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After the first experimental realization of a Bose-Einstein condensate (BEC)

in 1995, BECs have become a subject of intense experimental and theoretical study.

In this dissertation, I present our results on the classical and quantum dynamics of

BECs at zero temperature under different scenarios.

First, I consider the analog of slow light in the collision of two BECs near a

Feshbach resonance. The scattering length then becomes a function of the collision

energy. I derive a generalization of the Gross-Pitaevskii equation for incorporat-

ing this energy dependence. In certain parameter regimes, the group velocity of a

BEC traveling through another BEC decreases. I also study the feasibility of an

experimental realization of this phenomena.

Second, I analyze an experiment in which a BEC in a ring-shaped trap is stirred

by a rotating barrier. The phase drop across and current flow through the barrier



is measured from spiral-shaped density profiles created by interfering the BEC in

the ring-shaped trap and a concentric reference BEC after release from all trapping

potentials. I show that a free-particle expansion is sufficient to explain the origin

of the spiral pattern and relate the phase drop to the geometry of a spiral. I also

bound the expansion times for which the phase drop can be accurately determined

and study the effect of inter-atomic interactions on the expansion time scales.

Third, I study the dynamics of few-mode BECs when they become dynamically

unstable after preparing an initial state at a saddle point of the Hamiltonian. I study

the dynamics within the truncated Wigner approximation (TWA) and find that, due

to phase-space mixing, the expectation value of an observable relaxes to a steady-

state value. Using the action-angle formalism, we derive analytical expressions for

the steady-state value and the time evolution towards this value. I apply these

general results to two systems: a condensate in a double-well potential and a spin-1

(spinor) condensate.

Finally, I study quantum corrections beyond the TWA in the semiclassical

limit. I derive general expressions for the dynamics of an observable by using the

van Vleck-Gutzwiller propagator and find that the interference of classical paths

leads to non-perturbative corrections. As a case study, I consider a single-mode

nonlinear oscillator; this system displays collapse and revival of observables. I find

that the interference of classical paths, which is absent in the TWA, leads to revivals.
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Chapter 1: General introduction

In 1925 Albert Einstein predicted that a gas of non-interacting bosons at low

temperatures [1] condenses into a single quantum state, forming a Bose-Einstein

condensate (BEC). Seventy years later, a research group led by Carl Wieman and

Eric Cornell [2] experimentally realized BEC in ultracold atoms. It was a result of

a concerted experimental effort made possible by the development of novel cooling

and trapping techniques. Advances in these technologies have led to an explosion of

innovations in the field of ultracold physics. For example, ultracold atoms are now

used in quantum simulation and computation.

Bose-Einstein condensation in a weakly interacting gas of bosons occurs when

the thermal de Broglie wavelength is comparable to the typical inter-particle sep-

aration. Then, a macroscopic fraction of particles occupy the same quantum state

below a critical temperature Tc. At zero temperature, this fraction is almost one.

This condensation is a so-called continuous phase transition, with an order param-

eter which is zero and non-zero for temperatures above and below Tc, respectively.

For a weakly-interacting BEC, this order parameter is a complex function of space

and time, and describes the mode that is macroscopically occupied. In the mean-

field limit, the dynamics of this order parameter is governed by the time-dependent
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Gross-Pitaevskii equation [3]. We briefly describe the theory of BEC in Sec. 1.1. An

introduction to BEC physics would be incomplete without a look into the experi-

mental techniques used for their creation. These techniques will be briefly discussed

in Sec. 1.2.

Macroscopic occupation of a single mode leads to coherence. Shortly after the

first experimental realization of a BEC, a group led by Wolfgang Ketterle demon-

strated coherence by interfering two BECs. The coherence of a BEC is similar to

that of a laser. As a matter of fact, the field of atom optics is based on finding

analogs of optical phenomena using atoms. For example, atomic lasers [4, 5], mir-

rors and beam splitters [6] have been realized. In chapter 2, I study the collision of

two BECs near a Feshbach resonance and find that, analogous to slow light, a BEC

slows down when traveling through another BEC.

Furthermore, coherent control and transport of ultracold atoms have led to

the creation of the field of atomtronics, which deals with atomic analogs of elec-

tronic components. Though the field is still in a nascent stage, atomic analogs of

circuit elements like capacitors and transistors have been experimentally realized.

In chapter 3, I analyze an experimental realization of one such system, namely an

atomic analog of a superconducting quantum interference device.

In optical interferometry, the relative error of a measurement using uncorre-

lated photons is 1/
√
N , where N is the number of photons used in the measurement.

This is the so-called standard quantum limit. To go beyond this limit, correlated

photons in squeezed states are produced using the Kerr nonlinearity of the medium.

This nonlinearity is usually very weak for photons. In contrast, nonlinearity in ultra-
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cold atoms, which stems from atom-atom interactions, is much stronger. Squeezed

states in atoms can be prepared by evolving a BEC from a dynamically unsta-

ble point of its mean-field Hamiltonian. They have been used in interferometric

measurements that beat the standard quantum limit [7]. In chapter 4, I study

the dynamics following dynamical instability in two few-mode bosonic systems: a

condensate in a double-well potential and a spinor gas under a single-mode approx-

imation.

1.1 Theory of Bose-Einstein condensates

A classical gas in thermal equilibrium obeys Maxwell-Boltzmann statistics.

A classical treatment is valid when the particles are distinguishable and quantum

effects become important when this distinguishability breaks down. Quantum de-

generacy occurs when the de Broglie wavelength (λ = h/p, where h is Planck’s

constant and p is the momentum) of a particle is comparable to the average inter-

particle distance d = n−1/3, where n is the particle number density. As the typical

momentum of a particle at temperature T scales as (mkBT )1/2, the degeneracy tem-

perature Tdeg ∼ ~2n2/3/(kBm), where ~ = h/(2π) and kB is the Boltzmann constant.

For fermions, this temperature is the Fermi temperature, which in normal metals

is typically in the range 200-300 K due to the small mass of an electron. Thus, for

metals, quantum effects are important even at room temperature. In contrast, in

atomic bosonic systems the degeneracy temperature is much lower because of the

larger atomic mass. In Helium-4, a light atom, the degeneracy sets in at around 2 K

3



leading to a transition from a normal fluid to a superfluid. In ultracold atoms, quan-

tum degeneracy occurs at much lower nanokelvin temperatures as their densities are

much lower than air at room temperature and pressure.

Condensation in a degenerate non-interacting Bose gas occurs because the

density of the thermal fraction of the gas has an upper bound. When this upper

bound is reached increasing the density or lowering the temperature leads to a

macroscopic occupation of the single-particle ground state, i.e., a BEC is formed.

This picture remains qualitatively correct when the Bose gas is weakly interacting.

1.1.1 Definition of a BEC

There are several ways of defining the presence of a BEC in an interacting

many-body system. The first definition invokes the concept of spontaneous symme-

try breaking. Let the annihilation and creation operators of a particle, at position

x = (x1, · · · , xd) in a d-dimensional space and time t, be ψ̂(x, t) and ψ̂†(x, t), respec-

tively. They obey the commutation relation [ψ̂(x, t), ψ̂†(x′, t)] = δ(x − x′). Then,

in the presence of a condensate ψ(x, t) =
〈
ψ̂(x, t)

〉
, the expectation value with re-

spect to the many-body quantum state, has a finite value, breaking the global phase

invariance.

Onsager and Penrose [8,9], on the other hand, defined a BEC using the single-

particle density matrix
〈
ψ̂†(x, t)ψ̂(x′, t)

〉
. Because of hermiticity, it has an eigen-

decomposition
〈
ψ̂†(x, t)ψ̂(x′, t)

〉
=
∑∞

i=0 ni(t)φ
∗
i (x, t)φi(x

′, t) with eigenfunctions

φi(x, t) and occupation numbers ni. The system is said to be Bose condensed when

4



there is a single eigenvalue ni, say i = 1, that is of the order of the total atom

number. Then, the order parameter is the eigenfunction φ1(x, t).

1.1.2 The Gross-Pitaevskii equation

For ultracold atoms interacting via a short-range atom-atom potential, the

two-body collision is dominated by s-wave scattering (when the relative angular

momentum of two colliding atoms is zero). Non-zero partial-wave scattering is sup-

pressed by a centrifugal barrier. The strength of s-wave scattering is determined by

a single length scale called the scattering length a. In fact, the short-range inter-

atomic potential V2B(r), where r is the relative position vector, can be approximated

by a contact interaction g δ(r). The interaction strength g in three dimensions is

related to the scattering length by g = 4π~2a/m, where m is the mass of the atom.

The relationship between g and a is different in one or two dimensions.

The many-body Hamiltonian in the contact approximation is

HMB =

∫
dx

[
ψ̂†(x, t)

(
− ~2

2m
∇2 + Vext(x)

)
ψ̂(x, t) +

g

2
ψ̂†(x, t)ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)

]
,

(1.1)

where Vext(x) is the external single-particle potential. Then, the evolution of the

order parameter in a d-dimensional space 1 ψ(x, t) =
〈
ψ̂(x, t)

〉
is given by the

1 Note that in one and two dimensions a translationally-invariant interacting Bose gas with

Vext(x) = 0 does not undergo Bose-Einstein condensation in the thermodynamic limit (length of

the system goes to infinity with finite density). This is due to a proliferation of long-wavelength

fluctuations. This result is known as the Mermin-Wagner theorem [10,11].
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Gross-Pitaevskii equation (GPE)

i~
∂

∂t
ψ(x, t) = − ~2

2m
∇2ψ(x, t) + Vext(x)ψ(x, t) + g|ψ(x, t)|2ψ(x, t). (1.2)

The GPE can be derived by using the Heisenberg equation of motion for

ψ̂(x), i.e., i~∂tψ̂(x, t) = [HMB, ψ̂(x, t)], where HMB is the many-body Hamiltonian

of Eq. 1.1 and [Â, B̂] = ÂB̂− B̂Â is the commutator. We then take the expectation

value of ψ̂(x, t) and assume that higher-order moments are reducible to products of

first moments, i.e.,
〈
ψ̂†(x1, t)ψ̂

†(x2, t) . . . ψ̂(xn, t)
〉

=
〈
ψ̂†(x1, t)

〉〈
ψ̂†(x2, t)

〉
. . .
〈
ψ̂(xn, t)

〉
,

to arrive at the GPE.

The GPE is an example of an equation that falls under the umbrella of mean-

field approximations. In this context, the mean-field approximation is equivalent to

a description of the dynamics of a BEC by a classical Hamiltonian in an infinite-

dimensional phase space. The phase space is spanned by the canonical classical

fields X(x) =
√

~
2

[ψ(x) + ψ∗(x)] and P (x) = −i
√

~
2

[ψ(x)− ψ∗(x)] . (Note that

x indexes the degrees of freedom and is not a canonical coordinate.) They sat-

isfy the canonical relations {X(x), P (x′)} = δ(x − x′), where the Poisson bracket

{A,B} =
∫
dx
(

δA
δX(x)

δB
δP (x)

− δA
δP (x)

δB
δX(x)

)
and A, B are functionals of X(x) and

P (x). The classical HamiltonianHMB is obtained by replacing the continuous, quan-

tum operator field ψ̂(x, t) in Eq. 1.1 by the classical, c-number field ψ(x, t). From

the Hamilton’s equations of motion for a phase-space point X(x, t) and P (x, t), we

find that i~∂tψ(x, t) = δHMB/δψ
∗(x, t), which yields the GPE. A solution of the

GPE ψ(x, t) represents a trajectory in the infinite-dimensional phase space.

One can envision that under certain circumstances, and I study these cases in

6



Chapter 4, a system can be approximately described by a few modes. We can then

write ψ̂(x, t) ≈ ∑N
i=1 âi(t)φi(x), where âi(t) is the annihilation operator of a mode

with wave function φi(x). (For the systems we consider the number of modes N is at

most three.) The mean-field approximation entails replacement of the annihilation

operators âi(t) by c-numbers. Furthermore, the mean-field equations of motion are

equivalent to Hamilton’s equations in a finite-dimensional phase space.

1.1.3 The truncated Wigner approximation

The mean-field approximation for a BEC is equivalent to the motion of a

single point in a phase space under the classical Hamilton’s equations of motion.

In the truncated Wigner approximation, the propagation of a Wigner distribution

function, instead of a single phase-space point, is studied. In chapter 4, I study dy-

namical instability in few-mode systems where the mean-field equations of motion

fail and quantum corrections become important. I analytically study the dynam-

ics of systems within the TWA. Even the TWA deviates from the exact quantum

dynamics when multiple classical trajectories connecting the start and end points

contribute significantly to the propagation of the Wigner function. In chapter 5,

I study corrections due to the interference of classical trajectories, which improve

upon the TWA.

The phase-space formulation is one of three descriptions of quantum mechanics

[12]; the other two being the Hilbert space and the path integral formulations.

The equivalency between the Hilbert space and phase space formulations can be

7



established via the Wigner-Weyl transform, which is a mapping between operators

in Hilbert space and functions in phase space. The Wigner function or distribution,

a function of phase space coordinates, is the Wigner-Weyl transform of the density

matrix. Due to the uncertainty principle, the Wigner function can not be sharply

peaked and, thus, has a finite spread. It can, however, be negative. Therefore, it is

not a probability but a so-called quasiprobability distribution.

Let me make the preceding discussion precise. The relation between the quan-

tum evolution of a Wigner function and classical dynamics is most transparent for

the case a single particle in d dimensions. The description for a bosonic system is

then a straightforward generalization and is discussed in Chapter 5. The Wigner

function for a quantum state with wave function ψ(x) is

W (x,p) =
1

(2π~)d

∫
dqψ∗

(
x− 1

2
q
)
ψ
(
x + 1

2
q
)
e−ip.q/~, (1.3)

where positions x and q are in Rd. Let the quantum Hamiltonian of the particle be

H1p(x̂, p̂) = p̂2/(2m) + V (x̂), where x̂ = (x̂1, . . . , x̂d) and p̂ = (p̂1, . . . , p̂d) are the

canonical position and momentum operators that obey [xj, pk] = i~δjk and m is the

mass of the particle. Its Wigner function obeys the time evolution [13]

∂W (x,p, t)

∂t
= − p

m
.
∂W (x,p, t)

∂x
+
dV (x)

dx
.
∂W (x,p, t)

∂p

+
∞∑
n=1

~nQn(x,p), (1.4)

where, for example, Qn(x,p) for d = 1 are

Qn(x, p) = (−1)n
1

22n(2n+ 1)!

d2n+1V (x)

dx2n+1

∂2n+1W (x, p)

∂p2n+1
. (1.5)
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The coefficients Qn(x,p) in higher dimensions are a multinomial generalization of

the above expression [12]. The first term on the right-hand side of Eq. 1.4 is the

rate of change of the Wigner function due to the particle’s momentum and the

second term is due to the force experienced by the particle. Finally, the terms

with non-zero powers of ~ are the quantum terms. When these quantum terms are

ignored, the evolution of W (x,p, t) is in accordance with the Hamilton’s equations

of motion with a classical Hamiltonian H1p = p2/(2m) +V (x). This approximation

of truncating the evolution equation by ignoring the quantum terms is called the

truncated Wigner approximation. Note that, the TWA becomes exact for the case

when V (x) is at most quadratic in x. This is the case for a free particle and a

particle in a harmonic potential.

1.2 Experimental techniques: Laser cooling and trapping

At atmospheric pressure, a Bose atomic gas will condense to a solid, or in

the case of Helium to a liquid, before becoming quantum degenerate. In fact, al-

kali metals, which were (and still are) used for the creation of ultracold atomic

BECs, are solids at room temperature. The way around is to work with a very

dilute gas so that the three-body recombination rate, which leads to binding of

atoms into molecules, is low. The typical density of an ultracold BEC is 1014 cm−3,

which implies that the BEC transition temperature is around 100 nK. Reaching

such ultracold temperatures required decades of concerted experimental effort and

the development of various cooling and trapping techniques. Nevertheless, an ultra-
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cold BEC is metastable because of the finite three-body recombination rate. The

lifetime, however, is of the order of seconds to minutes, which is typically sufficient

to carry out experiments.

Alkali metal atoms are the workhorses for BEC experiments. They are easy

to work with as they only have one outer-shell electron, making their spectroscopy

simple. Moreover, the relevant atomic transitions are in the range of available lasers.

The absence of a suitable laser for spin-polarized hydrogen, which was the initial

candidate species for the realization of a BEC, was one of the issues which delayed

the creation of its BEC.

We will briefly discuss some of the cooling and trapping techniques used in

experiments with BECs. Here, we only discuss the basic principles, for more detailed

reviews see [14–16]. Most techniques of cooling neutral atoms are based on the

interaction of an atom with light. An atom in its electronic ground state is, in

general, almost transparent to monochromatic light of arbitrary frequency. However,

it scatters considerably when the light is near resonance with an atomic transition

between the ground and an excited state. The excited state has a finite lifetime and

decays to the ground state by spontaneous emission of a photon.

When a moving atom encounters a near-resonant counter-propagating laser

that is red-detuned from an atomic transition (the laser frequency is less than the

frequency of the atomic transition), then due to the Doppler effect the apparent

frequency in the atom’s frame of reference is blue shifted towards the transition.

Then after absorbing a photon, the atom radiates it spontaneously in an arbitrary

direction. This leads to a preferential loss of momentum as well as cooling in the
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direction of the laser. This mechanism is called Doppler cooling and is used in

the Zeeman slower, where a beam of hot atoms coming out of an oven is slowed

and cooled down. To keep the laser near resonance as an atom slows down an

inhomogeneous magnetic field is applied, which alters the atom transition frequency

via the Zeeman effect. Doppler cooling is limited by the fact that the spontaneous

emission of photons leads to a random walk of the momentum of an atom. The

limiting temperature is ~Γ/(2kB), where Γ is the natural line width of the excited

state. Using a Zeeman slower the temperature of an alkali gas can be reduced

from hundreds of Kelvins to the Doppler cooling limit, which is on the order of

millikelvins.

A Zeeman slower cannot spatially trap atoms. Hence, after passing through the

slower, atoms are loaded in a magneto-optical trap (MOT). In a MOT, a combination

of an inhomogeneous magnetic field and pairs of counter-propagating lasers in three

orthogonal directions are used to trap the atoms. The center of the MOT is located

where the magnetic field is zero. Now consider one of the pairs of lasers, which have

the same frequency and intensity. The polarizations of the lasers are chosen such

that the change in the magnetic quantum number of an atom, along the direction

of the laser, after it absorbs a photon is ±1, respectively. At the point where the

magnetic field is zero, the forces of the two lasers on the atoms cancel. But as

an atom moves away from this point, because of Zeeman effect, the absorption of

photons from one of the laser reduces and the other increases. In effect, this leads to

a net force towards the zero of the magnetic field, leading to the trapping of atoms.

The temperature of a gas in a MOT is still above the critical temperature. To
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attain quantum degeneracy, the atoms are transferred to either a magnetic or an

optical dipole trap. In a magnetic trap, an inhomogeneous magnetic field is used for

trapping. The interaction energy of an atom in magnetic field B, due to the linear

Zeeman effect, is −µ.B, where the magnetic moment µ depends on the quantum

state. Now a region of space, devoid of electric current, cannot have a maximum in

the magnitude of the magnetic field. Thus, atoms can only be trapped in the minima

of a magnetic field. Hence, the magnetic moment of the quantum state should be

antiparallel to B and only low-field seeking states can be trapped. Alternatively,

atoms are trapped in an optical dipole trap, which consists of focused lasers that are

off-resonant and red-detuned to an atomic transition. Due to spatially-dependent

AC Stark shift, i.e, the change in energy of a quantum state due to an oscillating

electric field, the lasers create an attractive trapping potential.

To lower the temperature of the atoms in a magnetic or optical dipole trap,

evaporative cooling is employed. In evaporative cooling, hot atoms that reside near

the outer regions of the trap are ejected, and elastic collisions among the remaining

atoms reduce the temperature of the trapped gas. In an optical dipole trap, this is

done by lowering the depth of the potential. This procedure is difficult to carry out

for a magnetic trap, where, instead, a radio-frequency “knife” is used. Because of

the Zeeman effect, the transition frequency between the ground and an excited state

is position dependent. A radio-frequency field that is resonant with this transition

near the edge of the trap selectively flips the spin of an atom, which then escapes

from the trap. Finally, after evaporative cooling, the atomic gas becomes cold and

dense enough to condense to a BEC.
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This brief introduction in no way justifies the complexity and richness of the

experiments. Furthermore, the field is ever growing with new emerging techniques

and refinement of existing technology.

1.3 Outline of the dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, I

study collisions of Bose-Einstein condensates near a Feshbach resonance. The results

of this chapter have been published as “Controlling the group velocity of colliding

atomic Bose-Einstein condensates with Feshbach resonances” in Physical Review

A (PRA) [17]. In chapter 3, I describe my theoretical analysis of interferometric

measurement in an atomic-SQUID. It is based on the paper “Self-heterodyne detec-

tion of the in situ phase of an atomic superconducting quantum interference device”

published in PRA [18]. In chapter 4, based on the paper “Phase-space mixing in dy-

namically unstable, integrable few-mode quantum systems” published in PRA [19], I

study dynamical instability in few-mode systems using the TWA. In the next chap-

ter, I study corrections beyond the TWA. A paper based on its results is under

preparation. Finally, I conclude in chapter 6.
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Chapter 2: Collision of Bose-Einstein condensates near a Feshbach

resonance

2.1 Introduction

Over the last two decades, significant advances have been made to replicate

linear and nonlinear optical phenomena with matter waves, creating the field of

matter-wave optics. For example, atom lasers [4,5] are sources of coherent ultracold

atoms generated by extracting atoms from a Bose-Einstein condensate (BEC). The

coherence of BECs was demonstrated by interfering two condensates [20]. Atomic

mirrors and beam splitters have also been realized [6]. Recently, the matter-wave

equivalent of meta-materials (media with negative refractive index) has been pro-

posed [21]. The analog of nonlinear four-wave mixing has been demonstrated using

atom lasers [22,23]. In these experiments, three BECs with phase-matched relative

momenta generated a fourth beam.

In this chapter, we present a proposal to slow a BEC while propagating through

another BEC near a magnetic Feshbach resonance in analogy to slowing of light in

dispersive media. Slowing of light occurs when the refractive index of a medium

varies sharply with photon frequency. Using electromagnetically induced trans-
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parency [24], slow light has been observed with a Bose-Einstein condensate [25, 26]

and a hot Rb gas [27] acting as the medium.

Magnetic Feshbach resonances are a tool with which to manipulate the inter-

action between ultracold atoms [28]. They are used for creating ultracold molecules,

molecular condensates, and in the BEC-BCS crossover in Fermi gases [29, 30]. Fes-

hbach resonances play an essential role in condensing 133Cs, 85Rb, and 39K [31–33].

Cooling ultracold atoms using Feshbach resonances has been proposed [34]. Colli-

sions can also be tuned using optical Feshbach resonances [35–37], as their width

can be dynamically varied with a laser. However, they tend to suffer from losses

due to spontaneous emission.

