
ABSTRACT

Title of thesis: THE USE OF PRECONDITIONING FOR
TRAINING SUPPORT VECTOR MACHINES

Jhacova Ashira Williams, Master of Science, 2008

Thesis directed by: Dr. Dianne P. O’Leary
Department of Computer Science and Institute
for Advanced Computer Studies

Since the introduction of support vector machines (SVMs), much work has

been done to make these machines more efficient in classification. In our work, we

incorporated the preconditioned conjugate gradient method (PCG) with an adap-

tive constraint reduction method developed in 2007 [8, 9] to improve the efficiency of

training the SVM when using an Interior-Point Method. As in [8, 9], we reduced the

computational effort in assembling the matrix of normal equations by excluding un-

necessary constraints. By using PCG and refactoring the preconditioner only when

necessary, we also reduced the time to solve the system of normal equations. We

also compared two methods to update the preconditioner. Both methods consider

the two most recent diagonal matrices in the normal equations. The first method

[13] chooses the indices to be updated based on the difference between the diagonal

elements while the second method chooses based on the ratio of these elements.

Promising numerical results for dense matrix problems are reported.

THE USE OF PRECONDITIONING FOR TRAINING
SUPPORT VECTOR MACHINES

by

Jhacova Ashira Williams

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2008

Advisory Committee:
Dr. Dianne P. O’Leary, Chair/Advisor
Dr. Brian Hunt
Dr. Howard Elman

c© Copyright by
Jhacova Ashira Williams

2008

Table of Contents

List of Abbreviations iii

1 Introduction 1

2 Support Vector Machine 3
2.1 Overview . 3

3 Literature Review 5

4 The Convex Quadratic Program for training the SVM 7

5 A Primal-Dual Interior-Point Method for solving the CQP 10
5.1 The Idea Behind IPMs . 10
5.2 Mehrotra’s Predictor-Corrector Algorithm 14
5.3 Adaptive Constraint Reduction . 16

6 Conjugate Gradient Method and Preconditioning 20
6.1 Preconditioned Conjugate Gradient Method 21
6.2 Updating/Downdating Cholesky Preconditioner 25

7 Numerical Results 28

8 Conclusion and Future Work 45

Bibliography 46

ii

List of Abbreviations

SVM Support Vector Machine
CG Conjugate Gradient Method
PCG Preconditioned Conjugate Gradient Method
IPM Interior Point Method
MPC Mehrotra’s Predictor-Corrector
CQP Convex Quadratic Program

iii

Chapter 1

Introduction

A support vector machine (SVM) is a tool used to classify patterns. Several

patterns with associated predetermined classification labels (positive or negative)

are given as input. A SVM is trained by finding a hyperplane that separates the

two classes of patterns. Once the training procedure is complete, the machine can

be used to classify future patterns. A pattern is labeled as positive or negative

depending on which side of the hyperplane it lies on. If there is a hyperplane

that separates the positive patterns from the negative patterns, then the separating

hyperplane can be found by solving a convex quadratic program (CQP).

Our work uses the Interior-Point Method (IPM) with adaptive constraint re-

duction developed in [8, 9] to find the hyperplane. During the reduction process,

patterns that are farthest from the separating hyperplane are eliminated since they

have no effect on training the SVM. We assume our problem can be modeled as

a CQP and use primal-dual interior-point methods to find the best separating hy-

perplane. Our contribution is to use the preconditioned conjugate gradient method

(PCG) to solve the normal equations problem at each step of the IPM. PCG solves a

system of linear equations by using a preconditioner matrix that is chosen such that

convergence to the “true” solution is rapid. The matrix of the normal equations is

symmetric and positive definite. These equations are very useful because they deter-

1

mine our IPM step but involve fewer variables, which reduces the complexity of the

computation. For PCG, we tested several preconditioners and found that using the

Cholesky factorization of a previous normal equations matrix as a preconditioner

significantly reduced computational time. We also applied a low-rank update to the

preconditioner to try to improve efficiency.

In the next chapter, we discuss SVMs in detail and give an example of a data

set used in the training procedure. A literature review can be found in Chapter

3. We define the CQP used for training the SVM in Chapter 4. Also in this

chapter, the separation margin is defined and we derive the CQP’s primal and dual

problem. Chapter 5 defines a Primal-Dual Interior-Point Method for solving the

CQP and defines the normal equations. We also describe Mehrotra’s Predictor-

Corrector Algorithm and discuss adaptive constraint reduction. The Conjugate

Gradient Method and PCG are discussed in Chapter 6. Algorithms for both methods

can be found in this chapter. Our results are presented in Chapter 7 and the

conclusion can be found in Chapter 8.

2

Chapter 2

Support Vector Machine

2.1 Overview

A SVM is used to classify patterns (data vectors) as “positive” or “negative”.

Patterns are classified by answering “yes” the pattern lies in a particular halfspace

or “no” it does not, based on the data. Several patterns, ai, with predetermined

classification labels, di ∈ {+1,−1}, are given as input and are used to train the

machine by constructing a hyperplane that separates the classes of patterns. The

equation for the separating hyperplane is

h (x) = wTx− γ, (2.1)

such that

sign (h (ai)) = di. (2.2)

The training procedure determines the vector w and the scalar γ in (2.1)

that can be used to classify new patterns. If di ≥ 0, ai is positive; otherwise, ai is

negative. Many datasets used to train the SVM consist of a large number of patterns

which are denoted ai, i = 1, ...,m. For example, the mushroom dataset includes over

8,000 samples corresponding to 23 species of mushrooms. Each sample is identified

as edible (positive label) or poisonous (negative label) by the attributes in its data

vector. The attributes describe physical characteristics of mushrooms such as scaly,

3

smooth, grooved and are used to categorize a mushroom as edible or poisonous.

