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     Receptor models have been widely used in air quality studies to identify pollution 

sources and estimate their contributions. A common problem for most current 

receptor models is insufficient consideration of realistic constraints such as can be 

obtained from emission inventories, chemical composition profiles of the sources, and 

the physics of plume dispersion. In addition, poor resolving of collinear sources was 

often found. With the high quality time-, composition-, and size-resolved 

measurements during the EPA Supersite project, efforts towards resolving nearby 

industrial sources were made by combinative use of Positive Matrix Factorization 

(PMF) and the Pseudo-Deterministic Receptor Model (PDRM). 

     The PMF modeling of Baltimore data in September 2001 revealed coal-fired and 

oil-fired power plants (CFPP and OFPP, respectively) with significant cross 

contamination, as indicated by the high Se/Ni ratio in the OFPP profile. Nevertheless, 

the PMF results provided a good estimate of background and the PMF-constrained 



  

emission rates well seeded the trajectory-driven PDRM modeling. Using NOx as the 

tracer gas for χ/Q tuning, ultimately resolved emissions from individual stacks 

exhibited acceptable tracer ratios and the emission rates of metals generally agreed 

with the TRI estimates. This approach was later applied to two metal pollution 

episodes in St. Louis during in November 2001 and March 2002 and met a similar 

success. As NOx measurements were unavailable at those metal-production facilities, 

highly-specific tracer metals (i.e., Cd, Zn, and Cu) for the corresponding units were 

used to tune χ/Qs and their contributions were well resolved with the PMF-seeded 

PDRM.  

     Opportunistically a PM2.5 excursion during a windless morning in November 2002 

allowed the extraction of an in-situ profile of vehicular emissions in Baltimore. The 

profiles obtained by direct peak observation, windless model linear regression 

(WMA), PMF, and UNMIX were comparable and the WMA profile showed the best 

predictions for non-traffic tracers. Besides, an approach to evaluate vehicular 

emission factors was developed by receptor measurements under windless conditions. 

Using SVOC tracers, seasonal variations of traffic and other sources including coal 

burning, heating, biomass burning, and vegetation were investigated by PMF and in 

particular the November traffic profile was consistent with the WMA profile obtained 

earlier. 
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Chapter 1: Introduction 

     The establishment of effective pollution control strategies relies on the 

understanding of relationships between emissions from various sources and ambient 

concentrations. In general, source apportionment models are either source- or 

receptor-based. Source-based models, such as the Community Multi-scale Air Quality 

(CMAQ) model (Byun and Schere 2006) and the Comprehensive Air-quality Model 

with extensions (CAMx) (Koo et al. 2009), use both known source emissions and 

dispersion characteristics as input to calculate ambient concentrations. In contrast, 

receptor models make use of ambient concentrations measured at receptor site(s) and 

some known characteristics of sources or dispersion to “condition” predicted source 

impacts (Watson et al. 2002, Hopke and Cohen 2011). All source apportionment 

models, no matter source- or receptor-based, follow the same expression: 

      (1.1) 

where  is the i
th

 species concentration (g m
-3

) measured at the receptor site during 

the k
th

 time interval,  is the fraction quantity (dimensionless) of the i
th

 species in 

the emissions from the j
th

 source,  is the transformation factor (dimensionless) of 

the i
th

 species during transport through the atmosphere, is the dispersion factor (s 

m
-3

) between the j
th

 source and the receptor during the k
th

 time period, and  is the 

emission rate (g s
-1

) from the j
th

 source during the k
th

 time period.  

     In a typical source (or deterministic) model,  is calculated by chemical model, 

 is obtained by meteorological model,  and  are either measured at sources 
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or estimated from existing source inventory, and  can thus be determined. The 

performance of source-based models relies excessively on the mathematical modeling 

of plume dispersion, which often exhibits poor accuracy partially due to the paucity 

of meteorological measurements needed to characterize the wind fields in both the 

vertical and horizontal directions. In addition, lack of apriori knowledge of emission 

rates, which is not unusual, can limit the application of deterministic models as well. 

     Receptor models often inexplicitly treat atmospheric processes and ignore 

temporal variability in , and thus their formulations are simplified. Despite their 

different mathematics, the underlying philosophy of receptor models is common, that 

is, to let the data speak for itself by “forcing” predictions towards physical realities 

(Watson 1984), e.g., observed concentrations and meteorological facts. In the 

following section, several common receptor modeling techniques are reviewed. 

1.1 Current Receptor Models 

     Current EPA-recommended (www.epa.gov/ttn/scram/receptorindex.htm) receptor 

models include chemical mass balance (CMB) (U.S.EPA 2004c), positive matrix 

factorization (PMF) (U.S.EPA 2008), and UNMIX (U.S.EPA 2007). Besides, 

principal component analysis (PCA) (Thurston and Spengler 1985), the multi-linear 

engine (ME) (Paatero 1999), and multiple linear regression (MLR) (Kleinman et al. 

1980) are other commonly-used tools. 

     In CMB applications, s in Equation 1.1 are retrieved by source measurements; 

s are often set to unity as a result of the ignorance of chemical transformation and 

mass loss during transport; the products of s and s are source contribution 
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estimates (SCE) and denoted as s (g m
-3

); and s are measured at the receptor site. 

Hence the CMB equation can be simplified as: 

      (1.2) 

where  is the residual term (i.e., the unaccountable mass concentration, g m
-3

). For 

each time period k, the CMB model seeks the  solution of i linear equations with 

the minimum scaled residual ( , defined in Equation 1.3) by using an inverse 

variance ( , defined in Equation 1.4) weighted least-squares linear regression 

(Watson et al. 1990). 

      (1.3) 

      (1.4) 

where  is the uncertainty (or standard deviation, g m
-3

) of the measured 

concentration of species i within observation period k, and  is the standard 

deviation of the fraction of species i in emissions from source j.  

     Two major problems have been found for CMB modeling. First, the CMB model 

is inherently unable to handle collinearity in source emissions, e.g., negative 

estimated contributions of nearly collinear sources could be obtained (Henry 1992). 

Second, the emission profiles used for modeling may be inaccurate, as they were 

usually acquired by sampling over an insufficient period of time. Moreover, obtaining 

abundance profiles for all sources is impractical in many circumstances. Although 

source profiles published in the SPECIATE database (U.S.EPA 2006) or other 

references have often been used as surrogates in the absence of on-site source 
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information, those generic source profiles may not well represent the actual source 

emissions during the time of study. Nevertheless, as species with low precisions in 

the source profiles and receptor measurements are down-weighted (Equations 1.3 and 

1.4), the CMB solution is self-rectified to some extent.  

     Unlike CMB modeling which requires a detailed knowledge of sources (i.e., types 

of sources and their emission profiles), PMF modeling (Paatero and Tapper 1994) 

simultaneously solves for both source contributions (g matrix) and compositions (f 

matrix) for a given number of factors (N sources) following Equation 1.5 and non-

negativity constraints are imposed on PMF solutions (Paatero 1997, Paatero and 

Tapper 1994). However, due to the weak constraining force of non-negative 

constraints (Paatero et al. 2002) and sometimes equivocal determination of the 

number of factors, source cross-contamination is inevitable in PMF solutions.  

      (1.5) 

     In PMF modeling, an object function, Q(E), normalized to measurement 

uncertainties is defined as follows.  

    (1.6) 

where  is the measurement uncertainty of the i
th

 species in the k
th

 sample. The PMF 

model seeks solutions towards minimizing Q(E) by iterative calculations of the 

standard deviations of each data point, , according to Equation 1.7. That is, 

samples with large measurement uncertainties will be down-weighted in PMF 

solutions (U.S.EPA 2008). 
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    (1.7) 

where c1 is the uncertainty measured for each data point, and c2 is the extra modeling 

uncertainty (i.e., set to 0.10 in my study), which encompasses various errors (e.g., 

possible variations in source profiles) not considered in measurement errors. In the 

EPA PMF program, down-weighting of the effect of species thought to be less 

valuable in their ability to resolve sources is allowed by designating them as “weak” 

species. That is, additional uncertainties (i.e., a larger c2 value) can be attributed to 

these species in the modeling.  

      The UNMIX model treats ambient concentrations as a linear combination of 

source contributions as well (Equation 1.5) and non-negative constraints are also 

applied to the matrices of compositions and contributions. Neither uncertainty data 

nor a pre-defined number of sources is required in UNMIX modeling, as the model 

seeks the number of sources and fitting solutions through those so-called edge points 

at which the contributions from certain source(s) are negligible. In other words, 

UNMIX reduces the degree of freedom in the solutions by ignoring small crossing 

contributions in the samples and explores for constraints from inside the data 

themselves, rather than minimizing a residual function that is correlated with 

contributions and chemical compositions of sources. Hence UNMIX modeling shows 

a weak ability to resolve minor sources and a feasible modeling solution cannot be 

always guaranteed.  

     Air quality managers are concerned with several key issues including source 

identification and quantification of estimates of emission rates. In particular, correct 

source identification is a prerequisite to successful source apportionment. As many 
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sources can exist but not all of them are necessarily active during the study period, it 

is critical to narrow down the scope of potential sources using the relevant 

information (e.g., locations and emission profiles of sources with large emissions in 

past studies, meteorological conditions, etc.). In practice, back trajectory (Cohen et al. 

2011), wind direction analysis (i.e., potential source contribution function (PSCF) 

analysis (Wang, Hopke and Turner 2011), Non-Parametric Regression (NPR) (Kim 

and Hopke 2004)), and regional transport models (Hartley and Prinn 1993) have been 

employed to provide convincing source determinations. Besides, source identification 

is often performed using the receptor modeling results. For instance, CMB modeling 

can include excess sources and identify which ones were actually active within an 

observation, based on its solution of source contributions. For PMF or UNMIX, 

matching those model-derived source profiles with known facts of possible sources is 

another convenient approach of post-modeling source identification efforts.  

     None of those above-mentioned receptor models can provide quantitative 

estimates of source emission rates, as the SCE term (  or g matrix) is not further 

resolved by dispersion factors. In fact, none of these models relies on any physical 

constraint (e.g., terrain effect) other than dispersion factors and their solutions are 

based upon a pure mathematic formulation. As a consequence, challenges in 

interpretations of results or significant discrepancies between different model 

solutions are not unusual. 

     During the EPA supersite project, a multivariate pseudo-deterministic receptor 

model (PDRM) was proposed by Park and Ondov (Park, Pancras and Ondov 2005b), 

in which a Gaussian plume model (GPM) was implanted to estimate dispersion 
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factors based on meteorological inputs and emission rates of ambient pollutants were 

then obtained. The core expression of PDRM also follows Equation 1.1. The product 

of  and , which is denoted as , is the emission rate (g s
-1

) of the i
th

 species 

in the emission from the j
th

 source during the k
th

 time period (Equation 1.8).  is set 

to unity as in other receptor models such as CMB. The dispersion factor is denoted as 

 (s m
-3

) in PDRM.  

       (1.8) 

       (1.9) 

     Hence the PDRM model can be expressed as follows. 

      (1.10) 

     The calculation of GPM dispersion factors, χ/Qs, follows the simple Gaussian 

plume model: 

  (1.11) 

where u is the mean transport speed (m s
-1

) of the plume. Dispersion coefficients,  

and  (m), are the standard deviations of the concentration distributions in lateral (y) 

and vertical (z) directions, respectively. H is the effective stack height (m) at which 

the plume centerline travels, y is off-plume-centerline distance (m) from the receptor 

site, and z is the elevation (m) of the receptor site (Seinfeld and Pandis 2006).  

     Note that the PDRM expression in Equation 1.10 is similar to those of source-

based models rather than the three EPA receptor models. Nevertheless, an underlying 
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difference between PDRM and deterministic models is that the GPM-derived 

dispersion factors which are subject to large errors (Cooper 1982, Yamartino 1982) 

are only applied to seed the model and  PDRM seeks a reconciled solution between 

constrained dispersion factors and ambient concentrations. Since the dispersion 

factors are used to constrain emissions, the possibility of over-estimating 

contributions from sources that are insufficiently aligned with wind directions is 

minimized. 

     In PDRM, a nonlinear least square curve fit function describing the residuals is 

defined as follows and the modeling aims at the minimization of this object function.  

   (1.12) 

     Several assumptions are made in Park’s PDRM model. First, all emitted species 

are conserved. Second, variations of source emissions are ignored within each 

modeling period. Third, calculations of dispersion factors were based on straight-line 

plume trajectories towards the receptor site. These assumptions were generally valid 

since past PDRM applications were mostly the analyses of short-term, high time 

resolution measurements.  

     Park’s PDRM model was first applied in the Tampa Bay Regional Aerosol 

Chemistry Experiment (BRACE) (Park et al. 2005b) and later applied in the 

Pittsburgh Supersite project (Park et al. 2006b). In these studies, SO2 was chosen as a 

tracer gas, as to evaluate the predictions by comparing with continuous emission 

monitor (CEM) data. χ/Qs were then allowed to be tuned linearly from the GPM-

predicted values. That is, a scaling factor for each source during each sampling 
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interval, , was introduced to account for the difference between the predicted 

dispersion factors by the meteorological model and those in PDRM (Equation 1.13), 

which was determined using the known SO2 emissions. In Park’s Tampa study, the 

predicted SO2 emission rates of all the six sources were in good agreement with the 

CEM data (i.e., |ERpred-ERCEM|/ERCEM < 8%) and the predicted concentrations of 

most elemental constituents of PM2.5 well fit ambient measurements as well. 

      (1.13) 

where 0.1 ≤ ≤ 2.0. 

     As the PDRM model was specifically designed for point sources and did not well 

treat area or regional sources, large modeling residuals were observed for some 

source non-specific elements such as Al, Cu, Fe, and Zn in Park’s Tampa study. 

Besides, it was also found that the predicted maximum concentrations and the 

observed excursions were asynchronous for some key marker species, which was 

later attributed to the over-simplification of the plume trajectory.  

     Most recently Beachley (Beachley and Ondov 2012) supplemented the PDRM 

with forward trajectories and reanalyzed the Tampa data. Several crucial 

improvements were made in this second generation of PDRM model. First, 

curvilinear plume trajectories were computed at different aloft levels, to correct for 

the plume arrival times. Second, CMB terms were introduced (Equation 1.14) to 

better account for the non-point background sources (i.e., area soil and marines 

sources). Third, for sources with definitive key tracer species, temporal profiles of 

tracer concentrations were used to condition their χ/Q profiles and intermittent 
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emission rates were allowed. Hence both the widths and amplitudes of χ/Q “peaks” 

could be adjusted towards the observed excursions in Beachley’s modified PDRM 

model, surpassing Park’s model in which plume shape-tuning was done by parallel 

translation of χ/Q profiles. Moreover, improved model performance statistics and 

better agreement with published source profiles were achieved by Beachley’s 

modeling of the Tampa data, compared with Park’s results.  

     As implemented by Beachley,  

 (1.14) 

where, Aijk is the abundances of species i in particles emitted from the j
th

 area source 

during the k
th

 sampling interval, [PM2.5]ijk is the ambient concentration of PM2.5 (g m
-3

) 

at the receptor site by each area source j during the k
th

 sampling interval, and other 

terms are the same as those in Equation 1.10. In Beachley’s study (Beachley and 

Ondov 2012), χ/Q profiles at three different elevations (i.e., 10, 100, and 500 m, 

respectively) were used as the model input for near ground sources, stacks with 

medium heights (i.e., 10 ~ 500 m), and stacks with large effective heights (i.e., > 500 

m), respectively. 

     A cornerstone for both Park’s and Beachley’s PDRMs is that the plume widths are 

related to the observed widths of the Gaussian-shaped excursions in ambient pollutant 

concentrations which contain dispersion information. Ideally, narrow Gaussian peak 

shapes are observed only when plumes from point sources are swept across the 

receptor site as a result of slow rotation of the mean wind direction. However, a 

plume may sweep across the receptor site for multiple times within an observed 
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Gaussian peak, masked by the lower time resolution of sampling compared with 

meteorological measurements. Besides, Gaussian-shaped or near Gaussian-shaped 

peaks can also be observed when the plume approaches the receptor site but departs 

towards its original incoming direction before touching the receptor site. In the past 

PDRM applications, curvilinear trajectories using a low time resolution (i.e., 30-

minute) average of wind data neglected those potential problems and could have 

resulted in underestimated plume transport distances and thus inaccurate dispersion 

factors. 

1.2 Advanced Receptor Model Trends 

     Ideally a receptor model adopted for authentic exposure assessment can generate 

solutions that are in good comparability with those from others. For this reason, inter-

comparison of receptor models have been performed in the US (Lane et al. 2007), 

Europe (Viana et al. 2008), and China (Song et al. 2006), and by using synthetic data 

(Miller et al. 2002). Undoubtedly, similar results from independent models can add 

confidence. In cases that the results do not agree, contemplation of physical facts in 

the study area is more fruitful than comparison of the quality of fits (Henry and 

Christensen 2010). 

     It is controversial to conclude which model is generally the most preferable, as 

each receptor model has its limitations as well as unique advantages. For example, 

CMB is unable to identify unknown sources (e.g., one can only perceive the missing 

sources from large modeling residuals), although it is the first choice for sources with 

known emission profiles. In contrast, UNMIX can predict the number of sources but 

it inherently tends to ignore sources with minor mass contributions. This can be 
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problematic in cases where minor or trace components of ambient mass carry the bulk 

of the toxic activity. PCA requires little quantitative knowledge of sources and 

provides an explicable solution based on the assumption that each source has a unique 

set of tracer species. However, tracer species are often source non-specific and the 

PCA-MLR analyses may even afford negative source contributions. PMF will always 

produce non-negative source contributions and profiles simultaneously but it cannot 

well separate covariant sources. In a sense of incorporating realistic constraints (i.e., 

plume dispersion) into consideration and extracting emission rates, the PDRM model 

can provide more information than other receptor models. However, aberrant PDRM 

solutions may be achieved without effective modeling constraints. In particular, as 

CEM data for some well measured ambient pollutant, which allow effective tuning of 

GPM-derived dispersion factors, are sometimes absent, PDRM has to heavily rely on 

plume trajectories and chemical signature data. The former suffer from the fact that 

meteorological data for use in this model (i.e., wind angle and speed, ambient 

temperature, humidity, solar radiation, and preferably friction velocity, convective 

velocity, Monin-Obukhov length, and mixed layer depth) are acquired at very few 

(i.e., often only a single) stations and wind-versus-altitude data are seldom available. 

     Combining the profitable features of complementary receptor models has been 

attempted in the past. For example, Wåhlin (Wåhlin 2003) proposed a Constrained 

Physical Receptor Model (COPREM) in which the features of CMB and non-negative 

factor analysis was combined. Henry (Willis 2000) proposed a strategy of combining 

PMF and UNMIX. That is, UNMIX is used first to estimate the number of major 

sources and generate their profiles which could be used as a starting for PMF 
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modeling, as the latter is good at finding minor sources. In general, those efforts of 

hybrid modeling were limited to the interaction of two complementary models of a 

similar nature (e.g., both PMF and UNMIX models explore exactly the same outputs 

and their differences lie in the solving procedure), and their significance is no more 

than mathematically facilitating a compromised, feasible solution. 

     As a matter of fact, Beachley’s PDRM model was a first trial of combining two 

models in fundamentally different types. In Beachley’s study, ambient concentrations 

were split into two parts (from point and non-point sources, respectively): the PDRM 

main program computed the contributions from stationary sources by coordinating 

source emission rates and plume dispersion factors, while the CMB components 

accounted for area sources by modeling source contributions and compositions of 

emissions. However, each of these two model moieties independently accomplished 

its own “task”, resulting in a lack of interactive cooperation with each other.  

     In this work, I focused on the joint applications of two distinct models, PDRM and 

PMF, in resolving nearby industrial sources in Baltimore and St. Louis. As the most 

commonly used model when a detailed knowledge of sources is unavailable, PMF is a 

powerful tool to extract the profiles of major sources but, like CMB, it is vulnerable 

to the impact of source collinearity (Habre, Coull and Koutrakis 2011). PDRM, 

however, can even resolve sources in close proximity as far as the profiles of their 

plume dispersions differ. Highlights of this proposed approach include: 1) PMF 

modeling provided a rough apportionment by which the contributions from non-point 

sources can be removed from ambient concentrations; 2) PMF modeling also 

provided cursory source profiles with which source emission rates can be better 
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constrained; 3) algorithms from the EPA ISCST3 model (U.S.EPA 1995) were 

implanted which specifically considers plume dispersion from short-range (< 10 km) 

sources; 4) high time resolution (5-minute) trajectories at the effective plume heights 

allowed more reasonable trajectory-driven GPM outputs according to the actual 

plume arrival times; and 5) plume widths were adjustable by allowing the changes in 

source emission rates among various modeling sub-periods. 
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Chapter 2: A Case Study of a PMF-seeded PDRM Model to 

Resolve Two Neighboring Power Plants of Different Fuel 

Types in Baltimore 

2.1 Background 

     One of the principle objectives of the EPA Supersite Program was to provide high 

quality data sets that could be used to evaluate advanced receptor models (Russell 

2008). In the Baltimore Supersite Project (2000~2003), highly time (1h or less) 

resolved measurements of a wide variety of ambient pollutants were carried out. 

Receptor modeling was attempted to exploit the temporal information provided by the 

data (Ogulei et al. 2005, Ogulei et al. 2006). Owing to the high temporal resolution of 

measurements, better source identifications were achieved (i.e., both oil-fired power 

plant and coal-fired power plant were resolved with the multilinear engine (ME), as 

well as both gasoline-type and diesel-type vehicles), compared with past studies 

conducted in Baltimore (Suarez and Ondov 2002, Hopke et al. 2003, Larsen and 

Baker 2003).  

     As mentioned above, source cross contamination is often inevitable in the 

applications of factor analysis models such as ME, due to collinearity in source 

contributions or profiles (Habre et al. 2011). In the Lee et al. (Lee et al. 2002) study 

of Mid-Atlantic regional aerosol, a blending of the PMF-resolved oil combustion and 

coal combustion factors is indicated by the high abundance of Ni, a well-known 

source specific tracer of oil combustion (Osan et al. 2000, Li et al. 2004), in the coal 
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combustion source in summer (Figure 2.1). In a previous study in Baltimore (Ogulei 

et al. 2005), a low OC/TC ratio (< 0.01) was ascribed to an oil-fired power plant 

(OFPP), which contradicted the common findings in such facilities, i.e., where 

OC/TC = 0.25 ~ 0.50 (Hays et al. 2009). This is partially because the major utility 

generating facilities in Baltimore, an oil-fired power plant (OFPP) and a coal-fired 

one (CFPP), were located in close proximity (< 500 m; Figure 2.2) and the factor 

analysis was unable to properly separate these sources.    
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Figure 2.1 Several resolved (A) source profiles and (B) their contributions in the 

Mid-Atlantic regional aerosol study by PMF (adapted from Lee et al., 2002). 
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Figure 2.2 Map showing the Clifton Park supersite location and major PM sources 

within 20 km. 

     Sulfate, which is largely derived from the conversion of SO2, was the largest 

single contributor to urban PM in the Baltimore area, and, in addition to regional 

sources, local utility power plants added a significant portion to atmospheric SO2 and 

sulfate (Suarez and Ondov 2002, Ogulei et al. 2005). In the Tampa studies by Park 

and Beachley (Park et al. 2005b, Beachley and Ondov 2012), SO2 was measured at 

both the receptor site and with CEMs at each of the four power plants, and was 

employed as a tracer gas to condition the dispersion factors and evaluate modeling 

performance. Two of these power plants were resolved despite having nearly the 

same source angle, as the PDRM model is especially good at handling sources with 

similar profiles based on their different plume widths at the receptor site. However, in 
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the Baltimore Supersite study, SO2 was not measured at the receptor site and thus 

could not be used for these purposes. 

     NOx is another criteria gas that is commonly present in primary emissions from 

industrial combustion sources. Unlike SO2 which is an unique marker of coal 

combustion (e.g., > 95% of atmospheric SO2 emissions were from fossil fuel 

combustion power plants (http://www.epa.gov/air/emissions/so2.htm) in Maryland in 

2008), NOx can also arise from other sources including motor vehicle emissions 

(Landis et al. 2001, Hopke et al. 2003, Larsen and Baker 2003, Ogulei et al. 2005), 

which are highly dispersed in urban areas. For this reason, NOx had not been used in 

the past PDRM applications (Park et al. 2005b, Park et al. 2006b, Beachley and 

Ondov 2012). However, lacking ambient SO2 data to define χ/Qs, the efficacy of 

using ambient NOx with available CEM data was investigated in this study. In my 

preliminary study (refer to Section 2.4.1), factor analysis revealed that NOx 

concentrations measured in the Baltimore supersite project were closely correlated 

with Se, which is a strong tracer of coal combustion (Gladney et al. 1976, Ondov et al. 

1989, Morawska and Zhang 2002), Ni, which is a highly useful tracer of oil fuel 

combustion (Gordon and Zoller 1974, Osan et al. 2000), and also elemental carbon 

(EC) when occurring with large Se excursions, suggesting that utilizing NOx as a 

tracer gas of fossil-fuel fired power plants might be useful. 

     In this part of my modeling study, I was particularly interested in resolving the two 

aforementioned neighboring power plants in Baltimore, i.e., the Wagner Station (WS) 

and Brandon Shores (BS), both operated by the Constellation Energy (formerly BGE), 

and extracting their emission profiles. A novel modeling approach of combining 

http://www.epa.gov/air/emissions/so2.htm
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PDRM, in which a trajectory-driven GPM was implanted, with PMF analysis was 

proposed. 

2.2 Data Inputs 

2.2.1 Description of Receptor Site and Sources 

     The Baltimore supersite at Clifton Park (latitude 39.32ºN, longitude 76.58ºW, 

ASL 45 m) was located in an urban residential area north-northwest of downtown 

Baltimore and nearly due north of the heavily industrial area (Figure 2.2) along the 

shores of the Patapsco River and Curtis Bay in South Baltimore. As shown in Figure 

2.3, significant excursions in ambient concentrations of Se and Ni were observed at 

Clifton Park site during three consecutive afternoons of September 7
th

, 8
th

, and 9
th

, 

2001, when atmospheric stability stayed from moderately unstable to slightly unstable, 

prevailing wind angles (with respect to true north) spanned 135 to 195º, and surface 

wind speeds ranged from 2 to 3.5 m s
-1

 (Figure 2.2). Accordingly, a total of 21-hourly 

periods (1200 - 1900 LT each afternoon) were selected for data analysis and 

modeling. 
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Figure 2.3 Time series of airborne concentrations of NOx (ppb), EC (µg m
-3

), Se (ng 

m
-3

), Ni (ng m
-3

), and Cr (ng m
-3

) measured at the Clifton Park supersite on 

September 7
th

 through 10
th

, 2001. 

     Sources located within this wind sector included the two power plants of interest 

(the Wagner Station and Brandon Shores), and a cluster of industrial sources 

(Stericycle, Chemetals, W.R. Grace, Condea Vista, and Patapsco Waste Water 

Treatment Plant) which lay within a  radius of 2.5 km of one another along Curtis 
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Bay. The Wagner Station has four generating units: two burning coal only, and two 

burning either oil or natural gas (NG). The coal-fired units are equipped with 

electrostatic precipitators (ESP), and the oil/gas-fired units were equipped with 

multiple cyclones (MC). The Brandon Shores plant has two identical coal-burning 

units, each equipped with Selective Catalytic Reduction (SCR) devices for NOx 

control and ESPs. Fuel type, nominal capacities, emissions data for particulate matter 

(PM) and NOx, source-receptor distances, and station angles, of the two power plants 

are listed in Table 2.1. Stack parameters are listed in Table 2.2. 

Table 2.1 Emission source information of the Brandon Shores and Wagner Station. 

Plant Unit ID Fuel 
Capacity, 

MW 

Control 

technology
1
 

Distance, 

km 

Station 

angle, deg 

PM, 

tpy
2
 

NOx 

emission, 

tpy
2
 

Wagner 

Station 

1 oil/NG 140 MC 16.5 166 3 113 

2 coal 130 ESP 16.5 166 77 2634 

3 coal 320 ESP 16.5 166 176 10335 

4 oil/NG 400 MC 16.5 166 37 641 

Brandon 

Shores 

1 coal 690 ESP, SCR 16.2 165 496 11383 

2 coal 690 ESP, SCR 16.2 165 428 11604 

1
 Multiple cyclone (MC); electrostatic precipitator (ESP); and selective catalytic reduction 

(SCR) system. 
2
 Metric tons per year in 2001. 

Table 2.2 Stack information of the Brandon Shores and Wagner Station. 

Plant Unit 

ID 

Stack 

height 

(m) 

Temperature 

(K) 

Diameter(m) Exit 

velocity 

(m s
-1

) 

Flow 

rate 
1
 

(m
3
 s

-1
) 

Wagner 

Station 

1 87.48 409.80 3.10 22.86 172.26 

2 87.48 409.80 3.10 22.86 172.26 

3 105.46 418.70 4.21 28.65 399.27 

4 106.68 588.70 5.34 35.05 786.74 

http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
http://www.epa.gov/ttn/naaqs/ozone/areas/plant/md/pl28900x.htm
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Brandon 

Shores 

1 179.07 435.93 6.71 35.41 1225.63 

2 179.07 435.93 6.71 35.41 1225.63 

1
 Flow rate at stack conditions. 

     Owing to their identical stack profiles (Table 2.2) and locations, the plume 

trajectories of two units at the Wagner Station (unit #1 and #2) are indistinguishable 

despite their different fuel categories. These two units were thus treated as one in the 

PDRM modeling. For the same reason, the Brandon Shores was considered as a 

single point source. Therefore, totally four individual stacks rather than six were 

considered: Wagner Station Unit #1 and #2 (WS Unit 1&2), Wagner Station Unit #3 

(WS Unit 3), Wagner Station Unit #4 (WS Unit 4), and Brandon Shores Unit #1 and 

#2 (BS Unit 1&2).   

2.2.2 Ambient Pollutants 

     Data used in this study were retrieved from the Baltimore Supersite Database 

(http://www2.chem.umd.edu/supersite/) and the project’s archives. These included: 1) 

PM2.5 metals (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) determined at 30 

minute intervals for samples collected with the University of Maryland Semi-

continuous Element Aerosol Sampler (SEAS); 2) both particulate sulfate and nitrate 

measured at 10-min intervals with an R&P (Rupprecht and Patashnick, Albany, NY) 

8400S ambient particulate sulfate monitor and an R&P 8400N ambient particulate 

nitrate monitor, respectively; 3) hourly OC and EC obtained with an R&P 2100 

carbon analyzer (total carbon was determined as the sum of OC and EC); and 4) 30-

min PM2.5 mass concentrations measured with an R&P Tapered Element Oscillating 

Microbalance (TEOM, 1400a) ambient particulate monitor, equipped with a sharp-cut 

http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www.msa.md.gov/megafile/msa/speccol/sc5300/sc5339/000113/013000/013562/unrestricted/20110392e.pdf
http://www2.chem.umd.edu/supersite/


 

 24 

 

PM2.5 cyclone inlet. Hourly measurements of gaseous criteria pollutants (NOx, CO, 

and O3) at the supersite were carried out as well by Maryland Department of 

Environment (MDE). Additional data details are described in Ondov et al. (Ondov et 

al. 2006) Hourly NOx emission rates from the Wagner Station and Brandon Shores 

were obtained for the modeling periods from the EPA Clean Air Markets Database 

(http://www.epa.gov/airmarkets/). Herein all of the pollutant data were synchronized 

and converted into hourly averages prior to the modeling. 

2.2.3 Meteorological Data 

     On-site meteorological measurements included temperature, relative humidity 

(RH), wind speed and direction (Figure 2.4), pressure, precipitation, and solar 

radiation recorded at 10-minute intervals by sensors placed on a 10-m tower at the 

Clifton Park site. These data are available on the NARSTO Database 

(ftp://narsto.esd.ornl.gov/pub/EPA_Supersites/baltimore/JHU_MET/NARSTO_EPA_

SS_BALTIMORE_JHU_MET_V1.html), as part of the Baltimore data set. Surface 

albedo and cloud cover measured at the nearby BWI airport were used which were 

retrieved from the National Solar Radiation Database (NSRDB). Other 

meteorological parameters describing the atmospheric boundary layer (ABL) were 

derived with the AEROMET algorithms (U.S.EPA 2004a) in MATLAB scripts 

(MathWorks, Inc., version 7.8) as described in Appendix B1, including: Pasquill 

atmospheric stability class, friction velocity, convective velocity, Monin-Obukhov 

length, and mixed layer depths (MLDs). The Johns Hopkins University elastic 

backscatter lidar system (JHU 2000) (Adam 2004) was used to experimentally 

determine the MLDs at 30-minute intervals on several days in August 2001, but the 

http://www.epa.gov/airmarkets/
ftp://narsto.esd.ornl.gov/pub/EPA_Supersites/baltimore/JHU_MET/NARSTO_EPA_SS_BALTIMORE_JHU_MET_V1.html
ftp://narsto.esd.ornl.gov/pub/EPA_Supersites/baltimore/JHU_MET/NARSTO_EPA_SS_BALTIMORE_JHU_MET_V1.html
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instrument was offline during the selected SEAS measurement periods, owing to 

damage by lightning. However, the measured MLDs by JHU were used to tune the 

mixing height model calculations (Appendix B1). The 3D anemometer installed at the 

supersite was also off line after the lightning strike and those high quality 

micrometeorological data were unavailable for the modeling periods. 
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Figure 2.4 Time series of surface wind, temperature, and RH from September 7
th

 

through 10
th

, 2001. 

      It is noteworthy that the instrument maintenance log recorded an anemometer 

resetting at 1600 LT on September 8
th

 2001 and large uncertainties associated with 

the wind direction measurement (σ > 40º) lasted for about two hours thereafter. In the 

modeling, we used the linearly interpolated wind directions as an alternate for this 

affected period. 



 

 26 

 

2.3 Methods 

2.3.1 Multiple Linear Regression 

     Multiple linear regression (MLR) analysis is a statistical technique for estimating 

the degree to which changes in independent variables will correlate with changes in a 

dependent variable (Kleinman et al. 1980). Herein, I used MLR to apportion 

contributions of the tracer gas from the two power plants and other non-interested 

sources. Thus, in this case the dependent variable was ambient NOx concentration 

measured at the Clifton Park receptor site, and the independent variables were 

elemental (SEAS metals and EC) and molecular (sulfate, nitrate, and OC) aerosol 

particle constituents, and other measured criteria gases (CO and O3). The dataset used 

was either for the entire 153 hours of data acquisition in early September, or for the 

21 afternoon hours (1200 ~ 1900 LT) of interest from September 7
th

 through 9
th

, 2001. 

Simple linear regression between NOx and individual species was used to assist the 

selection of the best independent variables. The selection criterion was that the 

independent variables need be source specific. Statistical analysis was performed with 

a least-square multiple linear regression function available in the MATLAB software 

(MathWorks, Inc., version 7.8). 

2.3.2 PMF 

     The EPA PMF v3.0 program was used and 22 species were selected for analysis, 

including PM2.5 components (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, Zn, sulfate, 

nitrate, EC, OC, TC, and TEOM PM2.5 mass) and gaseous criteria pollutants (NO, 

NO2, NOx, O3, and CO). A few TEOM readings were negative and replaced with the 
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linearly interpolated values. Accordingly, TEOM PM2.5 mass was then considered to 

be a “weak” species with additional uncertainties allowed in the modeling. CO and 

NO were also treated as “weak” species, as several measurements of these two 

species showed zero values. 

     Different numbers of factors (3 to 10) were tested in this study and an optimal fit 

yielding interpretable results was reached with a 6-factor model. When the factor 

number was ≤ 5, the predicted value of Q was greater than 1.1 times of the robust 

value of Q, indicating that fitting was non-robust, and the solutions did not adequately 

explain the observed mass. When the factor number was ≥ 7, there were no 

significant changes in the ratios of predicted and expected Q values. Also, the 

modeling consistently produced negative coefficients in the solutions, suggesting that 

too many factors were considered. 

2.3.3 Trajectory Analysis 

     For each source, forward trajectories at the effective plume heights were 

calculated every 10 minutes, using 10-minute wind averages. Standard deviations of 

the 10-minute averages were used in error propagation to assess the uncertainty in the 

results predicted with the TGPM, as described below. The coordinates of all points on 

the trajectories were referenced from the receptor site (0, 0). Using the point of 

closest approach (Beachley and Ondov 2012), the horizontal off-plume centerline 

distance, the accumulated plume downwind distance to the receptor site, and the 

corresponding time of the plume transport were calculated for each trajectory. The 

point of closest approach, (xc, yc), for each wind vector segment (i.e., (xi, yi, xf, yf)) 

(Figure 2.5) was determined as: 
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xc = −k×b/( k
2
+1)       (2.1) 

yc = b/( k
2
+1)        (2.2) 

where k=(yf−yi)/(xf−xi), and b=( xf×yi−xi×yf)/(xf−xi). 

 

Figure 2.5 A curvilinear forward trajectory with respect to the receptor site (0, 0). 

     Accordingly, the off-axis distance (Yi) between the selected trajectory segment 

and the receptor site was calculated as follows:  

Yi=√(xc
2
+yc

2
)        (2.3) 
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     In case that the point of closest approach was on the line extension of the selected 

segment, its off-axis distance (Yi) was considered to be the linear distance between 

the closer end of the segment and the receptor site. 

Yi=min(√(xi
2
+yi

2
), √(xf

2
+yf

2
))      (2.4) 

     The off-plume centerline distance (Y) between the trajectory and the receptor was 

the minimum value of Yis among all trajectory segments. 

Y=min(Yi)        (2.5) 

     The point of closet approach for the trajectory was that corresponded to the 

determined Y. The plume transport distance, , was the accumulated lengths of 

segments up to the point of closest approach for the overall trajectory, and the plume 

transport time was the sum of the quotient of the length of each trajectory segment 

and the segment average wind velocity. The mean transport velocity was the plume 

transport distance divided by the transport time. And the plume arrival time for each 

trajectory was its originating time plus the calculated plume transport time.  

