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First, we present results that extend the classical theory of Edgeworth expan-

sions to independent identically distributed non-lattice discrete random variables.

We consider sums of independent identically distributed random variables whose

distributions have d + 1 atoms and show that such distributions never admit an

Edgeworth expansion of order d but for almost all parameters the Edgeworth ex-

pansion of order d− 1 is valid and the error of the order d− 1 Edgeworth expansion

is typically O(n−d/2) but the O(n−d/2) terms have wild oscillations.

Next, going a step further, we introduce a general theory of Edgeworth expan-

sions for weakly dependent random variables. This gives us higher order asymptotics

for the Central Limit Theorem for strongly ergodic Markov chains and for piece–

wise expanding maps. In addition, alternative versions of asymptotic expansions

are introduced in order to estimate errors when the classical expansions fail to hold.

As applications, we obtain Local Limit Theorems and a Moderate Deviation Prin-

ciple.



Finally, we introduce asymptotic expansions for large deviations. For suffi-

ciently regular weakly dependent random variables, we obtain higher order asymp-
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ular, we obtain asymptotic expansions for Cramér’s classical Large Deviation Prin-
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Deviation Principle for strongly ergodic Markov chains.
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Chapter 1: Introduction

The Central Limit Theorem (CLT) is one of the most fundamental concepts in

probability which was introduced by the work of Laplace and Bernoulli. It describes

the long term behaviour of random trials repeated under uniform conditions.

Let SN =
N∑
n=1

Xn be a sum of random variables. We say that SN satisfies the

CLT if there are real constants A and σ > 0 such that

lim
N→∞

P
(
SN −NA√

N
≤ z

)
= N(z) (1.1)

where N(z) =

∫ z

−∞
n(y)dy and n(y) =

1√
2πσ2

e−
y2

2σ2 .

The usefulness of the CLT and related limit theorems depends on rapid con-

vergence of distributions of normalized partial sums to the limiting distribution.

This is because limit theorems are primarily used for approximating distributions

of sums of large but finite number of random variables. Therefore, an important

problem is to estimate the rate of convergence of (1.1).

In this regard, an asymptotic expansion as a series of increasing powers of

order n−1/2 (now commonly referred to as the Edgeworth expansion) was formally

derived by Chebyshev in [8]. Kolmogorov and Gnedenko emphasize the importance

of these expansion in their monograph [23] by stating that the Edgeworth Expansion

is “the most powerful and general method of finding such corrections.”
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Definition 1. SN admits Edgeworth expansion of order r if there are polynomials

P1(z), . . . , Pr(z) such that

P
(
SN −NA√

N
≤ z

)
= N(x) +

r∑
p=1

Pp(z)

Np/2
n(z)︸ ︷︷ ︸

Er,N (z)

+o
(
N−r/2

)
(1.2)

uniformly for z ∈ R.

Remark 1.1. It is an easy observation that Edgeworth expansion of SN , if it exists,

is unique. Suppose {Pp(z)}p and {P̃p(z)}p, 1 ≤ p ≤ r are polynomials corresponding

to two Edgeworth expansions. Then,

r∑
p=1

Pp(z)

Np/2
n(z) =

r∑
p=1

P̃p(z)

Np/2
n(z) + o

(
N−r/2

)
Multiplying by

√
N taking the limit N →∞ we have P1(z) = P̃1(z). Therefore,

r∑
p=2

Pp(z)

Np/2
n(z) =

r∑
p=2

P̃p(z)

Np/2
n(z) + o

(
N−r/2

)
Then, multiplying by N and taking N →∞, P2(z) = P̃2(z). Continuing this r times

we can conclude Pp(z) = P̃p(z) for 1 ≤ p ≤ r.

Here and in what follows, A is the asymptotic mean i.e. A = lim
N→∞

E
(SN
N

)
.

Work of Lyapunov, Edgeworth and Cramér focus on the problem of finding

higher order asymptotics in the CLT. Their main focus was on independent and

identically distributed (i.i.d.) sequences of random variables. In 1928, Cramér in-

troduced a theory of Edgeworth expansions for a broad class of random variables.

For the first rigorous derivation of this expansion see [10]. The monograph [11] by

Cramér also gives a detailed account of his theory of Edgeworth expansions.

Theorem 1.1 (Cramér). Let X be a centred random variable with E(X2) = σ2 > 0

and r + 2 absolute moments. Let X1, . . . , XN , . . . be sequence of i.i.d. copies of X.
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Assume further that

lim sup
|t|→∞

|E(eitX)| < 1. (1.3)

Then, SN satisfies (1.2).

Many refinements of this result appear in later literature. A good introduction

to this theory and later developments can be found in [3, 11,20,23].

In the i.i.d. case, Pp’s are polynomials such that the characteristic function

φ(t) = E(eitX) and the Fourier transform Êr,N of Er,N satisfy

φ

(
t

σ
√
N

)N
− Êr,N(t) = o

(
N−r/2

)
.

For example, E1,n(z) = N(z) + n(z)
E(X3)

6σ3
√
n

(1− z2) and

E2,n(z) = N(z) + n(z)

[
E(X3)

6
√
nσ3

(1− z2) +
E(X4)− 3σ4

24nσ4
(3z − z3)

−E(X3)2

72nσ6
(15z − 10z3 + z5)

]
.

Since all distributions with an absolutely continuous component satisfy (1.3),

this theorem covers a large class of random variables. However, (1.3) indicates that

the common distribution of Xn’s is far from being discrete. In fact, (1.3) fails when

random variables are purely discrete. Surprisingly, not much had been explored in

the case of discrete random variables, except in the lattice case. The purpose of my

first project [16], joint with Dmitry Dolgopyat, was to address this issue. A detailed

discussion about this can found in Chapter 2.

When Xn’s are i.i.d., it is known that the order 1 Edgeworth expansion exists if

and only if the distribution is non-lattice (see [19]). Therefore, the following asymp-

totic expansion for the Local Central Limit Theorem (LCLT) for lattice random

3



variables is also useful.

Definition 2. Suppose that Xn’s are integer valued. We say that SN admits a lattice

Edgeworth expansion of order r, if there are polynomials P0,d, . . . , Pr,d and a number

A such that

√
NP(SN = k) = n

(
k −NA√

N

) r∑
p=0

Pp,d((k −NA)/
√
N)

Np/2
+ o

(
N−r/2

)
uniformly for k ∈ Z.

Remark 1.2. Here, the subscript d in Pp,d refers to the fact that the expansion

is for discrete lattice-valued random variables. A priori, there is no reason for the

polynomials Pp in Definition 1 to be related to Pp,d. In Section 3.3, we show how

these two polynomials are related.

As in remark 1.1, we can prove the uniqueness of this expansion. Because

Pp,d’s have finite degree, say at most q, choose N large enough so that SN has more

than q values. Then the argument in remark 1.1 applies.

During the 20th century, the work of Lyapunov, Edgeworth, Cramér, Kol-

mogorov, Esséen, Petrov, Bhattacharya and many others led to the development of

the theory of these two asymptotic expansions. See [26, 31] and references therein,

for more details.

It is immediate that SN admits an order r Edgeworth expansion if

lim
N→∞

N r/2

[
P
(
SN −NA√

N
≤ z

)
− Er,N(z)

]
= 0. (1.4)

uniformly in z. [3, 4] discuss weak Edgeworth expansions where the LHS of (1.4) is

convolved with smooth compactly supported functions. These expansions yield the

asymptotics of E(f(SN)).
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To introduce these expansions, suppose (F , ‖ · ‖) is a function space.

Definition 3. SN admits weak global Edgeworth expansion of order r for f ∈ F

if there are polynomials P0,g(z), . . . Pr,g(z) and A (which are independent of f) such

that

E(f(SN −NA)) =
r∑
p=0

1

N
p
2

∫
Pp,g(z)n(z)f

(
z
√
N
)
dz + ‖f‖ · o

(
N−(r+1)/2

)
.

Definition 4. SN admits weak local Edgeworth expansion of order r for f ∈ F if

there are polynomials P0,l(z), . . . Pr,l(z) and A (which are independent of f) such

that

√
NE(f(SN −NA)) =

1

2π

br/2c∑
p=0

1

Np

∫
Pp,l(z)f(z)dz + ‖f‖ · o

(
N−r/2

)
.

We also introduce the following asymptotic expansion which yields an averaged

form of the error of approximation.

Definition 5. SN admits averaged Edgeworth expansion of order r if there are

polynomials P1,a(z), . . . Pr,a(z) and numbers k,m such that for f ∈ F we have

∫ [
P
(
SN −NA√

N
≤ z +

y√
N

)
−N

(
z +

y√
N

)]
f(y)dy

=
r∑
p=1

1

Np/2

∫
Pp,a

(
z +

y√
N

)
n

(
z +

y√
N

)
f (y) dy + ‖f‖ · o

(
N−r/2

)
.

Remark 1.3. Here, the subscripts g, l, a refer to global, local and averaged respec-

tively and used to distinguish the polynomials appearing each definition. In Sec-

tion 3.3, we show how these two polynomials are related.

All of these weak forms of expansions are unique provided that F is dense in

C∞c . If there are two different weak global expansions with polynomials {Pp,g} and

5



{P̃p,g}, the argument in remark 1.1 yields,

∫
Pp,g(z)n(z)f

(
z
√
N
)
dz =

∫
P̃p,g(z)n(z)f

(
z
√
N
)
dz

for all f ∈ C∞c which gives us the equality, Pp,g(z) = P̃p,g(z). The same idea works

for the other two expansions.

We have seen that these asymptotic expansions are unique. They also form a

hierarchy. We discuss this in Appendix A.2. Due to this hierarchy, in the absence

of one, others can be useful in extracting information about the rate of convergence

in (1.1).

Previous results on existence of Edgeworth expansions, for example in [11,

20, 23], assume independence of random variables Xn. For many applications the

independence assumption of random variables is too restrictive. Because of this

reason, there have been attempts to develop a theory of Edgeworth expansions for

weakly dependent random variables where weak dependence often refers to asymp-

totic decorrelation. See [9, 22, 29, 40, 41] for such examples. Their focus is on the

classical expansions introduced in Definition 1 and Definition 2.

Except in [9], the sequences of random variables considered are uniformly er-

godic Markov processes with strong recurrent properties or processes approximated

by such Markov processes. In [9], the authors consider aperiodic subshifts of finite

type endowed with a stationary equilibrium state and give explicit construction of

the order 1 Edgeworth expansion. They also prove the existence of higher order

classical Edgeworth expansions under a rapid decay assumption on the tail of the

characteristic function.

6



The goal of [21], a joint work with Carlangelo Liverani, is to generalize these

results and to provide sufficient conditions that guarantee the existence of Edgeworth

expansions for weakly dependent random variables including observations arising

from sufficiently chaotic dynamical systems, and strongly ergodic Markov chains.

In fact, we introduce a widely applicable theory for both classical and weak forms

of Edgeworth expansions and significantly improve existing results. This work is

discussed in detail in Chapter 3.

The CLT and related asymptotic expansions provide accurate descriptions only

of typical events. For example, if Xn’s are centered i.i.d. random variables then for

all a > 0, lim
N→∞

P(SN ≥ aN) = 0, due to the Law of Large Numbers i.e.
SN
N
→ 0

in probability. Large Deviation Principles (LDPs) give better descriptions of these

non–typical events by specifying the exponential rate at which their probabilities

decay.

Before we present results related to LDPs, we recall the following definitions,

and facts whose proofs can be found in [17,30]. Given a function f : R→ (−∞,∞]

with f 6= ∞, define its effective domain to be Df = {x ∈ R|f(x) < ∞} and

its Legendre transform by f ∗(x) = sup
t∈R

[tx − f(t)]. Then, f ∗ is convex and lower

semi-continuous. Therefore, Df∗ is an interval and f ∗ is continuous on Df∗ .

In addition, suppose f is convex, lower semi-continuous with D̊f = (a, b) and

f ∈ C2(a, b) with f ′′ > 0 on (a, b) (possibly a = −∞ or b = +∞). Then, D̊f∗ =

(A,B) where A = lim
t→a+

f ′(t) and B = lim
t→b−

f ′(t), f ∗ is continuously differentiable

on (A,B) and (f ∗)′ = (f ′)−1. For any f satisfying the above properties, for any

x ∈ D̊f∗ the supremum in the definition of f ∗(x) is achieved at the unique point

7



t ∈ D̊f which solves f ′(t) = x and hence, f ∗(x) = sup
t∈D̊f

[tx− f(t)]. Also, f is called

steep if lim
t→a
|f ′(t)| = lim

t→b
|f ′(t)| =∞.

The following classical result, due to Cramér, is one of the fundamental results

in the theory of Large Deviations.

Theorem 1.2 (Cramér). Let X be a real valued random variable with mean A and

variance σ2 > 0. Suppose that the logarithmic moment generating function of X,

logE(etX), is finite in a neighbourhood of 0. Let Xn be a sequence of i.i.d. copies of

X. Then,

lim
N→∞

1

N
logP(SN ≥ Nz) = −I(z), if z > A

and

lim
N→∞

1

N
logP(SN ≤ Nz) = −I(z), if z < A

where I is given by I(z) = sup
λ∈R

[
λz − logE(eλX)

]
(the Legendre transform of the

logarithmic moment generating function of X).

From the hypothesis it is immediate that I is convex and lower semi-continuous.

Also, I ′′ > 0 on D̊I = (inf(supp X), sup(supp X)), therefore I is strictly con-

vex on D̊I , I(z) = 0 ⇐⇒ z = µ and there is a unique λ∗ such that I(z) =

λ∗z − logE(eλ
∗X).

Cramér’s LDP has an extension to the non–i.i.d. case. We refer the reader

to [6][Chapter V.6] for a proof of the following result.

Theorem 1.3 (Local Gärtner–Ellis). Let Xn be a sequence of random variables not

necessarily i.i.d. Suppose there exists δ > 0 such that for λ ∈ (−δ, δ),

lim
N→∞

1

N
logE(eλSN ) = Ω(λ) (1.5)

8



where Ω is strictly convex continuously differentiable function with Ω′(0) = 0. Then,

for all z ∈
(

0,
Ω(δ)

δ

)
,

lim
N→∞

1

N
logP(SN ≥ Nz) = −I(z) (1.6)

where I(z) = sup
λ∈(−δ,δ)

[zλ− Ω(λ)].

Remark 1.4.

1. If the limit (1.5) exists for all λ ∈ R. Then, B = lim
δ→∞

Ω(δ)

δ
exists and (1.6)

holds for all z ∈ (0, B).

2. The function I appearing in the theorem is called the rate function because it

gives us the exponential rate of decay of tail probabilities.

In an on-going joint work with Pratima Hebbar, we develop a theory of higher

order asymptotics for LDPs, using the weak forms of Edgeworth expansions and

extensions of results in [27, Chapter VIII]. As in the CLT case, higher order asymp-

totics are given as expansions.

Definition 6. Suppose SN satisfies an LDP with rate function I. Then, SN admits

strong asymptotic expansion of order r for large deviations in the range (0, L) if

there are functions Cp : (0, L) → R for 0 ≤ p <
r

2
and A > 0 such that for each

a ∈ (0, L),

P(SN − AN ≥ aN)eI(a)N =

br/2c∑
p=0

Cp(a)

Np+1/2
+ Cr,a · o

(
1

N
r+1
2

)
.

These expansions are in the spirit of the higher order expansions found [1]

for i.i.d. sequences of random variables. In [7], authors refer to these expansions as

strong large deviation results. [7, 32] establish the order 1 expansions under certain

assumptions on the behaviour of the moment generating functions. These strengthen

9



the results of [1] but only in the order 1 case. Here, we give an alternative way to

establish the so-called strong large deviation results of all orders. We also manage to

recover the results in [1] in the non-lattice setting. For applications of these results

to statisitcs, see examples listed in [1, 7, 32] and references therein.

We also introduce the following weak form of the expansion for LDPs. As in

the CLT case, we define these expansions over a function space (F , ‖ · ‖).

Definition 7. Suppose SN satisfies an LDP with rate function I. Then, SN admits

weak asymptotic expansion of order r for large deviations in the range (0, L) for

f ∈ F , if there are functions Dp : (0, L) → R for 0 ≤ p <
r

2
and A > 0 such that

for each a ∈ (0, L),

E(f(SN − aN))eI(a)N =

br/2c∑
p=0

Dp(a)

Np+1/2
+ Cr,a · o

(
1

N
r+1
2

)
.

In fact, our results show that for a sequence Xn of i.i.d. l−Diophantine random

variables with all exponential moments, for every r, SN admits weak asymptotic

expansions of order r for large deviations on (0,∞) for sufficiently regular f . This

is a refinement of the LDP by Cramér for a broad class of random variables.

We also obtain similar results for certain classes of non–i.i.d. random variables.

As an application, we obtain asymptotic expansions for the LDP in the case of

Markov chains with smooth densities. In particular, let xn be a time homogeneous

Markov chain on a compact connected manifoldM with a smooth transition density

and h : M×M → R be smooth with non-degenerate critical points. Then Xn =

h(xn, xn−1) admits asymptotic expansions for large deviations of all orders. These

results are presented in Chapter 4.

10



Chapter 2: Central Limit Theorem: Discrete Random Variables.

2.1 Overview and main results.

Let X be a random variable with zero mean and positive variance σ2. Let

Sn =
n∑
n=1

Xj where Xj are independent identically distributed and have the same

distribution as X. Then, it is well-known that Sn satisfies the CLT with A = 0 and

σ as in (1.1).

In this chapter, we consider a case which is opposite to X having a density,

namely we suppose that X has a discrete distribution with d+1 atoms where d ≥ 2.

d = 2 is the simplest non-trivial case since distributions with two atoms are lattice

and as a result they do not admit even the first order Edgeworth expansion.

Thus, we suppose thatX takes values a1, . . . , ad+1 with probabilities p1, . . . , pd+1

respectively. Since X should have zero mean we suppose that our 2(d + 1)−tuple

(a,p) belongs to the set

Ω = {pi > 0, p1 + · · ·+ pd+1 = 1, p1a1 + · · ·+ pd+1ad+1 = 0}.

It is easy to see that Sn never admits the order d Edgeworth expansion. Indeed

Pa,p(Sn ≤ z) =
∑

mi≥0,
∑
mi=n∑

miai≤z

n!

m1! . . .md+1!
pm1

1 . . . p
md+1

d+1 . (2.1)

11



Applying the Local Central Limit Theorem to the time homogeneous Zd-random

walk which jumps to ei from the origin 0 with probability pi for i = 1, . . . , d and

stays at 0 with probability pd+1 we conclude that if

∑
miai = n

∑
aipi +O(

√
n)

then

nd/2
n!

m1! . . .md+1!
pm1

1 . . . p
md+1

d+1

is uniformly bounded from below. Accordingly Pa,p(Sn ≤ z) has jumps of order

n−d/2. On the other hand Ed(z) is a smooth function of z. So, it cannot approximate

both Pa,p(Sn ≤ z − 0) and Pa,p(Sn ≤ z + 0) at the points of jumps.

Here we show that for typical (a,p) the order d Edgeworth expansion just

barely fails. We present two results in this direction. For the first result let

bj = aj − a1, for j = 2 . . . d+ 1.

Set

d(s) = max
j∈{2,...d+1}

dist(bjs, 2πZ).

We say that a is β-Diophantine if there is a constant K such that for |s| > 1,

d(s) ≥ K

|s|β
.

It is easy to see that almost all a is β-Diophantine provided that β > (d− 1)−1 (see

[36,47]).

Theorem 2.1.1. If a is β-Diophantine and

2

(
R− 1

2

)
β < 1 (2.2)

12



then

lim
n→∞

nR
[
Pa,p

(
Sn
σ
√
n
≤ z

)
− Ed−1(z)

]
= 0.

Thus for almost every a the order (d − 1) Edgeworth expansion approximates the

distribution of
Sn
σ
√
n

with error O(nε−d/2) for any ε.

