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Abstract

Given a set of n objects, each characterized by d attributes specified at m fixed time
instances, we are interested in the problem of designing space efficient indexing structures
such that arbitrary temporal range search queries can be handled efficiently. When m = 1,
our problem reduces to the d-dimensional orthogonal search problem. We establish efficient
data structures to handle several classes of the general problem. Our results include a linear
size data structure that enables a query time of O(lognlogm/loglogn + f) for one-sided
queries when d = 1, where f is the number of objects satisfying the query. A similar result
is shown for counting queries. We also show that the most general problem can be solved
with a polylogarithmic query time using nonlinear space data structures.

1 Introduction

In this paper, we introduce a framework for exploring temporal patterns of a set of objects
and discuss the design of indexing structures for handling temporal orthogonal range queries
in such a framework. We assume that each object is characterized by a set of attributes,
whose values are given for a sequence of time snapshots. The temporal patterns of interest
can be defined as the values of certain attributes remaining within certain bounds, changing
according to a given pattern (say increasing or decreasing), or satisfying certain statistical
distributions. We focus here on temporal patterns characterized by orthogonal range values
over the attributes. More specifically, we are aiming to design indexing structures to quickly
find objects whose attributes fall within a set of ranges during a given time period specified
at query time. In the dynamic case, either objects or time snapshots can be added or deleted.
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Our framework is very general and encompasses problems in multidimensional range search
and temporal range search for data time series.

More formally, let S be a set of n objects {O1, 04, -, 0,}, each of which is characterized
by a set of d attributes whose values change over time. We are given m snapshots of each
object at time instances t1,%5,...,%,. The set of values of the d attributes of object O; at
time instance ¢; is denoted as a vector v(i,5) = [v}(1),v!(2),...,vl(d)].

We are interested in developing a data structure for S so that the following types of
queries, called temporal range queries, can be handled very quickly:

Given two vectors a = [aj,az,--+,a4] and b = [by,by,---,by], and two time
instances ¢, and Z.. Find the set @) of objects such that for every O; € @,
ar <vj(k) <bgforall<k<dandt; <t; <t..

Note that the general multidimensional orthogonal range search is a special case of our
problem corresponding to a single time snapshot. Typically, we measure the complexity in
terms of the storage cost of the data structure and the query time as functions of n,m, and
d, where typically d is considered to be a constant.

Many applications fall in a natural way under our general framework. The following is a
list of a few such examples.

o Climatologists are often interested in studying the climate change patterns for certain
geographical areas, each characterized by a set of environmental variables such as
temperature, precipitation, humidity, etc. Given a time series of such information for
n regions, one would like to quickly explore relationships among such regions by asking
queries of the following type: determine the regions where the annual precipitation is
above 40 inches and the summer temperature is above 70°F between the years 1965

and 1975.

o In the stock market, each stock can be characterized by its daily opening price, closing
price, and trading volume. Related interesting queries that fall under our framework
are of the following type: determine the stocks, each of whose daily opening price is
less than $2 and whose daily trading volume is larger than 200 million shares during

the year 2000.

e As an application related to data warehousing, consider a retail chain that has stores
across the country, each of which reports their sales on a daily basis. A typical query
will for example be to identify the stores whose sales exceeded $100,000 for each of the
past 12 months.

o Consider a set of n cities, each characterized by annual demographic and health data,
for a period of 30 years. In exploring patterns among these cities, one may be interested

in asking queries about the number of cities that had a high cancer rate and a high
ozone level between 1990 and 2000.

The d-dimensional orthogonal range search problem, which is a special case of our prob-
lem, has been studied extensively in the literature. The best results do achieve linear space
and polylogarithmic query time for three-sided reporting queries and four-sided counting



queries for d = 2 [13, 3], and for dominance reporting queries for d = 3. Otherwise, all
fast query time algorithms require nonlinear space, sometimes coupled with matching lower
bounds under certain computational models[2, 5, 4]. Note that we can’t treat our problem as
an orthogonal range search problem by simply treating the time snapshots as just an extra
time dimension to the d dimensions corresponding to the attributes. This is the case since
the values of an object’s attributes at different time instances cannot be treated simply as
independent of each other. However we can combine all the attribute values of an object
together to specify that object, resulting in a (md)-dimensional range search problem, which
is clearly quite undesirable, especially for large m.