2.3.4 Trajectory-driven Gaussian Plume Model (TGPM) 

     Herein, the core expression of the TGPM is as follows: 

  (2.6) 

     Equation 2.6 is identical to the simple GPM (Equation 1.11) discussed earlier and 

detailed descriptions of the solving procedure can be found elsewhere (Park et al. 

2005b, Beachley 2009). In the equation, the pre-exponential term (s m
-3

) describes the 
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plume volume dilution, the first exponential factor accounts for the lateral decay of 

the plume, and the terms in the bracket account for the vertical decay of the plume. In 

both Park’s and Beachley’s studies, Briggs’ equations (Briggs 1969, Briggs 1971, 

Briggs 1972, Briggs 1974, Briggs 1975, Seinfeld and Pandis 2006) were used to 

compute buoyancy flux and momentum flux parameters and thus the effective plume 

height, H. Aloft wind velocity, u, was calculated from the power law wind profile 

(Panofsky, Blackadar and McVehil 1960). Equations from Draxler (Draxler 1976), 

Irwin (Irwin 1979), and Binkowki (Binkowski 1979) were used to calculate  and . 

     In my study, several updates in the algorithms for plume dispersion calculations 

were made. First, the power law was replaced by the log-law wind profile (Cinoco 

1965, Oke 1987), because the latter contains the surface roughness as an input 

(Huang 1979, Oke 1987), which could be a critical factor for complex urban cases 

such as in Baltimore. According to the log-law algorithms, the wind speed (U) at an 

aloft height, z (m), is equal to: 

     (2.7) 

where u* is the friction velocity, kf is von Karman constant, which is equal to 0.4, z0 

is the surface roughness, which was set to 0.25 m in this scenario due to the 

heterogeneous terrain (i.e., mixed urban/industrial land use with about one third of 

water cover) as suggested by Nicholas and Lewis (Nicholas and Lewis 1980), and D 

is the zero-plane displacement height, which is approximately equal to seven times 

the surface roughness. 
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     Given the wind speed, ( ), at an altitude of 10 m ( = 10 m), the wind speed at 

height, z, can be obtained as: 

    (2.8) 

     Plume trajectories at different originating times were simulated for each source in 

MATLAB, using the calculated aloft wind speeds at the corresponding effective 

plume height. 

     Second, the EPA Industrial Source Complex Short Term plume model 3, ISCST3 

(U.S.EPA 1995), was applied to compute  and . In ISCST3, these calculations 

are based upon the Pasquill-Gifford dispersion curves (Pasquill 1979) that were 

obtained from trustworthy surface release experiments under six discrete stability 

classes, as follows: 

        (2.9) 

      (2.10) 

where   

     In the above equations,  is the plume downwind distance in kilometers based on 

the curvilinear trajectories. a, b, c and d are coefficients (Table 2.3) regarding  and 

the Pasquill-Gifford atmospheric stability class (Gifford 1961) which were estimated 

from the solar radiation and the surface wind speed as shown in Table 2.4. This 

stability classification approach is part of the EPA regulatory model of Gaussian 

plume dispersion and suited to cases where sophisticated micrometeorological data 

are unavailable, despite the fact that it insufficiently captures the continuously 
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varying nature of atmospheric conditions. Nevertheless, this approach is deemed 

adequate for short plume transport periods, such as the case here. 

Table 2.3 Parameters used to calculate Pasquill-Gifford σy and σz (Gifford 1961). 

Atmospheric 

stability class 
1
 

 (km)   c d 

B < 0.2 90.673 0.93198 18.3330 1.8096 

B 0.21 - 0.40 98.483 0.98332 18.3330 1.8096 

B > 0.4 109.3 1.0971 18.3330 1.8096 

C All 61.141 0.91465 12.5000 1.0857 

1
 B: moderately unstable; and C: slightly unstable. 

Table 2.4 Daytime atmospheric stability classification 
1
. 

Surface wind speed 

(m s
-1

) 

Strong 

(> 700 W m
-2

) 

Moderate 

(350 - 700 W m
-2

) 

Slight 

(< 350 W m
-2

) 

2 – 3 A – B B C 

3 – 5 B B – C C 

1
 A: extremely unstable; B: moderately unstable; and C: slightly unstable. 

     Another feature of the ISCST3 model was employed for the modeling. That is, a 

zero vertical dispersion factor is assumed if the effective plume centerline is above 

the mixed layer under convective conditions. Details about these updates are given in 

Appendices B1 and B2. 

     The plume dispersion factors, χ/Qs, were then calculated individually for each 

successive trajectory. These high time resolution trajectories were sorted by the actual 

plume arrival times rather than their originating times, and the dispersion factors for 
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those within the same hourly period were combined into hourly averages, to coincide 

with the ambient pollutant sampling interval. 

2.3.5 PMF-seeded PDRM (PDRM III) 

     Background correction is especially crucial in this study, as the tracer gas, NOx, is 

source non-specific. Nevertheless, due to lack of apparent source-specific tracer sets 

and detailed background information (i.e., the types of background sources that were 

effective during the study period and their validated emission profiles), neither linear 

regression nor Beachley’s CMB approach could be applied. Alternatively, PMF was 

used to remove background sources for PDRM-III, as follows. 

   (2.11) 

where the terms are the same as those in Equations 1.5 and 1.10. As shown in 

Equation 2.11, ambient pollutant concentrations, cik, are expressed as the sum of the 

contributions from the m point sources of interest (the first summation term) and 

other n-m area sources (the second summation term). PMF analysis was incorporated 

in the PDRM-III for the contribution estimates of area sources but done 

independently prior to PDRM.  

     The NOx emission ratio (r) of coal-fired to oil-fired units at the Wagner Station 

was calculated using the in-stack CEM data (Equation 2.12). This allowed further 

resolving of the emission profiles from different stacks at the Wagner Station while 

allowing the assumption to be made that the coal-burning units in the Brandon Shores 

and Wagner Station had the collinear profiles (Equations 2.13 to 2.14):  
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      (2.12) 

      (2.13) 

    (2.14) 

where  and  are the average NOx emission rates due to the coal 

and oil/NG burning at the Wagner Station, respectively.  and  are the 

NOx abundances in the PMF-derived source profiles for BS and WS, respectively. 

 and  correspond to the abundances of the i
th

 species in the PMF-derived 

source profiles for the coal- and oil-fired power plants, respectively.  and 

 are the abundances of the i
th

 species in the desired source profiles for the 

coal-burning only unit (WS Unit 3) and oil-burning only unit (WS Unit 4) at the 

Wager Station, respectively. The PMF-derived profile of the oil-fired power plant 

represented the aggregate of units 1 and 2 at the Wagner Station (WS Unit 1&2). 

     In our initial PDRM trials, initial ERs were roughly estimated and ER solutions 

were loosely bound (i.e., LB: 10
-4

 g s
-1

; UB: 5×10
4
 g s

-1
) for all species as done by 

Park (Park et al. 2006b), unless CEM or other external sources (i.e., EPA national 

emission inventory, NEI; or toxics release inventory, TRI) could provide the 

information. For a multivariate receptor model such as PDRM, it is critical to set near 

realistic initial inputs with proper constraints to avoid aberrant solutions. Although 

source cross contamination was realized in our PMF results, the PMF generated 

emission profiles were good values to serve as the initial guesses for PDRM and 
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assured a rapid convergence to interpretable solutions. Therefore, the PDRM model 

was upgraded by applying PMF constraints as described below. 

     The initial guess of emission rates of ambient pollutants from a given source was 

normalized to its NOx emission rate: 

       (2.15) 

where  is the initial emission rate (g s
-1

) of species i from source j during the 

modeling period.  is the initial emission rate of NOx (g s
-1

) from source j 

during the modeling period, as determined from CEM data.  and  are the 

abundances of species i and NOx from source j, respectively, obtained from the PMF 

analysis. ERs of ambient species were then more tightly constrained as follows: 

LB( ) ≤  ≤  UB( )     (2.16) 

where LB and UB are the lower and upper bounds which were set as 0.1 and 10 times 

the initial value, respectively.  

     Two PDRM runs were performed for each day of study, using a MATLAB script 

in which the solution for Equation 2.11 is obtained by minimizing the object function 

defined as follows:  

 (2.17) 

     The first run used NOx only, to tune χ/Q profiles ( ) for the three or four 

sources (WS Units 1 and 2 were inactive on September 8
th

 and 9
th

) using the NOx 

emission rates from CEM. In the second run, all species were added. Note that the 
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seed values of emission rates of all species other than NOx from different stack units 

were obtained using those ERs of NOx solved in the first PDRM run and the PMF-

derived source profiles, as described in Equation 2.15. Finally, all PDRM-derived 

ERs of various species from those different stacks were normalized with respect to 

the corresponding ER of PM2.5, to generate the PDRM-derived source profiles. 

2.4 Results and Discussion 

2.4.1 Linear Regression 

     When the entire 153-hour sampling periods in early September were included, the 

three species best correlating with NOx were EC (r
2
 = 0.895, p < 0.001), Se (r

2
 = 

0.636, p < 0.001), and Ni (r
2
 = 0.443, p < 0.001). However, if only considering the 21 

afternoon hours when plume influences were observed as evidenced by Se and Ni, the 

best correlations with NOx were found for Se (r
2
 = 0.696, p < 0.001), Ni (r

2
 = 0.203, p 

= 0.04), and As (r
2
 = 0.125, p = 0.12). As a matter of fact, the most prominent peaks 

of NOx occurred in the mornings (Figure 2.3), coinciding with the largest EC 

excursions and traffic rush hours, which together pointed to motor vehicle exhaust. In 

contrast, weaker NOx occurrences in the afternoons were accompanied with large 

excursions of Se and Ni. Selenium, nickel, and EC were thus selected as the tracers of 

coal combustion, oil combustion, and motor vehicle emissions, respectively, for the 

MLR analysis of the 21-hour period. Solving for the coefficients with multiple 

regression analysis, we obtained the following relationship: 

   (2.18) 
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where concentrations of Se and Ni are in ng m
-3

, NOx in ppb, and EC in µg m
-3

. The 

regression equation had a correlation coefficient of 0.699 (p < 0.001) and the standard 

deviation of the residuals was ± 2.96 ppb.  

     From Equation 2.18, we found that a residual of about 9 ppb of NOx was not 

related to emissions from the three modeled sources. This was significant considering 

the average NOx concentration during the study period was only 17 ppb. This residual 

was probably due to the contributions from industrial emissions other than the coal- 

and oil-fired power plants that were not considered. The remaining 8 ppb of NOx was 

split as follows: 98.0 ± 19.6 % from Se source (i.e., CFPP) and 6.6 ± 20.4 % from Ni 

source (i.e., OFPP). These rough estimates by MLR provided a useful and important 

constraint to χ/Q predictions made with the TGPM-driven PDRM-III. 

2.4.2 PMF Source Apportionment 

     Herein the data were best fit with a six-factor PMF solution, identified as follows: 

coal-fired power plant, oil-fired power plant, traffic, area comprehensive industrial, 

road dust, and an unknown Fe factor. Their emission abundance profiles and time-

series contributions to PM2.5 are shown in Figure 2.6 and 2.7, respectively. The 

assignments of sources to the six factors are described immediately below. 
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Figure 2.6 PMF resolved factor profiles. 
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Figure 2.7 Time series of source contributions. 

     Factor 1 was attributed to coal-fired boilers. As noted above, Se and As have been 

widely used as tracers for coal burning (Ragaini and Ondov 1977, Ondov, Ragaini 

and Biermann 1979, Suarez and Ondov 2002). The coal-fired power plant was 

identified by its high abundances of Se, As, EC and NOx, and low abundance of Ni. 

The abundances of Se and As for this factor are 0.21 % and 0.046 %, respectively, 



 

 40 

 

and that of Ni was less than 0.01 %. The Se abundance is comparable with the 

composite CFPP profile (i.e., 0.24 ± 0.18 %) by Watson (Watson, Chow and Houck 

2001) but much larger than that of 21 coal boilers (i.e., 0.0024 ± 0.0017 %) in 

Sheffield and Gordon’s study (Sheffield and Gordon 1986). The As abundance falls 

into the range of 0.004 ~ 0.05 % for Sheffield and Gordon (Sheffield and Gordon 

1986). The OC/TC ratio is 0.72, compared to 0.56-0.89 from Watson (Watson et al. 

2001). Sulfate was often attributed to coal combustion sources as a result of gradual 

transformation from SO2. However, very low sulfate concentrations (i.e., SO4
2-

/Se < 

100) were attributed to this coal-combustion factor, probably because the distance 

between the Brandon Shores and the receptor site was only 16 km and the emissions 

from the former were still fresh without sufficient aging at plume arrivals (Tuncel et 

al. 1985, Tuncel et al. 1987) as wind blew directly towards the supersite.  

     Factor 2 was recognized as the oil-fired power plant by the presence of both Ni 

and Se. In the absence of refineries and smelters, Ni is a unique tracer for oil 

combustion (Osan et al. 2000, Suarez and Ondov 2002) and the concurrent 

observation of Se in this factor is consistent with the mixed fuel types (oil, NG, and 

coal) at the Wagner Station. Moreover, the coal- and oil-fired power plants accounted 

for 98 % of the total emission of selenium, which is consistent with previous findings 

that the Brandon Shores and Wagner Station complex was the major source of 

atmospheric selenium in the Baltimore area (Suarez and Ondov 2002). And the 

OC/TC ratio is 0.87 for this factor, slightly higher than that of the CFPP factor.  

     The third factor was marked by high abundances of EC and NOx and attributed to 

motor vehicle emissions. The presence of traffic-related metallic tracers in this factor 
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including Zn, which is used in motor oil additives (Ondov, Zoller and Gordon 1982b), 

Fe, Al, and Cu, which could be attributed to brake linings and cylinder wear (Oliveira 

et al. 2010), supported the assignment. This factor was the largest PM2.5 contributor 

(≥ 40 % of the total PM2.5) in this case, which is not a surprise as the supersite was 

located adjacent to heavily trafficed downtown area and only 6 km away from the toll 

booths of the I-95 and I-895 traffic tunnels. The OC/TC ratio of 0.78 for this factor is 

on the high end of those reported by Watson (Watson et al. 2001) for vehicle exhaust 

samples (OC/TC = 0.58 ± 0.15), However, this OC/TC ratio is in excellent agreement 

with that (OC/TC = 0.77 ± 0.21) of the motor vehicle profile obtained from another 

study in November 2002 in Baltimore (refer to Section 4.4.3 in Chapter 4). 

     The fourth factor showed a high abundance of sulfate (i.e., 48 % of the PM2.5 

mass), suggesting a role of secondary aerosol. Meanwhile, this factor also showed 

high percentages of transition metals (i.e., Fe: 0.35 %; Zn: 0.11 %; Pb: 0.8 %; Cu: 

0.6 %; Mn: 0.4 %; and Ni: 0.2 %), suggesting an industrial nature for this factor. By 

further examining the time series source contributions (Figure 2.7), it was revealed 

that its contribution on September 7
th

 was by far greater (> 5 fold) than those on the 

other two days. This pattern is probably due to the fact that September 8
th

 and 9
th

 

were weekend days when many industries were under maintenance mode. During the 

study periods, the industrial area along Curtis Bay was aligned with the prevailing 

wind direction, so that emissions from Stericycle, Chemetals, W.R. Grace, Condea 

Vista, and/or the Patapsco Waste Water Treatment Plant could be observed. In 

particular, Stericycle Inc., the largest medical waste treatment company in the United 

States, is capable of incinerating over 300,000 tons of waste annually. This primary 
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consideration agreed with the large abundances of Pb and Zn (Singh and Prakash 

2007) but could not explain the high concentrations of Fe and Mn. Hence it is likely 

that this industrial area factor contained contributions from other nearby facilities 

(e.g., Mn and Fe from Chemetals Inc., and Zn from W. R. Grace Co.) and this factor 

was eventually named as an industrial area composite. The OC/TC ratio for this factor 

is 0.62, which is the smallest among all factors. 

     Factor 5 contained substantial quantities of Al (2.0 %), Zn (0.7 %), Fe (0.5 %), Cu 

(0.36 %), and Mn (0.21 %), indicative of road dust emissions as city road dust 

profiles were often characterized by high levels (i.e., 0.1 to 10 %) of Fe, Cu, Zn and 

Mn (Adachi and Tainosho 2004, Lough et al. 2005, Ning et al. 2008). Cu and Zn are 

well known tracers for braking activities (e.g., wearing of brake pads or tires), and 

Al2O3, K, and Mn are representatives of road pavement erosion and re-suspension 

(Amato et al. 2009). In addition, high OC/TC fractions (> 0.8) were often observed 

for urban road dust (Watson and Chow 2001), as found in the profile of this factor 

(OC/TC = 0.88).  

     As shown in Figure 2.7, factor 6 consisted of a sudden outburst of Fe, Cr, and Mn 

without an elevated PM2.5 level during the short period from 1800 to 1900 LT on 

September 7
th

, 2001. This unknown Cr-containing Fe factor could be due to a certain 

fugitive event nearby the receptor site, or possibly because of contamination by 

stainless steel during the sample analysis. The latter was suspected as such excursions 

of Fe, Cr, and Mn due to contamination had been observed before during the 

Supersite project (Park et al. 2005b, Beachley 2009) and the fingerprint compositions 

(i.e., Cr/Fe = 0.025, and Mn/Fe = 0.092) are consistent with those average 
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compositions (i.e., Cr/Fe = 0.028, and Mn/Fe = 0.074) reported for stainless steel 

(MatWeb 2012). 

     It is noteworthy that there was no separate secondary aerosol factor resolved in 

this PMF analysis. Besides, high contents of CO, ozone, and EC were found in all 

factors. These suggested that secondary aerosol and probably motor vehicle emissions 

as well were intermingled with all the factors. 

     As shown in Figure 2.8, the reconstructed PM2.5 concentrations were well 

correlated (r
2
 = 0.974) with the measured concentrations. In contrast, PMF-predicted 

NOx concentrations were fairly well correlated (r
2
 = 0.858) with those observed and 

the relative errors in the NOx predictions ranged from -15.1 ~ +34.4 % with a mean 

absolute value of 9.6 %. The predicted mass of other species generally fit well with 

the measured values: eight of the 11 SEAS metals (As, Cr, Cu, Fe, Mn, Pb, Se, and 

Zn) showed r
2
 > 0.90 as well as EC and sulfate. Poorer predictions were found for Cd 

(r
2
 = 0.789), OC (r

2
 = 0.732), and nitrate (r

2
 = 0.513).  
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Figure 2.8 Comparison of PMF predicted and observed PM2.5 concentrations. 

     As shown in Figure 2.9, motor vehicle emissions and industrial area composite 

were two largest contributors to ambient PM2.5 mass (40.3 % and 27.1 %, 

respectively), followed by OFPP and CFPP sources which together contributed 

28.1 % of the PM2.5 mass. In contrast, OFPP and CFPP contributed 42.5 % and 

40.2 %, respectively, to ambient NOx, which were four times greater than that from 

the third largest contributor of NOx, motor vehicle emission (10.3 %). The summed 

NOx contribution from OFPP and CFPP sources by the PMF modeling was nearly 

twice as much as that predicted by MLR (i.e., ~ 50 % of NOx was from the power 

plants during the study period according to MLR). Moreover, unlike the MLR results 

in which NOx contributions from CFPP were 3~15 times greater than that from OFPP, 

the PMF results showed nearly equal contributions of NOx from these two different 

types of power plants. This difference could be partially due to the reason that the 



 

 45 

 

CFPP and OFPP units (i.e., BS and WS) were too close to each other and PMF did 

not well resolve these covariant emissions. However, the PMF allocation of NOx was 

still adopted in the PDRM modeling for two considerations. First, PDRM would re-

allocate NOx contributions based on the different plume dispersion factors of 

emission sources, which could remedy possible cross-contamination of source 

contributions. Second, a large average residual of NOx was left unexplained in the 

MLR results.  
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2.9%

40.3%
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Figure 2.9 PM2.5 mass allocation by PMF resolved sources. 

     The profiles of OFPP and CFPP resolved by PMF exhibited unexpected similarity 

in Pb, Se, Zn, TC, and NOx, except for the remarkable disparity between them in Ni 

(Figure 2.6). As CEM data showed that only one third of NOx emissions at the 

Wagner Station were from coal-fuel stacks during the study period, there was no 

other plausible interpretation for this finding but that those factors were compromised 
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by cross contamination. Ratios between gaseous emissions (i.e., NOx and CO) and 

particle emissions (i.e., PM2.5) were often variable in the presence of multiple 

effective sources (Morawska and Zhang 2002). However, an excellent correlation (r
2
 

= 0.936) between NOx and PM2.5 was revealed using the summed contributions from 

OFPP and CFPP factors apportioned by PMF, as shown in Figure 2.10. This 

consistency suggested that the total contributions from these two sources were 

accurately extracted by PMF, and provided confidence that these PMF results could 

well seed the PDRM solution. Simple linear regression of the combined contributions 

of NOx from OFPP and CFPP sources with those of individual species found that the 

combined NOx were highly correlated with Se (r
2
 = 0.992, p < 0.001), and the 

regression intercept (i.e., 2.51 ppb of NOx) were insignificant with respect to ambient 

concentrations (i.e., an average of 14.19 ppb of NOx), indicating that there was little 

influence from sources other than these power plants. Meanwhile, although poor 

correlations between NOx and As (coal combustion tracer) or Ni (oil combustion 

tracer) were found (i.e., r
2
 = 0.264 for As, and r

2
 = 0.402 for Ni), an MLR analysis of 

PM2.5 against Ni and As showed a remarkable correlation (r
2
 = 0.999, p < 0.001; the 

ratio of fitting slopes Ni/As = 0.45). This also indicated a non-collinearity in the 

emission profiles of the two power plants. With known NOx emission rates attributed 

to coal and oil combustion from CEM, a linear regression as described above 

(Equation 2.12 to 2.14) was used to separate the profiles for different coal- and oil-

combustion units in the Wagner Station which were then used to seed the PDRM 

modeling. The resolved profiles of individual units are shown in Figure 2.11. 
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Figure 2.10 NOx concentrations versus PM2.5 concentrations from the total 

contributions of CFPP and OFPP apportioned by PMF. 
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Figure 2.11 Stack emission profiles resolved by linear regression. 

2.4.3 Trajectory Simulations 

     The plume forward trajectories from the different stacks in the power plants at 10-

minute resolution are shown in Figure 2.12. Temporal profiles of the TGPM-derived 

dispersion factor, (χ/Q)
TGPM

s calculated as described in Section 2.3.4 are shown in 

Figure 2.13.  



 

 49 

 

-10 -5 0 5 10
-20

-15

-10

-5

0

5

 

L
a

ti
tu

d
e

 (
k

m
)

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00 WS Unit 1&2

-10 -5 0 5 10
-20

-15

-10

-5

0

5

WS Unit 1&2

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

-10 -5 0 5 10
-20

-15

-10

-5

0

5

WS Unit 1&2

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

-10 -5 0 5 10
-20

-15

-10

-5

0

5

WS Unit 3

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

-10 -5 0 5 10
-20

-15

-10

-5

0

5

WS Unit 3

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

-10 -5 0 5 10
-20

-15

-10

-5

0

5

WS Unit 3

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

-10 -5 0 5 10
-20

-15

-10

-5

0

5

WS Unit 4

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

-10 -5 0 5 10
-20

-15

-10

-5

0

5

WS Unit 4

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

-10 0 10
-20

-15

-10

-5

0

5

WS Unit 4

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

-10 -5 0 5 10
-20

-15

-10

-5

0

5

BS Unit 1&2

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

Longitude (km)
-10 -5 0 5 10

-20

-15

-10

-5

0

5

BS Unit 1&2

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

-10 -5 0 5 10
-20

-15

-10

-5

0

5

BS Unit 1&2

 13:00

 14:00

 15:00

 16:00

 17:00

 18:00

 

Figure 2.12 Plume forward trajectories from 1300 LT to 1800 LT on September 7
th

 

(left panels), 8
th

 (central panels), and 9
th

 (right panels), 2001 (the grey squares 

represent the plume sources and the grey cycles at the origins represent the Clifton 

Park supersite). 
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Figure 2.13 TGPM (solid black lines) and PDRM-derived (dashed red lines) 

dispersion factors (χ/Q) for the four different generating units in the Wagner Station 

and Brandon Shores power plants from September 7
th

 through 9
th

, 2001. 

     In the afternoon of September 7
th

, the plume trajectories originating from the units 

in the power plant complex began approaching the receptor site from the easterly 

direction after 1300 LT. The plumes then departed towards the east after nearly 

crossing the receptor site at around 1500 LT, and then turned back to approach the 

receptor site again after 1530 LT. The plumes swept across the receptor site at around 
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1640 LT but their trajectories immediately altered direction and swept across the 

receptor site again. At 1800 LT, the plumes almost retreated to their initial trajectory 

positions at 1400 LT. And the plume trajectories were completely off the receptor site 

after 1900 LT. As a result, the TGPM predicted hourly χ/Qs of the stack units peaked 

at 1630 LT with a shoulder at 1530 LT (Figure 2.13). Note that WS Unit 4 showed 

the smallest value of maximum χ/Q among all WS units because of its largest 

effective stack height.  

     In the afternoon of September 8
th

, the plume centerlines again swung back and 

forth but were substantially farther (> 4 km) from the receptor site except during the 

period from 1500 to 1600 LT when they suddenly approached the receptor site before 

quickly moving away. Hence the TGPM-predicted temporal profile of χ/Qs showed a 

narrower peak width compared with that in the previous afternoon. It is noteworthy 

that the centerline of plume trajectories never crossed the receptor site in that 

afternoon, although a Gaussian-shape χ/Q profile was predicted. As a result, the 

excursions of Se and Ni in this afternoon should have been and were, indeed, less 

significant than those in the other two afternoons. 

     The evolution of plume trajectories on September 9
th

 was to some extent similar to 

that on September 7
th

. The plume trajectories swept across the receptor site at around 

1400 LT but swept back again at around 1500 LT. Note that the trajectories shown in 

Figure 2.12 only represent those originated at whole hours and that the 10-minute 

trajectories actually swept back and forth multiple times in the afternoon of 

September 9
th

 due to the large wind variations during that period. However, this fine 

structure could not be detected in the ambient concentrations. As a result, the PDRM 
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tuned χ/Q profiles for September 9
th

 contained a bimodal distribution rather than the 

TGPM-predicted shoulders on a single central peak as shown in Figure 2.13.  

     Given their close proximity as well as similar stack heights, gas temperature, and 

velocities, it is not a surprise that those coal-fired and oil-fired units at the two power 

plants showed similar dispersion profiles (i.e., the maximum χ/Q values for these 

units were all within the range of 4~7 × 10
-8

 s m
-3

), as shown in Figure 2.13. The 

TGPM-predicted χ/Q values generally remained at a quite similar level (i.e., ~10
-8

 s 

m
-3

) on these different days. The maximum plume dispersion factor (χ/Q
PDRM 

= 

7.0×10
-8

 s m
-3

) corresponded to the maximum NOx of 23 ppb which occurred at 1600 

LT on September 7
th

 2001. Excellent agreement between χ/Q
TGPM

s and χ/Q
PDRM

s was 

found for all the units except on September 9
th

, when the temporal profile of χ/Q
PDRM

s 

resembled the time series ambient NOx concentrations by showing a similar bimodal 

pattern but that of χ/Q
TGPM

s did not. 

2.4.4 PDRM Results 

     In our initial PDRM trial, the PMF source profiles were not applied as constraints 

and loose bound conditions of metal emission rates (i.e., LB: 10
-4

; UB: 5×10
4
 g/s) 

were applied as done in Park’s study. The resulted emission rates and source 

contributions are listed in Tables 2.5 and 2.6, respectively. Later PMF constraints 

were applied and emission rates of metals and source contributions were recalculated, 

(Tables 2.7 and 2.8). In the PMF-seeded PDRM solution, the predicted NOx 

contributions of individual sources (Table 2.8) differed insignificantly (within 5 %) 

from those corresponding contributions without PMF constraining (Table 2.6). 
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However, apportionment of metals was quite different between the constrained and 

unconstrained solutions. 

     Note that the PDRM-predicted emission rates of NOx were nearly identical with or 

without applying the PMF constraints, as those constraints had little influence on the 

tracer gas. Moreover, the PDRM-predicted emission rates of NOx were in excellent 

agreement with the CEM data (i.e., the average difference was < 8 %), as shown in 

Tables 2.5 and 2.7, greatly adding our confidence in the modeling performance. 

     The PDRM predictions without PMF constraining turned out to be a blend of 

source emissions, because the Levenberg-Marquardt algorithm (LMA) used by the 

nonlinear least squares solver in PDRM only seeks a local minimum of the FUN 

function which relies on the constrained range of emission rates. As is evident in 

Table 2.5, substantial collinearity in predicted emission profiles was evident for 

different stacks (i.e., the Ni/Se ratios were found between 0.2 and 0.5 for all units at 

these plants), in contradiction with their different fuel types. Consequently, 

inexplicable contributions (e.g., apparently over-estimated Ni contributions from the 

two coal-fired units, the WS Unit 3 and the BS Unit 1&2) were predicted (see Table 

2.6). In contrast, these signature tracers (Ni and Se) were well attributed in the PMF-

seeded PDRM solution (Table 2.8). For example, the WS oil-fired unit (Unit 4) 

accounted for 28 ~ 46 % of Ni contributions in the unconstrained solution (Table 2.6) 

while it was 94 ~ 100 % of Ni contributions in the constrained solution (Table 2.8). 

The predicted Se contributions were from 28 to 42 % for the WS Unit 3, and 11 to 

28 % for the BS units without PMF constraining. In contrast, the WS Unit 3 (coal-

fired unit) was the major Se contributor (93 %) on September 7
th

 while the BS units 
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were dominantly responsible (81 ~ 94 %) on the other two days, according to the 

PMF-seeded solution. Overall, these comparisons suggested that the PMF-seeded 

PDRM approach could better explain the observations as it considers the difference of 

sources in both dispersion factors (χ/Q) and abundance profiles simultaneously. 

Table 2.5 Predicted emission rates of NOx and metal species without PMF 

constraints.
1
 

Species 
2
 WS Unit 1&2 WS Unit 3 WS Unit 4 BS Unit 1&2 

NOx  

(observed) 
3
 

86.7 126 ± 1 218 ± 10 428 ± 112 

NOx  

(predicted) 
4
 

124 116 ± 25 224 ± 41 424 ± 57 

Al 7.1 55 ± 51 70 ± 29 73 ± 42 

As 7. 9 3.5 ± 2.1 5.6 ± 4.4 6.1 ± 4.6 

Cd 1.1 0.5 ± 0.5 0.5 ± 0.6 3.5 ± 3.8 

Cr 1.1 0.6 ± 0.4 0.7 ± 0.5 3.7 ± 3.7 

Cu 3.1 4.8 ± 1.8 5.4 ± 1.6 7.6 ± 2.2 

Fe 111 42 ± 29 123 ± 81 36 ± 12 

Mn 2.6 1.5 ± 1.1 2.1 ± 1.5 4.8 ± 3.8 

Ni 1.0 9.9 ± 7.7 12 ± 5 12 ± 4 

Pb 4.2 5.1 ± 0.2 6.7 ± 1.0 7.5 ± 2.0 

Se 13.6 43 ± 8 60 ± 27 29 ± 10 

Zn 7.0 6.7 ± 1.1 8.3 ± 2.4 7.7 ± 2.4 

1 
Units are in g s

-1
 for NOx and mg s

-1
 for SEAS metals. 

2 
Modeling period from 1200 to 1900 LT. 

3 
Average continuous emission monitor data from the stacks (1200~1900 LT). 

4 
Predicted NOx emission rates when all four sources identically constrained to range 0.5~2.0. 
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Table 2.7 Predicted emission rates of NOx and metal species with PMF constraints.
1
 

Species 
2
 WS Unit 1&2 WS Unit 3 WS Unit 4 BS Unit 1&2 

NOx (observed) 
3
 86.7 126 ± 1  218 ± 10 428 ± 112 

NOx (predicted) 
4
 124 116 ± 25 224 ± 41 424 ± 57  

Al 6.5 1.3 ± 1.5 165 ± 102 49 ± 21 

As * 8.8 ± 9.2 * 41 ± 55 

Cd 0.4 0.1 ± 0.1 * 0.3 ± 0.2 

Cr * * 1.0 ± 0.5 * 

Cu 0.4 0.7 ± 0.7 13 ± 5 7.0 ± 4.7 

Fe 108 35 ± 29 66 ± 57 795 ± 988 

Mn * 4.0 ± 3.9 * 12 ± 15 

Ni 1.2 * 34 ± 18 * 

Pb 0.3 1.0 ± 0.8 12 ± 9 16 ± 14 

Se 2.5 67 ± 51 * 335 ± 376 

Zn 2.5 1.3 ± 1.0 15 ± 14 37 ± 39 

1 
Units are in g s

-1
for NOx and mg s

-1
 for SEAS metals. 

2 
Modeling period from 1200 to 1900 LT. 

3 
Average continuous emission monitor data from the stacks (1200 ~ 1900 LT). 

4 
Predicted NOx emission rates when all four sources identically constrained to range 0.5 ~ 

2.0. 

*
 < 0.1 mg s

-1
. 
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     The emission profiles obtained by PMF and PMF-seeded PDRM are compared in 

Figure 2.14. The PDRM-derived profiles of the coal-fired units in both plants 

generally agreed (e.g., comparable abundances of Se) with the CFPP profile 

determined by PMF, except that PDRM attributed greater Al and Cu contributions to 

the BS plant than to the coal-fired units in the WS plant. In contrast, the PDRM-

derived profile of the oil-fired units in the WS plant (i.e., WS Unit 3) exhibited a 

much lower presence of Se, compared with the OFPP profile determined by PMF. 

That is, oil-fired units were distinguished from coal-fired ones by their large Ni/Se 

ratios. 
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Figure 2.14 Comparison of resolved source profiles of the utility plants by PMF and 

PMF-seeded PDRM. 

     The emission rates of NOx and metal species predicted for the different units were 

summed (Table 2.9) for comparisons with the total CEM-derived and total annual 

emissions according to the NEI or TRI, in which the two plants were treated as one. 

Despite the excellent agreement with the CEM data (751 ± 21 g s
-1

), the total 
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emission rates of NOx (806 ± 61 g s
-1

) predicted by PMF-constrained PDRM was 

27 % below the annual average (1100 g s
-1

) of this plant complex reported by NEI. 

This is because the study period was during the weekend when the facilities were not 

in full operation (e.g., WS Units 1&2 were in hibernation on September 8
th

 and 9
th

). 

TRI data for Al, Cd, and Fe were not available and thus no comparison was made for 

these species. Six of the other eight metals (As, Cu, Mn, Pb, Se, and Zn) agreed well 

with the expected emission rates (e.g., within a factor of 2 (Fa2) with respect to the 

corresponding TRI annual average: 0.5ER
TRI

 < ER
PDRM

 < 2ER
TRI

) in the PMF-

constrained PDRM solution. Two oil-combustion tracers, Ni and Cr, were the species 

with predicted emission rate far below the TRI annual average (< 20 %). This again 

could be partially attributed to the fact that the WS Unit 1 (oil-fired) was not in 

operation during two of the three days of study.  
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     The model performance was evaluated in various statistical measures (Table 2.10), 

including the ratios of predicted and observed values, mean bias (MB), mean 

normalized bias (MNB), mean fraction bias (MFB), mean absolute gross error 

(MAGE), mean normalized gross error (MNGE), root mean square error (RMSE), 

normalized mean square error (NMSE), the fraction of predicted concentrations lying 

within a factor of 2 of the measured ambient concentrations (Fa2), and the Pearson’s 

correlation coefficients (r). According to Kumar et al. (Kumar, Luo and Bennett 

1993), model performance is deemed acceptable if NMSE ≤ 0.5, -0.5 ≤ MFB ≤ 0.5, 

and Fa2 ≥ 0.8.  

Table 2.10 Performance statistics between the observed and predicted concentrations 

for NOx and SEAS metals. 

 Unit NOx
1
 Al As Cd Cr Cu Fe Mn Ni Pb Se Zn 

Observed  
ng 

m
-3

 
25.3 7.80 0.54 0.02 0.04 0.65 9.50 0.23 1.35 0.65 5.32 0.91 

Predicted  
ng 

m
-3

 
26.5 7.90 0.49 0.02 0.04 0.64 9.02 0.21 1.37 0.63 5.14 0.88 

P/O (avg  

± σ) 
- 

1.02   

± 

0.08 

0.92  

± 

0.06 

0.82  

± 

0.12 

0.63  

± 

0.15 

0.88  

± 0.07 

0.97  

± 

0.07 

0.87  

± 

0.12 

0.82  

± 

0.12 

0.91  

± 

0.06 

0.93  

± 

0.10 

0.94  

± 

0.10 

0.90  

± 

0.11 

r
2
 - 0.91 0.94 0.74 0.52 0.92 0.92 0.78 0.74 0.94 0.86 0.85 0.81 

MB
2
 

ng 

m
-3

 
-0.78 -0.15 0.03 0.00 0.00 0.01 0.23 0.01 -0.03 0.00 0.07 0.01 

MNB
3
 % -1 -113 -2848 -202 -237 -7 -10 -1254 -3646 -7 -5 -7 

MFB
4
 % 1.4 -25.4 -30.1 -18.3 -35.2 0.4 1.2 -29.9 -33.2 -2.0 0.2 -0.1 

MAGE
5
 

ng 

m
-3

 
2.30 1.43 0.21 0.01 0.01 0.10 1.95 0.09 0.25 0.07 0.67 0.14 

MNGE
6
 % 11 126 2888 236 250 27 31 1293 3658 16 18 23 

RMSE
7
 

ng 

m
-3

 
4.62 1.69 0.28 0.01 0.01 0.12 3.01 0.12 0.30 0.14 1.23 0.24 
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NMSE
8
 % 2.2 2.5 14.1 25.9 3.6 2.4 6.9 14.0 2.7 3.4 3.8 5.0 

Fa2
9
 % 100 82 53 65 76 94 94 53 82 94 94 94 

r 
10

 - 0.96 0.96 0.86 0.67 0.96 0.95 0.86 0.86 0.96 0.91 0.90 0.88 

1 
NOx concentration variables are given in µg m

-3
.
 