SVM finds a hyperplane to separate the known edible mushroom samples from the

known poisonous mushroom samples. Then using (2.1) a new mushroom sample

can be identified as edible or poisonous. For further discussion see [8, 9].

4

Chapter 3

Literature Review

The SVM was first developed by Vladimir Vapnik and his co-workers at AT&T

Bell Labs in the mid 1990’s. Since their introduction, much has been done to

make these machines more efficient in classification. An in-depth tutorial on these

machines is given by Burges [4]. The tutorial defines a SVM and illustrates its

training process.

Inspired by the fact that many of the training patterns have no effect on

training the machine, Jung [8, 9] used an adaptive constraint reduction interior-

point method to assemble the normal equations. His algorithm adaptively eliminates

constraints and uses the remaining constraints to construct an approximation to

the normal equations. Since forming the matrix of normal equations is very costly,

the reduction of constraints greatly reduces computation. The constraints that are

eliminated at each iteration correspond to patterns that are far from the separating

hyperplane. The reasoning for this is that patterns farthest from the hyperplane have

little or no contribution to training the machine. Jung used Cholesky factorization

and forward and backward substitution to solve the normal equations in the primal-

dual interior-point method in order to obtain the search directions.

Wang [13] used an efficient method to reduce the computational work in find-

ing the search direction for linear programming problems. He used a preconditioned

5

conjugate gradient method to reduce time complexity and space. In order to reduce

computational work, his method applies a small rank change to update the precondi-

tioner rather than recomputing it at every step. Updates correspond to constraints

whose contributions to the matrix have changed the most between iterations. Wang

also used an adaptive procedure to determine the appropriate time to use a direct

method instead of an iterative method. It was found that a direct method should

be used in the first step and an iterative method should be used during the middle

stages. If the iterative method is found to be too costly, the algorithm switches to

a direct method. This usually occurs during the final stages.

Wang’s algorithm for solving the normal equations is compared to an algorithm

developed by Baryamureeba, Steihaug, and Zhang in [2]. The algorithm is similar

to Wang’s algorithm in that it applies a low-rank correction to the preconditioner.

However, the constraints are chosen differently, as we discuss in Chapter 6.

6

Chapter 4

The Convex Quadratic Program for training the SVM

The discussion in this chapter follows [8, 9]. If the positive and negative

patterns are strictly separable by a hyperplane, the training procedure can be im-

plemented by solving a convex quadratic program (CQP) as we show here. Assume

that we have determined a vector w so that the equations for the positive and

negative halfspace respectively are

wTai − γ ≥ +1, (4.1)

wTai − γ ≤ −1, (4.2)

for i = 1, 2, ...,m, with equality holding in (4.1) and (4.2) for some values of i. Then

each halfspace contains a pattern that is closest to the separating hyperplane. The

patterns that are closest to the separating hyperplane are called support vectors and

are very useful in the training procedure. If we define two hyperplanes through the

support vectors that are parallel to the separating hyperplane, the equations for the

positive and negative hyperplanes respectively are

wTx− γ = +1, (4.3)

wTx− γ = −1. (4.4)

7

If we define x− to be any point on the negative plane and x+ to be the closest point

to x− on the positive plane, then equations (4.3) and (4.4) imply

wTx+ − γ = +1, (4.5)

wTx− − γ = −1. (4.6)

The distance between the two planes is

‖x+ − x−‖. (4.7)

Solving equations (4.5) and (4.6) for x+ and x− respectively and substituting the

result in (4.7), we find that the distance is 2
‖w‖ . This distance is called the separa-

tion margin. The best separating hyperplane will maximize the separation margin.

Therefore, we find w by solving the CQP

Minw,γ :
1

2
‖w‖2

2 (4.8)

s.t. D(Aw − γe) ≥ e, (4.9)

where D = diag(di), di is the classification label for pattern i, A = (a1, ..., am)T ,

and e = (1, ..., 1)T . The matrix A has dimension m × n. The constraints of the

CQP require the patterns to be strictly separable. If our patterns are not strictly

separable, this method cannot be applied to train the machine. In this case a penalty

is added to the objective function to account for misclassification of patterns. In

this case, the CQP becomes

Minw,γ,τ :
1

2
‖w‖2

2 + τeTy (4.10)

s.t. D(Aw − γe) + y ≥ e, (4.11)

8

where τ is the penalty parameter. Every primal problem such as (4.10) - (4.11) has

an associated dual problem that consists of the same data arranged in a different

way [14]. A solution to either the primal or dual problem determines a solution to

both. The associated dual for the CQP in (4.10)-(4.11) is

Max : −1

2
vTHv + eTv (4.12)

s.t. eTDv = 0, (4.13)

0 ≤ v ≤ τe, (4.14)

where H = DAATD. See [8, 9] for further discussion.

9

Chapter 5

A Primal-Dual Interior-Point Method for solving the CQP

5.1 The Idea Behind IPMs

In this chapter we describe the algorithm we used to solve the CQP. For

further details, see [8, 9, 14]. The Karush-Kuhn-Tucker (KKT) conditions are the

conditions that are necessary for a solution to the CQP to be optimal. The training

is performed by finding the solution to these conditions. The KKT conditions for

our primal and dual problems are

w − ATDv = 0, (5.1)

dTv = 0, (5.2)

τe− v − u = 0, (5.3)

DAw − γd+ y − e− s = 0, (5.4)

Sv = 0, (5.5)

Y u = 0, (5.6)

s, u, v, y ≥ 0, (5.7)

where s and u are slack variables, S = diag (s) and Y = diag (y). Noice that (5.5)-

(5.6) are nonlinear. We used an interior-point method (IPM) to solve the CQP.