Another related class of problems that have been studied in the literature, especially the
database literature, deals with a time series of data by appending a time stamp to each piece
of data separately. Hence such an approach will be quite inefficient to capture temporal
information about single objects since it will have to process the values at all the time
steps between ¢, and t.. Examples of such techniques include those based on persistent data
structures [6], such as the Multiversion B-tree [10] and the Multiversion Access Methods [20],
and the Overlapping B*t-trees [12] and its extensions such as the Historical R-tree [14], the
HR*-tree [17], and the Overlapping Linear Quadtrees [18, 19]. To answer a query that
involves a time period, the query time of these methods will often depend on the length of
the time period, which is undesirable for our general problem since the temporal range query
could cover a very long time period characterized by the two parameters , and ¢..

Another related topic involves the so-called kinetic data structures, which are used for
indexing moving objects. Queries similar to ours involving both time periods and positions
of objects have been studied, for example in the work of Ararwal et al. [1] and Saltenis et.
al [15]. However, the objects are considered there to be points moving along a straight line
and at a consistent speed. As a result, the positions of the objects need not be explicitly
stored. In our case, such a problem will be formulated as the positions of each object at
different time instances (that are the same for all the objects), without any assumption about
expected trajectories or speeds.

Before stating our main results, let us introduce two main variations of temporal range
queries, which are similar to those appearing in orthogonal range search queries. The report-
ing query requires that a list of the objects (or their indices) be generated as an answer to
the query, while the counting query requires only that only the number of objects satistying
the query be generated. Our results include the following:

o A linear space data structure that handles temporal range queries for a single object
in O(1) time, assuming the number d of attributes is constant.

o Two data structures that handle temporal one-sided range reporting queries for a set
of objects in O(logmlogn + f) !, and O(logmlogn/loglogn + f) time respectively,
the first using O(nm) space, and the second using O(mn log® n), where f is the number
of objects satisfying the query, and d = 1.

o Two data structures that use O(nm log(nm)) and O(nm log' ™ (nm)) space respectively
to answer the temporal one-sided range counting queries. The first data structure

'In this paper, we always assume the logarithmic operations to be of base 2.



enables O(log*(nm)) query time and the second enables O((log(nm)/ loglog(nm))?)
time, under the assumption that d = 1.

e By a reduction to the 2d-dimensional dominance problem, the most general problem
can be solved in polylogarithmic query time using O(nm?*polylog(n)) space. When m
is extremely large, we show that it is possible to use o(nm?) space to achieve polylog-
arithmic query time.

Before proceeding, we notice that the actual time instances {t1, 15, - ,¢,,} can be replaced
by their subscripts {1,2,---,m}. By doing so, we introduce the additional complexity of
having to convert t5 and 1. specified by the query to [y and [y respectively, where #; is
the first time instance no earlier than ¢, and ¢;, is the last time instance no later than ..
This conversion can be done in O(logm) time and O(m) space using binary search or an
asymptotically faster O(log m/loglogm) algorithm with a larger constant behind the big-O
notation and the same O(m) space using the fusion tree of Fredman and Willard [7]. In
the remaining of this paper, we assume that the time instances are represented by integers
{1,2,---,m} and the time interval in the query is represented by two integers [y and I,. For
brevity, we will use the [i..7] to denote the set of integers {7, + 1,---,5}. Without causing
confusion, we will call the set of contiguous integers [i..j] a time period.

The remainder of the paper is organized as follows. The next section discusses a special
version of the temporal range search problem, which involves only a single object. The data
structure for the reporting case of temporal one-sided range queries is covered in Section 3,
while the counting version is covered in Section 4. In Section 5, we deal with the two-sided
temporal range query, and conclude in Section 6.

2 Preliminaries: Handling Range Queries of a Single
Object

Consider the case of temporal range queries involving only a single object O. We provide
a simple solution to this case, which will be used to handle the more general case. Let the
values of the attributes of O at time instance j be [v/(1),v/(2),---,v’(d)]. Given two real
vectors a = [ay,az, -+, ;] and b = [by, by, -+, ], and two time instances {1 and [, we will
describe an efficient method to test whether the following predicate holds:

P: For every time instances j that satisfies [ < 57 <[y, ap < vj(k) < b, for all
k between 1 and d.

