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1. Introduction. Consider the system of partial di�erential equations��u+rp = f�div u = 0 on 
u = 0 on @
;R
 p = 0(1)where 
 is a simply connected bounded domain in Rd, d = 2 or 3. This system, theStokes equations, is a fundamental problem arising in computational 
uid dynamics,see e.g. [7, 12, 14, 17]; u is the d-dimensional velocity vector de�ned on 
, and prepresents pressure.Discretization of (1) by �nite di�erence or �nite element techniques leads to alinear system of equations of the form A BTB �C ! up ! =  f0 ! ;(2)where A is a set of uncoupled discrete Laplacian operators and C is a positive semidef-inite matrix. We consider here only stable discretizations, i.e., those for which thecondition number of the Schur complement matrix BA�1BT +C is bounded indepen-dently of the mesh size used in the discretization. For �nite element discretizationswith C = 0, this is a consequence of the inf-sup condition and upper bound
 � infq supv (q; div v)jvj1 kqk0 ; j(q; div v)jjvj1 kqk0 � �;where 
 and � are independent of the mesh size. Here, j � j1 and k � k0 denote theH1-seminorm and Euclidean norm, respectively, on the discrete velocity and pressurespaces, and the bounds are taken over all v and q in the appropriate discrete spaces;see [7, 12, 14, 17].In recent years, a variety of iterative algorithms have been devised for solving thediscrete Stokes equations. In this paper, we compare the performance of four suchmethods:1. a variant of the Uzawa method;2. a preconditioned conjugate gradient (PCG) method applied to a transformedversion of (2);3. a preconditioned conjugate residual (PCR) method;4. multigrid (MG).The Uzawa method is the �rst among these to have been devised [2] and it is oftenadvocated as an e�cient solution technique, see e.g. [7, 12, 14]. The convergencefactor associated with it is proportional to (� � 1)=(�+ 1) where � is the conditionnumber of the Schur complement BA�1BT + C (see x2.5). The conjugate gradientmethod, developed by Bramble and Pasciak [5], has convergence factor proportional to(p��1)=(p�+1) but larger cost per step than the Uzawamethod. The preconditionedconjugate residual method was developed by Rusten and Winther [24] and Silvesterand Wathen [26, 31], and its convergence behavior is determined by properties of theinde�nite matrix. For multigrid, we consider versions derived from two smoothingstrategies: a variant of the distributed Gauss-Seidel method of Brandt and Dinar [6],and the technique based on incomplete factorization developed by Wittum [35].1



These methods all have the property that for appropriate choice of precondition-ers (or for multigrid, smoothers), their convergence rates are independent of the meshsize used in the discretization. The actual costs of using them depends on both theconvergence rate and the cost per iteration. Our goal in this paper is to compare costs,in operation counts, of using each of the methods to solve three discrete versions of (1).For convergence to be independent of mesh size, the �rst three methods (Krylov sub-space methods) require a preconditioning operator spectrally equivalent to the discreteLaplacian. In an e�ort to unify the comparison of these ideas with multigrid, we alsoimplement this preconditioner using a multigrid method for the associated Poissonequation. Our main conclusions are as follows. For problems where it is applicable,one version of multigrid, using incomplete factorization, requires the fewest iterationsand operations, but it is only marginally faster, i.e., by factors of approximately 1.5 to2, than the Krylov subspace methods and the distributed Gauss-Seidel method. TheKrylov subspace methods are more widely applicable than either multigrid method.Among the Krylov subspace methods, the conjugate residual method is slightly slowerthan the conjugate gradient method, and in some cases, the Uzawa method, but ithas the advantage of not requiring any parameter estimates.An outline of the rest of the paper is as follows. In x2, we present the solutionalgorithms and give an overview of their convergence properties. In x3, we specify fourbenchmark problems and the computational costs