2 
MB: mean bias ( ). 

3 
MNB: mean normalized bias ( ). 

4 
MFB: mean fractional bias ( ). 

5 
MAGE: mean absolute gross error ( ). 

6 
MNGE: mean normalized gross error ( ). 

7 
RMSE: root mean square error ( ). 

8 
NMSE: normalized mean square error ( ). 

9 
Fa2: fractions of the predictions within a factor of 2 of the observed values. 

10 
r: Pearson’s coefficient of correlation (r). 

     The ratio of the predicted and observed NOx concentrations on average was 1.02 ± 

0.08. The temporal profile of the predicted NOx concentrations agreed well with those 

observed except the period between 1700 and 1900 LT on September 8
th

. As 

discussed earlier, interpolated wind data were used for the trajectory simulations 

during this 2-hour period, which could have resulted inaccurate estimates of 

(χ/Q)
TGPM

.  

     Excellent agreement between the observations and the predictions was achieved 

for those metals showing temporal concentration profiles similar to that of NOx (i.e., 

Al, Cr, Cu, Ni, Pb, Se, and Zn). The average prediction-to-observation ratio was 0.92 

± 0.06 for Al, 0.88 ± 0.07 for Cr, 0.97 ± 0.07 for Cu, 0.87 ± 0.12 for Fe, 0.91 ± 0.06 

for Ni, 0.93 ± 0.10 for Pb, 0.94 ± 0.10 for Se, and 0.90 ± 0.11 for Zn, respectively. 
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Largest deviations were mostly observed during the periods when these species 

remained near background levels (e.g., at 1200 or 1800 LT). As is listed in Table 2.10, 

all species except As, Cd, Cr, and Mn showed performance within the acceptable 

range of Kumar’s criteria in the PMF-seeded PDRM solution. The concentrations of 

these “poorly” predicted metals were below the detection limits during at least a 

fourth of the measuring period and thus showed unsatisfactory Fa2 statistics. Besides, 

the ratios of their MNB and MNGE statistics are close to -1, indicating consistent 

over-predictions of these species by PDRM.  

      In the PDRM modeling, the errors in the ER predictions were subject to the 

propagated uncertainties in both TGPM-derived χ/Q estimates and measurements of 

ambient concentrations at the receptor site. The uncertainties of χ/Q
TGPM

s for 

individual stack units (Table 2.11) were estimated from the standard deviations of 

wind speeds and directions using trajectory perturbation algorithms described in 

Appendix B3. The measurement uncertainties varied on both sample- and species- 

basis but these were generally less than 10 %. Therefore, about 120 % relative errors 

were expected for the overall predictions of emission rates of ambient pollutants from 

these sources of interest. These errors appeared large at the first glance but were 

deemed acceptable considering that the uncertainty for Gaussian plume dispersion 

models is generally considered to be a factor of 2 (Bevington 1969, Claiborn et al. 

1995). 



 

 65 

 

Table 2.11 Estimated average uncertainties (relative, in %) of the dispersion 

parameters based on the TGPM modeling at the Clifton Park supersite. 

 
σy σz u exp(y) 

1
 exp(z) 

2
 χ/Q 

3
 

WS Unit 1&2 35 53 12 58 75 114 

WS Unit 3 35 53 12 58 75 114 

WS Unit 4 35 53 12 58 75 114 

WS Unit 1&2 36 54 12 58 76 116 

1
 exp(y) =  

2
 exp(z) =  

3
 Corresponding relative uncertainties in the off axis distance, y, were 107 % for WS units 

and 108 % for BS units. 

2.5 Concluding Remarks 

     A case study of high frequency measurements at the Baltimore supersite by PMF-

seeded PDRM was performed to resolve two neighboring power stations located 16 

km from our measurement site. With the PMF modeling, area background 

contributions were obtained and the afforded abundance profiles of point sources (i.e., 

two BGE utility power plants) were applied to constrain PDRM solutions. With or 

without PMF-constraining, the PDRM modeling predicted similar NOx emissions but 

quite different emissions of other species. The manual examination of the signature 

tracers (i.e., Ni and Se) in the composition profiles of the different utility units 

revealed that the PMF-seeded PDRM solution is at least qualitatively accurate. Our 

model predictions well fit the observations made at the receptor site, according to 
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Kumar’s criteria. Besides, the predicted emission rates of NOx at those stacks well 

agreed with the CEM-derived data. Thus this combinative application of the PMF and 

PDRM models could provide a novel approach to remotely monitor emission rates of 

both NOx (or other criteria gas such as SO2) and non-criteria air pollutants within 

acceptable limits. 
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Chapter 3: Application of the PMF-seeded PDRM Model to 

Resolve Contributions from Nearby Industrial Sources 

during Two Metal Pollution Episodes in St. Louis 

3.1 Background 

     Metals in airborne particles can be sensitive indicators of air quality deterioration, 

despite the fact that they represent only a small fraction of PM mass. Although 

maintaining a certain level of essential metallic elements such as copper, zinc, and 

iron is beneficial to human health, excess inhalation of metal-containing particles can 

result in severe outcomes (Valavanidis, Fiotakis and Vlachogianni 2008, Chen and 

Lippmann 2009). For instance, high exposures to copper and zinc have been proven 

to cause neuron dysfunction and enhanced risk of Parkinson’s disease (Kang and Kim 

2003, Kumar et al. 2012). Inhaled particle-borne zinc can also result in lung injury 

and inflammation because of its catalytic release of proinflammatory cytokines 

(Sayes, Reed and Warheit 2007) and pediatric asthma morbidity has been directly 

associated with ambient PM2.5 zinc levels (Hirshon et al. 2008). 

     Air quality in the St. Louis area is known to be severely influenced by several 

large local metal production industries (Figure 3.1), including a zinc refinery, a 

copper production plant, and a steel foundry (Lee and Hopke 2006, Turner 2007, 

Wang et al. 2011, Amato and Hopke 2012). From 1999 to 2005, the US EPA 

sponsored the St. Louis Midwest “Supersite” project (Turner 2007) during which a 

large number of research grade air pollutant measurements were made in East-St. 

Louis. These included hourly measurements made with the UMCP Semi-continuous 
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Element Aerosol Sampler (SEAS) for 11 metals (Ondov et al. 2003), including Zn, 

Cu, Pb, and Cd, i.e., excellent markers of these facilities. Between 2001 and 2002, 

surface winds at St. Louis were predominantly from southerly directions (Turner 

2007) (Figure 3.2), which allowed numerous opportunities to observe the influences 

of these facilities on air quality in East-St. Louis. In this chapter, two large excursions 

of metal pollution in East St. Louis that were identified in the SEAS metal data sets, 

one in November 2001 and the other in March 2002, herein episodes A and B, were 

analyzed to determine metal emission rates from individual stacks at those facilities. 

In particular, we aimed to provide a new strategic paradigm for remote emission rate 

measurements of underrepresented pollutants (e.g., transition metals) by highly-time 

resolved receptor sampling/analysis combined with the newly proposed modeling 

approach. 
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Figure 3.1 Map of the St. Louis supersite and nearby industrial sources, including 

Big River Zinc (BRZ), Cerro Copper, and Sterling Steel (provided by Google Map). 

 

Figure 3.2 Hourly wind roses by season for the St. Louis supersite. Percentage calms 

(wind speed < 1 m s
-1

) of total hours listed in the lower-left of each plot (adapted 

from Turner, 2007). 

3.2 Data Inputs 

3.2.1 Description of Receptor Site and Sources 

     Topographically, St. Louis lies on a plateau with little water coverage (3 % of the 

area) which is ideal for studies of the transport of ambient particles (McElroy and 

Pooler 1968, Hjelmfelt 1982). The St. Louis–Midwest supersite was strategically 

located within a residential neighborhood in East St. Louis and on the north bound of 

the Sauget industrial area, which is home to one of the largest domestic zinc 

producers, Big River Zinc Corporation (BRZ), and one of the largest domestic 

manufacturers of copper tubes, Cerro Copper Production Company (Cerro Copper) 

(Figure 3.1).  

     The BRZ facility contains 20 separate metal processing units as reported by EPA 

(http://www.epa.gov/ttn/naaqs/ozone/areas/plant/il/pl24099x.htm), including 10 

primary Zn smelters, 6 secondary Zn slab production units, and 4 primary cadmium 

smelters, each with fugitive and stack emissions. As shown in Figure 3.1, the BRZ 

http://www.epa.gov/ttn/naaqs/ozone/areas/plant/il/pl24099x.htm
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plant is < 1.5 km from the receptor site (38.6120ºN, 90.1605ºW, ASL 0 m) and the 

station angles of its twenty units span a range from 215º to 220º as measured from 

due north of the receptor site location. The ten primary metal refining and six 

secondary metal production units were located in the southern part of the plant in a 

tight cluster, and the four cadmium smelters were clustered in close proximity to one 

another near the north boundary of the plant. Detailed stack parameters for each of 

the 20 units are listed in Appendix C1. Primary Zn smelters all had stack heights 

between 20 and 25 m, similar exit gas velocities, and were clustered within a radius 

of 100 m. Moreover, 65 % of the PM2.5 emissions (7.8 tonne yr
-1

) from the primary 

Zn units were emitted from four identical units according to the 2002 National 

Emission Inventory (NEI). Thus for modeling purposes, the 10 primary units were 

represented by a single unit (BRZ unit 2) with stack parameters listed in Table 3.1. 

The 6 secondary units were likewise clustered and represented by a single unit (BRZ 

unit 1), with annual PM2.5 emissions estimated to be 14.1 tonne yr
-1

. The four 

cadmium smelters had identical stack parameters and were represented by BRZ unit 3, 

with total PM2.5 emissions of 2.6 tonne yr
-1

. 

     According to Jones et al. (Jones, Lapp and Wallce 1993), Zn is extracted from 

zinc-rich (2 to 11 % by mass) sulfide ores that also contain substantial amounts of Pb 

(1.0 to 5.0 %), Cu (0.1 to 2.0 %), and Cd (0.1 to 0.8 %). At BRZ, Zn is produced in 

the primary Zn smelters in a four-step process involving roasting, leaching, 

purification, and electrolysis (Jones et al. 1993). The Zn roaster produces a Cd-rich 

calcine that is treated with sulfuric acid and electromotively reduced by the addition 

of Zn dust in the Cd “smelter” units yielding Cd metal, which is melted in furnaces to 
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produce cadmium metal products. Subsequently, cadmium oxide is produced in the 

secondary cadmium units. Note that during zinc-ore roasting, both Zn and Cd are 

emitted, but as a lower boiling constituent (Jones et al. 1993), peak Cd emissions 

probably precede those of Zn.  

     Sulfur dioxide produced by the smelting units is captured and processed to make 

sulfuric acid in contact process units. According to the 2002 NEI, sulfur dioxide 

emissions from BRZ were 1,379 tonne yr
-1

. 99.9% of these emissions were 

discharged from the stack of the sulfuric acid manufacturing unit shown in Figure 3.1.  

     The Cerro Copper plant contains 18 units lying closely within a narrow vector of 

203 ± 0.5º with respect to the receptor site which is 2 km away, and thus is separated 

from the BRZ units by from 10
o
 to 15

o
 (i.e., 0.5 to 0.8 km). Two of these units had 

identical stacks and accounted for more than 80 % of the annual PM2.5 emissions at 

this plant and were located in such close proximity that these could also be treated as 

a single source. 

     The highly-definitive marker species (i.e., Cu, Zn, Pb, and Cd) showed 

concentration maxima at least 20 times their background levels (Figure 3.3), which 

could be identified for each source of interest (Table 3.1). Note that Pb was used as 

the tracer for the Cd smelter source instead of Cd in the modeling because its peak 

concentration at the receptor site exceeded that of Cd by more than a factor of 10. 

Given the close proximity of the sources, their distinct chemical abundance profiles, 

and enormous concentrations induced at the receptor site due to the favorable 

prevailing wind directions, there should be no doubt that these three sources were 



 

 72 

 

indeed and by far the major sources of these marker elements in the episodes modeled 

herein.  
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3.2.2 Ambient Pollutants 

     Highly time-resolved particle measurements made during the St. Louis - Midwest 

Supersite project (2001-2005) included hourly PM2.5 mass measured with an 

Andersen Continuous Ambient Mass Monitoring System (CAMMS), hourly PM2.5-

borne elemental and organic carbon (EC and OC) by semi-continuous thermo-optical 

analysis, and hourly PM2.5 concentrations of eleven metals (Al, As, Cd, Cr, Cu, Fe, 

Mn, Ni, Pb, Se, and Zn) from the samples collected with the UMCP SEAS. All these 

data are available online from the NARSTO database 

(http://eosweb.larc.nasa.gov/GUIDE/dataset_documents/narsto_epa_ss_st_louis_air_

chem_pm_met_data.html). In addition, hourly measurements of six criteria gases 

(SO2, CO, NO, NO2, NOx, and O3) were made by the Illinois EPA during the study 

period. Hourly PM2.5 sulfate and nitrate measurements were made with the particle-

into-liquid sampler-ion chromatography (PILS-IC)  instrument (Orsini et al. 2003) 

but, unfortunately, these data were unavailable for the days selected for our modeling. 

3.2.3 Meteorological Data 

     5-minute on-site meteorological data including wind (i.e., speed and direction), 

temperature (@ 2 m and 10 m, respectively), relative humidity (RH), solar radiation, 

barometric pressure, and precipitation were also retrieved from the NARSTO 

database. Additional meteorological inputs required for the modeling (i.e., friction 

velocity, convective velocity, Monin-Obukhov length, mixed layer depth (MLD), and 

Pasquill stability class) were computed with a meteorological preprocessor 

incorporated in the PDRM model as described in Appendix B2.   

http://eosweb.larc.nasa.gov/GUIDE/dataset_documents/narsto_epa_ss_st_louis_air_chem_pm_met_data.html
http://eosweb.larc.nasa.gov/GUIDE/dataset_documents/narsto_epa_ss_st_louis_air_chem_pm_met_data.html
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3.3 Methods 

3.3.1 PMF 

     In this study, PMF was again used to seed and constrain the PDRM. Sixteen 

species were selected for these analyses, including the two gaseous criteria pollutants 

(NOx and SO2), PM metals (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn), 

carbonaceous species (EC and OC), and total PM2.5 mass. As reported by Pancras et 

al. (Pancras, Ondov and Zeisler 2005), the SEAS typically collects about 10 mL of 

slurry during a 30-min collection period, and about ~ 0.2 mL is left in the sampler for 

each sample collection. Left uncorrected, peaks in the time-series are artificially 

broadened. Accordingly, the SEAS data were processed with a MATLAB script 

(Appendix C2) to minimize this artifact prior to modeling.   

     PMF was run with from 3 to 10 factors to determine the optimal number using the 

scaled residuals (i.e., < 2 if the species is well-modeled) as a criterion of fitting 

quality (U.S.EPA 2008).   Using this criterion, the optimum number of factors were 7 

for episode A, and 6 for episode B. In addition, values of the rotational parameter, 

FPEAK, ranging from -0.2 to +0.2 were tested for this data set (Paatero et al. 2005) 

and solutions were determined without applying rotational forcing (FPEAK = 0) for 

both episodes. 

3.3.2 Trajectory Analysis and TGPM 

     Forward plume trajectories originating from the sources of interest (Table 3.1) 

were simulated every 5 minutes. Those trajectories were all at the effective plume 

heights (H), which were calculated by the Briggs’ plume rise model (Briggs 1969, 
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Briggs 1971) as described elsewhere (Park et al. 2005b). A surface roughness of 0.2 

m, as determined for this particular area by Hjelmfelt (Hjelmfelt 1982), was used in 

this study. Five-minute aloft wind velocities at the effective plume heights were 

derived from the corresponding ground-level measurements at the receptor site using 

the log-law wind speed model (Cinoco 1965). In this trajectory-driven Gaussian 

plume model (TGPM), the effective plume heights were further tuned between stack 

physical heights at the lower bound and mixing heights at the upper bound, until the 

plume arrival time agreed with the observed peak concentration of the most abundant 

marker species of each representative source. Plume arrivals usually required from 5 

to 20 minutes (i.e., 1 to 4 time steps). The largest plume height required to fit the data 

was 74 m, i.e., only 45 m above the stack, far below the mixed layer depths and well 

within the accuracy of prediction by the Briggs’ plume rise model. 

     The point of the closest approach to the receptor site on each plume trajectory 

centerline was identified (Beachley and Ondov 2012), and the off-axis distance (y) 

from the centerline was calculated as the horizontal distance between the point of the 

closest approach and the receptor site. The uncertainty (dy) in y was calculated from 

the standard deviation of the wind angle (Appendix B3). The plume transport distance, 

x, was the sum of the lengths of those wind vector segments up to the point of the 

closest approach, and the plume transport time was determined as the sum of the 

quotients of each segment length and the corresponding aloft wind speed.  

     Herein, the EPA’s Industrial Source Complex Short Term plume model 3, ISCST3 

(U.S.EPA 1995), designed specifically for cases with known meteorological 

conditions and plume travel distances, was applied to compute the lateral and vertical 
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Gaussian dispersion coefficients (  and ) at plume arrival for each trajectory. The 

values of the plume dispersion factor, χ/Qs, were calculated for each successive 

trajectory at 5-minute resolution, and then combined into 1-hour averages to coincide 

with the hourly sampling periods. 

3.3.3 PMF-seeded PDRM Modeling with a Tracer Approach 

     By and large, the PMF-seeded PDRM modeling in this study was similar to that 

employed in resolving the power plants in Baltimore described in Chapter 2 (see 

Appendix C3 for the flow chart representation of modeling processes). PMF terms 

were implanted in the modeling to account for the contributions from non-point 

background sources which were not of interest, and the solutions were obtained by 

minimizing the object function defined in Equation 2.17. However, as CEM data 

were unavailable at the metal production facilities, it was not possible to utilize any 

criteria gas (i.e., SO2 or NOx) to effectively constrain the TGPM derived χ/Qs. Instead, 

the marker species of the sources were used for this purpose as described below.  

     A fundamental assumption of PDRM is that source emissions are constant during 

the modeling period. This is often true for utility-generating plants (Park et al. 2006b, 

Beachley and Ondov 2012). However, large variations in production rates within a 

day are not unusual for many industries such as metal smelting and casting, e.g., due 

to the timing of different batch processes. To minimize the effects of changing 

emission rates from the facilities, the PDRM modeling was carried out for a short 

time frame of 4 hours, instead of using the whole 12-hours worth of data in a single 

model run. Even shorter timeframes would have allowed better tracking of possible 

temporal variations in the ERs of those industrial sources more precisely. But this was 
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not possible in this study because the number of measurements was not adequate to 

permit solutions to be determined for the four sources used in the model with fewer 

than 4-hours worth of measurement input. 

     The PDRM solutions for the plume dispersion factors, , were 

constrained to the TGPM-estimated values as follows. 

     (3.1) 

where 0.1 ≤  ≤ 2.0 as proposed by Park et al. (Park et al. 2005b).  

     Specifically, three individual PDRM runs of 4-hour sub-periods were performed 

using the marker species alone. The scaling factor for each source during each 

sampling interval,  , was iteratively sought until the shape of χ/Q temporal profile 

converged to the temporal profiles of the marker species. In a second round of PDRM 

runs, all other species were added and ERs of individual species from specific sources 

were solved, again, at 4-hour intervals, using the conditioned χ/Qs obtained from the 

previous round.  

     The tracer approach was crucial to constraining the initial guess of emission rates 

by exploiting the PMF outputs. The initial emission rate of each marker element from 

its corresponding source was estimated by the TGPM-derived χ/Qs and the PMF 

apportioned contributions (Equation 3.2). The upper bound (UB) of the ER was based 

on the observed concentrations of the tracer element as shown in Equation 3.3 and the 

lower bound (LB) was set to a half of the initial guess, consistent with the upper 

bound of the χ/Q scaling factor. The initial guess of ERs for other species was based 

on the PMF-derived abundance profiles, and their bounds were set broader (i.e. to 
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LB(ER) = 0.05ERini, and UB(ER) = 10ERini), than those for the key marker element, 

allowing greater modeling flexibility, given the greater uncertainty in the allocations 

of these species. 

     For the key marker species, 

    (3.2) 

    (3.3) 

     In Equation 3.2,  is the initial guess of emission rate (g s
-1

) of the key 

marker element (tra) from the j
th

 source,  is the particulate mass concentration 

from the j
th

 source contributing to the k
th

 sample,  is the mass fraction of the 

tracer species in the j
th

 source, and  is the calculated meteorological 

dispersion factor of the j
th

 source at the k
th

 observation. In Equation 3.3,  

is the upper bound of the tracer emission rate for source j, and  is the observed 

concentration of the tracer at the k
th

 observation. 

     The initial guesses of emission rates of ambient pollutants (non-tracer species) 

from a given source were normalized to the emission rate of the corresponding tracer: 

       (3.4) 

where  is the initial emission rate (g s
-1

) of species i from source j during the 

modeling period.  and  are the abundances of species i and the tracer from 
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source j, respectively, obtained from the PMF analysis. ERs of ambient species were 

then tightly constrained as follows. 

LB( ) ≤  ≤  UB( )     (3.5) 

where LB and UB are the lower and upper bounds which were set as 0.1 and 10 times 

the initial value, respectively.  

3.4 Results and Discussion 

3.4.1 Correlation of Ambient Pollutants and Meteorological Observations 

     As shown in Figure 3.3, episodes in which high levels of metal-containing 

airborne particles were observed occurred during the mornings of 8 November 2001 

(episode A) and 23 March 2002 (episode B) under mild (i.e., surface wind speed < 2 

m s
-1

) southwesterly (i.e., wind angle between 180 and 220 degrees with respect to 

true north) winds (Figure 3.4). During episode A, the concentration of Zn at the 

receptor site reached 1.08 μg m
-3

 at 0030 LT. In contrast, the maximum Cu 

concentration was only 0.33 μg m
-3

, indicating that BRZ emissions dominated this 

event, with relatively little influence from Cerro Copper. During episode B, copper 

concentrations peaked at 1.65 μg m
-3

 at 0730 LT, while the maximum Zn 

concentration at this time was only 0.15 μg m
-3

. Thus, episode B was clearly 

dominated by influence from copper smelters at the Cerro Copper plant.  
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Figure 3.3 Ambient pollutant concentrations (µg m
-3
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for SEAS metals) observed at the St. Louis supersite during the two episodes. 
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Figure 3.4 Temporal profiles of wind speed, wind direction, ambient temperature, 

and relative humidity in episodes A (top panel) and B (bottom panel). 
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     These maxima corresponded to extraordinarily high fractions of zinc (i.e., ~ 4 % 

of PM2.5) in episode A, and copper (i.e., ~ 8 % of PM2.5 mass) in episode B, despite 

the fact that the PM2.5 concentrations (29.6 and 22.7 μg m
-3

 for episode A and B, 

respectively) were below the 24-hr National Ambient Air Quality Standard (NAAQS) 

which was at that time 65 μg m
-3

 (U.S.EPA 2004b) and now 35 μg m
-3

  (U.S.EPA 

2005). 

     Simple linear regressions were performed by regressing ambient SO2 or NOx 

concentrations against metal tracers, for episodes A and B, respectively. In episode A, 

SO2 was well correlated with Zn (r
2
 = 0.791, p < 0.001) and Cu (r

2
 = 0.565, p = 

0.005) but poorly so with Cd (r
2
 = 0.001, p = 0.907). And NOx was poorly correlated 

with SO2 (r
2
 = 0.043, p = 0.519).   

     Multilinear regressions (MLR) were also performed to apportion SO2 to the 

sources using Cu, Zn, and Cd as markers of the three types of sources. The MLR 

analysis for episode A using ambient SO2 as the dependent variable resulted in the 

following relationship: 

 

       (3.6) 

where concentrations of Cu, Zn, and Cd are in ng m
-3

, and SO2 in ppb. The regression 

equation showed a good correlation coefficient of 0.846 (p = 0.001).  

     In episode B, the marker species best correlated to SO2 was Cu (r
2
 = 0.409, p = 

0.025), followed by Zn (r
2
 = 0.288, p = 0.072) and Cd (r

2
 = 0.002, p = 0.888). In 

contrast to episode A, their correlations with NOx were in generally better (i.e., r
2
 = 

0.526 and p = 0.008 for Zn, and r
2
 = 0.741 and p < 0.001 for Cd) except Cu (r

2
 = 
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0.342, p = 0.046) in this scenario. And NOx was better correlated with SO2 (r
2
 = 

0.138, p = 0.234) as well. 

     The MLR analysis for episode B using ambient NOx as the dependent variable and 

Cu, Zn, and Cd as the independent variables set resulted in the following relationship: 

    

     (3.7) 

where concentrations of Cu, Zn, and Cd are in ng m
-3

, and NOx in ppb. The regression 

equation showed an excellent correlation coefficient of 0.933 (p < 0.001). 

     In either case, the relative small residuals obtained for the MLR analysis (i.e., an 

average SO2 residual of 5.65 ppb compared with the average SO2 concentration of 

39.8 ppb in the former, or an average NOx residual of 3.58 ppb compared with the 

average NOx concentration of 23.9 ppb in the latter) implied that the corresponding 

sources (i.e., Cu production, Zn smelters, and Cd smelters) were the major 

contributors to the criteria gas (SO2 or NOx).  

     The lack of CEM data at those sources of interest restricted the further application 

of these tracer gases for the PDRM modeling as did in the previous study (Beachley 

and Ondov 2012). Nevertheless, the MLR results added confidence to apply these 

metallic marker species in tuning the TGPM-derived profiles of χ/Qs. 

3.4.2 PMF Source Apportionment 

     Herein, episode B is discussed first, because it contains a large excursion for only 

one element (Cu) and therefore its analysis is less complicated. A six-factor solution 

for this episode was obtained and the PMF profiles are plotted in Figure 3.5, wherein 

the species are normalized to the corresponding values of PMF-apportioned PM2.5 
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contributions. The temporal profiles of source strengths (g matrix of predicted 

ambient concentrations) are shown in Figure 3.6. 
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Figure 3.5 PMF-resolved source profiles in the copper episode (episode B). 
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Figure 3.6 Time series source contributions in episode B predicted by PMF. 

     Two zinc factors (factor 1 and 2) were identified, both characterized by high 

abundances of Zn. A distinction between these two factors was that Cd was present in 

factor 2 but absent in factor 1. According to the TRI (TRI 1990), BRZ’s cadmium 

emissions were from primary zinc refining and cadmium smelting, whereas 

secondary zinc production contributed nearly none to the cadmium emission. Hence 
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factor 1 was identified as primary zinc refining, and factor 2 was attributed to 

secondary zinc production, respectively. 

     Factor 3 was recognized as the cadmium smelter because its Cd abundance (0.51% 

of PM2.5 mass) was more than 10-fold greater than that of the other Cd-containing 

factors. This factor also contained large abundances of Pb, Cu, and EC, and very little 

Zn and SO2. Cadmium ores typically contain too little Cd to be extracted as a stand-

alone operation and cadmium is, therefore, generally produced as a byproduct of Zn, 

Pb, or Cu refining (Jones et al. 1993). At BRZ cadmium is a byproduct obtained from 

zinc sulfate concentrates produced after the ore is calcined and dissolved in sulfuric 

acid. As noted above, the BRZ plant uses the electromotive process for cadmium 

refining (Jones et al. 1993), in which zinc dust is consumed to displace cadmium 

metal out from the stream of cadmium-rich sulfate solution. As a result, low zinc 

emissions were expected while cadmium and lead emissions were high at the 

cadmium refinery. A substantial amount of SO2 was generated from the roasting of 

zinc sulfide ore but its emission was low because SO2 was captured and converted to 

sulfuric acid in a separate unit. 

      According to the 1990 TRI, BRZ’s cadmium smelting operations emitted ~760 kg 

(i.e., 88 %) of cadmium, while primary zinc refining contributed ~100 kg (i.e., 12 %) 

of Cd, out of 860 kg of its annual cadmium emission. For this measurement period, 

however, PMF attributed 58 % of the total cadmium to this factor and 23 % to 

primary zinc refining. As shown in Figure 3.3, Cd concentrations peaked 2 hours 

before the start of the PMF modeling period. Note that the maximum contribution 

from the cadmium smelter was about four hours earlier than the maximum from the 
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primary zinc refinery, which suggests that a Zn episode probably preceded the Cd 

episode. This could not have been detected at the receptor site because winds were 

more westerly (220
o
 to 270

o
) and thus unfavorable. A small Cd excursion occurred at 

0930 LT, following the Zn maximum at 0630 LT. As discussed below, this Cd 

excursion was small because the plume centerline was substantially farther from the 

receptor site at this time. 

     Factor 4 was unambiguously identified as resulting from copper production at 

Cerro Copper, owing to its huge maximum concentration, favorable plume 

trajectories, and the lack of other credible Cu sources in the region. Indeed, among all 

possible sources, only the Cerro Copper plant’s excursion profile could be fit by the 

temporal profile of the TGPM-derived plume dispersion parameter, χ/Q (Figure 3.6). 

Clearly this factor contained the greatest Cu abundance (47 % by mass at peak 

concentration) of all the factors. The PMF analysis attributed more than 70 % of the 

total Cu, 20 % of the total Pb, and 5 % of the total Zn to this factor (Figure 3.7).  
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Figure 3.7 PMF source apportionments of Cd, Pb, Zn, Cu, SO2, and NOx in episode 

B. 

     Factor 5 was initially tentatively assigned to regional secondary aerosol, as it 

showed less fluctuated contributions with the wind direction variations. Unfortunately, 

secondary species data for sulfate and nitrate were not available for reasons 

mentioned above, so this assignment is highly speculative. The most striking feature 
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of this factor was its high OC/TC ratio (0.96), i.e., comparable to the OC/TC fractions 

(0.93 ± 0.05) observed for ambient concentrations measured throughout the episode. 

Moreover, considering the high abundances of Cu (0.8 %), Zn (0.3 %), and Pb (0.2 %) 

which are unusual for secondary aerosol, this factor could be a mixed residual factor 

made up of contributions from the various other sources. OC/TC ratios for primary 

and secondary Zn sources resolved by PMF were 0.99 and 0.95, respectively, 

suggesting that these sources contributed to factor 5. Likewise, Cu at 0.8 % of PM2.5 

in this factor appears to include a contribution from Cerro Copper. Overall, this factor 

accounted for 35 % of PM2.5 mass, 17 % of EC, 37 % of OC, 19 % of Zn, 8 % of Cu, 

12 % of Pb, and 9 % of Cd during this episode. 

     Factor 6 was assigned to the Sterling Steel plant (station angle 195°) 2 km away, 

which was identified by its high abundances of Fe (0.2 % of PM2.5) and SO2 (300 ppb 

m
3 

per µg of PM2.5). The low Fe/SO2 ratio could be expected for Sterling Steel, as its 

centrifugal collector is inefficient for gaseous pollutants but moderately efficient for 

particles. In Lee and Hopke’s source  apportionment for St. Louis (Lee and Hopke 

2006), they suggested that a significant contribution of local fossil fuel combustion 

was attributed to steel processing. This might be true of our PMF steel foundry factor 

as 38 % of SO2 and 11 % of EC were attributed to it. 

     It is noteworthy that a high abundance of copper was present in all the PMF-

derived source profiles. For instance, copper was the most abundant metallic 

component of emissions from the cadmium smelter, secondary zinc production, and 

secondary aerosol; second richest for the steel foundry; and third richest for the 

primary zinc refinery. It is known that the PMF model emphasizes the uncertainties of 
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measurements and that samples with high uncertainties will be down-weighted in the 

solution (U.S.EPA 2008), as indicated in Equation 1.6. Given the enormous excursion 

of copper in this episode, its absolute uncertainty by which χ
2
 was weighted forced 

the copper abundance of the major copper factor (the Cerro Copper plant) to be 

underestimated. Meanwhile, additional copper contributions from other minor sources 

of copper were driven by the model to offset the residuals during the off-peak period. 

Stated in another way, the actual copper abundances of the sources other than the 

Cerro copper plant are surely severely overestimated. This is not surprising given the 

relative small number of measurements available for PMF. 

     The PMF-derived emission profiles of the BRZ and Cerro Copper plants are listed 

in Table 3.2 along with those reported in past studies (Lee and Hopke 2006, Lee, 

Hopke and Turner 2006, Amato and Hopke 2012). The abundance profile of the 

Cerro copper emissions determined by PMF agreed well with Amato’s recent study 

(Amato and Hopke 2012). However, all the three types of BRZ units in our PMF 

study showed tremendous abundances of Cu, Pb, and OC, compared to the other 

studies listed, suggesting over-predictions for these sources. Still, more than 91 % of 

Cu, 78 % of Zn, and 84 % of Cd were attributed to the copper and zinc sources, thus 

these were deemed be good initial inputs for the PDRM modeling. Over-predictions 

believed to have resulted for factor 5 and 6 had little effect on PDRM modeling of the 

major sources (i.e., Zn, Cd, and Cu smelters) as just noted, but permitted removal of 

background from the data set as noted above. 
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Table 3.2 PMF-derived emission profiles of the BRZ and Cerro Copper plants in St. 

Louis. 

Species 

Zinc/cadmium smelter Copper production 

BRZ 

Unit1
1
 

BRZ 

Unit2
 1
 

BRZ 

Unit3
2
 

Lee’s 

study 

1
3
 

Lee’s 

study 

2
4
 

Amato’s 

study 
5
 

Cerro 

Copper 
6
 

Lee’s 

study 

1
3
 

Lee’s 

study 

2
4
 

Amato’s 

study 
5
 

Al 0.220 0 0.514 0.015 0.049 <0.001 0.012 0.011 0.057 0.013 

As 0.198 <0.001 0.392 <0.001 <0.001 <0.01 <0.001 0.005 <0.001 <0.01 

Cd <0.001 0.031 1.00 n. a. n. a. n. a. <0.001 n. a. n. a. n. a. 

Cr <0.001 0.002 0.002 <0.001 <0.001 <0.01 <0.001 <0.001 <0.001 <0.01 

Cu 2.16 0.340 16.79 <0.001 <0.001 <0.01 1.00 1.00 1.00 1.00 

Fe 0.116 0.284 0.863 1.01 0.910 <0.01 0.029 0.008 0.238 0.023 

Mn 0.017 0.023 0.051 0.011 <0.001 <0.01 <0.001 0.007 <0.001 <0.01 

Ni 0.032 <0.001 0.009 0.008 <0.001 <0.01 <0.001 <0.001 <0.001 <0.01 

Pb 0.170 0.411 15.55 <0.001 <0.001 <0.01 0.046 0.003 <0.001 0.033 

Se 0.005 0.002 0.037 <0.001 <0.001 <0.01 <0.001 <0.001 <0.001 <0.01 

Zn 1.00 1.00 <0.001 1.00 1.00 1.00 0.011 <0.001 0.143 0.047 

OC 23.30 16.48 123.46 0.067 0.307 2.17 <0.001 0.968 0.143 4.67 

EC 1.11 <0.001 46.39 1.10 5.38 <0.01 0.016 0.419 2.29 1.33 

1 
Normalized by Zn. 

2 
Normalized by Cd.

 

3
 Lee’s analysis of data from the EPA St. Louis supersite (Lee and Hopke 2006), normalized 

by Zn. 

4
 Lee’s analysis of data from the Blair site in St. Louis (Lee et al. 2006) , normalized by Zn. 

5
 Amato’s re-analysis of the EPA St. Louis supersite data (Amato and Hopke 2012), 

normalized by Cu.  

6  
Normalized by Cu. 

     A seven factor solution was obtained similarly using the data set for episode A, 

with factors identified as follows: a cadmium emission source, two zinc smelters, a 
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copper plant, a steel foundry, secondary (mixed source) aerosol, and motor vehicle 

emissions. The additional factor revealed in episode A was assigned to motor vehicle 

emissions because the time for its major contributions corresponds to the morning 

traffic rush hours (0730 to 0930 LT) and its strengths were weak at other times 

(Appendix C4). This factor contributed 5 % of PM2.5, 11 % of NOx, and 16 % of EC 

measured during episode A. Considering that episode A was a weekday (Thursday) 

morning while episode B was a Saturday morning, it is not a surprise that the 

vehicular emission factor was absent in the latter.  

     The source profiles (normalized to the corresponding marker species) of the 

facilities at the BRZ and Cerro plants during the two episodes are compared in Figure 

3.8. On one hand, the copper abundances of the BRZ units were significantly reduced 

as compared with episode B, which indicated a lesser extent of copper cross 

contamination. On the other hand, the greater abundances of Zn, As, and Cd of the 

copper production factor in episode A (Zn-type), again, suggests zinc cross 

contamination due to underweighting of the large zinc excursion in this episode. 

Overall, it suggested that PMF was unable to well resolve these sources, but 

nevertheless provided useful seed values for the PDRM solutions and background 

source removal. 
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Figure 3.8 Comparison of source profiles of the BRZ and Cerro Copper facilities 

determined by PMF during the two episodes (episode A in green and episode B in red, 

respectively). 

3.4.3 TGPM Analysis 

     Plume forward trajectories from the representative stacks in the BRZ and Cerro 

Copper plants for the two episodes are shown in Figure 3.9. Time series profiles of 

TGPM-derived dispersion factors, (χ/Q)
TGPM

s, used to seed PDRM are shown in 
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Figure 3.10, using the algorithms described in the previous chapter. Relative errors in 

the χ/Q estimates from the TGPM were calculated by propagation of standard 

deviations of the 5-minute averages of wind directions and speeds, and are listed in 

Table 3.3.  

Table 3.3 Estimated average uncertainties (relative, in %) of the dispersion 

parameters based on the TGPM model during the plume periods: A) 2200-0300 LT 

on 7 ~ 8 November 2001; and B) 0400-0900 LT on 23 March 2002, respectively, at 

the St. Louis supersite. 