Since we are assuming that d is a fixed constant, we can restrict ourselves to the following
case. Let the object O be specified by [v!,v?, -+ v™], where each v® is a real number.
We develop a data structure that can be used to test the following predicate for any given
parameters [y, [, and a:

P": For every time instances j satisfying [; < j <y, v/ > a.

We start by making the following straightforward observation.



Observation 1 A predicate of type P’ is true if and only if min{v?|j € [l,..13]} > a.

Using this observation, our problem is reduced to finding the minimum value v’ of the object
during the time period [l1..l5] and comparing it against the value of a.

The problem of finding the minimum value in time period [/;..l5] can be reduced to the
problem of finding the nearest common ancestor in the so called Cartesian tree, as described
in [8].

A Cartesian tree [21] for a sequence of m real numbers is a binary tree with m nodes. In
our case, a Cartesian tree for time instances [l..r] with [ < r has » — [+ 1 nodes. The root
stores the smallest value v/ over the time period [[..r]. If there are multiple v/’s with the
smallest value, the earliest one is chosen to be stored at the root. The left subtree of the
root is the Cartesian tree for time instances [[..(¢ — 1)] and the right subtree is the Cartesian
tree for the time instances [(¢ + 1)..r]. The left (resp. right) tree is null if i = [ (resp. ¢ = r).
The tree nodes are labeled [ through r according to the in-order traversal of the tree (which
correspond to their time instances). Figure 1 gives an example of the Cartesian tree.

Figure 1: A Cartesian tree for the sequence [8,4,6,3,5,1,7,8]. The number outside each
node represents the time instance of the attribute value stored at the node.

It is easy to realize that the smallest value among {v’,...,v?} is the one stored in the
nearest common ancestor of nodes ¢ and j. This problem was addressed in [9], where the
following result is shown.

Lemma 1 Given a collection of rooted trees with n vertices, the nearest common ancestor
of any two vertices can be found in O(1) time, provided that pointers to these two vertices
are given as input. This algorithm uses O(n) space.

It is easy to see if a tree is complete, we can easily solve the nearest common ancestor
problem in linear space and constant time by labeling the tree nodes in the order of the in-
order traversal and performing bit-operations on the labels corresponding to the two vertices.
Harel and Tarjan solve the the same problem for any arbitrary tree by first transforming
it into a compressed tree of logarithmic depth, augmenting the subtrees of it into complete



trees without asymptotically increasing the overall storage cost, and applying the technique
for complete trees. For details see [9].
Given the above lemma, we immediately have the following result.

Theorem 1 Predicate P' can be evaluated using O(1) time with O(m) space data structure.

It we build a Cartesian tree where an internal node stores the maximum instead of the
minimum value, we can evaluate predicates involving upper bounds instead of lower bounds.
We call the former Cartesian tree a minimum Cartesian tree and the latter a mazimum
Cartesian tree. By building both the minimum and the maximum Cartesian trees for each
of the d attributes, we will be able to evaluate the general P predicates in linear space and
constant time, which is optimal.

Corollary 1 A P predicate can be evaluated using O(1) time with O(m) space data structure.

3 Handling One-Sided Queries for an Arbitrary Num-
ber of Objects

In this section, we deal with temporal range queries for n objects with only one attribute,
that is d = 1. Let v] denote the value of object O; at time instance j. We want to preprocess
the data and construct a linear size data structure so that queries of the following type can
be answered quickly:

(1: Given a tuple (1,13, a), with [; < [y, report all objects whose attributes are
greater than or equal to a for all time instances between [y and .

We call such queries temporal one-sided reporting queries.

Observation 1 is again very important in answering queries of type (J;. A straightforward
approach to solve our problem would be to determine for each possible time interval the set
of minimal values, one for each object, and store the minima corresponding to each time
interval in a sorted list. A query can then be immediately handled using the sorted list
corresponding to the time interval [y, l;]. However, the storage cost would then be O(nm?),
which is quite high especially in the case when m is much larger then n. We will develop an
alternative strategy that requires only linear space. 4

Assume that we have built a Cartesian tree C; for object O;. Then, each attribute v] of
this object can be associated with a sequence of contiguous time instances during which vf is
the smallest. We call this sequence the dominant interval of vf In fact, the dominant interval
corresponds to the set of nodes in the subtree rooted at the node j in C;. For example, the
value v of the object 7 whose corresponding Cartesian tree is shown in Figure 1 is associated
with time interval [1,5]. Let [s]..¢]] be the dominant interval of attribute v;.

