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Abstract. Discretization of the Stokes equations produces a symmetric indefinite system of lin-
ear equations. For stable discretizations, a variety of numerical methods have been proposed that
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model problems. The results indicate that where it is applicable, multigrid with smoothing based
on incomplete factorizaton is more efficient than the other methods, but typically by no more than
a factor of two. The conjugate residual method has the advantages of being both independent of
iteration parameters and widely applicable.
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1. Introduction. Consider the system of partial differential equations
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where Q is a simply connected bounded domain in R?, d = 2 or 3. This system, the
Stokes equations, is a fundamental problem arising in computational fluid dynamics,
see e.g. [7, 12, 14, 17]; u is the d-dimensional velocity vector defined on , and p
represents pressure.

Discretization of (1) by finite difference or finite element techniques leads to a
linear system of equations of the form

()02

where A is a set of uncoupled discrete Laplacian operators and C'is a positive semidef-
inite matrix. We consider here only stable discretizations, i.e., those for which the
condition number of the Schur complement matrix BA™' BT 4+ C is bounded indepen-
dently of the mesh size used in the discretization. For finite element discretizations
with C' = 0, this is a consequence of the inf-sup condition and upper bound

di di
Y < infsup L4V g divo)l
v v |olllgllo [0l [lgllo
where 4 and I' are independent of the mesh size. Here, | - |1 and || - ||o denote the

H'-seminorm and Euclidean norm, respectively, on the discrete velocity and pressure
spaces, and the bounds are taken over all v and ¢ in the appropriate discrete spaces;
see [7, 12, 14, 17].

In recent years, a variety of iterative algorithms have been devised for solving the
discrete Stokes equations. In this paper, we compare the performance of four such
methods:

1. a variant of the Uzawa method;

2. a preconditioned conjugate gradient (PCG) method applied to a transformed

version of (2);

3. a preconditioned conjugate residual (PCR) method;

4. multigrid (MG).
The Uzawa method is the first among these to have been devised [2] and it is often
advocated as an efficient solution technique, see e.g. [7, 12, 14]. The convergence
factor associated with it is proportional to (k — 1)/(k + 1) where & is the condition
number of the Schur complement BA~'BT + (' (see §2.5). The conjugate gradient
method, developed by Bramble and Pasciak [5], has convergence factor proportional to
(vE—1)/(y/k+1) but larger cost per step than the Uzawa method. The preconditioned
conjugate residual method was developed by Rusten and Winther [24] and Silvester
and Wathen [26, 31], and its convergence behavior is determined by properties of the
indefinite matrix. For multigrid, we consider versions derived from two smoothing
strategies: a variant of the distributed Gauss-Seidel method of Brandt and Dinar [6],
and the technique based on incomplete factorization developed by Wittum [35].
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These methods all have the property that for appropriate choice of precondition-
ers (or for multigrid, smoothers), their convergence rates are independent of the mesh
size used in the discretization. The actual costs of using them depends on both the
convergence rate and the cost per iteration. Qur goal in this paper is to compare costs,
in operation counts, of using each of the methods to solve three discrete versions of (1).
For convergence to be independent of mesh size, the first three methods (Krylov sub-
space methods) require a preconditioning operator spectrally equivalent to the discrete
Laplacian. In an effort to unify the comparison of these ideas with multigrid, we also
implement this preconditioner using a multigrid method for the associated Poisson
equation. Our main conclusions are as follows. For problems where it is applicable,
one version of multigrid, using incomplete factorization, requires the fewest iterations
and operations, but it is only marginally faster, i.e., by factors of approximately 1.5 to
2, than the Krylov subspace methods and the distributed Gauss-Seidel method. The
Krylov subspace methods are more widely applicable than either multigrid method.
Among the Krylov subspace methods, the conjugate residual method is slightly slower
than the conjugate gradient method, and in some cases, the Uzawa method, but it
has the advantage of not requiring any parameter estimates.

An outline of the rest of the paper is as follows. In §2, we present the solution
algorithms and give an overview of their convergence properties. In §3, we specify four
benchmark problems and the computational costs per iteration of each of the solution
methods. In §4, we present the numerical comparison.