Note that Theorem 2.1.1 applies for all βs, in particular for βs which are much

larger than (d− 1)−1. However if β is large, then the statement of the theorem can

be simplified. Namely, let r be the integer such that r < 2R ≤ r + 1. (Note that

(2.2) can be rewritten as 2R <
1

β
+ 1 so provided that 2R is suffciently close to

1

β
+ 1 we can take r = bβ−1c+ 1. Then,

Pa,p

(
Sn
σ
√
n
≤ z

)
= Ed−1(z) + o

(
1

nR

)
= Er(z) + o

(
1

nR

)
+O (Ed−1(z)− Er(z)) .

Since
r + 1

2
> R the first error term dominates the second and we obtain the

following result.

Corollary 2.1.1.

lim
n→∞

nR
[
Pa,p

(
Sn
σ
√
n
≤ z

)
− Er(z)

]
= 0

provided that a is β-Diophantine, r = 1 + bβ−1c, and r < 2R <
1

β
+ 1.

Theorem 2.1.1 shows that for almost every a and for r ∈ {1, . . . , d − 1}, the

order r Edgeworth expansion is valid. Results that follow show that,

Pa,p

(
Sn
σ
√
n
≤ z

)
− Ed(z) (2.3)

is typically of order O(n−d/2) but the O(n−d/2) term has wild oscillations. To for-

mulate this result precisely we suppose that our 2(d+ 1)-tuple is chosen at random

13



according to an absolutely continuous distribution P on Ω. Thus (2.3) becomes a

random variable.

Theorem 2.1.2. There exists a smooth function Λ(a,p) such that for each z the

random variable

ez
2/2 nd/2

Λ(a,p)

[
Ed(z)− Pa,p

(
Sn
σ
√
n
≤ z

)]
converges in law to a non-trivial random variable X .

More precisely we have,

Λ(a,p) =
|ad+1 − a1|

2dπd+ 1
2

√
det(Da,p) σ(a,p)

(2.4)

where Da,p is a (d − 1) × (d − 1) matrix defined by equations (2.37)–(2.38) of

Section 2.5, σ(a,p) denotes the standard deviation of the distribution of the random

variable taking value aj with probability pj and X is defined as follows.

Let M be the space of pairs (L, χ) where L is a unimodular lattice in Rd and χ

is a homeomorphism χ : L → T. In the formulas below, we identify T with segment

[0, 1) equipped with addition modulo one. Given a vector w ∈ Rd we denote by

y(w) its first coordinate and by x(w) its last d− 1 coordinates.

Lemma 2.1.2. For almost every pair (L, χ) ∈M with respect to the Haar measure

the following limit exists

X (L, χ) = lim
R→∞

∑
w∈L\{0}, ||w||≤R

sin(2πχ(w))

y(w)
e−||x(w)||2 . (2.5)

In order to simplify the notation we will abbreviate expressions such as (2.5)

by

X (L, χ) =
∑

w∈L\{0}

sin(2πχ(w))

y(w)
e−||x(w)||2 . (2.6)

14



The Haar measure on M can be defined in two equivalent ways. First, note

that χ is of the form χ(w) = eiχ̃(w) for some linear functional χ̃ ∈ (Rd)∗. SLd(R)

acts on Rd ⊕ (Rd)∗ by the formula,

A(w, χ̃) = (Aw, χ̃A−1).

Observe that if A(w, χ̃) = (ŵ, χ̂) then,

χ̃(w) = ŵ(χ̂). (2.7)

The above action of SLd(R) induces the following action of SLd(R) n (Rd)∗ on M

given by,

(A, χ̃)(L, χ) = (AL, e2πitχ̃ · (χ ◦ A−1)).

This action is transitive because SLd(R) acts transitively on unimodular lattices and

(Rd)∗ acts transitively on characters. This allows us to identify M with (SLd(R) n

Rd)/(SLd(Z) n Zd) and so M inherits the Haar measure from SLd(R) nRd.

The second way to define the Haar measure is to note that the space M of

unimodular lattices is naturally identified with SLd(R)/SLd(Z) and so it inherits

the Haar measure from SLd(R). Next for a fixed L the set of homeomorphisms

χ : L → T is a d dimensional torus so it comes with its own Haar measure.

Now, if we want to compute the average of a function Φ(L, χ) with respect to

the Haar measure then we can first compute its average Φ̄(L) in each fiber and then

integrate the result with respect to the Haar measure on the space of lattices. In

the proof of Lemma 2.1.2 given in Section A.1 the averaging inside a fiber will be

denoted by Eχ and the averaging with respect to the Haar measure on the space of

lattices will be denoted by EL.
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If we assume that the pair (L, χ) is distributed according to the Haar measure

on M then X , defined in Lemma 2.1.2, becomes a random variable. This is the

variable mentioned in Theorem 2.1.2. Note that the distribution of X depends

neither on P nor on z.

Using the second representation of the Haar measure we can also describe X

as follows. Let w1, . . . ,wd be the shortest spanning set of L. That is w1 is the

shortest non zero vector in L and, for j > 1, wj is the shortest vector which is

linearly independent of w1, . . . ,wj−1. Given m = (m1, . . . ,md) ∈ Zd let (y,x)(m),

y ∈ R and x ∈ Rd−1, denote the point

m1w1 + · · ·+mdwd ∈ L. (2.8)

Let θj = χ(wj). Then θj are uniformly distributed on T and independent of each

other. Set θ(m) = m1θ1 + · · · + mdθd. Now X (see definition in Lemma 2.1.2) can

be rewritten as

X =
∑

m∈Zd\{0}

sin(2πθ(m))

y(m)
e−||x(m)||2 (2.9)

where L is uniformly distributed on the space of lattices, (y,x)(m) is defined by

(2.8), and (θ1, . . . θd) is uniformly distributed on Td and independent of L.

Theorems 2.1.1 and 2.1.2 have analogues when we consider probabilities that

Sn belongs to finite intervals. In particular, our results have applications to the

Local Limit Theorem.

Theorem 2.1.3. Let z1(n) and z2(n) be two uniformly bounded sequences such that

|z1(n)− z2(n)|nd/2 →∞. Then, the random vector,

nd/2

Λ(a,p)

(
ez

2
1/2

[
Ed(z1)− Pa,p

(
Sn
σ
√
n
≤ z1

)]
, ez

2
2/2

[
Ed(z2)− Pa,p

(
Sn
σ
√
n
≤ z2

)])
(2.10)

16



converges in law to a random vector (X (L, χ1),X (L, χ2)) where X (L, χ) is defined

by (2.6) and the triple (L, χ1, χ2) is uniformly distributed on (SLd(R)/SLd(Z)) ×

Td × Td.

Here and below the uniform distribution of (L, χ1, χ2) means that L is uni-

formly distributed on the space of lattices and for a given lattice, χ1 and χ2 are

chosen independently and uniformly from the space of characters.

Theorem 2.1.4. Let z1(n) < z2(n) be two uniformly bounded sequences such that

ln = z2(n)− z1(n)→ 0.

(a) If ln ≥ Cnε−d/2 for some ε > 0 then

Pa,p(z1 <
Sn
σ
√
n
< z2)

lnn(z1)
→ 1 almost surely.

(b) If lnn
d/2 →∞ then

Pa,p(z1 <
Sn
σ
√
n
< z2)

lnn(z1)
⇒ 1

(here and below “⇒” denotes the convergence in law).

(c) If ln =
c|ad+1 − a1|
σ(a,p)nd/2

then

2d−
3
2πd
√

det(Da,p)

[
Pa,p(z1 <

Sn
σ
√
n
< z2)

lnn(z1)
− 1

]
⇒ Y

where

Y(L, χ, c) =
∑

w∈L\{0}

sin(2π[χ(w)− cy(w)])− sin(2πχ(w))

y(w)
e−||x(w)||2

and L, χ are as in Theorem 2.1.2 and Da,p given by equations (2.37)–(2.38).

The intuition behind this result is the following. Call yn δ-plausible if P(Sn =

yn) ≥ δn−d/2. The discussion following (2.1) shows that for each δ there are about
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C(δ)nd/2 δ-plausible values. Therefore, if ln � n−d/2 then the interval [z1(n), z2(n)]

would typically contain no plausible values. Hence, we should not expect the LLT

to hold on that scale. Theorem 2.1.4 shows that as soon as interval [z1(n), z2(n)]

contains many plausible values then the LLT typically holds for this interval.

Recall that,

Pa,p(Sn ∈ [z1, z2]) =
∑

mi≥0,
∑
mi=n

z1≤
∑
miai≤z2

n!

m1! . . .md+1!
pm1

1 . . . p
md+1

d+1 .

Thus, in Theorem 2.1.4 we just count the number of visits of a random linear form∑
miai to a finite interval with weights given by multinomial coefficients. It is

also interesting to consider counting with equal weight. In this case the analogue

of Theorem 2.1.4(c) is obtained in [38] while for longer intervals only partial results

are available, for example see [15,34].

The chapter is organized as follows. Theorem 2.1.1 is proven in Section 2.2.

The proof is a minor modification of the arguments of [20, Chapter XVI]. The bulk

of the chapter is devoted to the proof of Theorem 2.1.2. In Section 2.3 we provide an

equivalent formula for X . This formula looks more complicated than (2.6) but it is

easier to identify with the limit of the error term. Section 2.4 contains preliminary

reductions. We show that the density ρ on Ω could be assumed smooth and the

integration in the Fourier inversion formula could be restricted to a finite domain. In

Section 2.5, we show that main contribution to the error term comes from resonances

where characteristic function of Sn is close to 1 in absolute value. The proof relies

on several technical estimates which are established in Section 2.6. In Section 2.7,

we use dynamics on homogenuous spaces in order to show that the contribution of
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resonances converges to (2.6) completing the proof of Theorem 2.1.2. The proofs of

Theorems 2.1.3 and 2.1.4 are similar to the proof of Theorem 2.1.2. The necessary

modifications are explained in Section 2.8. We postpone the proof of Lemma 2.1.2

till Appendix A.1.

2.2 Edgeworth Expansion under Diophantine conditions.

Theorem 2.1.1 is a consequence of Theorem 2.2.1 below and the fact that in

our case there is a positive constant c such that

|φ(s)| ≤ 1− cd(s)2. (2.11)

(2.11) follows from inequality (2.35) proven in Section 2.5.

Theorem 2.2.1. If the distribution of X has d+ 2 moments and its characteristic

function satisfies

|φ(s)| ≤ 1− K

|s|γ
(2.12)

and R <
d

2
is such that (

R− 1

2

)
γ < 1 (2.13)

then

lim
n→∞

nR
[
P
(

Sn
σ
√
n
≤ z

)
− Ed−1(z)

]
= 0.

Theorem 2.2.1 follows easily from the estimates in [20, ChapterXVI] but we

provide the proof here for completeness.

Proof. Denoting

∆̄n(a,p) = Pa,p

(
Sn
σ
√
n
≤ z

)
− Ed−1(z)
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we get by [20, Chapter XVI] that for each T

|∆̄n(a,p)| ≤ 1

π

∫ T
σ
√
n

− T
σ
√
n

∣∣∣∣∣φn(s)− Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds+
C

T
. (2.14)

Choose T = BnR with B =
C

ε
. Then,

C

T
=

ε

nR
. Take a small δ and split the

integral in the RHS of (2.14) into two parts.

1

π

∫ δ

−δ

∣∣∣∣∣φn(s)− Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds +
1

π

∫
δ<|s|<BnR−1/2/σ

∣∣∣∣∣φn(s)− Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds.
(2.15)

Again, by [20, Chapter XVI], we have that the first integral of (2.15) is O
(
n−d/2

)
.

Also,

∫
|s|>δ

∣∣∣∣∣ Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds has exponential decay as n → ∞. Put J = {s : δ <

|s| < BnR−1/2/σ}. Thus, we only need to approximate,

∫
J

∣∣∣∣φn(s)

s

∣∣∣∣ ds ≤ 1

δ

∫
J

|φn(s)| ds ≤ C

δ

∫
J

exp
(
−c̄ n1−(R− 1

2)γ
)
ds (2.16)

where the last inequality is due to (2.12). By (2.13) the integral decay faster than

any power of n. Because R <
d

2
the contribution of |s| ≤ δ is also under control.

2.3 Change of variables.

Here we deduce Theorem 2.1.2 from:

Theorem 2.1.2*. For each z the random variable

nd/2
[
Ed(z)− Pa,p

(
Sn
σ
√
n
≤ z

)]

converges in law to X̂ where

X̂ (a, p,L, χ) = e−z
2/2 |ad+1 − a1|

2σ(a, p)
√
π3

∑
w∈L\{0}

sin 2πχ(w)

y(w)
e−4π2x(w)TDa,px(w) (2.17)
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a = (a1, . . . , ad+1), p = (p1, . . . , pd+1) and (a, p) ∈ Ω are distributed according to P

and Da,p and σ(a, p) are defined immediately after (2.4).

In order to deduce Theorem 2.1.2 from Theorem 2.1.2* we need to show that

ez
2/2 X̂

Λ(a, p)
has the same distribution as X . To this end we rewrite the sum in (2.17)

as

1

(2π)d−1 det(
√
Da,p)

∑
w∈L\{0}

sin(2πχ(w))

y(w)/((2π)d−1 det(
√
Da,p))

e−4π2||(
√
Da,px(w))||2 . (2.18)

Let A be the linear map such that

A(y,x) =

(
y

(2π)d−1
√

det(Da,p)
, 2π

√
Da,p x

)
.

Put (L̄, χ̄) = A(L, χ). Then, using (2.7), (2.18) can be rewritten as:

1

(2π)d−1 det(
√
Da,p)

∑
w̄∈L\{0}

sin(2πχ̄(w̄))

y(w̄)
e−||x(w̄))||2 .

Since det(A) = 1, the pair (L̄, χ̄) is distributed according to the Haar measure

on M proving our formula for X .

Sections 2.4–2.7 are devoted to the proof of Theorem 2.1.2*. Note that simi-

larly to (2.9) we have

X̂ = e−z
2/2 |ad+1 − a1|

2σ(a, p)
√
π3

∑
m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2x(m)TDa,px(m).

The statements of Theorems 2.1.2 and 2.1.2* look similar, however, there

is an important distinction. Namely the proof of Theorem 2.1.2* is constructive.

In the course of the proof given n, a and z we construct a lattice L(a, n) and

a character χ(a,p, n, z) such that the expression n−d/2X̂ (a,p,L(a, n), χ(a,p, n, z))

well-approximates the error in the Edgeworth expansion. We believe that such a
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construction could be made for more general distributions where the Edgeworth ex-

pansion fails, and this will be a subject of a future investigation. So the difference

between Theorems 2.1.2 and 2.1.2* is that in the first case we have only an approx-

imation in law while in the second case we are able to obtain an approximation in

probability.

2.4 Cut off.

2.4.1 Density.

Here we show that it is enough to prove Theorem 2.1.2* under the assumption

that P has smooth density supported on a subset

Ωκ = {(a,p) ∈ Ω : ∀i pi ≥ κ and ∀i 6= j |ai − aj| ≥ κ}

for some κ > 0. Indeed suppose that the theorem is true for such densities. Let

p(a,p) the original density of P. Let φ be a bounded continuous test function.

Given ε we can find a smooth density p̃(a,p) supported on some Ωκ such that

||p− p̃||L1 ≤ ε. In Section 2.7 we prove that∫
φ(nd/2∆n)p̃ da dp→

∫∫
φ(X̂ (a,p,L,θ))p̃ da dp dµ(L,θ) (2.19)

where ∆n = Ed(z)−P
(

Sn
σ
√
n
≤ z

)
and µ is the Haar measure on (SLd(R)/SLd(Z))×

Td. Let pm(a,p) be the smooth density supported on Ωκ corresponding to ε = m−1.

Passing to subsequence, pm → p almost surely. Because |pmφ| ≤ ‖φ‖|pm| ∈ L1

and |pφ| ≤ ‖φ‖|p| ∈ L1 and ‖φ‖|pm| → ‖φ‖|p| almost surely, Lebesgue Dominated

Convergence Theorem gives
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∫∫
φ(X̂ (a,p,L,θ))pm da dp dµ(L,θ)

→
∫∫

φ(X̂ (a,p,L,θ))p da dp dµ(L,θ). (2.20)

Combining (2.19) and (2.20) we have that,∫
φ(nd/2∆n)p da dp =

∫
φ(nd/2∆n)pm da dp +O(m−1‖φ‖) (2.21)

n→∞−−−→
∫∫

φ(X̂ (a,p,L,θ))pm da dp dµ(L,θ) +O(m−1‖φ‖)

m→∞−−−→
∫∫

φ(X̂ (a,p,L,θ))p da dp dµ(L,θ).

2.4.2 Fourier transform.

As in the previous section let

∆n = Ed(z)− Fn(z) where Fn(z) = Pa,p

(
Sn
σ
√
n
≤ z

)
.

Denote by vT (x) =
1

π
· 1− cosTx

Tx2
and let V(s, T ) =

(
1− |s|

T

)
1|s|≤T be its

Fourier transform. Using the approach of [20, Section XVI.3] we let T2 = n2d+6 and

decompose

∆n = [Ed − Fn] ? vT2(z)− [Fn − Fn ? vT2 ] (z) + [Ed − Ed ? vT2 ] (z). (2.22)

To estimate the last term we split

[Ed − Ed ? vT2 ] (z) =

∫
|x|≤1

[Ed(z)− Ed(z − x)] vT2(x)dx (2.23)

+

∫
|x|≥1

[Ed(z)− Ed(z − x)] vT2(x)dx.

Since vT is even the first integral in (2.23) equals to∫
|x|≤1

E ′d(z)xvT2(x)dx−
∫
|x|≤1

E ′′d (y(z, x))

2
x2vT2(x)dx
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=

∫
|x|≤1

E ′′d (y(z, x))

2

1− cosT2x

πT2

dx = O
(

1

T2

)
.

Since both Ed and cosine are bounded the second integral in (2.23) is bounded

by

C

∫
|x|≥1

dx

T2x2
=
C

T2

.

Thus the last term in (2.22) is O
(
T−1

2

)
. To estimate the second term in (2.22) we

split the integral in Fn ? vT2 into regions {|x| ≥ 1/
√
T2} and {|x| ≤ 1/

√
T2}. The

contribution of {|x| ≥ 1/
√
T2} is bounded by

C

∫ ∞
1/
√
T2

dx

T2x2
=

C√
T2

.

On the other hand

∫
|x|≤1/

√
T2

[Fn(z)− Fn(z − x)]VT2(x)dx = 0

unless there is a point of increase of Fn inside
[
z − 1/

√
T2, z + 1/

√
T2

]
. The prob-

ability that such a point exists is bounded by

∑
m1+···+md+1=n

P
(
m1a1 + · · ·+md+1ad+1 ∈

[
z − 1/

√
T2, z + 1/

√
T2

])
. (2.24)

Note that for each fixed (m1, . . . ,md+1) the random variable

m1a1 + · · ·+md+1ad+1

has a bounded density with respect to the uniform distribution on the segment of

length O
(√

m2
1 + · · ·+m2

d+1

)
and so

P(m.a ∈ J) = O
(
|J |
‖m‖

)
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for any interval J . Hence each term in (2.24) is O
(

1

n
√
T2

)
and so the sum is

O
(

nd

n
√
T2

)
. Thus with probability 1−O

(
1

n4

)
we have that ∆n = ∆n,2+O

(
T
−1/2
2

)
where

∆n,2 =
1

2π

∫ T2

−T2

[
φn
(

t√
n

)
− Êd(t)

]
it

V(t, T2)e−itzdt

=
1

2π

∫ T2
σ
√
n

− T2
σ
√
n

e−iszσ
√
n φ

n(s)− Êd(sσ
√
n)

is
V(s, n, T2)ds ,

V(s, n, T ) = 1−
∣∣∣∣sσ√nT

∣∣∣∣ and φ(s) is the characteristic function of X given by

φ(s) = p1e
isa1 + · · ·+ pd+1e

isad+1 .