10

In this method the primal-dual solution, (w∗, γ∗, v∗, y∗, s∗, u∗), is found by apply-

ing Newton’s method to a perturbation of the KKT conditions and computing a

sequence of points that converges to the solution. All iterates satisfy the bound

equation (5.7) so the sequence remains in the interior of the set of all feasible solu-

tions. This set is defined as the feasible region. The main work in an IPM consists

of determining search directions and step lengths. The search direction is calculated

at each step by applying a variant of Newton’s method, which forms a linear model

around the current point. The search directions (∆w,∆γ,∆v,∆y,∆s,∆u) satisfy



I 0 −ATD 0 0 0

0 0 dT 0 0 0

0 0 −I 0 0 −I

DA −d 0 I −I 0

0 0 S 0 V 0

0 0 0 U 0 Y





∆w

∆γ

∆v

∆y

∆s

∆u



=



−w + ATDv

−dTv

−τe+ v + u

−DAw + γd− y + e+ s

−Sv

−Y u



,

(5.8)

where the left matrix is the Jacobian matrix of the KKT conditions, the right hand

side of (5.8) is the residual of the KKT conditions, and e = (1, ..., 1)T . If the iterate

is in the interior of the feasible region, the step equation satisfies

11



I 0 −ATD 0 0 0

0 0 dT 0 0 0

0 0 −I 0 0 −I

DA −d 0 I −I 0

0 0 S 0 V 0

0 0 0 U 0 Y





∆w

∆γ

∆v

∆y

∆s

∆u



=



0

0

0

0

−Sve

−Y ue



. (5.9)

The appropriate step length, α, is found by performing a line search along the

Newton direction and is used to calculate the new iterate

(w, γ, v, y, s, u) = (w, γ, v, y, s, u) + α(∆w,∆γ,∆v,∆y,∆s,∆u), (5.10)

where α ∈ [0, 1].

A central path, C, along with the search directions and step lengths is used in

the IPM to find the set of primal-dual solutions. C is a path of points

(wτ , γτ , vτ , yτ , sτ , uτ) (5.11)

parameterized by τ > 0, that satisfy

w − ATDv = 0, (5.12)

dTv = 0, (5.13)

τe− v − u = 0, (5.14)

DAw − γd+ y − e− s = 0, (5.15)

Sv = τe, (5.16)

12

Y u = τe, (5.17)

s, u, v, y ≥ 0. (5.18)

These conditions are obtained from the KKT conditions by relaxing the comple-

mentary conditions, (5.5) - (5.6) to (5.16) - (5.17) equal to a positive scalar τ . The

IPM converges to the solution by following C in the direction of decreasing τ . Each

search direction is a step toward a point on C with a smaller value of τ . However

since (5.7) must hold, the IPM remains in the interior of the feasible region. As a

result, we hope that the IPM can take large steps before violating the bounds. In

[14], a centering parameter σ ∈ [0, 1] and a duality measure µ = sT v+yTu
2m

, where m

is the number of patterns, are used to define a biased search direction. In this case,

the step equation (5.9) becomes



I 0 −ATD 0 0 0

0 0 dT 0 0 0

0 0 −I 0 0 −I

DA −d 0 I −I 0

0 0 S 0 V 0

0 0 0 U 0 Y





∆w

∆γ

∆v

∆y

∆s

∆u



=



0

0

0

0

−Sve+ σµe

−Y ue+ σµe



. (5.19)

There are many variants on this basic IPM idea, and in the next section we describe

the one we used.

13

5.2 Mehrotra’s Predictor-Corrector Algorithm

In our work, we used Mehrotra’s predictor-corrector (MPC) algorithm. MPC

generates feasible iterates that satisfy (5.7), and the search direction consists of two

components:

• An affine-scaling predictor direction − the solution to (5.8),

• A centering and corrector direction that attempts to compensate for nonlin-

earity in the central path by using a centering parameter σ that is adaptively

chosen.

Starting with an initial point in a defined neighborhood of C, the affine-scaling

direction computes the search direction to reduce τ . If the affine-scaling direction

reduces the duality measure µ significantly, the new iterate has not strayed far from

C and little centering is needed; thus the centering term σ is chosen to be close

to zero. Otherwise, much centering is needed and σ is chosen to be closer to one.

The corrector step moves closer to C, giving the algorithm more room to maneuver

during the next iteration in the affine-scaling direction. This process is repeated

until τ is driven to zero. For more discussion, see [14]. We will discuss each of these

two steps for our algorithm in turn.

From (5.8) we obtain the affine-scaling search direction by solving the Newton

system of equations

∆w − ATD∆v = −(w − ATDv) ≡ −rw, (5.20)

dT∆v = −dTv ≡ −rv, (5.21)

14

−∆v −∆u = −(τe− v − u) ≡ −ru, (5.22)

DA∆w − d∆γ + ∆y −∆s = −(DAw − γd+ y − e− s) ≡ −rs, (5.23)

S∆v + V∆s ≡ −rsv, (5.24)

Y∆u+ U∆y ≡ −ryu. (5.25)

In the affine-scaling step, we set

rsv = Sv, (5.26)

ryu = Y u. (5.27)

In the centering and corrector step, we set

rsv = Sv − σµe+ ∆Saff∆vaff , (5.28)

ryu = Y u− σµe+ ∆Y aff∆uaff . (5.29)

We solved for the search directions using a smaller system of equations. The normal

equations are found by solving the Newton system of equations (5.20) - (5.25) for

the search direction. First, we solved (5.24) for ∆s and solved (5.25) for ∆u and

obtain ∆s = −V −1(rsv + S∆v) and ∆u = −Y −1(ryu + U∆y). Next, we substitute

the results for ∆u and ∆s in (5.22) and (5.23) respectively. Both equations can be

rewritten as

−∆v + Y −1U∆y = −ru − Y −1ryu ≡ −ru, (5.30)