2. Overview of methods. In this section, we present the four algorithms un-
der consideration and outline their convergence properties. The first three methods
depend on a preconditioning operator () 4 that approximates the matrix A of (2). We
assume that () 4 is symmetric positive definite (SPD) and that

(v, Av)
(3) m < m <2,

where 77 and 7, are independent of the mesh size used in the discretization. In
addition, finite element discretizations of (1) have a mass matrix M associated with
the pressure discretization.! The preconditioner will also include a SPD approximation
Qar of M. Discussions of computational costs will be made in terms of various matrix
operations together with inner products and “AXPY’s,” i.e., vector operations of the
form y < az + y.

2.1. The inexact Uzawa method. We use the following “inexact” version of
the Uzawa algorithm [11], which starts with ug = 0 and an arbitrary initial guess py:

for : = 0 until convergence, do
wipr = u; + Q4 (f — (Au; + BT p;))
Piv1 = pi + @ Qyf (Buiyr — Cpi)
enddo

(4)

Here, « is a scalar parameter that must be determined prior to the iteration.
In the “exact” version of this algorithm, ¢) 4 = A and the first step is equivalent
to solving the linear system Au;,4 1 = f — BTp;. When Qp = I, the exact algorithm

L If the finite element solution is expressed using a given basis {#:} as p = Zl 8id;, then ||p||z, =
(6, M8)2.



is then a fixed parameter first order Richardson iteration applied to the Schur com-
plement system (BA_lBT +C)p = BA7Yf; Qp is a preconditioner for this iteration.
The inexact Uzawa algorithm (4) replaces the exact computation of A~'(f — BTp;)
with an approximation.

2.2. A preconditioned conjugate gradient method. Let A denote the co-
efficient matrix of (2). Premultiplication of (2) by the matrix

T - Qi 0
B ( BQY —1
produces the equivalent system

QZIA QZI BT U Qzlf
(5) 14 -1 pT = -1 .
BQ, A-B BQyB +C P BQ, f
Let M = T A denote the coefficient matrix of this system. The conjugate gradient
method (CG) developed in [5] requires that the bilinear form

(6) [( 0 )(q )] = (A= Qa)or,02) + (a1, 2)

define an inner product. Equivalently, the preconditioning operator ¢) 4 must satisfy
(3) with 7, > 1. It is shown in [5] that M is SPD with respect to the inner product
(6), so that CG in this inner product is applicable. The matrix

I 0
. (1)

is also SPD with respect to (6), so that this can be used as a preconditioner.

Let
_ [ o | f—(Aug+ BTpg)
XO_(JUO)7 RO_( —(BUO—CPO) )

denote an arbitrary guess for the solution and the associated residual. An implemen-
tation of PCG is given below. Except for the nonstandard inner product, it is the
standard implementation, as given for example in [15, p. 529]. It is more efficient then
the version given in [5]. The preconditioner @) 4 is implicitly incorporated into the



inner product. The use of a preconditioner (7) is new.

Ro=TRo, Ro=G 'Ry
Py=Ro, MPy=TAPR,
aén) = [}%0, Ry), aéd) = [Py, M Py, o = aén)/aéd)
X1 = Xo+ aoh
Ry = Ry — ap APy, Ry=Ro—agMPy, Ry =G 'R,
for : = 1 until convergence, do
B = [k R), A =aln, g =808
P=Ri+ 31 P1, MP,=TAP,
agn) = ﬁz(ﬁ)lv agd) = [PivMPi]v Q; = agn)/agd)
Xipn =Xi+a; P, Ry = Ry — o AP,
Riy1 = Ri — asMP;,  Ripi =G 'Rija

enddo

To help identify operation counts, we describe the computation of {«;} and {3;}
in more detail. Letting

S; S; Sq

o« v _ Q5 vi
o oo ()

then agd) =[P, MP}] = (¢, AQZlvi —v;)+(d;, BQZlvi —w;). @ 4 is referenced only in
the construction of Qzlv in (8), so that only the action of the inverse of () 4 is required.
Moreover, although the vectors A7;, A¢; (for v;) and AQZlvi are used, the first two of
these can be computed using an AXpy. Consequently, only one matrix-vector product

by A is needed.

