ions interacting with

multiple modes. The generalization to multiple ions is simply

HMS = −
∑
i,m

ηi,mΩi sin(µt)σxi
(
ame

−iωmt + a†me
iωmt
)
, (B.23)

as discussed in Appendix B.

To show that the evolution under this Hamiltonian is roughly equivalent to

that of a pure spin-spin interaction under certain conditions, we use the Magnus

expansion for the evolution operator,

U(t) = T
[
e−i

∫ t
0 dt1H(t1)

]
= eΩ̄1+Ω̄2+Ω̄3+···, (B.24)

where T is the time-ordering operator and the first few orders of the expansion are

given by

Ω̄1 = −i
∫ t

0

dt1H(t1), (B.25)
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Ω̄2 = −1

2

∫ t

0

dt1

∫ t1

0

dt2 [H(t1), H(t2)] , (B.26)

Ω̄3 =
i

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 ([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]) .

(B.27)

Plugging in the Hamiltonian above, we can see that Ω̄1 will involve integrals

like ∫ t

0

dt1 sinµt1e
ift1 =

eift (µ cosµt− if sinµt)− µ
f 2 − µ2

, (B.28)

which lets us obtain

Ω̄1 = σxi
(
αi,m(t)a†m − α∗i,m(t)am

)
, (B.29)

αi,m(t) =
iηi,mΩi

µ2 − ω2
m

(
µ− eiωmt [µ cosµt− iωm sinµt]

)
. (B.30)

For the second term we need to compute the commutator

[H(t1), H(t2)] = [
∑

i,m ηi,mΩi sin(µt)σxi
(
ame

−iωmt + a†me
iωmt
)
,

∑
j,n ηj,nΩj sin(µt)σxj

(
ane

−iωnt + a†ne
iωnt
)
]. (B.31)

We can see that the only noncommuting operators in this expression are the

phonon operators, which obey

[
an, a

†
m

]
= δmn, (B.32)
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where δmn is the Kronecker delta. From this we can see that

[
σxi ame

−iωmt1 , σxj a
†
ne
iωnt2

]
= σxi σ

x
j e

iωm(t2−t1)δmn, (B.33)

[
σxi a

†
me
−iωmt1 , σxj ane

iωnt2
]

= −σxi σxj e−iωm(t2−t1)δmn, (B.34)

and from this finally get the commutator,

[H(t1), H(t2)] =
∑
i,j,m

ηi,mηj,mΩiΩjσ
x
i σ

x
j sinµt1 sinµt2

(
e−iωm(t1−t2) − eiωm(t1−t2)

)
.

(B.35)

To obtain the term Ω̄2, we perform some nasty integration and finally wind

up with

Ω̄2 =
∑
i,j,m

iηi,mηj,mΩiΩj

2(µ2 − ω2
m)

σxi σ
x
j

(
ωm sin 2µt

2µ
+
µ sin(µ− ωm)t

µ− ωm
− µ sin(µ+ ωm)t

µ+ ωm
− ωmt

)
.

(B.36)

Note that with this Hamiltonian, there are no further orders to the Magnus

expansion, because the commutator of σxi am with σxj σ
x
k is always zero, and so the

following form for the evolution operator is exact:

U = exp

(∑
i,j,m

σxi
(
αi,m(t)a†m − α∗i,m(t)am

)
+ χij(t)σ

x
i σ

x
j

)
, (B.37)

αi,m(t) =
iηi,mΩi

µ2 − ω2
m

(
µ− eiωmt [µ cosµt− iωm sinµt]

)
, (B.38)
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χij(t) =
∑
m

iηi,mηj,mΩiΩj

2(µ2 − ω2
m)

(
ωm sin 2µt

2µ
+
µ sin(µ− ωm)t

µ− ωm
− µ sin(µ+ ωm)t

µ+ ωm
− ωmt

)
.

(B.39)

Here we have a number of terms that we would like not to have to deal with, in

particular the terms coupling spin to motion (σxi am, etc). We therefore operate in a

regime where we can ‘adiabatically eliminate’ the phonons, imposing the condition

that the laser beatnotes be far detuned from the motional modes:

µ− ωm � ηi,mΩi. (B.40)

In this case the displacement is only virtual, αi,m � 1. When this condition holds,

the term in the evolution operator corresponding to spin-phonon coupling, Ω1, can

be neglected entirely. Furthermore, we take the long time limit, noting that for large

t,

χij(t) ≈ −
∑
m

iηi,mηj,mΩiΩj

2(µ2 − ω2
m)

ωmt. (B.41)

By making these approximations, we have reduced the evolution operator to

U ≈ exp

(
−
∑
i,j,m

σxi σ
x
j

iηi,mηj,mΩiΩj

2(µ2 − ω2
m)

ωmt

)
, (B.42)

which is exactly the evolution operator of a set of static spin-spin interactions,

Heff =
∑
i,j

Ji,jσ
x
i σ

x
j , (B.43)
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whose interaction strengths are given by

Ji,j =
∑
m

bi,mbj,mΩiΩjΩR

2(µ2 − ω2
m)

, (B.44)

where we have used ηi,m = ∆k
√

~/(2Mωm)bi,m to rewrite the effective couplings in

terms of the recoil frequency ΩR = ~(∆k)2

2M
and the normal mode matrix b.
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Chapter C: The big bad MBR

The MBR has been well documented both by its supplier, Coherent, and in

Rajibul Islam’s thesis. Here, I describe some of the same information present in these

sources so as to provide context for the additional information I want to document

- a partial analysis of the locking circuitry, for example. Some of the parameters I

document here are different from those recommended in the manual, and may only

be relevant to the MBR that is currently on our table.