DA∆w − d∆γ + ∆y + V −1S∆v = −rs − V −1rsv ≡ −rs. (5.31)

From (5.30) we obtain ∆y = U−1Y (−ru + ∆v). We then substitute ∆y in (5.31)

and rewrite the equation as

15

DA∆w − d∆γ + Ω∆v = −rs + U−1Y ru ≡ −rΩ (5.32)

where Ω = V −1S+U−1Y and rΩ = rs+V −1rsv−U−1Y ru. The remaining equations

(5.20), (5.21), and (5.32) are



I 0 −ATD

0 0 dT

DA −d Ω





∆w

∆γ

∆v


=



−rw

−rv

−rΩ


, (5.33)

The normal equations are obtained by eliminating ∆v and ∆γ using row reduction

in (5.33):

(I + ATDΩ−1DA− d d
T

dTΩ−1d
)∆w = −rw −

d

dTΩ−1d
rv (5.34)

where rw = rw + ATDΩ−1rΩ, rv = rv − dTΩ−1rΩ and d = ATDΩ−1d. Once we have

computed ∆w from (5.34) we obtain the other variables from these relations:

∆γ =
−rv + d

T
∆w

dTΩ−1d
(5.35)

∆v = −Ω−1(rΩ +DA∆w − d∆γ) (5.36)

∆y = −U−1Y (ru −∆v) (5.37)

∆u = −Y −1(ryu + U∆y) (5.38)

∆s = −V −1(rsv + S∆v) (5.39)

5.3 Adaptive Constraint Reduction

Jung proposed an adaptive constraint reduction primal-dual interior-point

method for training the SVM [8, 9]. The matrix of the normal equations in (5.34)

16

is

M ≡ (I + ATDΩ−1DA− d d
T

dTΩ−1d
) = I +

m∑
i=1

ω−1
i aia

T
i −

(
∑m
i=1 ω

−1
i ai)(

∑m
i=1 ω

−1
i ai)

T∑m
i=1 ω

−1
i

(5.40)

where ω−1
i = viui

siui+yivi
. Computation is greatly reduced by ignoring terms that have

little contribution to the matrix M. In (5.40) patterns with large ω−1
i make the largest

contribution to the matrix. During the constraint reduction process, q is defined as

the number of terms used to construct the matrix MQ that approximates M and

is chosen adaptively during each iteration. Once q is determined, the algorithm

chooses a set of patterns Q used to assemble MQ by one of the following criteria:

• Q is the set of q patterns with the smallest signed distance to the class bound-

ary hyperplanes.

• Q is the set of q patterns with the smallest absolute distance to the class

boundary hyperplanes.

• Q is the set of q patterns with the smallest ω−1
i .

The set of patterns may contain an unbalanced number of positive and negative

patterns. If a balanced number of patterns is needed, Jung partitions q = q+ + q−

and uses q+ positive patterns and q− negative patterns. Therefore, instead of M, we

use

MQ ≡ (I + ATQDQΩ−1

QDQAQ −
dQ d

T

Q

dTQΩ−1

Q dQ
) (5.41)

and solve

MQ∆w = −rw −
d

dTΩ−1d
rv (5.42)

17

The adaptive procedure greatly reduces the amount of time to construct the matrix

of normal equations, so we also used it in our algorithm. The Adaptive Constraint

Reduction Method is summarized in Algorithm 1. We set σ = (
µaff

µ
) since Mehrotra

has proved it to be effective in computational testing. We also chose Q to contain a

balanced number of positive and negative patterns and assembled MQ with the set

of patterns with smallest distance to the class boundary hyperplanes.

18

Algorithm 1 Adaptive Constraint Reduction Method for SVM Training

Given a starting point (w, γ, y, s, v, u) with (y, s, v, u) > 0.

for k = 0,1,2,... until convergence or infeasibility, do

1. Determine q

2. Determine Q.

3. Solve (5.42) and (5.35)-(5.39) using the quantities in (5.26) - (5.27), for(
∆waff ,∆γaff ,∆yaff ,∆saff ,∆vaff ,∆uaff

)
.

4. Determine predictor step length:

αaff = arg maxα∈[0,1](y, s, v, u) + α(∆yaff ,∆saff ,∆vaff ,∆uaff) ≥ 0.

5. Set µaff =
(s+αaff ∆saff)T (v+αaff ∆vaff)+(y+αaff ∆yaff)T (u+αaff ∆uaff)

2m
.

6. Set σ = (
µaff

µ
)3.

7. Solve (5.42) and (5.35)-(5.39) using (5.28) - (5.29), for

(∆w,∆γ,∆y,∆s,∆v,∆u).

8. Determine step length for the combined step:

αmax = arg maxα∈[0,1](y, s, v, u) + α(∆y,∆s,∆v,∆u) ≥ 0.

9. Select αk = min(0.99αmax, 1).

10. Set (w, γ, y, s, v, u) = (w, γ, y, s, v, u) + α(∆w,∆γ,∆y,∆s,∆v,∆u).

end for

19

Chapter 6

Conjugate Gradient Method and Preconditioning

We need an algorithm for solving the normal equations (5.34) or (5.42) and we

chose the conjugate gradient method (CG). For simplicity, we consider (5.34). CG

is an iterative method used to find the solution to a particular kind of linear system

of equations, namely systems whose matrix is symmetric and positive definite. The

solution is found by computing approximate values at each iteration that converge

to the true solution. It is useful for sparse matrices because it never modifies the

matrix and only uses it for matrix-vector products. The search direction is found by

solving the Newton system of equations (5.20)- (5.25) which requires a matrix-vector

product at every step

Mp ≡ (I + ATDΩ−1DA− d d
T

dTΩ−1d
)p (6.1)

where p is a vector [13]. If M is dense then (6.1) requires 2mn floating point

multiplications if we compute this product as

Mp = p+ AT [(DΩ−1D)(Ap)]− d (d
T
p)

dTΩ−1d
. (6.2)

CG was used during the affine-scaling and centering-corrector step of the

interior-point method to solve for ∆w in Steps 3 and 7 of Algorithm 1. Assume

our normal equations are of the form

Mu = b (6.3)

20

where M is a matrix and u and b are vectors. CG from [10] is defined as follows:

Algorithm 2 Conjugate Gradient Method for solving Mu = b

Given an initial guess u0.