per iteration of each of the solutionmethods. In x4, we present the numerical comparison.2. Overview of methods. In this section, we present the four algorithms un-der consideration and outline their convergence properties. The �rst three methodsdepend on a preconditioning operator QA that approximates the matrix A of (2). Weassume that QA is symmetric positive de�nite (SPD) and that�1 � (v; Av)(v;QAv) � �2 ;(3)where �1 and �2 are independent of the mesh size used in the discretization. Inaddition, �nite element discretizations of (1) have a mass matrix M associated withthe pressure discretization.1 The preconditioner will also include a SPD approximationQM ofM . Discussions of computational costs will be made in terms of various matrixoperations together with inner products and \axpy's," i.e., vector operations of theform y  �x+ y.2.1. The inexact Uzawa method. We use the following \inexact" version ofthe Uzawa algorithm [11], which starts with u0 � 0 and an arbitrary initial guess p0:for i = 0 until convergence, doui+1 = ui +Q�1A (f � (Aui +BT pi))pi+1 = pi + �Q�1M (Bui+1 � Cpi)enddo(4)Here, � is a scalar parameter that must be determined prior to the iteration.In the \exact" version of this algorithm, QA = A and the �rst step is equivalentto solving the linear system Aui+1 = f � BTpi. When QM = I , the exact algorithm1 If the �nite element solution is expressed using a given basis f�ig as p =Pi �i�i, then kpkL2 =(�;M�)1=2. 2



is then a �xed parameter �rst order Richardson iteration applied to the Schur com-plement system (BA�1BT +C)p = BA�1f ; QM is a preconditioner for this iteration.The inexact Uzawa algorithm (4) replaces the exact computation of A�1(f � BTpi)with an approximation.2.2. A preconditioned conjugate gradient method. Let A denote the co-e�cient matrix of (2). Premultiplication of (2) by the matrixT =  Q�1A 0BQ�1A �I !produces the equivalent system Q�1A A Q�1A BTBQ�1A A� B BQ�1A BT + C ! up ! =  Q�1A fBQ�1A f ! :(5)Let M = T A denote the coe�cient matrix of this system. The conjugate gradientmethod (CG) developed in [5] requires that the bilinear form" v1q1 ! ; v2q2 !# � ((A�QA)v1; v2) + (q1; q2)(6)de�ne an inner product. Equivalently, the preconditioning operator QA must satisfy(3) with �1 > 1. It is shown in [5] thatM is SPD with respect to the inner product(6), so that CG in this inner product is applicable. The matrixG =  I 00 QM ! :(7)is also SPD with respect to (6), so that this can be used as a preconditioner.Let X0 =  u0p0 ! ; R0 =  f � (Au0 +BTp0)�(Bu0 � Cp0) !denote an arbitrary guess for the solution and the associated residual. An implemen-tation of PCG is given below. Except for the nonstandard inner product, it is thestandard implementation, as given for example in [15, p. 529]. It is more e�cient thenthe version given in [5]. The preconditioner QA is implicitly incorporated into the
3



inner product. The use of a preconditioner (7) is new.R̂0 = T R0; ~R0 = G�1R̂0P0 = ~R0; MP0 = T AP0�(n)0 = [R̂0; ~R0]; �(d)0 = [P0;MP0]; �0 = �(n)0 =�(d)0X1 = X0 + �0P0R1 = R0 � �0AP0; R̂1 = R̂0 � �0MP0; ~R1 = G�1R̂1for i = 1 until convergence, do�(n)i�1 = [R̂i; ~Ri]; �(d)i�1 = �(n)i�1; �i�1 = �(n)i�1=�(d)i�1Pi = ~Ri + �i�1Pi�1; MPi = T APi�(n)i = �(n)i�1; �(d)i = [Pi;MPi]; �i = �(n)i =�(d)iXi+1 = Xi + �iPi; Ri+1 = Ri � �iAPiR̂i+1 = R̂i � �iMPi; ~Ri+1 = G�1R̂i+1enddoTo help identify operation counts, we describe the computation of f�ig and f�igin more detail. LettingRi =  risi ! ; R̂i =  r̂îsi ! ; ~Ri =  r̂i~si ! ;we have �(n)i�1 = [R̂i; ~Ri] = (r̂i; Ar̂i � ri) + (ŝi; ~si); similarly, ifPi =  cidi ! ; APi =  viwi ! ; MPi =  Q�1A viBQ�1A vi � wi ! ;(8)then �(d)i = [Pi;MPi] = (ci; AQ�1A vi�vi)+(di; BQ�1A vi�wi): QA is referenced only inthe construction of Q�1A v in (8), so that only the action of the inverse of QA is required.Moreover, although the vectors Ar̂i, Aci (for vi) and AQ�1A vi are used, the �rst two ofthese can be computed using an axpy. Consequently, only one matrix-vector productby A is needed.2.3. The preconditioned conjugate residual method. Since A is symmet-ric, variants of the conjugate residual method are applicable. Let X0 denote the initialguess and R0 its residual. The following algorithm implements the Orthomin version