C.1 Optics

Figure C.1 sketches the main components of the laser. The MBR is pumped by

a 532 nm source (for the majority of my time on the experiment, a Verdi V-18 from

Coherent was run at 18.5 W to pump the MBR; that laser died, and at the time I

am writing we are limping along with an old V-10 running at 7.5 W that we expect

to soon replace with a new Sprout-G-18W). The pump beam is passed through a

telescope (consisting of a ∼1d̈iameter, f=88 mm positive lens and a ∼1/2d̈iameter,

f=-200 mm negative lens) before being coupled into a bowtie-configuration ring

cavity via mirror M1. The curvature of M1 serves to further focus the 532 nm light

into the Ti:sapph crystal.
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Figure C.1: Sketch of the optics in the MBR laser, borrowed from the manual by
the Coherent Lasers company.

Because the pump beam is focused so tightly inside the Ti:sapph, the alignment

of the telescope is quite important. For a couple of years, the centers of the lenses

did not form a straight line with the center of M1, and the Verdi beam appeared to

clip on the negative lens mount. Upon installing the old V-10, we had insufficient

739 nm power to begin with, but realigning the telescope such that the pump beam

can come straight through the centers of the lenses and M1 increased the 739 nm

power by roughly 50%.

The Ti:sapph crystal is Brewster cut, allowing the cavity to support horizon-

tally polarized light, so the cavity is sensitive to the angle of this element. We once

replaced the Ti:sapph and found that the angle that minimizes reflection of the 532

nm pump light is not the optimum for 739 nm, and in fact was far enough off that

we had difficulty achieving lasing at all. This angle thus has to be tuned to optimize

204



the output power rather than reflection of the 532 nm light.

Mirrors M1 and M2 have a nominal radius of curvature of 10 cm, allowing the

cavity mode to be tightly focused within the gain medium. We have seen that once

it was necessary to back out both M1 and M2 away from the Ti:sapph by a full turn

on each mirror knob to achieve lasing. This was speculated to have something to do

with the cavity stability, but could also have had something to do with the mode

waist inside the gain medium.

The cavity beam passes through an optical diode to prevent bidirectional las-

ing. This element consists of a waveplate that rotates the polarization a small

amount and a Faraday rotator that reverses this rotation only for light propagating

in the ‘correct’ direction; due to the various Brewster-cut elements in the cavity,

light propagating in the wrong direction (whose polarization gets rotated further

at every round trip) sees very high losses. We have seen that the output power is

maximized when the Faraday rotator is rotated almost as far clockwise (as looking

down on the cavity) as possible within the throw of the screws. We have tried to

set the Faraday mount to the angle we believe it was designed for and optimize the

cavity from there, but it was not even possible to get the cavity lasing at this angle,

and less drastic changes to the angle still decrease the output power.

The mount for M3, also called the ‘tweeter’ mirror, has a piezoelectric drive,

such that fine adjustments of the cavity length can be made electronically. Feedback

from the ‘servo’ lock described below is used to stabilize against small fluctuations

in cavity length on fast timescales, as well as to noise eat the ∼ 80 kHz modulation

that is imprinted on the light by the etalon (next paragraph). The mount for the
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tweeter mirror sets it at a slight angle, so it is possible for rotation of this mount to

make a difference in the cavity alignment.

The etalon is a thin piece of glass which acts to suppress unwanted longitudinal

cavity modes (frequencies). It is mounted against two piezos that are driven 90◦

out of phase in such a way as to set up a standing wave in the etalon. This is in

turn mounted to a galvanometer (aka galvo), which can rotate the etalon; this can

be used to lock the etalon position to a single cavity mode.

Next, two more glass plates are mounted on galvanometers at the Brewster

angle (hence their name ‘Brewster plates’). By using the galvos to rotate both

Brewster plates in tandem, the cavity length can be changed with a larger range

of motion than the tweeter mirror can provide, without significantly displacing the

transverse cavity mode in doing so. The final mirror, M4, is also the output coupler.

Finally, the birefringent filter is used as a coarse frequency selection element.

C.2 Electronics

We find that, day to day, the lock circuits tend to be the most finicky part

of the MBR system to deal with. When the locks are unusually troublesome, I

often wind up going back nearly to the beginning of the procedure for getting the

locks online after a major cavity realignment, so I will describe this procedure here.