  σy 
 

σz 
 

u 
 

exp(y) 
1
 

 
exp(z) 

2
 

 
χ/Q 

3
 

  A B 

 

A B 

 

A B 

 

A B 

 

A B 

 

A B 

BRZ 

Unit 1 
5.7 4.2 

 

16.3 8.8 

 

25.1 20.9 

 

83.7 53.3 

 

23.0 12.4 

 

92.0 59.3 

BRZ 

Unit 2 
5.7 4.2 

 

16.3 8.8 

 

26.5 20.9 

 

83.7 53.3 

 

23.0 12.4 

 

92.4 59.3 

BRZ 

Unit 3 
5.8 5.2 

 

16.3 9.4 

 

24.7 20.9 

 

69.4 55.7 

 

23.0 13.4 

 

79.1 61.9 

Cerro 

Copper 
7.7 4.9 

 

19.1 10.7 

 

26.8 20.9 

 

61.2 56.8 

 

27.1 15.1 

 

74.9 63.4 

1
 exp(y) =  

2
 exp(z) =  

3
 Corresponding uncertainties in the off axis distance, y, were 25.8% (BRZ units), 26.5% 

(Copper unit); and 24.5% (BRZ units), 24.7% (Copper unit) in episode A, and episode B, 

respectively. 
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Figure 3.10 The time series profiles of TGPM-derived dispersion factors (black solid 

line) and PDRM-tuned dispersion factors (red dash line) in episode A (left panels) 

and episode B (right panels), respectively. 

     As shown in Table 3.3, our calculations attributed larger relative uncertainties to 

vertical dispersion factors (σz) than lateral ones (σy). However, the overall uncertainty 

in the χ/Qs was to a great extent dependent on the lateral exponent as the uncertainties 

in off-axis distances dominated the errors in the other terms. And because of the 

greater variability of 5-minute averages of wind directions and speeds in episode A 

than in episode B, larger uncertainties in χ/Qs were obtained in the former.   

     The 5-minute resolution horizontal trajectory simulations at the effective stack 

heights, based on which the plume arrival time from each source was determined, 

showed a typical plume transport time of 10 to 20 minutes from those BRZ and Cerro 
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Copper units (Figure 3.9). The plumes that originated simultaneously from the BRZ 

primary zinc and secondary zinc units showed very similar trajectories due to their 

nearly identical locations.  

     In episode A, the plumes originated from the BRZ zinc units began approaching 

the receptor site from easterly after midnight and swept across the receptor site at 

around 0040 LT. Thereafter, their plume centerlines swept back and forth across the 

receptor site and finally departed from the receptor site after 0200 LT. The plumes 

originating from the BRZ cadmium unit and the Cerro Copper unit showed a similar 

evolution pattern. However, as their station angles coincided with the 5-minute wind 

direction more frequently until 0400 LT, their temporal χ/Q profiles appeared broad 

and irregular in shape, compared with those of the BRZ zinc units. 

     In episode B, the plume trajectories that originated from the BRZ and Cerro 

Copper units also swept across the receptor site multiple times. As shown in Figure 

3.9, the arrival times of the plumes for which the trajectory centerlines were through 

the receptor site were different for those units, i.e., 0545 LT for the BRZ Zn units, 

0500 LT for the BRZ Cd unit, and 0740 LT the Cerro Copper unit, respectively. And 

these predictions were generally synchronous with the maximum concentrations of 

the corresponding tracers measured at the receptor site, i.e., 0530 ~ 0630 LT for Zn, 

0430 ~ 0530 LT for both Cd and Pb, and 0630 ~ 0730 LT for Cu. Again, this 

agreement indicated that the BRZ and Cerro Copper plants were indeed the major 

emission sources during the episode and thus the TGPM-derived χ/Qs shown in 

Figure 3.10 were likely to be good seed values for the PDRM. In addition, the 

temporal profiles of TGPM-derived χ/Qs (Figure 3.10) resembled those of the 
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corresponding source strengths predicted by PMF (Figure 3.6), suggesting a good 

compatibility between TGPM and PMF.   

3.4.4 PMF-seeded PDRM Analysis  

     As shown in Figure 3.11, the predictions for the marker species (Cd, Cu, Pb, and 

Zn) for the first 4-hour run (i.e., 0400 ~ 0800 LT) were similar to those for the 12-

hour model run. However, the 4-hour solution for the next two 4-hour runs (i.e., 0800 

~ 1600 LT) generally better fit the observed concentrations than did the 12-hour 

solution. The improved predictions by the 4-hour approach suggest that emission 

rates at those facilities were probably varying and thus individual predictions of ERs 

for multiple time blocks were more accurate than a single-period average estimate. As 

for the cadmium smelters in the BRZ plant, their maximum emission rate (i.e., 

indicated by the cadmium ERs) in the early morning (0400 ~ 0800 LT) was consistent 

with the concurrent large excursion of cadmium observed at the receptor site. The 

largest ER of copper from the Cerro copper plant was also found in the early morning 

(0400 ~ 0800 LT). In contrast, the largest Zn emission rate of the primary zinc 

refining was predicted to occur in the late morning (0800 ~ 1200 LT). However, as a 

result of its greater χ/Qs in the early morning, the maximum contribution from the 

BRZ primary zinc unit as well as the maximum Zn concentration measured at 

receptor site was actually observed at around 0630 LT. 
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Figure 3.11 PDRM-predicted (blue dash-dot line for the three 4-hour model runs and 

red dash line for the single 12-hour solution, respectively) and observed 

concentrations (black solid line) of the key marker species in episode B. 

      In Figure 3.12 the source profiles (normalized with respect to the corresponding 

marker species) of the BRZ facilities are compared between the two episodes. The 

composite emission profiles of the BRZ plant (Figure 3.12d) did not show significant 

variations, except possibly for Pb and Cd which may be attributed to different 

production rates of primary zinc refining and cadmium smelting in the two episodes. 

However, as shown in panels a, b, and c of Figure 3.12, variations in the abundance 

profiles of Cu, Fe, and Mn were large for individual units. Compared with those 

corresponding profiles determined with PMF (Figure 3.5) in which copper levels 

were apparently overestimated, copper abundances in the BRZ profiles were 

effectively constrained by PDRM. 
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Figure 3.12 Comparison of the profiles of the BRZ units during the two episodes. 

PDRM and PMF solutions for SEAS metals, PM2.5, OC, EC, SO2, and NOx in episode 

B are shown in Figure 3.13. The PDRM-predicted pollutant concentrations in general 

were in good agreement with the ambient observations, although PDRM fits were 

slightly worse than those achieved with the PMF.  
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Figure 3.13 The observed ( ), PMF-estimated ( ), and PDRM-estimated ( ) 

concentrations of ambient pollutants at the St. Louis supersite in episode B (units: ng 

m
-3

 for metals; µg m
-3

 for PM2.5, OC, and EC; and ppb for NOx and SO2). 

     The emission profiles of the BRZ units determined with PDRM are listed Table 

3.4, wherein, each is normalized to the selected tracer species (i.e., whose normalized 
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value, 1.000, appears in bold type). ERs, in mg s
-1

, relisted for each tracer species so 

that ER estimates for all species can be easily calculated. In episode B, the emission 

rate of Zn from the BRZ plant was only 4.9 mg s
-1

 predicted by PDRM (Appendix 

C5), far below its annual average ER of Zn (214 mg s
-1

) according to TRI 2002. 

Meanwhile, a large ER of copper from the Cerro Copper plant was predicted to be 85 

mg s
-1

, although it was still less than the annual average ER of 135 mg s
-1

 from Cerro 

Copper according to TRI 2002. These predictions indicated that the BRZ plant was 

not in full operation during episode B. In contrast, the predicted ER of Zn from the 

BRZ plant was 174 mg s
-1

 in episode A and, meanwhile, the ER of Cu from the Cerro 

Copper plant was 13 mg s
-1

, which suggested that the Cerro Copper plant was not in 

full operation during episode A.   

Table 3.4 PDRM predicted profiles of the Zn and Cd units in the BRZ plant in 

episode B. 

Species BRZ Unit 1 
1
 BRZ Unit 2 

2
 BRZ Unit 3 

3
 

BRZ 

composite 
4
 

Profile ratio of 

episode A to 

episode B 
5
 

Al 0.021 ± 0.003 < 10
-4

 ± < 10
-4

 0.037 ± 0.006 0.032 ± 0.009 1.22 ± 0.08 

As 0.027 ± 0.006 < 10
-4

 ± < 10
-4

 0.033 ± 0.009 0.035 ± 0.016 0.83 ± 0.35 

Cd < 10
-4

 ± < 10
-4

 0.210 ± 0.061 0.066 ± 0.018 0.041 ± 0.019 0.10 ± 0.02 

Cr < 10
-4

 ± < 10
-4

 0.016 ± 0.005 < 10
-4

 ± < 10
-4

 0.001 ± 0.001 1.00 ± 0.001 

Cu < 10
-4

 ± < 10
-4

 0.003 ± 0.001 0.621 ± 0.300 0.209 ± 0.126 1.03 ± 0.14 

Fe < 10
-4

 ± < 10
-4

 2.932 ± 0.354 0.047 ± 0.006 0.282 ± 0.061 0.70 ± 0.15 

Mn 0.013 ± 0.003 0.122 ± 0.026 0.003 ± 0.001 0.024 ± 0.009 0.29 ± 0.01 

Ni 0.006 ± 0.009 0.000 ± 0.000 0.001 ± 0.002 0.005 ± 0.018 0.20 ± 0.02 

Pb < 10
-4

 ± < 10
-4

 2.503 ± 0.813 1.000 ± 0.11 0.562 ± 0.255 0.09 ± 0.26 

Se 0.002 ± 0.002 < 10
-4

 ± < 10
-4

 0.002 ± 0.002 0.003 ± 0.004 0.33 ± 0.004 
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Zn 1.000 ± 0.099 1.000 ± 0.096 < 10
-4

 ± < 10
-4

 1.000 ± 0.204 1.00 ± 0.46 

OC 17.75 ± 4.15 0.165 ± 0.039 8.46 ± 2.30 18.98 ± 8.24 0.28 ± 8.53 

EC < 10
-4

 ± < 10
-4

 < 10
-4

 ± < 10
-4

 2.95 ± 3.40 0.99 ± 2.06 0.09 ± 2.06 

Tracer Zn   Zn   Pb   Zn      

ER of tracer, 

mg s
-1

 
1.15   3.75   0.74   4.90      

1 
Secondary

 
Zn smelter; profile normalized to Zn. 

2 
Primary Zn smelter; profile normalized to Zn.

  

3 
Cd smelter; profile normalized to Pb. 

4 
Composite of all BRZ units; normalized to Zn.

 

5
 The ratio of profiles obtained in episode A versus in episode B; normalized to Zn. 

     As shown in Table 3.5, the emission profile of the Cerro Copper plant determined 

by PDRM was compared with past reports (Chang et al. 1988, Amato and Hopke 

2012) as well as with the SPECIATE profiles for secondary copper production 

(U.S.EPA 2006). The Zn/Cu and Pb/Cu ratios in the PDRM profiles are much smaller 

than those in Chang’s study (Chang et al. 1988) and the SPECIATE profiles, but fall 

into the same magnitude compared with those in Amato and Hopke’s study (Amato 

and Hopke 2012). 

Table 3.5 Comparison of the PDRM-derived source profiles of the Cerro Copper 

plant with published profiles of copper production. 

Species 
PDRM-predicted 

Amato 

and 

Hopke, 

2012 

SPECIATE 

(U.S.EPA 2006) 
Chang 

et al., 

1988 Episode A Episode B 
Secondary 

Copper 1 

Secondary 

Copper 2 

Al 0.0204 ± 0.0053 0.0116 ± 0.0023 0.0149 n.a. n.a. 0.2 

As 0.0288 ± 0.0166 < 10
-4

 ± < 10
-4

 0.0005 0.001 
3
 0.0072

 3
 n.a. 

Cd 0.0002 ± 0.0001 0.0003 ± 0.0001 n.a. n.a. n.a. n.a. 

Cr 0.0007 ± 0.0004 0.0005 ± 0.0002 0.0005 n.a. n.a. n.a. 
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Cu 1.0000 ± 0.3074 1.0000 ± 0.2041 1.0000 1 
3
 1 

3
 1.00 

Fe 0.0277 ± 0.0086 0.0291 ± 0.0047 0.0238 0.0114 
3
 0.0166 

3
 0.08 

Mn 0.0117 ± 0.0030 0.0007 ± 0.0001 0.0019 0.0005 
3
 n.a. 0.012 

Ni 0.0009 ± 0.0014 0.0001 ± 0.0001 0.0003 n.a. 0.0050
 3
 0.019 

Pb 0.0009 ± 0.0002 0.0456 ± 0.0145 0.0415 0.1633 
3
 0.3817 

3
 0.87 

Se 0.0000 ± 0.0000 0.0002 ± 0.0002 0.0004 n.a. 0.0084 
3
 0.007 

Zn 0.0020 ± 0.0017 0.0106 ± 0.0031 0.0614 0.1083 
3
 0.1464 

3
 0.75 

OC 0.1609 ± 0.0428 0.0003 ± 0.0001 3.7030 n.a. n.a. n.a. 

EC 0.0093 ± 0.0052 0.0162 ± 0.0195 1.2457 n.a. n.a. n.a. 

1 
Pyrometal - cathode charge. 

2 
Pyrometal - regular charge. 

3 
Uncertainty reported as zero.

  

3.4.5 Model Performance Evaluation 

     The overall modeling performance was evaluated for the observed and predicted 

concentrations (Table 3.6) using several statistical measures including mean fraction 

bias (MFB), normalized mean square error (NMSE), the fraction of predicted 

concentrations lying within a factor of 2 (Fa2) of the measured ambient 

concentrations, and Pearson’s coefficient of correlation (r). The criteria for acceptable 

performance are: -0.5 ≤ MFB ≤ 0.5, NMSE ≤ 0.5 and Fa2 ≥ 0.8(Kumar et al. 1993). 

In addition, the correlation between predictions and observations is deemed excellent 

if r ≥ 0.9 and poor if r ≤ 0.6. The PDRM solution showed acceptable predictions of 

the marker species (Zn, Cd, Pb, and Cu) as well as other species except for Ni and EC. 

Despite their unacceptable performance evaluation, a good recovery (≥ 80%) of the 

total mass of Ni and EC was achieved and, as shown in Figure 3.13, the PDRM-
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predicted concentrations of these two species were generally within their (large) 

measurement uncertainties.  

Table 3.6 Performance statistics 
1
 between the observed and predicted concentrations 

by PDRM. 

Species Observed 
2
 Predicted 

2
 MFB 

3
 NMSE 

4
 Fa2 

5
 r 

6
 

Al  26.78 26.54 -0.01 0.02 1.00 0.933 

As 29.28 28.82 0.01 0.01 1.00 0.991 

Cd 4.02 3.90 -0.06 0.08 1.00 0.938 

Cr 0.37 0.38 -0.14 0.08 1.00 0.912 

Cu 476.13 515.13 -0.45 0.06 0.84 0.964 

Fe 32.97 34.09 -0.13 0.03 1.00 0.976 

Mn 2.52 2.53 -0.02 0.02 1.00 0.941 

Ni 0.87 0.74 0.20 0.49 0.58 0.363 

Pb 78.37 75.12 -0.09 0.02 0.92 0.987 

Se 0.68 0.65 0.04 0.04 1.00 0.890 

Zn 72.59 72.10 0.01 0.01 1.00 0.979 

SO2 25.17 25.06 -0.01 0.01 1.00 0.976 

NOx 23.92 23.87 -0.03 0.01 1.00 0.986 

PM2.5 14.27 13.83 0.03 0.04 1.00 0.724 

OC  2.47 2.39 0.03 0.04 1.00 0.883 

EC 0.22 0.19 -0.13 0.25 0.58 0.791 

1 
Boldfaced type indicates unacceptable performance. 

2 
Average concentrations; variables are given in ng m

-3
 for metals, ppb for SO2 and NOx, and 

µg m
-3

 for others.
 

3 
MFB: mean fractional bias ( ). 
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4 
NMSE: normalized mean square error ( ). 

5 
Fa2: fractions of the predictions within a factor of 2 of the observed values (0.5≤ Cpred/Cobs 

≤2.0). 

6 
r: Pearson’s coefficient of correlation. 

3.5 Concluding Remarks 

     Compared with PMF, the PDRM model has shown a strong capability of resolving 

contributions from nearby point sources based on the differences in their plume 

dispersion factors, but a priori knowledge of source emissions (i.e., approximate 

scale of emission rates) and detailed meteorological conditions (i.e., wind profiles, 

atmospheric stability classes) are essential to ensure meaningful results. Although 

source cross contamination in the PMF solution has been realized, the PMF analyses 

appear to well serve as the initial guess of emission rates and the estimates of non-

point source contributions in the PDRM modeling. Instead of a source non-specific 

tracer gas (i.e., SO2 or NOx), a group of marker species (one specified for each source 

but they may be in common for different sources) were used to tune the TGPM-

derived plume dispersion profiles of individual sources. In addition, the advantage of 

multiple PDRM runs for short modeling timeframes was revealed as it better tuned 

the shape of the plume dispersion profiles for industrial sources with possible 

temporal variations. The comparison with the PMF results showed that the possibly 

overestimated copper contributions from the BRZ plant by PMF were effectively 

restrained in the PMF-seeded PDRM approach. The comparison with past studies and 

the performance evaluation showed that, at least, qualitatively-accurate source 

profiles and emission rates could be obtained with this new approach. In the past, 

estimates of cadmium emissions at the BRZ plant were based on emission factor data 
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from the SPECIATE database. As the validity of the general emission profile could 

not be verified, the determined metal emissions in exhaust gases were presumably 

associated with large errors by that method. In contrast, our error analysis indicated 

that the TGPM-derived χ/Qs are subject to a maximum relative uncertainty of 59 to 

92 %, which are almost within the bound conditions of PDRM tuning (i.e,  = 0.1 

~ 2.0 in Equation 3.1). Thus the predicted ERs with the TGPM-driven PDRM are 

expected to be more accurate than those based on the SPECIATE data. In summary, 

this PMF-seeded PDRM approach coupled with highly time-resolved ambient 

measurements could provide a useful new tool for remote monitoring of ERs of those 

pollutants, such as heavy metals, not measured by continuous emission monitors. 
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Chapter 4: The Study of a Typical Traffic Episode in 

Baltimore 

4.1 Background 

     Effects of short-term exposures to vehicular traffic emissions have been 

emphasized in the past years (Finkelstein, Jerrett and Sears 2004, Schwartz 2005, 

Lipfert et al. 2006, Kaur, Nieuwenhuijsen and Colvile 2007, Park, Akinbami and 

Woodruff 2009, Jacobs et al. 2010, Nawrot et al. 2011). For instance, it was found 

that a significant number of cardiac victims in Germany had been exposed to high 

traffic density in hours prior to their heart attacks (Peters et al. 2004). Rapidly 

elevated concentrations of airborne fine particles were often observed during traffic 

rush hours in US and Europe cities, which resulted in acute problems such as 

cardiovascular mortality (Chuang et al. 2007, O'Connor et al. 2008) and respiratory 

infections (Brauer 2002, Karr et al. 2009). 

     Routine monitoring of PM has been limited to mass concentrations in the United 

States, as current regulations are based upon total mass within a specified range of 

particle size. Recently, increasing attention has been attracted to number 

concentrations of fine PM, which are considered by some to be more directly 

associated with their health outcomes (Strak et al. 2009, Song et al. 2011). In 

particular, ultrafine particles (UFP, dp < 100 nm) were usually predominant in number 

in areas affected by primary motor vehicle emissions (Morawska et al. 2008) and, 

despite their small contributions to the total PM2.5 mass, they exhibited stronger 

adverse effects than larger ones (Knibbs, Cole-Hunter and Morawska 2011).  
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     Positive matrix factorization (PMF) (Paatero and Tapper 1994, Paatero 1997, 

U.S.EPA 2008) and UNMIX (Henry 2000, U.S.EPA 2007) have been widely used in 

PM source apportionment (Ogulei et al. 2006, Pancras et al. 2011). However, very 

few applications of these complementary models have been made with regard to 

particle size distributions (Kim et al. 2004, Ogulei et al. 2007, Yue et al. 2008, 

Costabile et al. 2009, Ban-Weiss et al. 2010, Gu et al. 2011) and effective resolving 

of source profiles of size distributions was rarely achieved. This is to a great extent 

due to the fact that the signature size distribution of a particular aerosol emission, 

unlike its chemical composition, is not necessarily stable owing to coagulation and 

depositional growth processes and, therefore, is sensitive to changes in ambient 

environmental conditions such as wind speed (Knibbs and de Dear 2010), 

temperature (Thai, McKendry and Brauer 2008), relative humidity (Kaur and 

Nieuwenhuijsen 2009), and mixed layer depth (Weichenthal et al. 2008). Besides, 

lack of speciation information of size-specific particles was often another hindrance 

to confident source identification (Kim et al. 2004).  

     Past air quality studies in Baltimore (Suarez and Ondov 2002, Larsen and Baker 

2003, Ogulei et al. 2005, Ogulei et al. 2006, Ondov et al. 2006, Park et al. 2006a) 

revealed that motor vehicle exhaust is an important primary source of air pollution 

because the city is both a populous urban area and a major Mid-Atlantic transport 

corridor. For example, gasoline and diesel vehicles accounted for 26 % and 1 % of 

the annual PM2.5 in Baltimore, respectively, according to Ogulei et al. (Ogulei et al. 

2005). 
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     Assessments of the influence of motor vehicle emissions on air quality in urban 

areas heavily rely on the availability of relevant and detailed abundance profiles 

(Nielsen 1996, Glaser et al. 2005, Oliveira et al. 2010). Several motor-vehicle profiles 

are available in the EPA’s SPECIATE database, but most were derived from 

dynamometer tests of a limited number of vehicles using a relatively small number of 

operating conditions. Moreover, very few of these profiles include much beyond 

abundances of EC, OC, several metals, and relatively few semi-volatile organic 

compounds known to be markers of various classes of motor vehicle emission 

scenarios (Watson 1979, Rogge et al. 1993b, Khalili, Scheff and Holsen 1995, 

Rönkkö et al. 2006, Landis et al. 2007). Motor vehicle source profiles of organic 

compounds were extensively investigated by Rogge (Rogge et al. 1993b, Rogge et al. 

1996) and Schauer (Schauer et al. 1996, Schauer and Cass 2000) by measuring 

diluted tailpipe exhaust from several (< 20) vehicles with GC-MS. These early 1990’s 

studies were generally carried out in California with different emission standards and 

environmental factors (e.g., temperature, humidity, altitude, engine inspection 

frequency) from urban areas in the Mid-Atlantic states, and are probably outdated 

because gasoline composition and engine and emission control technologies have 

changed substantially since then (e.g., the Clean Air Act completely banned the sale 

of leaded fuel since 1996 and gasoline typically contains up to 10 % ethanol 

nowadays). Lastly, there are few, if any, profiles containing a large number of semi-

volatile organic compounds (SVOCs), in addition to EC, OC, nitrate, sulfate, metal, 

and VOCs, along with primary gas emissions of NO, NO2, and CO. Fewer still were 

collected in urban areas or traffic tunnels such that emissions from large numbers of 
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vehicles could be examined during real-world driving conditions. And fewer still of 

these were collected at high time resolution, i.e., such that motor vehicle emissions 

could be better isolated from interfering sources. 

     In this present work, a short-term PM excursion due to motor vehicle emissions 

observed during the EPA Baltimore supersite project was investigated. In specific, we 

aimed to extract a comprehensive profile of motor vehicle emissions containing both 

particle size distributions and abundances of SVOCs in addition to routine species 

using highly-time resolved data collected during a cool-weather PM2.5 episode in 

November 2002, described by Park et al. (Park et al. 2006a). 

4.2 Data Inputs 

4.2.1 Site and Episode Description 

     The Baltimore Ponca street supersite (Figure 4.1) was in close proximity to two 

major highways, I-895 and I-95, and about 1 kilometer north of the two tunnel toll 

facilities (i.e., Fort McHenry and Baltimore Harbor tunnels), through which more 

than 180,000 motor vehicles passed daily in total. In specific, I-895 curves from 

northbound to north eastbound near the supersite which was only 50 m away from the 

roadway and about 5 m lower than the road surface. Thus when the movement of 

motor vehicles was slow and drainage flows traveled along the I-895 corridor to the 

receptor site under windless or mild wind conditions, high concentrations of traffic 

emitted pollutants were observed at this site. This strategically-selected location 

renders it ideally suited to assess the traffic impact on urban air quality. Nevertheless, 

past studies (Ogulei et al. 2005, Park et al. 2005a, Ondov et al. 2006, Park et al. 2006a) 
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have revealed that air quality at this site was also influenced by local industrial 

sources, which mostly came from the southeastern Dundalk and southwestern Curtis 

Bay industrial areas. Thus, in this study, I sought to resolve motor vehicle emissions 

correlating with the traffic flux during the episode from possible contributions from 

industrial and residential sources of PM along the I-895 corridor. 

 

Figure 4.1 The Road map around the Baltimore supersite at Ponce street (provided by 

Google Map). 

     The three-day episode selected for this work lasted from November 19
th

 through 

21
st
, 2002, and corresponds to episode F in Park’s study of a series PM2.5 episodes at 

the Ponca street supersite (Park et al. 2006a). During this period, the time series of 

PM2.5 concentrations were generally in a synchronous pattern with those of traffic-

related gaseous pollutants (i.e., NOx and CO), especially in the mornings, as shown in 

Figure 4.2. Nevertheless, close inspection revealed that NOx/CO ratios were different 

during some PM2.5 excursions. For example, NOx/CO was small at ~ 1500 LT on the 

20
th

, and might have been partially due to NOx reaction with hydroxyl radicals in the 
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early afternoon, in contrast to that observed in the morning PM2.5 excursion. However, 

the narrow peak width of that NOx excursion and the prevailing southeasterly winds 

(> 2 m s
-1

) during this period suggested an attribution to an industrial source (i.e., 

residual oil combustion). Northerly to northeasterly winds with low speeds (< 2 m s
-1

) 

were prevailing in the whole episode except for the above-mentioned afternoon and 

the noon of the 19
th

 when NOx concentrations were low. In particular, the wind was 

nearly stagnant (< 1 m s
-1

) in the morning of the 20
th

, which facilitated the rapid built-

up of pollutants. As a result, a large PM2.5 excursion exceeding the 24-hr National 

Ambient Air Quality Standard (NAAQS) of 65 μg m
-3

 at the time (U.S.EPA 2004b) 

was observed between 0500 and 0800 LT.   
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Figure 4.2 Time series of a) concentrations of PM2.5, NOx, and CO (concentrations of 

NOx and CO were normalized to the maximum concentration of PM2.5); and b) wind 

profile from November 19
th

 through 22
nd

, 2002 at the Ponca street supersite. 

     The evolution of ambient temperature and relative humidity (RH) during this 

episode (Figure 4.3) was typical of the cold, late-fall season. That is, the highest RH 
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and lowest ambient temperature of the day was observed at around 0600 LT before 

sunrise. The low temperature was consistent with low mixing height, which trapped 

primary vehicular emissions and favored condensation/absorption of semi-volatile 

and nonvolatile species onto particles (Rönkkö et al. 2006). The episode ended in the 

morning of the 22
nd

 due to precipitation.  
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Figure 4.3 Temporal profiles of ambient temperature and relative humidity (RH) 

from November 19
th

 through 22
nd

, 2002 at the Ponca street supersite. 

4.2.2 Data Description 

     Ambient data were retrieved from the Baltimore Supersite database and the 

project’s archives (http://www2.chem.umd.edu/supersite/), including 10-minute 

concentrations of principle PM constituents (EC, OC, sulfate and nitrate), 30-minute 

SEAS metal (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) concentrations, 10-

minute concentrations of NOx and CO (provided by the Maryland Department of 

Environment), 5-minute number concentrations of airborne particles measured with 

http://www2.chem.umd.edu/supersite/
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the Scanning Mobility Particle Sizer (SMPS) and the Aerodynamic Particle Sizer 

(APS), 5-minute meteorological records (wind speed and direction, ambient 

temperature, and humidity), and hourly tunnel (i.e., the I-895 tunnel and the Fort 

McHenry tunnel) traffic statistics for various vehicle types. In addition, measurements 

of 117 SVOC species in 19 categories (Rogge et al. 2011) were available at 3-hour 

intervals during the episode.  

     The SMPS and APS measurements encompassed 53 particle size channels ranging 

from 10 to 450 nm, and 22 channels ranging from 0.5 to 2.5 µm, respectively. In this 

study, those particle size distributions were combined to yield a composite dataset, 

following a standard preprocessing step which was taken to minimize the possible 

negative impact on the volume distribution caused by the combination (Peters et al. 

1993). In specific, the data in the last channel (aerodynamic particle diameter, dp, > 

400 nm) of the SMPS distribution and the first five channels (dp < 0.73 µm) of the 

APS distribution were eliminated to avoid the artificial wrinkles in the combining 

region by direct combination of SMPS and APS data for the same sample. 

4.3 Methods 

     In this study, the abundance profiles of motor vehicle exhaust were extracted using 

the following four methods: 1) direct analysis of pollutant peaks occurring during the 

morning rush hour; 2) linear regression based on a windless model analysis (WMA); 

3) positive matrix factorization analysis; and 4) UNMIX modeling.  

     It is convenient to retrieve the profile of motor vehicle emissions by direct peak 

observation (DPO), as the large excursion of PM2.5 (i.e., about 5 fold background 

level with a full width at half maximum (FWHM) of only 2.5 hours) in the morning 
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of November 20
th

 was highly correlated with that of the rush-hour traffic. 

Nevertheless, an inherent flaw of the DPO approach is that variations of background 

sources were insufficiently considered, although the peak observation was corrected 

to some extent by using the peak onset as the background. In this calm morning (i.e., 

wind speed < 1 m s
-1

 from 0100 to 0800 LT), a windless dispersion model is 

applicable, as described below, based on the assumption that motor vehicle 

contributions to ambient concentrations at the near-road receptor site were 

proportional to the road traffic density. Hence linear regressions of ambient 

concentrations against the traffic fluxes provided a way of excluding contributions 

from sources other than motor vehicles which were determined as the residuals of 

these regressions.  

     As described in the previous chapters, UNMIX and PMF are complementary 

methods that could provide alternative ways of background removal; both are able to 

generate matrices of abundance profiles and source contributions with non-negative 

constraints applied; neither requires aprior knowledge of those sources; and both 

have been simultaneously employed in many air quality studies (Kim et al. 2004, 

Pekney et al. 2006, Watson et al. 2008, Henry and Christensen 2010). Unlike the 

WMA-based linear regression, these receptor models rely on the covariance of 

contributions from all sources, rather than a single variable (i.e., traffic flux) that 

presumably well represents vehicular emissions. 

4.3.1 Direct Peak Observation 

     The direct peak observation (DPO) was applied to the period between 0700 and 

0800 LT on November 20
th

, when the largest concentrations of PM2.5, EC and OC of 
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the day were observed. The hourly observation from 0100 to 0200 LT was considered 

as the background because it preceded the onset of the PM2.5 excursion and the 

lightest traffic density of the day was observed during that period (Figure 4.5). The 

background-corrected peak concentrations of ambient pollutants including NO, NO2, 

NOx, CO, EC, OC, sulfate, nitrate, SEAS metals, and 117 SVOC species in 19 

categories were then normalized with respect to that of PM2.5 to obtain the 

corresponding abundances (µg per µg of PM2.5) of those species, as follows: 

       (4.1) 

where Fj is the abundance (µg per µg of PM2.5) of ambient species j; cp,j and cbkg,j are 

the measured concentrations (µg m
-3

) of species j in the peak observation and the 

background observation, respectively; and cp,PM and cbkg,PM are the measured 

concentrations (µg m
-3

) of PM2.5 in the peak observation and the background 

observation, respectively. 

     Note that for the SVOC data, the concentrations measured at 3-hour time 

resolution were reallocated into hourly intervals so that they could be treated with the 

hourly averaged species. This was done using the hourly traffic fluxes measured in 

the I-895 tunnel (refer to Appendix D1 for detailed process), as follows. 

        (4.2) 

where c1h,i is the 1-hour concentration (µg m
-3

)  of ambient SVOC species in the i
th

 

hour of the 3-hour time block, c3h is the background-corrected measured 

concentration (µg m
-3

) of this SVOC species in the corresponding 3-hour time block, 
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v1h,i is the 1-hour vehicle counts (number of vehicles)  in the i
th

 hour of the 3-hour 

time block, and v3h is the total vehicle counts (number of vehicles) in the 

corresponding 3-hour time block. Note that each 3-hour set of all SVOCs was 

processed separately to ensure that data in different 3-hourly periods were not 

blended and that the temporal information in the raw data was retained.  

     The uncertainty associated with the resulted abundance of ambient species j, σFj, 

was from the deviation propagation of measurement uncertainties, as follows. 

     (4.3) 

where σp,j and σbkg,j are the measurement uncertainties (µg m
-3

) of species j in the peak 

observation and the background observation, respectively. 

     By considering each size channel as an individual species, hourly-average particle 

number concentrations from the integrated SMPS-APS size distributions in 69 size 

channels (i.e., from 9.65 nm to 2.5 µm) were processed in the same way to generate 

the characteristic particle number size distribution of motor vehicle particle emissions. 

4.3.2 Windless Model Analysis 

     The windless model analysis was performed for the period from 0100 to 0800 LT 

on November 20
th

, when calm winds (i.e., wind speed < 1 m s
-1

) were observed. This 

windless condition allowed the application of a windless dispersion model (Jin and Fu 

2005), in which traffic emissions affecting the receptor site are considered as being 

dispersed from a line source (i.e., I-895 in this study), as follows.  
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       (4.4) 

where cj is the concentration (µg m
-3

) of ambient pollutant species j in the windless 

period; s is the total traffic flux (vehicle s
-1

); ki is the fraction of vehicle type i; eij is 

the emission factor of species j (g m
-1

 vehicle
-1

) from a single vehicle of type i at a 

given speed; l is the length (m) of the source; r is the distance (m) from the receptor 

site to the source point; and β is a road coefficient (µm s
-1

). And the integral part in 

the equation represents a road constant (s m
-2

) at the given location. 

     For any ambient species j,  

        (4.5) 

where Ei is the PM2.5 emission factor (µg m
-1

) of vehicle type i, and Fij is the fraction 

quantity (dimensionless) of the j
th

 species in the emissions from the i
th

-type vehicles. 

     When the distance (d) between the receptor site and the road is much smaller than 

the length of the roadway source (L), r
2
 is approximately the sum of d

2
 and l

2
 (refer to 

Appendix D2 for detailed derivation of the geometric relation), as illustrated in Figure 

4.4. Hence Equation 4.4 can be expressed as follows: θ 

     (4.6) 

where d is the distance between the receptor site and I-895, and L is effective length 

of road where the road remains heading downhill to the receptor site. After 

integration, Equation 4.6 gives: 
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     (4.7) 

 

Figure 4.4 Schematic representation of the I-895 roadway near the receptor site as a 

line source. 

     For calculation of PM2.5 emission factors, Equation 4.4 can be simplified as: 

     (4.8) 

where  is the concentration (µg m
-3

) of PM2.5. 

     Using the ruler function available in Google earth, d and L were estimated to be 50 

and 710 m, respectively, in this study. The total traffic flux and fractions of different 
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vehicle types were obtained from the hourly traffic statistics recorded in the I-895 

tunnel.  

     Since ki and Ei are constants specific to an individual vehicle type i in a given 

scenario, the product of ki and Ei represents a weighted emission factor of vehicle 

type i. When the vehicle composition is constant and the contribution from one type 

of vehicles is dominant over those from others, Equation 4.7 can be approximately 

expressed as: 

      (4.9) 

where  is a weighted average of PM2.5 emission factor (µg m
-1

) and  is the 

observed abundance (µg per µg of PM2.5) of species j in the average profile of motor 

vehicle emissions. 

     In this case, 2-axle gasoline type light-duty vehicles were dominant and diesel 

vehicles with 3 or more axles only represented a very small fraction (~ 3 %) of the 

morning traffic on the 20
th

. In addition, the variations in the fraction of gasoline type 

vehicles was limited (i.e., < 3 %) throughout the PM2.5 excursion. Hence Equation 4.9 

can be re-written as: 

       (4.10) 

where  is the ambient concentration of species j in the k
th

 hourly observation,  is 

the traffic flux (s
-1

) in the k
th

 observation made at  the I-895 tunnel, and the road 

coefficient  is a constant for this modeling period (µg s m
-3

 per 



 

 123 

 

vehicle). Thus, the values of  can be solved by linear regression of s against 

s. Here, a separate linear regression was implemented using the k = 7 windless 

observations for each of the 137 species, s, including NO, NO2, NOx, CO, TEOM 

PM2.5 mass, EC, OC, sulfate, nitrate, 11 SEAS metals, and 117 SVOCs (individually, 

and after grouping into 19 categories). In addition, 69 linear regressions were 

implemented for the seven hourly-averaged observation intervals prepared from the 

particle number concentrations versus size data by treating the concentration of 

particles in each size channel as a separate size species (i.e., one species for each of 

the 69 size channels from 9.65 nm to 2.5 µm). The regressions were performed in 

MATLAB using the standard expression. 

     (4.11) 

where slopes, s, are the products  (µg s m
-3

 vehicle
-1

) in Equation 4.10, s 

are the residual concentrations (µg m
-3

), and  and  are the uncertainties in the 

slopes and residuals, respectively.  

     The abundance (µg per µg of PM2.5) of ambient species j was obtained by 

normalization of  with respect to the corresponding fitting coefficient of PM2.5, 

, as follows. 

         (4.12) 

     The uncertainty (µg per µg of PM2.5) associated with the abundance of ambient 

species j, , was determined as the deviation propagation of measurement 

uncertainties and fitting uncertainties, as follows.  
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    (4.13) 

where m = 7, i.e., the total number of windless observations, and is the 

measurement uncertainty (µg m
-3

) of species j in the k
th

 observation. 