Let T1 = K1n
d/2 and define

∆n,1 =
1

2π

∫ T1
σ
√
n

− T1
σ
√
n

e−iszσ
√
n φ

n(s)− Êd(sσ
√
n)

is
V(s, n, T2) ds.

Let Γn = ∆n,2 −∆n,1. Put

Γ̃n =
1

2π

∫
|s|∈[T1/(σ

√
n),T2/(σ

√
n)]
e−iszσ

√
n φ

n(s)

is
V(s, n, T2) ds.

Then, we have Γn = Γ̃n +O
(
e−εT

2
1

)
due to the exponential decay of Êd.

The main result of Subsection 2.4.2 is the following.

Proposition 2.4.1. ∥∥∥Γ̃n

∥∥∥
L2
≤ C√

T1nd
. (2.25)

Proof.

E(Γ̃2
n) =

∫∫
E
(
e−i(s1+s2)zσ

√
nφn(s1)φn(s2)V(s1, n, T2)V(s2, n, T2)

) ds1

s1

ds2

s2

.

We split this integral into two parts.
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(1) In the region where |s1 + s2| ≤ 1 we use Corollary 2.5.2 proven in Section

2.5 to estimate the integral by

O

(∫
|s|∈[T1/(σ

√
n),T2/(σ

√
n)]

1√
ns2

1

E (|φn(s1)|) ds1

)
. (2.26)

The next result will be proven in Section 2.6.

Lemma 2.4.2.

E (|φn(s1)|) ≤ C

nd/2
.

Plugging the estimate of Lemma 2.4.2 into (2.26) and integrating we see that

the contribution of the first region to E(Γ̃2
n) is O

(
1

T1nd/2

)
.

(2) Consider now the region where |s1 + s2| ≥ 1. Denote

bd+1 = ad+1 − a1, . . . , b2 = a2 − a1.

Then

φ(s) = eisa1ψ(s) where ψ(s) = p1 + p2e
isb2 + · · ·+ pd+1e

isbd+1 .

Denote ν = (p1, . . . , pd, b2, . . . , bd). Then there exists a compactly supported density

ρ = ρ(a1,ν) such that the contribution of the second region is

∫∫
|s1+s2|≥1

(∫
e−i(s1+s2)zσ

√
nein(s1+s2)a1ψn(s1)ψn(s2)V(s1)V(s2)ρ da1 dν

)
ds1

s1

ds2

s2

.

We are able to use a 2d-dimensional coordinate system because on Ω

p1 + · · ·+ pd+1 = 1, and p1a1 + · · ·+ pd+1ad+1 = 0. (2.27)

To estimate this integral we integrate by parts with respect to a1. We use that

eisna1da1 =

[
1

isn

d

da1

]k
deisna1

26



for some large k (for example we can take k = 2d + 1). The integration by parts

amounts to applying

(
d

da1

)k
to
(
eiszσ

√
nρ[ψ(s1)ψ(s2)]n

)
which leads to the terms{(

d

da1

)k1 [
ei(s1+s2)zσ

√
n
]}{( d

da1

)k2
[ρ]

}{(
d

da1

)k3
[[ψ(s1)ψ(s2)]n]

}
where k1 + k2 + k3 = k. (Note that both σ and ψ depend on a1 implicitly due to the

second equation in (2.27)). Thus, the contribution of the above term to the integral

is bounded by

C

∫∫
|s1|,|s2|∈[T1/σ

√
n,T2/σ

√
n]

|s1+s2|≥1

(s1 + s2)k1 n(k1/2)+k3

(s1 + s2)k nk
E (|φn(s1)|) ds1

s1

ds2

s2

.

Using Lemma 2.4.2 again we can estimate the above integral by
C

nk/2
if k1 ≥ k − 2

C

T1nk+d/2−k1/2−k3
otherwise.

Thus the main contribution comes from k1 = k2 = 0, k3 = k proving Proposition

2.4.1.

Proposition 2.4.1 shows that the contribution from Γ̃n to the L2-limit of nd/2∆n

can be made arbitrarily small by choosing K1 large. Also, on |s| ≤ T1/σ
√
n we

have

V(s, n, T2) =

(
1− sσ

√
n

T2

)
1|s|<T2/σ

√
n = 1− sσ

n2d+ 11
2

.

Hence ∆n,1 = ∆̂n + o(n−2d) where

∆̂n :=
1

2π

∫
|s|≤T1/σ

√
n

φn(s)− Êd(sσ
√
n)

is
e−iszσ

√
nds

approximates well ∆n,1 and hence, ∆n too. Also, the error from this approximation

of nd/2∆n converges to 0 in L2. Hence, we only need to analyze nd/2∆̂n for large

n.
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2.5 Simplifying the error.

Denote

sk =
2πk

|bd+1|

and let Ik be the segment of length
2π

|bd+1|
centered at sk. Put K2 � K1. Due to the

results of the previous section it is sufficient to study

∆̂n =
∑

|k|≤K2
√
n

Ĩk

where

Ĩk =
1

2πi

∫
Ik

e−iszσ
√
n φ

n(s)− Êd(sσ
√
n)

s
ds.

Ĩ0 = O(n−(d+1)/2) due to [20, Section XVI.2]. Next, Êd(sσ
√
n) decays exponentially

with respect to n outside of I0. So, its contribution to Ĩk is negligible for k 6= 0.

Accordingly,

∆̂n =
∑

0<|k|≤K
√
n

Ik +O
(

1

n(d+1)/2

)
where

Ik =
1

2πi

∫
Ik

e−iszσ
√
n φ

n(s)

s
1|s|≤T1/σ

√
n ds.

Introduce the following notation

s̄k = arg max
s∈Ik
|φ(s)|, φ(s̄k) = rke

iφk .

The following lemma is similar to the results of [12, Section 5.2].

Lemma 2.5.1. Suppose that

rnk ≥ n−100 (2.28)
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and

± T1

σ
√
n
6∈ Ik. (2.29)

Then

Ik =
1

i
√
πnσ

rnk
s̄k
e−z

2/2 einφk−is̄kzσ
√
n(1+on→∞(1)).

Proof. Let eis̄kaj = ei(φk+βj(k)). Then

rk =
d+1∑
j=1

pj cos(βj(k)) (2.30)

and
d+1∑
j=1

pj sin(βj(k)) = 0. (2.31)

Since (2.28) implies that rk ≥ 1− C lnn

n
, (2.30) shows that |βj(k)| ≤ C

√
lnn

n
and

so (2.31) gives
d+1∑
j=1

pjβj(k) = O

(
ln3/2 n

n3/2

)
. (2.32)

Now we use Taylor expansion

ei(s̄k+δ)aj = eiφk
(

1 + iβj(k)− βj(k)2

2

)(
1 + iajδ −

a2
jδ

2

2

)
+O

(
ln3/2 n

n3/2
+ δ3

)
. (2.33)

Thus,

φ(s̄k + δ) = eiφk
d+1∑
j=1

pj

(
cos(βj(k))−

a2
jδ

2

2

)
+O

(
ln3/2 n

n3/2
+ δ3

)

= rke
iφk

(
1− σ2δ2

2

)
+O

(
ln3/2 n

n3/2
+ δ3

)
(2.34)

where we have used (2.32) as well as

p1a1 + · · ·+ pd+1ad+1 = 0, p1a
2
1 + · · ·+ pd+1a

2
d+1 = σ2.
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Hence for large n, the main contribution to Ik equals to

rnk
2πis̄k

ei(nφk−
√
nσzs̄k)

∫ (
1− σ2δ2

2

)n
e−iσzδ

√
ndδ

≈ rnk
2πis̄k

ei(nφk−
√
nσzs̄k)

∫
e−σ

2δ2n/2−iσδ
√
nzdδ.

Making the change of variables σδ
√
n/2 = t we evaluate the last integral as

2
√
πe−z

2/2

σ
√
n

.

Corollary 2.5.2. If I is a finite interval of order 1. Then

∫
I

|φn(s)|1|s|≤T1/σ√n ds = O
(

1√
n

)
.

Proof. We can cover I by a finite number of intervals Ik. The intervals where rnk ≤

1

n100
contribute O

(
|I|
n100

)
while the contribution of the intervals where rnk ≥

1

n100

is O
(

1√
n

)
due to Lemma 2.5.1.

Because rk ≈ 1, rk = |ψ(sk)| =
∣∣∣p1 +

d+1∑
j=2

pje
ibjsk

∣∣∣ ≈∑ pj. Therefore, aj s̄k ≈

a1s̄k mod 2π for all j ≥ 2. Thus,
2πkbj
bd+1

≈ 0 (mod 2π) for all 2 ≤ j ≤ d and hence,

φ(sk) ≈ 1 which means sk and sk are close. Define, ξk = sk−sk, ηj,k =
2πkbj
bd+1

+2πlj,k,

j = 1, . . . , d where lj,k is the unique integer such that
2πkbj
bd+1

+2πlj,k ≈ 0. Then,

r2
k =

d+1∑
j=1

p2
j + 2

∑
l>j,j 6=1

plpj cos[(bl − bj)ξk + ηl,k − ηj,k] + 2pd+1p1 cos bd+1ξk

+ 2
d∑
j=2

pjp1 cos(bjξk + ηj,k). (2.35)

Therefore

r2
k = 1−

∑
l>j,j 6=1

plpj[(bl − bj)ξk + ηl,k − ηj,k]2 − pd+1p1b
2
d+1ξ

2
k
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−
d∑
j=2

pjp1(bjξk + ηj,k)
2 +O

(
ξ3
k +

d∑
l=1

η3
l,k

)
.

Taking η1,k = b1 = 0 we can write the above as,

r2
k = −ξ2

k

∑
l>j

plpj(bl − bj)2 − 2ξk
∑
l>j

(l,j)6=(d,1)

plpj(bl − bj)(ηl,k − ηj,k)

+ 1−
∑
l>j

(l,j)6=(d,1)

plpj(bl − bj)(ηl,k − ηj,k)2 +O

(
ξ3
k +

d∑
l=1

η3
l,k

)
.

Since we have r2
k approximated by a quadratic polynomial of ξk (the unknown) we

can approximate ξk by determining the maximizer of r2
k(ξk), obtaining

ξk = −

∑
l>j

(l,j) 6=(d,1)

plpj(bl − bj)(ηl,k − ηj,k)∑
l>j plpj(bl − bj)2

+O
(
‖ηk|2

)
. (2.36)

Substituting back we find rk in terms of ηj,k only. Ignoring higher order terms we

compute the maximum to be:

r2
k = 1−

∑
l>j

(l,j)6=(d,1)

plpj(bl − bj)(ηl,k − ηj,k)2

+

[∑
l>j

(l,j)6=(d,1)

plpj(bl − bj)(ηl,k − ηj,k)
]2

∑
l>j plpj(bl − bj)2

+O

(
d∑
l=1

η3
l,k

)

Put R =

[∑
l>j

plpj(bl − bj)2

]−1

. Then,

r2
k = 1 +

∑
l>j

(l,j)6=(d,1)

plpj(bl − bj) [plpj(bl − bj)R− 1] (ηl,k − ηj,k)2

+
∑

l>j,m>n
l 6=m,j 6=n

(l,j),(m,n)6=(d,1)

plpjpmpn(bl− bj)(bm− bn)R(ηl,k − ηj,k)(ηm,k − ηn,k) +O

(∑
l>j

η3
l,j

)
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:= 1− 2
d∑

l,j=2

Dl,j(a,p)ηl,kηj,k +O

(∑
l>j

η3
l,j

)
. (2.37)

Thus,

rk = 1−
d∑

l,j=2

Dl,j(a,p)ηl,kηj,k +O

(∑
l>j

η3
l,j

)
= 1− ηTkDa,pηk +O(‖ηk‖3)

where Da,p is a (d− 1)× (d− 1) matrix with

[Da,p]i,j = Di,j(a,p) (2.38)

and ηTk = (η2,k, . . . , ηd,k). From this we have,

Ik =
e−z

2/2

i
√
πnσ

(1− ηTkDa,pηk +O(‖ηk‖3))n

sk
einφk−iskzσ

√
n (1 + o(1)).

Let B(a,p) be the contribution of the boundary terms ± T1

σ
√
n
∈ Ik.

Lemma 2.5.3.

E(|B|) ≤ C

n(2d−1)/2
.

Lemma 2.5.4. Let

Ik,l = Ik1|k|αn1/4‖ηk‖∈[2l,2l+1].

with α = [2(d− 1)]−1. Then there is a constant c̃ such that

E

 ∑
0<|k|<Kn(d−1)/2

∑
l>K

|Ik,l|

 = O
(

1

nd/2
2K exp(−c̃22K)

)
.

Lemmas 2.5.3 and 2.5.4 will be proven in Section 2.6.

Next we prove a lemma that would allow us to further simplify ∆̂n.

Lemma 2.5.5. (a) sk = sk + ωTηk +O(‖η‖2
k) where ω = ω(a,p) is a 1× (d− 1)

vector.

(b) If ‖η‖ = O
(

lnn√
n

)
then nφk = nska1 + np2η2,k + · · ·+ npdηd,k + o(1).
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Proof. Since sk − sk = ζk part (a) follows by (2.36).

Next, by (2.34)

φk = arg φ(sk) +O

(
δ3 +

ln3/2 n

n3/2

)

Note that,

φ(sk) = eiska1(p1 + p2e
iη2,k + · · ·+ pde

iηd,k + pd+1).

Thus,

arg(φ(sk)) = ska1 + tan−1

(
p2 sin η2,k + · · ·+ pd sin ηd,k

p1 + p2 cos η2,k + · · ·+ pd cos ηd,k + pd+1

)
= ska1 +

d∑
l=2

plηl,k +O(‖ηk‖3)

since the denominator in the first line is 1+O(||η||2). Now part (b) follows easily.

Now, we continue the analysis of the leading term in ∆̂n. Pick a small δ and

define

A1 = {(a,p)| Ik,l = 0 ∀k, l s.t. |k| < δn(d−1)/2 and l < K}.

Then

Ac1 = {(a,p)| ∃|k| < δn(d−1)/2, |k|αn1/4‖ηk‖ ≤ 2K}.

Thus,

P(Ac1) =
∑

|k|<δn(d−1)/2

C2K

|k|(d−1)αn(d−1)/4
= O(

√
δ2K)

if α =
1

2(d− 1)
. Hence, for a very large K and δ such that

√
δ2K is very small, we

can approximate ∆n by the sum of Ik’s with δ ≤ |k|
n(d−1)/2

≤ K and |k|αn1/4‖ηk‖ ≤

2K .
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We define the random vector Xk =
√
nηk and Yk =

k

n(d−1)/2
. Then, combining

terms corresponding to k and −k, we obtain the following approximation to the

distribution of ∆n for large n

|bd+1|e−z
2/2

nd/2σ
√
π3

∑
k∈S(n,δ,K)

sin(nφk − skzσ
√
n)

Yk
e−X

T
k Da,pXk

where S(n, δ,K) = {k > 0|δ < Yk < K, |Yk|α‖Xk‖ < 2K}.

Define q = (p2, . . . , pd). Then, Lemma 2.5.5 shows that

nφk − skzσ
√
n = sk(na1 − zσ

√
n) + nqTηk − zσ

√
nωTηk + o(1)

=
2πnd/2

|bd+1|
(
√
na1 − zσ)Yk + (

√
nq− zσω)TXk + o(1).

Therefore, for large n and K and δ such that
√
δ2K is very small, the distribution

of ∆n is well approximated by

∆̃n(δ,K) =
|bd+1|e−z

2/2

nd/2σ
√
π3

∑
k∈S(n,δ,K)

sin
(

2πnd/2

|bd+1|
(
√
na1 − zσ)Yk + (

√
nq− zσω)TXk

)
Yk

e−X
T
k Da,pXk .

2.6 Expectation of characteristic function.

Proof of Lemma 2.4.2. Recall that d(s) = max
2≤j≤d+1

d(bjs, 0) where the distance is

computed on the torus R/(2πZ). Formula (2.35) shows that there are positive con-

stants C, c such that

1

C
≤ |φ

n(s)|
e−cnd(s)2

< C. (2.39)
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To prove the lemma we decompose E
(
e−cnd(s)2

)
into the pieces where d(s)

√
n is of

order 2l for some l ≤ (log2 n)/2. and use the fact that ∂ has a bounded density.

E (φn(s)) ≤ CP

(
d(s) <

1√
n

)
+ C

(log2 n)/2∑
l=0

P
(
d(s)
√
n ∈ [2l, 2l+1]

)
e−c4

l

≤ C

nd/2
+ C

(log2 n)/2∑
l=0

4l

nd/2
e−c4

l ≤ C

nd/2

completing the proof.

Proof of Lemma 2.5.3. Let k be such that
T1

σ
√
n
∈ Ik. Then

Ik =

∫ T1/σ
√
n

π(2k−1)/|bd+1|
e−iszσ

√
nφ

n(s)

s
ds.

Because T1 = K1n
d/2 and s ∈

[
π(2k − 1)

|bd+1|
,
T1

σ
√
n

]
we have s ≈ n(d−1)/2. Thus

E(|Ik|) ≤
C

n(d−1)/2
E

(∫ T1/σ
√
n

π(2k−1)/|bd+1|
|φn(s)| ds

)
.

We claim that for all fixed bd,

∫∫
e−cnd(s)2 ds db2 . . . dbd−1 ≤

C

nd/2
. (2.40)

If this is true then using that ρ is a smooth compactly supported density of bd we

have that,

E

(∫ T1/σ
√
n

π(2k−1)/|bd+1|
|φn(s)| ds

)
=

∫∫ ∫ T1/σ
√
n

π(2k−1)/|bd+1|
|φn(s)| ds dbd dbd−1 . . . db2

≤ C

∫∫ ∫ T1/σ
√
n

π(2k−1)/|x|
e−cnd(s)2ρ(x) ds dx dbd−1 . . . db2

≤ C

∫ ∫∫
e−cnd(s)2 ds dbd−1 . . . db2 ρ(x) dx

≤ C

nd/2

∫
ρ(x) dx = O

(
1

nd/2

)
.
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Thus

E(|Ik|) ≤
C

n(2d−1)/2
. (2.41)

Similarly, if − T

σ
√
n
∈ Ik, then(2.41) holds. Hence, E(|B|) ≤ C

n(2d−1)/2
as required.

To prove (2.40) we decompose it into pieces where d(s)
√
n is of order 2l. Taking

µ to be the product measure ds dbd−1 . . . db2 from (2.39) we have

∫∫
e−cnd(s)2 ds dbd−1 . . . db2 ≤ Cµ{(s, b2, . . . , bd−1)|d(s) < 1/

√
n}

+ C

(log2 n)/2∑
l=0

µ{(s, b2, . . . , bd−1)|d(s)
√
n ∈ [2l, 2l+1]}e−c4l

≤ C

nd/2
+ C

(log2 n)/2∑
l=0

4l

nd/2
e−c4

l ≤ C

nd/2

as required.

Proof of Lemma 2.5.4. Because

rk = 1− ηTkDa,pηk +O(‖ηk‖3) and |k|αn1/4‖ηk‖ ∈ [2l, 2l+1]

we can write

rk = 1− c 4l

|k|2α
√
n

+O(n−3/4).

Accordingly

rnk ≤ Ce
− c2

2l√n
|k|2α .

Also

P(|k|αn1/4‖η‖ ∈ [2l, 2l+1]) ≤ C2l√
|k|n(d−1)/4

.

Hence,

E(Ik,l) ≤
Ce
− c2

2l√n
|k|2α

√
n|k|

2l√
|k|n(d−1)/4

=
C2le

− c2
2l√n
|k|2α

|k|3/2n(d+1)/4
.

36



Thus ∑
l>K

E(Ik,l) ≤
C2Ke

− c2
2K√n
|k|2α

|k|3/2n(d+1)/4
.