1. Compute the residual r0 = b−Mu0 and set d0 = r0.

for k = 0,1,... until convergence, do

2. Compute the appropriate step length, the new iterate, and the new residual.

αk =
rT
k rk

dT
k
Mdk

,

uk+1 = uk + αkdk,

rk+1 = rk − αkMdk.

3. Compute the new search direction.

βk+1 =
rT
k+1rk+1

rT
k
rk

,

dk+1 = rk+1 + βk+1dk.

end for

6.1 Preconditioned Conjugate Gradient Method

Many matrices used in CG are very troublesome for numerical computations.

As a result, preconditioners can be used as input to CG to reduce the computation.

Preconditioners reduce the condition number of the matrix which generally reduces

the number of CG iterations. The number of CG iterations is related to the eigen-

values; if the condition number is low, the eigenvalues are clustered together and

CG converges quickly. For example, if all eigenvalues are equal, PCG converges in

21

1 iteration.

Assume there exists a matrix C that is symmetric and positive definite and C

is a close approximation to M but is easier to invert. Also assume that C−1M has

a lower condition number. We can solve (6.3) by solving

C−1Mu = C−1b. (6.4)

The purpose of preconditioners is to reduce the number of CG iterations. The pre-

conditioners tested were the Identity, Diagonal, Cholesky, and Incomplete Cholesky

matrices.

• The Diagonal preconditioner is a diagonal matrix with entries identical to the

diagonal elements of the matrix of normal equations.

• The Cholesky preconditioner is the Cholesky factorization of the matrix of nor-

mal equations. Since M is symmetric and positive definite, we can decompose

M into factors

C = LLT (6.5)

where L is a lower triangular matrix and LT is the transpose of L. The fac-

torization is done by using a modified version of Gaussian elimination. With

this preconditioner, PCG converges in a single iteration for (6.4), but we use

the same C for several IPM iterations.

• The Incomplete Cholesky preconditioner also uses Cholesky factorization to

compute

C ≈ L L
T
, (6.6)

22

where L and L
T

are the Incomplete Cholesky factors of C. If C is sparse,

Cholesky factorization destroys the entries in C that are zero, which usually

makes its factors less sparse. However, the Incomplete Cholesky factors of C

are computed by Cholesky-like formulas that discard part of the less sparse

entries of L in (6.5). Entries can be discarded based on position or value. For

entries that are discarded based on position, a set S ⊆ {(i, j), i, j = 1, ..., n}.

S defines positions in L in (6.6) that are allowed to be nonzero. Incomplete

Cholesky factorization can be described as

Cij =


Cij − Cik

Ckk
Ckj if (i, j) ∈ S

Cij otherwise

(6.7)

for each k and for i,j > k. This Incomplete Cholesky factorization discards

entries based on position. In an alternative algorithm, a drop tolerance is

given to the procedure. A drop tolerance is a positive scalar, and all entries

in L with absolute value smaller than the drop tolerance are replaced by zero

[3, 7, 11].

The preconditioned conjugate gradient method (PCG) from [10] is as follows.

23

Algorithm 3 Preconditioned Conjugate Gradient Method for solving Mu = b with

preconditioner C

Given an initial guess u0.

1. Compute the residual

r0 = b−Mu0,

z0 = d0 = C−1r0.

for k = 0,1,... until convergence, do

2. Compute the step length and the new iterate.

αk =
rT
k zk

dT
k
Mdk

,

uk+1 = uk + αkdk.

3. Compute the new residual rk+1 = rk − αkMdk.

4. Let zk+1 = C−1rk+1

5. Compute the new search direction

βk+1 =
rT
k+1zk+1

rT
k
zk

,

dk+1 = zk+1 + βk+1dk.

end for

24

6.2 Updating/Downdating Cholesky Preconditioner

Computing a new preconditioner at each iteration requires much computation.

In order to save time, a rank-α change can be applied to update the preconditioner.

During IPM iterations, the diagonal matrix D̂ = D2Ω−1 is the only component of

the matrix of normal equations that changes; thus the change in the diagonal matrix

is used to update the preconditioner. We applied a sequence of rank-one updates to

compute the preconditioner, as seen in Algorithm 4. See [13] for more details.

In [2], a rank-α change is also applied to update the preconditioner. However,

the algorithm differs from [13] in that the choice of indices that are updated is based

on the ratios of elements in D̂ to elements in D̂old. During each iteration, the ratio

of the diagonal elements are sorted and the indices corresponding to the largest

and smallest elements are updated. We also scale the ratio by its mean so that its

elements are closer to 1; thus the eigenvalues are more clustered together making

convergence more rapid. Results in [2] showed that applying a low-rank update in

this manner gives a tighter bound on the condition number for the preconditioner for

an IPM for linear programming; thus making PCG converge faster. The algorithm

can be seen in Algorithm 5.

25

Algorithm 4 Updating/Downdating the Preconditioner [13]

1. Let C = LLT be the Cholesky factorization of matrix Mold.

2. Let D̂old be the diagonal matrix for which we have a Cholesky factorization of

Mold.

3. Let D̂ be the current diagonal matrix.

4. Define ∆D =
∣∣∣D̂ − D̂old

∣∣∣.
5. Sort ∆D in descending order.