2.3. The preconditioned conjugate residual method. Since A is symmet-
ric, variants of the conjugate residual method are applicable. Let Xg denote the initial
guess and Ry its residual. The following algorithm implements the ORTHOMIN version



of PCR with preconditioner Q [3].2

Ry = Q 'Ry, Py = Ro, S0 = Q1 APy
aén) = (Ro, APy), aéd) = (AP, So), ag = aén)/aéd)
X1 = Xog+agby, R1 = Ry — ap APy, Ri = Ry — apSo
for : = 1 until convergence, do
ﬁ( L= (AR S B =l
=Ri+Bi1Pis1, AP = AR + 8.1 APy, S = Q7AP,
( V= (Ri, AR, oW = (AP, S, ai=al /ol
Xi-l—l =Xi+aP,  Rip1=Ri— AP, Ry = Ri— ;5

enddo

Any symmetric positive-definite Q could be used as a preconditioner. As in [26], we

use
[ Qa O
Q—(O @M)'

2.4. Multigrid. Asis well known, multigrid methods combine iterative methods
to smooth the error with correction derived from a coarse grid computation. We use
V-cycle multigrid for “transformed systems.” Our description follows [34, 35]. Cf.
[22, 30] for other multigrid methods derived from the squared system associated with
(2).

Let —A, denote the Laplace operator defined on the pressure space, with Neumann
boundary conditions (see [16]), and let A, be a discrete approximation to —A, defined
on the pressure grid. Consider the following transformed version of (2):

o (G- (-GG

The coefficient matrix in (9) is

(AW
(10) A:(BG),

where W = ABT — BTAp and G = BBT +C'A,. For appropriate discretizations of (1)
(see §3), W is of low rank, with nonzero entries only in rows corresponding to mesh
points next to 9. When C' = 0, (¢ can also be viewed as discretization of —A,. The
splitting

(11) A=8-R

then induces a stationary iteration applicable to (2),

Upt1 \ _ [ ug I BT o f— (Au, + BTpy)
(12) = + S .
Pr+1 Pk 0 -4, —(Buy, — Cpy)
2 It is possible for this version of PCR to break down, with oy = 0. The ORTHODIR version,
which uses a three-term recurrence to generate P;, is guaranteed not to break down; it requires two

additional AXPY’s. Our implementation switches from the ORTHOMIN to ORTHODIR direction update
if |a;| < 107%, as described in [9]. In the experiments discussed in §4, this switch never took place.
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This is used as the smoother for the multigrid solver for (2). Specific choices for S are
given in §3.2.

Let R, denote a restriction operator mapping velocity vectors in the fine grid (of
width h) to the coarse grid (of width 2h), let R, similarly denote the restriction oper-
ator for the discrete pressure space, and let P, and P, denote prolongation operators
from the coarse spaces to the fine spaces. (For simplicity, we are omitting explicit
mention of h in this notation.) One step of V-cycle multigrid for solving (2), starting
with initial guess u, p°, is as follows.

(ulvpl) = MG(uovpov f7 9, klv k?v h)
if h < hg,then % Recursive call

Starting with «°, p®, perform &y smoothing steps (12), producing u1/3,p1/3
P13 = f (Aul/?) 1 BTpl/:a)7 $1/3 — _(Bul/?) _ Cp1/3)
7‘2/3 _ Rur1/3, si/?’ _ Rp81/3
(", pi") = MG(0,0,72/° 5% ky, bz, 20)
w3 = 13 4 Puuz/S, P23 = pl/3 4 Pppz/?)
Starting with u?/3, p*/3, perform k, smoothing steps (12), producing u*, p!
else % Coarse grid solve when h = hg
A BT 1
Solve ) = / directly
B -C pt 0
endif

We also use V-cycle multigrid derived from the discrete Laplacian as a preconditioner
to approximate the action of A~! for the Krylov subspace methods; this is defined
analogously and we omit the details. For all multigrid methods, we use bilinear inter-
polation to define P, and P,, and R, = PT R, = PpT. The discrete operators at each
level are derived from the discretization on the associated grid.