The chapter is organized as follows. We first review the two-body physics of

a Feshbach resonance in Sec. 2.2. Subsequently, in Sec. 2.3, we derive a generalized

Gross-Pitaevskii equation (GPE) to describe the collision of two BECs. Then, in

Sec. 2.4, we consider an experimental setup of a small BEC, called a laser BEC,

traveling through a larger “medium” BEC. The names are chosen to draw analogy to

a laser pulse travelling through the medium. We analyze this experimental proposal

using the generalized GPE and derive the group velocity in a homogeneous medium.

Then, we consider an inhomogeneous medium and estimate δ, i.e., the difference in

distance traveled by the laser BEC in the presence and absence of an inhomogeneous

medium. Finally, restrictions on an experimental realization are given.
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2.2 Feshbach resonance

Collisions between ultracold atoms are dominated by s-wave scattering. The

scattering amplitude f(E) only depends on the relative collision energy, E = ~2k2/(2µ),

where k is the magnitude of the relative wave vector and µ is the reduced mass.

Then, around an isolated magnetic Feshbach resonance [28,38,39]

f(E) = fbg(E)− e2iδbg
~Γ(E)/(2k)

E − Eres + i~Γ(E)/2
. (2.1)

The background scattering amplitude fbg(E) = eiδbg sin(δbg)/k, with phase shift

δbg. To a good approximation, fbg(E) = −abg/(1 + ikabg), and δbg = −kabg, where

abg is the background scattering length. The resonance width Γ(E) = 2kabgΓ0 in

the threshold limit k → 0. The energy-independent reduced width Γ0 = µres∆/~,

where µres is the difference between the magnetic moments of the resonance state

and the asymptotically free atoms, and ∆ is the magnetic width of the resonance.

The resonance energy is Eres = µres(B−B0), where B is the magnetic field and B0 is

the resonant field. The scattering amplitude f(E) satisfies the optical theorem [38].

Figure 2.1 shows f(E) near a Feshbach resonance as a function of collision

energy E. The resonance occurs at a finite collision energy and f(E) approaches

fbg(E) away from Eres. The imaginary part of f(E) is related to the total cross sec-

tion σ(E) and thus to the fraction of scattered atoms. In fact, σ(E) = 4π Im f(E)/k

from the optical theorem [38]. On resonance, Im(f) is maximal and ≈ 1/k. More

importantly, there exists a collision energy at which f(E) = 0 due to an interference

between the background and resonance scattering amplitudes. We call this collision
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Figure 2.1: (Color online) Real and imaginary part of scattering amplitudes f and

fbg as a function of collision energy for a narrow Feshbach resonance. The x and y

axes are scaled by the Wigner-threshold limit Ebg = ~2/(2µa2
bg) and the background

scattering length abg, respectively. Also shown is the lossless point where f(E) = 0.

energy the lossless point, which to good approximation is Eres−~Γ0 for positive abg.

2.3 Collision of two BECs

We now describe the many-body physics of colliding BECs. We assume that

the BECs contain the same atomic species and the relative velocity is much larger

than the speed of sound in both condensates; hence, we can ignore collective ex-

citations. The dynamics of the BECs is well described by the time evolution of

the order parameter Ψ(x, t), i.e., the expectation value of the annihilation operator
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Ψ̂(x, t) in the Heisenberg picture. For a BEC at rest, its evolution is well described

by the Gross-Pitaevskii equation (GPE), derived for an energy-independent and real

scattering amplitude. Both assumptions are invalid near a Feshbach resonance at

finite energy.

Our starting point is Eq. 38 of Ref. [40], obtained using a cumulant expansion.

The equation includes the time and energy dependence of the two-body scattering

and is

i~
∂

∂t
Ψ(x, t) = H1BΨ(x, t) +

∫ ∏
i

dyi

∫ ∞
t0

dt1Ψ(y1, t1)Ψ(y2, t1)Ψ∗(y3, t) (2.2)

× 〈x,y3|T2B (t, t1) |y1,y2〉 ,

where t0 is the initial time, t > t0, H1B = −~2∇2/(2m) + V (x) is the single-

particle Hamiltonian, m is the atomic mass and V (x) is the external potential. The

operator T2B is the two-body T matrix in the time domain and the integrals over

yi, i ∈ {1, 2, 3}, are in coordinate space. Equation 2.2 was originally derived for

single-channel scattering, but remains valid for multichannel resonances following

Ref. [41], assuming that the order parameter of the molecular channel vanishes.

We call the two condensates a laser and a medium BEC in anticipation of the

experimental proposal described in Sec. 2.4. The initial momentum distribution of

the two BECs are nonoverlapping and we assume that they remain so when the

BECs pass through each other. Hence, the wave function Ψ(x, t) is the sum of

orthogonal wave functions of the laser and medium BECs, ΨL(x, t) and ΨM(x, t),

respectively. Substituting the sum in Eq. 2.2 and keeping only the phase-matched
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terms, we find the following equation for the laser BEC

i~
∂

∂t
ΨL(x, t) = LLΨL(x, t) + 2

∫ ∏
i

dyi Ψ
∗
M(y3, t)

∫ ∞
t0

dt1 〈x,y3|T2B (t, t1) |y1,y2〉

×ΨL(y1, t1)ΨM(y2, t1) , (2.3)

where LL = H1B + g|ΨL(x, t)|2 and g is the interaction strength of the laser BEC.

The second term on the right-hand side is nonlocal in both space and time. Without

this term, Eq. 2.3 reduces to the GPE. Note that, an equation similar to Eq. 2.3

holds for ΨM(x, t).

We approximate the integrands in Eq. 2.3 by power series in derivatives eval-

uated at x and t. First, we realize that T2B(t, t1) only depends on t − t1 and

is peaked around t − t1 = 0. (That is, the time scale of two-body scattering is

much shorter than the time scale of collision between the two BECs.) Assum-

ing that the wave functions vary slowly in time, the lower limit of the integral

over time can be extended to −∞. Next, we note that
∫∞
−∞ dτh(τ)g(t − τ) =

h̃ (i∂/∂t) g(t), where h̃(z) =
∫∞
−∞ dt e

izth(t) is the Fourier transform of h(t) and

h̃(i∂/∂t) =
∑

n d
nh̃/dzn |z=0 (i∂/∂t)n/n!. Then, with h(τ) = 〈.|T2B (τ) |.〉, the

second term on the right-hand side of Eq. 2.3 reduces to

2

∫ ∏
i

dyi Ψ
∗
M(y3, t)

〈
x,y3

∣∣∣∣T2B

(
i~
∂

∂t

) ∣∣∣∣y1,y2

〉
ΨL(y1, t)ΨM(y2, t) , (2.4)

where the T matrix T2B(z) is now in the energy domain (dropping the ∼ superscript

for simplicity) and the time derivatives only act on ΨL(y1, t)ΨM(y2, t).

The T matrix in coordinate space can be evaluated by transforming to the

momentum representation. For s-wave scattering, the dependence on the relative
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momenta can be neglected. That is, to a good approximation, the T matrix in

momentum representation is [40]

〈k4,k3|T2B (z) |k1,k2〉 = − ~2

4π2µ
f

(
z − ~2

2M
(k1 + k2)2

)
δ(k4+k3−k2−k1) , (2.5)

where the δ function reflects total momentum conservation, f(E) is the scattering

amplitude, and M = 2m. Near a Feshbach resonance, f(E) is given by Eq. 2.1.

We insert the momentum representation of T2B into Eq. 2.4 and note that the

Taylor expansion of φ(y, t) around position x can be formally written as φ(y, t) =

exp[−i(y − x) · i∇]φ(x, t). Then, the interaction term of Eq. 2.4 becomes

2

(2π)6

(
− ~2

4π2µ

)∫∫ ∏
i,j

dyidkj δ(k4 + k3 − k2 − k1)Ψ∗M(y3, t)e
iQ

× f
(
i~
∂

∂t
− ~2

2M
(k1 + k2)2

)[
e−i(y1−x)·i∇ΨL(x, t)

][
e−i(y2−x)·i∇ΨM(x, t)

]
, (2.6)

where Q = k4 · x + k3 · y3 − k2 · y2 − k1 · y1. Performing all integrations, we find

i~
∂

∂t
ΨL(x, t) = LLΨL(x, t)− 4π~2

µ
Ψ∗M(x, t)f

(
i~
∂

∂t
+

~2

2M
∇2

)
ΨL(x, t)ΨM(x, t) ,

(2.7)

where, formally, f(Ô) =
∑∞

n=0
(Ô−x0)n

n!
dnf
dxn

∣∣
x=x0

is the Taylor series of function f(x)

about a point x0 and Ô is an operator. Finally, the medium condensate obeys an

equation similar to Eq. 2.7.

2.4 Experimental setup

We now present a proposal of slowing a condensate traveling through a large

stationary BEC near a magnetic Feshbach resonance. Figure 2.2 shows a schematic
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Figure 2.2: A schematic of a slow-atom experiment with colliding condensates.

The left- and right-hand sides show images of the condensates before and after the

collision, respectively. (a) The laser BEC moving in free space with kinetic energy

E0 and wave vector k0. (b), (c) Two cases of a laser BEC propagating through

the medium BEC. (b) A case with large elastic-scattering losses indicated by the

halo of scattered atoms. (c) The collision near a Feshbach resonance where there is

negligible scattering loss. This occurs when the scattering amplitude is zero. The

distance delay δ of the laser BEC is also indicated.
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of this proposal. The laser BEC has a length `L and propagates with wave vector k0

of magnitude k0 � 1/`L. Its average velocity is v0 = ~k0/m and the kinetic energy

per particle is E0 = ~2k2
0/(2m). It is incident on a stationary BEC of size `M, such

that `L � `M (in all spatial directions). Figures 2.2(b) and (c) show two distinct

cases of collisions between condensates. In Fig. 2.2(b), elastic scattering out of the

two condensates is significant. These losses have limited BEC collisions [42,43] and

four-wave mixing experiments [44, 45]. On the other hand, it allows detection of

d-wave-shaped resonances in collisions between BECs [46] and thermal gases [47].

In Fig. 2.2(c), after carefully tuning the resonance energy, the collision occurs at the

lossless point, which we defined in Sec. 2.2. The laser BEC then slows down.

We now apply the theory developed in Sec. 2.3 to our proposal. Since `L � `M

and the spread in the collision energy is much smaller than Γ(E0/2), it is sufficient

to expand f(z) in Eq. 2.7 to first order around z = E0/2, i.e., the average relative

collision energy, and the derivative of ΨM(x, t) can be neglected. The time evolution

of the laser condensate is then given by

i~
∂

∂t
ΨL(x, t) =

[
− ~2

2m∗(x)
∇2 + Vmf(x) + Vderiv(x)

]
ΨL(x, t) , (2.8)

where m∗(x) = m[1+2α(x)]/[1+α(x)] is the position-dependent effective mass and

α(x) =
4π~2

m
|ΨM(x)|2 df(z)

dz

∣∣∣∣
z=E0/2

. (2.9)

The “mean-field” potential

Vmf(x) =
V (x)− (8π~2/m)|ΨM(x)|2f(E0/2)

1 + 2α(x)
, (2.10)

which contains the external potential and a potential proportional to the scattering
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Figure 2.3: (Color online) Distance delay δ of the laser BEC normalized by the

Thomas-Fermi radius `M of the medium BEC as a function of dimensionless param-

eter β = Ubg/(~Γ0), where Ubg and Γ0 are defined in the text. The delay for selected

resonances assuming a peak number density of the medium of nM = 1015 cm−3 is

shown by colored markers. The inset shows the group velocity vg of the laser BEC in

a homogeneous medium BEC as a function of β. Here, v0 is the free space velocity

of the laser BEC. Markers indicate vg for the same selected resonances and nM as

in the main figure.
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amplitude and medium density. The latter contribution is analogous to the inter-

action potential in the GPE, except that the scattering amplitude is evaluated at

E0/2. Finally, the potential Vderiv(x) = E0α(x)/[1 + 2α(x)]. The factor 1 + 2α(x),

appearing throughout, results from the i~∂/∂t argument of the scattering amplitude.

The operator acting on ΨL(x) on the right-hand side of Eq. 2.8 is not Hermitian

as the scattering amplitude is complex valued. In fact, the non-Hermiticity leads to

atom loss, shown in Fig. 2.2(b) as the halo. For a medium number density nM, the

loss rate out of the laser condensate is nMv0σ. Consequently, at resonance, where

σ ≈ 8π/(k0/2)2, the fraction of atoms remaining in the laser condensate after the

collision is ≈ exp (−8πnM`M/(k0/2)2). For typical values of nM and `M, almost all

of the laser atoms are lost at resonance.

For our proposal, we need to minimize these losses. We can use the lossless

point where f(z) = 0, indicated in Fig. 2.1, and the total cross section is zero.

The effective mass and the potentials in Eq. 2.8 are then real, with m∗(x) > m.

Moreover, df/dz = abg/(~Γ0) and is always positive from the definition of Γ(E).

At the lossless point, the simplest case to analyze is that of a homogeneous

medium and V (x) = 0. The potential Vmf(x) vanishes and the effective mass is

uniform as well as real. Transforming Eq. 2.8 to momentum space, we find that the

propagation or group velocity of the laser BEC is

vg(k0)
∣∣∣
lossless

=
~k0

m∗
= v0

[
1 + β/2

1 + β

]
, (2.11)

where the dimensionless quantity β = Ubg/(~Γ0) > 0 and Ubg = (8π~2/m)abgnM

is the background mean-field interaction energy. The inset of Fig. 2.3 shows the
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group velocity as a function of β. As β > 0, the group velocity must decrease and

approaches v0/2 when β →∞.

We now turn to propagation through an inhomogeneous medium, but still

with V (x) = 0. The assumption `L � `M implies that the density variation of the

medium orthogonal to the laser propagation direction is negligible and we only need

to treat propagation along k0 passing through the center of the medium BEC.

For simplicity, the density profile of the untrapped medium is given by |ΨM(x)|2 =

nM(1−x2/`2
M), using the Thomas-Fermi approximation and neglecting the expansion

of the medium. Here, nM is the peak number density and `M is the Thomas-Fermi

radius of the medium. It is worth noting that the condensates are stable as the

scattering length at zero collision energy is positive. For relative collision energies

close to E0/2, the local de Broglie wavelength of the laser changes slowly over the

medium condensate. In fact, at the lossless point, Eq. 2.8 reduces to free particle

evolution. Hence, we can apply the Wentzel-Kramers-Brillouin (WKB) approxima-

tion to estimate δ. We find

δ

`M

= 2

1−
arctanh

(√
β/(1 + β)

)
√
β(1 + β)

 , (2.12)

and the dimensionless quantity β = Ubg/(~Γ0) is evaluated at the peak number

density nM. Figure 2.3 shows δ as a function of β. The maximum δ that can be

attained by the laser is 2`M for β →∞.

There are several constraints on the realization of the proposal. First, we

have `L � `M. Second, scattering is s-wave dominated, so that k0abg � 1 or

E0/2 � ~2/(2µa2
bg) ≡ Ebg, i.e, the Wigner threshold limit. Third, by solving for
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Im f(z) = 0 for positive abg, we find that the requirement Eres > ~Γ0 must hold.

Fourth, the energy window around the lossless point, where Im f is small, is on the

order of ~Γ(Eres). Consequently, the spread in collision energy, ∆E0 ≈ ~2k0/(2m`L),

must satisfy ∆E0 � ~Γ(Eres). In other words, `L � ~/(mabgΓ0) ≡ `min
L . Finally,

we require resonances for which δ is comparable or larger than the size of the laser

BEC. Since `L � `M, we have β is at least of the order of one.

Table 2.1 gives a non-exhaustive list of narrow resonances, which satisfy the

constraints. For four of these resonances, the expected δ is shown in Fig. 2.3 as-

suming a peak density of nM = 1015 cm−3. If we assume `L/`M ≈ 0.1, then δ ranges

from 0.1`L to 20`L for the resonances in Table 2.1. For the selected density, the

chromium resonance is only a marginal candidate for the experiments.

2.5 Conclusion

In conclusion, we have shown that magnetic Feshbach resonances can lead to

slowing of a BEC as it propagates through a large medium BEC. The slowing is a

consequence of the collision-energy dependence of the scattering amplitude near the

resonance. Based on a generalized Gross-Pitaevskii equation, we predict a maximal

reduction of the group velocity by a factor of two and suggest that the experiment

be performed at a magnetic field where elastic scattering is zero. Such a field

always exists near a Feshbach resonance. For finite-sized condensates, slowing can be

observed by measuring the spatial delay of the laser BEC, and for narrow resonances,

this signal is expected to be measurable.
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Table 2.1: Resonance parameters, experimental constraints, and spatial delay for

nine Feshbach resonances. The first five columns specify the Feshbach resonance.

The columns are the atomic species, magnetic resonance positionB0, magnetic width

∆, reduced width Γ0, and Wigner-threshold limit Ebg. The sixth column gives the

minimum size `min
L of the laser BEC. The last column is the shift δ in units of the

radius of the medium `M, assuming a peak medium density of nM = 1015 cm−3.

Parameters obtained from [28].

Atom B0 ∆ ~Γ0/kB Ebg/kB `min
L δ/`M

(mT) (mT) (µK) (µK) (µm)

23Na 119.5 −0.14 14 1900 0.45 0.15

′′
90.7 0.10 260 1900 0.025 0.0091

′′
85.3 2.5× 10−4 0.64 1900 9.8 1.20

87Rb 100.74 0.021 39 200 0.027 0.025

′′
91.17 1.3× 10−4 0.24 200 4.4 1.25

′′
68.54 6× 10−4 0.54 200 1.9 0.89

′′
40.62 4× 10−5 0.054 200 19 1.7

′′
0.913 1.5× 10−3 2.0 200 0.52 0.38

52Cr 49.99 0.008 22 290 0.076 0.078
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Chapter 3: Interferometric measurement of current-phase relation-

ship of an atomic SQUID

3.1 Introduction

Atomtronics focuses on the creation of atomic analogs to electronic devices.

Analogs to several electronic components, such as diodes and transistors, have been

proposed [48], while several other circuit elements have been experimentally realized,

including capacitors [49, 50] and spin transistors [51]. The atomic version of the rf-

superconducting quantum interference device (SQUID) has been realized [52–54],

and initial experiments towards the creation of a dc-SQUID have been performed

[55,56]. Both SQUID devices are formed using a toroidal Bose-Einstein condensate

and contain one or more rotating weak links or barriers. Furthermore, creation of an

atomic rf-SQUID in a ring-shaped lattice has been proposed [57, 58]. Theoretically

persistent current states in (quasi-)one-dimensional toroidal geometry have been

studied extensively [59–62]. Weak links, whether superconducting or atomic, are

characterized by the relationship between the current through and the phase across

the barrier [63]. Accurate measurement of this current-phase relationship in the

atomic system is crucial for the characterization of atomtronic devices.
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Measurement of the in situ phase of a condensate through interference is a com-

mon tool in modern cold-atom physics. Since the first interference between three-

dimensional condensates was demonstrated in 1997 [64,65], several experiments have

used interference to infer details about the in situ phase profile of condensates [66].

Vortices in condensates [67] and fluctuations brought on by the two-dimensional

Berezinskii-Kosterlitz-Thouless phase transition [68] have also been detected inter-

ferometrically. Interference between two molecular BECs [69] and BECs on an atom

chip have also been observed [70]. Recently, interference measurements have been

extended to determine the persistent current state in a toroidal condensate [71,72].

Eckel et al. [72] also measured the current-phase relationship of a BEC in a toroidal

trap with a rotating barrier, the atomic analog of an rf-SQUID.

In the experiment of Ref. [72], a single condensate was created in a simply

connected trap and subsequently split into two condensates. One condensate was

confined in a toroidally shaped “science” trap and the other condensate was con-

fined in a concentric disk-shaped “reference” trap. We refer to these together as the

“target” trap. A schematic and an in situ image of atoms in a target trap are shown

Fig. 3.1. The science and reference traps were separated by more than 5 µm; thus

atom tunneling between them is negligible and the condensates dephase rapidly be-

cause of imperfections in the splitting procedure. Hence, when the two condensates

expand and interfere after turning off all trapping potentials, their relative phase is

random, thus representing a self-heterodyne measurement [73]. Rotating weak links

are only applied to the condensate in the science trap and the other condensate is

a phase reference. The current through and the phase drop across the barrier were
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Figure 3.1: (Color online) (a) A schematic of atoms in a target trap. The inner

disk and the outer ring are the reference and science condensates, respectively. A

blue-detuned laser forms a rotating weak link and is shown by the blue (gray) ellipse.

(b) An in situ image from the experiment of atoms in a target trap.

inferred from the spiral-shaped modulation in the density profile for short expansion

times. The number of spiral arms determines the winding number of the persistent

current state, while their chirality determines the direction of atom flow.

In this chapter, we study in detail the interference patterns that result from

interfering a toroidal condensate with a reference condensate and verify the inter-

ferometric technique used in Ref. [72] to measure the current-phase relationship.

We first analytically and numerically study a single-particle version of the atomic

rf-SQUID in Sec. 3.2. We find that the experimentally observed spirals are a short

time phenomenon and both the current through and the phase drop across the bar-

rier follow from the geometry of the spirals. For longer expansion times, the spirals

become modulated with concentric circles due to self-interference of the torus and
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it becomes difficult to read out the in situ phase drop. In Sec. 3.3, we describe de-

tails of the experiments with sodium condensates in a target trap. In addition, this

section describes the numerical techniques used to simulate the mean-field Gross-

Pitaevskii equation, which quantifies the effects of atom-atom interactions on the

expanding condensates. Estimates of bounds on expansion times, where spirals can

be observed in the density profile, are also derived. Finally, in Sec. 3.4, a compari-

son of theoretical and experimental results validates the interferometric method for

measurement of the current-phase relationship of an atom-SQUID.

3.2 Single-particle picture

We begin our study of the interference by deriving analytic expressions for the

free expansion of a single atom of mass m released from a target-trap interferometer

and give an intuitive explanation of the origin of the spirals in the interference

pattern. To generate the interference, we assume that the wave function of our

single particle is in a superposition of a wave localized in the reference and science

regions, respectively.

3.2.1 Particle in a rotating torus

In order to solve for the wave functions, we first describe the target trap in

cylindrical coordinates ~x = (r, θ, z). The science and reference traps are assumed to

be parabolic in the radial direction, and centered at rS and the origin, respectively

[see Fig. 3.1(a)]. The harmonic oscillator lengths are σS and σR, respectively. The
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common transverse confinement is harmonic with oscillator length `z. We assume

σR ≈ σS and σS, σR, `z � rS. In addition, the science trap has a barrier or weak

link rotating at angular frequency Ω inducing atom flow. For simplicity, we model

the barrier in the science trap as a Dirac delta function Vb(~x, t) = U0w(r)δ(θ−Ωt),

with strength U0, time t, and w(r) being a window function which is 1 around the

radial position of the science trap and 0 everywhere else.