Consider the set of nm tuples (vf, 5{, ef, i,7). One way for answering a ()1 query would be
to identify those 5-tuples that satisfy [s7..e/] D [ly..lo] and v} > a. However an object can be
reported many times, which defeats our goal of achieving a query time of O(log®(nm) + f),
where ¢ is a small constant and f is the number of objects satisfying the query. Consider



for example the object given in Figure 1. A query with [; = 2, [, = 3, and ¢ = 0 would
report it three times, for the 5-tuples that correspond to time instances 2, 4, and 6. In fact,
an object can be reported m times in the worst case.

This problem is taking care of in the next lemma.

Lemma 2 An object O; should be reported if and only if there exist a unique 5-tuple
(vl,sl,e27 ', J) such that the following conditions are true: [SZ Z] 2 [h..l); 5 € [h.1l); and
o > a

Proof:

Suppose an object O; needs to be reported. This means its values during the time period
[11..l3] are no smaller than a. Let v! = min{v!|l; < I < l;}. It is obvious that the 5-
tuple (vl,sl,e27 ,J) satisfies the three conditions in Lemma 2. On the other hand, it is
straightforward to see that the existence of such a 5-tuple ensures the presence of object
O; in the answer to the query. The uniqueness of the 5-tuple (vl,sl,e27 ,J) s guaranteed
by the deﬁmtlon of dominant mtervals [s]..e!]. Indeed, suppose we have another 5-tuples

(v! s el J") that satisfies [s el ] [ts..te], J' € [ts.-tc], and v!" > a. By definition, both

(2R A ’L b 7
7 and j’ are the smallest values during the time interval [4..[;]. Without lose of generahty,
assume j < j’, then s/ > j, which is in contradiction to the condition that 3] <[ <jy. 0O

Lemma 2 reduces the problem of determining the objects satisfying the query to finding
a H-tuple for each such object, which satisfies the three stated conditions. To solve the latter
problem, we first single out those attributes that were taken during the time period [ly, [5]
and then filter them using the remaining two conditions.

We first construct a balanced binary tree T' based on the m time instances. The jth
leaf node starting from the left corresponds to time instance j. Each node v of this tree is
associated with a set S(v) of n tuples, one from each object. If v is the jth leaf node, then
S(v) = {(vl,s],el,i,j)li = 1,...,n}. If v is an internal node with two children u and w
and the b-tuples of object O; in S(u) and S(w) are (vfl,sfl, et i,71) and (v 2 gl el iy 72)
respectively, then the 5-tuple of object O; in S(v) is (v{, s{, €], 1 ,j) where j is either j; or ja,
depending on whether [s/*..e!'] D [s2..e?] or [s7..e?] D [s/"..e!']. (The reason why one and
only one of the above conditions must be true should be easy to understand by recalling the
definition of dominant intervals.) To give an example, let us consider the case where n = 2
and m = 8. The values of the attributes of the two objects and the corresponding 5-tuples
are given in Table 1. Figure 2 gives the corresponding tree structure.

Given a ()1 query (1, 1y, a), we can easily find the set of at most log m allocation nodes in
T, using the interval [l,15]. An allocation node is a node whose corresponding time interval
is fully contained in [l1, /5] and that of whose parent is not. If the query time interval is
[2..6], for the example given in Figure 2, then the allocation nodes are b, k, and 1. For each
allocation node v, we know that all the n samples in S(v) are taken during the time period
[l1,{3]. Therefore, if a 5-tuple (vl,sz,e“ i,7) € S(v) satisfies [s]..e]] D [l1,15] and v] > a,
then O; should be reported. Otherwise, object O; should not be reported. In either case,
no further search on v’s descendants is needed. This is true because of the following. First,
if O; is reported at node v, then there is no need to look for O; any more. Second, if O;
is not reported at v, this means either [s..el] 2 [l1..l) or v/ < a. If the former is true,

i

then no tuple of O; stored in the descendants of v can cover [ly..[5] because [s]..€]] covers