2.5. Convergence properties. We briefly outline some convergence properties
of these methods; see the primary references for derivations of bounds. Each of the
methods generates a sequence of iterates u; =~ u, p; & p such that, if e; is a represen-
tation of the error, then lim;_..(||ei|l/|leol])/* = p for some norm || - ||. We refer to p
as the convergence factor.

We are assuming that the discretization and choice of Qs are such that

—-1nT
(13) A < (q,(B(f;’QBMq;r ) M.

where Ay and Ay, and therefore, Kk = Ay/As, are bounded independently of the mesh
size of the discretization. This is the case, for example, when (J»s is a suitable ap-
proximation of the mass matrix in finite element discretization [29, 32]. Note that s
is the spectral condition number of Q3 (BA™'BT + ().

The exact Uzawa algorithm has convergence factor p (I —a Q]T}(BA_lBT + C))

[12]. This is smallest for the choice @ = 2/(A1 + Az), in which case it has the value
(k—1)/(k+1). Thus, the convergence factor for the Uzawa algorithm is independent
of the mesh. It is shown in [11] that the performance of the inexact Uzawa algorithm



is close to that of the exact one if the iterate wu;y1 satisfies
(14) If = BTp; — Auiyq]|2 < THBUi—CPiHQZM

where 7 is independent of the mesh size.

The PCG method is analyzed in [5, Theorem 1], where it is shown that the condi-
tion number of the coefficient matrix M of (5) is bounded by a constant proportional
to k. Thus, standard results for CG [15] imply that the bound on the convergence
factor for this method is proportional to (v/k — 1)/(y/k + 1). The constant of pro-
portionality depends on how close 7; is to 1y in (3), i.e., how well Q)4 approximates
A.

The PCR method is analyzed in [24, 26]. The analysis shows that the eigenvalues
of the preconditioned matrix Q7' A are contained in two intervals [—a, —b] U [c, d],
where a, b, ¢, are d are positive constants that are independent of the mesh size. The
sizes of the intervals depend on x and the accuracy with which @) 4 approximates A. It
follows from the convergence analysis of CR [9, 27] that the convergence factor for the
preconditioned algorithm is independent of the mesh size. For example, it is shown

15 1/2
[9] that if d — ¢ = a — b > 0, then the convergence factor is bounded by 2 (1—) ,

oV
where 8 = (bc)/(ad).

It is shown in [36] that for finite difference discretization of (1) (see §3.1), two-grid

variants of multigrid are convergent with convergence rate independent of the mesh
size. The analysis applies to the ILU smoothing of §3.2, although it requires that the
prolongation be based on biquadratic interpolation. In practice, bilinear interpolation
has been observed to be sufficient [35]. Fourier analysis in [6] also suggests that
MG/DGS has convergence rate independent of mesh size.
REMARK 2.1. Several other proposed methods share properties with the version of
PCG under consideration. In particular, Verfiirth [29] has shown that PCG applied
directly to the Schur complement system has convergence factor proportional to poa;
however, this method requires accurate computation of the action of A~! at each CG
step [23]. Bank, Welfert and Yserentant [4] present a method making use of Q4 =~ A
with convergence rate dependent on the accuracy of this approximation, but using an
additional inner iteration on the pressure space.

3. Solution costs. In this section, we outline the computational costs required
to solve three benchmark problems on @ = (0,1) x (0,1), for each of the solution
methods of §2.

3.1. Benchmark problems. We use four discretizations to produce test prob-
lems: “marker and cell” finite differences, and three mixed finite element strategies.

1. Finite differences [19]. This consists of the usual five-point operator for each of
the discrete Laplacian operators of (1), together with centered differences for the first
derivatives Vp and div u. For the discretization to be stable, it is necessary to use
staggered grids in . Figure 1 shows such grids on a mesh of width A = 1/4. In
order to define the velocity discretizations at grid points next to J€), certain values
outside 2 must be extrapolated; for example, this is needed to approximate 9%uy /dy?
for points “x” next to the bottom of 99).