(Also, it is usually straightforward to achieve a good output power when the etalon

is removed from the cavity, so when we are struggling for power we often need to

redo this procedure anyway.)
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The etalon lock is the first to be optimized, as it is generally counterproductive

to mess with the servo lock if the etalon lock isn’t working. The etalon lock stabilizes

the angle of the etalon to the point of highest transmission of a single frequency mode

from the cavity. The error signal derives from the reflection off the etalon, which is

directed onto a photodiode. The etalon mount contains two piezoelectric actuators

which are driven 90◦ out of phase with each other at ∼80 kHz, which sets up a

standing wave in the etalon itself. If the light travels through an appropriate part

of this standing wave, this will modulate the angle that the light ‘sees’ and hence

the reflection.

The photodiode signal thus carries an 80 kHz modulation, which is demodu-

lated with the driving signal to result in a phase-sensitive DC signal. As the etalon

is slowly rotated, this signal will linearly increase (or decrease), until the angle is

changed sufficiently to select a different cavity mode, resulting in our friend the

sawtooth error signal.

Usually the main trick to getting the etalon lock working properly is to tweak

its alignment. When affixing the etalon mount to its galvo, the angle is set so that

with the etalon knob on the control box rotated fully counterclockwise (or rather,

epsilon away from fully counterclockwise, since the scan offset can cause a large

jump at that knob position), the etalon is roughly at normal incidence to the cavity

beam. This can be checked by monitoring the frequency on the wavemeter. As

the etalon is rotated clockwise on the galvo rod (as seen from the M1/M2 side of

the laser), the frequency will decrease until normal incidence is reached, and then

increase again. Setting the angle to be very slightly clockwise of normal incidence
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allows for the largest frequency range to be reached with the electronic etalon knob.

Next, the etalon potentiometer in the laser head should be tweaked such that the

magnitude of the signal at the etalon test point (also in the head) is roughly 8 V

with the etalon knob fully clockwise, and 1.5-2 V with the etalon knob (almost) fully

counterclockwise. The etalon is then translated through the beam with the galvo’s

mount, until we find a spot with both good transmission (i.e. output laser power)

and a good sawtooth error signal (> 100 mV peak-to-peak), which is of course much

more easily said than done. Tweaking the drive frequency of the etalon piezos, as

described in the manual, sometimes also helps in achieving a good error signal.

The servo lock drives both the tweeter mirror and the Brewster plate galvos

in order to stabilize the MBR frequency to the reference cavity. Two low-power

reflections are picked off the light coming out of the cavity, one of which is sent

directly to a photodiode (PD B) and one of which is sent to the reference cavity,

and its reflection is sent to another photodiode (PD A). As described in the manual,

the laser cavity and reference cavity should be sufficiently well aligned to achieve a

finesse of 25 or better in order for the servo lock to function well.

The PD A signal is from the beam that is reflected only if the cavity is on

resonance. This signal is used for a side-of-fringe locking technique. In order to

eliminate dependence of the lock signal on the output power, the zero point of the

fringes is determined by an offset proportional to the PD B signal. In principle,

as long as the cavity fringes look fine, all that needs to be done to get the servo

lock working is to set the fringe potentiometer in the laser head such that the peaks

from the fringe test point are roughly 6 V peak-to-peak, then set the ‘normalize’
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potentiometer such that the servo error signal from the back of the control box is

centered around 0 V.

In practice, the gains and time constants in the servo circuit often also need to

be tweaked, and it is sometimes difficult to attain a balance between a sufficiently

high gain for the lock to capture and a sufficiently slow galvo response to prevent

the circuit from scanning too quickly over the fringes (the signature of this is that

when pressing the servo lock button, the frequency quickly scans up several GHz

before capturing a fringe, or railing at the end of its range). Before opening the

control box, though, it is worth checking the stability of the etalon lock, e.g. by

rotating the etalon knob small amounts and checking that the laser does not mode

hop. On occasion the etalon lock can appear to be working fine when it is actually

does not have a sufficiently high gain to follow as the servo lock changes the cavity

length; in this case, it may incorrectly appear that the servo lock is the problem,

because the etalon lock button seemingly works as desired, and its instability is only

seen once the servo lock is engaged.

The circuit that servos the galvos and tweeter based on the fringes from the

reference cavity is difficult to decode at first glance for those (like me) who are mostly

only familiar with single-op-amp circuits like inverting amplifiers, integrators, and

the like, but it turns out to be a PI-type controller with proportional and integral

gain as well as a double-integrator gain. The full schematic of the ‘Analogue’ board

of which this circuit is a part is far too detailed to fit into a single figure, so I have

sketched a simplified circuit showing the key parts of this P/I/double-integrator,

in Figure C.2. (Note that while there are several analog, as in not digital, circuit
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boards in the MBR controller, ‘Analogue’ is Coherent’s name for a particular circuit

board that is accessible by opening the top of the control box.)

As this figure shows, there are two branches to this circuit: both are essentially

integrators, but the output of the first integrator is fed into the second integrator,

which compares this output to the original signal. We will analyze this circuit using

the simplified rules for op amps:

(1) Neither op amp input draws any current;

(2) The output (when it is part of a feedback loop to one of the inputs) pushes

whatever current/voltage necessary to ensure the two inputs are held at the same

voltage.