6. Let I be the set of α indices corresponding to large values of ∆D.

7. Update/Downdate the preconditioner and D̂old:

Set L̂ = L, which is the Cholesky factor of Mold.

for i ∈ I, do

Update the Cholesky factor to include ±∆dia
T
i ai.

Set D̂old(i) = D̂old(i) ± ∆ di.

end for

Note: Ĉ = L̂L̂T is the preconditioner obtained by applying a rank-α update to

C.

26

Algorithm 5 Updating/Downdating the Preconditioner [2]

1. Let D̂old be the diagonal matrix for which we have a Cholesky factorization of

Mold.

2. Let D̂ be the current diagonal matrix.

3. Define ratioj = max((D̂old)jj

D̂jj
, D̂jj

(D̂old)jj
).

4. Let scale = mean of ratio.

5. Set ratio = ratio/scale.

6. Sort ratio in descending order.

7. Let I be the set of indices corresponding to the largest values of ratio.

8. Define ∆D = D̂/scale− D̂old.

9. Update/Downdate the preconditioner and D̂old:

Set L̂ = L, which is the Cholesky factor of Mold.

for i ∈ I, do

Update the Cholesky factor to include ±∆dia
T
i ai.

Set D̂old(i) = D̂old(i) ± ∆ di.

end for

Note: Ĉ = L̂L̂T is the preconditioner obtained by applying a rank-α update to

C.

27

Chapter 7

Numerical Results

We implemented Algorithm 4, and Algorithm 5 in MATLAB. The matrix of

normal equations can be either sparse or dense. If the matrix is sparse, we used

functions ldlchol, ldlupdate, and ldlsolve created by Timothy A. Davis [5] to update

the matrix. These functions are accessed through a Mex interface. Functions ldlchol,

ldlupdate, and ldlsolve compute the Cholesky factorization, apply a rank one update,

and solve Ĉu = b for u. If the matrix is dense, we used the MATLAB function

cholupdate to apply a rank one update. We tested each algorithm using MATLAB

version R14 on a machine running Windows XP with Intel Centrino Duo Processor

1.83GHz. We set the iteration limit to 75 and used balance reduction so that the

subset of normal equations contained an equal number of positive and negative

patterns that were the closest in distance to the boundary hyperplanes. As in [8, 9],

we set β = 4, tolr and tolµ were both set to 10−5 and the initial point was set to

w = 0, γ = 0, y, s, v, u = 2e. The tolerance for PCG was set to 10−3.

We compared three algorithms on several problems. Jung’s algorithm, seen

in Algorithm 1, obtains a direct solution of the normal equations. The second

algorithm uses PCG with Wang preconditioner by applying Algorithm 1 using PCG

to obtain the normal equations and Algorithm 4 to obtain the preconditioner. The

last algorithm uses PCG with B&S preconditioner by obtaining the normal equations

28

by using PCG in Algorithm 1 and obtaining the preconditioner using Algorithm 5.

The problems tested were either sparse or dense. When a penalty parameter was

needed, we used the same value as in [8, 9]. The sparse problems are a1a, a2a, a3a,

a4a, a5a, a6a, a7a, a8a, a9a. These problems are adult data sets created by [12] and

predict whether the income of a person is greater than $ 50,000 based on several

census parameters such as age, race, education and marital status. Each problem

differs in its size and sparsity which can be seen in the tables below. Tables 7.1

- 7.5 show our results for the sparse problems. Jung’s algorithm outperforms our

method in all problems. As one can see, applying no updates to the preconditioner

is faster than applying 5 updates in each problem. We also tested preconditioning

by refactoring every 3 and every 5 updates, but in each case, refactoring every 2

iterations works best. We also tried applying a larger number of updates, namely

100, 500, 1000. In each case, the time to solve the system of equations significantly

increased.

We also tested our algorithm on several dense problems: letter, mushroom,

wave, and wavenoise [6]. The dense problems are used for recognizing hand written

letters, determining edible mushrooms and poisonous mushrooms, and categorizing

waves. Our method along with Jung’s method was tested on each dense problem.

The results show that PCG with B & S preconditioner outperforms Jung’s in each

problem while PCG with Wang preconditioner outperforms Jung’s method most of

the time. As with the sparse problems, we also tested the problems on refactoring

every 3 and every 5 iterations and tested applying 100, 500, and 1000 updates.

Each of these problems outperform Jung’s also; however, B & S Preconditioner

29

outperforms Wang’s in these cases.

Table 7.1: Jin Jung Results for Sparse Matrices

Matrix Size Sparsity (Percent) IP Iterations Time to Run (sec.)

a1a 1605 x 119 16.21 14 0.328

a2a 2265 x 119 11.24 13 0.344

a3a 3185 x 122 7.56 14 0.500

a4a 4781 x 122 4.76 16 0.844

a5a 6414 x 122 3.34 17 1.125

a6a 11220 x 122 1.55 26 2.828

a7a 16100 x 122 0.84 19 2.984

a8a 22696 x 123 0.35 23 5.078

30

Table 7.2: Results for PCG with Wang Preconditioner.

Refactor every 2 iterations. (No Updates Applied)

Matrix Size IPM Iterations PCG Iterations Refactor Time (sec.)

a1a 1605 x 119 12 51 6 0.750

a2a 2265 x 119 11 49 5 0.875

a3a 3185 x 122 12 58 6 1.188

a4a 4781 x 122 13 62 6 1.781

a5a 6414 x 122 14 58 7 2.453

a6a 11220 x 122 22 77 11 6.484

a7a 16100 x 122 16 67 8 7.734

a8a 22696 x 123 19 67 9 13.656

31

Table 7.3: Results for PCG with Wang Preconditioner.