object Oy object Oy

j | value | 5-tuple | value | 5-tuple

1 8 (8,1,1,1,1) 5 (5,1,1,2,1)
2 4 (4,1,3,1,2) 2 (2,1,3,2,2)
3 6 (6,3,3,1,3) 4 (4,3,3,2,3)
4 3 (3,1,5,1,4) 1 (1,1,8,2,4)
5 5 (5,5,5,1,5) 7 (7,5,5,2,5)
6 1 (1,1,8,1,6) 3 (3,5,8,2,6)
7 7 (7,7,7,1,7) 6 (6,7,8,2,7)
8 2 (2,7,8,1,8) 8 (8,8,8,2,8)

Table 1: The values of two objects

(11,816)

(1,1,8,16)

(31514)

81111 (41312 (63313 (31514 (55515 (1,1816) (7.7,71,7) (27818)
(51121 (21322 (43323 (11824) (75525) (35826) (67827 (888238)

Figure 2: The tree structure corresponding to the data given in Table 1. Each node contains
two H-tuples, one from each object.

the dominant intervals of all the other values of O; stored in the subtree rooted at v. If the
latter is true, then we are sure O; should not be reported at all.

One final note is that, even though an object is represented multiples times in the form
of its tuples, it will be reported at most once. This can be justified as follows. If an object is
reported, then only one of its m tuples satisfies the conditions derived from the query. Note
that even though a tuple may be stored in up to log m nodes, these nodes form a partial path
from the root to a leaf node and, as a result, only the node at the highest level corresponding
to [l1, 1] will be considered. S o

For each node v, looking for 5-tuples (v}, s!,el,7,7) € S(v) that satisfy [s]..e]] D [I1, 5]
and v > a is equivalent to a three-dimensional dominance reporting problem, which can
be solved in O(logn + f(v)) time using the data structure of Makris and Tsakalidis [11],
which we call the dominance tree. Here f(v) is the number of objects reported when node
v is visited. Note that there are 2m — 1 nodes in the tree and each node is associated with



a dominance tree of size O(n). The overall size of the data structure is O(nm). A query
process involves identifying the O(log m) allocation nodes in O(log m) time and searching the
dominance trees associated with these allocation nodes. Hence O(logn + f(v)) time is spent
at each such node v. Therefore, the complexity of the overall algorithm is O(lognlog m+ f),
where f is total number of objects reported.

In [16], we provide a faster algorithm for solving the the three-dominance query problem.
The algorithm uses O(nlog®n) space and O(logn/loglogn + f) query time, where € is an
arbitrarily small positive constant. Using this data structure instead of the dominance tree,
we can further reduce the query complexity to O(log mlogn/loglogn + f) at the expense
of increasing the storage cost to O(mnlog®n). We thus have the following theorem.

Theorem 2 Given n objects, each specified by the values of its attribute at m time in-
stances, we can build an indexing structure so that any one-sided reporting query can be
answered in O(lognlogm + f) time and O(nm) space, or O(logmlogn/loglogn + f) time
and O(mnlog®n) space, where [ is the number of objects satisfying the query and € is an
arbitrarily small positive constant.

We next consider the counting query counterpart.

4 Handling One-Sided Counting Queries

In this section, we consider the following temporal range counting queries.

(o Given a tuple (I1, 12, a), with [; < Iy, determine the number of objects whose
values are greater than or equal to a for all time instances between [; and

ls.

The conditions stated in Lemma 2 (Section 3) can be expressed as 3{ <L <y, < ef,
and v} > a; and there is at most one such instance. Hence the answer to the query is
|A(l, 12, )|, where A(ly, lz,a) ={(4,5)|s] <11 < 5,5 <lh<el, and v] > a}.