4.3.3 Receptor Modeling 

     The modeling period was extended to 24 hours (0000 ~ 2400 LT) on November 

20
th

, 2002, to avoid unacceptable total degrees of freedom in these multivariate 

analyses. Both the mass concentrations of PM2.5 as well as its constituents (i.e., EC, 

OC, sulfate, nitrate, and SEAS metals) and the particle number concentrations in 

different size channels from 10 nm to 2.5 µm were used in each modeling. Two 

criteria gaseous pollutants that are present in motor vehicles emissions, NOx and CO, 

were also included in each modeling. SVOCs were excluded from the modeling 

because hourly SVOC concentrations could not be obtained by the decomposition of 

3-hour data, as described in Equation 4.2, for the periods (e.g., the windy afternoon) 

when ambient pollutants were poorly correlated with the traffic. Strategically, the 

UNMIX was applied first and the PMF modeling was then run with the number of 

sources specified from the former. 

4.3.3.1 UNMIX  

     The EPA UNMIX 6.0 model was used as described in the user’s manual for EPA 

UNMIX 6.0 (U.S.EPA 2007). Due to the inability of UNMIX to handle more than 50 

variants, 22 selected size bins that were evenly distributed (i.e., median particle sizes 

for the 22 channels were: 12.9, 24.6, 35.2, 47, 54.2, 67.3, 77.7, 83.5, 89.8, 104, 129, 
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160, 198, 246, 305, 835, 965, 1197, 1486, 1843, 1981, and 2458 nm, respectively), 

instead of all the size channels, were used. The number of sources in this study was 

five, as determined by UNMIX. Source contribution edge plots (Appendix D3) were 

employed to ensure the distinct nature of sources and the bootstrap method was used 

to estimate the variability in the source profiles. The standard deviations in the 

UNMIX-derived profiles were those output by the model itself.  

4.3.3.2 PMF  

     The EPA PMF v3.0 program was used in accordance with the user guide for EPA 

PMF v3.0 (U.S.EPA 2008). Compared with the UNMIX modeling, more size 

channels were included in the PMF modeling (i.e., median particle sizes for the 60 

size channels used for PMF were: 19.8, 21.3, 22.9, 24.6, 26.4, 28.4, 30.5, 32.8, 35.2, 

37.9, 40.7, 43.7, 47, 50.5, 54.2, 58.3, 62.6, 67.3, 72.3, 77.7, 83.5, 89.8, 96.5, 104, 111, 

120, 129, 138, 149, 160, 172, 184, 198, 213, 229, 246, 264, 284, 305, 328, 352, 379, 

583, 626, 673, 723, 777, 835, 898, 965, 1037, 1114, 1197, 1286, 1382, 1486, 1596, 

1715, 1843, and 1981 nm, respectively). Note that the first 9 size channels (< 18.4 nm) 

were excluded from modeling as their scaled residuals (eij/sij) always exceeded the 

criterion (i.e., eij/sij ≤ 4) in the initial modeling trials. Different numbers of factors 

from 3 to 9 were tested but a factor number of 5 was adopted in the present solution 

to be most consistent with the UNMIX modeling results. It was found that further 

increasing of the number of factors resulted only in decomposing one of the factors 

and did not significantly affect the fit quality. In addition, different values (-0.3 to 0.3) 

of the rotational parameter, FPEAK, were tested (Paatero et al. 2005). The estimates 
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of standard deviations in the PMF profiles were based on the variability in three 

FPEAK solutions (FPEAK = -0.3, 0, and 0.3). 

4.4 Results and Discussion 

4.4.1 Traffic Analysis 

     The tunnel traffic counts of I-895 and I-95 were well correlated (r
2
 = 0.985) with 

each other during the period from November 19
th

 through 22
nd

 (Appendix D4). 

However, considering that the receptor site is closer to I-895 than I-95 and the impact 

of motor vehicle emissions often falls rapidly with increasing off-road distance 

(Hitchins et al. 2000), only the I-895 tunnel traffic was included in the analysis. As 

shown in Figure 4.5, the I-895 traffic counts exhibited a bimodal daily pattern with 

two traffic rush-hours observed, one in early morning and the other in late afternoon, 

respectively (Figure 4.5). In contrast, heavy-duty diesel vehicles (HDDV, > 3 axles) 

showed only one daily peak at noon. During this episode, PM2.5 concentrations were 

in a temporal pattern similar to the traffic density of I-895 with several exceptions 

(Figure 4.5): the blurred peaks in the morning of the 19
th

 and the afternoon of the 20
th

 

were due to strong winds (> 3 m s
-1

), and those in the afternoon of 22
nd

 were due to 

rain wash.  
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Figure 4.5 Time series PM2.5 mass and I-895 tunnel traffic counts from November 

19
th

 through 22
nd

, 2002. 

     During the large, 7-hour PM2.5 excursion in the morning (i.e., 0100 ~ 0800 LT) of 

November 20
th

, excellent linear relations between ambient pollutants (i.e., PM2.5, EC, 

and OC) and the total traffic flux were revealed (Figure 4.6). Further MLR of ambient 

pollutants against the counts of light duty gasoline vehicles (LDGV) and HDDV 

recorded in the I-895 tunnel during this period afforded the following relationships: 

 

        (4.14) 
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        (4.15) 

where concentrations of PM2.5 and EC are in µg m
-3

, and the vehicle densities of 

LDGV and HDDV are in vehicle hr
-1

. The regression equations 4.14 and 4.15 had 

correlation coefficients of 0.999 (p < 0.001) and 0.985 (p < 0.001), respectively. Note 

that the residual of PM2.5 in this bivariate linear regression (i.e., 24.54 ± 1.32 µg m
-3

) 

was nearly identical to that (i.e., 24.70 ± 0.29 µg m
-3

) obtained from the simple linear 

regression (Figure 4.6), confirming the validity of Equation 4.9 in which the observed 

average emission factor of PM2.5 was assumed to be little affected by temporal 

variations in the vehicle composition in this study.  
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Figure 4.6 Concentrations of EC, OC, and PM2.5 mass as a function of the I-895 

tunnel traffic flux during the morning period from 0100 to 0800 LT on November 

20
th

, 2002. 
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     Although a wide variety of receptor-modeling studies have concluded that diesel 

powered vehicles are the major source of on-road PM (Schauer et al. 1996, Landis et 

al. 2007), it has been argued that PM contributions from gasoline powered vehicles 

(i.e., light-duty vehicles) may be underestimated (Gertler et al. 2002, Gertler 2005). 

During this PM2.5 excursion, LDGV and HDDV contributed 45 % and 2.1 % of PM2.5 

mass, respectively, which supports this contention, as did by Gertler’s in-situ 

measurements in a highway tunnel and a series of crossroad sites (Gertler et al. 2002, 

Gertler 2005). Nevertheless, LDGV and HDDV contributed 48 % and 20 % of EC, 

respectively, in this study suggesting that HDDV was still an important source of EC 

despite the small fraction of this type of vehicles. 

     The road coefficient K in Equation 4.10 determined from the simple linear 

regression of PM2.5 against the total traffic flux of I-895 was 35.48 ± 0.42 µg s m
-3

 

per vehicle in this study. Note that in the windless model, this coefficient K is co-

determined by traffic characteristics (e.g., type and age composition of the fleet of 

vehicles, and the corresponding vehicle emission factors), road features (i.e., location 

of receptor site, road surface condition, terrain, and nearby buildings), and 

meteorological conditions (i.e., wind speed, temperature, humidity, and atmospheric 

stability). That is,  in Equation 4.9 (or  in Equation 4.8) is a constant at 

a given site (i.e., 2.58 ± 0.03 µg s m
-2

 for the Ponca street site in this study). Herein, 

vehicle emission factors,  or s, are the core terms of interest and have been used as 

input in the EPA’s MOBILE model to evaluate the pollution from highway vehicles 

and decide air pollution policy (e.g., vehicle emission standards) at the local, state, 

and national level (Pollack et al. 2004, Parrish 2006). Instead of expensive tailpipe 



 

 130 

 

measurements of a substantial number of vehicles, measurements of ambient 

pollutants and traffic statistics at the same receptor site can be used to calculate  

values during different windless periods as done above. Since the road coefficient β is 

deemed constant for the given site based on the windless model assumption, changes 

in emission factors, s, over time for a given vehicle category could be conveniently 

estimated by the comparison of the  values.  

     In Gertler’s tunnel study (Gertler et al. 2002) where all vehicles were operating 

under hot-stabilized conditions with a limited speed of 55 mph, the PM2.5 emission 

factor for light-duty gasoline vehicles was determined to be 10 ± 3 µg m
-1

. Using the 

traffic counts of different vehicle types measured in the I-895 tunnel, this emission 

factor was adjusted as 10.2 ± 3.1 µg m
-1

 per vehicle. The β coefficient observed at the 

Ponca street site was then determined as 3.95 ± 1.20 m s
-1

, which is the effective 

transport speed of the I-895 road section under the conditions described. Note that 

this effective transport speed is the sum of the wind speed and the traffic-induced air 

flow rate. The wind speed measured at 5 m above the I-895 roadway was 0.81 ± 0.24 

m s
-1

 during the PM2.5 excursion, and likely above the turbulent wake of the vehicles. 

In addition, given that the high traffic volume were likely moving substantially more 

slowly than the posted speed limit of 50 mph (i.e., 22.35 m s
-1

), the wind speed 

measured probably reflected only the meteorological wind speed. Thus, the vehicle-

induced speed was about 3.14 ± 1.22 m s
-1

, which seems reasonable compared with 

the average speed (i.e., 0.5 ~ 1.2 m s
-1

) of tunnel traffic-induced wind in Jiang’s study 

(Jiang and Chen 2002). In any event, I argue that this value of β is likely applicable 

for this particular roadway when similar traffic and meteorological conditions prevail. 
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4.4.2 Correlation of Ambient Pollutants 

     As shown in Figure 4.8a, PM2.5 mass was dominated by EC and OC throughout 

the 3-day episode. In particular, large fractions of EC (11.6%) and OC (56.6%) in 

PM2.5 observed at the Ponca street site in the morning rush hour (0700 ~ 0800 LT) of 

the 20
th

 resembled those reported for a gasoline-vehicle type tunnel (21.0% and 

62.2%, respectively) (Landis et al. 2007) rather than a diesel-vehicle type tunnel 

(47.6%, and 56.1%, respectively) (Landis et al. 2007) or a residential area in 

Baltimore (3.0%, and 33.7%, respectively, as determined by (Landis et al. 2001)). As 

shown in Figure 4.8a, sulfate remained at low levels without notable fluctuations 

throughout the study period, except a minor increase during the traffic rush hour of 

the 20
th

. In contrast, gradual accumulations of nitrates (Figure 4.8a) were observed in 

a temporal pattern slightly lagged (i.e., one to two hours) behind that of PM2.5, 

presumably as a result of NOx chemistry.  
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Figure 4.8 Time series of a) mass concentrations of PM2.5 and its major constituents 

(EC, OC, sulfate, and nitrate); and b) particle number and volume concentrations 

(normalized to the corresponding maximum concentration) from November 19
th

 

through 22
nd

, 2002. 

     The time series number (PN), volume (PV), and mass concentrations of PM2.5 

particles in 30-minute intervals during the episode are compared in Figure 4.8b. Both 

PN and PV concentrations showed fair correlations with mass concentrations (r
2
 = 

0.445 for PN concentrations, and 0.539 for PV concentrations, respectively). As 

shown in Figure 4.8b, the PN/PV ratios in the morning of the 19
th

 and 21
st
 were 
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greater than that in the morning of the 20
th

, in agreement with smaller mean particle 

diameters and the relatively heavier influence from other anthropogenic sources in the 

former cases. In addition, it was found that particle number concentrations in all size 

channels with the median sizes > 30 nm were well correlated (r
2
 > 0.8) with PM2.5 

mass in the early morning (0100 ~ 0800 LT) of the 20
th

 (refer to Appendix D5), 

indicating there was little influence from aerosol sources other than traffic during this 

period. 

     The eleven SEAS metals were divided into four groups based on the similarity of 

their temporal patterns on November 20
th

 (Figure 4.9). According to the time of the 

observation maxima, Fe, Al, Zn, Mn, and probably some of the Cu were deemed to be 

associated with the morning traffic (i.e., Zn and Ni from fuel oil additives (Osan et al. 

2000), and Al, Fe, Mn, and Cu from motor engine and brake wear (Rubin et al. 

2006)). Among all metals, concentrations of Al, and Mn increased dramatically in the 

evening of the 20
th

. Cd, Ni, and Zn showed very similar temporal patterns throughout 

the afternoon. Pb and Cu were grouped because of their high concentrations in the 

late afternoon. Se, As, and Cr showed low concentrations all the day. Linear 

regression (refer to Appendix D5) revealed that Se, As, and Cd were generally poorly 

correlated (r
2
 < 0.4) with PM2.5 mass in the early morning (0100 ~ 0800 LT), 

suggesting that these species could not be detected in motor vehicle emissions.  
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Figure 4.9 SEAS metal concentrations on November 20
th

, 2002. 

     The 3-hour measurements and the deconvoluted 1-hour data in selected SVOC 

categories (refer to Appendix D6 for a complete list) are plotted in Figure 4.10. 
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Among these different SVOC categories, n-alkanes, PAHs, oxy-PAHs, 

alkylcyclohexanes, and pentacyclic triterpanes are all well-known tracers of motor 

vehicle exhaust (Rogge et al. 1993b). As shown in Figure 4.10, the temporal profiles 

of both the 3-hour and the 1-hour concentrations of these species were in good 

agreement with those of the I-895 tunnel traffic and the concentrations of TC (i.e., the 

sum of EC and OC). In contrast, both 3-hour and one-hour SVOC concentrations of 

thiazoles, steroids, sugars, phenolic wood markers, secondary biogenic oxidation 

products, and aliphatic dicarboxylic acids exhibited temporal patterns different from 

those of the I-895 tunnel traffic and the concentrations of TC. Thiazoles are known 

tracers of road dust (Rogge et al. 1993c) but they were poorly correlated with traffic, 

possibly because the road was wet with dew in that early morning or tire wear 

particles may not have been formed/re-suspended under the windless and probably 

slow traffic conditions. Steroids are well-known markers of meat cooking operations 

(Rogge et al. 1991). Sugars and phenolic wood markers are unique tracers of biomass 

burning (Simoneit et al. 1993, Simoneit et al. 1999). Secondary biogenic oxidation 

products and aliphatic dicarboxylic acids are known tracers of vegetation debris 

(Rogge et al. 1993d). For those SVOCs that are less relevant to motor vehicle exhaust, 

the deconvolution of 3-hour data into one-hour sets appeared to barely improve their 

correlations with the traffic flux, as shown in Figure 4.10.    
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Figure 4.10 3-Hour and hourly estimates of aggregate concentrations in 13 classes of 

SVOCs in the early morning (0000 ~ 0900 LT) of November 20
th

, 2002 (temporal 

profiles of the I-895 tunnel traffic and the concentrations of EC and OC are shown in 

panel a for comparison purpose). 

     Both n-Alkanoic acids and n-alkenoic acids are tracers of motor vehicle emissions 

(Rogge et al. 1993b). These species are not present in gasoline or diesel but present in 

vehicle exhaust as they are formed during the fuel combustion and catalytic oxidation 

process in the engines (Laresgoiti and Springer 1977). In particular, the measured n-

alkanoic acids (i.e., C9 to C34) are expected to be released from both gasoline and 

diesel vehicles but the two measured n-alkenoic acids (i.e., C17 and C18) can only 

arise from diesel vehicles because gasoline fuels only contain compounds lower than 
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C10 (Rogge et al. 1993b). As shown in Figure 4.10, the former species were highly 

correlated with the traffic but the latter were not, indicating that the influence of 

gasoline vehicles was predominant over diesel vehicles in this study. 

4.4.3 Profiles of Motor Vehicle Emissions 

     The abundance profiles of motor vehicle emissions obtained are compared in 

Table 4.1. In general, these four, independently obtained profiles were differed little. 

Note that negative abundances for certain species (e.g., As and Se) were generated in 

the DPO profile, because the concentrations of these species in the peak observation 

of PM2.5 were smaller than those in the background. This emphasized that an 

appropriate background correction is critical in the DPO analysis to properly subtract 

the contributions from sources other than motor vehicles from the peak observation 

interval. Another problem of the DPO method is that the abundances of certain 

species could be inflated in the resulted profile of motor vehicle emissions, if a minor 

source contributed significantly to these species during the peak observation but not 

in the background observation. In contrast, background correction was not required in 

the windless model analysis as contributions from non-traffic sources were 

determined as the residual terms in Equation 4.11. As shown in Table 4.1, the 

abundances of sulfate, nitrate, EC, and OC in the WMA profile were smaller than the 

corresponding values in the DPO profile, which were arguably the result of more 

effective removal of the contributions from non-traffic sources in the former.  

Table 4.1 Comparison of the abundance profiles of motor vehicle emissions obtained 

direct peak observation, windless model linear regression, UNMIX, and PMF in this 

study 
1
 (unit: µg per µg of PM2.5; metal abundances were amplified by a factor of 

1000). 
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Species DPO  WMA  UNMIX  PMF 

Sulfate 0.024 ± 0.022  0.023 ± 0.009  0.030 ± 0.010  0.024 ± 0.004 

Nitrate 0.018 ± 0.008  0.016 ± 0.004  0.038 ± 0.024  0.027 ± 0.012 

EC 0.130 ± 0.043  0.125 ± 0.033  0.115 ± 0.031  0.108 ± 0.008 

OC 0.448 ± 0.151  0.408 ± 0.114  0.373 ± 0.106  0.350 ± 0.002 

Al  0.130 ± 0.029  0.140 ± 0.031  0.130 ± 0.064  0.190 ± 0.023 

As -0.001 ± 0.001  0.000 ± 0.002  0.001 ± 0.002  0.001 ± 0.000 

Cd 0.000 ± 0.000  0.001 ± 0.001  0.000 ± 0.006  0.000 ± 0.000 

Cr 0.007 ± 0.003  0.007 ± 0.003  0.007 ± 0.002  0.006 ± 0.001 

Cu 0.057 ± 0.020  0.063 ± 0.020  0.040 ± 0.021  0.027 ± 0.016 

Fe 1.400 ± 0.085  3.100 ± 1.800  3.000 ± 1.100  2.400 ± 0.360 

Mn 0.043 ± 0.018  0.057 ± 0.020  0.038 ± 0.027  0.067 ± 0.004 

Ni 0.018 ± 0.017  0.019 ± 0.008  0.005 ± 0.009  0.008 ± 0.003 

Pb 0.013 ± 0.017  0.011 ± 0.005  0.014 ± 0.009  0.005 ± 0.001 

Se -0.003 ± 0.009  0.000 ± 0.003  0.000 ± 0.027  0.000 ± 0.002 

Zn 0.520 ± 0.230  0.510 ± 0.110  0.460 ± 0.200  0.400 ± 0.079 

1
 Boldfaced type indicates the best result for each species. 

     The abundances of the SVOCs in 19 categories between the DPO and the WMA 

profiles are listed in Table 4.2 (refer to Appendix D7 for detailed abundances of 117 

individual species). In the WMA solution, the tracers of motor vehicle exhaust (i.e., 

alkylcyclohexanes, pentacyclic triterpanes, n-alkanes, PAHs, and oxy-PAHs) were 

well correlated (r
2
 > 0.9) with the I-895 traffic flux. In contrast, other SVOCs were 

poorly correlated with the traffic flux (r
2
 < 0.3). Compared with DPO, the WMA 

method attributed extra uncertainties stemming from the fitting quality of linear 

regression. As a result, large uncertainties were associated with the abundances of 
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those latter other species in the WMA profile, indicating their irrelevance with motor 

vehicle emissions. In other words, the WMA profile is arguably more accurate than 

the DPO profile, at least for the species that were poorly correlated with traffic flux.  

Table 4.2 SVOC abundance profiles of motor vehicle emissions obtained by direct 

peak observation and windless model linear regression in this study (unit: ng per µg
 

of PM2.5). 

Species 
DPO  WMA 

Abundance  Abundance r
2 1

 p 
2
 

n-Alkanes 6.080 ± 0.390  6.07 ± 1.07 0.992 * 

n-Alkanoic Acids 2.640 ± 0.199  2.84 ± 0.65 0.878 0.002 

PAHs 1.440 ± 0.186  1.46 ± 0.36 0.971 * 

Sugars 0.547 ± 0.375  1.06 ± 1.06 0.298 0.205 

Alkylcyclohexanes 0.814 ± 0.076  0.815 ± 0.147 0.961 * 

Pentacyclic Triterpanes 0.545 ± 0.052  0.541 ± 0.102 0.940 * 

Oxy-PAHs 0.237 ± 0.039  0.239 ± 0.075 0.960 * 

S-Hetero-PAH 0.122 ± 0.019  0.124 ± 0.030 0.977 * 

Thiazoles 0.112 ± 0.038  0.111 ± 0.154 0.149 0.392 

Resin Acids 0.101 ± 0.016  0.103 ± 0.033 0.846 0.003 

Steroids 0.055 ± 0.030  0.053 ± 0.109 0.692 0.020 

Iso- and Antiso-

Alkanes 
0.039 ± 0.017  0.042 ± 0.021 0.823 0.005 

2-Alkanones 0.034 ± 0.007  0.035 ± 0.019 0.558 0.054 

Aromatic 

Polycarboxylic Acids 
0.008 ± 0.002  0.009 ± 0.003 0.857 0.003 

Phenolic Wood-

markers 
-0.005 ± 0.021  0.005 ± 0.035 0.007 0.855 

Aliphatic Dicarboxylic 0.005 ± 0.002  0.004 ± 0.004 0.253 0.250 
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Acids 

N-Hetero-PAH 0.001 ± 0.000  0.001 ± 0.000 0.786 0.008 

n-Alkenoic Acids -0.079 ± 0.069  0.000 ± 0.120 0.349 0.163 

Secondary Biogenic 

Oxidation Products 
-0.114 ± 0.025  0.000 ± 0.101 0.132 0.423 

1
 Correlation coefficients between ambient concentrations of SVOC species and traffic flux. 

2
 p-value. 

* p < 0.001. 

     The traffic factor obtained for both UNMIX and PMF modeling were recognized 

in each solution by its largest contribution to PM2.5 and EC during the day as well as 

its temporal correlation with the traffic flux in the morning (detailed receptor 

modeling results were described in the next section). The temporal contributions to 

PM2.5 from the traffic factor were well correlated to the hourly traffic flux (i.e., r
2
 = 

0.981 and p < 0.001 for the UNMIX solution; and r
2
 = 0.954 and p < 0.001 for the 

PMF solution) during this early morning (i.e., 0100 ~ 0800 LT). But these 

correlations were worse than that obtained by linear regression of ambient PM2.5 

concentrations against the hourly traffic fluxes (i.e., r
2
 = 0.999 and p < 0.001), 

suggesting factor contamination in these receptor model solutions, especially for PMF. 

As shown in Table 4.1, factor cross-contamination in the UNMIX and PMF solutions 

was also indicated by the larger abundances of nitrate and smaller abundances of EC 

and OC in these profiles of motor vehicle emissions, compared with the DPO and 

WMA profiles. The former is a secondary species and its concentrations during the 

morning PM2.5 excursion were lower than the average level of the day (Figure 4.8). 

Hence factor cross contamination with other sources probably lead to an 

overestimated abundance of nitrate in the profile of motor vehicle emissions. In 
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contrast, this morning traffic contributed more than 50 % of EC and OC and a result 

of mixing of factor contributions was the underestimated abundances of these species 

in the traffic profiles predicted by UNMIX and PMF. The smaller abundances of Cu, 

Ni, and Zn in the UNMIX and PMF profiles than their corresponding values in the 

DPO and WMA profiles were probably due to this same reason. 

     The particle size distribution profiles of motor vehicle emissions obtained from the 

four methods are compared in Figure 4.11. In general, a median particle size of about 

50 ~ 60 nm for the traffic factor was predicted in all solutions, suggesting its nature of 

primary emissions. However, the UNMIX- and PMF-predicted median particle sizes 

of this factor was about 10 nm smaller than that obtained by the DPO or WDA 

method, which again suggested the interferences from other sources in the UNMIX 

and PMF solutions. 
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Figure 4.11 Comparison of particle size distribution profiles of motor vehicle 

emissions obtained by direct observation, windless-model based linear regression, 

UNMIX, and PMF. 

      The WDA profile of motor vehicle emissions is compared with those retrieved 

from the SPECIATE database (Table 4.3). As shown in Table 4.3, the WDA profile 

agrees better in EC and Pb with gasoline vehicle exhaust (i.e., SPECIATE light-duty 

gasoline vehicle exhaust) than diesel vehicle emissions (i.e., SPECIATE light-duty 

diesel vehicle exhaust). The OC/TC ratio (i.e., 0.77) of the WDA profile represents a 

mixture of those of gasoline vehicle exhaust (i.e., 0.82) and diesel vehicle emissions 
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(i.e., 0.42), but more resembles the former, implying a gasoline-type traffic as 

indicated by the I-895 tunnel traffic statistics. Nevertheless, the abundances of OC 

and Zn in the WDA profile were lower than those of gasoline vehicle exhaust and 

more like those of diesel tailpipe emissions, probably because these SPECIATE 

profiles of light-duty vehicles were derived from tailpipe emissions without 

contributions from brake lining and tire wear. The most abundant SEAS metals in the 

WDA profile are Fe, Zn, and Al, in good agreement with the SPECIATE composite 

transportation profile. The SPECIATE mixed motor vehicle, tunnel motor vehicle, 

and light-duty diesel vehicle exhausts show significantly higher abundances of Pb and 

Se than those in the WDA profile, which could be attributed to the fact that all these 

SPECIATE profiles were measured twenty years ago when leaded fuels and higher 

sulfur diesel fuels were still in use. Moreover, the WDA profile showed a better 

precision as its abundance uncertainties for most species except OC were generally 

smaller than those corresponding values in any of these SPECIATE profiles.  
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Table 4.3 Comparison of the abundance profile of motor vehicle emissions obtained 

in this study with selected SPECIATE profiles of various vehicular emissions (unit: 

µg per µg of PM2.5; metal abundances were amplified by a factor of 1000). 

Species 

Motor 

vehicle 

emissions 

in this 

study 
1
 

Light-duty 

vehicle 

exhaust – 

gasoline 
2
 

 

Light-duty 

vehicles – 

unleaded 
3
 

 

Light-duty 

vehicles – 

diesel 
4
 

 

Mixed 

motor 

vehicle 

exhaust 
5
 

 

Tunnel 

motor 

vehicle 

exhaust 
6
 

 
Transportation 

– composite 
7
 

Sulfate 0.023 ± 0.009 0.003 ± 0.001    n.a.    n.a.  0.023 ± 0.010  0.041 ± 0.006  0.023 ± 0.018 

Nitrate 0.016 ± 0.004 0.003 ± 0.001 
   

n.a. 
   

n.a. 
 
0.030 ± 0.022 

 
0.010 ± 0.006 

 
0.002 ± 0.001 

EC 0.125 ± 0.033 0.128 ± 0.019 
 
0.143 ± 0.095 

 
0.606 ± 0.175 

 
0.184 ± 0.063 

 
0.287 ± 0.064 

 
0.127 ± 0.102 

OC 0.408 ± 0.114 0.600 ± 0.044 
 
0.511 ± 0.206 

 
0.441 ± 0.114 

 
0.326 ± 0.094 

 
0.379 ± 0.082 

 
0.212 ± 0.053 

Al  0.14 ± 0.03 0.32 ± 0.59  5.07 ± 4.73  1.05 ± 0.90  3.52 ± 1.56  0.00 ± 0.37  3.81 ± 7.15 

As 0.00 ± 0.00 0.00 ± 0.02  0.00 ± 0.00  0.01 ± 0.07  0.02 ± 0.27  0.01 ± 0.10  0.00 ± 0.00 

Cd 0.00 ± 0.00 0.20 ± 1.08  0.00 ± 0.00  0.00 ± 0.00  0.10 ± 0.55  0.06 ± 0.47  0.00 ± 0.00 

Cr 0.01 ± 0.00 0.02 ± 0.23  0.12 ± 0.18  0.07 ± 0.06  0.12 ± 0.09  0.03 ± 0.15  0.00 ± 0.00 

Cu 0.06 ± 0.02 0.49 ± 0.12  0.16 ± 0.28  0.06 ± 0.05  0.59 ± 0.48  0.72 ± 0.36  0.38 ± 0.30 

Fe 3.10 ± 1.90 0.83 ± 0.14  3.57 ± 3.53  0.84 ± 0.56  5.53 ± 3.18  14.8 ± 8.11  10.9 ± 12.5 

Mn 0.06 ± 0.02 0.01 ± 0.17  0.14 ± 0.25  0.10 ± 0.08  0.81 ± 0.27  0.09 ± 0.08  0.45 ± 0.22 

Ni 0.02 ± 0.01 0.02 ± 0.10  0.05 ± 0.15  0.04 ± 0.04  0.08 ± 0.07  0.03 ± 0.04  0.05 ± 0.06 

Pb 0.01 ± 0.01 0.19 ± 0.20  3.54 ± 3.91  0.79 ± 0.41  1.20 ± 0.55  0.64 ± 0.25  148.0 ± 37.8 

Se 0.00 ± 0.01 0.00 ± 0.03  0.03 ± 0.15  0.05 ± 0.05  0.01 ± 0.07  0.02 ± 0.05  0.14 ± 0.10 

Zn 0.51 ± 0.11 2.37 ± 0.22  3.20 ± 2.63  0.56 ± 0.29  2.20 ± 1.70  1.86 ± 0.49  1.51 ± 1.84 

1 
Obtained with the windless model analysis. 

2
 SVOC (e.g., hopanes, PAHs) in both PM and gaseous phases were combined and analyzed 

together (average of SPECIATE profiles 4933 to 4942). 
3 

Vehicle exhaust gases sampled with a dilution sampler and constant volume sampling 

system (average of SPECIATE profiles 31202 and 31203). 
4
 Vehicle exhaust gases sampled with a dilution sampler and constant volume sampling 

system (average of SPECIATE profiles 32102 and 32103). 
5
 Composite of 25 % diesel and 75 % gasoline (SPECIATE profile 3519). 

6
 Tunnel exhaust material composited from 24 out of 27 tunnel samples collected on the 

southward lanes at Oakland, CA; collected 12/92 (SPECIATE profile 3684). 
7
 Includes emissions from leaded and unleaded gasoline, diesel, and tire wear (SPECIATE 

profile 33020). 
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4.4.4 Source Apportionment by Receptor Modeling Using the 24-Hour Data Set 

of November 20
th

, 2002 

     The chemical compositions and size distributions of the five factors obtained with 

UNMIX and PMF are compared in Figure 4.12 and Figure 4.13, respectively. The 

time series contributions from the five factors are shown in Figure 4.14. In general, 

the predictions for the first three factors were comparable. 
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Figure 4.12 Factor profiles of chemical compositions determined by UNMIX (left 

column of panels) and PMF (right column of panels). 
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Figure 4.13 Factor profiles of particle number size distributions determined by 

UNMIX (left column of panels) and PMF (right column of panels). 
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Figure 4.14 Resolved factor contributions by UNMIX (black solid line) and PMF 

(red dash line). 

     As discussed earlier, the factor with the largest contributions to PM2.5 mass was 

recognized as motor vehicle emissions in both model solutions. This motor vehicle 

emission factor was also characterized by its high abundances of NOx, CO, EC, and 

OC as well as its unique temporal pattern of factor strengths that was identical to the 

traffic density. In general, the two model solutions showed quite good agreement. 

UNMIX and PMF attributed 47 and 42 % of PM2.5 mass; 55 and 49 % of PM2.5 

particles in number; 62 and 55 % of EC; 60 and 50 % of OC; 58 and 60 % of NOx; 

and 58 and > 99 % of CO, respectively. 
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     The second factor exhibited some traffic-related features (i.e., high abundances of 

NOx, EC OC, and Zn). However, this factor showed a larger (i.e., 20 ~ 45 fold) ratio 

of nitrate/NOx than the vehicular emission factor and its largest contribution was 

observed at 1030 LT, asynchronous with the traffic rush hour. Another gas pollutant, 

CO, was completely absent in this factor, suggesting its little relevance to fresh fuel 

combustion. Compared with the primary vehicular emissions, enrichment of Ni in the 

profile of this factor was found (i.e., enrichment factors of 10 for the UNMIX profile 

and 13 for the PMF profile), which indicated that this factor probably contained a 

contribution from an oil-fired power plant. The BGE Wagner Station (station angle = 

172° with respect to the Ponca street site) located in the upwind direction during the 

late morning (0900 ~ 1200 LT) and could be responsible for the elevated level of Ni 

in this factor profile. Besides, the resolved size distributions of this factor showed an 

additional accumulation mode compared with the factor of motor vehicle emissions 

(Figure 4.13). All of this evidence attributes this factor to aged traffic aerosol. Overall, 

substantial amounts of nitrate (44 % by UNMIX, and 29 % by PMF) and PM2.5 mass 

(23 % by UNMIX, and 11 % by PMF) were apportioned to this factor. It is 

noteworthy that differences in Fe and Mn were found despite the general similarity of 

the profiles from the two receptor models. That is, the abundances of these species in 

the PMF profile were much greater than those in the UNMIX profile. 

     The third factor was identified as secondary aerosol by its large abundances of 

sulfate, nitrate and OC, which resembled the aged traffic aerosol but was 

distinguished from the latter as its largest contribution was found at around 1500 LT 

(Figure 4.14). This secondary aerosol factor exhibited some industrial characteristics 
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(i.e., large abundances of Fe, Pb, and Zn). Considering that the prevailing wind was 

from southerly directions during the afternoon, this factor was finally attributed to 

secondary aerosol transported from the Dundalk area. This factor was less significant 

than aged traffic aerosol and its major contributions were limited to nitrate (16 % by 

UNMIX, and 18 % by PMF) and sulfate (17 % by UNMIX, and 18 % by PMF).  

     There was discrepancy of the two receptor modeling in resolving the remaining 

sources. UNMIX decomposed the rest of the contributions into two individual events 

at 1730 LT and 1930 LT, respectively. In contrast, PMF resolved two background-

type factors (Figure 4.14). In both cases, a nucleation mode was predominant in either 

factor. Both factors were then identified as industrial factors and most of Cd, Al, Mn, 

and Zn of the day were attributed to these factors, despite their small contributions 

(i.e., < 25 % totally) to PM2.5. In particular, the one with large contribution to Cd 

(69 % by UNMIX, and 74 % by PMF) was assigned as a Cd factor. 

     Both model predictions effectively reproduced the measured particle numbers (i.e., 

slope = 0.997 and r
2
 = 0.997 for the UNMIX solution; and slope = 0.921 and r

2
 = 

0.995 for the PMF solution). Most of the variations in both solutions were due to the 

low-end (< 30 nm) and high-end (> 1.1 µm) of particle size channels.  

     The performance of the two models was evaluated (Table 4.4) using a series of 

statistical tools including mean fraction bias (MFB), normalized mean square error 

(NMSE), the fraction of predicted concentrations lying within a factor of 2 of the 

measured ambient concentrations (Fa2), and the Pearson’s correlation coefficients (r). 

According to Kumar et al. (Kumar et al. 1993), model performance is deemed 

acceptable if NMSE ≤ 0.5, -0.5 ≤ MFB ≤ 0.5, and Fa2 ≥ 0.8. In addition, the 



 

 151 

 

correlation between predicted and measured values is considered satisfactory in this 

study if r > 0.8. As shown in Table 4.4, the fit statistics for the major PM2.5, 

constituents (i.e., sulfate, nitrate, EC, and OC) were generally acceptable for both 

model solutions. The predictions of NOx and CO were also acceptable except that the 

NMSE value for CO was slightly unsatisfactory in the PMF solution. In contrast, the 

predictions of metals were generally poor except for Al, Fe and Zn.  

Table 4.4 Performance statistics 
1
 of the UNMIX and PMF modeling. 