In the frame rotating with the barrier, the atom is prepared in the time-

independent state Ψinit(~x) = (ψR(~x)+ψS(~x))/
√

2, where the ψi(~x) = ηi(r)ϕi(θ)φz(z)

are separable wave functions of the science (i = S) and reference (i = R) traps. Here,

φz(z) is the unit-normalized 1D ground-state harmonic-oscillator wave function and

ηi(r) = e−(r−ri)2/(2σ2
i )/N is the radial wave function, where N is a normalization

constant. The overlap between the ψi(~x) is negligible.

The angular functions ϕi(θ) are 1/
√

2π for the reference trap and the ground

state of the Schrödinger equation

[
− d2

dθ2
+ 2iκ

d

dθ
+ Uδ(θ)

]
ϕS(θ) = EϕS(θ) (3.1)

for the toroidal trap with a rotating barrier. Here, κ = Ω/Ω0, U = U0/E0, Ω0 =

2E0/~, and E0 = 〈~2/(2mr2)〉 ≈ ~2/(2mr2
S) is the natural energy scale of the science

trap, where the brackets 〈·〉 indicates an expectation value over r and z and ~ is

the reduced Planck’s constant. The function ϕS(θ) is periodic on θ ∈ [−π, π] and

is a superposition of exp[i(κ±
√
E + κ2)θ] with energy E = −κ2 + ε(κ), where ε(κ)

is periodic in κ with period one. Examples of the phase and magnitude of ϕS(θ)

are shown in Fig. 3.2. For most κ, the phase of ϕS(θ) changes nearly linearly with
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θ. Only for κ ≈ 1/2 and, in fact, near any half-integer κ it changes rapidly near

the barrier at θ = 0. This rapid change around θ ∈ (−θ0, θ0) is accompanied by a

decrease in density. The phase jump is π(−π) for κ just above (below) 1/2 and the

density is 0 at θ = 0 for κ = 1/2.

We define the phase drop across the barrier as γ = 2π(n− s), where n is the

winding number, which for the ground-state of the single-particle wave function is

equal to the integer closest to κ, and the slope

s =
d

dθ
{arg[ϕS(θ)]}

∣∣∣∣
θ=−π

. (3.2)

A graphical representation of γ for κ = 0.51 is shown in Fig. 3.2. In the rotating

frame, the angular current

J(κ) = rSΩ0|ϕS(θ)|2
(
d arg[ϕS(θ)]

dθ
− κ
)
, (3.3)

for any θ and we used the fact that 〈1/r〉 = 1/rS.

3.2.2 Single-particle interference

After turning off the target trap, the atomic wave function, Ψ(~x, t), freely

expands and interferes. At time t after the release, it is imaged along the z axis

leading to the observable n(r, θ, t) =
∫∞
−∞ dz |Ψ(~x, t)|2, where Ψ(~x, t = 0) = Ψinit(~x).

During the expansion, the wave function of the torus and the disk remains separable

in the z direction, i.e., ψi(~x, t) = χi(r, θ, t)φz(z, t). Thus, n(r, θ, t) = |χR(r, θ, t) +

χS(r, θ, t)|2 as
∫
dz|φz(z, t)|2 = 1.

It is convenient to first follow the expansion with a numerical solution of the

Schrödinger equation in the (r, θ) plane for κ near 1/2. Figure 3.3 shows n(r, θ, t) for
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Figure 3.2: (Color online) Phase [panel (a)] and magnitude [panel (b)] of the single-

particle ground-state angular wave function ϕS(θ) as a function of θ for various

values of rotation rate κ. The wave function is calculated in the frame rotating with

a delta-function potential of strength U0 = 1 located at θ = 0. For κ ≈ 1/2, a sharp

change in the phase occurs in the κ-dependent region θ ∈ (−θ0, θ0). The figure also

shows the phase drop γ, defined in the text, for κ = 0.51.
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two different expansion times. (Time propagation was carried out by switching to

momentum space, applying appropriate time-dependent phase factors, and returning

back to coordinate space.) We observe that as soon as the wave functions of the

two traps overlap, the interference pattern consists of spirals. Later on, the self-

interference of the science wave function yields circles superimposed on the spirals.

We confirm these interference patterns with an asymptotic expansion and

study the associated time scales. The time evolution of the reference state is

χR(r, θ, t) = e−r
2/2σ2

R(t)/N1(t), (3.4)

where σ2
R(t) = σ2

R + i~t/m and N1(t) normalizes the wave function. Hence, for

t � mσ2
R/~ the spatial extent of the reference wave function,

√
|σ2
R(t)|, is pro-

portional to the expansion time, corresponding to ballistic expansion. In contrast,

the expanding science wave function is not analytically solvable. We can, how-

ever, derive an asymptotic series based on the pertinent time scales of the expan-

sion of the science wave function. The shortest time scale is the ballistic time

τB = mσ2
S/~ determined by the initial radial width. In addition, as will become

clear later, there are two position-dependent time scales: an intermediate time scale

τC(r) = mσS(r + rS)/~ and a long time scale τS(r) = mrrS/~. We are interested

in the expansion time interval τB � t� τS(r). Figure 3.3 shows the density profile

for two such times.

Formally, the expanding wave function χS(r, θ, t) evolves as

χS(r, θ, t) =

∫ ∞
0

dr′ r′ηS(r′)

∫ π

−π
dθ′G(r, θ, r′, θ′, t)ϕS(θ′), (3.5)
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Figure 3.3: Numerical simulation of the integrated particle density n(r, θ, t) of a

single particle, with winding number equal to 1, expanding in the rotating frame

after release from a target trap. Panel (a) shows n(r, θ, t) with spirals at an early

expansion time t = 0.25τC , evaluated at r = rS. Panel (b) shows a later time

t = 1.25τC , where the spirals are superimposed with circles due to self-interference

of the toroidal wave function. The density near the center has been truncated for

better contrast. The trap parameters are σR = 0.025rS, σS = 0.05rS, U0 = 1, and

κ = 0.51. The lengths of the sides in panels (a) and (b) correspond to 5.12rS and

12.8rS, respectively. The parameters are chosen such that the overlap between the

expanding science and reference wave functions is sufficient to show the spiral over

a large range of radii.
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where the free-particle Green’s function [74] in two dimensions is

G(r, θ, r′, θ′, t) =
m

2πi~t
exp

{
im [r2 + r′2 − 2rr′ cos(θ − θ′)]

2~t

}
. (3.6)

We note that the integral over r′ is concentrated around r′ = rS. Consequently, the

integral over θ′ in Eq. 3.5 can be solved by noting that the phase on the right-hand

side (RHS) of Eq. 3.6 oscillates rapidly for t� mrr′/~ ≈ τS(r). Then, the method

of steepest descent [75] gives an asymptotic series for the integral over θ′ in powers

of the small parameter t/τS(r). In fact, there are two stationary points located at

θ′ = θ and θ′ = θ + π, respectively. The remaining integral over r′ is also solved

using steepest descent for τB � t based on the small parameter σS/rS. To leading

order we find

χS(r, θ, t) =
e−(r−rS)2/[2σ2

S(t)]ϕS(θ) + e−(r+rS)2/[2σ2
S(t)]ϕS(θ + π)

N2(t)
√
r

, (3.7)

where the complex, time-dependent σ2
S(t) = σ2

S(1+ it/τB) is the square of the width

of the expanding radial wave-packet and 1/N2(t) is a normalization factor. The

wave function is a superposition of two expanding 1D Gaussians centered at rS and

−rS (except for the probability conserving factor 1/
√
r). The asymptotic solution

is valid for τB � t� τS(r). This excludes the region near the origin, where τS(r) is

small.

It is natural to ask whether the second term in Eq. 3.7 is important relative to

the first term. Clearly, when
√
|σ2
S(t)| < r+ rS or equivalently t < τB(r+ rS)/σS =

τC(r) the second term is negligible. The interference of the first term with the

reference wave function χR(r, θ, t) in Eq. 3.7 leads to spirals in the density n(r, θ, t)

as shown in Fig. 3.3(a). For t ≥ τC(r) the second term cannot be ignored and
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interferes with the first term. It leads to circles in addition to the spirals as shown

in Fig. 3.3(b). An intuitive interpretation of τC(r) is that it corresponds to the time

taken by signals from both antipodal points (rS, θ) and (rS, θ+π) of the initial t = 0

wave function of the torus to reach the observation point (r, θ) and interfere. This

is the self-interference of the toroidal wave function.

3.2.3 Spirals

We are now in a position to quantify the spiral structure for τB � t � τC .

We write χi(r, θ, t) =
√
ni(r, θ, t) exp[iξi(r, θ, t)], where ni(r, θ, t) is the probability

density and ξi(r, θ, t) is the phase. The integrated density becomes

n(r, θ) = nS(r, θ) + nR(r, θ) + 2
√
nS(r, θ)nR(r, θ) cos ξ(r, θ),

where ξ(r, θ) = ξS(r, θ) − ξR(r) and we suppress the time argument for notational

simplicity. The last term on the RHS of this equation describes the interference of

the wave functions in the two traps.

For the above time interval, the second term in Eq. 3.7 can be ignored, so

that nR(r, θ, t) is independent of θ, nS(r, θ, t) is a separable function of r and θ, and

ξ(r, θ) ≈ arg[ϕS(θ)]−~rrS/(mt). (The argument arg[φS(θ)] is defined as a monotonic

function of θ.) Then, spirals correspond to curves in the (r, θ) plane along which

the phase ξ(r, θ) is constant. The densities ni(r, θ) only lead to a slowly varying

envelope in r and suppression of the signal near θ = 0 that is most pronounced

for a half-integer κ. Consequently, a spiral is described by the parametric curve

r(u) = (ξ0 + arg{ϕS[θ(u)]})× ~t/(mrS) and θ(u) = −π + u mod 2π, where ξ0 is a
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constant (typically chosen such that n(r, θ) is a local extremum) and u is the free

parameter. In the absence of a rotating barrier but for a nonzero winding number

n of the toroidal state, we find arg[ϕS(θ)] = nθ and the interference pattern has

Archimedean spirals with r(u) = (ξ0 +nu)×~t/(mrS) and θ(u) = −π+u mod 2π.

These smooth spirals have been observed experimentally [71,72].

A schematic of a spiral is shown in Fig. 3.4 at a single expansion time t for

κ slightly greater than 1/2, a case where ϕS(θ) has a sharp phase jump across the

barrier near θ = 0. For |θ| > θ0 the spirals smoothly wind around the origin.

In contrast, for θ ∈ (−θ0, θ0) there is a sharp, nearly discontinuous change in the

spirals. For κ away from half-integer values, the spirals are smooth everywhere.

The geometry of a spiral is completely determined by the phase ξ(r, θ) where the

number of spiral arms is the winding number n. The densities nR(r, θ) and nS(r, θ)

determine how many windings of a spiral are visible along the radial direction.

We characterize the discontinuity or jump of the spirals by lengths δ and ∆

shown in Fig. 3.4. The quantity δ = 2π~t/(mrS) is the radial fringe spacing and

measures the increment in r as ξ(r, θ) is increased by 2π at a fixed θ. Moreover,

∆ = rA(u + 2π)− rA(u) = s× 2π~t/(mrS), where we used the Archimedean spiral

rA(u) = (ξ0 + su) × ~t/(mrS) and θA(u) = −π + u mod 2π, and s is defined by

Eq. 3.2. Intuitively, ∆ is the radial distance covered by a spiral when it is smoothly

continued across the barrier region. The two lengths depend on the dimensions of

the torus and expansion time t.

The ratio ∆/δ = s is independent of the radial wave function and expansion

time. In fact, we can interpret ∆/δ as a measurement of the phase across the barrier
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γ, since

γ = 2π(n−∆/δ). (3.8)

Moreover, it is a measurement of the angular current J(κ), as the hydrodynamic

equation, Eq. 3.3, at θ = −π gives

J(κ) = rSΩ0|ϕS(−π)|2 (∆/δ − κ) . (3.9)

For t > τC radial rings will get superimposed on the spirals due to the self-

interference, making extraction of curves of constant ξ(r, θ) more difficult. More-

over, when t ∼ τS(r), the derivatives of the initial angular wave function become

important; finally, for t� τS(r), the probability distribution resembles the Fourier

transform of the initial wave function, which has no spirals and the in situ phase

cannot be read out.

3.3 Experimental atom SQUID and mean-field simulation

We now compare the single-particle analysis with the interference experiments

and numerical simulations based on the Gross-Pitaevskii equation (GPE). The ex-

perimental setup is described in Sec. 3.3.1. Details of the numerical methods to

simulate the GPE are given in Sec. 3.3.2, while Sec. 3.3.3 describes expansion time

scales based on a self-similar expansion of a BEC from a target trap [76]. Section

3.4 compares the results and enables us to verify the extraction technique used in

Ref. [72] for the phase drop across the barrier in terms of a measurement of ∆/δ.
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Figure 3.4: Schematic of a spiral-like contour (solid line) in the integrated density

for κ slightly larger than 1/2, so that the winding number n = 1. The contour

has a constant phase ξ(r, θ) = ξ0. The phase of ϕS(θ) varies rapidly in the wedge

θ ∈ (−θ0, θ0). In addition, an Archimedean spiral (dashed line) with the same initial

angular velocity as the solid line is shown. Its parameters as well as the lengths δ

and ∆ are defined in the text.
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Figure 3.5: (a) Grayscale images of the interference pattern in the density profile

after a 17-ms expansion time for four rotation rates of the barrier. The atom number

density increases from blue to red with blue corresponding to zero density. The

top and bottom rows show images from the experiment and GPE simulations with

the same trapping potentials and atom number, respectively. The extracted ∆/δ

for each rotation rate is shown above the images. The winding number is 0 for

all images. (b) Images of experimental (top row) and GPE (bottom row) density

profiles for four expansion times of a nonrotating condensate released from a target

trap without a barrier.
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3.3.1 Experimental setup

The interference experiments were conducted by the group of Gretchen Camp-

bell at NIST [72]. In the experiments, a 23Na BEC is created in a target trap with

approximately 7× 105 atoms and a chemical potential, µ/~ ≈ 2π× (2 kHz). Details

of the creation of the trapping potential can be found in Refs. [54, 72]. The target

trap has an external toroid with a radius of 22.4(4) µm and a radial trapping fre-

quency of 240 Hz. Its central disk has a flat-bottomed potential and contains about

25% of the total atoms. The transverse trapping frequency of both traps is ≈600

Hz. This leads to a Bose condensate with a measured Thomas-Fermi radial width

of about 6 µm in the toroid and a Thomas-Fermi radius of about 5 µm in the disk.

The barrier potential has a Gaussian profile with a height less than the chemical

potential of the atoms in the science trap. Its 1/e2 full width is ≈6 µm. Persis-

tent current states are created by adiabatically ramping up the height of the barrier

with a fixed rotation rate. The atom cloud is imaged along the transverse direction

by absorption imaging, which measures the intensity of resonant light transmitted

through the expanding gas.

3.3.2 Numerical simulation

Numerical GPE simulations of the experiments were carried out by our col-

laborator Mark Edwards. In the simulations, the initial wave function, ΨGP(~x), of

the condensate in the target trap is found in a two-step process. First, the GPE

is solved for the wave function of a BEC with a stationary weak link or barrier
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but otherwise the same trapping potentials and atom number as in the experiment.

Imaginary-time propagation and a two-dimensional effective Lagrangian variational

method (2D LVM) [77, 78] are used, assuming a scattering length of a = 2.8 nm.

The method is a variational technique whose trial wave function is the product of

an arbitrary function in the (r, θ) plane and a Gaussian in the z direction with an

(imaginary-)time-dependent width and a phase that is quadratic in z. This Ansatz

leads to (a) a 2D effective GPE whose nonlinear coefficient contains the width of the

Gaussian and (b) an evolution equation for the width that depends on the spatial

integral of the fourth power of the absolute value of the solution of the effective

GPE. This solution, ΨStat(~x), is normalized such that
∫
d3~x|ΨStat(~x)|2 = N , the

total atom number. In particular, the angular density profile of the science trap

ρStat(θ) =
∫ ′
rdrdz|ΨStat(r, θ, z)|2, where the radial integral only encompasses the

science or the toroidal trap.

The second step is to add the rotation of the barrier by multiplying the station-

ary (and positive) ΨStat(~x) with a spatially dependent phase that leaves the density

profile unchanged, i.e., ΨGP(~x) = ΨStat(~x)eiζ(~x). The phase profile ζ(~x) is 0 around

and inside the central disk, and near the torus only depends on θ. For a given

rotation rate κ and winding number n, it is found by simultaneously solving the

hydrodynamic expression J = rSΩ0ρStat(θ)(dζ(θ)/dθ− κ) and ζ(π)− ζ(−π) = 2nπ.

(Compare to Eq. 3.3 as well as see the Supplemental Material in Ref. [72]). The

solution is similar in behavior to those shown in Fig. 3.2 and the phase drop follows

from γ = 2π(n− s), where s = dζ(θ)/dθ |θ=−π.

This phase-imprinting procedure is valid as long as the height of the barrier
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is less than the chemical potential, the healing length ` =
√

~/(2mµ) ≈ 0.5µm is

small compared to the width of the barrier (≈ 6 µm), and the speed of the barrier

is small compared to the speed of sound c =
√
µ/m. These conditions are met in

the experiment.

Finally, the expansion of a BEC released from a target-trap is simulated by

solving the (real) time-dependent GPE using the same 2D-LVM method. The GPE

solutions were only modified to include the effects of absorption imaging. The

nonzero point-spread function of the imaging system is taken into account by con-

volving the simulated transmission with an Airy disk of the appropriate size.

3.3.3 Expansion time scales

References [76, 79] showed that a harmonically trapped and interacting Bose

condensate expands at a much faster rate than a noninteracting gas of the same size.

Here, we perform a similar analysis for expansion from a target trap. In fact, under

the assumptions valid for phase imprinting in Sec. 3.3.2, it is sufficient to study

expansion from a BEC in a toroidal trap without a barrier or rotation. We assume

that the interactions are sufficiently strong that the Thomas-Fermi approximation

holds along the r and z directions. The BEC wave function is then independent of

θ and the harmonic confinement in the toroidal trap along the r and z directions

leads to a BEC with a Thomas-Fermi radius, σTF, such that σTF � rS. Here,

for simplicity we assume the same trap frequency along the two directions, i.e.,

ωr = ωz ≡ ω.
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Immediately, after the release of the toroidal trap the BEC expands rapidly

in the r and z directions as the interaction energy gets converted to kinetic en-

ergy. This defines a ballistic time scale, τ̃B. (We use a tilde to denote time scales

associated with expansion of the interacting BEC.) As σTF � rS, we can locally

approximate an angular section of the torus as a 2D tube, which expands along

its transverse directions. Such an elongated BEC undergoes a self-similar expan-

sion [76, 79]. That is, in the hydrodynamic picture of the BEC and cylindrical

coordinates, the density is n(r, z, t) ≈ n[rS + (r − rS)/λ(t), z/λ(t), t = 0] while the

velocity field ~v(~x, t) = (vr(r, t), 0, vz(z, t)), with vr(r, t) = (1 − λ(t)−2)(r − rS)/t

and vz(z, t) = (1 − λ(t)−2)z/t. The scaling factor λ(t) =
√

1 + ω2t2, which implies

τ̃B = 1/ω = mσ2
S/~ and is the same as the single-particle ballistic time τB, even

though the radial size of the BEC wave function σTF � σS.

For t � τ̃B, the interaction energy has been converted to kinetic energy and

the density profile has spirals, but the cloud is expanding more rapidly than the

single-particle case. Hence, we expect that the time scale τ̃C(r), where the spirals

become modulated with circles due to the self-interference of the toroidal BEC, will

be shorter than the equivalent single-particle time scale τC(r). We can derive τ̃C

following the intuitive understanding of signals from antipodal points (rS, θ) and

(rS, θ + π) at t = 0 reaching (r, θ) at t = τ̃C . In other words, we require that the

radial size of the toroidal BEC, λ(τ̃C)σTF, is larger or equal to the distance between

the observation point and the antipodal points, i.e., r + rS and r − rS. Hence,

τ̃C ≈ (r + rS)/(ωσTF) = (σS/σTF)τC , which is smaller than τC .
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3.4 Comparison of the experiment with theory

The experimental data and GPE simulations is compared in Fig. 3.5 by show-

ing the dependence of the interference pattern on the rotation rate of the barrier and

the expansion time. Figure 3.5(a) shows typical expanded clouds at 17-ms expan-

sion time from the experiment and simulated GPE expansions for various rotation

rates of the barrier leading to condensates with winding number n = 0. First,

we see radial interference fringes at fixed θ and azimuthal interference fringes at

fixed r similar to those in Fig. 3.4. The ratio ∆/δ from these experimental images

is extracted following the procedure explained in Fig. 3.4. The phase drop across

and the current through the barrier then follow from Eqs. 3.8 and 3.9, respectively.

Near θ = 0, where the barrier is located before release, the density profile has radial

stripes, which are absent from the single-particle simulations and a consequence of

interaction-induced expansion of atoms into the density depleted weak-link region.

Last, starlike structures, which are due to residual azimuthal asymmetries in the

toroidal potential, are visible.

Figure 3.5(b) shows expanding, rotationless clouds released from a trap with-

out a barrier for various expansion times. For observation radii r ≥ 60 µm and

small expansion times t . 20 ms, the experimental data and GPE results show no

evidence of self-interference of the toroidal BEC consistent with t ≤ τ̃C(r). For

longer expansion times we observe self-interference. It is prominent near the cloud

center, where radial fringes emerge with half the spacing of those at large radius.

In Fig. 3.5 the size, shape, and interference pattern of the clouds in the GPE
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Figure 3.6: (Color online) Radial fringe spacing, δ, of the interference pattern as

a function of time elapsed after the release of the target trap. The data are for

a toroidal trap without a barrier and a BEC without winding. The experimental,

GPE, and single-particle fringe spacings are shown by red dots with one-standard-

deviation statistical error bars, blue squares, and a black line, respectively. The

value of rS has an uncertainty, which is shown by the shaded region around the

black line.
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Figure 3.7: (Color online) The ratio ∆/δ as a function of in situ phase-drop γ

across the rotating barrier from the GPE simulations of Fig. 3.5(a) (blue dots) and

the single-particle prediction (solid line). Error bars are one-standard-deviation

uncertainties from the fit to the density profile.
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simulations agree well with those of the experiment. The agreement is made quan-

titative in Fig. 3.6 for the target trap without a barrier and a BEC without winding

(n = 0). The figure shows the radial fringe spacing, δ, from the experimental data,

GPE simulations, and the single-particle expression δ = 2π~t/(mrS) as functions

of expansion time. The three cases are in excellent agreement, indicating that this

fringe spacing is determined by the geometry of the system, i.e., the radius of the

torus.