We first consider the lower branch, shown in Figure C.2(b). The positive input

is grounded, so the negative input is also forced to ground, so the current across R1

is

I1 = Vin/R1. (C.1)

The negative input draws no current, so I1 is also the current across C1. For a

capacitor, Q = CV or I = dQ/dt = C dV/dt, from which we get

I1 = −C1
dV1

dt
. (C.2)

Equating these expressions, we find V1 in terms of Vin:

V1(t) = −
∫ t

0

dt′
Vin(t′)

R1C1

. (C.3)
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(b)

(a)

(c)

Figure C.2: (a): a simplified schematic of some key elements in the servo circuit.
(b) and (c): portions of the schematic in (a), with currents and intermediate voltages
labeled as in the derivation (see text). Note that the subscripts on the resistances
relate to the potentiometer labels, e.g. R1 is the sum of a constant resistance with
the resistance of potentiometer PR1 on the control board.
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The output voltage V1 of the first op-amp is passed through a voltage divider to

produce the voltage V3 at the positive input of the second op-amp,

V3 =
Z

R3 + Z
V1(t) (C.4)

or

V3 = − Z

R3 + Z

∫ t

0

dt′
Vin(t′)

R1C1

. (C.5)

To analyze the second branch of the circuit, shown in Figure C.2(b), we will

find Vout in terms of Vin and V3 before using the above expression to write Vout in

terms of Vin. Because both inputs of the second op-amp are held at V3, we see that

I2 =
Vin − V3

R2

(C.6)

and

V4 = V3 − I2R4 = V3 −
R4

R2

(Vin − V3) , (C.7)

V4 = V3

(
1 +

R4

R2

)
− R4

R2

Vin. (C.8)

The voltage across C2 is V4 − Vout, so

I2 = C2
d

dt
(V4 − Vout) =

Vin − V3

R2

. (C.9)

Rearranging, we get

dVout
dt

=
dV4

dt
+
Vin − V3

R2C2

(C.10)
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Along with Eq. C.8 above, this gives us

dVout
dt

=

(
1 +

R4

R2

)
dV3

dt
− R4

R2

dVin
dt

+
V3

R2C2

− Vin
R2C2

. (C.11)

Using

V3 = − Z

R3 + Z

∫ t

0

dt′
Vin(t′)

R1C1

; (C.12)

dV3

dt
=
−Z

R3 + Z

Vin
R1C1

, (C.13)

we finally get an equation directly relating Vout to Vin:

dVout
dt

=
−Z

R3 + Z

(
1 +

R4

R2

)
Vin
R1C1

−R4

R2

dVin
dt
− Vin
R2C2

−
(

1

R2C2

)
Z

R3 + Z

∫ t

0

dt′
Vin(t′)

R1C1

.

(C.14)

Integrating and rearranging slightly, we finally find

Vout(T ) = −R4

R2

Vin(t)−
[

1

R2C2

+
Z

R3 + Z

(
1

R1C1

)(
1 +

R4

R2

)]∫ T

0

dtVin(t)

− Z

R3 + Z

(
1

R2C2

)(
1

R1C1

)∫ T

0

dt

∫ t

0

dt′Vin(t′). (C.15)

The only use of this expression as far as my experience goes is the following:

we often find ourselves tweaking the potentiometers PR1 through PR4 in an attempt

to stabilize the servo lock performance, so gaining even a slight amount of intuition

as to which of these pots does what is somewhat useful. For example, we see from
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this that the absolute value of PR4 plays no role, only its ratio with PR2.

The simplified impedances above are in actuality given by the following quan-

titative values, according to the schematic provided by Coherent:

R1 = 2kΩ + PR1; 0 < PR1 < 100kΩ (C.16)

R2 = PR2; 0 < PR2 < 100kΩ (C.17)

R3 = PR3; 0 < PR3 < 20kΩ (C.18)

R4 = PR4; 0 < PR4 < 1kΩ (C.19)

C1 = 18nF (C.20)

C2 = 10nF (C.21)

and Z consists of a 1kΩ resistor and 330nF capacitor in parallel, so the impedance

Z is dependent on frequency:

Z

R3 + Z
=

1kΩ

1kΩ +R3 (1 + iω/(3.03 kHz))
, (C.22)

so basically, its effect is to keep frequencies significantly higher than 3.03 kHz from

getting into the first integration stage; at low frequencies, Z
R3+Z

≈ 1kΩ
1kΩ+R3

.

From these numbers, we can see that
(

1
R2C2

)
is 1 kHz or higher;

(
1

R1C1

)
is 545

Hz or higher; R4/R2 is typically less than 1; and 0.05 . Z
R3+Z

. 1. Qualitatively,

increasing PR2 decreases all of the gains; increasing PR1 or PR3 decreases the
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integral and double-integral gains; and increasing PR4 increases the proportional

and integral gains.
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Chapter D: Derivation of the effective spin-1 XY Hamiltonian from

first principles

D.1 Deriving the single-particle Hamiltonian

In order to see how the XY model is generated, we go through essentially the

same steps that were done in the Mølmer-Sørensen case that gave us the spin-1/2

Ising model used in all of the other experiments in this thesis.