Let

U(h.ly,a) = {(i,j)|v] > a},

Bi(h Iy, a) = {(i,j)|la < j and v} > a},

By(ly,ly,a) = {(i,5)|ly > e} and v} > a},

Bs(ly,ly,a) = {(i, )|l < s} and v} > a},

By(ly,ly,a) = {(i,j)|l > j and v] > a},

Ci(ly, by, a) = {(5, /)|l < sl,ly < j and v} > a},
Co(l, lzya) = {(i,§)|l > j, 1o < j and v} > a},
Cs(ly, Iy a) = {(,§)|ly < s1,1, > € and v} > a}, and



Ca(ly, Iy, a) = {(i,§)|lh > 7.1, > €l and v! > a}.
We have the following lemma:
Lemma 3 [A| = [U| — |Bi| — [Ba| — [Bs| — |Ba| + [C1] + [Co] + [Cs] + [Tl

Proof:
It is easy to see that A = U — A = By U B, U B3 U By. Thus, [A] = Y- 544 |Bi| —
Zi,je{1,2,3,4},i;£j |B2 N B]| + Zi,j,ke{1,2,3,4},i;£j7ék |B2 N B]‘ N Bk| — | ﬂi:1727374 B2| It is clear the
third and the fourth terms in the right hand side of this equation are both zero. As for
the second term, the only four non-empty intersections are By N Bs, By N By, By N Bs, and
By N By, which correspond to the sets Cy, Cy, (5, Cy respectively. O

The problem of determining the size of each of the sets U, B; or C; can be viewed as a
special version of three-dimensional dominance counting problem defined as follows:

Q5 Given a set 'V of n three dimensional points, preprocess V. so that given a
point (x,y, z), the number of points in V that are dominated by (x,y,z) can
be reported efficiently.

Unlike the reporting case, algorithms for the three-dimensional dominance counting prob-
lem that have linear space and polylogarithmic query time are not known to the authors’ best
knowledge. However Chazelle gives a linear space and O(logn) time algorithm [3] for the
two-dimensional case. Using the scheme of the range tree, his result can easily be extended
to the three-dimensional case by first building a binary search tree on the x-coordinates, and
then associate with each node the data structure for answering two-dimensional dominance
queries involving only the y- and z-coordinates. The resulting data structure provides an
O(nlogn) space and O(log”n) time solution.

By using the fusion tree techniques, we were able to improve the query time to
O((logn/loglogn)?) at the expense of increasing the storage cost by a factor of
O(log®n/loglogn). For details, see [16]. Since we have a total of nm tuples, Theorem 3
follows.

Theorem 3 Given n objects, each characterized by the values of its attribute at m time
instances, we can preprocess the input so that any one-sided counting query can be answered
in O(log®(nm)) time using an O(nmlog(nm)) space data structure, or

O((log(nm)/ loglog(nm))?) time using an O(nmlog't(
ture.

nm)/loglog(nm)) space data struc-

5 Fast Algorithms for Handling Two-Sided Queries

In this section, we address the general type of queries for which the values of the objects to
be reported are bounded between two values a and b during the time period [l;..l3]. More
specifically,

@3: Given a tuple (I, 13, a,b), with [y <1y and @ < b, report all objects O;, such
that « <v! <bforall j =1,...,1.

10



The following is a direct extension of Observation 1.

Observation 2 A4n object O; should be reported for a Q)3 query if and only if min{vﬂj €
[l1..15]} > a and max{v]|j € [..[5]} <b.

In this section, we first show that, even for an arbitrary number d of attributes, the
two-sided queries can be handled fast if we are willing to use O(nm?polylog(n)) space for
the indexing structure. We later show that we can achieve fast query time using o(nm?)
space in the case when m is extremely large. We start by looking at the case when d = 1,
which admits a simple solution.

To achieve a polylogarithmic query time, we compute for each pair of (#1,%2) € [1..m] x
[1..m] with #; < , the minimum value m{""™ and maximum value M;*" for each object
O; and index the n minimum-maximum pairs in a suitable data structure 7% designed to
efficiently handle two-dimensional dominance queries. Pointers to these O(m?) structures
can be stored in a array to allow constant-time access. Given any query (I, ls, a,b), we use
(11,15) to locate the appropriate data structure T2 in constant time and use it to answer
the two-dimensional dominance query: m;"* > a and M/*"* < b.

A possible data structure for T2 is the priority tree [13] or the improved version of the
priority tree that appeared in [22]. The former allows O(log n+ f) query time and the latter
allows O(logn/loglogn 4 f) query time, both using linear space.

We can handle counting queries in a similar fashion using as 7" Chazelle’s linear space
data structure to achieve O(log n) query complexity or the one in [16] with O(nlog® n) space
and O(logn/loglogn) query time. Since we have m(m — 1)/2 (t1,1)-pairs, Theorem 4
follows.