2. Linear/constant finite elements. This choice consists of continuous piecewise linear
velocities on a mesh of width &, and piecewise constant pressures on a mesh of width

7



Fia. 1. Staggered grids for finite difference discretization.
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Ll oleolcgd

2h. The discrete pressures are not required to be continuous. The coarser pressure
grid ensures that the inf-sup condition holds [17]. We refer to this as the Py (h)FPy(2h)
discretization.

3. Piecewise linear finite elements. Here, continuous piecewise linear velocities on
a mesh of width h are paired with continuous piecewise linear pressures on a mesh

of width 2h. The inf-sup condition is also satisfied. We call this the Pj(h)Pi(2h)
discretization.

4. Stabilized piecewise linear finite elements. A stable discretization using piecewise
linear velocities and pressures on a single of mesh can be obtained using a stabilization
matrix C' = Bh%A,,, where A, is the discrete Laplace operator defined on the pressure
space, subject to Neumann boundary conditions [8]. This technique is equivalent to the
mini-element discretization [1] after elimination of the internal degrees of freedom. We
use 3 = .025, as recommended in [25]. We refer to this discretization as Py(h)P;(h).

The usual hat functions are used as the bases for linear velocities and pressures.

The coefficient matrix A of (2) for all these problems, as well as BT, C, and
BA™'BT 4 C, are rank deficient by one; the latter three matrices share a constant
null vector. As a result, the discrete pressure solutions are uniquely defined only up to
a constant. In exact arithmetic, the solution methods under consideration correct the
initial guess with quantities orthogonal to the null space of A, so that the component
of the null space in the computed solution is the same as in the initial guess. For the
analysis, the lower bound of (13) refers to the smallest nonzero eigenvalue.

Note that our goal in considering these problems is to compare the performance of
the different solution strategies on a variety of problems. We highlight some properties
of each of the problems as follows:

1. finite differences, stable, #(pressure unknowns) ~ #(velocity grid points);
2. finite elements, stable, discontinuous pressures, #(pressure unknowns) ~ %
#(velocity grid points);
3. finite elements, stable, continuous pressures, #(pressure unknowns) ~ % #(ve-
locity grid points);
4. finite elements, requires stabilization, continuous pressures, #(pressure un-
knowns) = #(velocity grid points).
We are not comparing the accuracy achieved by the discretizations, and remark only
that the three finite element discretizations display the same asymptotic convergence
rates. See [17, pp. 29,50] for comments on accuracy of finite element discretization,
and [21] for analysis of the finite difference scheme.

3.2. Preconditioners and smoothers. The Uzawa, PCR, and PCG methods
require choices of ()4 and @ps. For all cases, ()4 consists of one step of V-cycle
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multigrid derived from the discrete Laplacian. To ensure that ¢} 4 is symmetric, the
smoothing is based on damped point-Jacobi iteration with damping parameter w = 2/3
[20]. For the three finite element discretizations, Qs is chosen to be the diagonal of the
mass matrix M, see [32]. (In the case of the P;(h)FPy(2h) discretization, Qpr = M.)
Although there is no mass matrix for finite differences, a natural analogue in two
dimensions is M = h%I, and this is used for @y with finite differences.

We consider two multigrid smoothing strategies. The first is a variant of the
distributed Gauss-Seidel (DGS) iteration introduced by Brandt and Dinar [6]. The
splitting operator of (11) is given by

[ Sa 0
s=(3 o)

so that the smoother (12) has the form

g1 = S7NF— (Aug + BTpy))

a1 = SGH(—(B(ug + digyr) + Cpr)
Upgr = Up + Gpp1 + BT proy
Per1 = Pk — ApPrtr -

For 54, we use the point Gauss-Seidel matrix derived from red-black ordering of
the velocity grid. (That is, if A = D — L — U with the red-black ordering, then
S4 = D — L.) For finite differences, S¢ = (1/w)T where T' is the tridiagonal part
of G and w = 2/3; that is, S¢ corresponds to a damped one-line Jacobi splitting.
For Py(h)P;(h) finite elements, S¢ is the block Jacobi matrix derived from a two-line
ordering of the underlying grid. These are slightly more sophisticated versions of the
choice Sg = diag(G') used in [6]. We refer to this multigrid method as MG/DGS.