The first thing we will do is to derive the single-particle Hamiltonian that

is analogous to the Mølmer-Sørensen spin-dependent force. In this step, we want

to show that with an appropriate set of sidebands (e.g., the ‘|+〉 red sideband’

transition, |+〉〈0| a + h.c., and ‘|−〉 blue sideband’, |−〉〈0| a† + h.c.), we obtain a

Hamiltonian of the form (S+a + S−a
†), analogous to a single red sideband in a

spin-1/2 system.

We begin with the result of the standard adiabatic elimination problem with

a three-level Λ-type system, as derived in Appendix A:

HRaman = EA |A〉〈A|+ EB |B〉〈B|+
gAg
∗
B

4∆
ei[(kA−kB)·x−(ωA−ωB)t+φA−φB ] |B〉〈A|

+
g∗AgB
4∆

e−i[(kA−kB)·x−(ωA−ωB)t+φA−φB ] |A〉〈B| . (D.1)
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ωR, kR,
φR, gR

ωB, kB,
φB, gB

ωσ, kσ,
φσ, gσ

Figure D.1: Laser fields considered in deriving the Hamiltonian. It is assumed
that there is a σ polarized beam of a single frequency, which has equal amounts
of σ+ and σ− polarization, and a π polarized beam carrying two frequencies, one
corresponding to a redder beatnote (R) and the other to a bluer beatnote (B).

Here, |A〉 and |B〉 are the two coupled ground states, and the corresponding laser

field coupling to each state has some characteristic single-photon Rabi frequency

gi, wavevector ki, frequency ωi, and phase φi. Note that we are NOT in a rotating

frame here, and we are eliding Stark shifts into the energies EA and EB. It should be

fine to start from the rotating frame, but here I will take into account the multiple

Raman transitions we will be driving before transforming to the rotating frame.

We will assume a single σ-polarized beam that has equal amounts of σ+ and

σ− polarization, and whose parameters will be labeled with a σ (i.e., ωσ, kσ, φσ,

gσ). A noncopropagating π polarized beam will carry two frequencies (subscripts

R and B). This situation is depicted in Figure D.1. The polarizations are chosen

in this manner so as to couple to different excited states for the different Raman

transitions, eliminating any possibility of the pathways interfering through a shared

excited state, although in retrospect this was probably an overcautious choice, since
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none of our spin-1/2 experiments have suffered from driving multiple transitions

through the same shared excited states. We thus obtain the following Hamiltonian

for the two Λ-type systems:

H = ω− |−〉〈−|+ ω+ |+〉〈+|+
gσg∗B
4∆

ei[(kσ−kB)·x−(ωσ−ωB)t+φσ−φ′B] |+〉〈0|

+g∗σgB
4∆

e−i[(kσ−kB)·x−(ωσ−ωB)t+φσ−φ′B] |0〉〈+|+ gσg∗R
4∆

ei[(kσ−kR)·x−(ωσ−ωR)t+φσ−φ′R] |−〉〈0|

+g∗σgR
4∆

e−i[(kσ−kR)·x−(ωσ−ωR)t+φσ−φ′R] |0〉〈−| . (D.2)

Here, ω± ≡ ωHF ± δZ are the energy of the |±〉 states above the |0〉 state. This can

be rewritten in terms of two-photon Rabi frequencies Ωi ≡ gσg∗i
2∆

, beat frequencies

∆ωi ≡ ωσ − ωi, and phases φi = φσ − φ′i, and Lamb-Dicke parameters given by

(kσ − ki) · x ≡ ∆ki · x ≡ ηi
(
ae−iωtrt + a†eiωtrt

)
(where we have already gone to

the interaction picture with respect to the harmonic oscillator Hamiltonian HHO =

ωtra
†a):

H = ω− |−〉 〈−|+ ω+ |+〉〈+|+ ΩB
2
ei[ηB(ae−iωtrt+a†eiωtrt)−∆ωBt+φB] |+〉〈0|

+
Ω∗B
2
e−i[ηB(ae−iωtrt+a†eiωtrt)−∆ωBt+φB] |0〉 〈+|+ ΩR

2
ei[ηR(ae−iωtrt+a†eiωtrt)−∆ωRt+φR] |−〉〈0|

+
Ω∗R
2
e−i[ηR(ae−iωtrt+a†eiωtrt)−∆ωRt+φR] |0〉〈−| . (D.3)

From this, we will make the Lamb-Dicke approximation and go into the rotat-
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ing frame with respect to Hatom = ω− |−〉 〈−|+ ω+ |+〉 〈+| :

H = ΩB
2

(
1 + iηB

[
ae−iωtrt + a†eiωtrt

])
ei[(ω+−∆ωB)t+φB ] |+〉〈0|

+
Ω∗B
2

(
1− iηB

[
ae−iωtrt + a†eiωtrt

])
e−i[(ω+−∆ωB)t+φB ] |0〉〈+|

+ΩR
2

(
1 + iηR

[
ae−iωtrt + a†eiωtrt

])
ei[(ω−−∆ωR)t+φR] |−〉〈0|

+
Ω∗R
2

(
1− iηR

[
ae−iωtrt + a†eiωtrt

])
e−i[(ω−−∆ωR)t+φR] |0〉〈−| . (D.4)

(Note: by going into the rotating frame I mean that H = eiHatomtV e−iHatomt, where

V comprises the interaction terms and eiHatomt = eiω−t |−〉〈−|+ eiω+t |+〉〈+|.)