Refactor every 2 iterations. (Apply 5 Updates)

Matrix Size IPM Iterations PCG Iterations Refactor Time (sec.)

a1a 1605 x 119 12 57 6 0.875

a2a 2265 x 119 11 63 5 0.938

a3a 3185 x 122 12 71 6 1.328

a4a 4781 x 122 13 76 6 1.922

a5a 6414 x 122 14 70 7 2.703

a6a 11220 x 122 22 95 11 6.969

a7a 16100 x 122 16 77 8 8.391

a8a 22696 x 123 19 81 9 14.797

32

Table 7.4: Results for PCG with B&S Preconditioner scaled.

Refactor every 2 iterations. (No Updates Applied)

Matrix Size IPM Iterations PCG Iterations Refactor Time (sec.)

a1a 1605 x 119 12 65 5 0.766

a2a 2265 x 119 11 51 5 0.781

a3a 3185 x 122 12 60 5 1.172

a4a 4781 x 122 13 58 6 1.625

a5a 6414 x 122 14 62 6 2.203

a6a 11220 x 122 21 77 10 4.984

a7a 16100 x 122 16 65 7 5.563

a8a 22696 x 123 19 71 9 9

33

Table 7.5: Results for PCG with B&S Preconditioner scaled.

Refactor every 2 iterations. (Apply 5 Updates)

Matrix Size IPM Iterations PCG Iterations Refactor Time (sec.)

a1a 1605 x 119 12 127 5 0.906

a2a 2265 x 119 11 107 5 1.094

a3a 3185 x 122 12 108 5 1.406

a4a 4781 x 122 13 87 6 1.953

a5a 6414 x 122 14 116 6 2.734

a6a 11220 x 122 21 157 10 6.406

a7a 16100 x 122 16 96 7 6.375

a8a 22696 x 123 19 104 9 10.500

Table 7.6: Jin Jung Results for Dense Matrices

Matrix Size IPM Iterations Time (sec.)

letter 20000 x 16 41 16.734

mushroom 8124 x 22 17 7.281

wave 5000 x 21 13 3.828

wavenoise 5000 x 40 12 35.016

34

Table 7.7: Results for PCG with Wang Preconditioner for Dense Matrices.

Refactor every 2 iterations. (No Updates Applied)

Matrix Size IPM Iterations PCG Iterations Refactor Time (sec.)

letter 20000 x 16 39 117 19 27.422

mushroom 8124 x 22 17 45 7 6.766

wave 5000 x 21 11 46 5 3.703

wavenoise 5000 x 40 11 62 5 25.609

Table 7.8: Results for PCG with Wang Preconditioner for Dense Matrices.

Refactor every 2 iterations. (Apply 5 Updates)

Matrix Size IPM Iterations PCG Iterations Refactor Time (sec.)

letter 20000 x 16 39 117 19 28.469

mushroom 8124 x 22 14 45 7 6.828

wave 5000 x 21 11 46 5 3.781

wavenoise 5000 x 40 11 61 5 26.109

35

Table 7.9: Results for PCG with B&S Preconditioner scaled for Dense Matrices.

Refactor every 2 iterations. (No Updates Applied)

Matrix Size IPM Iterations PCG Iterations Refactor Time (sec.)

letter 20000 x 16 38 125 18 16.438

mushroom 8124 x 22 14 46 6 6.125

wave 5000 x 21 11 37 5 3.344

wavenoise 5000 x 40 11 47 5 22.859

Table 7.10: Results for PCG with B&S Preconditioner scaled for Dense Matrices.

Refactor every 2 iterations. (Apply 5 Updates)

Matrix IPM Iterations PCG Iterations Refactor Time (sec.)

letter 20000 x 16 38 131 18 16.813

mushroom 8124 x 22 14 48 6 6.156

wave 5000 x 21 11 39 5 3.375

wavenoise 5000 x 40 11 51 5 23.359

36

a1a a2a a3a a4a a5a a6a a7a a8a
0

2

4

6

8

10

12

14

Matrix

T
im

e
to

 R
un

 (
se

c)

Time Run for Sparse Matrices

Jung
PCG (Wang)
PCG (B&S)

Figure 7.1: Time for the algorithms to run on sparse problems. We used the fastest

times for our method which occurred when no updates were applied and we refac-

tored the matrix every 2 iterations.

37

a1a a2a a3a a4a a5a a6a a7a a8a
0

5

10

15

Matrix

T
im

e
to

 R
un

 (
se

c)

Time to Run if matrix is refactored every 2 iterations

Wang (No Updates)
Wang (5 Updates)
B&S (No Updates)
B&S (5 Updates)

Figure 7.2: Time for the algorithms to run on sparse problems if the matrix is

refactored every 2 iterations. The algorithms are tested on applying 5 updates and

no updates. We can see that applying no updates to B&S preconditioner works

best.

38

a1a a2a a3a a4a a5a a6a a7a a8a
0

2

4

6

8

10

12

14

16

Matrix

T
im

e
to

 R
un

 (
se

c)

Time to Run if matrix is refactored every 3 iterations

Wang (No Updates)
Wang (5 Updates)
B&S (No Updates)
B&S (5 Updates)

Figure 7.3: Time for the algorithms to run on sparse problems if the matrix is

refactored every 3 iterations. The algorithms are tested on applying 5 updates and

no updates. We can see that applying no updates to B&S preconditioner works

best.

39

a1a a2a a3a a4a a5a a6a a7a a8a
0

2

4

6

8

10

12

14

16

18

20

Matrix

T
im

e
to

 R
un

 (
se

c)

Time to Run if matrix is refactored every 5 iterations

Wang (No Updates)
Wang (5 Updates)
B&S (No Updates)
B&S (5 Updates)

Figure 7.4: Time for the algorithms to run on sparse problems if the matrix is

refactored every 5 iterations. The algorithms are tested on applying 5 updates and

no updates. We can see that applying no updates to B&S preconditioner works

best.