 
UNMIX 

 
PMF 

 
MFB NMSE Fa2 r 

 
MFB NMSE Fa2 r 

NOx -0.005 0.006 1 0.991 
 
-0.004 0.016 1 0.973 

CO 0.254 0.143 0.792 0.883 
 
-0.227 0.053 0.792 0.939 

PM2.5 0.015 0.006 1 0.989 
 
-0.012 0.006 1 0.987 

Sulfate 0.015 0.008 1 0.934 
 
0.018 0.011 1 0.925 

Nitrate 0.049 0.028 1 0.792 
 
0.007 0.02 1 0.841 

EC 0.051 0.069 0.958 0.935 
 
0.017 0.028 0.958 0.962 

OC 0.016 0.04 1 0.958 
 
-0.005 0.022 1 0.968 

Al 0.07 0.12 1 0.898 
 
0.047 0.038 1 0.929 

As 0.199 0.235 0.833 0.723 
 
-0.091 0.118 0.875 0.783 

Cd 0.182 1.269 0.875 0.614 
 
-0.495 0.025 0.583 0.985 

Cr 0.066 0.051 1 0.745 
 
-0.003 0.032 1 0.811 

Cu 0.175 0.353 0.875 0.596 
 
-0.063 0.07 0.958 0.892 

Fe 0.086 0.261 0.958 0.814 
 
-0.018 0.116 1 0.854 

Mn 0.124 0.37 0.875 0.735 
 
0.126 0.082 0.833 0.897 

Ni 0.117 0.159 0.958 0.764 
 
-0.167 0.112 0.833 0.785 

Pb 0.25 0.725 0.792 0.68 
 
-0.443 0.042 0.625 0.974 
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Se 0.046 0.042 1 0.635 
 
0.024 0.052 1 0.576 

Zn -0.006 0.015 1 0.95 
 
-0.003 0.034 1 0.865 

1
 Boldfaced type indicates unacceptable performance. 

4.5 Concluding Remarks 

     The calm winds, constant RHs and temperatures, and thus extreme atmospheric 

stability in the early morning of November 20
th

, 2002, provided an excellent 

opportunity to extract a little-contaminated profile of motor vehicle emissions on the 

near-road receptor site at Ponca street. It was revealed that ambient concentrations of 

PM2.5 as well as EC and OC were in excellent linear correlations with the traffic flux 

under the windless period of the morning pollutant excursion. The characteristic ratio 

of EC and OC at the peak observation and the bivariate linear regression of ambient 

contributions against two different types of vehicles indicated that light-duty gasoline 

vehicles were the predominant source of PM2.5 emissions in this episode. Composite 

profiles of motor vehicle emissions were obtained by four independent methods, 

which are well accordant for traffic-related species and may be applied to represent 

the primary vehicular emissions in the Mid-Atlantic area. In particular, the profiles of 

SVOC emissions were obtained in the DPO and WMA solutions. Compared with the 

DPO profile, the profile from the WMA-based linear regressions is arguably more 

accurate for species that are irrelevant to motor vehicle emissions. The WMA profile 

was deemed better than the profiles obtained by UNMIX and PMF in this study, as 

profile contaminations were indicated in the latter due to the very limited number of 

samples involved in the receptor modeling. Another important output of this study is 

that a paradigm of tracking changes in vehicle emission factors over time by 
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comparing  values obtained during different windless periods at the same site 

was developed.  
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Chapter 5:  The Study on Seasonal Variations in Emissions 

of Carbonaceous Particulate Matter and Other Air 

Pollutants in Baltimore 

5.1 Background 

     Carbonaceous particulate matter (PM), including black carbon (BC or EC) and 

organic carbon (OC), is an important component of emissions from combustion of 

fossil fuels and biomass and can exert carcinogenic and other adverse health effects 

(Bocskay et al. 2005, Schnelle-Kreis et al. 2009, Valavanidis, Fiotakis and 

Vlachogianni 2010). In the Baltimore area, the major sources of carbonaceous PM 

were motor vehicle exhaust, local industrial sources, and biomass burning (Ogulei et 

al. 2005, Park et al. 2005a, Ogulei et al. 2006). Particle-borne metals have been 

widely employed to assist source contribution estimates (SCE) by receptor modeling, 

e.g., zinc and iron for vehicular emissions (Ondov, Zoller and Gordon 1982a, Huang 

et al. 1994), vanadium and nickel for residual oil combustion (Mroz 1976), selenium 

for coal combustion (Ondov et al. 1979, Ondov et al. 1989), and potassium for 

biomass burning (Silva et al. 1999). Nevertheless, ambiguous source identifications 

have resulted in some circumstances, as elemental tracers are often source non-

specific (Sheffield and Gordon 1986, Watson et al. 2002, Hopke et al. 2005).  

     Organic molecules, owing to their large variety, provide more flexible options as 

source-specific tracers than metals. For example, levoglucosan has been used as a 

unique tracer of biomass burning (Simoneit et al. 1999). Despite their wide use in 
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source diagnostics (Rogge et al. 1991, Rogge et al. 1993a, Rogge et al. 1993b, Rogge 

et al. 1993c, Rogge et al. 1993d, Simoneit et al. 1993, Rogge et al. 1994, Rogge et al. 

1996, Schauer et al. 1996, Rogge et al. 1998, Simoneit et al. 1999, Simoneit 2002), 

quantitative applications of organic tracers in air quality studies have met limited 

success (Jaeckels, Bae and Schauer 2007), partially because organic species are 

usually depleted more rapidly than elemental tracers due to their reactivity with ozone 

and numerous free radicals.  

     In contrast to volatile organic compounds (VOCs) which are emitted and remain 

entirely in the gas phase, semi-volatile organic compounds (SVOCs) are in partition 

equilibrium between the gas and aerosol phases under ambient conditions (Grieshop 

et al. 2009, Pye and Seinfeld 2010). Volatilization and re-deposition of SVOCs with 

diurnal and seasonal changes in ambient temperatures often introduce extra 

uncertainties into applications of these tracers (Krupa et al. 2008), as their absorptive 

processes in fine aerosol show strong temperature dependence (Pankow 1994, Odum 

et al. 1996).  

     Recently, Lambe et al. (Lambe et al. 2009) reported bi-hourly measurements of 

SVOCs in Pittsburgh from February to April 2008 with a Thermal Desorption 

Aerosol GC-MS (TAG), with which ambient concentrations of BC and 28 SVOC 

markers were apportioned to diesel vehicles, gasoline vehicles, and a regional factor 

by both PMF and CMB. In Lambe’s modeling, some important source categories 

such as secondary organic aerosol were excluded because TAG measurements are 

limited to low-molecular weight nonpolar molecules. Moreover, seasonal variations 
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in emissions of organic markers (e.g., PAHs and n-alkanes) from those traffic sources 

were barely considered because of the short term of the sampling campaign. 

     As part of the Baltimore supersite project (Ondov et al. 2006), 3-hourly SVOC 

samples were acquired with a traditional method using filter and polyurenthane foam 

plug pairs at the Ponca street site between July 2002 and February 2003, and > 110 

SVOC species with various polarities were analyzed by GC-MS (Rogge et al. 2011). 

In this chapter, these high-quality highly time-resolved SVOC data were exploited to 

apportion NOx, EC, OC, and other pollutants using multiple linear regression and 

PMF. In particular, we aimed to investigate seasonal and diurnal variations in 

emission characteristics of major sources such as motor vehicles, coal burning, 

biomass burning, and space heating. 

5.2 Data Description 

5.2.1 Site and Meteorology 

     Baltimore has a typical Mid-Atlantic climate with four distinguished seasons. High 

humidity is often observed in Baltimore because of its coastal location. Air quality at 

the Ponca street supersite (refer to Chapter 4 for site description) was subject to the 

impacts from motor vehicle exhaust and nearby industries perennially (Park et al. 

2005a, Park et al. 2006a), as the receptor site was in close proximity to two main 

roads (I-95 and I-895) in the east and the Dundalk industrial area in the south which 

contains > 40 facilities. Besides, a large local utility power plant complex, the 

Brandon Shores and Wagner Station, was only 12 km south of the receptor site. In 

summer, secondary sulfate transported from several distant electricity and industrial 
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facilities in the Ohio Valley region is another important category of pollution (Gordon 

1988, Suarez and Ondov 2002). In addition, other seasonal emission sources, such as 

urban residential heating in cold season and vegetation release in spring and summer, 

affected air quality at this site. 

     The measurements of SVOCs were carried out at the Ponca street site in four 

different months from 2002 to 2003, for periods of 7, 7, 11, and 3 days for July, 

August, November, and February, respectively (July 2002: 17 to 22, and 24 to 25; 

August 2002: 4 to 12; November 2002: 7 to 9, 14 to 16, 19 to 22, and 24 to 26; and 

February 2003: 21 to 24). Ambient temperatures and relative humidity (RH) during 

these sampling periods are listed in Table 5.1. As shown in Table 5.1, ambient 

temperatures spanned over a broad range, i.e., the highest of 38.4
 
°C in August 2002 

and the lowest of -10.7 °C in February in 2003, although the average RHs were 

comparable in these different months.  

Table 5.1 Seasonal variations of ambient temperature and relative humidity (RH) at 

the Baltimore Ponca street supersite during the SVOC measuring periods. 

 

Temperature (°C) 
 

RH (%) 

lowest highest average σ 
4
 

 
lowest highest average σ 

4
 

Summer 
1
 15.2 38.4 27.1 3.5 

 
16 98.4 58.1 12.6 

November 
2
 -2.6 22.4 8.5 3.7 

 
27.7 100.7 67.8 14.8 

February 
3
 -10.7 10.4 0.1 3.4 

 
26.4 102 69.2 17.9 

1
 July & August 2002. 

2
 November 2002. 

3
 February 2003. 

4
 Daily variations (standard 

deviation of daily average temperature or RH). 

     As shown in Figure 5.1, winds were mostly from southerly and westerly directions 

in July. The prevailing winds were either from northwesterly or from southerly in 
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August and November. And in February, winds were either mild (wind speed < 2 m s
-

1
) from northeasterly or very strong (wind speed > 5 m s

-1
) from westerly directions 

most of the time. Note that these wind rose plots in Figure 5.1 only represent the 

statistics during the SVOC sampling campaigns. 
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Figure 5.1 Wind rose plots during the periods of SVOC measurements in 2002 - 

2003. 

5.2.2 Ambient Pollutants 

      The quantitation of 3-hour SVOC samples was described by Rogge et al. (Rogge 

et al. 2011). In particular, PAHs and n-alkanes were the most abundant SVOCs in 

those samples. In this study, 21 PAHs, and 15 n-alkanes (C19-C29, C31, C33, C34, 

and C36) were grouped, as follows. PAHs were sub-divided into four categories by 

molecular weight and oxidation states: low molecular weight PAHs (LMWPAHs), 
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high molecular weight PAHs (HMWPAHs), low molecular weight oxy-PAHs 

(LMWOPAHs), and high molecular weight oxy-PAHs (HMWOPAHs), as shown in 

Table 5.2. The n-alkanes were divided into three groups: C19-C28 as low molecular 

weight (LMW) n-alkanes; C29, C31, and C33 as high molecular weight (HMW) odd-

carbon n-alkanes; and C34 plus C36, as HMW even-carbon n-alkanes. Past studies 

have revealed that most of PAHs in metropolitan areas arise from motor vehicle 

exhaust (Khalili et al. 1995, Harrison, Smith and Luhana 1996, Yunker et al. 2002). 

LMW n-alkanes are well-known markers of fossil fuel combustion. The distribution 

patterns of these analogues have been used to identify fuel types (Kotianova et al. 

2008, Zhang et al. 2008). For example, C20 and C21 are most abundant in gasoline 

combustion exhaust while high portions of C22, C23, and C25 indicate coal 

combustion exhaust (Zhang et al. 2008). HMW even-carbon n-alkanes are known 

markers of tire-wear dust (Rogge et al. 1993c). In contrast, HMW odd-carbon n-

alkanes are often associated with atmospheric vegetative detritus and biomass burning 

(Rogge et al. 1993d).  

Table 5.2 Categories of PAHs by molecular weight and oxidation state. 

Category Criterion Species 

Low molecular 

weight PAHs 

(LMWPAHs) 

MW < 210 

Phenanthrene, Anthracene, 4H-Cyclopenta-

[def]-phenanthrene, Fluoranthene, and 

Pyrene 

High molecular 

weight PAHs 

(HMWPAHs) 

MW > 220 

Benz[a]anthracene, Chrysene/Triphenylene, 

Benz[e]acephenanthrylene, 

Benzo[k]fluoranthene, Benzo[j]fluoranthene, 

Benzo[e]pyrene, Benzo[a]pyrene, Perylene, 

Indeno[1,2,3-cd]pyrene, Benzo[ghi]perylene, 

Dibenz[a,h]anthracene, and Coronene 
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Low molecular 

weight oxy-PAHs 

(LMWOPAHs) 

MW < 210 
9H-Fluorene-9-one, and 9,10-

Anthracenedione 

High molecular 

weight oxy-PAHs 

(HMWOPAHs) 

MW > 220 
7H-Benz[de]anthracene-7-one, and 

Benz[a]anthracene-7,12-dione 

 

     Twelve alkylcyclohexanes (ACHs) and eight pentacyclic triterpanes (PCTTs) were 

grouped, respectively, as two types of traffic tracers. The former is ubiquitously 

found in refinery petroleum products (Hostettler and Kvenvolden 2002) and the latter 

is exclusively present in lubricating oil (Rogge et al. 1993b). Benzothiazole is a 

pyrolysis product of vulcanization accelerator and thus has been used as a tracer of 

tire-wear dust (Kim et al. 1990). Nevertheless, our previous study (refer to Chapter 4) 

found that this road dust tracer was poorly correlated with primary vehicular traffic. 

     Other SVOCs that are less relevant to motor vehicle emissions were grouped into 

iso- and antiso-alkanes, n-alkanoic acids, n-alkenoic acids, aliphatic dicarboxylic 

acids (ADCAs), aromatic polycarboxylic acids (APCAs), 2-alkanones, resin acids, 

sugars, steroids, N-hetero-PAHs, S-hetero-PAH, secondary biogenic oxidation 

products (2
nd

 biogenic), and phenolic wood markers, accordingly. Iso-alkanes are 

enriched in the waxes of tobacco plants and detectable in cigarette smoke (Rogge et al. 

1994). Steroids, n-alkanoic acids (i.e., palmitic acid, and stearic acid), and n-alkenoic 

acids (i.e., oleic acid) have been used as tracers of cooking (Rogge et al. 1991) or 

biomass burning (Oros and Simoneit 1999, Simoneit et al. 1999). Resin acids are 

often found in conifer wood (Simoneit et al. 1993), and phenolic compounds are 

markers of hardwood combustion (Rogge et al. 1998).  
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     Hourly data of TEOM PM2.5 mass, EC, OC, sulfate, nitrate, NOx, CO, and ozone 

were retrieved from the Baltimore supersite (http://www2.chem.umd.edu/supersite/) 

database, and combined into 3-hour intervals. In addition, 30-minute data of 11 SEAS 

metals (i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) were available in the 

Baltimore supersite database for part of the study periods in July and November 2002 

and treated likewise. 

5.3 Methods 

5.3.1 Linear Regression 

     As discussed in Chapter 2, NOx is a criteria pollutant gas that can be generated 

from multiple types of combustion sources, e.g., motor vehicle exhaust, coal burning, 

residual oil combustion, and biomass burning. In this study, linear regressions 

between NOx and organic molecular tracers of various combustion sources were 

performed, to apportion the contributions from these sources. In particular, seasonal 

and diurnal variations in those source emissions were studied by comparing the linear 

regressions between the summer and the November measuring periods and between 

morning and afternoon measuring periods. Note that the linear regressions only used 

the available data in July, August, and November 2002, as NOx concentrations were 

not measured in 2003. The linear regression results as well as the corresponding 

statistics were obtained using a least-square linear regression function available in the 

MATLAB software (MathWorks, Inc., version 7.8). 

http://www2.chem.umd.edu/supersite/
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5.3.2 PMF 

     PMF analyses were carried out for the four measuring periods individually. 

Totally 224 valid 3-hour observations were used as listed in Table 5.3. The EPA PMF 

v3.0 program (U.S.EPA 2008) was used and up to 30 individual or grouped species 

(sulfate and nitrate measurements in November and February, and CO and NOx in 

February were unavailable) were selected for the modeling, including PM2.5 mass, EC, 

OC, sulfate, nitrate, 117 SVOCs in 23 categories, and two criteria gases (i.e., NOx and 

CO). Specifically, EC, OC, NOx, and organic tracers of motor vehicle exhaust (i.e., 

ACHs, PCTTs, LMWPAHs, HMWPAHs, LMWOPAHs, HMWOPAHs, and LMW 

n-alkanes) were set as “strong” species, and all other species were set as “weak” 

species in the modeling. All concentrations of HMW even-carbon n-alkanes were 

below the detection limits in July 2002, and were therefore excluded from the 

corresponding modeling. 
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Table 5.3 Statistics of 3-hourly SVOC observations by time of the day during 

different months. 

Time of day July August November February 

1:30 8 7 13 3 

4:30 6 7 13 3 

7:30 6 7 13 3 

10:30 6 6 13 3 

13:30 6 6 11 3 

16:30 6 6 11 3 

19:30 7 7 11 2 

22:30 7 7 11 3 

total 52 53 96 23 

 

     Different numbers of factors (3 to 8) were tested until an optimal fit in the robust 

mode was reached, which sufficiently explained the observed mass and yielded a 

result without any scaled residual (i.e., eij/sij) greater than 4 for any species. In 

addition, different values (-0.2 to 0.2) of the rotational parameter, FPEAK, were used 

(Paatero et al. 2005) and the optimality of the solution was confirmed by the degree to 

which Q(E) was insensitive to changes in the FPEAK parameter. Each PMF factor 

profile was normalized to the corresponding PM2.5 concentration apportioned by PMF 

to generate the abundance profile with respect to PM2.5. 
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5.4 Results and Discussion 

5.4.1 Seasonal and Diurnal Variations of Ambient Pollutants 

     The seasonal averages of major PM constituents (i.e., EC, OC, sulfate, and nitrate) 

as well as two most abundant SVOCs, PAHs and n-alkanes, are listed in Table 5.4. In 

the winter, ambient concentrations of EC, OC, and n-alkanes were higher than those 

in the summer. In contrast, the average levels of PAHs showed insignificant seasonal 

variations. Close inspection revealed that ambient concentrations of HMWPAHs were 

generally greater in the winter than those the summer, in contrast to an opposite trend 

for LMWPAHs except anthracene. The former agreed with the greater OC 

concentrations observed in the winter, which was partially due to the enhanced 

partitioning of SVOCs into the aerosol particle phase at low temperature. The latter 

indicated an extra source with high abundances of LMWPAHs in the summer, which 

probably represented enhanced vegetation release (Simonich and Hites 1994, Wilcke 

et al. 2004).  

Table 5.4 Seasonal variations of selected PM2.5 constituents (average ± σ). 

 
PM2.5 

(µg m
-3

) 

EC 

(µg m
-3

) 

OC 

(µg m
-3

) 

Sulfate 

(µg m
-3

) 

Nitrate
 

(µg m
-3

) 

PAHs 

(µg m
-3

) 

HMW-

PAHs 

(ng m
-3

) 

n-

alkanes 

(ng m
-3

) 

Summer
1
 24.6±14.8 0.51±0.55 3.87±1.57 5.39±6.16 0.83±0.76 46.7±29.3 0.90±1.26 80.5±34.8 

November
2
 22.3±9.8  1.44±1.13 6.11±3.47 1.60±0.61 3.76±2.34 40.5±17.2 5.3±3.7 109±59 

February
3
 22.5±12.3 1.35±1.52 6.74±5.39 n.a. n.a. 44.9±29.3 6.1±5.8 150±127 

Average
4
  23.4±13.7 0.98±1.05 5.10±3.23 3.97±5.23 1.90±2.09 44.0±25.2 3.2±3.8 98.6±63.0 

1
 July & August 2002. 

2
 November 2002. 

3
 February 2003. 

4
 3-hourly average for all study 

periods. 
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     The correlation coefficients of NOx with other ambient pollutants are listed in 

Table 5.5. In general, EC and OC showed fair correlations (r
2
 ≥ 0.6) with NOx, except 

in the summer. Sulfate and nitrate showed poor correlations (r
2
 < 0.5) with NOx in 

any period. 8 of the 12 HMWPAHs showed excellent correlations (r
2
 ≥ 0.8) with NOx, 

except Benzo[j]fluoranthene (r
2
 = 0.744), benzo[a]pyrene (r

2
 = 0.792), perylene (r

2
 = 

0.764), and dibenz[a,h]anthracene (r
2
 = 0.637). The two HMWOPAHs showed 

excellent correlations with NOx (r
2
 = 0.890 and 0.840 for 7-H-benz[de]anthracen-7-

one and benz[a]anthracene-7,12-dione, respectively) as well. In contrast, all the 

LMWPAHs and LMWOPAHs were poorly correlated (r
2

 < 0.5) with NOx, except 

anthracene (r
2

 = 0.530). Furthermore, these correlations were investigated season by 

season and all species except fluoranthene, which exhibited at least a moderate 

correlation (r
2
 ≥ 0.6) with NOx in the winter, in contrast to their poor correlations (r

2
 < 

0.4) in the summer. These differences indicated that either there was an additional 

non-combustion source of SVOCs or enhanced oxidation chemistry degraded their 

correlations in the summer.  

     The correlations between NOx and traffic-related species (i.e., EC, OC, n-alkanes, 

PAHs, and ACHs) in the mornings were in general better than those in the afternoons 

(e.g., r
2
 for n-alkanes were 0.749 and 0.268 for the mornings and afternoons, 

respectively), suggesting a stronger influence from motor vehicle emissions in the 

former. Besides, NOx showed very poor correlations (r
2

 < 0.2) with all SEAS metals, 

even including Ni and Zn. Hence the use of those elemental tracers for source 

apportionment of NOx may be infeasible. 
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Table 5.5 Seasonal and diurnal variations in the correlation (r
2
) between NOx and 

various organic molecular tracers or other ambient pollutants. 

Species All
1
 Summer

2
 Winter

3
 Morning

4
 Afternoo

5
 

Criteria gases:      

Ozone 0.303 0.142 0.242 0.308 0.361 

CO 0.714 0.085 0.704 0.830 0.747 

PM2.5 constituents:      

PM2.5 mass 0.071 0.003 0.704
6
 0.199 0.005 

Sulfate 0.065 0.020 0.090 0.039 0.117 

Nitrate 0.427 0.031 0.141 0.426 0.434 

EC 0.716 0.378 0.729 0.743 0.661 

OC 0.641 0.131 0.714 0.716 0.514 

LMW PAHs:      

Phenanthracence 0.025 0.282 0.727 0.046 0.001 

Anthracene 0.530 0.263 0.791 0.473 0.636 

4-H-

Cyclopenta[def]phenanthrene 
0.031 0.255 0.633 0.045 0.011 

Fluoranthene 0.048 0.148 0.394 0.025 0.084 

Pyrene 0.211 0.273 0.592 0.270 0.118 

HMW PAHs:      

Benz[a]anthracene 0.871 0.277 0.840 0.883 0.849 

Chrysene and Triphenylene 0.851 0.360 0.822 0.876 0.811 

Benz[e]acephenanthrylene 0.846 0.254 0.803 0.827 0.872 

Benzo[k]fluoranthene 0.817 0.206 0.780 0.791 0.856 

Benzo[j]fluoranthene 0.744 0.135 0.705 0.698 0.818 

Benzo[e]pyrene 0.840 0.267 0.811 0.833 0.849 

Benzo[a]pyrene 0.792 0.147 0.783 0.744 0.872 

Perylene 0.764 0.143 0.793 0.710 0.857 
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Indeno[1,2,3-cd]pyrene 0.811 0.186 0.808 0.779 0.860 

Benzo[ghi]perylene 0.843 0.236 0.826 0.833 0.861 

Dibenz[a,h]anthracene 0.637 0.165 0.479 0.690 0.588 

Coronene 0.811 0.229 0.744 0.818 0.821 

LMW Oxy-PAHs:      

9-H-Fluoren-9-one 0.337 0.351 0.698 0.364 0.268 

9,10-Anthracencedione 0.033 0.107 0.709 0.011 0.084 

HMW Oxy-PAHs:      

7-H-Benz[de]anthracene-7-

one 
0.890 0.507 0.843 0.910 0.877 

Benz[a]anthracence-7,12-

dione 
0.840 0.527 0.743 0.868 0.799 

n-Alkanes 0.545 0.157 0.755 0.749 0.268 

Iso- and anteiso-alkanes 0.682 0.194 0.591 0.654 0.754 

n-Alkanoic acids 0.000 0.033 0.415 0.000 0.001 

n-Alkenoic acids 0.462 0.008 0.345 0.378 0.702 

n-Aliphatic dicarboxylic 

acids  
0.171 0.012 0.099 0.120 0.269 

Aromatic polycarboxylic 

acids  
0.052 0.095 0.111 0.054 0.052 

2-Alkanones 0.104 0.046 0.047 0.116 0.113 

Alkylcyclohexanes  0.664 0.302 0.713 0.763 0.494 

Resin acids 0.460 0.096 0.308 0.586 0.397 

Sugars (Levoglucosan) 0.332 0.010 0.238 0.304 0.393 

Steriods 0.230 0.000 0.285 0.193 0.323 

Thiazoles 0.123 0.091 0.277 0.112 0.157 

Pentacyclic triterpanes  0.657 0.449 0.561 0.686 0.748 

N-Hetero PAH 0.044 0.016 0.238 0.030 0.059 

S-Hetero PAH 0.092 0.305 0.640 0.149 0.017 
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Secondary biogenic oxy-

products  
0.001 0.048 0.005 0.000 0.003 

Phenolic wood markers 0.398 0.146 0.225 0.323 0.596 

1
 For the measuring periods in July, August, and November 2002.  

2
 July & August 2002.  

3
 November 2002.   

4
 Including all the a.m. measuring periods in July, August, and November 2002.  

5
 Including all the p.m. measuring periods in July, August, and November 2002. 

6
 Numbers in boldfaced type indicate at least a fair correlation (r

2
 > 0.6). 

5.4.2 MLR Results 

     In this study, LMWPAHs, HMWPAHs, LMW n-alkanes, ACHs, PCTTs, n-

alkanoic acids, and sugars, which are tracers for various fossil fuel combustions or 

biomass burning (i.e., ACHs and PCTTs are unique tracers of motor vehicle 

emissions; levoglucosan is a unique tracer of biomass burning; and other tracers are 

source non-specific), were selected as the candidates for use as independent variables 

for the MLR analysis. Using all the datasets in 2002, a best-fit relationship (r
2
 = 0.905, 

and p < 0.001) between NOx and combination of tracers is given as follows: 

 (5.1) 

where concentrations of NOx are in ppb, and SVOCs in ng m
-3

. The small residual 

compared with the average NOx concentration (i.e., 89.9 ppb) and the good recovery 

of predicted NOx concentrations indicated these four tracers could well represent 

major sources of combustions in the study. 

     Similar, the MLR of EC against those four tracers was obtained as: 
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 (5.2) 

where concentrations of EC are in µg m
-3

, and SVOCs in ng m
-3

. The regression 

equation had a correlation coefficient of 0.757 (p < 0.001). 

     Accordingly, motor vehicle exhaust (i.e., ACHs and PCTTs as its tracers) 

contributed 53 % of EC and 39 % of NOx during the measuring periods. In contrast, 

biomass burning (levoglucosan as its tracer) contributed 2.5 % of NOx and negligible 

EC (< 0.1%).  

     Note that attempts to include LMWPAHs or n-alkanes into the MLR analyses 

turned void, as either large unexplained residuals or poor fits (i.e., unsatisfactory r
2
 or 

negative slopes) were obtained. This suggested that substantial amounts of these 

species were relevant to non-combustion processes, e.g., evaporative emissions from 

motor vehicles or vegetation release. Also, as we discussed, there is a stronger 

temperature effect here that would need to be considered. 

5.4.3 PMF Results 

     In general, a five- or six- factor solution was obtained for each modeling period. 

The common factors for all modeling periods included traffic, coal burning, sulfate 

(secondary aerosol), and biomass burning. A vegetation factor was resolved only in 

July and August and a heating factor was resolved only in November and February. 

In addition, a road dust factor was resolved only in August. The attributions of these 

factors are described below. 

5.4.3.1 Traffic Factor 
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     The traffic factor was recognized by its largest abundances of traffic-related 

tracers (Table 5.6), e.g., ACHs and PCTTs, among all factors. Besides, as listed in 

Table 5.7, this factor was further identified as maximum factor contributions of the 

day occurred within the traffic rush hours (i.e., 0730 or 1630 LT) for 18 of the 29 

days with complete daily records, and only slightly off rush hours in the other 11 

days.  

Table 5.6 Abundance profiles of motor vehicle emissions obtained by PMF 
1
 and 

WMA 
2
 analyses (unit: µg per µg of PM2.5 for CO, NOx, sulfate, nitrate, EC, and OC; 

and ng per µg of PM2.5 for SVOCs). 

Species Jul Aug Nov Feb 
WMA 

average 
 
   σ 

CO 59.44 28.48 n.a. n.a. 46.44 ± 16.07 

NOx 27.51 33.04 26.33 n.a. 19.59 ± 4.81 

Sulfate  0.000 0.000 n.a. n.a. 0.023 ± 0.009 

Nitrate  0.133 0.122 n.a. n.a. 0.016 ± 0.004 

EC 0.227 0.362 0.166 0.134 0.125 ± 0.033 

OC 0.640 0.516 0.471 0.365 0.408 ± 0.114 

n-Alkanes 17.70 5.436 5.111 10.85 6.072 ± 1.068 

LMW n-alkanes 16.70 5.146 4.967 10.511 5.881 ± 0.870 

HMW odd-n-alkanes 1.008 0.280 0.144 0.267 0.127 ± 0.096 

HMW even-n-alkanes n.a. 0.009 0.000 0.075 0.021 ± 0.307 

PAHs 14.71 3.878 1.738 2.578 1.457 ± 0.357 

LMWPAHs 14.45 3.592 1.382 2.256 1.212 ± 0.291 

HMWPAHs 0.258 0.286 0.355 0.323 0.245 ± 0.086 

Oxy-PAHs 1.685 0.732 0.248 0.370 0.239 ± 0.075 

LMWOPAHs 1.644 0.697 0.213 0.335 0.197 ± 0.072 

HMWOPAHs 0.042 0.035 0.035 0.035 0.042 ± 0.017 

Alkylcyclohexanes 1.862 0.531 0.796 1.418 0.815 ± 0.147 

Pentacyclic triterpanes 0.370 0.266 0.397 0.660 0.541 ± 0.102 

Iso- and antiso-alkanes 0.000 0.088 0.000 0.000 0.042 ± 0.021 

n-Alkanoic acids 0.000 0.000 0.766 5.818 2.843 ± 0.647 
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n-Alkenoic acids 0.091 0.036 0.072 0.375 0.000 ± 0.086 

Aliphatic dicarboxylic 

acids 
0.015 0.010 0.028 0.051 0.004 ± 0.004 

Aromatic 

polycarboxylic acids 
0.186 0.132 0.007 0.046 0.009 ± 0.003 

2-Alkanones 1.277 0.952 0.000 0.049 0.035 ± 0.019 

Resin acids 0.132 0.003 0.000 0.068 0.103 ± 0.033 

Sugars 0.061 0.024 0.161 1.261 1.059 ± 1.057 

Steroids 0.342 0.000 0.045 0.097 0.053 ± 0.109 

Thiazoles 1.150 1.661 0.000 0.584 0.111 ± 0.154 

N-Hetero-PAH 0.011 0.017 0.001 0.001 0.001 ± 0.000 

S-Hetero-PAH 0.986 0.201 0.107 0.170 0.124 ± 0.030 

Secondary biogenic 

oxidation products 
1.776 0.928 0.063 0.083 0.000 ± 0.093 

Phenolic wood markers 0.048 0.060 0.068 0.070 0.005 ± 0.034 

1 
Obtained with PMF analyses using the 3-hour data in four different months from 2002 to 

2003. 

2
 Obtained with windless model analysis based linear regression, using the hourly data on 

November 20
th
, 2002, as presented in Chapter 4. 

Table 5.7 Statistics of the time of the day for the maximum contribution from the 

traffic factor. 

Time of the day  Date 

0430 LT 7/22, 8/9, 8/10, 11/8, 11/9,  

0730 LT 7/17, 7/18, 7/20, 7/24, 8/5, 8/8, 8/11, 8/12, 

11/7, 11/14, 11/19, 11/20, 11/21, 11/22, 

11/25, 2/23, 2/24 

1030 LT 7/19, 7/21, 8/7, 11/24, 2/21 

1630 LT 11/26 

1930 LT 11/15 

 

     As shown in Table 5.6, the four PMF-resolved profiles of the traffic factor in the 

different months are compared with that obtained in the previous study of a traffic 
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episode in November 2002 by the windless model analysis based linear regression 

(refer to Chapter 4), which was denoted as the WMA profile. The OC/TC ratios were 

0.74, 0.59, 0.74, and 0.73 for July, August, November, and February, respectively, 

compared with a ratio of 0.77 in the WMA profile of the morning of November 20
th

. 

The relative emissions of CO and NOx in the months for which criteria gas data were 

available (i.e., July, August, and November) were also in rough agreement with the 

WMA profile.  

     In general, the November profile is the most consistent with the WMA profile. The 

February profile showed higher abundances (i.e., about twice) for all SVOC species 

than those in the WMA profile, which was attributed to enhanced partitioning into 

aerosol particle phase at low temperature as discussed above. The summer profiles, 

especially the July profile, showed higher OC contents than the WMA profile. In 

particular, the abundances of those small SVOCs with low boiling points (e.g., 

LMWPAHs, LMWOPAHs, LMW n-alkanes, and alkycyclohexanes) in the July 

profile were much greater than the winter profiles. In contrast, the abundances of 

SVOCs with high boiling points (e.g., HMWPAHs, HMWOPAHs, and pentacyclic 

triterpanes) showed little discrepancy among all these profiles. Considering the high 

summer temperatures, the higher contents of OC and small SVOC molecules in the 

summer profiles could be partially resulted from enhanced volatilization of organic 

species from gasoline and diesel fuels. 

     This traffic factor was found to be a primary source of EC at the receptor site 

during any study period. As shown in Figure 5.2, it was nearly the sole EC source 

(e.g., 98 % in July) in the summer, and contributed the majority of EC (i.e., 54 ~ 73 
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% of EC) in the winter even though heating added a substantial amount of 

contributions to ambient EC. Moreover, the relative contributions from motor vehicle 

emissions during the afternoon rush hours were significantly lower than those during 

the mornings (Figure 5.2). In particular, the percentage contributions to OC and low 

molecular weight SVOCs (i.e., LMW n-alkanes, LMWPAHs, and LMWOPAHs) 

from this factor were less significant in the summer afternoons than in the winter 

afternoons (Figure 5.2b). This suggested substantial contributions from non-traffic 

sources (e.g., secondary organic aerosol) in the summer afternoons compared with the 

winter afternoons, considering that the abundances of these species in the summer 

profiles of motor vehicle emissions were higher than those in the winter profiles 

(Table 5.6).  
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Figure 5.2 The percentage contributions (%) of the traffic factor to ambient 

concentrations during traffic rush hours: a) in the morning; and b) in the afternoon. 

5.4.3.2 Coal Burning 

     The ratio of indeno[1,2,3-cd]pyrene and EC has been used to identify coal burning 

(Simoneit 2002). In this study, an excellent linear relationship (r
2
 = 0.980, p < 0.001) 

was revealed between HMWPAHs and indeno[1,2,3-cd]pyrene (Figure 5.3), and thus 

we used the ratio of HMWPAHs and EC as a surrogate. The coal burning factor was 
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recognized by its largest HMWPAHs/EC ratio among all factors. Note that the 

HMWPAHs/EC ratio may be unreliable in the summer when EC concentrations 

appeared to be underestimated by PMF (i.e., only 59 % EC mass reconstructed). 

Nevertheless, the ratios of two most abundant SVOCs, i.e., LMW n-alkanes and 

LMWPAHs, were nearly identical in those profiles of different months, as shown in 

Figure 5.4, inferring that these are the same source by assuming the temperature 

effects on partitioning were similar for these two types of species with low boiling 

points. Overall, this factor contributed 9.0 ~ 13.2 % of the total PM2.5 in the summer, 

and 22.0 ~ 24.5 % in the winter. 
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Figure 5.3 Correlation between measured HMWPAHs and Indeno[1,2,3-cd]pyrene. 
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Figure 5.4 PMF-derived profiles of the coal burning factor during different months 

(SVOC abundances were multiplied by a factor of 1,000). 

     Because mobile emissions and coal combustion were the two major concerns of 

air pollution in Baltimore (Ogulei et al. 2005, Ondov et al. 2006), we used LMW n-

alkane tracers to compare seasonal variations of these two factors (Zhang et al. 2008). 

As shown in Table 5.8, enhancements in the corresponding tracers of both factors 

were observed in the cold season. Nevertheless, the ratios of the tracers for these two 

factors were fairly constant in the different months, implying insignificant seasonal 

changes in the relative emissions from these factors with reference to each other. 

Table 5.8 Seasonal variations of selected low molecular weight n-alkane tracers. 

 

Vehicle exhaust tracers 

(ng m
-3

) 

Coal combustion tracers 

(ng m
-3

) 
Ratio * 

n-

eicosane 

n-

heneicosane 

n-

docosane 
n-tricosane 

n-

pentacosane 

Average 19.649 13.406 10.410 7.239 3.766 1.544 
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Summer 
1
 17.263 10.921 9.475 6.288 2.487 1.544 

November 
2
 19.864 14.335 10.113 7.408 5.905 1.522 

February 
3
 31.401 22.298 16.467 11.424 5.368 1.604 

1
 July & August 2002. 

2
 November 2002. 

3
 February 2003. * Ratio of total vehicle exhaust 

tracers and total coal combustion tracers. 

5.4.3.3 Biomass Burning and Vegetation Release 

Local Biomass Burning in the Winter 

     Local biomass burning in the Baltimore area includes defoliation combustion and 

wood burning which mostly occurs in the fall and winter. Simoneit et al. (Simoneit 

2002) found that biomass burning had the highest ratio of levoglucosan/EC among all 

types of combustions. As shown in Figure 5.5, the highest presence of levoglucosan 

observed in the winter, as well as phenolic wood markers, resin acids, and iso-

alkanes, attributed this factor to biomass burning. It is noteworthy that a substantial 

contribution from this factor occurred on November 25
th

 2002, a windless day. 

Levoglucosan concentrations were extremely high (i.e., > 1000-fold of its background 

level) in that early morning, and 67.0 % of phenolic wood marker, 74.9 % of resin 

acids, 74.9 % of sugars, and 15.0 % of NOx of the 11-day measurements in November 

were emitted on that day. 
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Figure 5.5 PMF-derived profiles of the biomass combustion factor during different 

months (SVOC abundances were multiplied by a factor of 1,000). 

Transported Distant Biomass Burning in the Summer 

     In North America, the 2002 wildfire season (June to September) was one of the 

worst in the past 10 year with the acres burned nearly twice the 10-year average, 

according to the National Interagency Fire Center 

(http://www.ncdc.noaa.gov/oa/climate/research/fire02.html). Most of the large fires 

of this year occurred in Arizona, Colorado, Mexico, and Canada but air quality in 

other regions of the US was impacted (DeBell 2004). For example, during early July 

2002, dramatic increases (i.e., > 30-fold) in ambient PM and PAH levels were 

observed in Baltimore due to the forest fire in Quebec, Canada (Sapkota et al. 2005). 

The SVOC sampling in July at the Baltimore supersite was carried out one week after 

the smoke from this fire event was detected in Baltimore and a substantial 

contribution (i.e., 13.8 ~ 27.9 % of PM2.5 mass, 6.1 ~ 21.3 % of EC, 27.8 ~ 28.7 % of 

http://www.ncdc.noaa.gov/oa/climate/research/fire02.html
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OC, and 21.5 ~ 28.3 % of PAHs) from biomass burning was still resolved. In contrast 

to the biomass burning profile in the winter, this factor in the summer showed little 

presence of levoglucosan. Instead, large abundances of alkanoic acids as well as 

oxidation products such as 2-alkanones and secondary biogenic oxidation products 

were observed, as shown in Figure 5.5. These differences could be attributed to 

photo-degradation of levoglucosan during the long-distance plume transport 

(Hennigan et al. 2011).    