4



of PCR with preconditioner Q [3].2~R0 = Q�1R0; P0 = ~R0; S0 = Q�1AP0�(n)0 = ( ~R0;AP0); �(d)0 = (AP0; S0); �0 = �(n)0 =�(d)0X1 = X0 + �0P0; R1 = R0 � �0AP0; ~R1 = ~R0 � �0S0for i = 1 until convergence, do�(n)i�1 = �(A ~Ri; Si�1); �(d)i�1 = �(d)i�1Pi = ~Ri + �i�1Pi�1 ; APi = A ~Ri + �i�1APi�1; Si = Q�1APi�(n)i = ( ~Ri;APi); �(d)i = (APi; Si); �i = �(n)i =�(d)iXi+1 = Xi + �iPi; Ri+1 = Ri � �iAPi; ~Ri+1 = ~Ri � �iSienddoAny symmetric positive-de�nite Q could be used as a preconditioner. As in [26], weuse Q =  QA 00 QM ! :2.4. Multigrid. As is well known, multigrid methods combine iterative methodsto smooth the error with correction derived from a coarse grid computation. We useV-cycle multigrid for \transformed systems." Our description follows [34, 35]. Cf.[22, 30] for other multigrid methods derived from the squared system associated with(2). Let ��p denote the Laplace operator de�ned on the pressure space, with Neumannboundary conditions (see [16]), and let Ap be a discrete approximation to ��p de�nedon the pressure grid. Consider the following transformed version of (2): A BTB �C ! I BT0 �Ap ! û̂p ! =  f0 ! ;  up ! =  I BT0 �Ap ! û̂p ! :(9)The coe�cient matrix in (9) is ~A =  A WB G ! ;(10)where W = ABT �BTAp and G = BBT +CAp. For appropriate discretizations of (1)(see x3), W is of low rank, with nonzero entries only in rows corresponding to meshpoints next to @
. When C = 0, G can also be viewed as discretization of ��p. Thesplitting ~A = S �R(11)then induces a stationary iteration applicable to (2), uk+1pk+1 ! =  ukpk !+  I BT0 �Ap !S�1  f � (Auk + BTpk)�(Buk � Cpk) ! :(12)2 It is possible for this version of PCR to break down, with �i = 0. The Orthodir version,which uses a three-term recurrence to generate Pi, is guaranteed not to break down; it requires twoadditional axpy's. Our implementation switches from the Orthomin to Orthodir direction updateif j�ij < 10�4, as described in [9]. In the experiments discussed in x4, this switch never took place.5



This is used as the smoother for the multigrid solver for (2). Speci�c choices for S aregiven in x3.2.Let Ru denote a restriction operator mapping velocity vectors in the �ne grid (ofwidth h) to the coarse grid (of width 2h), let Rp similarly denote the restriction oper-ator for the discrete pressure space, and let Pu and Pp denote prolongation operatorsfrom the coarse spaces to the �ne spaces. (For simplicity, we are omitting explicitmention of h in this notation.) One step of V-cycle multigrid for solving (2), startingwith initial guess u0, p0, is as follows.(u1; p1) =MG(u0; p0; f; g; k1; k2; h)if h < h0; then % Recursive callStarting with u0; p0, perform k1 smoothing steps (12), producing u1=3; p1=3r1=3 = f � (Au1=3 + BTp1=3); s1=3 = �(Bu1=3 � Cp1=3)r1=3c = Rur1=3; s1=3c = Rps1=3(u2=3c ; p2=3c ) =MG(0; 0; r1=3c ; s1=3c ; k1; k2; 2h)u2=3 = u1=3 + Puu2=3c ; p2=3 = p1=3 + Ppp2=3cStarting with u2=3; p2=3, perform k2 smoothing steps (12), producing u1; p1else % Coarse grid solve when h = h0Solve  A BTB �C ! u1p1 ! =  f0! directlyendifWe also use V-cycle multigrid derived from the discrete Laplacian as a preconditionerto approximate the action of A�1 for the Krylov subspace methods; this is de�nedanalogously and we omit the details. For all multigrid methods, we use bilinear inter-polation to de�ne Pu and Pp, and Ru = PTu , Rp = PTp . The discrete operators at eachlevel are derived from the discretization on the associated grid.2.5. Convergence properties. We brie
y outline some convergence propertiesof these methods; see the primary references for derivations of bounds. Each of themethods generates a sequence of iterates ui � u, pi � p such that, if ei is a represen-tation of the error, then limi!1(keik=ke0k)1=i = � for some norm k � k. We refer to �as the convergence factor.We are assuming that the discretization and choice of QM are such that�1 � (q; (BA�1BT + C)q)(q; QMq) � �2;(13)where �1 and �2, and therefore, � � �2=�2, are bounded independently of the meshsize of the discretization. This is the case, for example, when QM is a suitable ap-proximation of the mass matrix in �nite element discretization [29, 32]. Note that �is the spectral condition number of Q�1M (BA�1BT + C).The exact Uzawa algorithm has convergence factor � �I � �Q�1M (BA�1BT + C)�[12]. This is smallest for the choice � = 2=(�1 + �2), in which case it has the value(�� 1)=(�+1). Thus, the convergence factor for the Uzawa algorithm is independentof the mesh. It is shown in [11] that the performance of the inexact Uzawa algorithm6



