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Our framework is very general and encompasses problems in multidimensional range searchand temporal range search for data time series.More formally, let S be a set of n objects fO1; O2; � � � ; Ong, each of which is characterizedby a set of d attributes whose values change over time. We are given m snapshots of eachobject at time instances t1; t2; : : : ; tm. The set of values of the d attributes of object Oi attime instance tj is denoted as a vector v(i; j) = [vji (1); vji (2); : : : ; vji (d)].We are interested in developing a data structure for S so that the following types ofqueries, called temporal range queries, can be handled very quickly:Given two vectors a = [a1; a2; � � � ; ad] and b = [b1; b2; � � � ; bd], and two timeinstances ts and te. Find the set Q of objects such that for every Oi 2 Q,ak � vji (k) < bk for all 1 � k � d and ts � tj � te.Note that the general multidimensional orthogonal range search is a special case of ourproblem corresponding to a single time snapshot. Typically, we measure the complexity interms of the storage cost of the data structure and the query time as functions of n,m, andd, where typically d is considered to be a constant.Many applications fall in a natural way under our general framework. The following is alist of a few such examples.� Climatologists are often interested in studying the climate change patterns for certaingeographical areas, each characterized by a set of environmental variables such astemperature, precipitation, humidity, etc. Given a time series of such information forn regions, one would like to quickly explore relationships among such regions by askingqueries of the following type: determine the regions where the annual precipitation isabove 40 inches and the summer temperature is above 70�F between the years 1965and 1975.� In the stock market, each stock can be characterized by its daily opening price, closingprice, and trading volume. Related interesting queries that fall under our frameworkare of the following type: determine the stocks, each of whose daily opening price isless than $2 and whose daily trading volume is larger than 200 million shares duringthe year 2000.� As an application related to data warehousing, consider a retail chain that has storesacross the country, each of which reports their sales on a daily basis. A typical querywill for example be to identify the stores whose sales exceeded $100,000 for each of thepast 12 months.� Consider a set of n cities, each characterized by annual demographic and health data,for a period of 30 years. In exploring patterns among these cities, one may be interestedin asking queries about the number of cities that had a high cancer rate and a highozone level between 1990 and 2000.The d-dimensional orthogonal range search problem, which is a special case of our prob-lem, has been studied extensively in the literature. The best results do achieve linear spaceand polylogarithmic query time for three-sided reporting queries and four-sided counting2



queries for d = 2 [13, 3], and for dominance reporting queries for d = 3. Otherwise, allfast query time algorithms require nonlinear space, sometimes coupled with matching lowerbounds under certain computational models[2, 5, 4]. Note that we can't treat our problem asan orthogonal range search problem by simply treating the time snapshots as just an extratime dimension to the d dimensions corresponding to the attributes. This is the case sincethe values of an object's attributes at di�erent time instances cannot be treated simply asindependent of each other. However we can combine all the attribute values of an objecttogether to specify that object, resulting in a (md)-dimensional range search problem, whichis clearly quite undesirable, especially for large m.Another related class of problems that have been studied in the literature, especially thedatabase literature, deals with a time series of data by appending a time stamp to each pieceof data separately. Hence such an approach will be quite ine�cient to capture temporalinformation about single objects since it will have to process the values at all the timesteps between ts and te. Examples of such techniques include those based on persistent datastructures [6], such as the Multiversion B-tree [10] and the Multiversion Access Methods [20],and the Overlapping B+-trees [12] and its extensions such as the Historical R-tree [14], theHR+-tree [17], and the Overlapping Linear Quadtrees [18, 19]. To answer a query thatinvolves a time period, the query time of these methods will often depend on the length ofthe time period, which is undesirable for our general problem since the temporal range querycould cover a very long time period characterized by the two parameters ts and te.Another related topic involves the so-called kinetic data structures, which are used forindexing moving objects. Queries similar to ours involving both time periods and positionsof objects have been studied, for example in the work of Ararwal et al. [1] and Saltenis et.al [15]. However, the objects are considered there to be points moving along a straight lineand at a consistent speed. As a result, the positions of the objects need not be explicitlystored. In our case, such a problem will be formulated as the positions of each object atdi�erent time instances (that are the same for all the objects), without any assumption aboutexpected trajectories or speeds.Before stating our main results, let us introduce two main variations of temporal rangequeries, which are similar to those appearing in orthogonal range search queries. The report-ing query requires that a list of the objects (or their indices) be generated as an answer tothe query, while the counting query requires only that only the number of objects satisfyingthe query be generated. Our results include the following:� A linear space data structure that handles temporal range queries for a single objectin O(1) time, assuming the number d of attributes is constant.