The other multigrid smoother is the incomplete LU factorization (ILU) presented
by Wittum [35]. We use an ILU factorization of the matrix A of (10), with no fill-in
in the factors. The ordering for A is problem dependent. For finite differences, it is
derived from an uncoupled red-black ordering of the underlying grid. That is, the grid
values for uy were listed first, in red-black ordering, followed by those for uy, and then
those for p. (See also Remark 3.3 below.) For P;(h)Py(h) finite elements, A is ordered
according to an uncoupled lexicographic ordering of the grid vectors. We denote this
method by MG/ILU.

In choosing preconditioners and smoothers, we have attempted to use methods
that are suitable for vector and parallel computers. Thus, we are using point Jacobi
smoothing for multigrid preconditioning, red-black Gauss-Seidel and line Jacobi for
the DGS iteration, and a red-black ordering for MG /ILU applied to finite differences.
With the Py(h)P;(h) discretization, the operator G in the DGS method is a 19-point
operator that has block Property A for a two-line ordering of the pressure grid, so
that the two-line Jacobi splitting can be implemented efficiently in parallel. The ILU
smoother used with this problem is not eflicient on parallel computers. Our multigrid
strategies do not address the issue of idleness of parallel processors for coarse grid
computations; see [10, 13] for discussions of this point for the discrete Poisson equation.

Parameters are required for the Uzawa, PCG and multigrid methods, and for the
multigrid preconditioner. These are as follows:



Uzawa: The optimal value of a for the exact Uzawa method, determined empirically,
is used for the inexact version. This requires computation of the extreme
eigenvalues of Q3 (BA™'BT + C).

PCG: As noted in §2.3, the preconditioner must be scaled so that 7; > 1 in (3).
From the results of [5], it is desirable to have 7; close to 1. In all tests, the
scaling is chosen so that 1 < n; < 1.02. This requires computation of the
smallest eigenvalue of QZIA.3

MurTiGRrID: For the coarse mesh size hg in multigrid computations, we chose the one
of hg = 1/2 and hy = 1/4 that produced lower iteration counts. This turned
out to be hy = 1/2 for preconditioners and hy = 1/4 for solvers. The coarse
grid solution is obtained using Cholesky factorization for the preconditioners
and singular value decomposition for the solvers.

REMARK 3.1. For the Uzawa method, the choice of ) 4 does not guarantee that the
condition (14) is satisfied. The results of [11, 33] as well as those of §4 suggest that
with multigrid for Q 4, (14) may be too stringent.

REMARK 3.2. The effectiveness of the multigrid solvers depends on the fact that the
commutator W in (10) is zero away from the boundary of €. This is true for the finite
difference and stabilized Py(h)Pi(h) discretizations, where pressures and velocities are
defined on the same grid, but not for the (stable) P;j(h)P;(2h) discretization. Our
experiments confirm that multigrid is ineffective for this discretization, and we do not
include it as a option. See [18, p. 248] for a discussion of this issue. For the Py (h)Fy(2h)
discretization, it is difficult to define the discrete pressure Poisson operator A,, and
we know of no multigrid implementation for this problem.

REMARK 3.3. For MG/ILU applied to the finite difference discretization, we also
tested several alternative ordering strategies, including an uncoupled lexicographic
ordering (i.e., like that used for Py(h)Pi(h)), as well as several “coupled” lexicographic
orderings. For the latter strategies, velocity and pressure unknowns are not separated
from one another, see [28]. The performances of MG/ILU for all these orderings were
very close. For example, for h = 1/32 as in Table 4 below, the smallest average
iteration count with one smoothing step was 10% and the largest was 11%.

3.3. Tteration costs. We identify the costs per iteration of each of the methods
by first specifying the “high level” operations of which they are composed, and then
determining the costs of each of these operations. High level operations are defined to
be matrix-vector products, inner products (denoted “(, )” in the tables of this section),
and AXPY’s. Note that each of the techniques under consideration is formulated with
essentially the same set of these operations; consequently, we expect operation counts
to give a good idea of their comparative performance.