Figure 3.7 shows the extracted ∆/δ as a function of the imprinted phase drop

γ across the barrier for the GPE simulations in Fig. 3.5(a). The result agrees within

the uncertainties with the single-particle prediction, which indicates that interac-

tions do not change the phase drop over the barrier region even though the angular

density profile is distorted during the expansion. In other words, an extraction of

the phase drop from a measurement of ∆/δ is valid even when the GPE and exper-

iment have radial stripes for small θ near the weak link. The latter are absent from

the single-particle interference pattern.

3.5 Conclusion

We have theoretically investigated an experiment that measures the phase drop

in an atomic-SQUID. The atomic-SQUID consists of a BEC in a toroidal trap with a

rotating barrier. The phase drop across the barrier is measured by interference with

a reference disk BEC after release from the trapping potentials. We have studied the

single-particle case and found that the structure of the interference pattern depends
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on the expansion time after release. For short times, it consists of spirals, which have

the same number of arms as the winding number of the toroidal wave function. The

phase along a spiral is the same as the in situ phase of the angular wave function.

Moreover, we find that the phase drop across the barrier and the current through

it determine the geometry of spirals. For longer times, the spirals get superimposed

by circles making phase readout difficult.

The conclusions from the single-particle model are confirmed by experiments

with Bose condensed sodium atoms and numerical simulations based on the Gross-

Pitaevskii equation even though interatomic interactions speed up the expansion,

thereby shortening the associated time scales. In particular, one feature that is not

changed is the fringe spacings of the interference pattern.

Most importantly, we have confirmed that the phase drops across the barrier as

measured by the experiment agree with those of our single-particle model and mean-

field simulations and accurately reflect the in situ value. This confirmation opens up

the possibility of using this technique for measuring the current-phase relationship

of, for example, excitations or weak links in degenerate, superfluid Fermi gases.
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Chapter 4: Dynamics of dynamically unstable, bosonic few-mode quan-

tum systems

4.1 Introduction

The advent of precise experimental control in ultracold atomic systems has

motivated theoretical study in non-equilibrium dynamics in isolated quantum sys-

tems [80]. For generic Hamiltonian systems, the expectation value of a local observ-

able at long times after a quench, a sudden change in a control parameter, is de-

scribed by a Gibbs ensemble [81,82]. However, for integrable systems, a special class

of Hamiltonian systems, the long-time behavior is instead believed to be described

by a generalized Gibbs ensemble [82]. This important role of integrability on the

time dynamics has been demonstrated experimentally [83, 84]. Integrable systems

are of much theoretical interest as they are amenable to exact analytic treatment.

A classical integrable system can be solved using action-angle variables [85], while

a quantum integrable system is solvable by the Bethe ansatz [86].

A mean-field approximation can be applied to a bosonic system with a macro-

scopically occupied mode. The time dynamics of the system is then governed by a

classical Hamiltonian and described by classical trajectories in its phase space. For
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a weakly interacting Bose-Einstein condensate (BEC), this classical trajectory is a

solution of the time-dependent Gross-Pitaevskii equation for the order parameter

with continuous spatial degrees of freedom [3]. In certain cases, it is sufficient to

describe a bosonic system with just a few degrees of freedom. Some examples are

a BEC in a double-well potential [87], a spin-1 spinor BEC within the single-mode

approximation (SMA) [88, 89], and a few-site Bose-Hubbard model with a large

occupation per site [90–92].

A bosonic system becomes dynamically unstable when it is prepared by a

quench at a saddle point in its phase space. Dynamical instabilities have been pre-

dicted for vortices in trapped BECs [93–95], superfluid flow of BECs in optical lat-

tices [96,97], and BECs in cavities [98]. These predictions have been experimentally

observed [99–103]. The instability is also used as an experimental route for the gen-

eration of squeezed states [7, 104–106]. A mean-field description is then insufficient

and quantum fluctuations need to be included. Quantum corrections can be (par-

tially) included by using the truncated Wigner approximation (TWA) [107–109],

which models the dynamics of the Wigner distribution in the phase space. The

TWA has been used to numerically study the effects of thermal fluctuations on

a BEC [107], quenches in spinor condensates [110, 111], thermalization in chaotic

systems [112,113], and superfluid flow [114].

In this chapter, we analytically study the time dynamics of two integrable few-

mode quantum systems within the truncated Wigner approximation after a quench

of a parameter that makes the systems dynamically unstable. The chapter is set

up as follows. We introduce dynamical instability in bosonic systems in Sec. 4.2
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and TWA in Sec. 4.3. We define the integrability of classical Hamiltonians, which

govern the mean-field limit of these systems, and introduce action-angle coordinates

in Sec. 4.4. Section 4.5 introduces the concept of mixing in phase space due to time

evolution and describes how this mixing leads to relaxation of an observable to a

steady-state value. Using the pendulum as an illustrative example, we stress the

role of separatrices in Sec. 4.6, derive general results for long-time expectation value

of an observable in Sec. 4.7, and the time dynamics of relaxation of this expectation

value in Sec. 4.8. We apply these results to the case of a condensate in a double-

well potential (the double-well system) in Sec. 4.9 and a spin-1 BEC described by

a single spatial mode in Sec. 4.10. We find that the deviation of the long-time

expectation value from the classical value and the time scale of relaxation depends

logarithmically rather than algebraically on the atom number. Finally, we conclude

in Sec. 4.11.

4.2 Dynamical instability

The mean-field equations of motion of an isolated quantum bosonic system

are equivalent to Hamilton’s equations of motion of a classical system. The mean-

field ground state is a stable equilibrium phase-space point, where the classical

Hamiltonian has a minimum. On the other hand, a dynamically unstable state

corresponds to a saddle point of this Hamiltonian. Such an unstable state can be

prepared by starting from a minimum of the initial Hamiltonian and then quenching

a system parameter to change this point to a saddle point of the final Hamiltonian.
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As an example, consider the quantum oscillator H0 = (p̂2 + x̂2)/2, where x̂ and p̂

are the canonical position and momentum operators, respectively. Here, we have

set ~ and the natural frequency of the oscillator to one. Its mean-field ground state

is the phase-space point (xc, pc) = (0, 0), where xc = 〈x̂〉, pc = 〈p̂〉, and 〈. . .〉 is the

average over a quantum state. We make the state dynamically unstable by suddenly

changing to the Hamiltonian H1 = (p̂2 − x̂2)/2. Under the mean-field equations of

motion, a dynamically unstable point is stationary. Thus, xc(t) = 0 and pc(t) = 0

hold for all times. In contrast, quantum evolution under H1 leads to exponential

growth in the unstable mode [3]. In fact, following the language of quantum optics,

H1 ∝ ââ + â†â† leads to single-mode squeezing, where â(â†) = (x̂ ± ip̂)/
√

2 is the

annihilation (creation) operator of the mode.

4.3 The truncated Wigner approximation

The time evolution of a dynamically unstable system can be studied using

the truncated Wigner approximation (TWA) [107]. It incorporates the leading or-

der quantum corrections to the mean-field equations of motion [115]. In the TWA,

a Wigner distribution function W (x,p, t) time evolves under classical Hamilton’s

equations, in contrast to the mean-field approximation where the evolution of a single

phase-space point (x(t),p(t)) is studied. Here, x = (x1, . . . , xd) and p = (p1, . . . , pn)

are canonical position and momentum coordinates for a classical mean-field Hamil-

tonian system with d degrees of freedom. The initial distribution, W0(x,p), is the

Weyl-Wigner transform [13] of the prequench quantum ground state or any approx-
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imation thereof.

For an observable O(x,p), we define its evolution O(t) ≡ O(x(t),p(t)) along

a trajectory (x(t),p(t)) with initial conditions (x0,p0). The expectation value of

O(t) over all trajectories is

〈O(t)〉 =

∫
Ω

dxdpO(x,p)W (x,p, t)

=

∫
Ω

dx0dp0O(t)W0(x0,p0), (4.1)

with measures dx = dx1 · · · dxn, dp = dp1 · · · dpn and the integral is over all phase

space Ω. The distribution satisfies
∫

Ω
dxdpW (x,p, t) = 1 for all t in accordance

with Liouville’s theorem [85].

4.4 Classical integrable systems

In classical mechanics, a Hamiltonian system with d degrees of freedom is

integrable if there exist d mutually commuting (with respect to the Poisson bracket)

conserved quantities [85]. Then a trajectory in the 2d dimensional phase-space lies

on a d-dimensional torus. For an integrable system, the coordinates (x,p) can

be transformed to canonical coordinates called actions I = (I1, . . . , Id) and angles

ϕ = (ϕ1, . . . , ϕd), such that Hamiltonian H is independent of ϕ. Crucially, (I,ϕ)

and (I,ϕ+2πm) correspond to the same phase-space point, where m = (m1, . . . ,md)

is a vector of integers. In these coordinates, the Hamilton’s equations are

İi = −∂H(I)

∂ϕi
= 0 , ϕ̇i =

∂H(I)

∂Ii
≡ ωi(I), (4.2)
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for all i ∈ {1, . . . , d}. The frequencies ωi(I) only depend on I. Hence, the actions

are conserved quantities and the time evolution of the angles has the simple form

ϕ(t) = ω(I)t+ϕ0, (4.3)

where ω(I) = [ω1(I), . . . , ωd(I)] and ϕ(0) = ϕ0.

For our Hamiltonian systems, action-angle coordinates are not globally de-

fined. Instead, they are defined on disjoint regions of Ω by maps from each such

region R to IR ⊗ J , where IR ⊂ Rd and J = [0, 2π]⊗d are the spaces spanned

by the actions and angles, respectively. We then construct distribution functions

fR(I,ϕ, t) = (2π)dF (x(I,ϕ),p(I,ϕ), t) for (x,p) ∈ R with normalization

∑
R

∫
IR
dI

∫
J

dϕ

(2π)d
fR(I,ϕ, t) = 1. (4.4)

The latter follows from the fact that the Jacobian determinant of a canonical

transformation is one. The distribution fR(I,ϕ, t) is periodic in ϕ and evolves as

fR(I,ϕ, t) = f0,R(I,ϕ−ωt), where f0,R(I,ϕ) = fR(I,ϕ, 0) is the initial distribution.

Moreover, Eq. 4.1 becomes

〈O(t)〉 =
∑
R

∫
IR
dI

∫
J

dϕ

(2π)d
fR(I,ϕ, t)OR(I,ϕ) (4.5)

=
∑
R

∫
IR
dI

∫
J

dϕ0

(2π)d
f0,R(I,ϕ0)OR(I,ϕ(t)), (4.6)

where OR(I,ϕ) is the functional form of the observable in region R.

4.5 Phase-space mixing

A distribution function that is initially localized around a phase-space point

typically stretches, tangles, and disperses over the accessible phase space. This
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mixing in phase space has been studied in plasma physics [116] and astrophysics

[117]. We illustrate this concept using a nonlinear oscillator. It is an integrable

system with a Hamiltonian H = Ur4/8, where r2 = p2 +x2 . In this case, the action-

angle coordinates are globally defined. The action I is a function of r and the angle

ϕ is the polar angle in the (x, p) plane. Points with different r rotate around the

origin at different frequencies ω(I) and the distribution function stretches as shown

Fig 4.1. Eventually, the distribution spreads uniformly and mixes in the compact

coordinate ϕ, while remaining localized in r and I.

For a general integrable system, the frequencies ω(I) depend nontrivially on

I. Hence, the distribution will eventually mix in ϕ. It is important to realize that

as the distribution function mixes in phase space fine-scale structures must develop

in order to conserve the phase-space volume as required by Liouville’s theorem. For

the nonlinear oscillator, evolution leads to tightly wound spirals as shown in the

third panel of Fig. 4.1.

Phase-space mixing simplifies the evaluation of the long-time expectation value

of an observable. Experimentally-accessible observables are typically smooth func-

tions of the phase-space coordinates. Then the distribution function with its fine-

scale structures can be coarsened, i.e., in Eq. 4.5 we can replace fR(I,ϕ, t) by the

time-independent distribution [118, §1]

f̄R(I) ≡
∫
J

dϕ

(2π)d
fR(I,ϕ, t) =

∫
J

dϕ

(2π)d
f0,R(I,ϕ). (4.7)

Consequently, the expectation value at long times becomes

lim
t→∞
〈O(t)〉 =

∑
R

∫
I
dI f̄R(I)

∫
J

dϕ

(2π)d
OR(I,ϕ). (4.8)
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Figure 4.1: Phase-space mixing for an nonlinear oscillator with U = 8. Panels

show the distribution W (x, p, t) in phase-space (x, p) at times t = 0, 2, 10 and 100.

Initially W (x, p, t = 0) is a 2D Gaussian with standard deviation σ = 0.1 localized

around (x, p) = (1, 0). Approximately 99.7% of the points lie within the two dashed

circles.
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Thus, the long-time expectation value of an observable is given by the average over

the accessible phase space weighted by f̄R(I).

4.6 Dynamics near a separatrix

The description of the time evolution of the initially-localized Wigner distri-

bution following dynamical instability for our double-well and spin-1 boson systems

with a four- and six-dimensional phase space, respectively, must include a study of

separatrices. As we will show in Secs. 4.9 and 4.10, their dynamics is controlled

by a two-dimensional subspace Ω2D spanned by canonical coordinates x1 and p1.

This subspace contains a single saddle point that is connected to itself by one or

more trajectories, known as separatrices. In fact, there are two separatrices and

one separatrix for the double-well and spin-1 Bose system, respectively. The fre-

quency ω1(I) associated with a trajectory in Ω2D goes to zero as its starting point

approaches the saddle point. In fact, near the saddle point ω1 varies sharply with

I, which leads to phase-space mixing in Ω2D. The other frequencies ωi for i 6= 1 are

slowly varying near the saddle point and the distribution along the corresponding

angles remains localized over the time scale for phase-space mixing in Ω2D. In this

and the next section, we discuss general features of trajectories and observables in

the phase-space region near a separatrix. We develop this discussion using a simple

pendulum, an integrable system with a two-dimensional phase space containing a

single saddle point and two separatrices [119, §22.19].
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The Hamiltonian of a simple pendulum is

Hpend =
p2

2
+ 1− cos θ, (4.9)

where p is the momentum, θ ∈ [−π, π] is the angular position and θ = ±π are

identical (we have set the pendulum’s length and acceleration due to gravity to one).

The point (θ, p) = (0, 0) corresponds to the stable equilibrium, while (θ, p) = (π, 0)

is its sole saddle point and corresponds to a stationary upright pendulum. Around

the saddle point Hpend ∼ 2 + (p2 − x2)/2, where x = (θ − π) mod 2π.

Figure 4.2 shows the equal-energy contours in the phase space of the pendulum.

Two separatrices, S+ and S−, divide the phase space into three regions, denoted

by A, B and C, with two distinct kinds of periodic motions: libration and rotation.

Libration, confined to region B, is an oscillation where θ is bounded and does not

pass the inverted position, θ = π. Its time period is Tlib = 4K(k), where K(k) is the

elliptic integral of the first kind [119], the modulus k =
√
E/2 and E is the energy.

Rotation is an unbounded motion in regions A or C, where the pendulum passes

the inverted position. Its time period is Trot = 2kK(k), where k =
√

2/E . Explicit

expressions of libration and rotation motion are given in Appendix A.1.

On the separatrices the period is infinite and, hence, the action-angle coordi-

nates (I1, ϕ1) are not defined. Thus, a saddle point precludes the existence of global

action-angle coordinates. They are, however, defined separately in each of the three

regions. Although, the explicit form of I1 and ϕ1 in terms of p and θ is known [120],

it is not required for our analysis. We will need the location where ϕ1 is zero along

an equal-energy contour. We define it to be a point near the saddle point where |p|
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is minimal. This condition is unique for regions A and C. In region B there are two

such points and we choose the point where θ < 0. As the travel time between the

two points is a half the period, ϕ1 = π for the other point. Our choice of ϕ1 = 0 is

shown in Fig. 4.2 as dashed-dotted lines originating from the saddle point.

We remark on the properties of solutions on the separatrix, which will be useful

later. The two solutions that vary significantly only around t = 0 and for which

θ(t = 0) = 0 are given by

θS±(t) = ±2 arcsin(tanh t), pS±(t) = ±2 sech(t). (4.10)

Note that pS±(t) is well approximated by a bump function (also known as a test

function [121]) that is nonzero in a finite domain, called the support, and vanishes

outside its support. Moreover, an observable O(t) on the separatrix is (well approx-

imated) by a constant plus a bump function, as long as it is smooth in both p and

θ and periodic in θ.

Trajectories (θ(t), p(t)) that start near one of the separatrices spend most of

their time (within a period) near the saddle point as shown with two examples

in Fig. 4.3. Changes in θ(t) and p(t) from their saddle-point value are to good

approximation equal to corresponding changes along trajectories on one or more of

the separatrices. For example, for the rotation trajectory in Fig. 4.3 the momentum

is pA(t) = pS+(t−Trot/2) for t ∈ [0, Trot), while for the libration trajectory in Fig. 4.3

the momentum is pB(t) = pS+(t− Tlib/4) + pS−(t− 3Tlib/4) for t ∈ [0, Tlib). In fact,

the momentum along any trajectory starting near the saddle point in region R = A,
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B or C, respectively, can be written as

pR(t) ∼
∞∑

n=−∞

 ∑
s={S±}

χR(s) ps (t− t0,R(s)− nTR)

 , (4.11)

where the sum over n defines the momentum for all t (rather than a single period)

and indicator functions χR(s) are either zero or one. For the pendulum, χA(S+),

χB(S+), χB(S−) and χC(S−) are one; others are zero. The time shift t0,R(s) ∈

[0, TR) and period TR are determined by the starting point, where TR = Trot and

Tlib for R = A,C and R = B, respectively. Thus, pR(t) is a sum over periodically

occurring, nonoverlapping bump functions whose support is much smaller than the

time period.

The asymptotic symbol ∼ in Eq. 4.11 and elsewhere in this chapter implies

that either the trajectories start close to the saddle point or the averages are over

a Wigner distribution that is initially localized around the saddle-point and whose

initial width goes to zero. We also reserve the word asymptotic for these two cases,

unless otherwise stated.

4.7 Long-time expectation value

We now derive the long-time expectation value of observables 〈O(t)〉 that are

smooth functions of the canonical coordinates (x,p) and depend only on the single

action-angle coordinate ϕ1 of the subspace Ω2D in which the system undergoes phase-

space mixing. For periodic coordinates, like angle θ of the pendulum, we restrict the

observables to be periodic in θ. These constraints are not severe as many physically

interesting observables have these properties.
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Figure 4.2: Equal-energy contours in the phase space (θ, p) of a simple pendulum.

The phase-space is a cylinder as the lines θ = −π and π are equivalent. The saddle

point is at (θ, p) = (π, 0). Separatrices are thick solid blue (S+) and thick dashed

blue (S−) lines, which divide the phase space into libration (A and C) and rotating

(B) regions. For each region, the thick dashed-dotted black line defines action-angle

coordinate ϕ1 = 0. The color map is nonlinear in order to better visualize the

equal-energy contours.
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Figure 4.3: Trajectories starting near the saddle point of a pendulum as a function

of time t for a single period T . Both a rotational (θA(t), pA(t)) and a librational

(θB(t), pB(t)) trajectory are shown. The rotational trajectory lies in region A and

starts from phase-space point denoted by a star in Fig. 4.2. The librational trajectory

lies in region B and starts from the square in Fig. 4.2.
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The first step is to write the asymptotic form of observable OR(t) in region R,

along a trajectory that comes close to the saddle point, in terms of its value along the

separatrix trajectories (x1,s(t), p1,s(t)) in subspace Ω2D. Here, s labels separatrices.

(For the pendulum, s ∈ {S+, S−}.) We define Os(t) = O(x1,s(t), p1,s(t)) and

realize that Os(t) = Osp + Ds(t), where Osp is the value of the observable at the

saddle point and Ds(t) is a bump function localized around t = 0. Similarly, we

decompose OR(t) = Osp + DR(t), where DR(t) is a series of periodically occurring,

non-overlapping bump functions. Then, similar to Eq. 4.11, we write

OR(t) ∼ Osp +
∞∑

n=−∞

∑
s

χR(s)Ds(t− t0,R(s)− nTR). (4.12)

The indicator functions χR(s) are system dependent and the sum s is over one or

more separatrices.

To compute the long-time limit of 〈O(t)〉 using Eq. 4.8, we need to evaluate

the integral over angle ϕ1. (Those over ϕj for j > 1 evaluate to unity for allowed

observables.) We transform this integral to one over time by choosing a reference

trajectory that starts near the saddle point with ϕ1(0) = 0. For the pendulum, two

such trajectories are shown in Fig. 4.3. Then, ϕ1(t) = ω1t and∫ 2π

0

dϕ1

2π
OR(I, ϕ1) ∼ Osp +

∑
s

χR(s)
ω1(I)

2π

∞∑
n=−∞

∫ TR

0

dtDs(t− t0,R(s)− nTR).

(4.13)

For n = 0, the integrand Ds[t − t0,R(s)] is localized around t = t0,R(s) ∈ (0, TR).

Its support is enclosed by the integration bounds t = 0 and TR as the reference

trajectory is near the saddle point at these times. For n 6= 0, there is no overlap

between the support and the integration interval; hence, the integral is zero. We
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extend the integration limits of t to (−∞,∞) for the surviving n = 0 term and find∫ 2π

0

dϕ1

2π
OR(I, ϕ1) ∼ Osp +

∑
s

χR(s)
ω1(I)

2π

∫ ∞
−∞

dtDs(t). (4.14)

Substituting this expression in Eq. 4.8, the long-time average becomes

lim
t→∞
〈O(t)〉 ∼ Osp +

∑
R

〈ω1〉R
2π

[∑
s

χR(s)

∫ ∞
−∞

dtDs(t)
]
, (4.15)

where the average frequency 〈ω1〉R =
∫
R
dI f̄R(I)ω1(I) and the expression in the

square brackets is independent of the distribution. Equation 4.15 is an important

result of this chapter and relates the long-time expectation value of an observable

to the mean frequency. The quantity Osp is the classical value of the observable and

the second term is the quantum correction within the TWA.

For the pendulum, we assume the initial Gaussian distribution

W0(θ, p) =
1

2πd2
e−(x2+p2)/(2d2), (4.16)

where x = (θ − π) mod 2π. It is centered around the saddle point, analogous to

the Wigner distribution of a mean-field state, where the width d� 1 1. Both Hpend

and W0(θ, p) are invariant under the transformations p → −p and θ → −θ. Thus,

the time-evolved distribution function is also invariant and observables O(θ, p) that

are odd functions of either θ or p have a vanishing expectation value at all times. In

contrast, observables that are even functions in both θ and p can have non-vanishing

expectation value.