is close to that of the exact one if the iterate ui+1 satis�eskf � BTpi � Aui+1k2 < �kBui � CpikQ�1A ;(14)where � is independent of the mesh size.The PCG method is analyzed in [5, Theorem 1], where it is shown that the condi-tion number of the coe�cient matrixM of (5) is bounded by a constant proportionalto �. Thus, standard results for CG [15] imply that the bound on the convergencefactor for this method is proportional to (p� � 1)=(p� + 1). The constant of pro-portionality depends on how close �1 is to �2 in (3), i.e., how well QA approximatesA. The PCR method is analyzed in [24, 26]. The analysis shows that the eigenvaluesof the preconditioned matrix Q�1A are contained in two intervals [�a;�b] [ [c; d],where a, b, c, are d are positive constants that are independent of the mesh size. Thesizes of the intervals depend on � and the accuracy with which QA approximates A. Itfollows from the convergence analysis of CR [9, 27] that the convergence factor for thepreconditioned algorithm is independent of the mesh size. For example, it is shown[9] that if d� c = a� b > 0, then the convergence factor is bounded by 2�1�p�1+p��1=2,where � = (bc)=(ad).It is shown in [36] that for �nite di�erence discretization of (1) (see x3.1), two-gridvariants of multigrid are convergent with convergence rate independent of the meshsize. The analysis applies to the ILU smoothing of x3.2, although it requires that theprolongation be based on biquadratic interpolation. In practice, bilinear interpolationhas been observed to be su�cient [35]. Fourier analysis in [6] also suggests thatMG/DGS has convergence rate independent of mesh size.Remark 2.1. Several other proposed methods share properties with the version ofPCG under consideration. In particular, Verf�urth [29] has shown that PCG applieddirectly to the Schur complement system has convergence factor proportional to �CG;however, this method requires accurate computation of the action of A�1 at each CGstep [23]. Bank, Welfert and Yserentant [4] present a method making use of QA � Awith convergence rate dependent on the accuracy of this approximation, but using anadditional inner iteration on the pressure space.3. Solution costs. In this section, we outline the computational costs requiredto solve three benchmark problems on 
 = (0; 1) � (0; 1), for each of the solutionmethods of x2.3.1. Benchmark problems. We use four discretizations to produce test prob-lems: \marker and cell" �nite di�erences, and three mixed �nite element strategies.1. Finite di�erences [19]. This consists of the usual �ve-point operator for each ofthe discrete Laplacian operators of (1), together with centered di�erences for the �rstderivatives rp and div u. For the discretization to be stable, it is necessary to usestaggered grids in �
. Figure 1 shows such grids on a mesh of width h = 1=4. Inorder to de�ne the velocity discretizations at grid points next to @
, certain valuesoutside �
 must be extrapolated; for example, this is needed to approximate @2u1=@y2for points \�" next to the bottom of @
.2. Linear/constant �nite elements. This choice consists of continuous piecewise linearvelocities on a mesh of width h, and piecewise constant pressures on a mesh of width7



Fig. 1. Staggered grids for �nite di�erence discretization.� Velocity u1