The high level operations are shown in Table 1. Matrix-vector products include
operations with matrices that define the problem or method, such as A or R,, as well
as preconditioning and smoothing operators such as QZI and Szl. The latter com-
putations are themselves built from other matrix operations, and some of these are
also identified in the table. All multigrid entries correspond to operations performed
on one grid level. For multigrid solvers, the smoothing operations are presented sep-
arately; these operations would be performed ky times during presmoothing and ks

® In the experiments described in §4, these were computed using a power method applied to Q;lA—
I; five to ten steps were needed to obtain an estimate accurate to three significant digits.
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TABLE 1
High level operations for all solution algorithms.

Matrix-Vector Product AXPY (,)
Uzawa 14 1BT 1Q3" 1 (nyp) 1 (ny 4+ np)
1B 1C 1Qy
PCG 14 187 1Q73" | 4 (ny+mp) | 3 (ny +np)
2B 1C 1 Q3 2 (ny)
PCR 14 187 1Q7 |5 (ny+mnp) | 4 (ny +1np)
1B 1C 1Qy
Multigrid (1+k+k)A 1R,
Preconditioner (k14 k2) S;l 1P,
Multigrid Solver | 1 A 1 BT 1 Ry 1 (ny 4+ np)
(Excluding 1B 1C 1R,
smoother) 1P, 1P,
14 2BT LA,
DGS Smoother |1 B 1C 157"
155!
ILU Smoother 14 2BT 1A,
1B 1C 1§

times during postsmoothing. The lengths of the vector operations are listed in paren-
theses. We are assuming that one inner product will be used in the convergence test,
and the counts in the table include this.

The costs of matrix-vector products are estimated to be the number of nonzeros in
the matrices used. This is roughly one half the number of “PLOPS” required, and it is
also proportional to the number of memory references. These costs, for discretizations
in which the velocity unknowns come from an n X n grid, are shown in Table 2. The
costs of vector operations are taken to be the length of the vectors.

Combining the data of Tables 1 and 2 gives an estimate for the cost per iteration
for each of the solution methods under consideration. These numbers are all propor-
tional to n?, and we present in Table 3 the cost factors obtained by omitting this
factor, rounded to the nearest integer. For the multigrid methods (preconditioners
and solvers), the cost of one full multigrid step is estimated as 4/3 times the cost of
the computations on the finest grid; this is approximately the cost of full recursive
multigrid in two dimensions.

4. Experimental results. We now present the results of numerical experiments
for solving (2). All experiments were performed in MATLAB on a SPARC-10 worksta-
tion. For each solution algorithm, we solved three problems derived from three choices
of f consisting of uniformly distributed random numbers in [—1,1]. The initial guess
in all cases was ug = 0, pg = 0. The stopping criterion was

1Ril2/[| Boll2 < 1077,
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TABLE 2

Costs for matriz-vector products.

Fin. Diff. | Pi(h)Po(2h) | Pr(h)Pi(2h) | Pi(h)Pi(h)
A 10n2 10n2 10n2 10n2
B, BT 4n? 4n? 8n? 12n?
C 0 0 0 5n?
Qu 1n? 0.25n? 0.25n? 1n?
571 (Jacobi) 2n? 2n? 2n? 2n?
571 (Gauss-Seidel) 6n’ 6n’ 6n’ 6n’
S{;l 3n? - - 9n?
A, 5n? - - 5n?
R., P, 6n? 4.5n? 4.5n? 4.5n?
R,, P, 3n? — — 2.25n?
S 19n? - - 41n?
TABLE 3
Cost factors.
Uzawa PCR PCG MG/DGS MG/IC
Finite k1= ko = 84 107 109 148 175
Differences ki1 = ko = 116 139 141 244 297
Pi(h)Po(2h) | k1 = ke = 79 98 101 - -
ko = ko =2 111 130 133 - -
Pi(h)Pi(2h) | k1 = ke = 86 104 111 - -
ko = ko = 118 136 143 - -
Pi(h)Pi(h) | ki=ky=1 101 124 134 247 333
ko = ko = 133 156 166 421 591
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TABLE 4
Iterations.