1 The quantum Hamiltonian of a pendulum in the θ basis is −(~2/2)∂2θ + 1− cos θ. The ground

state is (approximately) a coherent (Gaussian) state around θ = 0 with width d =
√

~/2. When

the sign of the potential cos θ is suddenly changed, the state becomes dynamically unstable with

the initial Wigner distribution as in Eq. 4.16.
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As an illustration, consider O(θ, p) = p2. Its functional form along the two

separatrix solutions in Eq. 4.10 is the same, i.e., [pS+(t)]2 = [pS−(t)]2 and, using the

indicator functions χR(s) for the pendulum, we find

lim
t→∞

〈
p2(t)

〉
∼ 〈ω1〉A + 〈2ω1〉B + 〈ω1〉C

2π

∫ ∞
−∞

dt p2
S+(t). (4.17)

Next, we realize that

lim
t→∞

〈
p2(t)

〉
∼ 〈$〉

2π

∫ ∞
−∞

dt p2
S+(t) =

8 〈$〉
2π

, (4.18)

where we have used Eq. 4.10 to evaluate the time integral and defined the “auxiliary

frequency” $ to be ω1 in region A, C and 2ω1 in region B with average 〈$〉 =

〈ω1〉A + 〈2ω1〉B + 〈ω1〉C . From the definition of f̄0,R(I1), we also find that

〈$〉 ≡
∫ ∞

0

d$$F($), (4.19)

where the unit-normalized distribution function

F(z) =
∑
R

∫
dI1

∫ 2π

0

dϕ1

2π
f0,R(I1, ϕ1) δ(z −$(I1))

=

∫
Ω

dθdpW0(θ, p) δ(z −$(θ, p)) (4.20)

and δ(z) is the Dirac delta function. The second equality shows that the explicit

relationship between (I1, ϕ1) and (θ, p) is not required for the analysis.

As shown in Appendix A.1.1, the distribution F($) is well approximated by

a Gaussian when the width d of the initial distribution W0(θ, p) approaches zero. In

fact, the location of its peak value is

µ ≡ 〈$〉 ∼ 2π

ln[32/(κd2)]
� 1 (4.21)
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and its width is

σ ∼ µ2

2π
√

1− κ2
� µ, (4.22)

where κ = 0.595 · · · . Thus, the quantum correction to the long-time expectation

value of p2(t) is 1/O(ln |d|).

4.8 Time dynamics of relaxation

In this section, we study the relaxation of an observable to its long-time expec-

tation value. Observables again depend on only a single angle ϕ1 and are periodic

in ϕ1. We can then write an observable in region R as a Fourier series

OR(I, ϕ1) =
∞∑

m=−∞

ΘR(I;m)eimϕ1 , (4.23)

with

ΘR(I;m) =

∫ 2π

0

dϕ1

2π
OR(I, ϕ1) e−imϕ1 . (4.24)

Now, as in Sec. 4.7, we transform the integral over ϕ1 into one over time by choosing

a reference trajectory with ϕ1(0) = 0 and insert ϕ1(t) = ω1(I)t. Using Eq. 4.12, we

find

ΘR(I;m) ∼ Osp δm0 +
∑
s

χR(s)e−imαR(s)× (4.25)

∞∑
n=−∞

∫ TR−t0,R(s)

−t0,R(s)

dτ

2π
ω1Ds(τ − nTR)e−imω1τ ,

where δij is the Kronecker delta, αR(s) = ω1t0,R(s), the integration variable τ =

t − t0,R(s), and we have suppressed the dependence of ω1 and TR on I. Only the

69



n = 0 term contributes and

ΘR(I;m) ∼ Osp δm0 +
∑
s

χR(s)e−imαR(s)ω1Ds(mω1), (4.26)

where the Fourier transform Ds (x) =
∫∞
−∞ dt/(2π)Ds(t)e−ixt. Substituting this

expression into Eq. 4.23 and using OR(t) ≡ OR(I, ϕ1(t)), Eq. 4.6 becomes

〈O(t)〉 ∼ Osp +
∞∑

m=−∞

∑
R,s

χR(s)e−imαR(s)
〈
ω1Ds (mω1) eim[ω1t+ϕ1(0)]

〉
R
, (4.27)

where 〈. . .〉R is the average over f0,R(I,ϕ), the initial distribution restricted to region

R. We realize that at long times all Fourier terms except the m = 0 term must go

to zero in order to recover Eq. 4.15.

We now specialize to the pendulum system. The phases αR(s) are αA(S+) =

αC(S−) = π, αB(S−) = π/2 and αB(S+) = 3π/2 when χR(s) is nonzero and, as

shown in Appendix A.1.2, we have

〈O(t)〉 ∼ Osp +
∞∑

m=−∞

(−1)m
∫ ∞

0

d$F($)$DS+(m$)eim$t , (4.28)

where, as in Sec. 4.7, the auxiliary frequency $ is ω1 in regions A, C and 2ω1 in

region B. The distribution F($) is well approximated by a Gaussian with mean and

width given in Eqs. 4.21 and 4.22, respectively. The factor $DS+(m$) is slowly

varying across the width of F($). Carrying out the integral over $ in Eq. 4.28

(after extending the lower limit of the integral to −∞) gives

〈O(t)〉 ∼ Osp +
∞∑

m=−∞

(−1)mµDS+(mµ)eimµt−m
2σ2t2/2. (4.29)

Specifically, for O(θ, p) = p2, we have

〈
p2(t)

〉
∼ 4µ

π
+
∞∑
m=1

(−1)m
4mµ2 cos(mµt)

sinh(πmµ/2)
e−m

2σ2t2/2, (4.30)

70



and the time evolution is a sum of oscillatory functions with damping that is Gaus-

sian in time. The oscillation frequency of each term increases linearly with m, while

simultaneously its damping time, 1/(mσ), decreases.

4.9 Condensate in a double-well potential

A Bose-Einstein condensate in a weakly coupled double-well potential dis-

plays Josephson oscillations and macroscopic self-trapping [87, 122–125]. These

phenomena are adequately described by a mean-field approximation. Moreover,

dynamical instabilities, where quantum effects become important, have also been

studied [126–128].

A BEC in a symmetric double-well potential is well described by assuming

that only two modes Ψ1(~r) and Ψ2(~r) are occupied, one for each well. In the mean-

field description, the time-dependent order parameter or condensate wavefunction

is ψ1(t)Ψ1(~r) + ψ2(t)Ψ2(~r) with complex-valued amplitudes ψj(t). The real and

imaginary parts of ψj(t) form two pairs of canonical coordinates. Hence, the system

has a four-dimensional phase space. Its classical Hamiltonian is

Hdw = −J(ψ1ψ
∗
2 + ψ∗1ψ2) +

U

2
(|ψ1|4 + |ψ2|4) , (4.31)

where U and J > 0 are the on-site interaction and tunneling energies, respectively

[87]. The total number of atoms N = |ψ1|2 + |ψ2|2 and energy E are conserved,

making the system integrable. We note that the underlying quantum Hamiltonian

is solvable by the Bethe ansatz [129].

Following the literature, it is convenient to introduce ψj(t) =
√
Nj(t)e

iθj(t),
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Figure 4.4: Equal-energy contours in the phase space (φ, z) of a condensate in a

double-well potential for Λ = 3. The phase space is equivalent to a sphere, where

the lines z = 1 and z = −1 correspond to the north and south pole, respectively.

Moreover, (0, z) and (2π, z) are equivalent. Separatrices thick solid blue line (S+)

and thick dashed blue line (S−) intersect at the saddle point shown by a solid circle.

They divide the phase space into regions A, B and C. For each region, the thick

dashed-dotted black line defines the action-angle coordinate ϕ1 = 0. The color map

is nonlinear in order to better visualize the equal-energy contours.
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Figure 4.5: Long-time expectation values and time dynamics within the TWA

of a Bose-Einstein condensate in a double-well potential following a quench to a

dynamically unstable point. Panel (a) shows the long-time expectation value of an

observable sx as defined in the text. The dotted black and solid blue lines show

the analytic result of Eq. 4.35 with mean µ ≡ 〈$〉 given by Eq. A.34 and with µ

obtained by numerically sampling the initial Wigner distribution, respectively. The

red circles are values obtained by numerical TWA simulations. Panel (b) shows the

time dynamics of 〈sx(t)〉 for Λ = 3. The solid blue line is 〈sx(t)〉 in Eq. 4.36 with µ

and width σ obtained by numerically sampling from the initial Wigner distribution.

The red dashed line is found from numerical TWA simulations. For both panels,

the number of particles N = 1000.
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where Nj is the number of atoms in and θj is the phase of the condensate in the

j-th well [87]. We can then express Eq. 4.31 in terms of the fractional population

difference z = (N1 −N2)/N and phase difference φ = θ1 − θ2, where φ ∈ [0, 2π] and

φ = 0, 2π are identical. In fact, we have Hdw = NJ × hdw(φ, z), where hdw(φ, z) is

the “single-atom” Hamiltonian that depends on the effective N -dependent coupling

strength Λ = UN/(2J) and is given by

hdw(φ, z) =
Λz2

2
−
√

1− z2 cosφ. (4.32)

The Hamiltonian hdw(φ, z) has a single minimum located at (φ, z) = (0, 0) for

Λ > 0. For Λ > 1, the Hamiltonian has a saddle point located at (φ, z) = (π, 0).

Near the saddle point, hdw(φ, z) ∼ 1 + [(Λ − 1)z2 − (φ − π)2]/2. Figure 4.4 shows

equal-energy contours of hdw(φ, z) in the two-dimensional phase space (φ, z) for

Λ > 1. Two separatrices S+ and S− divide the phase space into regions A, B, and

C. Similar to the pendulum, in regions A and C the motion is rotational while in

region B it is librational. Explicit expressions for rotation and libration trajectories

are given in Appendix A.2. On each separatrix, we consider a trajectory (φs(t), zs(t))

that only varies significantly around t = 0 and for which |z(t)| has a maximum at

t = 0. Along these trajectories

zS±(t) = ±2
√

Λ− 1

Λ
sech

(√
Λ− 1t

)
. (4.33)

The corresponding φS±(t) can be calculated by solving hdw(φS±(t), z±(t)) = 1.

We now consider the dynamics of a (zero-temperature) condensate with N

atoms prepared at the saddle point within the TWA. We assume that the initial
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state is (ψ1, ψ2) = (
√
N/2,−

√
N/2) with corresponding Wigner distribution

W0(ψi, ψ
∗
i ) =

4

π2
e−2|ψ1−

√
N/2|2−2|ψ2+

√
N/2|2 , (4.34)

where i ∈ {1, 2} and the probability measure is
∏

i dψ
∗
i dψi. The distribution

W0(ψi, ψ
∗
i ) corresponds to the Wigner transform of a product of coherent states,

one in each of the two modes with mean atom number N/2 and a relative phase of

π.

Observables have a natural interpretation as spin operators when we represent

the phase-space (φ, z) as a sphere with polar angle ϑ = arccos(z) and azimuthal angle

φ. Hence, observable z corresponds to sz, the z component of the unit “spin” ~s. The

other spin components are sx = sinϑ cosφ =
√

1− z2 cosφ and sy = sinϑ sinφ =

√
1− z2 sinφ. As in the pendulum case, observables that are odd functions of φ

or z have vanishing expectation values for all times. Thus, 〈sz(t)〉 = 〈sy(t)〉 = 0,

but 〈sx(t)〉 is non-vanishing. Using Eq. 4.32, we find that sx = Λz2/2 − 1 on the

separatrices.

Now we evaluate the long-time limit and time dynamics of 〈sx(t)〉. The indi-

cator functions χR(s) are χA(S+) = 1, χB(S+) = 1, χB(S−) = 1, χC(S+) = 1 and

zero otherwise. Then using Eqs. 4.15, 4.33 and following the derivation in Sec. 4.7

we find

lim
t→∞
〈sx(t)〉 ≡ 〈sx(∞)〉 ∼ −1 +

2
√

Λ− 1

πΛ
〈$〉 , (4.35)

where the auxiliary frequency $ is ω1 in regions A, C and 2ω1 in region B. The time

evolution of 〈sx(t)〉 is found by repeating the steps in Sec. 4.8. Details are given

in Appendix A.2, where we find that the asymptotic expression of 〈sx(t)〉 is again
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given by Eq. 4.28, with a distribution function F($) that is a well approximated

by a narrow Gaussian with mean µ = 〈$〉 and width σ � µ that depend on Λ and

N . Then, Eq. 4.29 holds and

〈sx(t)〉 ∼ 〈sx(∞)〉+
∞∑
m=1

(−1)m
2mµ2 cos(mµt)

Λ sinh[mµπ/(2
√

Λ− 1)]
e−m

2σ2t2/2. (4.36)

It is important to note that, as shown in Appendix A.2.1, for large N the mean µ

is O(1/ lnN) and the width is O[1/(lnN)2]. Thus, the quantum correction to the

long-time value of 〈sx(t)〉 is O(1/ lnN). Quantitative analytical expressions for µ

and σ have only been found for Λ− 1� 1.

Figures 4.5(a) and (b) show the long-time expectation value Eq. 4.35 as a func-

tion of Λ and Eq. 4.36 as a function of time, respectively. In addition, the figures

show good agreement with numerical TWA results. In the numerical implemen-

tation of TWA, we sample from the initial distribution W0(ψi, ψ
∗
i ), propagate the

classical equations of motion, and compute the expectation value of an observable

by averaging over the sample.

4.10 Spinor BEC within the single-mode approximation

A trapped spin-1 (spinor) Bose-Einstein condensate is well described by a

single spatial mode for its three magnetic sublevels [88, 89, 130]. This single-mode

approximation (SMA) is valid when the spin healing length, the length scale over

which the spin populations of the condensate can change significantly, is larger

than the condensate size. The mean-field theory within SMA has turned out to

adequately describe atomic spinor experiments with strong spatial confinement [131–
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134]. Quenches to dynamical instability, where quantum effects need to be treated,

have also been studied experimentally [106,135].

The mean-field wavefunction of the spinor BEC in the SMA is the vector

~Ψ(~r, t) = (ψ−1(t), ψ0(t), ψ+1(t))T Φ(~r), where ψj(t) is the complex amplitude of

the j-th magnetic sublevel along the external magnetic field and Φ(~r) is the time-

independent unit-normalized spatial mode. The phase space spanned by the ψj(t)

has six dimensions and the system has three mutually commuting conserved quan-

tities, namely energy, total atom number N =
∑

j |ψj(t)|2, and magnetization

M =
∑

j j|ψj(t)|2. Thus, the system is integrable. We note that the underlying

quantum few-mode Hamiltonian is solvable by the Bethe ansatz [136,137].

It is convenient to write ψj(t) =
√
Nj(t)e

iθj(t), where Nj and θj are the num-

ber of atoms in and the condensate phase of sublevel j, respectively. Non-trivial

dynamics of the spinor system occurs in a reduced two-dimensional space Ω2D with

coordinates φ and ρ0, for a fixed N and M . Here, φ = θ1 + θ−1 − 2θ0, where

φ ∈ [−π, π] and φ = ±π are identical; and ρ0 = N0/N is the fraction of atoms in the

j = 0 sublevel. In these coordinates, the system obeys the “single-particle” classical

Hamiltonian [89]

hspin(φ, ρ0) = cρ0

[
(1− ρ0) +

√
(1− ρ0)2 −m2 cosφ

]
+ q(1− ρ0), (4.37)

where the coupling strength c = g2N
∫
d3r |Φ(~r)|4 is N dependent, g2 is the spin-

changing atom-atom interaction strength, the term q(1− ρ0) describes atomic level

shifts with controllable strength q (in essence due to the quadratic Zeeman interac-

tion) and the conserved unit-magnetization m = M/N .
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Figure 4.6: Equal-energy contours in the phase space (φ, ρ0) of an antiferromagnetic

spin-1 condensate in the single-mode and mean-field approximations. The magne-

tization M = 0, q = −1, and c = 1. The phase space is geometrically equivalent to

a sphere as the edges φ = −π and π are equivalent and the lines ρ0 = 1 and 0 are

identified to the north and south pole, respectively. The thick solid blue line is the

separatrix (S) that divides the phase space into regions A and B. The saddle point

is located at the north pole ρ0 = 1. (Note that the planar projection of the sphere

incorrectly suggests that this point is a line segment.) In region A, the action-angle

coordinate ϕ1 is zero along the black dotted line, while in region B it is zero on

φ = ±π. The color map is nonlinear in order to better visualize the equal-energy

contours.
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Here, we will only consider a condensate with antiferromagnetic c > 0 inter-

actions and assume m = 0. Figure 4.6 shows equal-energy contours of hspin(φ, ρ0)

for a representative q in (−2c, 0). The Hamiltonian then has a saddle point at the

north pole ρ0 = 1 and hspin(φ, ρ0) ∼ (1− ρ0){c(1 + cosφ) + q} with a linear energy

dependence for small positive 1− ρ0. The slope, given in {· · · }, changes sign twice

when φ goes from 0 to 2π. Unlike the pendulum and double-well systems, there

is only one separatrix S, which divides the phase space into regions A and B with

rotation and bounded motion, respectively. The expression for ρ0(t) along a gen-

eral trajectory is given in Appendix A.3. The solution along the separatrix that is

symmetric about t = 0 is

ρ0,S(t) = 1− (1− y1,S) sech2(Ωt), (4.38)

where y1,S = |q|/(2c) and Ω =
√

2|q|c(1− y1,S). By solving hspin(φS(t), ρ0,S(t)) = 0

the corresponding φS(t) can be found.

We prepare the system in the mean-field ground state for q > 0, i.e., ρ0 = 1

or equivalently (ψ+1, ψ0, ψ−1) = (0,
√
N, 0). The initial Wigner distribution is

W0(ψj, ψ
∗
j ) =

8

π3
e−2|ψ−1|2−2|ψ0−

√
N |2−2|ψ+1|2 , (4.39)

where j ∈ {+1, 0,−1}, corresponding to a coherent state for sublevel j = 0 with

a mean atom number N and zero phase, and vacuum states for sublevels j = ±1.

The probability measure for the distribution is
∏

j dψ
∗
jdψj.

The parameter q is then quenched to a value between −2c and 0 at time t = 0

and the system becomes dynamically unstable. Using Eq. 4.15 with two contributing
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regions and one separatrix, the average 〈ρ0(t)〉 long after the quench is given by

lim
t→∞
〈ρ0(t)〉 ≡ 〈ρ0(∞)〉 ∼ 1− 〈$〉 1− y1,S

πΩ
, (4.40)

where we used the indicator functions χA(S) = χB(S) = 1 and defined auxiliary

frequency $ that is now ω1 in both regions with average 〈$〉 = 〈ω1〉A + 〈ω1〉B. In

Appendix A.3.1, we show that 〈$〉 ∼ 2πΩ/ ln(16N). The quantum correction to

the long-time value of 〈ρ0(t)〉 is, again, O(1/ lnN).

Figure 4.7(a) shows 〈ρ0(∞)〉 as a function of q/c for q ∈ (−2c, 0) and fixed atom

number N = 1000. The analytical expression of 〈ρ0(∞)〉 with $ = 2πΩ/ ln(16N)

gives a straight line. The figure also shows the predictions from numerical TWA for

the same parameters. For small negative q, the two curves differ appreciably. We

can reproduce the numerical TWA results when we replace 〈$〉 in Eq. 4.40 by its

numerical value as obtained from sampling the initial Wigner distribution. For |q|/c

much smaller than the scale of our figure, however, the 〈ρ0(∞)〉 from the numerical

TWA and that based on computing 〈$〉 from sampling still differ. We will return

to this issue later on in this section.

The time evolution of 〈ρ0(t)〉 is again calculated from Eq. 4.27. The dominant

contribution to the expectation value is from the trajectories with the action-angle

coordinate ϕ1(0) ≈ 0 (see Appendix A.3.2 for a formal justification). Hence, we can

set ϕ1(0) = 0 and, with αA(S) = αB(S) = π, find

〈ρ0(t)〉 ∼ 1 +
∑

R=A,B

∞∑
m=−∞

(−1)m
〈
ω1DS(mω1)eimω1t

〉
R
, (4.41)

where DS(x) is the Fourier transform of ρ0,S(t). As in the previous section, we define

the distribution function F($) with $ = ω1 in both regions. It is approximately
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Gaussian with mean µ = 〈$〉 and width σ � µ (see Appendix A.3). Then, in a

manner similar to that used to find Eq. 4.30, we derive

〈ρ0(t)〉 ∼ 〈ρ0(∞)〉 − (1− y1,S)
∞∑
m=1

(−1)m
mµ2 cos(mµt)

Ω2 sinh[mµπ/(2Ω)]
e−m

2σ2t2/2 . (4.42)

Figure 4.7(b) shows the typical behavior of 〈ρ0(t)〉 as a function of time. For long

times, the evolution is a damped sinusoid oscillating around its asymptotic value, as

only one term in the sum significantly contributes. For shorter times, the evolution

is more complex and multiple terms are important. The numerical TWA simulations

are in good agreement with our analytical expression.

2 1 0
q/c

0.5

1.0

〈 ρ 0(∞
)〉

(a)

Analytic. I

Analytic. II

TWA sim.

0 10 20 30 40
t (units of /c)

0.5

1.0

〈 ρ 0(t
)〉

(b)

Analytic.

TWA sim.

0 40 80
t (units of /c)

0.0

0.5

1.0
〈 ρ 0(t

)〉
(c)

Analytic.

TWA sim.

Figure 4.7: Long-time expectation values and time dynamics of a spin-1 BEC in

SMA and TWA after an initial (polar) state with all atoms in spin projection zero
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is quenched to a dynamically unstable point with q < 0. The number of atoms

N = 1000. Panel (a) shows the long-time expectation value of the fraction of atoms

in spin projection zero, 〈ρ0(∞)〉, as a function of q/c. The dashed black line and solid

blue curve follow from Eq. 4.40 with mean µ ≡ 〈$〉 given by our analytical result

and a numerical value as determined from sampling the initial Wigner distribution,

respectively. Numerical TWA simulations correspond to the red circles. Panel (b)

shows the time evolution of 〈ρ0(t)〉 for q/c = −1. The solid blue and dashed red

curves are obtained from Eq. 4.42 and numerical TWA simulations, respectively. For

the solid blue line, the mean µ and width σ are obtained by numerical sampling the

initial Wigner distribution. Finally, panel (c) shows the time evolution of 〈ρ0(t)〉 for

the special case where q/c = 0. The solid blue curve corresponds to Eq. 4.43, while

the nearly-indistinguishable dashed red curve is from numerical TWA simulations.

The horizontal dashed lines in panels (b) and (c) are the long-time values.

At q = 0, the Hamiltonian hspin(φ, ρ0) has a degenerate line of saddle points

along φ = π, instead of a single saddle point. The system is then critical and the for-

malism described so far can not be applied. Nevertheless, we show in Appendix A.3.3

that

〈ρ0(t)〉 ∼ 1− αtF (αt), (4.43)

where α = c
√

2/N and F (x) is the Dawson integral [119]. Figure 4.7(c) shows this

evolution as a function of time. The motion seems overdamped with little oscillatory

behavior. Agreement with TWA simulation results is very good.
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4.11 Conclusion and outlook

We have analytically studied the time dynamics of two integrable bosonic

systems within the truncated Wigner approximation (TWA) when they become

dynamically unstable after a quench in a system parameter. The initial Wigner

distribution is then centered around a saddle point. We considered a Bose-Einstein

condensate (BEC) in a symmetric double-well potential and an antiferromagnetic

spinor BEC in the single-mode approximation. Using action-angle variables and the

concept of phase-space mixing, we derived the long-time expectation value of observ-

ables, Eq. 4.15. We also derived the relaxation dynamics of the expectation value

as given in Eq. 4.27. We used a simple pendulum as a guide for these derivations.