Vegetation Release 

     The vegetation release factor was identified by its large abundance of secondary 

biogenic oxidation products and high fractions of low molecular weight SVOCs (i.e., 

LMW n-alkanes, and LMWPAHs) among all factors, as shown in Figure 5.6. 

Besides, this factor had low abundances of EC and NOx, indicating its non-

combustion nature. Vegetation release was an important source of OC and PM2.5 in 

the summer (i.e., 15.9 ~ 21.2 % of OC and 15.3 ~ 20.0 % of PM2.5 mass), and it was 

not resolved in the winter.  
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Figure 5.6 PMF-derived profiles of the vegetation release factor in the summer of 

2002 (SVOC abundances were multiplied by a factor of 1,000). 

5.4.3.4 Sulfate Factor (Secondary Aerosol) 

     In the summer, the sulfate factor accounted for 48.6 ± 5.1% of sulfate, 31.9 ± 4.2 

% of OC, and 44.7 ± 0.5 % of PM2.5 mass on average. In addition, it contributed a 

substantial amount of PAHs (6.3 to 29.2 %) as well as other SVOC species. It was 

difficult to confidently identify the sulfate factor in the winter due to the lack of 

sulfate data. However, this secondary aerosol factor was still recognized by its 

presumably high OC/EC ratio, considerable contribution to PM2.5 (i.e., 6.8 ~ 27.5 % 

of total PM2.5 mass), and large abundances of oxidized organic species due to 

chemical aging (Fuzzi et al. 2006). Figure 5.7 shows the profiles of this secondary 

aerosol factor. It is noteworthy that the ratios of LMW n-alkanes and LMWPAHs 

remained fairly constant (i.e., LMW-n-alkanes/LMWPAHs = 2.17 ~ 2.73) in August, 
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November, and February, although SVOC abundances were generally several fold 

higher than those in the winter.  
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Figure 5.7 PMF-derived profiles of the secondary aerosol factor during different 

months (SVOC abundance values were multiplied by a factor of 1,000). 

5.4.3.5 Heating 

     Heating was an important source of EC, OC and PAHs in the cold season. In 

November, the heating factor was identified by its large abundances of EC, CO, NOx, 

n-alkanes, and PAHs. In particular, the low presence of resin acids and sugars made 

this factor distinguished from biomass burning. This factor exhibited a unique diurnal 

pattern with its maximum contribution of the day in the period from midnight to early 

morning. NOx and CO data were unavailable in February 2003 but this factor was still 

recognized by its great similarity to that in November (Figure 5.8). Moreover, this 

factor showed enhanced contributions in February than November (i.e., 33.3 % of the 
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total EC in February, compared to 18.6 % in November), consistent with the greater 

demand for heating in the former.  
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Figure 5.8 PMF-derived profiles of the heating factor in the winter of 2002-2003 

(SVOC abundances were multiplied by a factor of 1,000). 

5.4.3.6 Road Dust 

     A road dust factor was identified by its large abundances of HMW even-carbon n-

alkanes and benzothiazole in August 2002. This was a minor factor overall which 

only represented 5.1 % of the total PM2.5 and small fractions (< 10 %) of all species 

except HMW even-carbon n-alkanes during the study period. Most of the contribution 

(> 80 %) from this factor was made in the evening of August 8
th

. A northwesterly 

gale (wind speed > 4 m s
-1

) lasted several hours in that afternoon and calmed down 

during the evening, and this episodic contribution was probably related to dust 

settlement. Indeed, particle size distributions measured on August 8
th

, 2002, at the 

Ponca street site (Appendix E) revealed a sudden increase of particles in an 
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accumulation mode (i.e., median particle size ~ 250 nm) during the evening (i.e., 

1930 ~ 2130 LT), in agreement with the attribution of this road dust factor. 
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Figure 5.9 PMF-derived profile of the road dust factor in August 2002 (SVOC 

abundances were multiplied by a factor of 1,000). 

5.4.3.7 Summary of PMF Apportionments  

     Figure 5.10 shows the apportioned PM2.5 mass, NOx, EC, and OC by PMF during 

different measuring periods. The contributions from both motor vehicle emissions 

and coal burning in the winter were greater than those in the summer. In contrast, the 

contributions from the sulfate factor declined from the summer to the winter. Biomass 

burning showed its highest contribution to PM2.5 but lowest contribution to NOx in 

July, 2002, because it in fact likely originated from the distant Canadian boreal 

wildfires. Two other seasonal factors, vegetation release in the summer and heating in 

winter, exhibited reasonable contributions in the corresponding season: the former 

contributed remarkable amounts of OC but very little NOx and EC, and the latter 
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made a larger contribution to EC in February than in November. Road dust, as a 

minor source to PM2.5 in August, had very little contributions to both EC and OC. 
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Figure 5.10 PMF apportioned mass contributions of PM2.5, NOx, EC, and OC. 

     According to the PMF apportionment, motor vehicle emissions contributed 33 ~ 

42 % of NOx in the summer and about 37 % of NOx in the winter, which were in good 

agreement with the MLR prediction (i.e., 39 % of NOx from motor vehicles). The 

PMF-predicted EC contributions from vehicular emissions were 54 ~ 93 % and 35 ~ 

50 % in the summer and winter, respectively, which were consistent with its average 

contribution to EC (i.e., 55 %) determined by MLR. 

     SVOC tracers were apportioned, as shown in Figure 5.11. Both the traffic factor 

and the coal burning factor showed much larger contributions to HMWPAHs and 

HMWOPAHs in the winter than in the summer. Besides, heating and biomass 
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burning were two other major sources of HMWPAHs and HMWOPAHs in the 

winter. As shown in Figure 5.11, secondary aerosol contributed more significantly to 

low molecular weight species (i.e., LMWPAHs, LMWOPAHs, and LMW n-alkanes) 

in the winter than in the summer, despite its reduced contributions to PM2.5 in the 

winter. In the summer, vegetation release is an important source of low molecular 

weight species and the HMW odd-carbon n-alkanes.  
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Figure 5.11 PMF apportioned contributions of LMWPAHs, HMWPAHs, 

LMWOPAHs, HMWOPAHs, LMW n-alkanes, and HMW odd-carbon n-alkanes. 

     The source apportionment of PAHs in this study was compared with two other 

urban studies that were carried out in Chicago (Simcik, Eisenreich and Lioy 1999) 

and Baltimore (Larsen and Baker 2003), respectively (Table 5.9). Simcik’s study was 
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performed in another urban area with some different features of pollution 

composition from Baltimore. As shown in Table 5.9, coal burning was the primary 

source of pollution in Chicago, while motor vehicle exhaust was an additional source 

of major concern in Baltimore. Larsen’s study was accomplished for the same area of 

our interest four years prior to the Baltimore supersite project. In specific, 24-hour 

measurements of PAHs were conducted in downtown Baltimore from March 1997 to 

December 1998, and three modeling methods (i.e., principal component analysis with 

multiple linear regression analysis, PCA/MLR; UNMIX; and PMF) were employed to 

apportion PAHs in their study (Larsen and Baker 2003). Larsen’s PCA/MLR analysis 

assumed that CO and NOx were exclusively from motor vehicle exhaust and thus 

contributions from motor vehicle emissions could have been overestimated, as 

implied from the smaller contributions of motor vehicles in his other two model 

solutions. In general, the PMF analyses in my study were in agreement with Larsen’s 

PMF results. Some substantial differences in the “other” category were observed: in 

Larsen’s PMF study, the factor labeled as “other” was unidentified due to the lack of 

any particular marker in that factor (Larsen and Baker 2003) and possibly represented 

a mixed factor of fitting residuals; in contrast, one to two “other” factors (i.e., sulfate, 

heating, vegetable release, and road dust) in different measuring periods were clearly 

identified by their SVOC tracers in this study. The emissions from those “other” 

sources in this study were presumably well apportioned using SVOC tracers and their 

total contribution was generally larger than that in Larsen’s study. Moreover, a 

thorough investigation into seasonal variations of source emissions was made in our 
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study. As shown in Table 5.9, such a seasonal variation was that biomass burning in 

the winter was a less important factor than it was in the summer. 

Table 5.9 Comparison of source contributions to ambient PAHs in several urban 

studies. 

Source 

Contribution in 

Baltimore, MD (Larsen 

and Baker 2003) (%) 

Contribution 

in Chicago, 

IL (Simcik 

et al. 1999) 

(%) 

Contribution in this PMF 

study (%) 

PCA/MLR UNMIX PMF Average
1
 Summer

2
 Winter

3
 

Vehicle 26 23 16 9 17 15 19 

Coal 28 29 36 48 26 28 23 

Oil/heating 22 23 15 26 9 0 20 

Wood 

burning 
24 23 21 17 17 24 8 

Other n.a. n.a. 14 n.a. 30 30 30 

1
 Weighted daily average for all measuring periods.  

2
 Weighted daily average for the July and August measuring periods.  

3
 Weighted daily average for the November and February measuring periods.    

5.4.3.8 Modeling Performance  

     In general, the reconstructed mass of most species in the winter measuring periods 

(i.e., November 2002 and February 2003) well agreed (r
2
 > 0.7) with the measured 

values, compared to their poor correlations in the summer (Table 5.10). Secondary 

biogenic oxidation products were the only category of SVOCs with better predictions 

in the summer than in the winter. The PMF performance was evaluated using several 

statistical measures including mean fraction bias (MFB), normalized mean square 

error (NMSE), and the fraction of predicted concentrations lying within a factor of 2 

of the measured ambient concentrations (Fa2), as shown in Table 5.11. According to 

Kumar et al. (Kumar et al. 1993), model performance is deemed acceptable if NMSE 
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≤ 0.5, -0.5 ≤ MFB ≤ 0.5, and Fa2 ≥ 0.8. The predictions for most traffic-related 

species (e.g., EC, OC, NOx, LMW n-alkanes, PAHs, ACHs, and PCTTs) were 

generally acceptable during all measuring periods, except that the NMSE values of 

predicted EC, PCTTs, and HMWPAHs in July exceeded the criteria. The predictions 

for n-alkanoic acids, 2-alkanones, APCAs, resin acids, phenolic wood markers, and 

HMW odd-carbon n-alkanes, were generally good in all measuring periods as well. In 

contrast, the predictions for CO, nitrate, iso- and anti-iso n-alkanes, n-alkenoic acids, 

ADCAs, sugars, steroids, and thiazoles were generally poor, especially in the summer 

periods. 

Table 5.10 Correlation coefficients (r
2
) 

1
 between the PMF-modeling reconstructed 

mass and the observed mass in different measuring periods. 

Species Jul 2002 Aug 2002 Nov 2002 Feb 2003 

EC 0.683
1
 0.524 0.844 0.898 

OC 0.607 0.880 0.862 0.889 

PM2.5 mass 0.637 0.424 0.830 0.837 

Sulfate 0.423 0.397 n.a. n.a. 

Nitrate 0.008 0.659 n.a. n.a. 

CO 0.512 0.390 0.315 n.a. 

NOx 0.728 0.842 0.902 n.a. 

Iso- & antiso-alkanes 0.007 0.447 0.582 0.819 

n-Alkanoic acids 0.662 0.567 0.829 0.848 

n-Alkenoic acids 0.137 0.200 0.727 0.989 

Aliphatic dicarboxylic acids 0.296 0.478 0.306 0.959 

Aromatic polycarboxylic acids 0.659 0.690 0.286 0.932 

2-Alkanones 0.494 0.720 0.666 0.970 

Alkylcyclohexanes 0.786 0.871 0.961 0.985 

Resin acids 0.391 0.219 0.897 0.927 

Sugars (levoglucosan) 0.255 0.108 0.628 0.965 

Steroids 0.066 0.239 0.592 0.849 
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Thiazoles (benzothiazole) 0.631 0.297 0.547 0.694 

Pentacyclic triterpanes 0.236 0.507 0.881 0.850 

N-Hetero-PAH 0.451 0.268 0.735 0.597 

S-Hetero-PAH 0.893 0.803 0.892 0.915 

Secondary biogenic oxidation 

products 
0.691 0.688 0.081 0.113 

Phenolic wood markers 0.508 0.462 0.667 0.906 

LMWPAHs 0.896 0.880 0.937 0.958 

HMWPAHs 0.385 0.818 0.876 0.900 

LMWOPAHs 0.900 0.855 0.941 0.955 

HMWOPAHs 0.653 0.848 0.937 0.959 

LMW n-alkanes 0.830 0.895 0.933 0.961 

HMW odd-n-alkanes 0.281 0.205 0.638 0.820 

HMW even-n-alkanes n.a. 1.000 0.029 0.702 

1
 Boldfaced type indicates fair correlation (r

2
 > 0.6) between reconstructed and observed 

concentrations.  

Table 5.11 Performance statistics of the PMF modeling 
1
. 

 

July 2002  August 2002  
November 

2002 
 

February 

2003 

 
NM

SE 
2
 

MFB 
3
 

Fa2 
4
  

NM

SE 
MFB Fa2  

NM

SE 
MFB Fa2  

NM

SE 
MFB Fa2 

EC 0.75 0.18 0.69 
 

0.38 0.15 0.87 
 

0.08 0.02 0.92 
 

0.06 0.05 0.83 

OC 0.05 0.02 0.98 
 

0.02 0.04 1 
 

0.04 0.07 0.96 
 

0.05 0.06 1 

PM2.5 mass 0.07 0.02 1 
 

0.24 0.09 0.87 
 

0.04 0.06 0.97 
 

0.12 -0.17 0.87 

Sulfate  0.54 0.2 0.77 
 

0.44 0.18 0.83 
 

n.a. n.a. n.a. 
 

n.a. n.a. n.a. 

Nitrate  1.66 0.37 0.71 
 

0.72 0.34 0.72 
 

n.a. n.a. n.a. 
 

n.a. n.a. n.a. 

CO 0.14 0.1 0.87 
 

0.29 0.26 0.66 
 

0.18 0.36 0.7 
 

n.a. n.a. n.a. 

NOx 0.13 0.14 0.96 
 

0.04 0.05 1 
 

0.04 0 0.99 
 

n.a. n.a. n.a. 

Iso-&Antiso-

Alkanes 
3.37 0.34 0.5 

 
0.5 0.37 0.68 

 
0.23 0.79 0.7 

 
0.21 0.08 0.87 

n-Alkanoic Acids 0.15 0.05 0.98 
 

0.4 0.09 0.96 
 

0.05 0.11 0.95 
 

0.07 0.04 1 

n-Alkenoic Acids 1.09 0.37 0.73 
 

1.4 0.52 0.58 
 

0.33 0.34 0.76 
 

0.02 0.02 1 

ADCAs 3.8 0.28 0.79 
 

0.39 0.18 0.66 
 

0.4 0.32 0.74 
 

0.11 0.06 1 

APCAs 0.11 0.09 0.96 
 

0.07 0.07 0.98 
 

0.23 0.14 0.92 
 

0.07 0.06 1 
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2-Alkanones 0.05 0.07 1 
 

0.05 0.06 1 
 

0.1 0.08 0.96 
 

0.01 0.01 1 

ACHs 0.04 0.03 0.98 
 

0.01 0.01 1 
 

0.01 0.02 1 
 

0.01 0.01 1 

Resin Acids 0.45 0.18 0.88 
 

0.55 0.24 0.85 
 

0.05 0.03 0.96 
 

0.11 0.1 0.91 

Sugars 3.69 0.43 0.6 
 

3.04 
19.5

1 
0.47 

 
3.23 0.69 0.38 

 
0.03 0.03 1 

Steroids 1.08 0.32 0.73 
 

1.16 0.44 0.62 
 

0.14 0.31 0.85 
 

0.13 0.12 0.96 

Thiazoles 0.79 0.17 0.92 
 

0.62 0.22 0.83 
 

0.14 0.17 0.85 
 

0.28 0.12 0.91 

PCTTs 1.22 0.06 0.98 
 

0.19 0.07 0.94 
 

0.17 0.07 0.96 
 

0.11 0.04 1 

N-Hetero-PAH 0.44 0.23 0.87 
 

0.16 0.16 0.87 
 

0.05 0.07 1 
 

0.14 0.15 0.96 

S-Hetero-PAH 0.03 0.04 1 
 

0.06 0.04 1 
 

0.04 0.04 1 
 

0.04 0.07 1 

2
nd

 Biogenic 0.15 0.13 0.96 
 

0.27 0.13 0.91 
 

3.55 0.47 0.67 
 

2.02 0.41 0.65 

Phenolic 0.53 0.19 0.88 
 

0.34 0.01 0.6 
 

0.34 0.42 0.79 
 

0.08 0.08 0.96 

LMWPAHs 0.02 0.03 1 
 

0.02 0.02 1 
 

0.01 0.02 1 
 

0.01 0.03 1 

HMWPAHs 3.31 0.1 0.94 
 

0.04 0.04 1 
 

0.04 0.07 0.97 
 

0.06 0.1 0.96 

LMWOPAHs 0.02 0.03 1 
 

0.04 0.04 1 
 

0.01 0.02 1 
 

0.01 0.02 1 

HMWOPAHs 0.45 0.08 0.96 
 

0.04 0.03 1 
 

0.02 0.05 0.96 
 

0.03 0.06 1 

LMW n-alkanes 0.02 0.02 1 
 

0.02 0.02 1 
 

0.02 0.03 1 
 

0.03 0.03 1 

HMW odd-n-

alkanes 
0.23 0.1 0.96 

 
0.22 0.1 0.94 

 
0.11 0.12 0.95 

 
0.1 0.2 0.83 

HMW even-n-

alkanes 
n.a. n.a. n.a. 

 
0 -0.05 0.7 

 
2125 -0.06 0 

 
0.28 -0.09 0.7 

1
 Boldfaced type indicates unacceptable performance. 

2 
MFB: mean fractional bias ( ). 

3 
NMSE: normalized mean square error ( ). 

4 
Fa2: fractions of the predictions within a factor of 2 of the observed values (0.5≤ Cpred/Cobs 

≤2.0). 

5.5 Concluding Remarks 

     Benefiting from highly time-resolved SVOC measurements, sources of organic 

aerosol in the Baltimore area were investigated. Motor vehicle exhaust was found to 

be the primary source of EC at the receptor site during the sampling periods. In 

particular, its influence on air quality appeared the most remarkable in the winter, 
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morning periods. The apportioned contributions of EC and NOx from motor vehicles 

by PMF were largely in agreement with those determined by MLR. And the PMF 

apportionment of PAHs was in good agreement with a past 2-year study (1997 ~ 

1998) carried out in downtown Baltimore. 

     The PMF-resolved profiles of motor vehicle emissions in different seasons showed 

larger discrepancies in SVOCs than the routine species (e.g., NOx, and EC). As 

implied from these seasonal variations, the influences of ambient temperatures were 

in two aspects. On one hand, enhanced volatilization in the summer gave rise to 

elevated amounts of those volatile, light molecules from the source (e.g., fossil fuels), 

but had less effect on those species with high molecular weights. On the other hand, 

enhanced partitioning into the aerosol particle phase in the winter resulted in 

promoted abundances of all SVOCs species.   

     Substantial amounts of PAHs, n-alkanes, and other SVOCs were emitted from 

non-traffic sources including coal-burning, biomass-burning, and two seasonal 

sources (i.e., vegetation release and heating). Other essential findings include: 1) the 

sulfate factor (secondary aerosol) was the largest PM2.5 source (i.e., 45 % of PM2.5) in 

the summer, while heating (i.e., 16 ~ 34 % of PM2.5), coal-combustion (i.e., 24 % of 

PM2.5), biomass burning (i.e., 12 ~ 31 % of PM2.5), and motor vehicle exhaust (i.e., 16 

~ 20 % of PM2.5) were the four primary sources of PM2.5 in the winter; 2) vegetation 

release contributed substantial amounts of SVOCs (i.e., 13 ~ 21 % of OC), especially 

low molecular weight PAHs and n-alkanes (i.e., 19 ~ 29 % of LMWPAHs; and 15 ~ 

19 % of LMW n-alkanes), in the summer; 3) heating was an important source of EC 

(i.e., 19 ~ 32 % of EC) in the winter; and 4) the impact of wildfires on air quality in 
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Baltimore was significant during the summer of 2002, owing to Canadian Boreal 

wildfires. 
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Chapter 6:  Conclusions 

     With the increasing interest on health outcomes of short-term exposures to large 

PM concentrations, the need to identify and apportion sources with ambient 

monitoring at a comparable time scale is increasing as well. However, a common 

problem for factor analyses (e.g., PMF, and UNMIX) is that factor cross 

contamination in the modeling results is inevitable as too few observations are 

involved within a typical several-hour campaign. Besides, while they make use of 

correlations between species, those receptor models do not make use of the actual 

atmospheric physics of transport and dispersion. In contrast, the pseudo-deterministic 

receptor model (PDRM) uses meteorological data to constrain dispersion factors 

(χ/Qs) required to obtain solutions for pollutant emission rates. In the Tampa study 

(Park, Pancras and Ondov 2005) in which several point sources had CEMs for SO2, 

the χ/Qs were tuned so that its dependence on meteorological modeling was 

attenuated. Park’s first prototype PDRM used oversimplified straight-line trajectories 

and loose constraints on the compositions of particles emitted from the sources. 

Moreover, background in the region of source influence (i.e., peaks in source-specific 

tracer species) was assumed to be equal to low concentration periods immediately 

before and after the peaks in the modeling period. Thus, collinear sources were not 

efficiently resolved. This situation was improved by Beachley (Beachley 2009, 

Beachley and Ondov 2012) in his reanalysis of the Tampa data by introducing two 

major updates: i.e., curvilinear plume trajectories at different aloft heights for 

different sources to correct the actual plume arrival times, and CMB terms to account 
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for the contributions from background area sources whose contributions could 

interfere with the targeted point sources.  

     Despite its unique advantage for short-term high time resolution studies, PDRM 

applications have not been extended to other supersites except Pittsburgh (Park et al. 

2006) until recently due to two reasons: first, either ambient concentrations of SO2 at 

the receptor site or CEM data of SO2 at the sources of interest were not measured; and 

second, contributions from non-point sources (e.g., motor vehicle emissions, and 

secondary aerosol), for which the Gaussian dispersion model does not work well, 

were often significant.  

     In my study, the PDRM modeling strategy was further improved specifically for 

those above-mentioned issues. A key feature of the update is that preliminary PMF 

analysis was utilized to ascertain major sources and obtain rough estimates of source 

contributions to seed PDRM. Based on the PMF results, not only the feasibility to use 

alternative tracer species (i.e., NOx, and metals) to condition χ/Qs was confirmed in 

both presence and absence of CEM data, but also a convenient removal of 

contributions from those non-targeted sources in the absence of source information 

was transplanted into PDRM. This approach surpasses Beachley’s PDRM-II which, 

since it was based on CMB terms, requires a detailed knowledge of background 

sources and the composition of their emissions (i.e., their source profiles). Moreover, 

the plume trajectories in my two case-studies, i.e., Baltimore and St. Louis, were 

simulated based on 5- or 10-minute resolution wind data. This should better depict the 

variations of χ/Qs compared with Beachley’s 30-minute trajectories, especially 
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considering the plume transport times from the sources of interest to the receptor site 

were typically less than one hour in both of my modeling studies. 

     In Chapter 2, the PMF modeling of the episodic emissions in three consecutive 

afternoons (7 hours each afternoon) in September 2001 at the Baltimore supersite 

resolved two power plants in close proximity (i.e., distance < 200 m), but their 

inexplicable chemical signatures (i.e., Se and Ni) indicated a mixing of these factors. 

In the absence of SO2 data, NOx was used as a tracer gas to condition the χ/Qs for 

industrial stack units in this power plant complex. With the PMF preliminary results, 

the PDRM was able to well resolve individual stack units with appropriate ratios of 

chemical signatures compared with the solutions from either PMF or PDRM alone. 

Moreover, the emission rates of NOx predicted by the PMF-seeded PDRM well 

agreed with the National Emission Inventory (NEI) annual average, and those of 

metals were arguably more accurate than the rough estimates from the Toxics Release 

Inventory (TRI). Therefore I conclude that this combinative modeling approach can 

better resolve point sources (i.e., even individual stacks). 

     The study in Chapter 3 was focused on resolving emissions from different stack 

units in the Big River Zinc and Cerro Copper plants in St. Louis during two metal 

episodes in November 2001 and March 2002. The absence of a tracer gas (i.e., SO2 or 

NOx) with CEM data at those facilities excluded the possibility to apply the same 

approach as used in Chapter 2. Nevertheless, a group of highly definitive metal 

tracers (i.e., Cu, Zn, Cd, and Pb) were available in emissions from the four distinct 

types of metal processing units. Preliminary source contributions and pollutant 

abundance profiles were obtained with PMF analysis of a Cu, Zn, Cd, and Pb episode 
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in March 2002, which were used to seed PDRM and condition the χ/Qs of the 

individual units. Again, the PMF-seeded PDRM approach well resolved those 

different types of metal production units and the factor cross contamination of Cu in 

the PMF solution was eliminated.  

     It may be concluded as well that this combinative modeling approach will show 

promising success in the following two applications. First, this approach can be used 

for remote determination of emission rates of non-criteria species such as heavy 

metals from industrial sources, which are difficult to be accurately monitored. Second, 

this approach should prove to be successful when applied to extract source emission 

profiles which can be used for source apportionment using the CMB method.    

     In the future, high quality 3-D wind measurements should be utilized to better 

constrain plume transport and dispersion by improving the quality of plume trajectory 

simulations and predictions of χ/Qs. Besides, efforts towards incorporating the 

beneficial aspect of PDRM (i.e., constraining the solution of source emissions with 

Gaussian dispersion factors that are based on highly time-resolved meteorological 

observations) into other receptor models such as CMB should also be worthwhile. 

     Compared with industrial point sources, accurate determination of contributions 

from motor vehicle emissions is more challenging due to the lack of appropriate 

abundance profiles. In Chapter 4, a detailed profile of on-road motor vehicle 

emissions was extracted through the analysis of a winter morning traffic episode at 

the Ponca street supersite with four independent methods (i.e., direct peak observation, 

linear regression, PMF, and UNMIX). The resultant profiles are generally consistent 

with each other. Arguably, the profile derived from the linear regression of ambient 
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concentrations against I-895 traffic counts is the most comprehensive to date, as it 

included 117 SVOCs in 19 categories in addition to routine aerosol components (EC, 

OC, sulfate, and nitrate), criteria gases in motor vehicle emissions (NOx and CO), and 

SEAS metals (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn). As this profile is the 

average for the high-volume highway traffic over a 7-hour windless period when 

there was little interference from non-traffic sources, it should well represent Mid-

Atlantic traffic (and may represent much of the traffic in Eastern US as well). And 

there is no doubt that it can be widely used for studies in which vehicular emissions 

are a major concern. Besides, as a byproduct of the windless data analysis, the ratio of 

the average motor emission factor (E) and a road coefficient (β; that depends on the 

traffic-induced wind speed at the receptor site) was also derived. The same approach 

can be applied to other windless periods at the same site, to extract the corresponding 

E/β values. As β is approximately a constant at the given site, I conclude that the 

comparison of E/β values will allow tracking the evolution of motor vehicle emission 

factors and thus permit evaluations of the achievements of emission control policy.  

     In Chapter 5, carbonaceous particulate matter (e.g., EC, OC, PAHs, etc.) was 

apportioned using highly time-resolved SVOC data in Baltimore. Due to the close 

proximity between the Ponca street site and the I-895 road, motor vehicle exhaust was 

the major source of EC especially during the morning traffic rush-hours. In contrast, 

substantial amounts of SVOCs (e.g., PAHs, n-alkanes) were from non-traffic sources 

such as secondary aerosol, coal burning, and biomass burning. Seasonal and diurnal 

variations of SVOC emissions from different sources indicated that temperature 

affects both volatility of source emissions (e.g., enhanced fuel evaporation and 
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vegetation release at high temperature) and gas/particle partitioning of the emitted 

species (i.e., enhanced adsorption in the aerosol phase at low temperature). Moreover, 

seasonal sources (e.g., vegetation release in the summer, and heating in the winter) 

have shown characteristic contributions to certain categories of organic species rather 

than the total PM2.5 mass. Accordingly, this study is an important advance in the 

attribution of SVOCs in Baltimore.  
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Appendices 
 

Appendix A 

     This section reproduced from Park (Park et al. 2005b) on the calculation of 

effective plume height, H. 

     The effective plume height is given as the sum of the stack physical height (hs) and 

the plume rise (ΔH) 

        (1) 

     The plume rise (ΔH) is computed from the Briggs algorithm (Briggs 1969, Briggs 

1971, Briggs 1972, Briggs 1975) which is adapted as part of the ISCST3 model 

(U.S.EPA 1995) and described below. 

     In general, there are two types of plume rise: buoyancy rise and momentum rise 

(Seinfeld and Pandis 2006). The buoyancy flux parameter, Fb (m
4
 s

-3
), is expressed 

by: 

       (2) 

where g is gravitational acceleration (m s
-2

), vs is the stack gas exit velocity (m s
-1

), ds 

is the stack inner diameter (m), Ts is the stack gas exit temperature (K), and ΔT is the 

difference (K) between the stack gas exit temperature and ambient temperature (Ta). 

     The momentum flux parameter, Fm (m
4
 s

-3
), is given by: 

       (3) 
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     In order to determine whether the plume rise is dominated by buoyancy or 

momentum, a critical temperature, Tc, is defined: (1) Under stable atmospheric 

conditions, 

     (4) 

where s (= g(∂θ/∂z)Ta) is a stability parameter indicating the potential temperature 

gradient with height. 

(2) Under neutral or unstable atmospheric conditions, 

    (5) 

     If ΔT ≥ Tc, the plume rise is assumed as buoyancy dominated. Otherwise, it is 

presumably momentum dominated. 

     The Pasquill atmospheric stability classes are determined using surface wind speed 

and solar radiation (or cloud cover), as shown in Table A1 (Seinfeld and Pandis 

2006). 

Table A1 Atmospheric stability classification.
*
 

Surface 

wind speed 

(m s
-1

) 

Day-time solar insolation Night-time cloud cover 

Strong 

(> 700 W 

m
-2

) 

Moderate 

(350 ~ 700 

W m
-2

) 

Slight 

(< 350 W 

m
-2

) 

Thin 

overcast or 

> ½ low 

cloud 

<= ½ 

cloudiness 

< 2 A A – B B E F 

2 – 3 A – B B C E F 

3 – 5 B B – C C D E 

5 – 6 C C – D D D D 

> 6 C D D D D 
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*
 A: extremely unstable; B: moderately unstable; C: slightly unstable; D: neutral; E: 

slightly stable; and F: moderate stable. 

     If the plume rise is buoyancy dominated, the plume rise under stable atmospheric 

conditions is given by: 

      (6) 

where us is the mean wind speed (m s
-1

) at stack height, and. 

     Under neutral or unstable atmospheric conditions, the calculation of buoyancy 

plume rise is upon buoyancy flux: (1) For Fb < 55, 

      (7) 

(2) For Fb ≥ 55,  

       (8) 

     If the plume rise is momentum dominated, the plume rise under stable atmospheric 

conditions is given by: 

      (9) 

     Under neutral or unstable atmospheric conditions, the momentum plume rise is 

calculated as:  

      (10) 
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Appendix B 

B1 Calculation of mixed layer depth (MLD) 

     The algorithms were adapted from the AERMET pre-processor of the EPA 

AERMOD model (U.S.EPA 2004a). The AERMET inputs include wind speed, wind 

direction, ambient temperature, surface albedo, solar radiation and cloud cover, 

surface roughness, and Bowen ratio (Cimorelli et al. 2005). Surface roughness and 

Bowen ratio are surface characteristics that are determined by land use and those 

published values for the area of interest were used in our study (Oke 1982, Ching 

1985, Hjelmfelt 1982). Surface albedo, solar radiation and cloud cover were 

measured at the nearest airport and retrieved from the National Solar Radiation 

Database (NSRDB).  

     Sensible heat flux (Hf) in the convective boundary layer (CBL) was derived using 

a simple energy balance approach (Oke 1987): 

       (11) 

where Bo is the Bowen ratio (dimensionless) and Rn is the net radiation (W m
-2

). Rn 

was estimated from the insolation and the thermal radiation balance at ground 

following the method of Holtslag and Van ulden (Holtslag and Van Ulden 1983): 

     (12) 

where c1 = 5.31×10
-13

 W m
-2

 K
-6

, c2 = 60 W m
-2

, c3 = 0.12, σSB is Stefan Boltzman 

Constant (5.67×10
-8

 W m
-2

 K
-4

), Tref is ambient air temperature at reference height for 

temperature (K), r is Albedo, and R is solar radiation (W m
-2

). 
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     AERMET computes the surface friction velocity, u*, and the Monin-Obukhov 

length, L, in the CBL using an iterative method, since the friction velocity and the 

Monin Obukhov length are inter-correlated as shown in Equations 13 to 18 (Panofsky 

and Dutton 1984, Venkatram and Wyngaard 1988). Our MATLAB script initialized 

u
*
 by using the surface wind speed and assuming neutral conditions, to calculate L, 

and iteratively solved for u* and L until convergence (i.e., less than a 1 % relative 

change between successive iterations) was reached.  

       (13) 

where ρ is the density of air (kg m
-3

), k is von Karman’s constant (0.4), cp is specific 

heat of air at constant pressure (kJ kg
-1

 K
-1

), and g is the acceleration due to gravity 

(9.8 m s
-2

). 

    (14) 

where:    

   (15) 

      (16) 

  (17) 

      (18) 

     The reference height, zref, to determine u* and L is optimized to be representative 

of the surface layer in the AERMET processor. For those areas with large surface 
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roughness (i.e., z0 > 1 m), AERMET constrains the range of vertical height between 

7zo and 100 m. In the supersite study, the wind and temperature measurements were 

carried out at a height of 10 m, which was used as the reference height for the PDRM 

modeling. 

     The convective velocity (ω*) was given by its definition (Venkatram and 

Wyngaard 1988) as follows: 

       (19) 

     An algorithm based on Benkley and Schulman’s method (Benkley and Schulman 

1979), as recommended by EPA, was used to calculate the hourly values of the mixed 

layer depth (MLD).  As Benkley’s method was originally designed for daytime MLD 

estimates, we applied another simple diurnal-mode calculation of MLD proposed by 

Stull (Stull 1989) meanwhile and used whichever MLD value was greater from the 

two methods (denoted as MixHm for Benkley’s method and MixHc for Stull’s 

method).   

     Benkley’s algorithm of MLD calculation is as follows: 

      (20) 

where convective velocity scale, u’, is estimated as:  

      (21) 

and the Coriolis factor, Cor, was obtained according to its definition: 

       (22) 
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where u is the surface wind speed (m s
-1

), ht is the Anemometer height, Ω is the 

angular velocity of the earth (0.0000727 rad s
-1

) and f is the latitude (rad) of the site. 

     Stull’s method requires inputs of u*, ω*, and L as obtained earlier. Under unstable 

atmospheric conditions, the MLD is described as: 

     (23) 

     Under neutral and stable atmospheric conditions, an correction by Arya’s (Arya 

1981) is used as follows. 

    (24) 

     EPA reported the effective stack heights of the stack units in the BRZ and Cerro 

Copper plants based on their daytime measurements. Considering that variations 

could be resulted from different meteorological conditions, our calculations of 

effective plume heights with the Brigg’s plume rise model were compared with the 

EPA’s reference values. In the PDRM modeling, we used our calculated effective 

stack height if its discrepancy from the EPA reported value was insignificant (i.e., < 

10%). Otherwise, the EPA reported value was used and a flag message of warning 

was stored. 
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B2 Calculation of Gaussian dispersion parameters (  and ) based on the 

ISCST3 model 

     The EPA Industrial Source Complex Short Term plume model 3, ISCST3 

(U.S.EPA 1995), computes lateral and vertical dispersion parameters,  and , 

based upon the following equations.  

  (25) 

        (26) 

     The coefficients in above equations (i.e., a, b, c, and d) are dependent on the 

atmospheric stability (i.e, Pasquill stability classes A to F) and plume downwind 

distance (x), as shown in Table C2 and C3. 

Table B1 Parameters used to calculate Pasquill-Gifford . 

Pasquill stability class c d 

A 24.1670 2.5334 

B 18.3330 1.8096 

C 12.5000 1.0857 

D 8.3330 0.72382 

E 6.2500 0.54287 

F 4.1667 0.36191 

 

 



 

 206 

 

Table B2 Parameters used to calculate Pasquill-Gifford . 

Pasquill 

stability 

class 

 (km)   

Pasquill 

stability 

class 

 (km)   

A 

< 0.10 122.8 0.9447 

E 

< 0.10 24.26 0.8366 

0.10 - 

0.15 
158.08 1.0542 

0.10 - 

0.30 
23.331 0.81956 

0.16 - 

0.20 
170.22 1.0932 

0.31 - 

1.00 
21.628 0.7566 

0.21 - 

0.25 
179.52 1.1262 

1.01 - 

2.00 
21.628 0.63077 

0.26 - 

0.30 
217.41 1.2644 

2.01 - 

4.00 
22.534 0.57154 

0.31 - 

0.40 
258.89 1.4094 

4.01 - 

10.00 
24.703 0.50527 

0.41 - 

0.50 
346.75 1.7283 

10.01 - 

20.00 
26.97 0.46713 

0.51 - 

3.11 
453.85 2.1166 

20.01 - 

40.00 
35.42 0.37615 

> 3.11 * * > 40 47.618 0.29592 

 

B 

< 0.2 90.673 0.93198 

F 

< 0.2 15.209 0.81558 

0.21 - 

0.40 
98.483 0.98332 

0.21 - 

0.70 
14.457 0.78407 

> 0.4 109.3 1.0971 
0.71 - 

1.00 
13.953 0.68465 

C All 61.141 0.91465 
1.01 - 

2.00 
13.953 0.63227 

 

 

D 

< 0.3 34.459 0.86974 
2.01 - 

3.00 
14.823 0.54503 

0.31 - 

1.00 
32.093 0.81066 

3.01 - 

7.00 
16.187 0.4649 

1.01 - 

3.00 
32.093 0.64403 

7.01 - 

15.00 
17.836 0.41507 

3.01 - 

10.00 
33.504 0.60486 

15.01 - 

30.00 
22.651 0.32681 

10.01 - 

30.00 
36.65 0.56589 

30.01 - 

60.00 
27.074 0.27436 

> 30 44.053 0.51179 > 60 34.219 0.21716 
*
  is set to 5000 m.
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B3 Error analysis of the trajectory-driven GPM dispersion parameters 

     In the study, uncertainty estimates were based on the measurement uncertainties of 

wind directions using a MATLAB script. For each successive trajectory, the 

downwind distance (x), mean wind direction (θw), the propagated uncertainties 

associated with the mean wind direction (σw), and the average atmospheric stability 

were obtained from the plume trajectory simulation and meteorological calculations. 