� Two data structures that handle temporal one-sided range reporting queries for a setof objects in O(logm log n + f) 1, and O(logm log n= log log n + f) time respectively,the �rst using O(nm) space, and the second using O(mn log� n), where f is the numberof objects satisfying the query, and d = 1.� Two data structures that use O(nm log(nm)) and O(nm log1+�(nm)) space respectivelyto answer the temporal one-sided range counting queries. The �rst data structure1In this paper, we always assume the logarithmic operations to be of base 2.3



enables O(log2(nm)) query time and the second enables O((log(nm)= log log(nm))2)time, under the assumption that d = 1.� By a reduction to the 2d-dimensional dominance problem, the most general problemcan be solved in polylogarithmic query time using O(nm2polylog(n)) space. When mis extremely large, we show that it is possible to use o(nm2) space to achieve polylog-arithmic query time.Before proceeding, we notice that the actual time instances ft1; t2; � � � ; tmg can be replacedby their subscripts f1; 2; � � � ;mg. By doing so, we introduce the additional complexity ofhaving to convert ts and te speci�ed by the query to l1 and l2 respectively, where tl1 isthe �rst time instance no earlier than ts and tl2 is the last time instance no later than te.This conversion can be done in O(logm) time and O(m) space using binary search or anasymptotically faster O(logm= log logm) algorithm with a larger constant behind the big-Onotation and the same O(m) space using the fusion tree of Fredman and Willard [7]. Inthe remaining of this paper, we assume that the time instances are represented by integersf1; 2; � � � ;mg and the time interval in the query is represented by two integers l1 and l2. Forbrevity, we will use the [i::j] to denote the set of integers fi; i+ 1; � � � ; jg. Without causingconfusion, we will call the set of contiguous integers [i::j] a time period.The remainder of the paper is organized as follows. The next section discusses a specialversion of the temporal range search problem, which involves only a single object. The datastructure for the reporting case of temporal one-sided range queries is covered in Section 3,while the counting version is covered in Section 4. In Section 5, we deal with the two-sidedtemporal range query, and conclude in Section 6.2 Preliminaries: Handling Range Queries of a SingleObjectConsider the case of temporal range queries involving only a single object O. We providea simple solution to this case, which will be used to handle the more general case. Let thevalues of the attributes of O at time instance j be [vj(1); vj(2); � � � ; vj(d)]. Given two realvectors a = [a1; a2; � � � ; al] and b = [b1; b2; � � � ; bl], and two time instances l1 and l2, we willdescribe an e�cient method to test whether the following predicate holds:P : For every time instances j that satis�es l1 � j � l2, ak � vj(k) � bk for allk between 1 and d.Since we are assuming that d is a �xed constant, we can restrict ourselves to the followingcase. Let the object O be speci�ed by [v1; v2; � � � ; vm], where each vi is a real number.We develop a data structure that can be used to test the following predicate for any givenparameters l1, l2, and a:P 0: For every time instances j satisfying l1 � j � l2, vj � a.We start by making the following straightforward observation.4



Observation 1 A predicate of type P 0 is true if and only if minfvjjj 2 [l1::l2]g � a.Using this observation, our problem is reduced to �nding the minimumvalue vj of the objectduring the time period [l1::l2] and comparing it against the value of a.The problem of �nding the minimum value in time period [l1::l2] can be reduced to theproblem of �nding the nearest common ancestor in the so called Cartesian tree, as describedin [8].A Cartesian tree [21] for a sequence of m real numbers is a binary tree with m nodes. Inour case, a Cartesian tree for time instances [l::r] with l � r has r � l + 1 nodes. The rootstores the smallest value vj over the time period [l::r]. If there are multiple vj's with thesmallest value, the earliest one is chosen to be stored at the root. The left subtree of theroot is the Cartesian tree for time instances [l::(i� 1)] and the right subtree is the Cartesiantree for the time instances [(i+1)::r]. The left (resp. right) tree is null if i = l (resp. i = r).The tree nodes are labeled l through r according to the in-order traversal of the tree (whichcorrespond to their time instances). Figure 1 gives an example of the Cartesian tree.