Uzawa PCR PCG MG/DGS MG/ILU
Finite ki=ky=1 36 41 30 24 12
Differences k1 = ko =2 28 33 23 15 9
Pi(h)Py(2h) | ki = ke =1 34 41 29 - -
ko =ky =2 26 34 23 - -
Pi(h)Pi(2h) | ki = ke =1 89 57 38 - -
ko = ky =2 89 50 31 - -

Pi(h)Pi(h) | ki=ky=1] 39 47 32 20 8
ki =ky =2 38 40 25 10 7
TABLE 5

Estimates of convergence factors.

Uzawa PCR PCG MG/DGS MG/ILU
Finite ki1=ky=1 .67 .70 .66 .62 .39
Differences k1 = ko =2 .60 .64 b7 .50 31
Pi(h)Py(2h) | ki = ke =1 .69 .69 .70 - -
ko =ky =2 .58 .66 .55 - -
Pi(h)Pi(2h) | ki = ke =1 .82 .79 .75 - -
ko =ky =2 .84 .78 .70 - -
Pi(h)Pi(h) | ki=ky=1 .70 .75 .68 .56 .24
ki=ky=2 .70 .74 .62 .33 21

(-2 ))

We found that performance was essentially in the asymptotic range for h = 1/32, and
all results are for this mesh size.

where

We present three types of data: iteration counts, estimates for convergence factors,
and plots of residual norms as functions of operation counts. The iteration counts are
averages over three runs of the number of steps needed to satisfy the stopping criterion;
these are shown in Table 4. The estimates for asymptotic convergence factors are the
averages of (Hqu-in/HRst)l/Z over all steps after step five; here Ry represents the
average of the k’th residual norm over the three runs. These are shown in Table 5.
We chose step five rather than step zero because performance was often better in the
first few steps than later, when the asymptotic behavior is seen. Finally, Figures 2 —
5 plot the averages of the residual norms against operation counts.

We make the following observations on these results.

1. Where it is applicable, multigrid requires the smallest number of iterations and
has the smallest convergence factors. MG/ILU is superior to MG/DGS in these mea-
sures. These observations agree with those of [35]. In addition, where it is applicable,
MG/ILU requires the smallest number of operations. However, multigrid is only ef-
fective for discretizations where velocities and pressures are defined on the same grid.

13
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Fig. 4. Operation counts for P1(h)Pi(2h) finite element discretization.
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Fig. 5. Operation counts for P1(h)Pi(h) finite element discretization.
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2. The Krylov subspace methods and MG/DGS are roughly equal in cost. The Krylov
subspace methods are more widely applicable than multigrid.
3. The performances of all these methods are very close. In terms of operation counts,
the ratio of costs of the most expensive and least expensive method is no worse than
2.3.
4. No Krylov subspace method is clearly superior to the others. PCG exhibits a
somewhat faster convergence rate than PCR, and the Uzawa algorithm is surprisingly
competitive with the other two methods. This appears to derive from the dependence
of PCG and PCR on both the spectral condition number & from (13) and the accuracy
of the preconditioner ()4 as an approximation to A; for both these methods, the
iteration counts go down in all cases when the number of smoothing steps in Q4
increases. The Uzawa method appears to be less sensitive to the accuracy of ) 4. The
values of k for the three problems are:

Finite differences 4.14 Pi(h)Pi(2R) 22.71

Pi(h)Py(2h) 4.87 Pi(h)Pi(h) 9.91
The Uzawa method is least effective for the P;(h)P;(2h) discretization, which has the
largest condition number.
5. The Uzawa and PCG methods depend on choices of iteration parameters. These can
be estimated relatively inexpensively (e.g., using a coarse grid for the Uzawa method,
and a few steps of the power method for PCG), but this increases the cost of these
methods and makes implementing them considerably more difficult. In contrast, PCR
is independent of parameters except for those needed for the multigrid precondition-
ing, and it is therefore easier to implement. Thus, there is a tradeofl between these
methodologies: PCR converges slightly more slowly than PCG and, often, than the
Uzawa method, but it has a simpler implementation.
6. For each of the solution strategies except PCGQG, it is less expensive to use one
smoothing step than two.
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