We will choose our frequencies ∆ωR and ∆ωB so as to pick out the terms that

allow us to make S+a and S−a
†. Namely, for e.g. the S+a term we want the |+〉〈0| a

and |0〉〈−| a terms near resonance, so we can impose the conditions ∆ωB ≈ ω+−ωtr

and ∆ωR ≈ ω− + ωtr. Explicitly, let us set the frequencies to be symmetrically

detuned blue of the |−〉 blue sideband and red of the |+〉 red sideband, such that

when we add more ions the beat frequencies will still be detuned from all modes

with the same sign:

∆ωB = ω+ − ωtr − δ, (D.5)

∆ωR = ω− + ωtr + δ. (D.6)

When we do this, we can make a rotating wave approximation to drop the far-off-

219



resonant terms and get

H = iηBΩB
2

ei[δt+φB ] |+〉〈0| a− iηBΩ∗B
2

e−i[δt+φB ] |0〉〈+| a†

+ iηRΩR
2

ei[−δt+φR] |−〉〈0| a† − iηRΩ∗R
2

e−i[−δt+φR] |0〉〈−| a. (D.7)

There are yet further assumptions we must make in order to write this in terms

of a familiar S+ or S− operator: let us take the phase-sensitive geometry where

∆kR = ∆kB and write η ≡ ηR = ηB, and require that the Rabi frequencies of each

beatnote are identical (and real), Ω ≡ ΩR = ΩB, and rearrange terms to get

H =
iηΩ

2

[
aeiδt

(
eiφB |+〉〈0| − e−iφR |0〉〈−|

)
+ a†e−iδt

(
eiφR |−〉〈0| − e−iφB |0〉〈+|

)]
(D.8)

And finally, we see that to have operators like S+ =
√

2 (|+〉〈0|+ |0〉〈−|) we will

require

eiφB = −e−iφR (D.9)

or

φR + φB = π. (D.10)

So we can use our usual convention of φR = 0 and φB = π to reach the Hamiltonian

H =
iηΩ

2
√

2

[
−S+ae

iδt + S−a
†e−iδt

]
. (D.11)

As a side note, we saw in the case of the spin-1/2 Ising model that a change in the
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sideband phases corresponded to a change in the Pauli spin operator σφ. However,

if the sideband phases are changed in this spin-1 Hamiltonian, it seemingly is not

possible to write the altered spin operators in such a clean way.

D.2 Magnus expansion

Now we will take the Hamiltonian we just derived (suitably modified to take

into account multiple ions) and calculate the first few terms in the corresponding

evolution operator with a Magnus expansion, in the same approach used to derive

the spin-1/2 Ising interactions.

H =
∑
i,m

iηi,mΩi

2
√

2

[
−Si+amei(µ−ωm)t + Si−a

†
me
−i(µ−ωm)t

]
. (D.12)

Here the sums on ion i and mode m run from 1 to N .

Recall that the evolution operator is given by

U(t) = eΩ̄1+Ω̄2+Ω̄3+···, (D.13)

Ω̄1 = −i
∫ t

0

dt1H(t1), (D.14)

Ω̄2 = − 1

2!

∫ t

0

dt1

∫ t1

0

dt2 [H(t1), H(t2)] , (D.15)

Ω̄3 =
i

3!

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 ([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]) .

(D.16)
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The direct integration is straightforward for the first term, giving us

Ω̄1 =
∑
i,m

i
ηi,mΩi

2
√

2(µ− ωm)

[
Si+am(ei(µ−ωm)t − 1) + Si−a

†
m(e−i(µ−ωm)t − 1)

]
. (D.17)

As with the spin-1/2 Ising model, we will be able to neglect this entire term if

ηi,mΩi � (µ− ωm).

The second term requires us to calculate a commutator:

[H(t1), H(t2)] = (D.18)[∑
i,m

iηi,mΩi
2
√

2

(
−Si+amei(µ−ωm)t1 + Si−a

†
me
−i(µ−ωm)t1

)
,

∑
j,n

iηj,nΩj
2
√

2

(
−Sj+anei(µ−ωn)t2 + Sj−a

†
ne
−i(µ−ωn)t2

)]

From this, the nonzero terms will be the cross terms
[
Si+am, S

j
−a
†
n

]
and

[
Si−a

†
m, S

j
+an
]
.