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Figure 1: A Cartesian tree for the sequence [8; 4; 6; 3; 5; 1; 7; 8]. The number outside eachnode represents the time instance of the attribute value stored at the node.It is easy to realize that the smallest value among fvi; : : : ; vjg is the one stored in thenearest common ancestor of nodes i and j. This problem was addressed in [9], where thefollowing result is shown.Lemma 1 Given a collection of rooted trees with n vertices, the nearest common ancestorof any two vertices can be found in O(1) time, provided that pointers to these two verticesare given as input. This algorithm uses O(n) space.It is easy to see if a tree is complete, we can easily solve the nearest common ancestorproblem in linear space and constant time by labeling the tree nodes in the order of the in-order traversal and performing bit-operations on the labels corresponding to the two vertices.Harel and Tarjan solve the the same problem for any arbitrary tree by �rst transformingit into a compressed tree of logarithmic depth, augmenting the subtrees of it into complete5



trees without asymptotically increasing the overall storage cost, and applying the techniquefor complete trees. For details see [9].Given the above lemma, we immediately have the following result.Theorem 1 Predicate P 0 can be evaluated using O(1) time with O(m) space data structure.If we build a Cartesian tree where an internal node stores the maximum instead of theminimum value, we can evaluate predicates involving upper bounds instead of lower bounds.We call the former Cartesian tree a minimum Cartesian tree and the latter a maximumCartesian tree. By building both the minimum and the maximum Cartesian trees for eachof the d attributes, we will be able to evaluate the general P predicates in linear space andconstant time, which is optimal.Corollary 1 A P predicate can be evaluated using O(1) time with O(m) space data structure.3 Handling One-Sided Queries for an Arbitrary Num-ber of ObjectsIn this section, we deal with temporal range queries for n objects with only one attribute,that is d = 1. Let vji denote the value of object Oi at time instance j. We want to preprocessthe data and construct a linear size data structure so that queries of the following type canbe answered quickly:Q1: Given a tuple (l1; l2; a), with l1 � l2, report all objects whose attributes aregreater than or equal to a for all time instances between l1 and l2.We call such queries temporal one-sided reporting queries.Observation 1 is again very important in answering queries of type Q1. A straightforwardapproach to solve our problem would be to determine for each possible time interval the setof minimal values, one for each object, and store the minima corresponding to each timeinterval in a sorted list. A query can then be immediately handled using the sorted listcorresponding to the time interval [l1; l2]. However, the storage cost would then be O(nm2),which is quite high especially in the case when m is much larger then n. We will develop analternative strategy that requires only linear space.Assume that we have built a Cartesian tree Ci for object Oi. Then, each attribute vji ofthis object can be associated with a sequence of contiguous time instances during which vji isthe smallest. We call this sequence the dominant interval of vji . In fact, the dominant intervalcorresponds to the set of nodes in the subtree rooted at the node j in Ci. For example, thevalue v4i of the object i whose corresponding Cartesian tree is shown in Figure 1 is associatedwith time interval [1; 5]. Let [sji ::eji ] be the dominant interval of attribute vji .Consider the set of nm tuples (vji ; sji ; eji ; i; j). One way for answering a Q1 query would beto identify those 5-tuples that satisfy [sji ::eji ] � [l1::l2] and vji � a. However an object can bereported many times, which defeats our goal of achieving a query time of O(logc(nm) + f),where c is a small constant and f is the number of objects satisfying the query. Consider6