Therefore we need to estimate

∑
0<|k|<Kn(d−1)/2

C2Ke
− c2

2K√n
|k|2α

|k|3/2n(d+1)/4
=

C

nd/2

∑
0<|k|<Kn(d−1)/2

1

|k|

√
22Kn(d−1)/2

|k|
e
− c2

2K√n
|k|2α . (2.42)

Split the sum over

|k| ∈
[
Kn(d−1)/2

2s+1
,
Kn(d−1)/2

2s

]
(2.43)

for s ∈ N. Then, for a fixed s we have

|k|2α = O

(
K

1
d−1
√
n

2
s
d−1

)
,

so each term in the sum (2.42) is of order

2K+(3s/2)

K3/2n(d−1)/2
exp

(
−c2

2K+ s
d−1

K
1
d−1

)
.

But the number of such terms is of order
n(d−1)/2

2s
. Hence, the sum over k in (2.43)

is

O

(
2K+s/2

K3/2
exp

(
−c2

2K+ s
d−1

K
1
d−1

))
.

Summing over s we obtain the result.
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2.7 Relation to homogeneous flows.

Given u ∈ Rd−1, v ∈ R consider the following function on spaceM of unimod-

ular lattices in Rd:

Z(L) =
∑

(y,x)∈L\{0}

sin 2π(uTx + vy)

y
e−4π2xTDa,px 1{δ<y<K,yα‖x‖<2K}. (2.44)

Define γ =
1

k
η and introduce the matrices, Hγ =

(
1 γ

0T Id−1

)
, Gt =

(
e−(d−1)t 0

0T etId−1

)
.

Then, we have

nd/2∆̃n = −|bd+1|e−z
2/2

σ
√
π3

Z(Zd Hγ G lnn
2

),

where

u =
√
nq− zσω and v =

nd/2

|bd+1|
(
√
na1 − zσ)

and q and ω are defined at the end of Section 2.5. Let L(n, a) be the unimodular

lattice Zd Hγ G ln(n)
2

. Let

wj(n, a) = (yj(n, a),xj(n, a)), j = 1, . . . , d

with yj ∈ R and xj ∈ Rd−1 be the shortest spanning set of L. Put,

θj(n, (a,p)) = uTxj(n, a) + vyj(n, a), j = 1, . . . , d.

Proposition 2.7.1. If (a,p) is distributed according to P then the distribution of

the random vector

((a,p),L(n, a),θ(n, (a,p)))

converges to P×µ as n→∞, where µ is the Haar measure on [SLd(R)/SLd(Z)]×Td.
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If we restrict our attention only to ((a,p),L(n, a)) then the result is standard

(see [39, Theorem 5.8], as well as [18,35,45]). The proof in the general case follows

the approach of the proof of Proposition 5.1 in [14].

Proof. We need to show that for each bounded smooth test function f ,

∫
Ω

f((a,p),L(n, a),θ) dP→
∫

Ω×M×Td
f((a,p),L,θ) dP dL dθ (2.45)

as n→∞. Write the Fourier series expansion of f :

f((a,p),L(n, a),θ) =
∑

k=(k1,...,kd)∈Zd
fk((a,p),L(n, a)) e2πikT θ. (2.46)

Then, it is enough to prove (2.45) for individual terms in (2.46).

If k = 0 then by [39, Theorem 5.8] we can conclude that

∫
Ω

f0((a,p),L(n, a)) dP→
∫

Ω×M×Td
f0((a,p),L) dP dL dθ.

Now assume that k 6= 0. Since Ω is 2d dimensional, we can use (p1, . . . , pd, a1, b2, . . . , bd)

as local coordinates. In these coordinates L is independent of a1. Hence, yj’s and

xj’s are independent of a1. Put ν = (p1, . . . , pd, b2, . . . , bd). Then there exists a

compactly supported density ρ such that,

Jn,k =

∫
fk((a,p),L(n, a)) e2πikT θ dP (2.47)

=

∫
fk((a,p),L(n, a)) exp 2πi

(√
n
∑

kjq
Txj

)
×
[∫

ρ(a1,ν) exp 2πi

(
nd/2

|bd+1|
(√

na1 − zσ
)∑

yjkj − zσ
∑

kjω
Txj

)
da1

]
dν.

Note that,

∫
Td×Ω×M

fk((a,p),L(n, a)) e2πikT θdθ1 . . . dθd dP dL = 0
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because ∫
Td
e2πikT θdθ1 . . . dθd = 0.

Therefore, it is enough to prove that Jn,k converges to 0 as n → ∞. To prove this

we use integration by parts as follows. Put,

g(a1,ν) = exp i

(
2πn(d+1)/2

∑
yjkj

|bd+1|
a1

)
= exp i

(
n(d+1)/2φ(ν)a1

)
where φ(ν) =

2π
∑
yjkj

|bd+1|
and,

h(a1,ν) = ρ(a1,ν) exp

[
−i
(

2πnd/2
∑
yjkj

|bd+1|
+ 4π

∑
kjω

Txj

)
zσ(a1,ν)

]
Then, the inner integral in (2.47) is

∫
g(a1,ν)h(a1,ν) da1 . Let ε > 0. On the set

Qk = {φ(ν) > ε} we can write

g(a1,ν) da1 =
1

iφ(ν)n(d+1)/2
d exp

(
ia1n

(d+1)/2φ(ν)
)
.

Integrating by parts on Qk (note that h has compact support) and using trivial

bounds on Qc
k, we can conclude that

|Jn,k| ≤

∣∣∣∣∣
∫

exp
(
ia1n

(d+1)/2φ(ν)
)

iφ(ν)n(d+1)/2
h′(a1,ν) da1

∣∣∣∣∣+ CP({φ(ν) ≤ ε})

≤ 1

εn(d+1)/2

∫
|h′(a1,ν)| da1 + CP({φ(ν) ≤ ε})

for small enough ε. But h′(a1,ν) = O(nd/2), hence the first term is O(1/
√
n).

Therefore, first taking n → ∞ and then taking ε → 0 we have the required result.

Proposition 2.7.1 implies that as n → ∞ the distribution of nd/2∆̃n(δ,K)

converges to the distribution of

e−z
2/2 |ad+1 − a1|

2σ(a, p)
√
π3

∑
m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2xTDa,px1{δ<|y(m)|<K, |y(m)|α‖x(m)‖<2K}. (2.48)
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Next we let δ → 0 and K →∞ in such a way that
√
δ2K → 0. Then,

1{δ<|y(m)|<K, |y(m)|α|x(m)|<2K} → 1.

Thus, (2.48) converges to X̂ proving Theorem 2.1.2*.

2.8 Finite intervals.

The proofs of Theorems 2.1.3 and 2.1.4 are similar to the proofs of Theorems

2.1.1 and 2.1.2 so we just explain the necessary changes leaving the details to the

readers.

Proof of Theorem 2.1.3. The random vector (2.10) can be approximated by (Z(1),Z(2))

where Z(i) are defined as in (2.44) with u and v replaced by

u(i) =
√
nq− ziσω and v(i) =

nd/2

|bd+1|
(
√
na1 − ziσ)

respectively. Define θ(i) as in Proposition 2.7.1 but u and v replaced by u(i) and

v(i). To complete the proof we prove an analogue of Proposition 2.7.1. Namely that

((a,p),L(n, a),θ(1)(n, (a,p)),θ(2)(n, (a,p))) converges to P × µ′ as n → ∞ where

µ′ is the Haar measure on [SLd(R)/SLd(Z)]× Td × Td.

As in the proof of Proposition 2.7.1 we prove that for individual terms in the

Fourier series of a smooth function f on [SLd(R)/SLd(Z)]× Td × Td

∑
(k1,k2)∈Zd×Zd

fk1,k2((a,p),L(n, a)) e2πi[kT1 θ(1)+kT2 (θ(1)−θ(2))]

we have

Jn,k1,k2 :=

∫
Ω

fk1,k2((a,p),L(n, a))e2πi[kT1 θ(1)+kT2 (θ(1)−θ(2))] dP
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n→∞−−−→
∫

Ω×M×Td×Td
fk1,k2((a,p),L)e2πi[kT1 θ1+kT2 (θ1−θ2)] dP dL dθ1dθ2.

The case k1 = k2 = 0 follows from [39, Theorem 5.8]. Note that

kT2 (θ(1) − θ(2))] = (z2(n)− z1(n))

(
2πnd/2

|bd+1|
∑

yjk2,j +
∑

k2,jω
Txj

)
σ.

If k1 = 0 choose appropriate local-coordinates in which σ is a coordinate. Integrating

by parts with respect to σ = σ(a,p) and using |z1(n)− z2(n)|nd/2 →∞ we see that

Jn,0,k2 → 0 as n→∞.

If k1 6= 0 then using the same local coordinates (a1,ν) as in the proof of

Proposition 2.7.1 we can integrate by parts to conclude that Jn,k1,k2 → 0 as n→∞.

The proof follows through because the leading term of kT1 θ
(1) + kT2 (θ(1) − θ(2)) is

still n(d+1)/2φ(ν)a1.

Proof of Theorem 2.1.4. To prove part (a) pick ε̄ < ε. Applying Theorem 2.1.1 we

obtain that for almost every (a,p)

P(a,p)

(
z1 ≤

Sn
σ
√
n
≤ z2

)
= Ed−1(z2)− Ed−1(z1) +O

(
n−(d−ε̄)/2)

= n(z1)ln +O(l2n) +O(ln/
√
n) +O

(
n−(d−ε̄)/2) .

According to the assumptions of part (a) the first term is much larger than the

remaining terms proving the result.

The proof of part (b) is similar except that we apply Theorem 2.1.3 instead of

Theorem 2.1.1 so we only get convergence in probability.

To prove part (c) we first prove the following analogue of Theorem 2.1.3 in

case z2 = z1 +
c|ad+1 − a1|

nd/2σ

nd/2

Λ(a,p)

(
ez

2
1/2

[
Ed(z1)− Pa,p

(
Sn
σ
√
n
≤ z1

)]
, ez

2
2/2

[
Ed(z2)− Pa,p

(
Sn
σ
√
n
≤ z2

)])
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converges in law to a random vector (X̃1, X̃2)(L, θ, c) where

(X̃1, X̃2)(L, θ, c) =
∑

m∈Zd\{0}

e−4π2||x(m)||2

y(m)

(
sin θ(m), sin(θ(m)− cy(m))

)
.

Once this convergence is established the proof of part (c) is the same as the proof of

part (b). The proof of convergence is similar to the proof of Theorem 2.1.3 except

that θ(1) and θ(2) are now not independent. Namely using the same notation as in

the proof of Theorem 2.1.3 we have that u(2) = u(1)+o(1), while v(2) = v(1)−c+o(1).

Following the same argument as in the proof of Proposition 2.7.1 we obtain that

(L(n, a),θ(1)(n, a), [θ(2) − θ(1)](n, a)) converges as n → ∞ to (L∗,θ∗, θ̂
∗
) where

(L∗,θ∗) is distributed according to the Haar measure on SLd(R)/SLd(Z)× Td and

θ̂
∗
j = θ∗j − cyj. This justifies the formula for (X̃1, X̃2).
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Chapter 3: Central Limit Theorem: Weakly Dependent Random Vari-

ables.

3.1 Overview and main results.

Let SN =
N∑
n=1

Xn be a sum of random variables. We assume that there is a

Banach space B and a family of bounded linear operators Lt : B → B and vectors

v ∈ B, ` ∈ B′ such that

E
(
eitSN

)
= `(LNt v), t ∈ R. (3.1)

We will make the following assumptions on the family Lt.

(A1) t 7→ Lt is continuous and there exists s ∈ N and δ > 0 such that t 7→ Lt is s

times continuously differentiable for |t| ≤ δ.

(A2) 1 is an isolated and simple eigenvalue of L0, all other eigenvalues of L0 have

absolute value less than 1 and its essential spectrum is contained strictly inside

the disk of radius 1 (spectral gap).

(A3) For all t 6= 0, sp(Lt) ⊂ {|z| < 1}.

(A4) There are positive real numbers K, r1, r2 and N0 such that
∥∥LNt ∥∥ ≤ 1

N r2
for

all t satisfying K ≤ |t| ≤ N r1 and N > N0.
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Remark 3.1.1.

1. In practice we would check (A3) by showing that when t 6= 0, the spectral radius

of Lt is at most 1 and no eigenvalue of Lt is on the unit circle. Because the

spectrum of a linear operator is a closed set this would imply that sp(Lt) is

contained in a closed disk strictly inside the unit disk.

2. Suppose (A4) holds. Let N1 > N0 be such that N
(r1−ε)/r1
1 > N0. Then, for all

N > N1,

‖LNt ‖ ≤ ‖(L
dN(r1−ε)/r1e
t )N

ε/r1
1 ‖ ≤ ‖(LdN

(r1−ε)/r1e
t )‖N

ε/r1
1

≤ 1

dN (r1−ε)/r1er2N
ε/r1
1

for K ≤ |t| ≤ N r1−ε

≤ 1

N r2KN1

where KN1 =
r1 − ε
r1

N ε/r1. Therefore fixing N1 large enough we can make

r2KN1 as large as we want. Hence, given (A4), by slightly reducing r1, we may

assume r2 is sufficiently large.

3. Suppose (A1), (A2) and (A3) are satisfied with s ≥ 3. Then, [24, Theorem

2.4] implies that there exists A ∈ R and σ2 ≥ 0 such that

SN −NA√
N

d−→ N (0, σ2). (3.2)

Our interest is in SN that satisfies the CLT i.e. the case σ2 > 0. Since in ap-

plications we specify conditions which guarantee this, in the following theorems

we always assume that σ2 > 0.

This is essentially an extension of Nagaev-Guivarc'h method. Some of the

spectral assumptions in the theorem can be found in the proofs of decay of corre-
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lations and the CLT using transfer operators. For example, see [24, 29, 37]. The

key novelty here is the condition (A4) which guarantees a sufficient control over the

characteristic function for intermediate values of t. This is analogous to the condi-

tion (1.3) in Theorem 1.1. In addition, parallels can be drawn between the moment

condition in Theorem 1.1 with the condition s = r + 2. The proof of the result

is based on classical perturbation theory in [33], applicable due to (A1), (A2) and

(A3), which provides the actual expansion and control of the error near 0, the Berry-

Esseen inequality (see (3.4) below) which reduces that error to a Fourier inversion

integral over an interval of size O(nr/2) and the condition (A4).

Now we are in a position to state our first result on the existence of the classical

Edgeworth expansion for random variables satisfying (A1) through (A4) which we

refer to as weakly dependent random variables.

Theorem 3.1.1. Let r ∈ N with r ≥ 2. Suppose (A1) through (A4) hold with

s = r + 2 and r1 >
r − 1

2
. Then SN admits Edgeworth expansion of order r.

Next, we examine the error of the order 1 Edgeworth expansion in more detail.

We first show that the order 1 expansion exists if (A1) through (A3) hold with s = 3.

Then, we show that the error of approximation can be improved if (A4) holds.

Theorem 3.1.2. Suppose (A1) through (A3) hold with s ≥ 3. Then, the order 1

Edgeworth expansion exists.

Theorem 3.1.3. Suppose (A1) through (A4) hold with s ≥ 4. Then,

P
(
SN −NA√

N
≤ z

)
= N(z) +

P1(z)

N1/2
n(z) +O

(
1

N q

)

where q = min
{

1,
1

2
+ r1

}
.
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As one would expect, more precise asymptotics than the usual o(N−
1
2 ) are

available when the characteristic function has better decay. The proof shows that

the error depends mostly on the expansion of the characteristic function at 0. This

is an indication that the error in Theorem 3.1.2 cannot be improved more than by

a factor of
1√
N

even when r1 is large.

In [9], analogous results are obtained for subshifts of finite type in the sta-

tionary case and an explicit description of the first order Edgeworth expansion is

given. Here, we consider a wider class of (not necessarily stationary) sequences and

give explicit descriptions of higher order Edgeworth polynomials by relating the

coefficients to asymptotic moments. Also, we improve the condition

Hr : |E(eitSN )| ≤ K

(
1− c

|t|α

)n
,
α(r − 1)

2
< 1, |t| > K

found in [9] by replacing it with (A4). In addition, this allows us to obtain better

asymptotics for the first order expansion.

We also extend the results in [4] on the existence of weak Edgeworth expan-

sions for i.i.d. random variables. In section 3.5.1, we compare their results with the

ours.

Before we mention our results, we define the space Fm
k of functions. Put

Cm(f) = max
0≤j≤m

‖f (j)‖L1 and Ck(f) = max
0≤j≤k

‖xjf‖L1 .

Define

Cm
k (f) = Cm(f) + Ck(f).

We say f ∈ Fm
k if f is m times continuously differentiable and Cm

k (f) <∞.
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Theorem 3.1.4. Suppose (A1) through (A4) hold with s = r+2. Choose q ∈ N such

that q >
r + 1

2r1

. Then, for f ∈ F q+2
r+1 , SN admits weak local Edgeworth expansion of

order r.

Theorem 3.1.5. Suppose (A1) through (A4) hold with s = r+2. Choose q ∈ N such

that q >
r + 1

2r1

. Then, for f ∈ F q+2
0 , SN admits weak global Edgeworth expansion of

order r.

In Theorem 3.1.4 and Theorem 3.1.5, f is required to have at least three

derivatives in order to guarantee the integrability of Fourier transforms of f and its

derivatives. In addition to (A1) through (A4), if we have,

(A5) There exists C, α > 0 and N1 such that ‖LNt ‖ ≤
C

tα
for |t| > N r1 for N > N1.

then we can improve this assumption to f having only one continuous deriva-

tive.

Theorem 3.1.4*. Suppose (A1) through (A5) hold with s = r + 2 and α >
r + 1

2r1

for sufficiently large N . Then, for f ∈ F 1
r+1, SN admits weak local Edgeworth

expansion of order r.

Theorem 3.1.5*. Suppose (A1) through (A5) hold with s = r+2 and α >
r + 1

2r1

for

sufficiently large N . Then, for f ∈ F 1
0 , SN admits weak global Edgeworth expansion

of order r.

The proofs of these theorems are minor modifications of the proofs of the previ-

ous two theorems. This is described in remark 3.2.2 appearing after the proofs.

The next theorem gives sufficient conditions for the existence of the averaged

Edgeworth expansion.

Theorem 3.1.6. Suppose (A1) through (A4) hold with s = r + 2. Choose q ∈ N
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such that q >
r

2r1

. Then, SN admits averaged Edgeworth expansion of order r for

f ∈ F q
0 .

We note that for integer valued random variable assumptions (A3) and (A4)

cannot hold since the characteristic function of SN is 2π-periodic. Therefore we

replace (A3) by,

(̃A3) When t 6∈ 2πZ, sp(Lt) ⊂ {|z| < 1} and when t ∈ 2πZ, sp(Lt) ⊂ {|z| < 1}∪{1}.

Also, because of periodicity of the characteristic function, an assumption similar to

(A4) is not required.

The following theorem provides conditions for the existence of asymptotic

expansions for the LCLT for weakly dependent integer valued random variables.

A similar result for Xn’s that are Zd-valued, is obtained in [42]. Compare with

Proposition 4.2 and 4.4 therein.

Theorem 3.1.7. Suppose Xn are integer valued, (A1), (A2) and (̃A3) are satisfied

with s = r + 2. Then SN admits order r lattice Edgeworth expansion.

The layout of the rest of the chapter is as follows. In section 3.2 we prove the

results mentioned earlier by constructing the Edgeworth polynomials using char-

acteristic functions and concluding that they satisfy the required asymptotics. In

section 3.3 we relate the coefficients of these polynomials to moments of SN and

provide an algorithm to compute coefficients. A few applications of the Edgeworth

expansions such as the Local Central Limit Theorem and Moderate Deviations, are

discussed in section 3.4. In the last section we give examples of sequences of random

variables for which our theory can be applied. First, we revisit the i.i.d. case and
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recover previous results. Then, we focus on non-trivial examples like observations

arising from piece-wise expanding maps of an interval, Markov chains with finitely

many states and markov processes which are strongly ergodic.