40

letter mushroom wave wavenoise
0

5

10

15

20

25

30

35

40

Matrix

T
im

e
to

 R
un

 (
se

c)

Time to Run for Dense Matrices

Jung
PCG (Wang)
PCG (B&S)

Figure 7.5: Time for the algorithms to run on dense problems. Our algorithm

outperforms Jung’s algorithm in every case. Also B&S preconditioner outperforms

Wang’s preconditioner.

41

letter mushroom wave wavenoise
0

5

10

15

20

25

30

Matrix

T
im

e
to

 R
un

 (
se

c)

Time to Run if matrix is refactored every 2 iterations

Wang (No Updates)
Wang (5 Updates)
B&S (No Updates)
B&S (5 Updates)

Figure 7.6: Time for the algorithms to run on dense problems if the matrix is

refactored every 2 iterations. The algorithms are tested on applying 5 updates and

no updates. Applying no updates to B&S’ preconditioner works best.

42

letter mushroom wave wavenoise
0

5

10

15

20

25

30

Matrix

T
im

e
to

 R
un

 (
se

c)

Time to Run if matrix is refactored every 3 iterations

Wang (No Updates)
Wang (5 Updates)
B&S (No Updates)
B&S (5 Updates)

Figure 7.7: Time for the algorithms to run on dense problems if the matrix is

refactored every 3 iterations. The algorithms are tested on applying 5 updates and

no updates. Applying no updates to B&S’ preconditioner works best.

43

letter mushroom wave wavenoise
0

5

10

15

20

25

30

Matrix

T
im

e
to

 R
un

 (
se

c)

Time to Run if matrix is refactored every 5 iterations

Wang (No Updates)
Wang (5 Updates)
B&S (No Updates)
B&S (5 Updates)

Figure 7.8: Time for the algorithms to run on dense problems if the matrix is

refactored every 2 iterations. The algorithms are tested on applying 5 updates and

no updates. Applying no updates to B&S’ preconditioner works best.

44

Chapter 8

Conclusion and Future Work

Incorporating PCG and the adaptive constraint reduction method into the

IPM algorithm for SVM training reduces the time to solve the system of equations

for dense problems. However, the reduction in time can only be seen if only a small

number of updates are applied and the matrix of normal equations is refactored

every so many iterations. Also the indices to be updated should be chosen based

on the ratio of the diagonal matrix between iterations. Improved performance is

obtained by scaling the ratio by its mean since this gives better normalization and

more elements close to 1.

Future work should focus on improving the choice of indices for update. Also,

block updates should be applied to decrease the time complexity. Finally, future

work should focus on all types of convex quadratic programming problems.

Although our method reduces time for dense matrices, it does not for sparse

problems. This could be a consequence of overhead in the MEX interface or loss of

sparsity in the updated factors. Future work should investigate the overhead and if

it is large, Algorithm 4 and Algorithm 5 should be implemented in C rather than

MATLAB to reduce the overhead.

45

Bibliography

[1] Kendall E. Atkinson, An Introduction to Numerical Analysis, 2nd Edition, John
Wiley and Sons, 1989.

[2] Venansius Baryamureeba and Trond Steihaug, On a Class of Precondition-
ers for Interior Point Methods University of Bergen Department of Informat-
ics. http://www.ii.uib.no/ trond/publications/proceedings/Nordic MPS 99.ps.
Date accessed: April 3, 2008.

[3] Michele Benzi, Preconditioning Techniques for Large Sparse Systems: A Survey
Journal of Computational Physics, 182(2002), pp.418 - 477.

[4] Christopher Burges, A Tutorial on Support Vector Machines for Pattern Recog-
nition Data Mining and Knowledge Discovery, 2(2):121-167, 1998.

[5] Timothy A. Davis, User Guide for CHOLMOD: A Sparse Cholesky
Factorization and Modification Package University of Florida De-
partment of Computer and Information Science and Engineering.
http:/www.cise.ufl.edu/research/sparse/cholmod/CHOLMOD/DOC/UserGuide.pdf.
Date accessed: April 7, 2008.

[6] E. Michael Gertz and Joshua D. Griffin, Support vector machine classifiers for
large data sets Preprint, October 2005.

[7] Mark S. Gockenbach, Understanding and Implementing the Finite Element
Method SIAM, 2006.

[8] Jin Jung, Adaptive Constraint Reduction for Convex Quadratic Programming
and Training Support Vector Machines, Ph.D. thesis, Computer Science De-
partment, University of Maryland, College Park, MD, 2008.

[9] Jin Hyuk Jung, Dianne P. O’Leary, and Andre’ L. Tits, Adaptive Con-
straint Reduction for Training Support Vector Machines Preprint, May 2007.
http://www.optimization-online.org/DB HTML/2007/10/1820.html. Date ac-
cessed: May 1, 2008.

[10] Jonathan Richard Shewchuk, An Introduction to Conjugate Gradient Methods
without the Agonizing Pain http://www.cs.cmu.edu/∼quake-papers/painless-
conjugate-gradient.pdf, August 1994. Date accessed: April 3, 2008.

[11] Lloyd Nicholas Trefethen and David Bau III, Numerical Linear Algebra, SIAM,
1997.

46

[12] Ronny Kohavi and Barry Becker, Adult Data Set Data Mining and Visualization
Silicon Graphics. http://archive.ics.uci.edu/ml/datasets/Adult. Date accessed:
May 1, 2008.

[13] Weichung Wang and Dianne P. O’Leary, Adaptive use of iterative methods in
predictor-corrector interior point methods for linear programming Numerical
Algorithms, 25(1-4):387-406, 2000.

[14] Stephen Wright, Primal-Dual Interior-Point Methods SIAM, 1997.

47