for example the object given in Figure 1. A query with l1 = 2, l2 = 3, and a = 0 wouldreport it three times, for the 5-tuples that correspond to time instances 2, 4, and 6. In fact,an object can be reported m times in the worst case.This problem is taking care of in the next lemma.Lemma 2 An object Oi should be reported if and only if there exist a unique 5-tuple(vji ; sji ; eji ; i; j) such that the following conditions are true: [sji ::eji ] � [l1::l2]; j 2 [l1::l2]; andvji � a.Proof:Suppose an object Oi needs to be reported. This means its values during the time period[l1::l2] are no smaller than a. Let vji = minfvlijl1 � l � l2g. It is obvious that the 5-tuple (vji ; sji ; eji ; i; j) satis�es the three conditions in Lemma 2. On the other hand, it isstraightforward to see that the existence of such a 5-tuple ensures the presence of objectOi in the answer to the query. The uniqueness of the 5-tuple (vji ; sji ; eji ; i; j) is guaranteedby the de�nition of dominant intervals [sji ::eji ]. Indeed, suppose we have another 5-tuples(vj0i ; sj0i ; ej0i ; i; j0) that satis�es [sj0i ::ej0i ] � [ts::te], j0 2 [ts::te], and vj0i � a. By de�nition, bothj and j 0 are the smallest values during the time interval [l1::l2]. Without lose of generality,assume j < j0, then sj0i > j, which is in contradiction to the condition that sj0i � l1 � j. 2Lemma 2 reduces the problem of determining the objects satisfying the query to �ndinga 5-tuple for each such object, which satis�es the three stated conditions. To solve the latterproblem, we �rst single out those attributes that were taken during the time period [l1; l2]and then �lter them using the remaining two conditions.We �rst construct a balanced binary tree T based on the m time instances. The jthleaf node starting from the left corresponds to time instance j. Each node v of this tree isassociated with a set S(v) of n tuples, one from each object. If v is the jth leaf node, thenS(v) = f(vji ; sji ; eji ; i; j)ji = 1; : : : ; ng. If v is an internal node with two children u and wand the 5-tuples of object Oi in S(u) and S(w) are (vj1i ; sj1i ; ej1i ; i; j1) and (vj2i ; sj2i ; ej2i ; i; j2)respectively, then the 5-tuple of object Oi in S(v) is (vji ; sji ; eji ; i; j), where j is either j1 or j2,depending on whether [sj1i ::ej1i ] � [sj2i ::ej2i ] or [sj2i ::ej2i ] � [sj1i ::ej1i ]. (The reason why one andonly one of the above conditions must be true should be easy to understand by recalling thede�nition of dominant intervals.) To give an example, let us consider the case where n = 2and m = 8. The values of the attributes of the two objects and the corresponding 5-tuplesare given in Table 1. Figure 2 gives the corresponding tree structure.Given a Q1 query (l1; l2; a), we can easily �nd the set of at most logm allocation nodes inT , using the interval [l1; l2]. An allocation node is a node whose corresponding time intervalis fully contained in [l1; l2] and that of whose parent is not. If the query time interval is[2::6], for the example given in Figure 2, then the allocation nodes are b, k, and l. For eachallocation node v, we know that all the n samples in S(v) are taken during the time period[l1; l2]. Therefore, if a 5-tuple (vji ; sji ; eji ; i; j) 2 S(v) satis�es [sji ::eji ] � [l1; l2] and vji � a,then Oi should be reported. Otherwise, object Oi should not be reported. In either case,no further search on v's descendants is needed. This is true because of the following. First,if Oi is reported at node v, then there is no need to look for Oi any more. Second, if Oiis not reported at v, this means either [sji ::eji] 6� [l1::l2] or vji < a. If the former is true,then no tuple of Oi stored in the descendants of v can cover [l1::l2] because [sji ::eji ] covers7



object O1 object O2j value 5-tuple value 5-tuple1 8 (8,1,1,1,1) 5 (5,1,1,2,1)2 4 (4,1,3,1,2) 2 (2,1,3,2,2)3 6 (6,3,3,1,3) 4 (4,3,3,2,3)4 3 (3,1,5,1,4) 1 (1,1,8,2,4)5 5 (5,5,5,1,5) 7 (7,5,5,2,5)6 1 (1,1,8,1,6) 3 (3,5,8,2,6)7 7 (7,7,7,1,7) 6 (6,7,8,2,7)8 2 (2,7,8,1,8) 8 (8,8,8,2,8)Table 1: The values of two objects