With the usual definitions of S±, the commutator of the spin operators is
[
Si+, S

j
−
]

=

2Sz ≡ 2 |+〉〈+| − 2 |−〉〈−|. So we can work out that

[
Si+am, S

j
−a
†
n

]
= Si+S

j
−δmn + 2a†namS

i
zδij (D.19)

[
Si−a

†
m, S

j
+an
]

= −Si−S
j
+δmn − 2ana

†
mS

i
zδij (D.20)

And after some accounting for signs, we can write

[H(t1), H(t2)] =
∑

i,j,m,n
ηi,mηj,nΩiΩj

8

([
Si+ame

i(µ−ωm)t1 , Sj−a
†
ne
−i(µ−ωn)t2

]
+
[
Si−a

†
me
−i(µ−ωm)t1 , Sj+ane

i(µ−ωn)t2
])

(D.21)
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or, using the commutators from above,

[H(t1), H(t2)] =
∑

i,j,m,n
ηi,mηj,nΩiΩj

8

(
ei(µ(t1−t2)+ωnt2−ωmt1)

(
Si+S

j
−δmn + 2a†namS

i
zδij
)

−ei(µ(t2−t1)+ωmt1−ωnt2)
(
Si−S

j
+δmn + 2ana

†
mS

i
zδij
))

(D.22)

which can be regrouped into

[ H(t1), H(t2)] =
∑

i,j,m
ηi,mηj,mΩiΩj

8

(
ei(µ−ωm)(t1−t2)Si+S

j
− − ei(µ−ωm)(t2−t1)Si−S

j
+

)
+
∑

i,m,n
ηi,mηi,nΩ2

i

4

(
ei(µ(t1−t2)+ωnt2−ωmt1)a†nam − ei(µ(t2−t1)+ωmt1−ωnt2)ana

†
m

)
Siz.

Now we must integrate this twice to obtain
∫ t

0
dt1
∫ t1

0
dt2 [H(t1), H(t2)]. The

non-phonon terms are of the form

∫ t

0

dt1

∫ t1

0

dt2e
±iδ(t1−t2) =

1± iδt− eiδt

δ2
. (D.23)

For the phonon terms, the result depends on whether m = n. When m 6= n we get

∫ t

0

dt1

∫ t1

0

dt2e
i(µ(t1−t2)+ωnt2−ωmt1) =

1− ei(µ−ωm)t

(µ− ωm)(µ− ωn)
+

1− e−i(ωm−ωn)t

(ωm − ωn)(µ− ωn)
,

(D.24)

but when m = n we get the same integral as for the non-phonon terms. Hence, we
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get the following expression for the integrated commutator:

∫ t

0

dt1

∫ t1

0

dt2 [H(t1), H(t2)] = (D.25)

∑
i,j,m

ηi,mηj,mΩiΩj
8(µ−ωm)2

[
Si+S

j
−(1 + i(µ− ωm)t− ei(µ−ωm)t)

+Si−S
j
+(−1 + i(µ− ωm)t+ ei(µ−ωm)t)

]
+
∑

i,m 6=n
ηi,mηi,nΩ2

i

4

[
a†nam

(
1−ei(µ−ωm)t

(µ−ωm)(µ−ωn)
+ 1−ei(ωm−ωn)t

(ωm−ωn)(µ−ωn)

)
+ana

†
m

(
1−e−i(µ−ωm)t

(µ−ωm)(µ−ωn)
+ 1−ei(ωm−ωn)t

(ωm−ωn)(µ−ωn)

)]
Siz

+
∑

i,m

η2i,mΩ2
i

4(µ−ωm)2

(
a†mam(1 + i(µ− ωm)t− ei(µ−ωm)t)

+ama
†
m(−1 + i(µ− ωm)t+ ei(µ−ωm)t)

)
Siz.

We see that the terms with a 1 or an ei(µ−ωm)t are bounded and, under the condition

ηi,mΩi � 1 from before, we will consider them to be negligible, so the second term

in the evolution operator can be simplified drastically to be written as

Ω̄2 ≈ −i
∑
i,j

Ji,j
(
Si+S

j
− + Si−S

j
+

)
t− i

∑
i,m

Vi,m
[
2a†mam + 1

]
Sizt, (D.26)

where we have used ama
†
m = a†mam+1, allowing us to write the effective Hamiltonian

as

HXY =
∑
i,j

Ji,j
4

(
Si+S

j
− + Si−S

j
+

)
+
∑
i,m

Vi,m
[
2a†mam + 1

]
Siz (D.27)

where

Ji,j = ΩiΩj

∑
m

ηi,mηj,m
4(µ− ωm)

, (D.28)
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Vi,m =
(ηi,mΩi)

2

2(µ− ωm)
. (D.29)

Here, we have made our definitions such that Ji,j is identical to what it would be in

the case of a spin-1/2 Ising model. The formula differs slightly from that given in

(e.g.) Appendix B, which was

Ji,j =
∑
m

iηi,mηj,mΩiΩj

2(µ2 − ω2
m)

ωm. (D.30)

However, if the spin-1/2 Ising Hamiltonian is calculated without including the

counter-rotating terms previously pointed out as unnecessary, the formulae are iden-

tical. We can also see this by noting that usually µ ≈ ωm, such that ωm/(µ
2−ω2

m) ≈

1/2(µ− ωm).