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2h. The discrete pressures are not required to be continuous. The coarser pressuregrid ensures that the inf-sup condition holds [17]. We refer to this as the P1(h)P0(2h)discretization.3. Piecewise linear �nite elements. Here, continuous piecewise linear velocities ona mesh of width h are paired with continuous piecewise linear pressures on a meshof width 2h. The inf-sup condition is also satis�ed. We call this the P1(h)P1(2h)discretization.4. Stabilized piecewise linear �nite elements. A stable discretization using piecewiselinear velocities and pressures on a single of mesh can be obtained using a stabilizationmatrix C = �h2An, where An is the discrete Laplace operator de�ned on the pressurespace, subject to Neumann boundary conditions [8]. This technique is equivalent to themini-element discretization [1] after elimination of the internal degrees of freedom. Weuse � = :025, as recommended in [25]. We refer to this discretization as P1(h)P1(h).The usual hat functions are used as the bases for linear velocities and pressures.The coe�cient matrix A of (2) for all these problems, as well as BT , C, andBA�1BT + C, are rank de�cient by one; the latter three matrices share a constantnull vector. As a result, the discrete pressure solutions are uniquely de�ned only up toa constant. In exact arithmetic, the solution methods under consideration correct theinitial guess with quantities orthogonal to the null space of A, so that the componentof the null space in the computed solution is the same as in the initial guess. For theanalysis, the lower bound of (13) refers to the smallest nonzero eigenvalue.Note that our goal in considering these problems is to compare the performance ofthe di�erent solution strategies on a variety of problems. We highlight some propertiesof each of the problems as follows:1. �nite di�erences, stable, #(pressure unknowns) � #(velocity grid points);2. �nite elements, stable, discontinuous pressures, #(pressure unknowns) � 12#(velocity grid points);3. �nite elements, stable, continuous pressures, #(pressure unknowns) � 14 #(ve-locity grid points);4. �nite elements, requires stabilization, continuous pressures, #(pressure un-knowns) � #(velocity grid points).We are not comparing the accuracy achieved by the discretizations, and remark onlythat the three �nite element discretizations display the same asymptotic convergencerates. See [17, pp. 29,50] for comments on accuracy of �nite element discretization,and [21] for analysis of the �nite di�erence scheme.3.2. Preconditioners and smoothers. The Uzawa, PCR, and PCG methodsrequire choices of QA and QM . For all cases, QA consists of one step of V-cycle8



multigrid derived from the discrete Laplacian. To ensure that QA is symmetric, thesmoothing is based on damped point-Jacobi iteration with damping parameter ! = 2=3[20]. For the three �nite element discretizations, QM is chosen to be the diagonal of themass matrix M , see [32]. (In the case of the P1(h)P0(2h) discretization, QM = M .)Although there is no mass matrix for �nite di�erences, a natural analogue in twodimensions is M = h2I , and this is used for QM with �nite di�erences.We consider two multigrid smoothing strategies. The �rst is a variant of thedistributed Gauss-Seidel (DGS) iteration introduced by Brandt and Dinar [6]. Thesplitting operator of (11) is given byS =  SA 0B SG ! ;so that the smoother (12) has the form~uk+1 = S�1A (f � (Auk + BTpk))~pk+1 = S�1G (�(B(uk + ~uk+1) + Cpk)uk+1 = uk + ~uk+1 + BT ~pk+1pk+1 = pk � Ap~pk+1 :For SA, we use the point Gauss-Seidel matrix derived from red-black ordering ofthe velocity grid. (That is, if A = D � L � U with the red-black ordering, thenSA = D � L.) For �nite di�erences, SG = (1=!)T where T is the tridiagonal partof G and ! = 2=3; that is, SG corresponds to a damped one-line Jacobi splitting.For P1(h)P1(h) �nite elements, SG is the block Jacobi matrix derived from a two-lineordering of the underlying grid. These are slightly more sophisticated versions of thechoice SG = diag(G) used in [6]. We refer to this multigrid method as MG/DGS.The other multigrid smoother is the incomplete LU factorization (ILU) presentedby Wittum [35]. We use an ILU factorization of the matrix ~A of (10), with no �ll-inin the factors. The ordering for ~A is problem dependent. For �nite di�erences, it isderived from an uncoupled red-black ordering of the underlying grid. That is, the gridvalues for u1 were listed �rst, in red-black ordering, followed by those for u2, and thenthose for p. (See also Remark 3.3 below.) For P1(h)P1(h) �nite elements, ~A is orderedaccording to an uncoupled lexicographic ordering of the grid vectors. We denote