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Figure 2: The tree structure corresponding to the data given in Table 1. Each node containstwo 5-tuples, one from each object.the dominant intervals of all the other values of Oi stored in the subtree rooted at v. If thelatter is true, then we are sure Oi should not be reported at all.One �nal note is that, even though an object is represented multiples times in the formof its tuples, it will be reported at most once. This can be justi�ed as follows. If an object isreported, then only one of its m tuples satis�es the conditions derived from the query. Notethat even though a tuple may be stored in up to logm nodes, these nodes form a partial pathfrom the root to a leaf node and, as a result, only the node at the highest level correspondingto [l1; l2] will be considered.For each node v, looking for 5-tuples (vji ; sji ; eji ; i; j) 2 S(v) that satisfy [sji ::eji ] � [l1; l2]and vji � a is equivalent to a three-dimensional dominance reporting problem, which canbe solved in O(log n + f(v)) time using the data structure of Makris and Tsakalidis [11],which we call the dominance tree. Here f(v) is the number of objects reported when nodev is visited. Note that there are 2m� 1 nodes in the tree and each node is associated with8



a dominance tree of size O(n). The overall size of the data structure is O(nm). A queryprocess involves identifying the O(logm) allocation nodes in O(logm) time and searching thedominance trees associated with these allocation nodes. Hence O(log n+ f(v)) time is spentat each such node v. Therefore, the complexity of the overall algorithm is O(log n logm+f),where f is total number of objects reported.In [16], we provide a faster algorithm for solving the the three-dominance query problem.The algorithm uses O(n log� n) space and O(log n= log log n + f) query time, where � is anarbitrarily small positive constant. Using this data structure instead of the dominance tree,we can further reduce the query complexity to O(logm log n= log log n + f) at the expenseof increasing the storage cost to O(mn log� n). We thus have the following theorem.Theorem 2 Given n objects, each speci�ed by the values of its attribute at m time in-stances, we can build an indexing structure so that any one-sided reporting query can beanswered in O(log n logm+ f) time and O(nm) space, or O(logm log n= log log n+ f) timeand O(mn log� n) space, where f is the number of objects satisfying the query and � is anarbitrarily small positive constant.We next consider the counting query counterpart.4 Handling One-Sided Counting QueriesIn this section, we consider the following temporal range counting queries.Q2: Given a tuple (l1; l2; a), with l1 � l2, determine the number of objects whosevalues are greater than or equal to a for all time instances between l1 andl2.The conditions stated in Lemma 2 (Section 3) can be expressed as sji � l1 � j, j � l2 � eji ,and vji � a; and there is at most one such instance. Hence the answer to the query isjA(l1; l2; a)j, where A(l1; l2; a) = f(i; j)jsji � l1 � j; j � l2 � eji ; and vji � ag.LetU(l1; l2; a) = f(i; j)jvji � ag,B1(l1; l2; a) = f(i; j)jl2 < j and vji � ag,B2(l1; l2; a) = f(i; j)jl2 > eji and vji � ag,B3(l1; l2; a) = f(i; j)jl1 < sji and vji � ag,B4(l1; l2; a) = f(i; j)jl1 > j and vji � ag,C1(l1; l2; a) = f(i; j)jl1 < sji ; l2 < j and vji � ag,C2(l1; l2; a) = f(i; j)jl1 > j; l2 < j and vji � ag,C3(l1; l2; a) = f(i; j)jl1 < sji ; l2 > eji and vji � ag, and9



C4(l1; l2; a) = f(i; j)jl1 > j; l2 > eji and vji � ag.We have the following lemma:Lemma 3 jAj = jU j � jB1j � jB2j � jB3j � jB4j+ jC1j+ jC2j+ jC3j+ jC4j.Proof:It is easy to see that A = U � A = B1 [ B2 [ B3 [ B4. Thus, jAj = Pi=1;2;3;4 jBij �Pi;j2f1;2;3;4g;i 6=j jBi \ Bjj +Pi;j;k2f1;2;3;4g;i 6=j 6=k jBi \ Bj \ Bkj � j \i=1;2;3;4 Bij. It is clear thethird and the fourth terms in the right hand side of this equation are both zero. As forthe second term, the only four non-empty intersections are B1 \ B3, B1 \B4, B2 \B3, andB2 \B4, which correspond to the sets C1, C2, C3, C4 respectively. 