Theorem 4 Given n objects, each of which is specified by the values of its attribute at m
time instances, it is possible to design an indexing structure so that the reporting version of
any two-sided query can be answered in O(logn/loglogn + f) time using O(nm?) space for
the indexing structure. The counting version can be handled in O(nm?) space and O(logn)
query time, or O(nm?*log®n) space and O(logn/loglogn) query time.

The strategy described above can be extended to handle any arbitrary number d of
attributes describing each object. Our general problem will be reduced to O(m?) 2d-
dimensional dominance queries. Using the results of [16], we obtain the following theorem.

Theorem 5 The general temporal range query problem, with n objects, each with d > 1

attributes specified at m time instances, can be handled with a data structure of size O(m? -

nlog® n(logn/loglogn)*=3) and a query time O((logn/loglogn)?*=2 + f). The counting

query can be handled in O((log n/loglog n)?*~1) time using O(m?-nlog® n(logn/log log n)*~?2)
space.

Clearly the space used to handle two-sided queries, even in the case when d = 1, is
quite high. An interesting problem is whether there exists a data structure whose size is
o(nm?), such that the general temporal range search problem can be solved in time that
is polylogarithmic in nm and proportional to the number of objects found. We provide a
partial answer to this question by showing that this is indeed the case when m is extremely
large.
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Theorem 6 Given n objects, each characterized by the values of its attribute at m time
instances such that m > nl, it is possible to design an indexving structure such that the
reporting version of any two-sided query can be answered in O(log®n + f) time using an
o(nm?) space.

Proof:

For each pair of time instances j; and j,, let m]l’]2 = mm{v]|j € [71- ]2]} and ]\4]1’]2 =
max{v]|j € [J1.-72)}. Let (¢ ]1’4]2 BUP L i) be the permutation of (1,2,---,n) such that
mjilljfz) < mgl’]ﬁz <. < m]jl’]fz) Simﬂarly, let ({972, 13072, .., 17072) be the permutation
of (1,2,...,n) such that M]]ll’]j; M]]ll’]j; < M]]ll’]j; We define two mappings f71+2
and Fjl’]?, such that Z?J’fz( = k and ]1]71]’1]2]2( = kfor k =1,2,---.n. Thus an object O;

corresponds to two numbers f71+2(7) and F712(7) that basically give the ranks of O; for the
time period [j;..j2] with regard to its maximum and minimum values respectively. In other
words, point (f/1+2(7), F/12(1)) is the representation of object O; in the two-dimensional
rank space corresponding to the time period [j1..72].

Note that there are at most O(n!) permutations of (1,2,...,n). Therefore at most
O((n!)?) different point sets are possible for each pair of j; and j;. During preprocessing
time, we simply build one priority tree for each possible point set and construct an array of
m? entries that indicate for each pair (ji, jo) the corresponding priority tree.

Since the query is given as (ly, s, a,b), we have to map the numbers a and b to the rank
space of (I1,1y) before the corresponding priority tree can be searched. Let a/1+2 and b/1+2
be the parameters used to search the appropriate priority tree. Then a’*7? is equal to the
number of points that are always greater than or equally ¢ during the time period [ly, [5]
and 6172 is equal to the number of points that are always less than or equal to b in that
period. These two numbers can be independently computed using the results in Section 4.
Even without using the fusion tree, this step still can be done in O(log?*(nm)) time using
O(nmlog(nm)) space.

The storage cost for the priority trees and the array is O(m? + n(n!)* + nmlog(nm)) =
o(nm?). Therefore the total storage cost is o(nm?). After the ranks of @ and b are determined,
the query can be answered in O(logn + f) time. Thus the total computational time is

O(log?(nm) + f).0

6 Conclusion

We have introduced in this paper a general class of problems involving temporal range
queries, which seems to be widely applicable. We have shown that this problem can be
reduced to a number of multidimensional dominance search problems, and hence can in
principle be solved fast using nonlinear space data structures. Special cases for one-sided
queries were shown to admit elegant solutions using linear size data structures and polylog-
arithmic query time. A simple intriguing problem is whether the two-sided version for d = 1
can be solved in polylogarithmic time using linear space. Note that this problem can easily
be reduced to solving the one-sided version for d = 2, and hence it is somewhat the easiest
problem to tackle next.
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