thismethod by MG/ILU.In choosing preconditioners and smoothers, we have attempted to use methodsthat are suitable for vector and parallel computers. Thus, we are using point Jacobismoothing for multigrid preconditioning, red-black Gauss-Seidel and line Jacobi forthe DGS iteration, and a red-black ordering for MG/ILU applied to �nite di�erences.With the P1(h)P1(h) discretization, the operator G in the DGS method is a 19-pointoperator that has block Property A for a two-line ordering of the pressure grid, sothat the two-line Jacobi splitting can be implemented e�ciently in parallel. The ILUsmoother used with this problem is not e�cient on parallel computers. Our multigridstrategies do not address the issue of idleness of parallel processors for coarse gridcomputations; see [10, 13] for discussions of this point for the discrete Poisson equation.Parameters are required for the Uzawa, PCG and multigrid methods, and for themultigrid preconditioner. These are as follows:9



Uzawa: The optimal value of � for the exact Uzawa method, determined empirically,is used for the inexact version. This requires computation of the extremeeigenvalues of Q�1M (BA�1BT + C).PCG: As noted in x2.3, the preconditioner must be scaled so that �1 > 1 in (3).From the results of [5], it is desirable to have �1 close to 1. In all tests, thescaling is chosen so that 1 < �1 < 1:02. This requires computation of thesmallest eigenvalue of Q�1A A.3Multigrid: For the coarse mesh size h0 in multigrid computations, we chose the oneof h0 = 1=2 and h0 = 1=4 that produced lower iteration counts. This turnedout to be h0 = 1=2 for preconditioners and h0 = 1=4 for solvers. The coarsegrid solution is obtained using Cholesky factorization for the preconditionersand singular value decomposition for the solvers.Remark 3.1. For the Uzawa method, the choice of QA does not guarantee that thecondition (14) is satis�ed. The results of [11, 33] as well as those of x4 suggest thatwith multigrid for QA, (14) may be too stringent.Remark 3.2. The e�ectiveness of the multigrid solvers depends on the fact that thecommutatorW in (10) is zero away from the boundary of 
. This is true for the �nitedi�erence and stabilized P1(h)P1(h) discretizations, where pressures and velocities arede�ned on the same grid, but not for the (stable) P1(h)P1(2h) discretization. Ourexperiments con�rm that multigrid is ine�ective for this discretization, and we do notinclude it as a option. See [18, p. 248] for a discussion of this issue. For the P1(h)P0(2h)discretization, it is di�cult to de�ne the discrete pressure Poisson operator Ap, andwe know of no multigrid implementation for this problem.Remark 3.3. For MG/ILU applied to the �nite di�erence discretization, we alsotested several alternative ordering strategies, including an uncoupled lexicographicordering (i.e., like that used for P1(h)P1(h)), as well as several \coupled" lexicographicorderings. For the latter strategies, velocity and pressure unknowns are not separatedfrom one another, see [28]. The performances of MG/ILU for all these orderings werevery close. For example, for h = 1=32 as in Table 4 below, the smallest averageiteration count with one smoothing step was 1013 and the largest was 1123 .3.3. Iteration costs. We identify the costs per iteration of each of the methodsby �rst specifying the \high level" operations of which they are composed, and thendetermining the costs of each of these operations. High level operations are de�ned tobe matrix-vector products, inner products (denoted \( ; )" in the tables of this section),and axpy's. Note that each of the techniques under consideration is formulated withessentially the same set of these operations; consequently, we expect operation countsto give a good idea of their comparative performance.The high level operations are shown in Table 1. Matrix-vector products includeoperations with matrices that de�ne the problem or method, such as A or Ru, as wellas preconditioning and smoothing operators such as Q�1A and S�1A . The latter com-putations are themselves built from other matrix operations, and some of these arealso identi�ed in the table. All multigrid entries correspond to operations performedon one grid level. For multigrid solvers, the smoothing operations are presented sep-arately; these operations would be performed k1 times during presmoothing and k23 In the experiments described in x4, these were computed using a power method applied to Q�1A A�I; �ve to ten steps were needed to obtain an estimate accurate to three signi�cant digits.10