The time dynamics of the expectation value of an observable is determined by

the distribution of frequency ω1 of the classical, periodic trajectories. The evaluation

of the time dynamics simplified due to the symmetries of the Hamiltonian and the

initial Wigner distribution. These symmetries also motivated the definition of an

auxiliary frequency $, which has a simple relationship to ω1. For the two bosonic

systems, when the initial state is a coherent state of N atoms the mean of $ is

O(1/ lnN). Hence, the deviation of the long-time expectation value from its classical

value at the saddle point is O(1/ lnN). The mean determines the typical time

scale of the oscillations in the time evolution. The width of $ is O[1/(lnN)2] and

determines the relaxation rate. Furthermore, we obtained their explicit dependence

on external parameters.

Although we only considered a representative observable for each system, the
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time dynamics of observables that quantify (condensate) phase or squeezing can

be computed using our formalism. Our analysis is also directly applicable to other

integrable systems with a single saddle point in phase space, such as a (anti-) fer-

romagnetic spinor BEC with nonzero magnetization and a BEC in an asymmetric

double-well potential. The formalism can be generalized to integrable Hamiltonians

with multiple saddle points, for example, the Lipkin-Meshkov-Glick model [138].

We finish with a brief discussion on the exact quantum dynamics for the few-

mode systems and its comparison with the TWA, which motivates the next chapter.

Figure 4.8 shows a comparison for a BEC in a double-well potential. We find that

the TWA deviates from the quantum evolution after the first oscillation. In fact,

this is consistent with the the quantum break time or Ehrenfest time [139], which

is determined by the anharmonicity in the energy-level spacing [140] and scales

as O(lnN) for the double-well system. Moreover, similar deviations occur in the

dynamics of a pendulum and a spinor BEC. The deviation of the TWA from the

exact quantum dynamics is the motivation for the next chapter, where we study

corrections beyond the TWA, which arise because of interference of classical paths.
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Figure 4.8: Comparison of the TWA and the quantum evolution of an observable

for a BEC in a double-well potential. The blue solid curve is the exact quantum

evolution of the expectation value of the observable sx, which is defined in the text.

The red dashed curve is the TWA result, which deviates from the quantum evolution

after the quantum break time tbreak. For the plots, the parameter Λ = 2 and the

number of atoms is 1000.
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Chapter 5: Non-perturbative effects beyond the truncated Wigner

approximation

5.1 Introduction

The crucial difference between classical probability theory and quantum me-

chanics is the method of computing the transition probability between an initial and

a final state. In classical probability theory, the transition probability is the sum

over probabilities of the paths connecting the two states. In contrast, in quantum

mechanics, it is obtained by first summing the probability amplitudes of all the

connecting paths and then squaring the sum. This procedure leads to interference

of probability amplitudes, a feature absent in the classical theory. The summation

over probability amplitudes is most patent in the path integral formulation of quan-

tum mechanics, where the probability amplitude of a transition is an integral of

eiS/~ over all the paths (typically in the configuration space) and S is the classical

action along a path [74]. An archetypal example of the phenomenon of interference

is a double-slit experiment in which a beam of particles after passing through two

slits forms an oscillating intensity pattern on a screen. This pattern, which is not

explainable by a classical theory, results from the interference of alternate paths
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that a particle can take by passing through either one of the slits.

An example in the context of many-body physics, where interference of clas-

sical paths becomes important is the phenomenon of weak localization, a precursor

to Anderson localization [141]. Weak localization occurs in disordered electron sys-

tems with static impurities, which scatter electrons. These impurities are dilute,

i.e., the typical distance between impurities is much greater than the wavelength of

electrons. The interference of electron paths, which can be represented by sequences

of impurities from which an electron scatters, with their time-reversal counterparts

leads to observable consequences, like reduction of conductivity.

In this chapter, we will study the role of interference of classical paths in

boson dynamics. First, we derive an exact relation for the Green’s function of a

Wigner function in Sec. 5.2. We then approximate this Green’s function in the

semiclassical regime in Sec. 5.3. As we saw in the previous chapter, the truncated

Wigner approximation (TWA) is essentially a classical method as the propagation

of the Wigner function is purely classical. In fact, in Sec. 5.3.1 we find that when the

interference terms are ignored from the semiclassical approximation, we recover the

TWA. Subsequently, we apply the semiclassical formalism to a nonlinear oscillator

in Sec. 5.4. The quantum dynamics of this oscillator displays periodic collapse and

revival of an initial coherent state. The TWA accurately describes the initial collapse

but not the revival. The semiclassical approximation, however, can reproduce the

periodic collapse and revival. Finally, we conclude in Sec. 5.5.
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5.2 Green’s function of the Wigner function

In this section, we derive an exact expression for the propagation of the Wigner

function for a bosonic system. Let the number of modes of the system be finite, and

d in number, with âj and â†j as the annihilation and creation operator of mode j,

respectively. They satisfy the commutation relations [aj, a
†
k] = δjk, where δjk is the

Kronecker δ function. Consider the quadrature operators x̂j =
√

~
2
(âj+â

†
j) and p̂j =

−i
√

~
2
(âj− â†j) satisfying the canonical commutation relations [x̂j, p̂k] = i~δjk. Their

classical limits xj and pj is a set of canonical coordinates that span a phase space of

dimension 2d. The eigenstates of the quadrature operators x̂j satisfy x̂j |x〉 = xj |x〉

for all j ∈ {1, · · · , d}, where x = (x1, x2, . . . , xd). They form a complete basis and∫
dx |x〉 〈x| = 1, where the integral is over Rd and we chose the inner products to

satisfy 〈x′|x〉 = δ(x − x′). Moreover, similar statements apply for the quadrature

operators p̂j and we denote their eigenvalues by p = (p1, p2, . . . , pd). Throughout

this chapter, we will refer to the eigenvalues x and p, which represent a phase-space

point, as position and momentum, respectively.

Let the Wigner function at time t be W (r, t), where r = (x,p) is a phase-space

point. The Wigner function of a pure state |ψ(t)〉 at time t is

W (r, t) =
1

(2π~)d

∫
dq
〈
x + 1

2
q|ψ(t)

〉 〈
ψ(t)|x− 1

2
q
〉
e−ip.q/~, (5.1)

where the integral is over the configuration space Rd. Hereafter, we set ~ = 1

for notational simplicity. We define the Green’s function G(rf , ri, t) of the Wigner
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function by

W (rf , t) =

∫
driG(rf , ri, t)W (ri, 0), (5.2)

for t ≥ 0 with the initial condition G(rf , ri, 0) = δ(rf − ri).

Now, |ψ(t)〉 = U(t) |ψ0〉, where U(t) is the time-evolution operator and |ψ0〉

is the initial state. We insert in Eq. 5.1 the resolutions of identity in the position

basis,
∫
dy1 |y1〉 〈y1| and

∫
dy2 |y2〉 〈y2|, to find

W (rf , t) =
1

(2π)d

∫
dqdy1dy2K

(
xf + 1

2
q ,y1, t

)
ψ0(y1)K∗

(
xf − 1

2
q,y2, t

)
ψ∗0(y2)e−ipf .q,

(5.3)

where the propagator in the configuration space K(xf ,xi, t) = 〈xf |U(t) |xi〉 and

ψ0(x) = 〈x|ψ0〉. We would like to express the initial condition on the right-hand

side, ψ0(y1)ψ∗0(y2), in terms of the initial Wigner distribution. To this end, we

multiply Eq. 5.1 evaluated at t = 0 by eipi.q
′

and integrate over pi to find∫
dpi e

ipi.q
′
W (ri, 0) = ψ0

(
xi + 1

2
q′
)
ψ∗0
(
xi − 1

2
q′
)
. (5.4)

We substitute this expression in Eq. 5.3 and identify y1 = xi+
1
2
q′ and y2 = xi− 1

2
q′.

From the definition of Green’s function in Eq. 5.2 we find

G(rf , ri, t) =
1

(2π)d

∫
dqdq′K

(
xf + 1

2
q ,xi + 1

2
q′ , t

)
K∗
(
xf − 1

2
q ,xi − 1

2
q′, t

)
e−ipf .q+ipi.q

′
.

(5.5)

Thus, the exact Green’s function of the Wigner distribution involves the product of

two propagators in the configuration space. We expect that, similar to the calcula-

tion of a transition probability, where squaring of the sum of probability amplitudes

leads to interference; in this case, the product of the two propagators will have inter-

ference terms. As far as I know, this expression was first derived by Marinov [142]

89



and has been used for semiclassical numerical studies of scattering in molecular

potentials [143].

5.3 Semiclassical approximation of the Green’s function

We now proceed to calculate a semiclassical approximation of G(rf , ri, t). A

quantum system is said to be in the semiclassical regime when the typical action

that appears in the path integral is much greater than ~. For a bosonic mode, this

is the case when its occupation number is large. The semiclassical approximation

of the propagator, also known as the van Vleck-Gutzwiller propagator, is

KSC(xf ,xi, t) =
∑
c

e−iµ
cπ/2

(2πi)d/2

√∣∣∣∣det

(
∂2Sc(xf ,xi, t)

∂xf∂xi

)∣∣∣∣eiSc(xf ,xi,t), (5.6)

where the sum is over all classical paths, indexed by c, that start from position

xi and reach xf in time t, 2d is the dimension of the phase space and µc is the

Maslov index 1. The action Sc(xf ,xi, t) =
∫ t

0
dτ L[xc(τ), dxc(τ)/dτ ], where L is the

Lagrangian and xc(τ) is the position of a classical path as a function of time τ with

xc(0) = xi and xc(t) = xf . The prefactor under the square root is the absolute

value of the determinant of a d× d matrix ∂2Sc(xf ,xi, t)/(∂xf∂xi). The van Vleck-

Gutzwiller propagator is derived by starting from the path integral representation of

the propagator. Then using the stationary-phase approximation with the stationary

points being the classical paths satisfying the boundary conditions; and integrating

quadratic fluctuations around these paths, one arrives at the van Vleck-Gutzwiller

1 Roughly speaking, the Maslov index of a classical path is the number of turning points along

the path.
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propagator [144,145]. It is an important tool in quantum chaos and is the basis for

the derivation of the Gutzwiller trace formula [146].

Substitution of van Vleck-Gutzwiller propagator in Eq. 5.5 yields the semi-

classical approximation to the Green’s function

GSC(rf , ri, t) =
1

(2π)2d

∫
dqdq′ e−ip.q+ip′.q′ (5.7)

×
∑
c

√
Dc(xf + q/2,xi + q′/2, t) eiS

c(xf+q/2,xi+q′/2,t)−iµcπ/2

×
∑
c′

√
Dc′(xf − q/2,xi − q′/2, t) e−iS

c′ (xf−q/2,xi−q′/2,t)+iµc
′
π/2,

where Dc(xf ,xi, t) = | det [∂2Sc(xf ,xi, t)/(∂xf∂xi)] |. Now we carry out a Taylor

expansion of the action to find

Sc
(
xf + 1

2
q,xi + 1

2
q′, t

)
≈ Sc(xf ,xi, t) +

pcf .q

2
− pci .q

′

2
, (5.8)

where we have used the results derived in Appendix B.1 ∂Sc(xf ,xi, t)/∂xi = −pci

and ∂Sc(xf ,xi, t)/∂xf = pcf , where pci and pcf are the initial and final momentum,

respectively, of the classical path along which the action is computed. Furthermore,

we approximate

Dc(xf + q/2,xi + q′/2, t), Dc(xf − q/2,xi − q′/2, t) ≈ Dc(xf ,xi, t). (5.9)

Substituting expressions for Sc and Dc in Eq. 5.10 and carrying out the integral over

q and q′, we find

GSC(rf , ri, t) =
∑
c,c′

√
DcDc′eiSc−iSc′−i(µc−µc′ )π/2 δ

[
pf − 1

2
(pcf + pc

′

f )
]
δ
[
pi − 1

2
(pci + pc

′

i )
]
,

(5.10)
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where, for clarity, we have suppressed the dependence of Sc, Dc, etc., on xi, xf and

t. This is the main result of this chapter and relates the Green’s function of the

Wigner distribution to a double sum over classical paths connecting positions xi

and xf in time t. A similar formalism has been used in the study of transport of

electrons in ballistic chaotic cavities [147].

5.3.1 The truncated Wigner approximation

We claim that the diagonal part of the sum in Eq. 5.10, i.e., when c = c′, is

the classical Liouville propagator, which is the Green’s function within the TWA. In

other words, the TWA neglects the terms arising from the interference of classical

paths. A clear way of proving this assertion is to consider the evolution of an

observable O(x,p). Let W0(r) be the initial Wigner function. Then the expectation

value of the observable at a later time t is (see also Eq. 4.1)

〈O(t)〉 ≡ 〈O(x(t),p(t))〉 =

∫
dxfdpf O(xf ,pf )W (rf , t)

=

∫
dxfdxidpfdpiO(xf ,pf )G(rf , ri, t)W0(ri), (5.11)

where we used Eq. 5.2. The diagonal part of the Green’s function of Eq. 5.10 is

GTWA(rf , ri, t) =
∑
c

Dc(xf ,xi, t) δ
(
pf − pcf

)
δ (pi − pci) . (5.12)

We substitute this expression in Eq. 5.11 and integrate over pf to find that the

claimed expectation value within TWA is

〈O(t)〉TWA =

∫
dxfdxidpiO(xf ,p

c
f )
∑
c

Dc(xf ,xi, t) δ (pi − pci)W0(xi,pi). (5.13)
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Now, we would like the integration measure to depend only on the initial conditions,

i.e., dxidpi. To this end, we show in Appendix B.2 that

δ[xf (xi,pi, t)− xcf ] =
∑
c

Dc(xf ,xi, t) δ (pi − pci) , (5.14)

where the function xf (xi,pi, t) is the position at time t of a unique classical tra-

jectory that starts from the phase-space point (xi,pi) at time 0. The sum on the

right-hand side is over classical paths that connect xi to xcf in time t and pci is the

initial momentum of such a path. Using this observation and after integrating over

xf , Eq. 5.13 becomes

〈O(t)〉TWA =

∫
dxidpiO(xc(t),pc(t))W0(xi,pi),

where (xc(t),pc(t)) is the classical path satisfying the initial conditions xc(0) = xi

and pc(0) = pi. Thus, we have arrived at an expression that is in accordance with

the TWA (see Eq. 4.1), thereby proving the assertion.

It is pertinent to put the semiclassical formalism in context of the work by

A. Polkovnikov [109, 115] on boson dynamics beyond the TWA. He systematically

calculated perturbative corrections to TWA; however, the analysis does not yield

the interference of classical paths, which is a non-perturbative effect. In particular,

a nonlinear oscillator was studied whose quantum dynamics exhibits collapse and

revival. Although the perturbative analysis describes the initial collapse, with in-

creasing accuracy with the order of the perturbation, it fails to describe revivals in

the system. The classical version of this oscillator was used to describe the phase-

space mixing in Sec. 4.5. Next, we study the oscillator’s quantum dynamics and

compare it with its TWA and semiclassical dynamics.
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5.4 Case study: A nonlinear oscillator

The quantum Hamiltonian of the single-mode nonlinear oscillator is

HNO =
U

2
â†â†ââ, (5.15)

where U is the interaction strength and â(â†) is the annihilation (creation) operator

of the associated bosonic mode. As the number operator â†â commutes with HNO,

the energy eigenstates are |n〉 with eigen-energies En = Un(n− 1)/2, where n is the

occupation number of the mode. Decomposing an initial state |ψ0〉 =
∑∞

n=0 cn |n〉

and noting that n(n − 1)/2 is an integer, we can immediately see that the initial

state periodically revives, i.e., |ψ(t)〉 = |ψ0〉 when t is an integer multiple of period

trev = 2π/U .

The nonlinear oscillator has been studied in experiments with a BEC in an

optical lattice [148]. When the tunneling between the lattice sites is switched off,

the dynamics of a single site is described by the Hamiltonian in Eq. 5.15. The initial

state is a coherent state, |α〉 = e−|α|
2/2
∑

n α
n/
√
n! |n〉, which is a superposition of

number states. The quantum state at time t is

|ψ(t)〉 = e−|α|
2/2
∑
n

αn√
n!
e−iUn(n−1)t/2 |n〉 . (5.16)

The experiment measured the expectation value of â from the interference pattern

formed by releasing the atoms from the lattice. It evolves as

〈ψ(t)| â |ψ(t)〉 = αe|α|
2(e−iUt−1), (5.17)

which collapses and revives with a period trev as shown in Fig. 5.1. At short times,
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Figure 5.1: Collapse and revival in a nonlinear oscillator. The plot shows | 〈a(t)〉 |

as a function of time for an initial coherent state whose mean atom number is 4.

The quantum dynamics shows collapse and revival of | 〈a(t)〉 | with revival time trev.

The TWA result, Eq. 5.22, closely replicates the first collapse but shows no revival.

On the other hand, the semiclassical approximation, Eq. 5.23, agrees well with the

quantum evolution for all times.
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Ut� 1,

〈ψ(t)| â |ψ(t)〉 ≈ αe−|α|
2U2t2/2−iU |α|2t. (5.18)

Therefore, the time scale of collapse is 1/(U
√
N), where N = |α|2 is the average

number of atoms of the coherent state. This collapse and revival was observed in

the experiment. In addition, the Hamiltonian has also been implemented using the

Kerr nonlinearity for photons [149]. Besides the observation of collapse and revival

of a coherent state, the experiment also measured the Husimi distribution.

Next, we study the time dynamics of a coherent state of the nonlinear oscillator

within the TWA.

5.4.1 Dynamics according to the TWA

To evaluate the TWA average of a(t), we first need to describe the dynamics

of the classical Hamiltonian corresponding to HNO
2. It is

HNO = U(x2 + p2)2/8. (5.19)

Then the classical equations of motion are

dx

dt
=
∂HNO

∂p
=
U

2
ρ2p ,

dp

dt
= −∂HNO

∂x
= −U

2
ρ2x, (5.20)

where ρ2 = x2 + p2. A classical path, with a frequency ω = Uρ2/2, lies on a circle

in phase space, centered around the origin. The system is integrable as the phase

space is two-dimensional and the energy is conserved. The angle of the action-angle

2 We use â†â = (x̂2 + p̂2 − 1)/2 to find that HNO = U/8× [(x̂2 + p̂2)2 − 4(x̂2 + p̂2) + 3], which

is Weyl ordered. We then replace x̂, p̂ by their classical limits to obtain HNO, and ignore the

constant and second term in the semiclassical limit N � 1.
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coordinates is the polar angle ϕ measured in clockwise direction, the direction of

motion. Using the definition ω = ∂HNO/∂I, we find that the action coordinate

I = ρ2/2.

For concreteness, let the initial coherent state, with an occupation number

N � 1, be centered along the p-axis, i.e., α = i
√
N . Its Wigner function

W (x, p) =
1

π
e−x

2−(p−
√

2N)2 , (5.21)

is centered at (x, p) = (0,
√

2N) and has the normalization
∫∞
−∞ dxdpW (x, p) = 1.

For the calculation of a TWA average, it is convenient to work in polar coordinates.

We define the range of the polar angle ϕ as (−π, π] and its zero to be along the p-axis.

Then, the Wigner-Weyl transform of â(t) is a(t) = [x(t) + ip(t)]/
√

2 = iρe−iϕ(t)/
√

2.

It evolves as a(t) = iρe−iωt+ϕ0 = iρe−iUρ
2t/2+ϕ0 , where ϕ0 is the initial angle and we

used fact that ω = Uρ2/2. After writing the Wigner function in polar coordinates

and integrating, we find

〈a(t)〉TWA ≈ i

∫ ∞
0

dρ

∫ π

−π
dϕ0 ρ

2e−(ρ−
√

2N)2−2Nϕ2
0−iUρ2t/2

≈ i
√
Ne−U

2Nt2/2−iUNt, (5.22)

which matches the initial collapse of the coherent state in Eq. 5.18 but has no

subsequent revival. A comparison of Eq. 5.22 with the exact quantum result of 5.18

is shown in Fig. 5.1.

This result is expected from the discussion of phase-mixing in Sec. 4.5. Due

to phase space mixing, the distribution function mixes uniformly in the angle ϕ.

As a(t) ∝ eiϕ(t), its expectation value collapses. Furthermore, within the TWA, the
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distribution function remains mixed, hence, there is no revival. This observation

indicates that the quantum evolution somehow reverses phase mixing and revives

the quantum state. In the next section, we find that applying the semiclassical

formalism, which includes interference terms, indeed, leads to revival.

5.4.2 Dynamics according to semiclassical approximation

The classical paths, which lie on circles in the phase space, can be indexed by

their winding number around the phase-space origin. Moreover, after a sufficiently

long time there are multiple paths connecting two positions in a given time. This

multiplicity is due to nonlinearity of the Hamiltonian and is absent for a harmonic

oscillator.

The calculation of 〈a(t)〉 according to the semiclassical approximation is lengthy

and has been relegated to Appendix B.4. Here, we list the main steps of the calcu-

lation:

1. The time evolution of an observable O(x, p) is given by Eq. 5.11 and we sub-

stitute G(rf , ri, t) by its semiclassical approximation GSC(rf , ri, t) as given in

Eq. 5.10.

2. Now the action Sc(xf , xi, t) (see Appendix B.3), hence GSC(rf , ri, t), and the

dynamics is simplest in action-angle coordinates. Therefore, we convert the

integral over xi, xf , pi and pf in Eq. 5.11 into an integral over the initial and

final angles ϕi and ϕf , respectively, and a double sum over winding numbers

of the classical paths. We also express the observable, GSC(rf , ri, t), and the
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initial Wigner function in terms of ϕi, ϕf and winding numbers.

3. Next, we note that the classical motion in the phase space is restricted around

an annulus of radius
√

2N and width ofO(1). Then, O(x, p) ≈ O(
√

2N sinϕ,
√

2N cosϕ);

in particular, a(x, p) ≈ i
√
Ne−iϕ. We make a more careful approximation for

the initial Wigner function as it varies sharply with ρ.

4. Carrying out the integrals and taking in account the Maslov indices of the

paths, we find the semiclassical approximation

〈a(t)〉SC =
∞∑

v=−∞

i
√
Ne−iUNte−2N(πv−Ut/2)2 . (5.23)

The semiclassical expression 〈a(t)〉SC is invariant under the transformation

t → t + 2π/U and v → v − 1; hence, is periodic with time period trev = 2π/U .