 

Figure B1 Simplified trajectory and the representation of the closest point approach. 

     The intercrossing angle (θx) of the station angle (θs) and the mean wind direction is 

defined as: 

       (27) 

     When  < 15°, by small-angle approximation, the off-centerline distance (y) is 

equal to: 
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       (28) 

where d is the linear distance (km) between the source and the receptor site. 

     As  is perturbated by the wind direction uncertainty, the uncertainty of the off-

centerline distance (dy) is estimated as: 

         (29) 

Similar, the uncertainty associated with the plume travel distance (dx) is 

approximately equal to:   

 (30) 

and the relative uncertainty of the plume travel distance (dx_%) is given as: 

          (31) 

     Considering the d×ln(x) term is negligible with respect to the c term in Equation 

25 when x < 20 km, the relative error of σy, d(σy)_%, is given by: 

        (32) 

     According to Equation 25 the relative error of σz, d(σz)_%, is given by: 

       (33) 

where the exponent b can be determined by the lookup of Table C3 based on the 

known atmospheric stability and x. 

     According to Equation 2.6, the relative uncertainty of χ/Q is determined as the 

standard propagation of relative errors of its five components: σy, σz, mean transport 

velocity (u), the y exponential and the z exponential. 
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 (34) 

     The relative error of the mean transport velocity (du_%) is calculated as the 

quotient of the standard deviation of aloft wind speeds (ui) during all trajectory 

segments and mean aloft wind speed ( ). 

       (35) 

     Without perturbation by the wind direction error, the y exponential term (y_exp) in 

Equation 2.6 is given by: 

    (36) 

where the σy value is obtained as: 

  (37) 

     With perturbation by the wind direction error, the lower and upper bounds of the y 

exponential term are given by: 

   (38) 

   (39) 

Note that in the MATLAB script, UB(y_exp) is set to 1 if θw < σw.  

     The standard deviation of the y exponential term and its lower and upper bounds is 

calculated and the relative error of the y exponential term is estimated as the quotient 

of this standard deviation and the calculated y exponential term. 
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     As σz is independent of horizontal wind direction, the relative uncertainty of the z 

exponential term is based on the propagated error as: 

     (40) 

     For the Baltimore Clifton Park supersite, the propagated uncertainties of χ/Qs for 

individual stacks in the two BGE power plants were listed in Table 2.11 as well as the 

uncertainties for individual components. 

     For the St. Louis supersite, the propagated uncertainties of χ/Qs for the 

representative units in the BRZ and Cerro Copper plants during the two episodes 

were listed in Table 3.3 as well as the uncertainties for individual components. 
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Appendix C 

C1 Stack parameters of the BRZ and Cerro Copper units 

     Note that the stack parameters based on the National Emission Trends (NET) 

database differ slightly from those published in the NEI 2002, as the former were 

historical data acquired in an earlier date (1996) prior to the St. Louis study in 2002. 

However, these NET data are listed herein for reference purpose, as they provided 

useful information to assist the classification of stacks (i.e., primary metal, secondary 

metal). In our study, the updated stack information retrieved from the NEI 2002 

(Table 3.1) was actually applied to the PDRM modeling if any inconsistence between 

the two databases was found.     

Table C1 Stack parameters of the BRZ and Cerro Copper units based on the National 

Emission Trends Data (1996). 

Stack  

Eff 

Hgt  

(ft) 

Height 

(ft) 

Dia  

(ft) 

Temp 

(F) 

Flow 

(cfs) 

Velocity  

(ft s-1) 
Latitude Longitude SCC  

BRZ zinc units: 

1 245 85 3 300 956.4 135.3 38.6017 90.1706 Pri Metal 

2 52 22 2 600 61.6 19.6 38.6017 90.1706 
Sec 

Metal 

3 116 46 4 240 399.6 31.8 38.6017 90.1706 Pri Metal 

4 136 88 6.9 104 957.3 25.6 38.6017 90.1706 Pri Metal 

5* 180 88 6.9 160 957.3 25.6 38.6017 90.1706 Pri Metal 

6 111 75 1.5 230 171.6 97.1 38.6017 90.1706 Pri Metal 

7 111 75 1.5 230 171.6 97.1 38.6017 90.1706 Pri Metal 

8 149 97 4.11 135 594.9 44.8 38.6017 90.1706 Pri Metal 

9 149 97 4.11 135 594.9 44.8 38.6017 90.1706 Pri Metal 

10 78 22 1.5 1150 105.7 59.8 38.6017 90.1706 
Sec 

Metal 

11 111 75 1.5 230 171.6 97.1 38.6017 90.1706 Pri Metal 

12* 43 25 1.7 140 132.6 58.4 38.6017 90.1706 
Sec 

Metal 

13 62 25 2 240 166.5 53.0 38.6017 90.1706 
Sec 

Metal 

14 46 30 1.7 135 126.4 55.7 38.6017 90.1706 
Sec 

Metal 

15 74 55 2 150 133.2 42.4 38.6017 90.1706 Sec 
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Metal 

16 38 30 1.5 180 33.2 18.8 38.6017 90.1706 Pri Metal 

17 226 150 5 180 628.3 32.0 38.6017 90.1706 

Chem 

Mfg.; 

H2SO4 

Cerro Copper units: 

1 88 45 2.8 180 295.6 48.0 38.5931 90.1744 Pri Metal 

2 62 40 3.5 110 286.7 29.8 38.5931 90.1744 Pri Metal 

3* 148 95 5.5 500 147.3 6.2 38.5931 90.1744 Pri Metal 

4 436 261 9.25 184 1850.0 27.5 38.5931 90.1744 Pri Metal 

5 36 36 3.2 70 293.6 36.5 38.5931 90.1744 
Degreasi

ng 

6 75 60 1.5 430 31.5 17.8 38.5931 90.1744 
NG 

Boiler 

7 49 45 0.8 250 7.9 15.7 38.5931 90.1744 
NG 

Boiler 

8 85 55 6 112 418.5 14.8 38.5931 90.1744 Pri Metal 

9 115 55 6 173 480.7 17.0 38.5931 90.1744 Pri Metal 

10 112 55 6 163 494.8 17.5 38.5931 90.1744 Pri Metal 

11 38 33 1.9 118 32.6 11.5 38.5931 90.1744 Pri Metal 

12 71 36 3.3 174 235.2 27.5 38.5931 90.1744 Pri Metal 

13 165 68 4.27 396 390.5 27.3 38.5931 90.1744 
NG 

Boiler 

14 238 95 5.18 413 635.0 30.1 38.5931 90.1744 
Oil 

Boiler 

15 108 50 2 1000 116.9 37.2 38.5931 90.1744 Pri Metal 

16 146 52 3.54 367 398.7 40.5 38.5931 90.1744 
Sec 

Metal 

17 59 25 2 300 121.9 38.8 38.5931 90.1744 
NG 

Boiler 

18 6 6 0.3 70 1.7 23.3 38.5931 90.1744 
Sec 

Metal 

* Representative unit in each category. 
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C2 Carryover correction of SEAS metal concentrations  

     Within a 30 minute SEAS sampling period, typically about 10-mL slurry was 

collected. Filtered compressed air was used to purge the sample collector at the end of 

each sampling. However, a small volume of sample residual, known as a dead volume 

(~ 0.2 mL), was inevitably left in the sampler in each run (Pancras et al. 2005), which 

led to a carryover to the following sample. The correction of carryover effect is 

especially essential at a large excursion of metals which could cause the broadening 

of the time series concentration peaks and thus blur the temporal information that 

peaks convey. In our study, the correction of SEAS metal concentrations was carried 

out with a MATLAB script prior to the receptor modeling, using the following mass-

balance algorithm: 

     (41) 

where  is the corrected concentration (ng m
-3

) of the j
th

 metal for the i
th

 

observation,  is the uncorrected concentration of the j
th

 metal for the i
th

 observation 

(ng m
-3

),  is the uncorrected concentration (ng m
-3

) of the j
th

 metal for the (i-1)
th

 

observation,  is the SEAS sample volume (mL) collected during the i
th

 

observation, and  is the dead volume (mL) of the sample collector. 
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C3 Hierarchical steps of PMF-seeded PDRM modeling 

Figure C1 Flow chart showing hierarchical steps of PMF-seeded PDRM modeling. 
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C4 PMF analyses of episode A at the St. Louis supersite  
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Figure C2 PMF-resolved source profiles for the zinc episode (episode A). 
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Figure C3 Time series source contributions in episode A predicted by PMF. 
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C5 PDRM-predicted emission rates of the marker species from the BRZ and 

Cerro Copper units during the two episodes 
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Appendix D 

D1 Deconvolution of 3-hourly SVOC measurements on a basis of hourly traffic 

     Previous investigations (Section 4.4.1) suggested that ambient pollutant 

concentrations were generally linearly dependent on the traffic density during the 

windless morning (0100 ~ 0800 LT) of November 20
th

, 2002, which allowed the 

extraction of the SVOC abundance profile of motor vehicle emissions with the 

windless model analysis. As multiple (> 5) hourly observations of SVOCs were 

needed for the analysis, the 3-hour SVOC datasets were reallocated into 1-hour 

subsets on a traffic flux basis with a MATLAB script, as follows.  

%% Interpolate hourly SVOC data based on hourly traffic flux 

% ------------------------------------------------------------------

- 

% load data: 

SVOCc=csvread('EpF_SVOCc.csv',2,1); % SVOC concentrations, 4-by-117 

matrix, unit in ng m-3 

SVOCu=csvread('EpF_SVOCu.csv',2,1); % uncertainties of SVOC 

concentrations, 4-by-117 matrix, unit in ng m-3 

traf=csvread('EpF_SVOCt.csv',1,1); % 9 hourly traffic data of I-895 

tunnel 

tf=sum(traf,2); % hourly traffic flux from 00:00 to 09:00 (9 hours), 

1-by-9 vector, unit in vehicles/hour  

% ------------------------------------------------------------------

-  

% background correction of SVOC data 

Sc=SVOCc(2:4,:)-repmat(SVOCc(1,:),3,1); % 

Su=SVOCu(2:4,:); % 

% ------------------------------------------------------------------

-  
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% interpolate: 

nsv=length(Sc(1,:)); % # of SVOC species (include categorized data) 

sc=zeros(9,nsv); % pre-allocate the matrix of hourly SVOC 

concentrations, 9-by-117 matrix  

su=zeros(9,nsv); % pre-allocate the matrix of hourly SVOC 

uncertainties, 9-by-117 matrix   

for i=1:9 ;% 9 rows for 9 1-hr periods from 00:00 to 09:00 

    nt= floor((i-1)/3)+1;% a temperate variable represent the index 

# of the 3-hr period 

    fra=tf(i,1)/sum(tf(3*nt-2:3*nt,1)); % hourly fraction of total 

vehicle counts in the corresponding 3-hr period 

    sc(i,:)=3*fra*Sc(nt,:); % *3 because it is not the sum but 

averaging 

    su(i,:)=3*fra*Su(nt,:); 

end 

% ------------------------------------------------------------------ 

     The deconvolution of SVOC data was consisted of three steps. First, a preliminary 

baseline correction was carried out using the SVOC observation at midnight of 

November 20
th

, 2002 as the background. Second, the fraction of each hourly traffic 

volume in a 3-hour period of SVOC measurements was calculated using the hourly 

traffic statistics of the I-895 tunnel. And lastly the hourly SVOC concentrations were 

reallocated as three times the products of the corresponding 3-hourly concentrations 

and the hourly traffic fractions. Note that there is no blending of data in different 3-

hourly periods in above data processing so that the temporal information of the 3-

hourly data was retained. 
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D2 Derivation of the geometric relation in the windless model 

     In the windless model application at the Ponca street site, the line mobile source 

(I-895) was comprised of two roadway segments (i.e., northbound segment and north 

eastbound segment), as shown in Figure D1. Accordingly, the overall influence of I-

895 during the windless period was the sum of their emission contributions, as 

follows. 

    (42) 

where L is the total length (m) of the roadway source; l1 is the length (m) of the 

northbound roadway segment; and other terms in Equation 42 are the same as those 

demonstrated in Equation 4.4. In particular, the former integral in Equation 42 

represents the roadway coefficient (m
-1

) of the northbound segment and the latter 

integral represents the roadway coefficient of the north eastbound segment.  

 

Figure D1 Schematic representation of the geometric relation between the Ponca 

street site and the I-895 roadway: a) northbound segment; and b) north eastbound 

segment. 

     As illustrated in Figure D1a, the roadway coefficient of the northbound segment 

was expressed as: 
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     (43) 

     As illustrated in Figure D1b, the roadway coefficient of the north eastbound 

segment was expressed as: 

 (44) 

where R is the length (m) of the link line between the receptor site and the turning 

point of the I-895 roadway (i.e., R
2
 = d

2
 + l1

2
), and θ is the intersection angle between 

north eastbound segment and that link line. Reorganization of Equation 44 gives as 

follows. 

 (45) 

     In this case, the intersection angle between the northbound I-895 segment and the 

extension of the north eastbound segment (i.e., the green dashed line in Figure D1b) 

was small (i.e., < 45°), and the Ponca street site was only slightly off the center line of 

this section. Hence R•cos(θ) is approximately equal to l1 and Equation 46 can be 

rewritten as follows. 

  (46) 

     The final derivation of Equation 42 is then obtained as follows, which is the same 

as Equation 4.6 in Chapter 4. 

   (47) 
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D3 Edge plot diagnostic of the UNMIX solution in this study 

     In case that PMF and UNMIX do not agree, it is often controversial to conclude 

which approach can provide more plausible results. Choosing the model that merely 

gives the better fits is a biased approach and Henry proposed to use the diagnostic 

edge plots to determine the preference (Henry and Christensen 2010). In this study, 

the edge plots of the five sources in the UNMIX solution showed clearly defined 

edges, suggesting that UNMIX might be a more suitable model than PMF. 

 

Figure D2 Diagnostic plots showing edges by UNMIX (Source 5 is the traffic factor). 
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D4 Correlation of traffic between the Fort McHenry (FTMC) tunnel and the I-

895 tunnel  
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Figure D3 Linear correlation between the Fort McHenry (FTMC) tunnel traffic and 

the I-895 tunnel traffic during the period from November 19
th

 through 22
nd

, 2002. 
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D5 Correlation between ambient species with PM2.5 mass during the morning 

PM2.5 excursion (0100 ~ 0800 LT) on November 20
th

, 2002.  

Table D1 Correlation coefficients (r
2
) and p-values of ambient species or particle 

number concentrations with PM2.5 mass concentrations during the morning PM2.5 

excursion (0100 ~ 0800 LT) of November 20
th

, 2002. 

 

R
2
 p-value 

NOx 0.983 0.000 

CO 0.990 0.000 

Sulfate 0.985 0.000 

Nitrate 0.884 0.002 

EC 0.981 0.000 

OC 0.952 0.000 

Al  0.964 0.000 

As 0.099 0.491 

Cd 0.378 0.142 

Cr 0.680 0.023 

Cu 0.892 0.001 

Fe 0.494 0.078 

Mn 0.856 0.003 

Ni 0.785 0.008 

Pb 0.803 0.006 

Se 0.240 0.264 

Zn 0.996 0.000 

9.65 0.049 0.635 

10.4 0.062 0.591 

11.1 0.055 0.613 

12 0.027 0.725 

12.9 0.004 0.889 

13.8 0.004 0.895 

14.9 0.070 0.567 

16 0.165 0.366 

17.2 0.242 0.262 

18.4 0.357 0.157 

19.8 0.542 0.059 

21.3 0.681 0.022 

22.9 0.768 0.010 

24.6 0.793 0.007 

26.4 0.784 0.008 
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28.4 0.791 0.007 

30.5 0.828 0.004 

32.8 0.863 0.002 

35.2 0.881 0.002 

37.9 0.888 0.001 

40.7 0.898 0.001 

43.7 0.911 0.001 

47 0.928 0.000 

50.5 0.943 0.000 

54.2 0.952 0.000 

58.3 0.957 0.000 

62.6 0.961 0.000 

67.3 0.966 0.000 

72.3 0.970 0.000 

77.7 0.976 0.000 

83.5 0.983 0.000 

89.8 0.988 0.000 

96.5 0.989 0.000 

104 0.989 0.000 

111 0.993 0.000 

120 0.997 0.000 

129 0.994 0.000 

138 0.992 0.000 

149 0.992 0.000 

160 0.989 0.000 

172 0.984 0.000 

184 0.972 0.000 

198 0.955 0.000 

213 0.948 0.000 

229 0.936 0.000 

246 0.927 0.001 

264 0.924 0.001 

284 0.937 0.000 

305 0.914 0.001 

328 0.912 0.001 

352 0.929 0.000 

379 0.898 0.001 

407 0.880 0.002 

542 0.984 0.000 

583 0.980 0.000 
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626 0.975 0.000 

673 0.971 0.000 

723 0.963 0.000 

777 0.970 0.000 

835 0.968 0.000 

898 0.973 0.000 

965 0.976 0.000 

1037 0.973 0.000 

1114 0.982 0.000 

1197 0.981 0.000 

1286 0.949 0.000 

1382 0.973 0.000 

1486 0.980 0.000 

1596 0.954 0.000 

1715 0.973 0.000 

1843 0.978 0.000 

1981 0.986 0.000 

2129 0.900 0.001 

2288 0.973 0.000 

2458 0.973 0.000 
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D6 Supplemental 3-hour and decomposed 1-hour sets of SVOC concentrations 
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Figure D4 3-Hour and disassembled hourly concentrations of selected SVOC 

categories in the early morning (0000 ~ 0900 LT) of November 20th, 2002. 
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D7 Supplemental abundance profiles of motor vehicle emissions 

Table D2 Supplemental abundance profiles of motor vehicle emissions obtained by 

direct peak observation (DPO) and windless model analysis (WMA) in the study of 

November 20
th

, 2002 (unit: µg per µg of PM2.5 for criteria gases, and ng per µg of 

PM2.5 for SVOCs). 

Species 
DPO  WMA 

Abundance  Abundance r
2
 p 

Criteria gases          

NO 11.08 ± 4.20  11.94 ± 3.01 0.980 0.000 

NO2 1.29 ± 0.62  1.28 ± 0.32 0.930 0.000 

NOx 12.37 ± 4.82  13.22 ± 4.81 0.980 0.000 

CO 43.30 ± 16.65  46.44 ± 16.07 0.990 0.000 

n-Alkanes          

Nonadecane 1.250 ± 0.064  1.270 ± 0.139 0.983 0.000 

Eicosane 1.180 ± 0.052  1.190 ± 0.120 0.984 0.000 

Heneicosane 1.100 ± 0.064  1.110 ± 0.130 0.981 0.000 

Docosane 0.895 ± 0.040  0.905 ± 0.116 0.960 0.000 

Tricosane 0.643 ± 0.038  0.650 ± 0.102 0.943 0.000 

Tetracosane 0.354 ± 0.023  0.359 ± 0.057 0.947 0.000 

Pentacosane 0.250 ± 0.027  0.245 ± 0.129 0.987 0.000 

Hexacosane 0.114 ± 0.012  0.107 ± 0.039 0.825 0.005 

Heptacosane 0.041 ± 0.010  0.027 ± 0.055 0.073 0.557 

Octacosane 0.033 ± 0.008  0.020 ± 0.047 0.058 0.604 

Nonacosane 0.067 ± 0.014  0.060 ± 0.064 0.230 0.276 

Triacontane 0.050 ± 0.009  0.044 ± 0.028 0.470 0.089 

Hentriacontane 0.053 ± 0.016  0.050 ± 0.024 0.643 0.030 

Dotriacontane 0.022 ± 0.008  0.021 ± 0.317 0.933 0.000 

Tritriacontane 0.017 ± 0.008  0.017 ± 0.014 0.652 0.028 

Tetratriacontane 0.000 ± 0.000  0.000 ± N.A. N.A. N.A. 

Pentatriacontane 0.000 ± 0.000  0.000 ± N.A. N.A. N.A. 

Hexatriacontane 0.000 ± 0.000  0.000 ± N.A. N.A. N.A. 

Iso- and antiso-alkanes          

Isohentriacontane 0.017 ± 0.006  0.017 ± 0.012 0.491 0.079 

Isotritriacontane -0.009 ± 0.002  0.000 ± 0.010 0.866 0.002 
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Hentriacontane, 3-methyl- 0.031 ± 0.010  0.034 ± 0.014 0.962 0.000 

n-Alkanoic acids          

Octanoic Acid 0.286 ± 0.012  0.298 ± 0.033 0.974 0.000 

Nonanoic Acid 0.285 ± 0.011  0.296 ± 0.019 0.995 0.000 

Decanoic Acid 0.088 ± 0.006  0.093 ± 0.023 0.856 0.003 

Undecanoic Acid 0.012 ± 0.002  0.014 ± 0.014 0.265 0.237 

Dodecanoic Acid 0.125 ± 0.007  0.125 ± 0.032 0.847 0.003 

Tridecanoic Acid 0.028 ± 0.002  0.027 ± 0.006 0.883 0.002 

Tetradecanoic Acid 0.113 ± 0.008  0.111 ± 0.073 0.434 0.108 

Pentadecanoic Acid 0.046 ± 0.003  0.042 ± 0.043 0.243 0.262 

Hexadecanoic Acid 0.664 ± 0.033  0.711 ± 0.206 0.802 0.006 

Heptadecanoic Acid 0.049 ± 0.005  0.051 ± 0.012 0.876 0.002 

Octadecanoic Acid 0.778 ± 0.046  0.880 ± 0.168 0.907 0.001 

Nonadecanoic Acid 0.013 ± 0.002  0.014 ± 0.003 0.911 0.001 

Eicosanoic Acid 0.028 ± 0.004  0.031 ± 0.010 0.799 0.007 

Heneicosanoic Acid 0.008 ± 0.002  0.009 ± 0.004 0.704 0.018 

Docosanoic Acid 0.031 ± 0.008  0.036 ± 0.019 0.568 0.050 

Tricosanoic Acid 0.010 ± 0.003  0.011 ± 0.007 0.473 0.088 

Tetracosanoic Acid 0.044 ± 0.016  0.051 ± 0.040 0.373 0.145 

Pentacosanoic Acid 0.005 ± 0.003  0.006 ± 0.006 0.269 0.233 

Hexacosanoic Acid 0.019 ± 0.010  0.024 ± 0.019 0.354 0.159 

Heptacosanoic Acid 0.003 ± 0.002  0.004 ± 0.003 0.351 0.161 

Octacosanoic Acid 0.005 ± 0.005  0.006 ± 0.010 0.092 0.509 

Nonacosanoic Acid 0.001 ± 0.001  0.001 ± 0.002 0.146 0.398 

Triacontanoic Acid 0.002 ± 0.007  0.003 ± 0.005 0.127 0.433 

Hentriacontanoic Acid 0.002 ± 0.001  0.002 ± 0.003 0.967 0.000 

Dotriacontanoic Acid -0.003 ± 0.002  0.000 ± 0.003 0.317 0.188 

Tritriacontanoic Acid 0.000 ± 0.000  0.000 ± N.A. N.A. N.A. 

Tetratriacontanoic Acid 0.000 ± 0.000  0.000 ± N.A. N.A. N.A. 

n-Alkenoic acids          

9-Hexadecenoic Acid 0.010 ± 0.002  0.002 ± 0.068 0.000 0.970 

9-Octadecenoic Acid -0.088 ± 0.067  0.000 ± 0.203 0.918 0.001 

Aliphatic dicarboxylic acids          

Butanedioic Acid 0.001 ± 0.000  0.001 ± 0.000 0.908 0.001 
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Pentanedioic Acid 0.001 ± 0.001  0.000 ± 0.004 0.064 0.586 

Hexanedioic Acid 0.000 ± 0.000  0.000 ± 0.000 N.A. N.A. 

Nonanedioic Acid 0.003 ± 0.001  0.004 ± 0.002 0.564 0.052 

Aliphatic polycarboxylic 

acids 
         

1,2-Benzenedicarboxylic 

Acid 
0.009 ± 0.002  0.009 ± 0.004 0.783 0.008 

1,4-Benzenedicarboxylic 

Acid 
-0.001 ± 0.000  0.000 ± 0.002 0.151 0.388 

1,3-Benzenedicarboxylic 

Acid 
0.000 ± 0.000  0.000 ± 0.000 0.509 0.072 

1,2-Benzenedicarboxylic 

acid, 4-methyl- 
0.000 ± 0.000  0.000 ± 0.000 N.A. N.A. 

2-Alkanones          

2-Pentadecanone, 6,10,14-

trimethyl- 
0.034 ± 0.007  0.035 ± 0.019 0.558 0.054 

Alkylcyclohexanes          

Cyclohexane, undecyl- 0.139 ± 0.016  0.142 ± 0.026 0.968 0.000 

Cyclohexane, dodecyl-  0.086 ± 0.007  0.087 ± 0.012 0.984 0.000 

Cyclohexane, tridecyl-  0.069 ± 0.006  0.069 ± 0.013 0.977 0.000 

Cyclohexane, tetradecyl- 0.054 ± 0.004  0.054 ± 0.009 0.980 0.000 

Cyclohexane, pentadecyl- 0.075 ± 0.006  0.075 ± 0.013 0.954 0.000 

Cyclohexane, hexadecyl- 0.084 ± 0.007  0.084 ± 0.015 0.943 0.000 

Cyclohexane, heptadecyl-  0.104 ± 0.009  0.103 ± 0.020 0.934 0.000 

Cyclohexane, octadecyl- 0.085 ± 0.008  0.085 ± 0.015 0.959 0.000 

Cyclohexane, nonadecyl- 0.062 ± 0.007  0.062 ± 0.012 0.954 0.000 

Cyclohexane, eicosyl-  0.033 ± 0.004  0.033 ± 0.010 0.866 0.002 

Cyclohexane, heneicosyl- 0.017 ± 0.002  0.017 ± 0.003 0.996 0.000 

Cyclohexane, docosyl- 0.005 ± 0.001  0.005 ± 0.002 0.905 0.001 

Resin acids          

1-Phenanthrenecarboxylic 

acid 
0.005 ± 0.001  0.004 ± 0.003 0.486 0.082 

1-Phenanthrenecarboxylic 

acid, 7-ethenyl-

1,2,3,4,4a,4b,5,6,7,9,10,10a-

dodecahydro-1,4a,7-

0.003 ± 0.001  0.004 ± 0.001 0.822 0.005 
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trimethyl-, 

(1R,4aR,4bS,7R,10aR)- 

1-Phenanthrenecarboxylic 

acid, 7-ethenyl-

1,2,3,4,4a,4b,5,6,7,8,10,10a-

dodecahydro-1,4a,7-

trimethyl-, 

(1R,4aR,4bS,7S,10aR)- 

0.011 ± 0.000  0.011 ± 0.002 0.863 0.002 

1-Phenanthrenecarboxylic 

acid, 1,2,3,4,4a,9,10,10a-

octahydro-1,4a-dimethyl-7-

(1-methylethyl)-, 

(1R,4aS,10aR)- 

0.054 ± 0.009  0.052 ± 0.040 0.646 0.029 

1-Phenanthrenecarboxylic 

acid, 1,2,3,4,4a,9,10,10a-

octahydro-1,4a-dimethyl-7-

(1-methylethyl)-9-oxo-, 

(1R,4aS,10aR)-  

0.028 ± 0.005  0.034 ± 0.009 0.843 0.003 

Phenolic wood markers          

Benzaldehyde, 4-hydroxy-

3,5-dimethoxy- 
-0.016 ± 0.015  0.000 ± 0.026 0.048 0.635 

Ethanone, 1-(4-hydroxy-3,5-

dimethoxyphenyl)- 
0.000 ± 0.004  0.002 ± 0.006 0.041 0.662 

Benzoic acid, 4-hydroxy-3,5-

dimethoxy- 
0.011 ± 0.002  0.012 ± 0.009 0.732 0.014 

Sugars          

.beta.-D-Glucopyranose, 1,6-

anhydro- 
0.547 ± 0.375  1.060 ± 1.057 0.298 0.205 

Steroids          

Cholest-5-en-3-ol (3.beta)- 0.036 ± 0.013  0.034 ± 0.043 0.538 0.061 

Stigmast-5-en-3-ol, (3.beta)- 0.019 ± 0.016  0.019 ± 0.081 0.967 0.000 

Thiazoles          

Benzothiazole 0.112 ± 0.038  0.111 ± 0.154 0.149 0.392 

Pentacyclic triterpanes          

20,29,30-Trinorlupane, 

(17.alpha.)- 
0.048 ± 0.006  0.048 ± 0.011 0.929 0.000 

A'-Neo-22,29,30- 0.049 ± 0.005  0.048 ± 0.011 0.896 0.001 
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trinorgammacerane, 

(17.alpha.)- 

A'-Neo-30-norgammacerane, 

(17.alpha.)- 
0.205 ± 0.019  0.203 ± 0.037 0.946 0.000 

A'-Neogammacerane, 

(17.alpha.)- 
0.104 ± 0.009  0.103 ± 0.019 0.934 0.000 

A'-Neo-30-norgammacerane, 

22-ethyl-, (17.alpha.,22S)- 
0.052 ± 0.005  0.052 ± 0.009 0.955 0.000 

A'-Neo-30-norgammacerane, 

22-ethyl-, (17.alpha.,22R)- 
0.039 ± 0.004  0.039 ± 0.007 0.965 0.000 

A'-Neo-30-norgammacerane, 

22-propyl-, (17.alpha.,22S)- 
0.028 ± 0.003  0.028 ± 0.005 0.943 0.000 

A'-Neo-30-norgammacerane, 

22-propyl-, (17.alpha.,22R)- 
0.020 ± 0.002  0.020 ± 0.004 0.920 0.001 

PAHs          

Phenanthrene 0.862 ± 0.100  0.873 ± 0.186 0.979 0.000 

Anthracene 0.077 ± 0.010  0.077 ± 0.020 0.976 0.000 

4H-

Cyclopenta[def]phenanthrene 
0.027 ± 0.003  0.027 ± 0.010 0.988 0.000 

Fluoranthene 0.086 ± 0.010  0.086 ± 0.032 0.984 0.000 

Pyrene 0.149 ± 0.015  0.149 ± 0.044 0.998 0.000 

Benz[a]anthracene 0.028 ± 0.004  0.028 ± 0.006 0.940 0.000 

Chrysene and Triphenylene 0.041 ± 0.007  0.041 ± 0.011 0.961 0.000 

Benz[e]acephenathrylene 0.033 ± 0.006  0.033 ± 0.010 0.905 0.001 

Benzo[k]fluoranthene 0.009 ± 0.002  0.009 ± 0.003 0.913 0.001 

Benzo[j]fluoranthene 0.004 ± 0.001  0.005 ± 0.002 0.823 0.005 

Benzo[e]pyrene 0.024 ± 0.004  0.024 ± 0.008 0.932 0.000 

Benzo[a]pyrene 0.020 ± 0.005  0.021 ± 0.008 0.783 0.008 

Perylene 0.003 ± 0.001  0.003 ± 0.001 0.808 0.006 

Indeno[1,2,3-cd]pyrene 0.025 ± 0.005  0.025 ± 0.011 0.699 0.019 

Benzo[ghi]perylene 0.037 ± 0.008  0.037 ± 0.015 0.784 0.008 

Dibenz[a,h]anthracene 0.001 ± 0.000  0.001 ± 0.001 0.434 0.107 

Coronene 0.018 ± 0.005  0.017 ± 0.010 0.622 0.035 

Oxy-PAHs          

9H-Fluoren-9-one 0.165 ± 0.024  0.166 ± 0.057 0.991 0.000 
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9,10-Anthracenedione 0.030 ± 0.009  0.031 ± 0.015 0.697 0.019 

7H-Benz[de]anthracen-7-one 0.036 ± 0.005  0.036 ± 0.010 0.911 0.001 

Benz[a]anthracene-7,12-

dione 
0.006 ± 0.001  0.006 ± 0.006 0.910 0.001 

N-Hetero-PAHs          

Benzo[h]quinoline 0.001 ± 0.000  0.001 ± 0.000 0.787 0.008 

S-Hetero-PAHs          

Dibenzothiophene 0.122 ± 0.019  0.124 ± 0.030 0.977 0.000 

Secondary biogenic oxidation products 

Bicyclo[3.1.1]heptan-2-one, 

6,6-dimethyl-  
-0.048 ± 0.012  0.000 ± 0.028 0.562 0.052 

Cyclobutanecarboxylic acid, 

3-acetyl-2,2-dimethyl- 
-0.004 ± 0.002  0.001 ± 0.000 0.003 0.904 

Cyclobutaneacetic acid, 3-

acetyl-2,2-dimethyl-, 

(1R,3R)-rel- 

-0.063 ± 0.012  0.000 ± 0.313 0.049 0.633 
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Appendix E 

Particle size distribution measured at Ponca Street site on August 8
th

, 2002 
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Figure E1 Contour plot of PM2.5 particle size distribution at the Ponca street supersite 

on August 8
th

, 2002 (left panel: number size distribution; and right: volume size 

distribution). 

     Figure E1 shows the 5-minute PM2.5 particle size distribution measured with 

SMPS and APS at the Ponca street supersite on August 8
th

, 2002. The SMPS and APS 

measurements and the data processing have been described in Chapter 4. 

     As shown in Figure E1, an Aitken mode with a maximum at ~ 80 nm in the 

contour plot of number size distribution (NSD) and a corresponding accumulation 

mode with a maximum at ~ 250 nm in the volume size distribution (VSD) were 

observed in the evening (i.e., 1930 ~ 2130 LT).  
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Glossary 

 

χ/Q: Gaussian plume dispersion factors (s m
-3

) 

ABL: Atmospheric Boundary Layer 

ACH: Alkylcyclohexanes 

ADCA: n-Aliphatic dicarboxylic acid 

APCA: Aromatic polycarboxylic acid 

APS: Aerodynamic Particle Sizer 

BRZ: Big River Zinc Corporation  

BS: Brandon Shores 

CAMMS: Continuous Ambient Mass Monitoring System 

CAMx: Comprehensive Air-quality Model with Extensions 

CBL: Convective Boundary Layer 

CEM: Continuous Emissions Monitor 

CFPP: Coal-fired Power Plant 

CMAQ: Community Multi-scale Air Quality Model 

CMB: Chemical Mass Balance 

COPREM: Constrained Physical Receptor Model 

DPO: Direct peak observation 

EC: Elemental carbon 

EPA: United States Environmental Protection Agency 

ESP: Electrostatic Precipitator 

FA: Factor Analysis 
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Fa2: Fractions of the predictions within a factor of 2 of the observed values 

GPM: Gaussian Plume Model 

HDDV: Heavy-duty diesel vehicle 

HMW: How molecular weight 

HMWOPAHs: How molecular weight oxy-PAH 

HMWPAHs: How molecular weight PAH 

LB: Lower bound 

LMW: Low molecular weight 

LMWOPAHs: Low molecular weight oxy-PAH 

LMWPAHs: Low molecular weight PAH 

ISCST3: Industrial Source Complex Short Term Plume Model 3 

MAGE: Mean Absolute Gross Error 

MB: Mean Bias 

MC: Multiple Cyclone 

MDE: Maryland Department of Environment 

ME: Multilinear Engine 

MFB: Mean Fractional Bias 

MLR: Multiple Linear Regression 

MLD: Mixed layer depth 

MNB: Mean Normalized Bias 

MNGE: Mean Normalized Gross Error 

NAAQS: National Ambient Air Quality Standard 

NEI: National Emission Inventory 
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NET: National Emission Trends (precursor to NEI) 

NMSE: Normalized Mean Square Error 

NSD: Number size distribution 

NSRDB: National Solar Radiation Database 

OC: Organic carbon 

OFPP: Oil-fired Power Plant 

PAH: Polycyclic aromatic hydrocarbon 

PCA: Principle Component Analysis 

PCTT: Pentacyclic triterpane 

PDRM: Pseudo-Deterministic Receptor Model 

PM: Particulate matter 

PM2.5: Particulate matter with an aerodynamic diameter < 2.5 µm 

PMF: Positive Matrix Factorization 

RH: Relative humidity 

RMSE: Root Mean Square Error 

RSMS: Rapid Single-particle Mass Spectrometer 

SCC: Source Classification Code 

SCE: Source Contribution Estimates 

SCR: Selective Catalytic Reduction 

SEAS: Semi-continuous Elements in Aerosol Sampler 

SMPS: Scanning Mobility Particle Sizer 

SPECIATE: EPA SPECIATE database of source emission profiles 

SVOC: Semi-volatile organic carbon 
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TAG: Thermal Desorption Aerosol GC-MS 

TC: Total carbon 

TEOM: Tapered Element Oscillating Microbalance 

TGPM: Trajectory-driven Gaussian Plume Model 

TRI: Toxics Release Inventory 

WS: Wagner Station 

VOC: Volatile organic compound 

VSD: Volume size distribution 

UB: Upper bound 

UFP: Ultrafine particles with an aerodynamic diameter < 0.1 µm 

UNMIX: EPA UNMIX Model 

WMA: Windless model analysis 
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