Table 1High level operations for all solution algorithms.Matrix-Vector Product axpy ( ; )Uzawa 1 A 1 BT 1 Q�1A 1 (np) 1 (nu + np)1 B 1 C 1 Q�1MPCG 1 A 1 BT 1 Q�1A 4 (nu + np) 3 (nu + np)2 B 1 C 1 Q�1M 2 (nu)PCR 1 A 1 BT 1 Q�1A 5 (nu + np) 4 (nu + np)1 B 1 C 1 Q�1MMultigrid (1 + k1 + k2)A 1 RuPreconditioner (k1 + k2)S�1A 1 PuMultigrid Solver 1 A 1 BT 1 Ru 1 (nu + np)(Excluding 1 B 1 C 1 Rpsmoother) 1 Pu 1 Pp1 A 2 BT 1 ApDGS Smoother 1 B 1 C 1 S�1A1 S�1GILU Smoother 1 A 2 BT 1 Ap1 B 1 C 1 S�1times during postsmoothing. The lengths of the vector operations are listed in paren-theses. We are assuming that one inner product will be used in the convergence test,and the counts in the table include this.The costs of matrix-vector products are estimated to be the number of nonzeros inthe matrices used. This is roughly one half the number of \flops" required, and it isalso proportional to the number of memory references. These costs, for discretizationsin which the velocity unknowns come from an n � n grid, are shown in Table 2. Thecosts of vector operations are taken to be the length of the vectors.Combining the data of Tables 1 and 2 gives an estimate for the cost per iterationfor each of the solution methods under consideration. These numbers are all propor-tional to n2, and we present in Table 3 the cost factors obtained by omitting thisfactor, rounded to the nearest integer. For the multigrid methods (preconditionersand solvers), the cost of one full multigrid step is estimated as 4=3 times the cost ofthe computations on the �nest grid; this is approximately the cost of full recursivemultigrid in two dimensions.4. Experimental results. We now present the results of numerical experimentsfor solving (2). All experiments were performed in Matlab on a Sparc-10 worksta-tion. For each solution algorithm, we solved three problems derived from three choicesof f consisting of uniformly distributed random numbers in [�1; 1]. The initial guessin all cases was u0 = 0, p0 = 0. The stopping criterion waskRik2=kR0k2 < 10�6;11



Table 2Costs for matrix-vector products.Fin. Di�. P1(h)P0(2h) P1(h)P1(2h) P1(h)P1(h)A 10n2 10n2 10n2 10n2B; BT 4n2 4n2 8n2 12n2C 0 0 0 5n2Q�1M 1n2 0:25n2 0:25n2 1n2S�1A (Jacobi) 2n2 2n2 2n2 2n2S�1A (Gauss-Seidel) 6n2 6n2 6n2 6n2S�1G 3n2 { { 9n2Ap 5n2 { { 5n2Ru; Pu 6n2 4:5n2 4:5n2 4:5n2Rp; Pp 3n2 { { 2:25n2S�1 19n2 { { 41n2
Table 3Cost factors.Uzawa PCR PCG MG/DGS MG/ICFinite k1 = k2 = 1 84 107 109 148 175Di�erences k1 = k2 = 2 116 139 141 244 297P1(h)P0(2h) k1 = k2 = 1 79 98 101 { {k2 = k2 = 2 111 130 133 { {P1(h)P1(2h) k1 = k2 = 1 86 104 111 { {k2 = k2 = 2 118 136 143 { {P1(h)P1(h) k1 = k2 = 1 101 124 134 247 333k2 = k2 = 2 133 156 166 421 59112



Table 4Iterations.Uzawa PCR PCG MG/DGS MG/ILUFinite k1 = k2 = 1 36 41 30 24 12Di�erences k1 = k2 = 2 28 33 23 15 9P1(h)P0(2h) k1 = k2 = 1 34 41 29 { {k2 = k2 = 2 26 34 23 { {P1(h)P1(2h) k1 = k2 = 1 89 57 38 { {k2 = k2 = 2 89 50 31 { {P1(h)P1(h) k1 = k2 = 1 39 47 32 20 8k1 = k2 = 2 38 40 25 10 7Table 5Estimates of convergence factors.Uzawa PCR PCG MG/DGS MG/ILUFinite k1 = k2 = 1 .67 .70 .66 .62 .39Di�erences k1 = k2 = 2 .60 .64 .57 .50 .31P1(h)P0(2h) k1 = k2 = 1 .69 .69 .70 { {k2 = k2 = 2 .58 .66 .55 { {P1(h)P1(2h) k1 = k2 = 1 .82 .79 .75 { {k2 = k2 = 2 .84 .78 .70 { {P1(h)P1(h) k1 = k2 = 1 .70 .75 .68 .56 .24k1 = k2 = 2 .70 .74 .62 .33 .21where Ri =  f0 !