3.2 Proofs of the main results.

Here we prove the results mentioned earlier. From now on we work in the

setting described in section 3.1.

Proof of Theorem 3.1.1. We seek polynomials Pp(x) with real coefficients such that

P
(
Sn − nA√

n
≤ x

)
−N(x) =

r∑
p=1

Pp(x)

np/2
n(x) + o

(
n−r/2

)
. (3.3)

Once we have found suitable candidates for Pp(x) we can apply the Berry-Esseen

inequality,

|Fn(x)− Er,N(x)| ≤ 1

π

∫ T

−T

∣∣∣∣∣ F̂n(t)− Êr,n(t)

t

∣∣∣∣∣ dt+
C0

T
, (3.4)

where

Fn(x) = P
(
Sn − nA√

n
≤ x

)
, Er,n(x) = N(x) +

r∑
p=1

Pp(x)

np/2
n(x),

and C0 is independent of T . We refer the reader to [20, Chapter XVI.3] for a proof

of (3.4). What follows is a formal derivation of Pp(x). Later, we will use (3.4) along

with other estimates to prove (3.3).

It follows from (A1), (A2) and classical perturbation theory (see [33, IV.3.6

and VII.1.8]) that there exist δ > 0 such that for |t| ≤ δ, Lt has a top eigenvalue

µ(t) which is simple and the remainder of the spectrum is contained in a strictly
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smaller disk. One can express Lt as

Lt = µ(t)Πt + Λt (3.5)

where Πt is the eigenprojection to the top eigenspace of Lt and Λt = (I − Πt)Lt.

Because ΛtΠt = ΠtΛt = 0, iterating (3.5), we obtain

Lnt = µn(t)Πt + Λn
t .

Using (A3) and compactness, there exist C (which does not depend on n and t) and

0 < r < 1 such that ‖Λn
t ‖ ≤ Crn for all |t| ≤ δ. By (3.1),

E(eitSn/
√
n) = µ

( t√
n

)n
`
(
Πt/
√
nv
)

+ `
(
Λn
t/
√
nv
)
. (3.6)

Now, we focus on the first term of (3.6). Put

Z(t) = `(Πtv). (3.7)

Then, substituting t = 0 in (3.6) yields 1 = Z(0) + `(Λn
0v). Also, we know that

lim
n→∞

‖Λn
0v‖ = 0. This gives lim

n→∞
`(Λn

0v) = 0. Therefore, Z(0) = 1 and Z(t) 6= 0

when |t| < δ. Also, this shows that `(Λn
0v) = 0 for all n. Next, note that t 7→ µ(t)

and t 7→ Πt are r+ 2 times continuously differentiable on |t| < δ (see [33, IV.3.6 and

VII.1.8]). Therefore, Z(t) is r + 2 times continuously differentiable on |t| < δ.

Now we are in a position to compute Pp(x). To this end we make use of

ideas in [20, Chapter XVI] (where the Edgeworth expansions for i.i.d. random

variables are constructed) and [24] (where the CLT is proved using Nagaev-Guivarc’h

method).
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Consider the function ψ such that,

log µ
( t√

n

)
=
iAt√
n
− σ2t2

2n
+ ψ

( t√
n

)
⇐⇒ µn

( t√
n

)
= e

inAt√
n
−σ

2t2

2 exp
(
nψ
( t√

n

))
.

where A = lim
n→∞

E
(Sn
n

)
is the asymptotic mean and σ2 = lim

n→∞
E
([Sn − nA√

n

]2)
is

the asymptotic variance. (For details see section 3.3.)

By (3.6) we have,

E(e
itSn−nA√

n ) = e−
σ2t2

2 exp
(
nψ
( t√

n

))
Z
( t√

n

)
+ e

− inAt√
n `
(

Λn
t√
n
v
)

(3.8)

Notice that ψ(0) = ψ′(0) = 0 and ψ(t) is r+2 times continuously differentiable.

Now, denote by t2ψr(t) the order (r + 2) Taylor approximation of ψ. Then, ψr is

the unique polynomial such that ψ(t) = t2ψr(t) + o(|t|r+2). Also, ψr(0) = 0 and ψr

is a polynomial of degree r. In fact, we can write ψ(t) = t2ψr(t) + tr+2ψ̃r(t) where

ψ̃r is continuous and ψ̃r(0) = 0. Thus,

exp
(
nψ

(
t√
n

))
= exp

(
t2ψr

( t√
n

)
+

1

nr/2
tr+2ψ̃r

( t√
n

))
.

Denote by Zr(t) the order−r Taylor expansion of Z(t) − 1. Then, Zr(0) = 0 and

Z(t) = 1 + Zr(t) + trZ̃r(t) with twice continuously differentiable Z̃r(t) such that

Z̃r(0) = 0. Then, to make the order n−j/2 terms explicit, we compute:

e
σ2t2

2 µn
( t√

n

)
Z
( t√

n

)
= e

σ2t2

2 µn
( t√

n

)
exp logZ

( t√
n

)
= exp

(
t2ψr

( t√
n

)
+

1

nr/2
tr+2ψ̃r

( t√
n

)
−

r∑
k=1

(−1)k+1

k

[
Zr

( t√
n

)]k
− 1

nr/2
trZr

( t√
n

))
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= 1 +
r∑

m=1

1

m!

[
t2ψr

( t√
n

)
−

r∑
k=1

(−1)k+1

k

[
Zr

( t√
n

)]k]m
+

1

nr/2
tr+2ψ̃r

( t√
n

)
− 1

nr/2
trZr

( t√
n

)
+ tr+1O

(
n−

r+1
2

)
=

r∑
k=0

Ak(t)

nk/2
+

tr

nr/2
ϕ
( t√

n

)
+ tr+1O

(
n−

r+1
2

)
(3.9)

where A0 ≡ 1, ϕ(t) = t2ψ̃r(t) − Zr(t) is continuous and ϕ(0) = 0. Here Zr is the

remainder of logZ(t) when approximated by powers of Zr. Next write,

Qn(t) =
r∑

k=1

Ak(t)

nk/2
. (3.10)

Notice that

Ak and k have the same parity. (3.11)

This can be seen directly from the construction, because we collect terms with the

same power of n−1/2, ψr and Zr are a polynomial in
t√
n

with no constant term and

we take powers of t2ψr(t) and Zr(t), the resulting Ak will contain terms of the form

cst
2s+k.

We claim that,

∫
|t|<δ

√
n

∣∣∣∣µn
(

t√
n

)
Z
(

t√
n

)
− e− t

2σ2

2 − e− t
2σ2

2 Qn(t)

t

∣∣∣∣ dt (3.12)

=

∫
|t|<δ

√
n

e−
t2σ2

2

∣∣∣∣exp
[
nψ
(

t√
n

)
+ logZ

(
t√
n

)]
− 1−Qn(t)

t

∣∣∣∣ dt
= o

(
n−r/2

)
.

We note that from the choice of Qn,

exp
[
nψ
(

t√
n

)
+ logZ

(
t√
n

)]
− 1−Qn(t)

t
=

1

nr/2

(
tr−1ϕ

( t√
n

)
+ trO

(
n−

r+1
2

))
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where ϕ(t) = o(1) as t→ 0. As a result, for all ε > 0 the integrand of (3.12) can be

made smaller than
ε

nr/2
(tr−1 + tr)e−

t2σ2

2 by choosing δ small enough. This proves

the claim.

Even though the following derivation is only valid for |t| < δ
√
n, once the

polynomial function Qn(t) is obtained as above, we can consider it to be defined for

all t ∈ R.

Suppose |t| ≤ δ. From classical perturbation theory (see [33, Chapter IV]

and [29, Section 7]) we have

Λn
t =

1

2πi

∫
Γ

zn(z − Lt)−1 dz (3.13)

where Γ is the positively oriented circle centered at z = 0 with radius ε0. Here ε0 is

uniform in t and 0 < ε0 < 1. Now,

Λn
t − Λn

0 =
1

2πi

∫
Γ

zn[(z − Lt)−1 − (z − Lt)−1] dz

=
1

2πi

∫
Γ

zn[(z − L0)−1(Lt − L0)(z − Lt)−1] dz.

Because Lt − L0 = O(|t|) we have that
Λn
t − Λn

0

|t|
= O(εn0 ). ` ∈ B′ and `(Λn

0v) = 0

implies that∫
|t|<δ

√
n

∣∣∣∣e−
inAt√
n `(Λn

t/
√
n
v)

t

∣∣∣∣ dt =

∫
|t|<δ

√
n

∣∣∣∣e−
inAt√
n `(Λn

t/
√
n
v − Λn

0v)

t

∣∣∣∣ dt
≤ C

∫
|t|<δ

∣∣∣∣Λn
t − Λn

0

t

∣∣∣∣ dt = O(εn0 ).

This decays exponentially fast to 0 as n→∞. This allows us to control the second

term in the RHS of (3.6). Combining this with (3.12) we can conclude that,∫
|t|<δ

√
n

∣∣∣∣∣E(e
itSn−nA√

n )− e− t
2σ2

2 − e− t
2σ2

2 Qn(t)

t

∣∣∣∣∣ dt = o(n−r/2). (3.14)
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Observe that,

(it)ke−
σ2t2

2 =
1√

2πσ2

̂dk
dtk

e−
t2

2σ2 =
d̂k

dtk
n(t)

where f̂(x) =

∫
e−itxf(t) dt is the Fourier transform of f . Therefore,

Rj(t)n(t) =
1√

2πσ2
Aj

(
−i d
dt

)[
e−

t2

2σ2

]
. (3.15)

Then, the required Pp(x) for p ≥ 1, can be found using the relation,

n(x)Rp(x) =
d

dx

[
n(x)Pp(x)

]
. (3.16)

For more details, we refer the reader to [20, Chapter XVI.3,4].

Given ε > 0, choose B >
C0

ε
where C0 is as in (3.4). Let r ∈ N. Then we

choose polynomials Pp(x) as described above. Then, from (3.4) it follows that,

|Fn(x)− Er,n(x)| ≤ 1

π

∫ Bnr/2

−Bnr/2

∣∣∣∣∣E(e
itSn−nA√

n )− e− t
2σ2

2 (1 +Qn(t))

t

∣∣∣∣∣ dt+
C0

Bnr/2

≤ I1 + I2 + I3 +
ε

nr/2

where

I1 =
1

π

∫
|t|<δ

√
n

∣∣∣∣∣E(e
itSn−nA√

n )− e− t
2σ2

2 (1 +Qn(t))

t

∣∣∣∣∣ dt
I2 =

1

π

∫
δ
√
n<|t|<Bnr/2

∣∣∣∣E(eitSn/
√
n)

t

∣∣∣∣ dt
I3 =

1

π

∫
|t|>δ

√
n

e−
t2σ2

2

∣∣∣∣1 +Qn(t)

t

∣∣∣∣ dt.
From (3.12) we have that I1 is o(n−r/2). Because our choice of ε > 0 is arbitrary

the proof is complete, if I2 and I3 are also o(n−r/2). These follow from (3.18), (3.19)

and (3.17) below.
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It is easy to see that,

∫
|t|>δ

√
n

e−
t2σ2

2

∣∣∣∣1 +Qn(t)

t

∣∣∣∣ dt = O(e−cn) (3.17)

for some c > 0. Thus, we only need to control,

I2 =

∫
δ
√
n<|t|<Bnr/2

∣∣∣∣E(eitSn/
√
n)

t

∣∣∣∣ dt
=

∫
δ
√
n<|t|<δ

√
n

∣∣∣∣E(eitSn/
√
n)

t

∣∣∣∣ dt+

∫
δ
√
n<|t|<Bnr/2

∣∣∣∣E(eitSn/
√
n)

t

∣∣∣∣ dt
where δ > max{δ,K} with K as in (A4).

By (A3) the spectral radius of Lt has modulus strictly less than 1. Because

t 7→ Lt is continuous, for all p < q, there exists γ < 1 and C > 0, such that

‖Lmt ‖ ≤ Cγm for all p ≤ |t| ≤ q for sufficiently large m. Then using (3.1) for

sufficiently large n we have,

∫
δ
√
n<|t|<δ

√
n

∣∣∣∣E(eitSn/
√
n)

t

∣∣∣∣ dt ≤ 1

δ
√
n

∫
δ
√
n<|t|<δ

√
n

‖Lnt/√n‖ dt ≤
Cγn√
n
. (3.18)

This shows that the integral converges to 0 faster than any inverse power of
√
n.

Next for sufficiently large n,

∫
δ
√
n<|t|<Bnr/2

∣∣∣∣E(eitSn/
√
n)

t

∣∣∣∣ dt ≤ 1

δ
√
n

∫
δ
√
n<|t|<Bnr/2

|`(Lnt/√nv)| dt (3.19)

≤ 2Bnr/2

δnr2+1/2
‖`‖‖v‖

= Cn
r−1
2
−r2 = o(n−r/2).

The second inequality is due to assumption (A4) i.e. ‖Lnt/√n‖ ≤
1

nr2
where

r2 >
r − 1

2
(we can assume r2 >

r − 1

2
for large n due to Remark 3.1.1) and

K ≤ δ <
|t|√
n
< Bn

r−1
2 ≤ nr1 for n ∈ N with nr1−

r−1
2 ≥ B.
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The proof of Theorem 3.1.2 follows the same idea. We include its proof for

completion.

Proof of Theorem 3.1.2. Because (A1) through (A3) hold with s ≥ 3, we have (3.9)

where ϕ is continuous, ϕ(0) = 0 and r = 1. Given ε > 0, choose B >
C0

ε
. Then,

|Fn(x)− E1,n(x)| ≤ 1

π

∫ B
√
n

−B
√
n

∣∣∣∣∣E(e
itSn−nA√

n )− e− t
2σ2

2 (1 +Qn(t))

t

∣∣∣∣∣ dt+
C0

B
√
n

≤ I1 + I2 + I3 +
ε

B
√
n
.

Because, ϕ(t) = o(1) as t→ 0 and

exp
[
nψ
(

t√
n

)
+ logZ

(
t√
n

)]
− 1−Q1(t)

t
=

1√
n
ϕ
( t√

n

)
+ tO

( 1

n

)
we have that,

I1 =

∫
|t|<δ

√
n

∣∣∣∣E(e
itSn−nA√

n )− e− t
2σ2

2 − e− t
2σ2

2 Q1(t)

t

∣∣∣∣ dt = o(n−1/2).

Also, I3 = O(e−cn). Finally, because of (A3) there is γ < 1 such that,∫
δ
√
n<|t|<B

√
n

∣∣∣∣E(eitSn/
√
n)

t

∣∣∣∣ dt =

∫
δ<|t|<B

∣∣∣∣E(eitSn)

t

∣∣∣∣ dt ≤ C sup
δ≤|t|≤B

‖Lnt ‖ ≤ Cγn

Combining these estimates we have the result.

A slight modification of the previous proof gives us the proof of Theorem 3.1.3.

Higher regularity assumption gives us better asymptotics near 0 and the assumption

on the faster decay of the characteristic function gives us more control in the mid

range.

Proof of Theorem 3.1.3. Because (A1) through (A4) hold with s ≥ 4, we have (3.9)

where ϕ is C1, ϕ(0) = 0 and r = 1. Then,

|Fn(x)− E1,n(x)| ≤ 1

π

∫ n1/2+r1

−n1/2+r1

∣∣∣∣∣E(e
itSn−nA√

n )− e− t
2σ2

2 (1 +Qn(t))

t

∣∣∣∣∣ dt+
C0

n1/2+r1
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≤ I1 + I2 + I3 +
C0

n1/2+r1

Because, ϕ
( t√

n

)
∼ t√

n
near 0 and

exp
[
nψ
(

t√
n

)
+ logZ

(
t√
n

)]
− 1−Q1(t)

t
=

1√
n
ϕ
( t√

n

)
+ tO

( 1

n

)
we have that,

I1 =

∫
|t|<δ

√
n

∣∣∣∣E(e
itSn−nA√

n )− e− t
2σ2

2 − e− t
2σ2

2 Q1(t)

t

∣∣∣∣ dt = O
( 1

n

)
.

Also, I3 = O(e−cn). As before, (3.18) holds for δ > max{δ,K}.

‖Lnt ‖ ≤
1

nr2
where K ≤ δ < |t| < nr1 .

∫
δ
√
n<|t|<n1/2+r1

∣∣∣∣E(eitSn/
√
n)

t

∣∣∣∣ dt =

∫
δ<|t|<nr1

∣∣∣∣E(eitSn)

t

∣∣∣∣ dt ≤ Cnr1−r2+ 1
2

Because r2 can be made arbitrarily large by choosing n large enough, I2 = O
( 1

n

)
.

Therefore,

|Fn(x)− E1,n(x)| = O
( 1

ns

)
where s = min

{
1,

1

2
+ r1

}
and we have the required conclusion.

Remark 3.2.1. In the proof above, I1 gives the contribution to the error from the

expansion of the characteristic function near 0. This dominates when r1 ≥
1

2
.

Weak forms of Edgeworth expansions are discussed in detail in [4]. We adapt

the ideas found in [4] to our proofs of Theorems 3.1.4 and 3.1.5. One key difference

is the requirement on f to have two more derivatives than required in [4]. This

compensates for the lack of control over the tail of the characteristic function of SN .

In fact, it is enough to assume 1 + α more derivatives. But to avoid technicalities
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we stick to the stronger regularity assumption. In the i.i.d. case as shown in

[4], a Diophantine assumption takes care of this. See section 3.5.1 for a detailed

discussion.

Proof of Theorem 3.1.4. Recall that f̂(t) =

∫
e−itxf(x) dx and pick A as in (3.2).

Then by Plancherel theorem,

E(f(Sn − nA)) =
1

2π

∫
f̂(t)E(eit(Sn−nA)) dt (3.20)

=⇒
√
nE(f(Sn − nA)) =

1

2π

∫
f̂

(
t√
n

)
E(e

itSn−nA√
n ) dt.

We first estimate RHS away from 0. Fix small δ > 0. (A particular δ is chosen

later). Notice that for all δ ≤ |t| ≤ K (where K as in (A4)), there exists c0 ∈ (0, 1)

such that ‖Lnt ‖ ≤ cn0 . Thus,

∣∣∣∣ ∫
δ<|t|<K

f̂(t)E(eit(Sn−nA)) dt

∣∣∣∣ ≤ ∫
δ<|t|<K

∣∣∣f̂(t)`(Lnt v)
∣∣∣ dt ≤ C‖f‖1c

n
0 .

By Remark 3.1.1, for large n we can assume r2 > r1 + (r + 1)/2. Therefore,

∣∣∣∣ ∫
K<|t|<nr1

f̂(t)E(eit(Sn−nA)) dt

∣∣∣∣ ≤ ‖f‖1‖`‖‖v‖
∫
K<|t|<nr1

‖Lnt ‖ dt ≤
C‖f‖1

nr2−r1

= ‖f‖1o(n
−(r+1)/2).

Because f ∈ F q+2
r+1 , we have that tqf̂(t) = (−i)qf̂ (q)(t) and f̂ (q) is integrable.

In fact, |f̂ (q)(t)| ≤ C

(1 + |t|)2
. Note that we are using only the fact that f is q + 2

times continuously differentiable with integrable derivatives. Therefore for this to

be true f ∈ F q+2
0 is sufficient. Integrability of f̂ (q) along with q >

r + 1

2r1

implies,

∣∣∣∣ ∫
|t|>nr1

f̂(t)E(eit(Sn−nA)) dt

∣∣∣∣ ≤ ∫
|t|>nr1

|f̂(t)| dt ≤
∫
|t|>nr1

∣∣∣ f̂ (q)(t)

tq

∣∣∣ dt (3.21)
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≤ ‖f̂
(q)‖1

nr1q
= ‖f̂ (q)‖1o(n

−(r+1)/2).