2The problem of determining the size of each of the sets U , Bi or Ci can be viewed as aspecial version of three-dimensional dominance counting problem de�ned as follows:Q02: Given a set V of n three dimensional points, preprocess V so that given apoint (x; y; z), the number of points in V that are dominated by (x; y; z) canbe reported e�ciently.Unlike the reporting case, algorithms for the three-dimensional dominance counting prob-lem that have linear space and polylogarithmic query time are not known to the authors' bestknowledge. However Chazelle gives a linear space and O(log n) time algorithm [3] for thetwo-dimensional case. Using the scheme of the range tree, his result can easily be extendedto the three-dimensional case by �rst building a binary search tree on the x-coordinates, andthen associate with each node the data structure for answering two-dimensional dominancequeries involving only the y- and z-coordinates. The resulting data structure provides anO(n log n) space and O(log2 n) time solution.By using the fusion tree techniques, we were able to improve the query time toO((log n= log log n)2) at the expense of increasing the storage cost by a factor ofO(log� n= log log n). For details, see [16]. Since we have a total of nm tuples, Theorem 3follows.Theorem 3 Given n objects, each characterized by the values of its attribute at m timeinstances, we can preprocess the input so that any one-sided counting query can be answeredin O(log2(nm)) time using an O(nm log(nm)) space data structure, orO((log(nm)= log log(nm))2) time using an O(nm log1+�(nm)= log log(nm)) space data struc-ture.5 Fast Algorithms for Handling Two-Sided QueriesIn this section, we address the general type of queries for which the values of the objects tobe reported are bounded between two values a and b during the time period [l1::l2]. Morespeci�cally,Q3: Given a tuple (l1; l2; a; b), with l1 � l2 and a � b, report all objects Oi, suchthat a � vji � b for all j = l1; : : : ; l2.10



The following is a direct extension of Observation 1.Observation 2 An object Oi should be reported for a Q3 query if and only if minfvji jj 2[l1::l2]g � a and maxfvji jj 2 [l1::l2]g � b.In this section, we �rst show that, even for an arbitrary number d of attributes, thetwo-sided queries can be handled fast if we are willing to use O(nm2polylog(n)) space forthe indexing structure. We later show that we can achieve fast query time using o(nm2)space in the case when m is extremely large. We start by looking at the case when d = 1,which admits a simple solution.To achieve a polylogarithmic query time, we compute for each pair of (t1; t2) 2 [1::m]�[1::m] with t1 < t2 the minimum value mt1;t2i and maximum value M t1;t2i for each objectOi and index the n minimum-maximum pairs in a suitable data structure T t1;t2 designed toe�ciently handle two-dimensional dominance queries. Pointers to these O(m2) structurescan be stored in a array to allow constant-time access. Given any query (l1; l2; a; b), we use(l1; l2) to locate the appropriate data structure T l1;l2 in constant time and use it to answerthe two-dimensional dominance query: mt1;t2i � a and M t1;t2i � b.A possible data structure for T t1;t2 is the priority tree [13] or the improved version of thepriority tree that appeared in [22]. The former allows O(log n+f) query time and the latterallows O(log n= log log n+ f) query time, both using linear space.We can handle counting queries in a similar fashion using as T t1;t2 Chazelle's linear spacedata structure to achieve O(log n) query complexity or the one in [16] with O(n log� n) spaceand O(log n= log log n) query time. Since we have m(m � 1)=2 (t1; t2)-pairs, Theorem 4follows.Theorem 4 Given n objects, each of which is speci�ed by the values of its attribute at mtime instances, it is possible to design an indexing structure so that the reporting version ofany two-sided query can be answered in O(log n= log log n+ f) time using O(nm2) space forthe indexing structure. The counting version can be handled in O(nm2) space and O(log n)query time, or O(nm2 log� n) space and O(log n= log log n) query time.The strategy described above can be extended to handle any arbitrary number d ofattributes describing each object. Our general problem will be reduced to O(m2) 2d-dimensional dominance queries. Using the