�  A BTB �C ! uipi ! :We found that performance was essentially in the asymptotic range for h = 1=32, andall results are for this mesh size.We present three types of data: iteration counts, estimates for convergence factors,and plots of residual norms as functions of operation counts. The iteration counts areaverages over three runs of the number of steps needed to satisfy the stopping criterion;these are shown in Table 4. The estimates for asymptotic convergence factors are theaverages of �k �R5+ik2=k �R5k2�1=i over all steps after step �ve; here �Rk represents theaverage of the k'th residual norm over the three runs. These are shown in Table 5.We chose step �ve rather than step zero because performance was often better in the�rst few steps than later, when the asymptotic behavior is seen. Finally, Figures 2 {5 plot the averages of the residual norms against operation counts.We make the following observations on these results.1. Where it is applicable, multigrid requires the smallest number of iterations andhas the smallest convergence factors. MG/ILU is superior to MG/DGS in these mea-sures. These observations agree with those of [35]. In addition, where it is applicable,MG/ILU requires the smallest number of operations. However, multigrid is only ef-fective for discretizations where velocities and pressures are de�ned on the same grid.13



Fig. 2. Operation counts for �nite di�erence discretization.
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Fig. 3. Operation counts for P1(h)P0(2h) �nite element discretization.
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Fig. 4. Operation counts for P1(h)P1(2h) �nite element discretization.
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Fig. 5. Operation counts for P1(h)P1(h) �nite element discretization.
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2. The Krylov subspace methods and MG/DGS are roughly equal in cost. The Krylovsubspace methods are more widely applicable than multigrid.3. The performances of all these methods are very close. In terms of operation counts,the ratio of costs of the most expensive and least expensive method is no worse than2.3.4. No Krylov subspace method is clearly superior to the others. PCG exhibits asomewhat faster convergence rate than PCR, and the Uzawa algorithm is surprisinglycompetitive with the other two methods. This appears to derive from the dependenceof PCG and PCR on both the spectral condition number � from (13) and the accuracyof the preconditioner QA as an approximation to A; for both these methods, theiteration counts go down in all cases when the number of smoothing steps in QAincreases. The Uzawa method appears to be less sensitive to the accuracy of QA. Thevalues of � for the three problems are:Finite di�erences 4.14 P1(h)P1(2h) 22.71P1(h)P0(2h) 4.87 P1(h)P1(h) 9.91The Uzawa method is least e�ective for the P1(h)P1(2h) discretization, which has thelargest condition number.5. The Uzawa and PCGmethods depend on choices of iteration parameters. These canbe estimated relatively inexpensively (e.g., using a coarse grid for the Uzawa method,and a few steps of the power method for PCG), but this increases the cost of thesemethods and makes implementing them considerably more di�cult. In contrast, PCRis independent of parameters except for those needed for the multigrid precondition-ing, and it is therefore easier to implement. Thus, there is a tradeo� between thesemethodologies: PCR converges slightly more slowly than PCG and, often, than theUzawa method, but it has a simpler implementation.6. For each of the solution strategies except PCG, it is less expensive to use onesmoothing step than two.Acknowledgements. The author wishes to thank David Silvester for a carefulreading of a preliminary version of this paper, and Andy Wathen for some helpfulremarks. REFERENCES[1] D. Arnold, F. Brezzi, and M. Fortin, A stable �nite element for the Stokes equations,Calcolo, 21 (1984), pp. 337{344.[2] K. Arrow, L. Hurwicz, and H. Uzawa, Studies in Nonlinear Programming, Stanford Univer-sity Press, Stanford, CA, 1958.[3] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, A taxonomy for conjugate gradientmethods, SIAM J. Numer. Anal., 27 (1990), pp. 1542{1568.[4] R. E. Bank, B. D. Welfert, and H. Yserentant, A class of iterative methods for solvingsaddle point problems, Numer. Math., 56 (1990), pp. 645{666.[5] J. H. Bramble and J. E. Pasciak, A preconditioning technique for inde�nite systems resultingfrom mixed approximations of elliptic problems, Math. Comp., 50 (1988), pp. 1{17.[6] A. Brandt and N. Dinar, Multigrid solutions to elliptic 
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