Therefore, ∣∣∣∣ ∫
|t|>δ

f̂(t)E(eit(Sn−nA)) dt

∣∣∣∣ = o(n−(r+1)/2). (3.22)

From (3.8), for |t| ≤ δ
√
n, we have,

E(e
itSn−nA√

n ) = e−
σ2t2

2 et
2O(δ)(1 +O(δ)) +O(εn0 ).

Thus, choosing small δ, for large n when |t| < δ
√
n there exist c, C > 0 such that

∣∣E(eitSn−nA√
n
)∣∣ ≤ Ce−ct

2

.

Then, √
D log n < |t| < δ

√
n =⇒

∣∣∣E(e
itSn−nA√

n )
∣∣∣ ≤ Ce−cD logn =

C

ncD

and∣∣∣∣ ∫√D logn
n

<|t|<δ
f̂(t)E(eit(Sn−nA)) dt

∣∣∣∣ =

∣∣∣∣ ∫√
D logn<|t|<δ

√
n

f̂

(
t√
n

)
E(e

itSn−nA√
n )

dt√
n

∣∣∣∣
≤ C

ncD

∫
√

D logn
n

<|t|<δ
|f̂(t)| dt =

2δC‖f‖1

ncD
.

Combining this with (3.22) and choosing D such that, cD > (r+ 1)/2 we have that,∣∣∣∣ ∫
|t|>
√

D logn
n

f̂(t)E(eit(Sn−nA)) dt

∣∣∣∣ = o(n−(r+1)/2). (3.23)

Next, suppose |t| <
√
D log n

n
. Then,

f̂(t) =
r∑
j=0

f̂ (j)(0)

j!
tj +

tr+1

(r + 1)!
f̂ (r+1)(ε(t))

where 0 ≤ |ε(t)| ≤ |t|. Note that,

|f̂ (r+1)(ε(t))| =
∣∣∣∣ ∫ xr+1e−iε(t)xf(x) dx

∣∣∣∣ ≤ ∫ |xr+1f(x)| dx ≤ Cr+1(f).
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Therefore,

∫
|t|<
√
D logn

f̂
( t√

n

)
E(e

itSn−nA√
n ) dt

=
r∑
j=0

f̂ (j)(0)

j!nj/2

∫
|t|<
√
D logn

tjE(e
itSn−nA√

n ) dt

+
1

n(r+1)/2

1

(r + 1)!

∫
|t|<
√
D logn

E(e
itSn−nA√

n )tr+1f̂ (r+1)
(
ε
( t√

n

))
dt

where

∣∣∣∣ ∫
|t|<
√
D logn

E(e
itSn−nA√

n )tr+1f̂ (r+1)
(
ε
( t√

n

))
dt

∣∣∣∣ ≤ Cr+1(f)

∫
|t|r+1e−ct

2

dt

for large n. Hence,

∫
|t|<
√
D logn

f̂
( t√

n

)
E(e

itSn−nA√
n ) dt

=
r∑
j=0

f̂ (j)(0)

j!nj/2

∫
|t|<
√
D logn

tjE(e
itSn−nA√

n ) dt+ Cr+1(f)O(n−(r+1)/2). (3.24)

Because s = r + 2, from (3.9),

e
σ2t2

2 E(e
itSn−nA√

n ) = exp
(
nψ
( t√

n

))
Z
( t√

n

)
+ e

− inAt√
n

+σ2t2

2 `
(
Λn
t/
√
nv
)

=
r∑

k=0

Ak(t)

nk/2
+

tr

nr/2
ϕ
( t√

n

)
+O

( log(r+1)/2(n)

n(r+1)/2

)
. (3.25)

Substituting this in (3.24),

∫
|t|<
√
D logn

f̂

(
t√
n

)
E(e

itSn−nA√
n ) dt (3.26)

=
r∑
j=0

f̂ (j)(0)

j!nj/2

∫
|t|<
√
D logn

tje−σ
2t2/2

r∑
k=0

Ak(t)

nk/2
dt+O

( log(r+1)/2(n)

n(r+1)/2

)
=

r∑
k=0

r∑
j=0

f̂ (j)(0)

j!n(k+j)/2

∫
|t|<
√
D logn

tjAk(t)e
−σ2t2/2 dt+ o(n−r/2).
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Recall from (3.11) that Ak and k have the same parity. Therefore, if k + j is odd

then ∫
|t|<
√
D logn

tjAk(t)e
−σ2t2/2 dt = 0.

So only integral powers of n−1 will remain in the expansion. Also there is C that

depends only on r such that,

∫
|t|≥
√
D logn

tjAk(t)e
−σ2t2/2 dt ≤ C

∫
|t|≥
√
D logn

t4re−σ
2t2/2 dt ≤ C

eσ2D log(n)/4
=

C

nσ2D/4
.

Choosing D such that 2σ2D > (r + 1)/2,

∫
R
tjAk(t)e

−σ2t2/2 dt =

∫
|t|≤
√
D logn

tjAk(t)e
−σ2t2/2 dt+ o(n−r/2).

Therefore, fixing D large, we can assume the integrals to be over the whole real line.

Now, define

ak,j =

∫
R
tjAk(t)e

−σ2t2/2 dt

and substitute

f̂ (j)(0) =

∫
R
(−it)jf(t) dt

in (3.26) to obtain,

∫
|t|<
√
D logn

f̂
( t√

n

)
E(e

itSn−nA√
n ) dt =

r∑
k=0

r∑
j=0

ak,j
1

j!n(k+j)/2

∫
R
(−it)jf(t) dt+ o(n−r/2)

(3.27)

=
r∑
p=0

1

np

∫
R
f(t)

∑
k+j=2p

ak,j
j!

(−it)j dt+ o(n−r/2)

=

br/2c∑
p=0

1

np

∫
R
f(t)Pp,l(t) dt+ o(n−r/2)
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where

Pp,l(t) =
∑

k+j=2p

ak,j
j!

(−it)j. (3.28)

The final simplification was done by absorbing the terms corresponding to higher

powers of n−1 into the error term. Note that Pp,l is a polynomial of degree at most

2p and that once we know A0, . . . , A2p we can compute Pp,l.

Finally combining (3.27) and (3.23) substituting in (3.20) we obtain the re-

quired result as shown below.

√
nE(f(Sn − nA)) =

1

2π

∫
|t|<
√
D logn

f̂
( t√

n

)
E(e

itSn−nA√
n ) dt

+

√
n

2π

∫
|t|>
√

D logn
n

f̂(t)E(eit(Sn−nA)) dt

=
1

2π

br/2c∑
p=0

1

np

∫
R
f(t)Pp,l(t) dt+ o(n−r/2) +

√
n o(n−(r+1)/2)

=
1

2π

br/2c∑
p=0

1

np

∫
R
f(t)Pp,l(t) dt+ o(n−r/2).

The proof of Theorem 3.1.5 uses the relation (3.25) derived in the previous

proof. But we do not use the Taylor expansion of f̂ , so differentiability of f̂ is not

required. So the assumption on the decay of f at infinity can be relaxed.

Proof of Theorem 3.1.5. Multiplying (3.25) by f̂ and integrating we obtain,

∫
|t|<
√
D logn

f̂
( t√

n

)
E(e

itSn−nA√
n ) dt

=
r∑

k=0

1

nk/2

∫
|t|<
√
D logn

f̂
( t√

n

)
Ak(t)e

−σ
2t2

2 dt+ ‖f‖1o(n
−r/2).
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As in the proof of Theorem 3.1.4 the integrals above can be replaced by inte-

grals over R without altering the order of the error because∫
|t|≥
√
D logn

f̂
( t√

n

)
Ak(t)e

−σ
2t2

2 dt ≤ ‖f‖1 o(n
−r/2)

for D such that 2σ2D > (r + 1)/2. Therefore,∫
|t|<
√
D logn

f̂
( t√

n

)
E(e

itSn−nA√
n ) dt =

r∑
k=0

1

nk/2

∫
R
f̂
( t√

n

)
Ak(t)e

−σ
2t2

2 dt+ ‖f‖1o(n
−r/2).

We pick Rp as in (3.15) and claim Pp,g = Rp.

Note that
√
nf(t
√
n)←→ f̂(t/

√
n). So by the Plancherel theorem,∫

R

√
nf
(
t
√
n
)
Rk(t)n(t) dt =

1

2π

∫
R
f̂
( t√

n

)
Ak(t)e

−σ
2t2

2 dt.

Thus,

1

2π
√
n

∫
|t|<
√
D logn

f̂
( t√

n

)
E(e

itSn−nA√
n ) dt

=
1√
n

( r∑
p=0

1

np/2

∫
R

√
nf
(
t
√
n
)
Rp(t)n(t) dt+ ‖f‖1o(n

−r/2)
)

=
r∑
p=0

1

np/2

∫
R
f
(
t
√
n
)
Rp(t)n(t) dt+ ‖f‖1o(n

−(r+1)/2). (3.29)

Note that (3.23) holds because f ∈ F q+2
0 . Now, combining (3.29) with the estimate

(3.23) completes the proof.

Remark 3.2.2. Proofs of both the Theorem 3.1.4* and Theorem 3.1.5* are almost

identical except the estimate (3.21). In order to obtain the same asymptotics, the

assumption on the integrability of f̂ (q) can be replaced by (A5) and the fact that

|f̂(t)| ∼ 1

t
for as t→ ±∞.∣∣∣∣ ∫

|t|>nr1
f̂(t)E(eit(Sn−nA)) dt

∣∣∣∣ ≤ C

∫
|t|>nr1

|f̂(t)|‖Lnt ‖ dt

64



≤ C‖f‖1

∫
|t|>nr1

1

t1+α
dt

≤ C‖f‖1

nr1(α−ε)

∫
1

t1+ε
dt

Since, r1α >
r + 1

2
choosing ε small enough we can make the expression ‖f‖1 o(n

−(r+1)/2)

as required.

Proof of Theorem 3.1.6. Select A as in (3.2). Define Pp by (3.15) and (3.16) and

f̃n(x) = f(−
√
nx). Then the change of variables − y√

n
→ y yields,

∫ [
P
(Sn − nA√

n
≤ x+

y√
n

)
−N

(
x+

y√
n

)
− Er,n

(
x+

y√
n

)]
f(y)dy =

√
n∆n ∗ f̃n(x).

where Er,n(x) =
r∑
p=1

1

np/2
Pp(x)n(x).

Notice that E(e
itSn−nA√

n ) ̂̃fn ∈ L1. Therefore,

(Fn ∗ f̃n)′(x) =
1

2π

∫
e−itxE(e

itSn−nA√
n ) ̂̃fn(t) dt.

Also,

[
n +

( r∑
p=1

1

np/2
Rpn

)]
∗ f̃n(x) =

1

2π

∫
e−itxe−

σ2t2

2

(
1 +Qn(t)

) ̂̃fn(t) dt

where Rp’s are polynomials given by (3.15) and Qn(t) is given by (3.10). From these

we conclude that,

(∆n ∗ f̃n)′(x) =
1

2π

∫
e−itx

(
E(e

itSn−nA√
n )− e−

σ2t2

2

(
1 +Qn(t)

) ̂̃fn(t) dt. (3.30)

We claim that,

(∆n ∗ f̃n)(x) =
1

2π

∫
e−itx

E(e
itSn−nA√

n )− e−σ
2t2

2

(
1 +Qn(t)

)
−it

̂̃fn(t) dt. (3.31)
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Indeed, if the right side of (3.31) converges absolutely, then Riemann-Lebesgue

Lemma gives us that it converges 0 as |x| → ∞. Differentiating (3.31) we obtain

(3.30). Thus the two sides in (3.31) can differ only by a constant. Since both are 0

at ±∞, this constant is 0 and (3.31) holds.

Now, we are left with the task of showing that the right side of (3.31) con-

verges absolutely. From the definition of f̃n it follows that, ̂̃fn(t) =
1√
n
f̂
(
− t√

n

)
.

Combining this with (3.14), we have that,

∣∣∣∣ ∫
|t|<δ

√
n

e−itx
E(e

itSn−nA√
n )− e−σ

2t2

2

(
1 +Qn(t)

)
−it

̂̃fn(t) dt

∣∣∣∣
≤
∫
|t|<δ

√
n

∣∣∣∣E(e
itSn−nA√

n )− e−σ
2t2

2

(
1 +Qn(t)

)
t

̂̃fn(t)

∣∣∣∣ dt
≤ ‖f‖1√

n

∫
|t|<δ

√
n

∣∣∣∣E(e
itSn−nA√

n )− e−σ
2t2

2

(
1 +Qn(t)

)
t

∣∣∣∣ dt
= ‖f‖1o(n

−(r+1)/2).

Note that,

∣∣∣∣ ∫
|t|>δ

√
n

e−itx
E(e

itSn−nA√
n )− e−σ

2t2

2

(
1 +Qn(t)

)
−it

̂̃fn(t) dt

∣∣∣∣
≤
∫
|t|>δ

√
n

∣∣∣∣E(e
itSn−nA√

n )− e−σ
2t2

2

(
1 +Qn(t)

)
t

f̂
(
− t√

n

)∣∣∣∣ dt
≤ 1√

n

∫
|t|>δ

∣∣∣∣E(e−it(Sn−nA))− e−n
2σ2t2

2

(
1 +Qn(−

√
nt)
)

t
f̂(t)

∣∣∣∣ dt
≤ 1√

n

∫
|t|>δ

∣∣∣∣E(e−it(Sn−nA))

t
f̂(t)

∣∣∣∣ dt+O(e−cn
2

).

Put,

Jn =
1√
n

∫
|t|>δ

∣∣∣∣E(e−it(Sn−nA))

t
f̂(t)

∣∣∣∣ dt.
We claim Jn = o(n−(r+1)/2). This proves that (3.31) converges absolutely as required.
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To conclude the asymptotics of Jn, choose δ > max{δ,K} where K as in (A4).

From (A3) there exists γ < 1 such that ‖Lnt ‖ ≤ γn for all δ ≤ |t| ≤ δ for sufficiently

large n. Then, using (3.1) for sufficiently large n we have,

1√
n

∫
δ<|t|<δ

∣∣∣∣E(e−it(Sn−nA))

t
f̂(t)

∣∣∣∣ dt ≤ C‖f‖1

δ
√
n

∫
δ<|t|<δ

‖Lnt ‖ dt = O(γn).

Next, for K ≤ δ ≤ |t| ≤ nr1 , ‖Lnt ‖ ≤
1

nr2
. Hence, for n sufficiently large so that

r2 >
r

2
,

1√
n

∫
δ<|t|<nr1

∣∣∣∣E(e−it(Sn−nA))

t
f̂(t)

∣∣∣∣ dt ≤ C

δ
√
n

∫
δ<|t|<nr1

‖Lnt ‖|f̂(t)| dt

≤ C‖f̂‖1

nr2+1/2
= o(n−(r+1)/2).

Since q >
r

2r1

, we have that,

1√
n

∫
|t|>nr1

∣∣∣∣E(e−it(Sn−nA))

t
f̂(t)

∣∣∣∣ dt ≤ ‖f (q)‖1√
n

∫
|t|>nr1

1

|t|q+1
dt ≤ C‖f (q)‖1

nqr1+1/2

= o(n−(r+1)/2).

Combining the above estimates, Jn = Cq(f)o(n−(r+1)/2).

This completes the proof that (∆n ∗ f̃n)(x) = o(n−(r+1)/2). Hence,

∫ [
P
(Sn − nA√

n
≤ x+

y√
n

)
−N

(
x+

y√
n

))]
f(y)dy

=

∫
Er,n
(
x+

y√
n

)
f(y) dy +

√
n∆n ∗ f̃n(x)

=
r∑
p=1

1

np/2

∫
Pp

(
x+

y√
n

)
n(x)f(y) dy + Cq(f)o(n−r/2)

as required.

In the lattice case, periodicity allows us to simplify the proof significantly

although the idea behind the proof is similar to the previous proofs.
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Proof of Theorem 3.1.7. Under assumptions (A1) and (A2) we have the CLT for

Sn. Put A as in (3.2). We observe that,

2πP(Sn = k) =

∫ π

−π
e−itkE(eitSn) dt =

∫ π

−π
e−itk`(Lnt v) dt.

After changing variables and using (3.6), (3.7) we have,

2π
√
nP (Sn = k) =

∫ π
√
n

−π
√
n

e
− itk√

nµ
( t√

n

)n
Z
( t√

n

)
dt+

∫ π
√
n

−π
√
n

e
− itk√

n `
(
Λn
t/
√
nv
)
dt.

(3.32)

By (̃A3) there exists C > 0 and r ∈ (0, 1) (both independent of t) such that

|` (Λn
t v) | ≤ Crn for all t ∈ [−π, π]. Therefore the second term of (3.32) decays

exponentially fast to 0 as n→∞.

Now, we focus on the first term. Using the same strategy as in the proof of

Theorem 3.1.1 we have,

µ
( t√

n

)n
Z
( t√

n

)
= e

inAt√
n
−σ

2t2

2
[
1 +Qn(t) + o(n−r/2)

]
(3.33)

where Qn(t) is as in (3.10). Define Rj as in (3.15).

2π
√
nP(Sn = k)− 2π

{
1√
2π
e−

(k−nA)2

2σ2n

(
1 +

r∑
j=1

(Rp(k − nA)/
√
n)

nj/2

)}

=

∫ π
√
n

−π
√
n

e
− itk√

nµ
( t√

n

)n
Z
( t√

n

)
dt

−
∫ ∞
−∞

e
− it(k−nA)√

n e−σ
2t2/2 dt−

∫ ∞
−∞

e
− itk√

n e−
σ2t2

2 Qn(t) dt+ o(n−r/2).

We estimate the RHS by estimating the three integrals given below,

I1 =

∫ δ
√
n

−δ
√
n

e
− itk√

nµ
( t√

n

)n
Z
( t√

n

)
− e−

it(k−nA)√
n e−

σ2t2

2 [1 +Qn(t)] dt

I2 =

∫
δ
√
n<|t|<π

√
n

e
− itk√

nµ
( t√

n

)n
Z
( t√

n

)
dt
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I3 =

∫
|t|>δ

√
n

e
− it(k−nA)√

n e−
σ2t2

2 [1 +Qn(t)] dt.

Clearly, |I3| decays to 0 exponentially fast as n → ∞. Also, |µ(2π)| = 1 and

|µ(t)| ∈ (0, 1) for 0 < |t| < 2π. Therefore, there exists ε > 0 such that |µ(t)| < ε on

δ ≤ |t| ≤ π. Put M = max
δ≤|t|≤π

|Z(t)|. Then,

|I2| ≤M
√
n

∫
ε<|t|<π

|µ(t)|n dt ≤ 2M(π − δ)
√
nεn.

Hence, |I2| decays to 0 exponentially fast as n→∞. From (3.33), we have that

e
− itk√

n

[
µ
( t√

n

)n
Z
( t√

n

)
− e

inAt√
n e−

σ2t2

2 [1 +Qn(t)]
]

= e−
σ2t2

2 o(n−r/2).

This implies |I1| = o(n−r/2). Combining these estimates we have the required result.

3.3 Computing coefficients.

Since

∫
|t|>δ

E(eitSn) dt decays sufficiently fast, the Edgeworth expansion, and

hence its coefficients, depend only on the Taylor expansion of E(eitSn) about 0. Here

we relate the coefficients of Edgeworth polynomials to the asymptotics of moments

of Sn by relating them to derivatives of µ(t) and Z(t) at 0.

Suppose (A1) through (A4) are satisfied with s = r + 2. Recall (3.6):

E(eitSn) = µ (t)n ` (Πtv) + ` (Λn
t v) . (3.34)

Put Z(t) = ` (Πtv) as before. Also write Un(t) = ` (Λn
t v). We already know that

µ(t), Z(t) and U(t) are r+ 2 times continuously differentiable. Using (3.13) one can
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show further that the derivatives of Un(t) satisfy:

sup
|t|≤δ
‖U (k)

n ‖ ≤ Cεn0

for all n and for all 1 ≤ k ≤ r + 2.