D.2.1 Addition of an S2
z term

We next want to show that shifting the applied sideband frequencies appro-

priately is equivalent to adding a term D(Sz)
2 = D |+〉〈+|+D |−〉〈−|. We will start

from a slightly different place, having made the Lamb-Dicke approximation as in

225



Eq. D.4, but without yet entering a rotating frame:

H = ω− |−〉〈−|+ ω+ |+〉〈+|

+ΩB

(
1 + iηB

[
ae−iωtrt + a†eiωtrt

])
ei[−∆ωBt+φB ] |+〉〈0|

+Ω∗B
(
1− iηB

[
ae−iωtrt + a†eiωtrt

])
e−i[−∆ωBt+φB ] |0〉〈+|

+ΩR

(
1 + iηR

[
ae−iωtrt + a†eiωtrt

])
ei[−∆ωRt+φR] |−〉〈0|

+Ω∗R
(
1− iηR

[
ae−iωtrt + a†eiωtrt

])
e−i[−∆ωRt+φR] |0〉〈−| . (D.31)

This time we will shift both beatnotes down in frequency, which should have

essentially the same effect as shifting both the |+〉 and |−〉 states up in energy. So

we will have

∆ωB = ω+ − ωtr − δ −D, (D.32)

∆ωR = ω− + ωtr + δ −D. (D.33)

If we substitute these in and keep only terms where ωtr drops out (i.e., this is the

rotating wave approximation step), we get

H = ω− |−〉 〈−|+ ω+ |+〉 〈+| (D.34)

+iηBΩBae
i[(D−δ−ω+)t+φB ] |+〉〈0| − iηBΩ∗Ba

†ei[(ω++δ−D)t−φB ] |0〉〈+|

+iηRΩRa
†ei[(D−δ−ω−)t+φR] |−〉〈0| − iηRΩ∗Rae

i[(ω−+δ−D)t−φR] |0〉〈−| .

To simplify things, I will go ahead and set η = ηR = ηB and Ω = ΩR = ΩB as
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before, so that we have just

H = ω− |−〉〈−|+ ω+ |+〉〈+| (D.35)

+iηΩaei[(D−δ−ω+)t+φB ] |+〉〈0| − iηΩa†ei[(ω++δ−D)t−φB ] |0〉〈+|

+iηΩa†ei[(D−δ−ω−)t+φR] |−〉〈0| − iηΩaei[(ω−+δ−D)t−φR] |0〉〈−| .

We again want to be able to factorize this into terms that look like aeiθ(|+〉 〈0| +

|0〉 〈−|), and are prevented from doing so by the different time dependences. Before,

this was overcome by going into a rotating frame where H → eiH0tV e−iH0t, where

we had H0 = ω− |−〉〈−|+ ω+ |+〉〈+| and H = H0 + V . By the same token, in order

to get our time dependences to play nicely, we now want our transformation to be

given by

H0 = (ω− −D) |−〉〈−|+ (ω+ −D) |+〉〈+| . (D.36)

However, now our V = H −H0 will have an extra term D(|−〉〈−| + |+〉〈+|), so we

will wind up with

H = D |−〉〈−|+D |+〉〈+| (D.37)

+iηΩaei[−δt+φB ] |+〉〈0| − iηΩa†ei[δt−φB ] |0〉〈+|

+iηΩa†ei[−δt+φR] |−〉〈0| − iηΩaei[δt−φR] |0〉〈−| .

So now, treating the raising and lowering terms in the same way as before (setting

φR = 0 and φB = π, etc), and writing |−〉〈−| + |+〉〈+| = (Sz)
2, we wind up with a
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single-particle Hamiltonian

H = D(Sz)
2 + iηΩ

[
−S+ae

iδt + S−a
†e−iδt

]
. (D.38)

As with the transverse-field Ising model, it is not quite correct to write the effective

Hamiltonian as the interaction term derived above plus the non-interacting field term

D(Sz)
2, since the field term will enter into the commutators of the Magnus expansion

[113]; however, for our purposes this seems to be a close enough approximation to

the effective dynamics.
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[97] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, “Optimal spin squeezing
inequalities detect bound entanglement in spin models,” Phys. Rev. Lett.,
vol. 99, p. 250405, Dec 2007.

236



[98] B. Yoshimura, W. C. Campbell, and J. K. Freericks, “Diabatic ramping spec-
troscopy of many-body excited states for trapped-ion quantum simulators.”
arXiv:1402.7357.

[99] F. D. M. Haldane, “Continuum dynamics of the 1-d heisenberg antiferromag-
net: Identification with the o(3) nonlinear sigma model,” Physics Letters A,
vol. 93, p. 464, 1983.

[100] F. D. M. Haldane, “Nonlinear field theory of large-spin heisenberg antiferro-
magnets: Semiclassically quantized solitons of the one-dimensional easy-axis
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