Moreover, 〈a(t)〉SC matches the collapse and revival of the exact quantum average

〈ψ(t)| â |ψ(t)〉 (see Fig. 5.1), with a relative error of O(1/
√
N).

5.5 Conclusion and outlook

In this chapter, we studied quantum corrections to boson dynamics that are

beyond the TWA. We derived, Eq. 5.10, a semiclassical approximation to the ex-

act Green’s function of the Wigner function Eq. 5.5. Crucially, the approximation

preserves the quantum interference of trajectories. In fact, we showed that the for-

malism reduces to the TWA when the interference terms are ignored. Thereafter, we

studied a single-mode nonlinear oscillator whose exact quantum dynamics exhibits

collapse and revival of a quantum state. We studied the dynamics of an observ-
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able of this oscillator both using the TWA and the semiclassical formalism. Within

TWA, due to phase mixing, the expectation value of the observable collapses but

there is no revival. The semiclassical approximation, however, matches the exact

quantum dynamics.

The analysis of this chapter provides insight into when the TWA deviates

from the exact quantum dynamics. It occurs after a time when classical trajectories

start to interfere. For quantum systems whose classical limit is chaotic, this time

is known as the quantum break time or the Ehrenfest time and has been shown

to be proportional to the logarithm of the characteristic Lyapunov exponent [139,

150]. Finally, interference of paths explains the disagreement of the TWA with the

quantum dynamics of the dynamically-unstable systems, which we studied in the

previous chapter. The quantum break time in these cases is the mean of the time

taken by trajectories to return to the saddle point, precisely the time when multiple

classical paths, which obey the same boundary conditions, contribute significantly

to the classical evolution.
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Chapter 6: Summary and outlook

Bose-Einstein condensates of ultracold atoms have been the subject of exper-

imental and related theoretical studies since their first experimental realization in

1995. The dynamics of a Bose-Einstein condensate (BEC) in a trap is, in gen-

eral, described by a nonlinear equation called the Gross-Pitaevskii equation (GPE),

which is derived under a mean-field approximation. A condensate can sometimes

be described by a few modes, for example, a BEC in a double-well potential and a

tightly trapped spinor BEC. In these cases too, a mean-field theory is generally ade-

quate. The approximation, however, breaks down under certain scenarios. Broadly

speaking, this dissertation was motivated by these experimental scenarios where the

usual description by the GPE or a mean-field theory fails to adequately describe the

dynamics of a BEC.

We first studied the collision of two BECs near a Feshbach resonance and de-

rived an extension of the GPE to describe the dynamics. We found that, in analogy

to the optical phenomenon of slow light, a BEC traveling through another BEC

with a collision energy near a Feshbach resonance slows down. We also studied dy-

namical instabilities in BECs where the mean-field approximation is no longer valid

and quantum corrections need to be included. We analytically studied the dynamics
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of integrable few-mode bosonic systems after they are quenched to a dynamically

unstable point. We found excellent agreement between analytical and numerical

studies within the truncated Wigner approximation (TWA). The TWA, however,

deviates from the exact quantum dynamics after the quantum break time. This

observation motivated the study of dynamics in the semiclassical approximation

and we found that the TWA ignores terms arising from the interference of classical

paths. We then analyzed a nonlinear oscillator and realized that the TWA is a good

approximation to the exact quantum dynamics only for short times; on the other

hand, the semiclassical theory agrees well with the exact dynamics for all times.

We also studied an interferometric experiment, which measured the current

through and phase difference across a rotating barrier in a ring-shaped BEC. In this

case, instead of going beyond the mean-field equations of motion, we found that

the single-particle analysis, equivalent to ignoring the nonlinear term of the GPE,

is adequate to qualitatively explain the spirals in the interference pattern and to

define the relevant time scales.

We now discuss future research directions where our results could have imme-

diate applicability. The dynamical instability in a spinor BEC has been proposed

by M. Gabbrielli et al. [151] as a means of creating a nonlinear interferometer that

can surpass the standard quantum limit. In this work, the interferometer was nu-

merically studied for times when the TWA is valid. Hence, the formalism developed

in Chapter 4 could provide analytical insights into the performance of this interfer-

ometer. Furthermore, the TWA analysis of the dynamics of the few-mode systems

studied in Chapter 4 is only accurate up to the quantum break time. To analyt-
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ically study the dynamics beyond this time, the semiclassical theory of Chapter 5

could be applied to these systems. It will, however, require a careful treatment as

the reduced phase spaces are compact making the usual definition of the Wigner

function inapplicable.
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Appendix A: Dynamics of few-mode quantum systems

A.1 Pendulum

The simple pendulum is used throughout to illustrate our derivation of dy-

namics and long-time expectation values for few-mode integrable systems. In this

appendix we derive results specific to the pendulum. Its Hamiltonian is given in

Eq. 4.9 with canonical coordinates θ and p satisfying {θ, p} = 1, where {·, ·} is the

Poisson bracket.

First, librational trajectories (θB(t), pB(t)) in phase-space region B are [119]

sin (θB(t)/2) = k sn (t+ t0, k) , (A.1)

pB(t) = 2k cn (t+ t0, k) , (A.2)

where the modulus k =
√
E/2, E is the energy of the trajectory and time t0 depends

on the initial condition. Secondly, rotational trajectories (θR(t), pR(t)) in regions

R = A and C are

sin (θR(t)/2) = ± sn ((t+ t0)/k, k) , (A.3)

pR(t) = ±(2/k) dn ((t+ t0)/k, k) , (A.4)

where k =
√

2/E . The + and − signs correspond to regions A and C, respectively.
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The functions sn(z, k), cn(z, k), and dn(z, k) are Jacobi elliptic functions [119]. Fi-

nally, on the separatrices E = 2 with trajectories (θS±(t), pS±(t)) given by Eq. 4.10.

A.1.1 Distribution function F($)

In this section we calculate the distribution function

F(z) =

∫
Ω

dθdpW0(θ, p) δ(z −$(θ, p)), (A.5)

as defined in Eq. 4.20, as well as its mean and width. Here, the integral is over the

whole phase space Ω and the initial Gaussian distribution W0(θ, p), given in Eq. 4.16,

has a width d along both θ and p. The auxiliary frequency $(θ, p) = ω1 = π/[kK(k)]

in regions A and C and $(θ, p) = 2ω1 = π/K(k) in region B, where K(k) is the

complete elliptic integral of the first kind with modulus k ∈ [0, 1] [119].

Near the saddle point the energy E ∼ 2 + (p2 − q2)/2, where q = (θ − π)

mod 2π. The relationship between energy and modulus leads to k2 ∼ 1−|p2− q2|/4

in all regions. Finally, $ ∼ π/K(k) ∼ 2π/ ln(64/|p2 − q2|) using the asymptotic

expansion K(k) ∼ ln(16/k′2)/2 around k = 1 with complementary modulus k′

defined by k′2 = 1− k2.

To compute F($) it is convenient to first introduce the invertible transforma-

tion X ($) = 2k′2/d2 ∼ 32e−2π/$/d2. The dependence of X ($) on d will become

clear later. We then write

F($) ∼ 2π

$2
X ($)P (X ($)) , (A.6)
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as d→ 0 with the distribution

P (X ) =

∫
Ω

dθdpW0(θ, p) δ

(
X − |p

2 − q2|
2d2

)
, (A.7)

and the factor in front of P (X ($)) in the right-hand side of Eq. A.6 is the Jacobian

dX/d$.

The separatrices divide the neighborhood of the saddle point into four quad-

rants. We solve Eq. A.7 in each quadrant separately. For the quadrant in region

A (p > 0 and p > q) we change the integration variables to p = d
√

2X coshu and

q = d
√

2X sinhu with u ∈ (−∞,∞). Similar changes of variables can be used in the

other three quadrants (noting that two quadrants lie in region B). The contribution

to P (X ) from each quadrant turns out to be the same and we finally find

P (X ) =
2

π
K0 (X ) , (A.8)

where K0(x) is a modified Bessel function [119] and P (X ) has no explicit dependence

on the width d. We then have

F($) ∼ 128e−2π/$

d2$2
K0

(
32e−2π/$

d2

)
, (A.9)

as d→ 0 and for $ � 1.

Figure A.1 shows F($) as a function of $ for a single d. We find that F($)

is sharply peaked. It approaches zero as C e−2π/$/$3 when $ → 0+ and C is

a constant. For $ & 1, where Eq. A.9 is invalid, either p or q is much greater

than d and W0(θ, p), hence F($), is exponentially small. Thus, it is reasonable to

approximate F($) by a Gaussian as shown in Fig. A.1.
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Figure A.1: Distribution function F($) as a function of the auxiliary frequency $

for the pendulum with an initial Wigner distribution (Eq. 4.16) with width d = 1/20.

The blue solid line is the distribution in Eq. A.9. Indistinguishable from this curve

is the F($) shown by red circles, which are obtained by numerical Monte Carlo

sampling of the initial Wigner distribution. The cyan solid, black dashed, and black

dashed-dotted lines are Gaussians whose mean and standard deviation are given by

that of (1) the numerical distribution, (2) Eqs. A.11 and A.13, and (3) Eqs. A.14

and A.15, respectively.
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We now calculate the mean and variance of $ using one of two methods. The

mean µ ∼
∫∞

0
dX P (X )$(X ) with $(X ) = 2π/ ln[32/(d2X )]. We then identify the

small parameter λ−1 = ln(C/d2)−1 � 1, where the constant C will be determined

later, and find

µ ∼ 2π

λ
+

2π

λ

∞∑
n=1

E[Yn]

λn
, (A.10)

with the help of the geometric series. Here, Y = ln(CX/32) and E[Y ] is the expecta-

tion value of Y with respect to P (X ). For C = 64eγ, where γ is the Euler-Mascheroni

constant, the expectation value E[Y ] = 0. Hence,

µ ∼ 2π

λ
+O(1/λ3). (A.11)

Similarly, the variance

σ2 ∼
(

2π

λ

)2 [
E[Y2]− E[Y ]2

λ2
+O(1/λ3)

]
(A.12)

and evaluation of the second moment of Y gives

σ ∼ π2

λ2
+O(1/λ3). (A.13)

Thus, we find µ = O(1/| ln d|) and σ = O(1/| ln d|2).

The second method estimates µ and σ from the location of and curvature at

the maximum of F($) using the fact that the distribution is well approximated by a

narrow Gaussian. We could not find a closed form for maximum of F($). Instead,

we present results based on the extremum of $2F($). This only introduces small

corrections as $2F($) ∼ µ2F($) over the width of the distribution near $ = µ.

After some algebra, we find

µ ∼ 2π

ln (32/(κd2))
, (A.14)
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σ ∼
√
− g(X )

d2g(X )/d$2

∣∣∣∣
$=µ

=
µ2

2π
√

1− κ2
(A.15)

where g(X ) = $2F($) = 4XK0(X ) and κ = 0.595 · · · is the solution of dg(X )/dX =

0.

The estimates of µ and σ obtained by either method gives the same logarithmic

scaling with d. The numerical prefactors inside the logarithm, however, are different.

Figure A.1 shows Gaussian distributions with the estimated mean and width based

on the two methods. Their difference from the true F($) vanishes as d→ 0.

A.1.2 Time dynamics of observables

In this subsection, we derive the time dynamics of observables for a pendulum.

That is, we derive Eq. 4.28 from Eq. 4.27. The dependence of the quantity in the

angular brackets 〈· · · 〉R in Eq. 4.27 on the action-angle coordinates is only through

ω1 and ϕ1. (This is also true for the other two systems studied in the paper.)

Denoting the quantity by A(ω1, ϕ1) it is then convenient to write

〈A〉R =

∫
dω1

∫
dϕ1

2π
A(ω1, ϕ1)g0,R(ω1, ϕ1), (A.16)

where

g0,R(ω1, ϕ1) =

∫
I
dI

∫ 2π

0

dϕ′

2π
f0,R(I,ϕ)δ[ω1 − ω1(I)] (A.17)

and ϕ′ = (ϕ2, . . . , ϕn) are all the angles except ϕ1. (The time dependence of A

is suppressed for clarity.) For the pendulum with its 2D phase space Eq. A.17

simplifies to g0,R(ω1, ϕ1) = dI1/dω1 f0,R(I1, ϕ1), where dI1/dω1 is the Jacobian of

the transformation between I1 and ω1.
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The function g0,R(ω1, ϕ1) is concentrated around a few points in the (ω1, ϕ1)

space from the observation that W0(θ, p) is localized around the saddle point. The

justification of this approximation is subtle and technical; it has been relegated to

Appendix A.1.2.1. We find that

g0,R(ω1, ϕ1) ≈


2π g0,A(ω1) δ(ϕ1), R = A,C

π g0,B(ω1) [δ(ϕ1) + δ(ϕ1 − π)] , R = B

(A.18)

where g0,R(ω1) =
∫ 2π

0
dϕ1/(2π)g0,R(ω1, ϕ1) is a marginal distribution.

We can now simplify the average and sums on the right-hand side of Eq. 4.27

into a single average for observables that are even in θ and p. The bump func-

tions DS+(t) and DS−(t) are then identical. Moreover, the angular dependence of

g0,B(ω1, ϕ1) implies that 〈eimϕ1〉B = 0 when m is odd so that odd Fourier compo-

nents in region B do not contribute to 〈O(t)〉. (For regions A and C, both even and

odd Fourier components contribute.) Using these observations, the definition of the

auxiliary frequency $ and the values of αR(s), we combine the sum over regions

and separatrices into a single sum and arrive at Eq. 4.28.

A.1.2.1 Derivation of Eq. A.18

We give a quantitative argument for Eq. A.18. In the evaluation of F($) in

Appendix A.1.1 we observed that each quadrant in the neighborhood of the saddle

point contributes equally. In region A, where $ = ω1, a comparison of Eq. 4.20

and the definition of g0,A(ω1) shows that g0,A(ω1) ∝ F(ω1). Thus, g0,A(ω1, ϕ1) is

localized around µ = 〈$〉 with a width σ � µ along the ω1 coordinate.
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Next, we define the standard deviation ∆A(ω1) of ϕ1 with respect to the con-

ditional distribution g0,A(ω1, ϕ1)/g0,A(ω1) at each value of ω1. We now estimate

∆A(ω1) from the momentum spread ∆pA = O(d) in region A, where d is the width

of W0(θ, p). Using Eq. A.4 we find

pA =
2

k
dn

(
ϕ1

ω1k
+K(k), k

)
, (A.19)

where t0 = kK(k), because pA is minimal when ϕ1 = 0 [see Fig. 4.2(a)]. Now, we

expect the relevant ϕ1 to be small and use the Taylor expansion dn(x+K(k), k) =

k′ + k′k2x2/2 + · · · for small x to find

pA − pmin
A ∼ k′

(
ϕ1

ω1

)2

. (A.20)

where k′ =
√

1− k2 ∼ 4e−π/ω1 and pmin
A = 2k′/k. Thus, the width ∆A(ω1) ∝

ω1

√
∆pA/k′ ∝ ω1e

π/(2ω1)
√
d. At first glance, this relation contradicts the assumption

that ∆A(ω1) is small because ∆A(ω1) diverges as ω1 → 0+. From Appendix A.1.1,

however, we know that F(ω1) and, thus, g0,A(ω1) go to zero rapidly as ω1 → 0+. In

fact, at the mean value ω1 = µ, given in Eq. A.14, we find ∆A (µ) = O(1/| ln d|)� 1.

Furthermore, ∆A(ω1) remains small where g0,A(ω1, ϕ1) is significant as σ � µ.

Hence, g0,A(ω1, ϕ1) is localized in both ω1 and ϕ1. [The distribution f0,A(I1, ϕ1) is

not localized in ϕ1 as it does not approach zero as ω1(I1)→ 0+.]

The nonzero, albeit small, width of g0,R(I1, ϕ1) in the ω1 coordinate leads to

mixing in ϕ1. On the other hand, the distribution over ω1 is invariant in time. We

can then replace the narrow distribution g0,A(ω1, ϕ1) along ϕ1 by a delta function.

That is, g0,A(ω1, ϕ1) ≈ 2πḡ0,A(ω1)δ(ϕ1). A similar analysis in regions B and C leads

to the other two equations in Eq. A.18.
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A.2 A condensate in a double-well potential

In this appendix, we derive results pertaining to a two-mode Bose-Einstein

condensate in a double-well potential. Its “single-particle” Hamiltonian hdw(φ, z) is

defined in Eq. 4.32 and {φ, z} = 1. For Λ > 1 the Hamiltonian has a single saddle

point and two separatrices S divide the phase space into three distinct regions

R = A, B, and C. The solutions to the equations of motion are [122]

zR(t) =


C cn (CΛ(t− t0)/(2κ), κ) , R = B

±C dn (CΛ(t− t0)/2, 1/κ) , R = A,C

(A.21)

where

C2 =
2

Λ2

(
EΛ− 1 +

√
Λ2 − 2EΛ + 1

)
, (A.22)

κ2 =
1

2
+

EΛ− 1

2
√

Λ2 − 2EΛ + 1
. (A.23)

The “single-particle” energy of the trajectory is E and t0 depends on the initial

condition. The corresponding φR(t) can be obtained by solving h(φR(t), zR(t)) = E .

(Note that Ref. [122] misses a factor of 1/2 in the first argument of both cn(z, k)

and dn(z, k).) Finally, on the separatrices E = 1, κ = 1 and C = 2
√

Λ− 1/Λ with

solutions zS±(t) given by Eq. 4.33.

A.2.1 Distribution function F($)

We now compute the distribution function F($) for a Bose condensate in a

double-well potential. The initial Wigner distribution Eq. 4.34 is localized around

the saddle point (ψ1, ψ2) = (
√
N/2,−

√
N/2). It is convenient to introduce real
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coordinates pi and qi defined by p1 + iq1 = ψ1 −
√
N/2 and p2 + iq2 = ψ2 +

√
N/2.

In these coordinates, the Wigner distribution becomes

W0(pi, qi) =
4

π2
e−2(p21+q21+p22+q22) , (A.24)

where i ∈ {1, 2} and the probability measure is dp1dq1dp2dq2. Near the saddle point

z =

√
2

N
(p1 + p2) +O(N−1), (A.25)

φ = −π +
q1 + q2√

N
+O(N−1) (A.26)

and their substitution into hdw(φ, z) gives the energy

E = 1 +
1

N

[
(Λ− 1)(p1 + p2)2 − (q1 + q2)2

]
+O(N−3/2) (A.27)

close to one.

Next, we express the auxiliary frequency $ = ω1 in regions A, C and 2ω1

in region B in terms of coordinates pi and qi. From Eq. A.21 and the periodic-

ity of elliptic functions, it follows that near the separatrix $ ∼ π
√

Λ− 1/K(k) ∼

2π
√

Λ− 1/ ln(16/k′2) where k = κ in region B and 1/κ in regions A,C. The mod-

ulus k and its complement k′ depend on E and thus on the pi and qi. With the help

of Eqs. A.23 and A.27, we find

X ≡ 2

(
Λ− 1

Λ

)2

Nk′2 ∼ |(Λ− 1)(p1 + p2)2 − (q1 + q2)2|. (A.28)

This choice of X , in particular its N dependence, will simplify later derivations.

We realize that $ ∼ 2π
√

Λ− 1/ ln[32N(Λ − 1)2/(XΛ2)] and X ($) = 32N(1 −

Λ−1)2e−2π
√

Λ−1/$. Thus, we have established a relation between $ and pi, qi via the

variable X .
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Figure A.2: Distribution function F($) as a function of auxiliary frequency $ for

a Bose-Einstein condensate in a double-well potential with 1000 atoms and Λ = 2.

The solid blue curve is the distribution in Eq. A.29. Indistinguishable from this

curve is the F($) shown by red circles, which is obtained by Monte Carlo sampling

of the initial Wigner distribution. The cyan solid line is a Gaussian fit to these data.

The dashed line is a Gaussian distribution whose mean and standard deviation are

given by Eqs. A.34 and A.35, respectively.
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The distribution F($) is then

F($) =
2π
√

Λ− 1

$2
X ($)P(X ($)), (A.29)

where

P(X ) =

∫
dp1dq1dp2dq2W0(pi, qi) δ(X − Z(pi, qi)), (A.30)

with Z(pi, qi) equal to the right-hand side of Eq. A.28 and the factor multiplying

P(X ) in Eq. A.29 is the Jacobian dX/d$.

We simplify the integrals in Eq. A.30 by changing to “center of mass” and

“relative” coordinates P = (p1 +p2)/2, p = p1−p2, Q = (q1 + q2)/2 and q = q1− q2.

We find

P(X ) =
4

π

∫ ∞
−∞

dPdQ e−4P 2−4Q2

δ
(
X − 4|(Λ− 1)P 2 −Q2|

)
, (A.31)

which yields

P(X ) =
2

π
√

Λ− 1
cosh

(
Λ− 2

2(Λ− 1)
X
)
K0

(
ΛX

2(Λ− 1)

)
. (A.32)

Figure A.2 shows F($) for N = 1000 and Λ = 2. It is evident from the figure

that F($) is well approximated by a Gaussian distribution. The mean µ and

width σ of F($) can be computed from Eqs. A.10 and A.12, respectively, with

λ = ln[32N(1 − Λ−1)2/Λ2]/
√

Λ− 1. Although we have not been able to evaluate

analytically the moments E[Yn] with Y = ln(X ), the equations imply that µ is

O(1/ lnN) and σ is O[1/(lnN)2].

We can compute µ using the second method described in Appendix A.1.1.

The location of the maximum of Eq. A.29 is a solution to a transcendental equation
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that does not have a closed form for arbitrary values of Λ. For small positive Λ− 1,

however, we find a closed-form solution by replacing cosh in Eq. A.32 by a constant,

chosen such that the approximate P (X ) remains unit normalized. Thus,

P (X ) ≈ Λ

π(Λ− 1)
K0

(
ΛX

2(Λ− 1)

)
. (A.33)

and we find

µ ≈ 2π
√

Λ− 1

ln [16N(Λ− 1)/(Λκ)]
, (A.34)

σ ≈ µ2

2π
√

(Λ− 1)(1− κ2)
, (A.35)

where κ = 0.595 · · · and Λ− 1� 1.

A.2.2 Time dynamics of observables

The structure of the phase space of a condensate in double-well potential is

similar to that of the pendulum. Therefore, we can directly apply the analysis of time

dynamics for a pendulum given in Appendix A.1.2. In particular, the distribution

functions g0,R(ω1, ϕ1), as defined in Eq. A.17, are localized and are given by Eq. A.18.

Furthermore, observable 〈sx(t)〉 obeys Eq. 4.29.