Taking the first derivative of (3.34) at t = 0 we have:

iE(Sn) = nµ′(0) + Z ′(0) + U ′n(0) =⇒ lim
n→∞

iE
(Sn
n

)
= µ′(0).

In fact, using the Taylor expansion of log µ(t) and above limit one can conclude that

the number A we used in the statement of the CLT in (3.2), is given by

A = lim
n→∞

E
(Sn
n

)
.

Therefore one can rewrite (3.6) as

E(eit(Sn−nA)) = e−ntµ
′(0)µ (t)n Z(t) + Un(t) (3.35)

where Un(t) = e−ntµ
′(0)Un(t). Also note that its derivatives satisfy ‖U (k)

n ‖∞ = O(εn0 )

for all 1 ≤ k ≤ r + 2.

From (3.35), it follows that moments of Sn−nA can be expanded in powers of

n with coefficients depending on derivatives of µ and Z at 0. However, only powers

of n upto order k/2 will appear. We prove this fact below.

Lemma 3.3.1. Let 1 ≤ k ≤ r + 2. Then for large n,

E
(

[Sn − nA]k
)

=

bk/2c∑
j=0

ak,jn
j +O(εn0 ). (3.36)

Proof. We first note that taking the kth derivative of (3.35) at t = 0,

ikE
(

[Sn − nA]k
)

=
dk

dtk

∣∣∣∣
t=0

[
e−ntµ

′(0)µ (t)n Z(t)
]

+ U
(k)

(0)
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=
dk

dtk

∣∣∣∣
t=0

[
e−ntµ

′(0)µ (t)n Z(t)
]

+O(εn0 ).

Observe that all the derivatives of e−ntµ
′(0)µ (t)n Z(t) will only have positive integral

powers of n (possibly) up to order k. Therefore,
dk

dtk
∣∣
t=0

[
e−ntµ

′(0)µ (t)n Z(t)
]

=

k∑
j=0

ak,jn
j. We claim that for j > k/2, ak,j = 0. This claim proves the result.

We notice that the first derivative of e−tµ
′(0)µ (t) at t = 0 is 0. Thus we prove

the more general claim that if g(0) = 1 and g′(0) = 0 then
dk

dtk
∣∣
t=0

[g(t)nZ(t)] has no

terms with powers of n greater than k/2. From the Leibniz rule,

dk

dtk

∣∣∣∣
t=0

[g(t)nZ(t)] =
k∑
l=0

(
k

l

)
Z(k−l)(0)

dl

dtl

∣∣∣∣
t=0

[g(t)n].

Therefore it is enough to prove that
dl

dtl
∣∣
t=0

[g(t)n] has no powers of n greater than

l/2.

To this end we use the order l Taylor expansion of g(t) about t = 0. Since

g′(0) = 0 and g is r + 2 times continuously differentiable for l ≤ r + 2 there exists

φ(t) continuous such that,

g(t) = 1 + a2t
2 + · · ·+ alt

l + tl+1φ(t)

=⇒ g(t)n =
∑

k0+k2+···+kl+1=n

n!

k0!k2! . . . kl+1!
(a2t

2)k2 . . . t(l+1)kl+1φ(t)kl+1

=
∑

k0+k2+···+kl+1=n

Ck0k2...kl+1
n!

k0!k2! . . . kl+1!
t2k2+···+(l+1)kl+1φ(t)kl+1 .

After combining and rearranging terms according to powers of t, we can obtain

the order l Taylor expansion of g(t)n. Notice that if kl+1 ≥ 1 then 2k2 + · · · + (l +

1)kl+1 ≥ l + 1. Terms with kl+1 ≥ 1 are part of the error term of the order

l Taylor expansion of g(t)n. Since our focus is on the derivative at t = 0, the

71



only terms that matter are terms with kl+1 = 0 and 2k2 + · · · + lkl = l. This

implies that k2 + · · · + kl ≤
l

2
. Because ki’s are non-negative integers, this means

k2 + · · ·+ kl ≤ b
l

2
c. Hence, k0 ≥ n− b l

2
c.

This analysis shows that the largest contribution to
dl

dtl
∣∣
t=0

[g(t)n] comes from

the term,

C(n−b l
2
c),1,...,1,0,...,0 n!(
n− b l

2
c
)
!

tl

whose kth derivative at 0 is,

C(n−b l
2
c),1,...,1,0,...,0 l! n!(
n− b l

2
c
)
!

= C(n−b l
2
c),1,...,1,0,...,0 l! n . . .

(
n−

⌊ l
2

⌋
+ 1
)

= O(nb
l
2
c).

Therefore,

dl

dtl

∣∣∣
t=0

[g(t)n] = O(nb
l
2
c).

It is immediate from the proof that the coefficients ak,j are determined by

the derivatives of µ(t) and Z(t) near 0. For example, the constant term ak,0 =

(−i)kZ(k)(0). This follows from these three facts. The expansion (3.36) is the kth

derivative of the product of the three functions e−ntµ
′(0), µ (t)n and Z(t) at t = 0.

All derivatives of µ (t)n and e−ntµ
′(0) at t = 0 contain powers of n and thus, ak,0

corresponds to the term Z(t) being differentiated k times in the Leibneiz rule. Both

e−ntµ
′(0) and µ (t)n are 1 at t = 0. We will see later that the other coefficients ak,j

are combinations of µ′(0) = iA, higher order derivatives of µ at 0 upto order k and

derivatives of Z at 0 upto order k − 1.

As a corollary to Lemma 3.3.1, we conclude that asymptotic moments of orders

upto r + 2 exist. These provide us an alternative way to describe ak,j.
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Corollary 3.3.2. For all 1 ≤ m ≤ r + 2 and 0 ≤ j ≤ m

2
,

am,j = lim
n→∞

E ([Sn − nA]m)− nj+1am,j+1 − · · · − nb
m
2
cam,bm

2
c

nj
.

Proof. When m = 1, E([Sn − nA]) = a1,0 + O(εn0 ) and it is immediate that a1,0 =

lim
n→∞

E([Sn − nA]). For arbitrary k we have,

E
(

[Sn − nA]k
)

= ak,bk/2cn
bk/2c + ak,bk/2c−1n

bk/2c−1 + · · ·+ ak,0 +O(εn0 )

and dividing by n we obtain,

E
(

[Sn − nA]k
)

nbk/2c
= ak,bk/2c +O

( 1

n

)
.

Now, it is immediate that,

ak,bk/2c = lim
n→∞

E
(

[Sn − nA]k
)

nbk/2c
.

Having computed ak,j, for r ≤ j ≤ bk
2
c, we can write,

E
(

[Sn − nA]k
)
− ak,bk/2cnbk/2c − · · · − ak,rnr = ak,r−1n

r−1 + · · ·+ ak,0 +O(εn0 ).

Dividing by nr−1, we obtain,

E
(

[Sn − nA]k
)
− nrak,r − · · · − nbk/2cak,bk/2c

nr−1
= ak,r−1 +O

( 1

n

)
.

Now, we can compute am+1,r−1,

ak,r−1 = lim
n→∞

E
(

[Sn − nA]k
)
− nrak,r − · · · − nbk/2cak,bk/2c

nr−1
.

This proves the Corollary for arbitrary k ∈ {1, . . . , r + 2}.
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Because the coefficients of polynomials Ap(t) (see (3.10)) are combinations of

derivatives of µ(t) and Z(t) at t = 0, we can write them explicitly in terms of ak,j,

and hence, by applying Corollary 3.3.2, the coefficients of Edgeworth polynomials

can be expressed in terms of moments of Sn. Next, we will introduce a recursive

algorithm to do this and illustrate the process by computing the first and second

Edgeworth polynomials.

Taking the first derivative of (3.35) at t = 0,

iE([Sn − nA]) = Z ′(0) + U
′
n(0).

Then,

a1,0 = lim
n→∞

E([Sn − nA]) = −iZ ′(0).

Next, taking the second derivative of (3.35) at t = 0 we have,

i2E([Sn − nA]2) = n[µ′′(0)− µ′(0)2] + Z ′′(0) + U
′′
n(0).

Therefore, dividing by n and taking the limit we have,

a2,1 = σ2 = lim
n→∞

E

([
Sn − nA√

n

]2
)

= µ′(0)2 − µ′′(0). (3.37)

Once we have found a2,1 we can find

a2,0 = lim
n→∞

(
E([Sn − nA]2)− nσ2

)
= −Z ′′(0).

We can repeat this procedure iteratively. For example, after we compute the 3rd

derivative of (3.35) at t = 0:

i3E([Sn − nA]3) = Z(3)(0) + nµ′(0)[2µ′(0)2 − 3µ′′(0)] + nµ(3)(0)
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+ 3nZ ′(0)[µ′(0)2 − µ′′(0)] + U
(3)

n (0)

we get that,

a3,1 = lim
n→∞

1

n
E
(
[Sn − nA]3

)
= −A(3σ2 + A2) + iµ(3)(0)− 3iσ2Z ′(0)

= −A(3σ2 + A2) + iµ(3)(0) + 3σ2a1,0.

This gives us µ(3)(0) and Z(3)(0) in terms of asymptotics of moments of Sn:

iµ(3)(0) = a3,1 + A(3σ2 + A2)− 3σ2a1,0

iZ(3)(0) = lim
n→∞

(
E([Sn − nA]3)− na3,1

)
.

Given that we have all the coefficients ak,j, 1 ≤ k ≤ m computed and

µ(k)(0), Z(k)(0) for 1 ≤ k ≤ m expressed in terms of the former, we can compute

am+1,j and express µ(m+1)(0), Z(m+1)(0) in terms of ak,j, 1 ≤ k ≤ m+ 1.

To see this note that µ(m+1)(0) appears only as a result of µn(t) being differ-

entiated m+ 1 times. So, µ(m+1)(0) only appears in derivatives of order m+ 1 and

higher. It is also easy to see that it appears in the form nµ(m+1)(0) in the (m+ 1)th

derivative of (3.35). Thus, it is a part of am+1,1 and all the other terms in am+1,1 are

products of µ(k)(0), Z(k)(0) for 1 ≤ k ≤ m whose orders add upto m + 1 and hence

they are products of ak,j, 1 ≤ k ≤ m.

Also, Zm+1(0) appears only in am+1,0. This is because Zm+1(0) appears only

as a result of Z(t) being differentiated m + 1 times. Thus, it appears only in

derivatives of (3.35) of order m+ 1 or higher. In the (m+ 1)th derivative of (3.35),

there is only one term containing Z(m+1)(t) and it is e−ntµ
′(0)µ (t)n Zm+1(t). So

am+1,0 = (−i)m+1Zm+1(0).
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Using Corollary 3.3.2, we have,

am+1,bm+1
2
c = lim

n→∞

E
(
[Sn − nA]m+1)
nb

m+1
2
c

.

Having computed am+1,j, for r ≤ j ≤ bm+ 1

2
c, we compute am+1,r−1:

am+1,r−1 = lim
n→∞

E
(
[Sn − nA]m+1)− nram+1,r − · · · − nb

m+1
2
cam+1,bm+1

2
c

nr−1
.

This gives us Z(m+1)(0) = im+1am+1,0 and µm+1(0) in terms of am+1,1 and ak,j,

1 ≤ k ≤ m i.e. explicitly in terms of moments of Sn. Proceeding inductively we can

compute all the derivatives upto order r of µ(t) and Z(t) at t = 0 in this manner

by taking derivatives up to order r of (3.35) at t = 0. This is possible because

our assumptions guarantee the existence of the first r + 2 derivatives of (3.35) near

t = 0.

Remark 3.3.1. This representation of µ(k)(0) and Z(k)(0) in terms of ak,j is not

unique. However, it is convenient to choose the ak,j’s with the lowest possible indices.

The inductive procedure explained above yields exactly this representation.

We will illustrate how the first and the second order Edgeworth expansion

can be computed explicitly once we have µ(4)(0), µ(3)(0), Z ′′(0) and Z ′(0) in terms

of asymptotic moments of Sn. Because A0(t) = 1 we have R0(t) = 1. From the

derivation of (3.9) we have,

A1(t) = (log µ)(3)(0)
t3

6
− Z ′(0)t = (µ(3)(0)− 3µ′′(0)µ′(0) + 2µ′(0)3)

t3

6
− Z ′(0)t

=
(
µ(3)(0) + iA(3σ2 + A2)

)t3
6
− Z ′(0)t

= (a3,1 − 3σ2a1,0)
(it)3

6
− a1,0(it).
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After taking the inverse Fourier transform as shown in (3.15) we have,

R1(x) =
(a3,1 − 3σ2a1,0)

6σ6
x(3σ2 − x2) +

a1,0

σ2
x.

Using (3.16) we obtain the first Edgeworth polynomial,

P1(x) =

(
a3,1 − 3σ2a1,0

)
6σ4

(σ2 − x2)− a1,0

σ
.

Similar calculations give us,

A2(t) = (a3,1 + 3σ2a1,0)2 (it)6

72
+
[
A2(6σ2 + A4) + 4a3,1(A− 2a1,0)

− 3σ2(2a2,0 − 4Aa1,0 + σ2) + a4,1

](it)4

24
+ (2a2

1,0 − a2,0)
(it)2

2
.

From (3.15) and (3.16) we have,

R2(t) =(a3,1 + 3σ2a1,0)2x
6 − 15σ2x4 + 45σ4x2 − 15σ6

72σ12

+
[
A2(6σ2 + A4) + 4a3,1(A− 2a1,0)− 3σ2(2a2,0 − 4Aa1,0 + σ2) + a4,1

]
× (x4 − 6σ2x2 + 3σ2)

24σ8
+ (2a2

1,0 − a2,0)
(x2 − σ2)

2σ4
,

P2(t) =(a3,1 + 3σ2a1,0)2x(15σ2 − 10σ2x2 + x6)

72σ10

+
[
A2(6σ2 + A4) + 4a3,1(A− 2a1,0)− 3σ2(2a2,0 − 4Aa1,0 + σ2) + a4,1

]
× x(3σ2 − x2)

24σ6
+ (2a2

1,0 − a2,0)
x

2σ2
.

Remark 3.3.2. Once we have Rp for p ∈ N0 and Pp for p ∈ N, the polynomials

Pp,g, Pp,d and Pp,a are given by Pp,g = Pp,d = Rp and Pp,a = Pp. These relations were

obtained in the proofs in section 3.2.

Also, one can compute Pp,l using (3.28):

Pp,l(x) =
∑
l+j=2p

(−ix)j

j!

∫
tjAl(t)e

−σ
2t2

2 dt.
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For example,

P0,l(x) =

∫
A0(t)e−

σ2t2

2 dt =

√
2π

σ2
.

P1,l(x) =

∫
A2(t)e−

σ2t2

2 dt − ix
∫
tA1(t)e−

σ2t2

2 dt− x2

2

∫
t2A0(t)e−

σ2t2

2 dt

P1,l(x)√
2π

=(a3,1 + 3σ2a1,0)2 5

24σ7

+
[
A2(6σ2 + A4) + 4a3,1(A− 2a1,0)− 3σ2(2a2,0 − 4Aa1,0 + σ2) + a4,1

] 1

8σ5

− (2a2
1,0 − a2,0)

1

2σ6
−
(

(a3,1 − 3σ2a1,0)
1

σ5
+

2a1,0

σ3

)
x

2
− x2

2σ3

Higher order Edgeworth polynomials can be computed similarly.

We can compare our results with the centered i.i.d. case. Then, we have that

A = 0, a1,0 = 0 because the sequence is stationary. Also, a3,1 = lim
n→∞

1

n
E([Sn −

nA]3) = E((X1−A)3), a2,0 = 0 and a4,1 = E(X4
1 ). So, the above polynomials reduce

to,

A1(t) =
E(X3

1 )

6
(it)3, R1(x) =

E(X3
1 )

6σ6
x(3σ2 − x2), P1(x) =

E(X3
1 )

6σ4
(σ2 − x2)

A2(t) = E(X3
1 )2 (it)6

72
+ (E(X4

1 )− 3σ4)
(it)4

24

P0,l(x)√
2π

=
1

σ
,
P1,l(x)√

2π
=

E(X3
1 )2

σ7

5

24
+
(E(X4

1 )

σ5
− 3

σ

)1

8
− E(X3

1 )

σ5

x

2
− 1

σ3

x2

2

These agree with the polynomials found in [20, Chapter XVI] (to see this one has to

replace x by x/σ to make up for not normalizing by σ here) and [4]. The polynomials

Qk found in the latter are related to Pk,l by Qk(x) =
1

2π
Pk,l(x).

It is also easy to see that these agree with previous work on non-i.i.d. examples.

In both [9, 29] only the first order Edgeworth polynomial is given explicitly. In [9],

because the sequence is stationary and centered, we can take A = 0 and a1,0 = 0.
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Also, the pressure P (t) given there, corresponds to log µ(t) here. So we recover

A1(t) = P ′′′(0)
(it)3

6
in [9, Theorem 3]. In [29], sequence is centered but not assumed

to be stationary. So A = 0 and a1,0 6= 0 and the asymptotic bias appears in the

expansion and A1(t) = iµ(3)(0)
(it)3

6
− a1,0(it) which agrees with [29, Theorem 8.1].

This dependence on initial distribution corresponds to presence of ` in (3.1).

3.4 Applications.

3.4.1 Local Limit Theorem.

Existence of the Edgeworth expansion allows us to derive Local Limit Theo-

rems (LLTs). For example see [16, Theorem 4]. Also, as direct consequences of weak

global Edgeworth expansions, an LCLT comparable to the one given in [27, Chapter

II], holds. In fact, a stronger version of LCLT holds true in special cases.

To make the notation simpler, we assume that the asymptotic mean of SN is

0. That is A = lim
N→∞

E
(SN
N

)
= 0.

Proposition 3.4.1. Suppose that SN satisfies the weak global Edgeworth expansion

of order 0 for an integrable function f ∈ (F , ‖·‖) where ‖·‖ is translation invariant.

Further, assume that |xf(x)| is integrable. Then,

√
NE(f(SN − u)) =

1√
2πσ2

e−
u2

2Nσ2

∫
f(x) dx+ o(1) (3.38)

uniformly for u ∈ R.

Proof. After the change of variables z
√
N → z in the RHS of the weak global
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Edgeworth expansion,

√
NE(f(SN − u))

=

∫
n
( z√

N

)
f(z − u)dz + ‖f‖o(1)

=

∫ [
n
( u√

N

)
+ (z − u)n′

( zu√
N

)]
f(z − u)dz + ‖f‖o(1)

= n
( u√

N

)∫
f(z − u) dz +

C

N

∫
(z − u)n

( zu√
N

)
f(z − u)dz + ‖f‖o(1)

Here zu is between u and z and depends continuously on u.

Notice that,

∣∣∣ ∫ (z − u)n
( zu√

N

)
f(z − u)dz

∣∣∣ ≤ ∫ |(z − u)f(z − u)|dz ≤ ‖xf‖1

Therefore, after a change of variables z − u→ z in the RHS,

√
NE(f(SN − u)) = n

( u√
N

)∫
f(z)dz + max{‖xf‖1, ‖f‖} o(1)

as required.

In particular, the result holds for F = F 1
0 . If the order 0 weak global Edge-

worth expansion holds for all f ∈ F 1
0 , then we have the following corollary. We note

that this is indeed the case for faster decaying |E(eitSN )| as in Markov chains and

piecewise expanding maps described in sections 3.5.3.1, 3.5.3.2 and 3.5.4.

Corollary 3.4.2. Suppose that SN admits the weak global Edgeworth expansion of

order 0 for all f ∈ F 1
0 . Then, for all a < b,

√
N

(b− a)
P
(
SN ∈ (u+ a, u+ b)

)
=

1√
2πσ2

e−
u2

2Nσ2 + o(1)

uniformly in u ∈ R.
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Proof. Fix a < b. It is elementary to see that there exists a sequence fk ∈ F 1
0

with compact support such that fk → 1(u+a,u+b) point-wise and fk’s are uniformly

bounded in F 1
1 . This bound can be chosen uniformly in u, call it C.