results of [16], we obtain the following theorem.Theorem 5 The general temporal range query problem, with n objects, each with d > 1attributes speci�ed at m time instances, can be handled with a data structure of size O(m2 �n log� n(log n= log log n)2d�3) and a query time O((log n= log log n)2d�2 + f). The countingquery can be handled in O((log n= log log n)2d�1) time using O(m2�n log� n(log n= log log n)2d�2)space.Clearly the space used to handle two-sided queries, even in the case when d = 1, isquite high. An interesting problem is whether there exists a data structure whose size iso(nm2), such that the general temporal range search problem can be solved in time thatis polylogarithmic in nm and proportional to the number of objects found. We provide apartial answer to this question by showing that this is indeed the case when m is extremelylarge. 11



Theorem 6 Given n objects, each characterized by the values of its attribute at m timeinstances such that m > n!, it is possible to design an indexing structure such that thereporting version of any two-sided query can be answered in O(logc n + f) time using ano(nm2) space.Proof:For each pair of time instances j1 and j2, let mj1 ;j2i = minfvji jj 2 [j1::j2]g, and M j1;j2i =maxfvji jj 2 [j1::j2]g. Let (ij1;j21 ; ij1;j22 ; : : : ; ij1;j2n ) be the permutation of (1; 2; � � � ; n) such thatmj1;j2ij1;j21 � mj1;j2ij1;j22 � � � � � mj1;j2ij1;j2n . Similarly, let (Ij1;j21 ; Ij1;j22 ; : : : ; Ij1;j2n ) be the permutationof (1; 2; : : : ; n) such that M j1;j2Ij1;j21 � M j1;j2Ij1;j22 � : : : � M j1;j2Ij1;j2n . We de�ne two mappings f j1;j2and F j1;j2, such that ij1;j2f j1;j2 (k) = k and Ij1;j2F j1;j2 (k) = k for k = 1; 2; � � � ; n. Thus an object Oicorresponds to two numbers f j1;j2(i) and F j1;j2(i) that basically give the ranks of Oi for thetime period [j1::j2] with regard to its maximum and minimum values respectively. In otherwords, point (f j1;j2(i); F j1;j2(i)) is the representation of object Oi in the two-dimensionalrank space corresponding to the time period [j1::j2].Note that there are at most O(n!) permutations of (1; 2; : : : ; n). Therefore at mostO((n!)2) di�erent point sets are possible for each pair of j1 and j2. During preprocessingtime, we simply build one priority tree for each possible point set and construct an array ofm2 entries that indicate for each pair (j1; j2) the corresponding priority tree.Since the query is given as (l1; l2; a; b), we have to map the numbers a and b to the rankspace of (l1; l2) before the corresponding priority tree can be searched. Let aj1;j2 and bj1;j2be the parameters used to search the appropriate priority tree. Then aj1;j2 is equal to thenumber of points that are always greater than or equally a during the time period [l1; l2]and bj1;j2 is equal to the number of points that are always less than or equal to b in thatperiod. These two numbers can be independently computed using the results in Section 4.Even without using the fusion tree, this step still can be done in O(log2(nm)) time usingO(nm log(nm)) space.The storage cost for the priority trees and the array is O(m2 + n(n!)2 + nm log(nm)) =o(nm2). Therefore the total storage cost is o(nm2). After the ranks of a and b are determined,the query can be answered in O(log n + f) time. Thus the total computational time isO(log2(nm) + f).26 ConclusionWe have introduced in this paper a general class of problems involving temporal rangequeries, which seems to be widely applicable. We have shown that this problem can bereduced to a number of multidimensional dominance search problems, and hence can inprinciple be solved fast using nonlinear space data structures. Special cases for one-sidedqueries were shown to admit elegant solutions using linear size data structures and polylog-arithmic query time. A simple intriguing problem is whether the two-sided version for d = 1can be solved in polylogarithmic time using linear space. Note that this problem can easilybe reduced to solving the one-sided version for d = 2, and hence it is somewhat the easiestproblem to tackle next. 12
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