A.3 Spinor gas in single-mode approximation

In this appendix, we obtain results for an antiferromagnetic (c > 0) spinor

condensate under SMA. Its “single-particle” Hamiltonian hspin(φ, ρ0) is given in

Eq. 4.37 and {φ, ρ0} = 1. For −2c < q < 0 the Hamiltonian has a single saddle

point and a separatrix S dividing the phase space into regions R = A and B. In
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both regions [89]

ρ0,R(t) = y2 − (y2 − y1) cn2(Ω(t− t0), k), (A.36)

where cn(z, k) is a Jacobi elliptic function [119] and y1 ≤ y2 ≤ y3 are the three real

roots of the cubic equation in ρ0

[E − q(1− ρ0)][(2cρ0 + q)(1− ρ0)− E ]− (cρ0m)2 = 0. (A.37)

Here, E is the “single-particle” energy of the trajectory and m is the unit mag-

netization. In terms of these roots, Ω =
√

2|q|c(y3 − y1) and the modulus k =√
(y2 − y1)/(y3 − y1). The solution is periodic in time with period T = 2K(k)/Ω

and frequency ω1 = 2π/T = 2πΩ/[2K(k)]. The corresponding φR(t) is obtained by

solving hspin(φR(t), ρ0,R(t)) = E .

On the separatrix S the energy E = 0 and the roots of Eq. A.37 are y1,S =

|q|/(2c) and y2,S = y3,S = 1. Using the fact cn(x, k) ∼ sech(x) as k → 1 and setting

t0 = 0, we find the separatrix solution

ρ0,S(t) = 1− (1− y1,S) sech2(ΩSt), (A.38)

where ΩS =
√

2|q|c(1− y1,S).

A.3.1 Distribution function F($)

We now study the distribution F($) for the spinor condensate by relating

the auxiliary frequency $ to the conserved quantities E , m and N . As the initial

Wigner distribution W0(ψj, ψ
∗
j ) is localized near the saddle point with ρ0 = 1, i.e.,

(ψ+1, ψ0, ψ−1) = (0,
√
N, 0), we again define real coordinates pj and qj via ψj =
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δj0
√
N+pj+iqj. Then the relevant trajectories have energy E = 0+Ẽ/N+O(N−3/2)

and unit-magnetization m = 0+m̃/N+O(N−3/2), both close to zero. The quantities

Ẽ and m̃ are O(1) and depend on pj and qj. We solve for the roots yi perturbatively

with small parameter 1/N and find that the modulus k is close to one. Then the

auxiliary frequency $ = ω1 ∼ 2πΩ/ ln(16/k′2) in regions A and B. We define

X ≡ Nk′2 ∼ c

|q|

√
Ẽ2 + αm̃2

(1− y1,S)2
, (A.39)

which is independent ofN , and α = 2|q|(1−y1,S)/c. Conversely, $ = 2πΩ/[ln(16N/X )].

Unlike for the previous two systems, we have not been able to find an analytical

expression for the distribution of X . Nevertheless, we can apply Eq. A.10 with small

parameter λ−1 = Ω/ ln(16N) and find

µ ∼ 2πΩ

ln(16N)
. (A.40)

Moreover, Eq. A.12 implies that σ = O[1/(lnN)2]; hence, σ � µ as N →∞.

We have numerically evaluated F($) and found that it is a Gaussian to a

good approximation for −2c < q < 0. Figure A.3 shows F($) for q/c = −1 and

N = 1000 and a Gaussian fit to this distribution. For Fig. 4.7 we use the mean and

width of the numerically obtained F($).

A.3.2 Time dynamics of observables for −2c < q < 0

We now obtain an approximation for g0,R(ω1, ϕ1), as defined in Eq. A.17, for

the spinor system, where R ∈ {A,B}. The initial Wigner distribution W0(ψi, ψ
∗
i ) is

localized around the saddle point and, thus, we expect g0,R(ω1, ϕ1) to be localized
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Figure A.3: Distribution function F($) as a function of the auxiliary frequency

$ for a spinor condensate with 1000 atoms and q/c = −1. Red dots represent

F($) obtained by Monte Carlo sampling of the initial Wigner distribution given by

Eq. 4.39 and the blue solid line is a Gaussian fit to these data. The mean according

to Eq. A.40 is the dashed vertical line.

119



around the ϕ1 = 0 (see Fig 4.6). This can be formally justified by writing ρ0(t)

along a trajectory near the separatrix in terms of the angle ϕ1. Then, similar to

Appendix A.1.2.1 we can show that the spread in ϕ1 is much smaller than one where

g0,R(ω1, ϕ1) is significant. Thus,

g0,R(ω1, ϕ1) ≈ 2πg0,R(ω1)δ(ϕ1), (A.41)

where g0,R(ω1) =
∫ 2π

0
dϕ1/(2π)g0,R(ω1, ϕ1) is a marginal distribution.

A.3.3 Time dynamics for q = 0

The dynamics of a spinor condensate quenched to q = 0 is qualitatively dif-

ferent from that for q < 0. Instead of a single saddle point, the Hamiltonian has a

degenerate line of saddle points along φ = π. Along a trajectory close to this line

ρ0(t) is a sinusoid given by

ρ0(t) ∼ cos2[
√

2cE(t+ t0)], (A.42)

where energy E ≡ hspin(φ, ρ0) > 0 and t0 is determined by the initial condition. This

trajectory does not spend a significant fraction of its time period near ρ0 = 1 that

violates one of the assumptions under which Eq. 4.15 was derived.

We can, nevertheless, find an analytical expression for 〈ρ0(t)〉 by evaluating the

expectation value directly from Eq. 4.1. The initial Wigner distribution, Eq. 4.39,

is localized around ρ0 = 1, and thus time t0 ≈ 0 for the relevant trajectories. Hence,

we only require the distribution function

P (E) =

∫
dψ∗i dψiW0(ψi, ψ

∗
i ) δ(E − hspin(φ, ρ0)). (A.43)
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Now, ρ0 = 1 corresponds to the mean-field state (ψ+1, ψ0, ψ−1) = (0,
√
N, 0) and

near ρ0 = 1 the Hamiltonian hspin(φ, ρ0) = c[(p+1 + p−1)2 + (q+1 − q−1)2]/N +

O(N−3/2), with quadratures pj and qj defined by ψ+1 = p+1 + iq+1 and ψ−1 =

p−1 + iq−1. Substituting the Wigner distribution into Eq. A.43 and computing

the integrals, we find P (E) ∼ Nc−1e−NE/c. Finally, averaging Eq. A.42 over this

distribution yields

〈ρ0(t)〉 ∼ 1− αtF (αt), (A.44)

where α = c
√

2/N and F (x) is the Dawson integral [119].

121



Appendix B: Beyond the truncated Wigner approximation

B.1 Derivatives of action

Here, we evaluate the derivatives of the action Sc(xf ,xi, t) with respect to the

initial and final positions. For simplicity, we assume that the configuration space is

one-dimensional; generalization to higher dimensions is straightforward. Consider

a classical path [xc(τ), pc(τ)], which starts from the phase-space point (xci , p
c
i) and

ends at (xcf , p
c
f ). To calculate ∂Sc(xf , xi, t)/∂xi, consider another classical path

whose position in time, xc(τ) + δxc(τ), is infinitesimally close to xc(τ) such that

δxc(0) = ∆xi is a infinitesimal change in the initial position and δxc(t) = 0, i.e., the

final position is fixed. Then the change in the action is

∆Sc =

∫ t

0

dτ

(
∂L

∂x
δxc(τ) +

∂L

∂ẋ
δẋc(τ)

)
=

∫ t

0

dt

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
δxc(τ) +

∂L

∂ẋ
δxc(τ)

∣∣∣∣t
0

,

where ẋ = dx/dτ and we have suppressed the arguments of L. Now, the first term

vanishes because xc(τ) satisfies the Euler-Lagrange equations of motion. Using the

fact that p = ∂L(x, ẋ)/∂ẋ, we have ∆Sc = −pci∆xi. Therefore,

∂Sc(xf , xi, t)

∂xi
= −pci . (B.1)
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Similarly, we can prove that

∂Sc(xf , xi, t)

∂xf
= pcf . (B.2)

B.2 Derivation of Eq. 5.14

Here, we derive Eq. 5.14, which was used for proving that the semiclassical

approximation reduces to the TWA when the interference terms are ignored. First,

note that the final position xf at a given time is uniquely determined by the initial

position and momentum xi and pi; therefore, at fixed values of xi and t, xf (xi,pi, t)

is a function of pi (from Rd to Rd, where 2d is the phase space dimension). Next,

we write

δ(xf (xi,pi, t)− xcf ) =
∑
c

δ (pi − pci)∣∣∣∣∣det

[(
∂xf

∂pi

) ∣∣∣∣
pi=pc

i

]∣∣∣∣∣
, (B.3)

where the sum is over all roots pci of the equation xf (xi,pi, t) = xcf
1. The quantity

in the denominator on the right-hand side is the absolute value of the Jacobian

determinant of the transformation from pi to xf . Next, we apply the inverse function

theorem, which states that matrix inverse of a Jacobian is the Jacobian of the inverse

mapping, to find

1

det

[(
∂xf

∂pi

) ∣∣∣∣
pi=pc

i

] = det

[(
∂pci
∂xf

) ∣∣∣∣
xf=xc

f

]
, (B.4)

1 The equation is the multidimensional version of the formula δ(z(y)−z0) =
∑
i δ(y−yi)/|z′(yi)|,

where the sum is over the roots yi of the equation z(y) = z0 and z′(y) is the derivative of z with

respect to y.
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where the initial momentum is, in general, a multivalued function of xf (at fixed

values of xi and t) with the branches indexed by c. Finally, we use the multivariable

version of Eq. B.1 to find

∂pci
∂xf

= −∂
2Sc(xf ,xi, t)

∂xf∂xi
(B.5)

Substituting this relation in Eq. B.3, we arrive at Eq. 5.14.

B.3 Action of the nonlinear oscillator

We now compute the action Sc(xf , xi, t) of the nonlinear oscillator described in

Sec. 5.4. The action depends on the index c, which we have not yet quantified. A nat-

ural guess would be the winding number w of the path around the phase-space origin.

For a given (xf , xi, w, t), however, there can be multiple paths. Two such paths are

shown in Fig. B.1 for w = 0. In contrast, a given value of (ϕf , ϕi, w, t), where ϕi and

ϕf are the initial and the final angles, respectively, uniquely determines a classical

path. The reason is that the frequency, which satisfies ωt = (ϕf−ϕi) mod 2π+2πw,

is then known; thereby, uniquely determining the radius ρ =
√

2ω/U , which is a con-

stant for a classical path. Therefore, the winding number indexes the classical paths

if the boundary conditions are in terms of the angles. Thus, we define the action

in terms of angle coordinates S w(ϕf , ϕi, t) = Sc[xf (ϕf , ϕi, w, t), xi(ϕf , ϕi, w, t), t],

where w is the winding number of the path c and xf , xi are the initial and final x

coordinates, respectively, which are uniquely determined by (ϕf , ϕi, w, t).
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Let’s evaluate

S w(ϕf , ϕi, t) =

∫ t

0

dτ L

[
xc(τ),

dxc(τ)

dτ

]
=

∫ t

0

dt

[
pc(t)

dxc(τ)

dτ
−HNO

]
, (B.6)

where the classical Hamiltonian HNO is given by Eq. 5.19. Substituting x(τ) =

ρ sinϕ(τ) and p(τ) = ρ cosϕ(τ) , we find

S w(ϕf , ϕi, t) =

∫ t

0

dτ

(
ωρ2 cos2 ϕ(τ)− Uρ4

8

)
,

where we used the fact that dρ/dτ = 0 and dϕ/dτ = ω; and we have suppressed

the dependence of ρ and ω on ϕi, ϕf , w and t. The path in the polar coordinates

(ρ, ϕ(τ)) satisfies the boundary conditions ϕ(0) = ϕi and ϕ(t) = ϕf . Then, after

converting the integral over time to one over angle, we find

S w(ϕf , ϕi, t) =
[(ϕf − ϕi) mod 2π + 2πw]

2Ut
(B.7)

× [(ϕf − ϕi) mod 2π + 2πw + sin(2ϕf )− sin(2ϕi)] .

B.4 Calculation of 〈â(t)〉

Here, we calculate the expectation value of a(t) within the semiclassical ap-

proximation. For clarity, we follow the outline presented in Sec. 5.4.2.

1. Consider the evolution of the expectation value of an observable O(x, p). (We

will specialize to the case O(x, p) = a(x, p) later.) Its evolution under semiclassical

approximation is

〈O(t)〉SC =

∫
dxidxfdpidpf O(xf , pf )GSC(rf , ri, t)W0(xi, pi). (B.8)
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Figure B.1: Phase space of a nonlinear oscillator, which is spanned by position x

and momentum p. The initial Wigner distribution of Eq. 5.21 is peaked around the

area shown by the blue solid circle. The dotted circles demarcates the gray annulus

in which the relevant trajectories starting from the blue solid circle are restricted.

Shown are two classical paths that start from x = 0 and end at x = xf . Both paths

have zero winding number around the origin. The polar coordinates (ρ, ϕ), with the

polar angle ϕ measured from the p-axis in a clockwise direction, are also shown.
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Substituting GSC(rf , ri, t) from Eq. 5.10 and integrating over the momenta pi and

pf , we find

〈O(t)〉SC =

∫
dxidxf

∑
c,c′

O
(
xf ,

pcf + pc
′

f

2

)
W0

(
xi,

pci + pc
′
i

2

)
(B.9)

×
√
DcDc′ eiSc−iSc′−i(µc−µc′ )π/2,

where we have suppressed the dependence of pci , Dc, Sc, etc., on xi, xf and t.

2. Next, we note that the action has a simpler form in terms of the angles (see

Eq. B.7). Hence, we proceed to change the integration variables in Eq. B.10 to the

angle coordinates. To this end, we first note that the sum in Eq. B.9 is over two

sets of classical paths. In contrast, the integral is over one set of initial and final

positions. So, for later manipulations, we introduce another set of initial and final

positions to find

〈O(t)〉SC =

∫
dxidxfdx

′
idx
′
f δ(xi − x′i)δ(xf − x′f ) (B.10)

×
∑
c,c′

O
[
xf + x′f

2
,
pcf (xf , xi, t) + pc

′

f (x′f , x
′
i, t)

2

]
W0

[
xi + x′i

2
,
pci(xf , xi, t) + pc

′
i (x′f , x

′
i, t)

2

]

×
√
Dc(xf , xi, t)Dc′(x′f , x′i, t) eiS

c(xf ,xi,t)−iSc′ (x′f ,x
′
i,t)−i[µc(xf ,xi,t)−µc

′
(x′f ,x

′
i,t)]π/2,

where we have shown explicit dependence of the quantities to avoid any confusion.

The next step is to change the integration measure in terms of the angles. This step

is carried out in Appendix B.4.1 and we find∫
dxidxf

∑
c

(. . . ) =
wmax∑

w=wmin

∫ π

−π
dϕf

∫ π

−π
dϕi

∣∣∣∣det

[
∂(xwi , x

w
f )

∂(ϕi, ϕf )

]∣∣∣∣ (. . . ), (B.11)

where xwi (ϕf , ϕi) = xi(ϕf , ϕi, w, t), x
w
f (ϕf , ϕi) = xf (ϕf , ϕi, w, t) and ∂(xwi , x

w
f )/∂(ϕi, ϕf )

is the Jacobian of the transformation. The winding number w is restricted between
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the winding numbers of the inner and outer circles of the annulus as shown in

Fig. B.1. Doing a similar transformation for the variables x′i, x
′
f and substituting

these results in Eq. B.10, we arrive at

〈O(t)〉SC =
wmax∑

w,w′=wmin

∫
dϕidϕfdϕ

′
idϕ

′
f

∣∣∣∣det

[
∂(xwi , x

w
f )

∂(ϕi, ϕf )

]∣∣∣∣
∣∣∣∣∣det

[
∂(xw

′
i , x

w′

f )

∂(ϕ′i, ϕ
′
f )

]∣∣∣∣∣ δ(xwi − xw′i )

× δ(xwf − xw
′

f )O
(
xwf + xw

′

f

2
,
pwf + pw

′

f

2

)
W0

(
xwi + xw

′
i

2
,
pwi + pw

′
i

2

)

×
√

DwDw′ eiS
w−iS w′−i(µw−µw′ )π/2, (B.12)

where the arguments of quantities with superscript w and w′ are (ϕi, ϕf , t) and (ϕ′i,

ϕ′f , t), respectively. Moreover, we have introduced Dw(ϕf , ϕi, t) = Dc(xwf , xwi , t) and

S w(ϕf , ϕi, t) is given by Eq. B.7.

3. To proceed further, we need to explicitly write all the quantities appearing in

Eq. B.12 in terms of (ϕf , ϕi, w, t). For this purpose, we make use of the fact that

the relevant classical motion is restricted in an annulus of width O(1) around ρ =

√
2N (see Fig. B.1). Therefore, in this region, the phase space coordinates xwi ≈
√

2N sinϕi, p
w
i ≈
√

2N sinϕi, etc.; which implies that the Jacobian

∣∣∣∣det

[
∂(xwi , x

w
f )

∂(ϕi, ϕf )

]∣∣∣∣ ≈ 2N | cosϕi cosϕf | (B.13)

and

Dw(ϕf , ϕi, t) ≈
1

2UNt| cosϕi cosϕf |
, (B.14)

etc. Moreover, as the initial Wigner distribution W0(x, p) is localized around angle

ϕ = 0, we can approximate the delta function δ(xwi −xw
′

i ) ≈ δ(ϕf−ϕ′f )/(
√

2N cosϕf ).
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The other delta function becomes

δ(xwf − xw
′

f ) ≈
δ(ϕf − ϕ′f ) + δ(ϕf + ϕ′f − π)√

2N cosϕf
. (B.15)

Substituting these approximations into Eq. B.12 and integrating over ϕ′i and

ϕ′f , we find

〈O(t)〉SC =
1

Ut

wmax∑
w,w′=wmin

∫
dϕidϕf O

(
xwf +xw

′
f

2
,
pwf +pw

′
f

2

)
W0

(
xwi +xw

′
i

2
,
pwi +pw

′
i

2

)
× eiS w−iS w′−i(µw−µw′ )π/2, (B.16)

where we have neglected the term arising from the second term in Eq. B.15. Now

the arguments of quantities with either superscript w or w′ are ϕf , ϕi and t.

Next, we use the fact thatO(x, p) is a slowly varying function of x, p. So within

the annulus of interest, we can writeO
(
xwf +xw

′
f

2
,
pwf +pw

′
f

2

)
≈ O(

√
2N sinϕf ,

√
2N cosϕf ).

In particular,

a

(
xwf +xw

′
f

2
,
pwf +pw

′
f

2

)
≈ i
√
Ne−iϕf . (B.17)

We cannot make a similar approximation for initial Wigner function, i.e., replace ρ

by
√

2N , because it varies sharply around ρ =
√

2N . We write

W0

(
1
2
(xwi + xw

′

i ), 1
2
(pwi + pw

′

i )
)

= W0

(
1
2
(ρw + ρw

′
) sinϕi,

1
2
(ρw + ρw

′
) cosϕi

)
.

(B.18)

From ω = Uρ2, we have

ρw(ϕf , ϕi, t)√
2N

=

[
(ϕf − ϕi) mod 2π + 2πw

UNt

]1/2

≈ 1 +
1

2

[
(ϕf − ϕi) mod 2π + 2πw

2UNt
− 1

]
, (B.19)
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where we have Taylor expanded around ρ/
√

2N = 1. Substituting this expression

in Eq. 5.21, we find

W0

(
xwi + xw

′
i

2
,
pwi + pw

′
i

2

)
≈ exp

{
− [(ϕf − ϕi) mod 2π + π(w + w′)− UNt]2

2U2Nt2
− 2Nϕ2

i

}
.

(B.20)

Also, from Eq. B.7, we have

S w −S w′ =
2π(w − w′)[(ϕf − ϕi) mod 2π + π(w + w′)]

Ut
. (B.21)

Finally, the Maslov index, which is the number of turning points in the x-coordinates

of a classical path, increases by two for every winding. Therefore,

µw − µw′ = 2(w − w′). (B.22)

After substitutingO(x, p) = a(x, p), Eqs. B.17, B.20, B.21 and B.22 in Eq. B.16,

we find

〈a(t)〉SC =
i
√
N

πUt

wmax∑
w,w′=wmin

∫ π

−π
dϕi

∫ π

−π
dϕf e

−iϕf e−[(ϕf−ϕi) mod 2π+π(w+w′)−UNt]
2
/(2U2Nt2)

× e−2Nϕ2
i ei2π(w−w′)[(ϕf−ϕi) mod 2π+π(w+w′)]/(Ut)−i(w−w′)π. (B.23)

Now the limits on the winding number can be extended to [0,∞) as the winding

numbers wmin and wmax enclose the range where the initial Wigner distribution in

Eq. B.20 is peaked. Finally, writing the sum over w and w′ in terms of u = w + w′

and v = w − w′ and integrating over the angles, we arrive at

〈a(t)〉SC =
∞∑

v=−∞

i
√
Ne−iUNte−2N(πv−Ut/2)2e−1/(8N)

≈
∞∑

v=−∞

i
√
Ne−iUNte−2N(πv−Ut/2)2 , (B.24)

which is Eq. 5.23 of the main text.
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B.4.1 Derivation of Eq. B.11

Here, we derive Eq. B.11. We restrict our attention to the paths that start

from the phase-space region where the initial Wigner distribution is peaked, which

is shown by a blue solid circle in Fig. B.1. They lie in an annulus shown in gray

in the figure. Now, the winding number of a path at a fixed traversal time is a

monotonically non-decreasing function of the radius of the circle on which it lies.

Let the (time-dependent) winding number of a path which lies on the inner and

outer circle of the annulus be wmin and wmax, respectively, with wmin ≤ wmax. Then,

there can be two relevant paths for a given winding number which reaches the final

position xf from position xi in a given time t. Figure B.1 shows a pair of such paths

with winding number 0, which start from xi = 0. Moreover, one of the paths ends

in the upper half (p > 0) and the other in the lower half (p ≤ 0) of the phase space.

Therefore, we can interchange the integrals over boundary conditions and sum over

paths to find

∫
dxidxf

∑
c

(. . . ) =
wmax∑

w=wmin, upper

∫
dxidxf (. . . ) +

wmax∑
w=wmin, lower

∫
dxidxf (. . . ),

(B.25)

where the subscripts upper and lower indicate sum over paths that end in the upper

and lower half of the phase space, respectively.

Now in each half of the phase space, the final angle is uniquely determined

given (xf , xi, w, t). Therefore, we can now change the measure in terms of the angles

131



and combine the sum to find

∫
dxidxf

∑
c

(. . . ) =
wmax∑

w=wmin

∫ π

−π
dϕf

∫ π

−π
dϕi

∣∣∣∣det

[
∂(xwi , x

w
f )

∂(ϕi, ϕf )

]∣∣∣∣ (. . . ), (B.26)

where xwi (ϕf , ϕi) = xi(ϕf , ϕi, w, t), x
w
f (ϕf , ϕi) = xf (ϕf , ϕi, w, t) and ∂(xwi , x

w
f )/∂(ϕi, ϕf )

is the Jacobian of the transformation.

�
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