Therefore, from the proof of Proposition 3.4.1, we have,

√
NE(fk(SN − u)) = n

( u√
N

)∫
fk(z)dz + C1

1(fk) o(1)

Because 0 ≤ C1
1(fk) ≤ C, taking the limit as k →∞ we conclude,

√
NP
(
SN ∈ (u+ a, u+ b)

)
= n
( u√

N

)∫ u+b

u+a

1 dz + C o(1)

and the result follows.

In fact, u in the previous theorem need not be fixed. For example, for a

sequence uN with
uN√
N
→ u, we have the following:

Corollary 3.4.3. Suppose that SN admits the weak global Edgeworth expansion of

order 0 for all f ∈ F 1
0 . Let uN be a sequence such that lim

N→∞

uN√
N

= u. Then, for all

a < b,

lim
N→∞

√
N

(b− a)
P
(
SN ∈ (uN + a, uN + b)

)
=

1√
2πσ2

e−
u2

2σ2 .

Now, we state the stronger version of LCLT in which we allow intervals to

shrink.

Definition 8. Given a sequence εN in R+ with εN → 0 as N →∞, we say that SN

admits an LCLT for εN if we have,

√
N

2εN
P
(
SN ∈ (u− εN , u+ εN)

)
=

1√
2πσ2

e−
u2

2Nσ2 + o(1)

uniformly in u ∈ R.
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The next proposition gives a existence of weak global Edgeworth expansions

as a sufficient condition for SN to admit a LCLT for a sequence εN . Notice that

existence of higher order expansions allow εN to decay faster. In case expansions of

all orders exist, εN can decay at any subexponential rate.

Proposition 3.4.4. Suppose that SN satisfies the weak global Edgeworth expansion

of order r (≥ 1) for all f ∈ F 1
0 . Let εN be a sequence of positive real numbers such

that εN → 0 and εNN
r/2 →∞ as N → ∞. Then, SN admits an LCLT for εN .

Proof. WLOG assume εN < 1 for all N . As in the previous proof, there exists a

sequence fk ∈ F 1
0 with compact support such that fk → 1(u−εN ,u+εN ) point-wise and

fk’s are uniformly bounded in F 1
0 . This bound can be chosen uniformly in N and

u, call it C.

Let N ∈ N. Note that for all k,

E(fk(SN)) =
r∑
p=0

1

N
p
2

∫
Pp,g(z)n(z)fk

(
z
√
N
)
dz + C1

0(fk) o
(
N−(r+1)/2

)
.

By taking the limit as k →∞ and using the fact 0 ≤ C1
0(fk) ≤ C, we conclude,

P
(
SN ∈ (u− εN , u+ εN)

)
=

r∑
p=0

1

N
p
2

∫ u+εN√
N

u−εN√
N

Pp,g(z)n(z) dz + C o
(
N−(r+1)/2

)
.

After a change of variables z → z√
N

in the p = 0 term and divide the whole

equation by 2εN to get,

√
N

2εN
P
(
SN ∈ (u− εN , u+ εN)

)
=

1

2εN

∫
1JN (z − u)n

( z√
N

)
dz +

r∑
p=1

√
N

2εNN
p
2

∫ u+εN√
N

u−εN√
N

Pp,g(z)n(z) dz + C o

(
1

εNN r/2

)

where JN = (−εN , εN).
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Note that for p ≥ 1, there exists Cp such that |Pp,g(z)n(z)| < Cp. Therefore,

∣∣∣∣
√
N

2εNN
p
2

∫ u+εN√
N

u−εN√
N

Pp,g(z)n(z) dz

∣∣∣∣ ≤ Cp
√
N

2εNN
p
2

∫ u+εN√
N

u−εN√
N

1 dz ≤ Cp
Np/2

= o(1)

Also, as in the proof of Proposition 3.4.1,

1

2εN

∫
1JN (z − u)n

( z√
N

)
dz =

1

2εN
n
( u√

N

)∫ u+εN

u−εN
1 dz

+
C

2εNN

∫ u+εN

u−εN
(z − u)n

( zu√
N

)
dz

Note that,

∣∣∣∣ C

2εNN

∫ u+εN

u−εN
(z − u)n

( zu√
N

)
dz

∣∣∣∣ ≤ C

2εNN

∫ u+εN

u−εN
|z − u| dz =

CεN
2N

Therefore,

1

2εN

∫
1JN (z − u)n

( z√
N

)
dz = n

( u√
N

)
+ o(1).

Combining these estimates with εNN
r/2 →∞ we have that,

√
N

2εN
P
(
SN ∈ (u− εN , u+ εN)

)
= n
( u√

N

)
+ o(1)

and it is straightforward from the proof that this is uniform.

Remark 3.4.1. We note that this result implies [16, Theorem 4] because existence

of classical Edgeworth expansions imply the existence of the weak global Edgeworth

expansion and this result is uniform in u.

3.4.2 Moderate Deviations.

While the CLT describes the typical behaviour or ordinary deviations from the

mean provided by the law of large numbers, it is not sufficient to understand prop-
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erties of distribution of Xn completely. Therefore, the study of excessive deviations

is important.

For example, deviations of order n are called large deviations. An exponential

moment condition is required for a large deviation principle to hold, even for the

i.i.d. case. However, when deviations are of order
√
n log n (moderate deviations)

this is not the case. We show here that a moderate deviation principle holds for SN

under a weaker assumption than the exponential moment assumption.

It is also worth noting that moderate deviations have numerous applications in

areas like statistical physics and risk analysis. For example, moderate deviations are

greatly involved in the computation of Bayes risk efficiency. See [44] for details.

Proposition 3.4.5. Suppose SN admits the order r Edgeworth expansion. Then

for all c ∈ (0, r), when 1 ≤ x ≤
√
cσ2 lnN,

lim
N→∞

1− P
(
SN−AN√

N
≤ x

)
1−N(x)

= 1. (3.39)

Proof. Note that,

1−N(x)−
[
1− P

(SN − AN√
N

≤ x
)]

= P
(SN − AN√

N
≤ x

)
−N(x)

=
r∑
p=1

Pp(x)

Np/2
n(x) + o

(
N−r/2

)
uniformly in x. So it is enough to show that for 1 ≤ x ≤

√
cσ2 lnN ,

lim
N→∞

Pp(x)n(x)

Np/2(1−N(x))
= 0 and

N−r/2

1−N(x)
= o(1)

Note that for x ≥ 1,

1−N(x) =
σ2n(x)

x
+O

(n(x)

x3

)
.
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Thus,

N−r/2

1−N(x)
≤ N−r/2

1−N(
√
cσ2 lnN)

= O
(√

lnN
N−r/2

e−
c
2

lnN

)
= O

( lnN

N (r−c)/2

)
Say Pp(x) is of degree q. Then for some C and K,

∣∣∣ Pp(x)n(x)

Np/2(1−N(x))

∣∣∣ ≤ C
(xq +K)n(x)

Np/2(1−N(x))
= C

(xq +K)

Np/2
x
(

1 +O
( 1

x2

))
≤ C

(lnN)q+1

Np/2
→ 0 as N →∞.

This completes the proof of (3.39).

Proposition 3.4.5 is a generalization of the results on moderate deviations

found in [43] to the non-i.i.d. case along with improvements on the moment condi-

tion. It should be noted that [4] contains an improvement of the moment condition

for the i.i.d. case. But the proof we present here is different from the proof presented

in [4].

As an immediate corollary to the above theorem, we can state the following

first order asymptotic for probability of moderate deviations.

Corollary 3.4.6. Assume SN admits the order r Edgeworth expansion. Then for

all c ∈ (0, r),

P(SN ≥ AN +
√
cσ2N lnN) ∼ 1√

2πc

1√
N c lnN

.

3.5 Examples

Here we give several examples of systems satisfying assumptions (A1)–(A4).
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3.5.1 Independent variables.

Let Xn be i.i.d. with r + 2 moments. In this case we can take B = R, and

define Ltv = E(eitX1v) = φ(t)v where φ is the characteristic function of X1. Here

we have taken ` = 1. Put v = 1. Then, the independence of the random variables

gives us, Lnt 1 = E(eitSn) = φ(t)n. Also, the moment condition implies t → φ(t) is

Cr+2. This means (A1) is satisfied. (A2) is clear.

Suppose X1 is l−Diophantine. That is there exists C > 0 and t0 > 0 such that

for all |t| > t0, |φ(t)| < 1− C

|t|l
. Then |φ(t)| ≤ e

− C

|t|l . So |φ(t)| < 1 for all t 6= 0. So

we have (A3). Also, this implies that X1 is non-lattice. An easy computation shows

that when r1 <
1

l
, there exists r2 such that t0 < |t| < nr1 =⇒ |φ(t)|n ≤ n−r2 . In

fact, |φ(t)|n ≤ e−cn
α

where α = 1− r1l > 0. So, (A4) is satisfied with r1 <
1

l
.

When l = 0 we see that (A4) is satisfied with r1 >
r − 1

2
. Hence, by Theo-

rem 3.1.1 order r Edgeworth expansion for Sn exists. This is exactly the classical

result of Cramér because the condition: lim sup
|t|→∞

|φ(t)| < 1 corresponds to l = 0.

Choose q >
r + 1

2r1

>
(r + 1)l

2
. Then, by Theorem 3.1.4 and Theorem 3.1.5 we

have that Sn admits weak global expansion for f ∈ F q+2
0 and weak local expansion

for f ∈ F q+2
r+1 . These are similar to the results appearing in [4] but slightly weaker

because we require one more derivative: q + 2 > 2 +
(r + 1)l

2
as opposed to 1 +

(r + 1)l

2
. This is because we do not use the optimal conditions for the integrability

of the Fourier transform. If we required f ∈ F q+1
r and f (q+1) to be α−Hölder

for small α, then the proof would still hold true and we could recover the results

in [4].
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3.5.2 Finite state Markov chains.

Here we present a non-trivial example for which the weak Edgeworth expan-

sions exist but the strong expansion does not exist.

Consider the Markov chain xn with states S = {1, . . . , d} whose transition

probability matrix P = (pjk)d×d is positive. Then, by the Perron-Forbenius theorem,

1 is a simple eigenvalue of P and all other eigenvalues are strictly contained inside the

unit disk. Suppose h = (hjk)d×d ∈ M(d,R) and that there does not exist constants

c, r and a d−vector H such that

rhjk = c+H(k)−H(j) mod 2π

for all j, k. Put Xn = hxnxn+1 .

For the family of operators Lt : Cd → Cd,

(Ltf)j =
d∑

k=1

eithjkpjkfk, j = 1, . . . , d (3.40)

v = 1 and ` = µ0, the initial distribution, we have (3.1).

Define br,j,k = hrj + hjk for all j, r = 1, . . . , d and k = 2, . . . , d. Put d(s) =

max {(br,j,k − br,1,k)s} where { . } denotes the fractional part. We further assume

that h is β−Diophantine, that is, there exists K ∈ R such that for all |s| > 1,

d(s) ≥ K

|s|β
. (3.41)

If β >
1

d2(d− 1)− 1
then almost all h are β−Diophantine.

Because Sn can take at most O(nd
2−1) distinct values, Sn has a maximal jump

of order at least n−(d2−1). Therefore, the process Xh
n = hxnxn−1 does not admit the

order 2(d2 − 1) Edgeworth expansion.
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The Perron-Forbenius theorem implies that the operator L0 satisfies (A2).

Because (3.40) is a finite sum, it is clear that t 7→ Lt is analytic on R. So we also

have (A1). Also the spectral radius of Lt is at most 1. Assume Lt has an eigenvalue

on the unit circle, say eiλ, with eigenvector f , then,

eiλfj = (Ltf)j =
d∑

k=1

eithjkpjkfk

Assuming max
j
|fj| = |fr|,

|fr| = |eiλfr| =
∣∣∣∣ d∑
k=1

eithjkpjkfk

∣∣∣∣ ≤ d∑
k=1

pjk|fk| =⇒
d∑

k=1

pjk(|fk| − |fr|) ≥ 0

Because |fk|− |fr| ≤ 0 for all k and pjk ≥ 0 for all j and k we have |fk| = |fr| for all

k. Therefore, there exist a d−vector H such that fk = ReiH(k) for all k. Then,

eiλReiH(j) =
d∑

k=1

eithjkpjkRe
iH(k)

0 =
d∑

k=1

pjk(e
i(thjk+H(k)−H(j)−λ) − 1)

=⇒ thjk = λ+H(j)−H(k) mod 2π

But this is a contradiction. Therefore, (A3) holds. Next we notice that,

|(L2
tf)r| =

∣∣∣∣ d∑
j=1

d∑
k=1

eit(hrj+hjk)prjpjkfk

∣∣∣∣ =

∣∣∣∣ d∑
k=1

( d∑
j=1

eit(hrj+hjk)prjpjk

)
fk

∣∣∣∣
≤ ‖f‖

( d∑
k=1

∣∣∣∣ d∑
j=1

eitbr,j,kprjpjk

∣∣∣∣) (3.42)

Now we estimate |br,k(t)| where

br,k(t) =
d∑
j=1

eitbr,j,kprjpjk = eitbr,1,k
d∑
j=1

eit(br,j,k−br,1,k)prjpjk
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Then we have,

|br,k(t)|2 =
d∑
j=1

p2
rjp

2
jk + 2

d∑
j>l

prjpjkprlplk cos((br,j,k − br,l,k)t)

=

( d∑
j=1

prjpjk

)2

− 2
d∑
j>l

prjpjkprlplk[1− cos((br,j,k − br,l,k)t)]

=

( d∑
j=1

prjpjk

)2

− 2Cd(t)2 +O(d(t)3), C > 0

|br,k(t)| =
d∑
j=1

prjpjk − C̃d(t)2 +O(d(t)3), C̃ > 0

Therefore,

d∑
k=1

∣∣∣∣ d∑
j=1

eitbr,j,kprjpjk

∣∣∣∣ =
d∑

k=1

( d∑
j=1

prjpjk

)
− Cd(t)2 +O(d(t)3)

= 1− Cd(t)2 +O(d(t)3), C > 0

From the Diophantine condition (3.41), we can conclude that there exists θ > 0 such

that for all |t| > 1,

‖L2
t‖ ≤ 1− θd(t)2 =⇒ ‖LNt ‖ ≤

(
1− θd(t)2

)dN/2e ≤ e−θd(t)2N/2 ≤ e−θt
−2βN/2

When 1 < |t| < N
1−ε
2β , we have, ‖LNt ‖ ≤ e−θN

ε/2 which gives us (A4) with r1 =
1− ε
2β

where ε > 0 can be made as small as required. Because for small ε, d r + 1

2(1− ε)
e =

dr + 1

2
e, choosing q >

r + 1

2
β, we conclude that for f ∈ F q+2

0 weak global and for

f ∈ F q+2
r+1 weak local Edgeworth expansions of order r for the process Xh

n exist. Also,

SN admits averaged Edgeworth expansions of order r for f ∈ F 2
0 . In the special

case of β >
1

d2(d− 1)− 1
, these hold for a full measure set of h even though the

order r strong expansion does not exist for r + 1 ≥ d2.
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3.5.3 More general Markov chains.

3.5.3.1 Chains with smooth transition density.

First we consider the case where xn is a time homogeneous Markov process

on a compact connected manifold M with smooth transition density p(x, y) which

is bounded away from 0, and Xn = h(xn−1, xn) for a piece-wise smooth function

h :M×M→ R. We assume that h(x, y) can not be written in the form

h(x, y) = H(y)−H(x) + c(x, y) (3.43)

where c(x, y) is piece-wise constant.

In particular, there is no constant c and a function H such that h(x, y) =

H(y)−H(x)+c. Also, the transition probability P (x, dy) of Xn has a non-degenrate

absolute continuous component. Then, by [25], the CLT holds with σ2 > 0.

To check the assumption 3.43 we need the following:

Lemma 3.5.1. (3.43) holds iff there exists o ∈ M such that the function x 7→

h(o, x) + h(x, y) is piece-wise constant for each y.

Proof. If (3.43) holds then for each o ∈M

h(o, x) + h(x, y) = c(o, x) + c(x, y) +H(y)−H(o)

where c(o, x) + c(x, y) is piece-wise constant in x for each y.

Conversely, suppose for some o ∈ M, x 7→ h(o, x) + h(x, y) is piece-wise

constant for each y. Fix y. Let c = h(o, o) and H(x) = h(o, x) − h(o, o). Then,

h(o, o) + h(o, y) and h(o, x) + h(x, y) differ by a piece-wise constant function. Then
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(3.43) holds because h(o, x)+h(x, y)−(h(o, o)+h(o, y)) = h(x, y)+H(x)−H(y)−c

is piecewise constant.

Let B = L∞(M) and consider the family of integral operators,

(Ltu)(x) =

∫
p(x, y)eith(x,y)u(y) dy.

Let µ be the initial distribution of the Markov chain and {Fn} be the filtration

adapted to the processes. Then, using the Markov property,

Eµ[eitSn ] = Eµ[eitSn−1Lt1].

By induction we can conclude

Eµ(eitSn) =

∫
Lnt 1 dµ

Because h is bounded, expanding eith(x,y) as a power series in t, we see that t 7→ Lt

is analytic for all t. This shows that (A1) is statisfied.

From the Weierstrass theorem there exist functions qk, rk on M such that

p(x, y) is a uniform limit of functions of the form
n∑
k=1

qk(x)rk(y). Therefore, Lt

is a uniform limit of finite rank operators and is compact. Compact operators

have a point spectrum hence the essential spectral radius of Lt vanishes. It is also

immediate that ‖Lt‖ ≤ 1 for all t. Hence the spectrum is contained in the closed

unit disk.

In addition, L0 : L∞(M)→ L∞(M) given by

(L0u)(x) =

∫
p(x, y)u(y) dy

is a positive operator. Note that (L01)(x) = 1 for all x. Thus, 1 is an eigenvalue

of L0 with eigenfunction 1. Also, eigenvalue 1 is simple and all other eigenvalues
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β are such that |β| < 1. This follows from a direct application of Birkhoff Theory

(see [2]). Thus, we have (A2).

Next we show that if β ∈ sp(Lt), t 6= 0 then |β| < 1. If not, then there exists

λ and u ∈ L∞(M) such that

∫
p(x, y)eith(x,y)u(y) dy = eiλu(x)

Suppose sup
x
|u(x)| = R then for each ε > 0 there exists xε such that

R− ε ≤ |u(xε)| = |eiλu(xε)| =
∣∣∣∣∫ p(x, y)eith(x,y)u(y) dy

∣∣∣∣ ≤ ∫ p(x, y)|u(y)| dy

Therefore, ∫
p(x, y)[|u(y)| −R] dy ≥ −ε,

But |u(y)| − R ≤ 0. Hence, |u(y)| = R a.e. Therefore, u(y) = Reiθ(y) a.e. for some

function θ and we may assume θ ∈ [0, 2π).

∫
p(x, y)eith(x,y)Reiθ(y) dy = Reiλeiθ(x)

=⇒
∫
p(x, y)[ei(th(x,y)−λ+θ(y)−θ(x)) − 1] dy = 0

=⇒ th(x, y)− λ+ θ(y)− θ(x) ≡ 0 mod 2π (3.44)

Fix y and t. Then, for all z, x 7→ h(y, x) + h(x, z) does not depend on x modulo 2π

i.e. it is piece-wise constant for all t 6= 0. By Lemma 3.5.1, h(x, y) satisfies (3.43).

This contradiction proves (A3).

Recall that if K is integral operator

(Ku)(x) =

∫
k(x, y)u(y)dy
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then

‖K‖ = sup
x

∫
|k(x, y)|dy.

In our case L2
t has the kernel,

lt(x, y) =

∫
eit[h(x,z)+h(z,y)]p(x, z)p(z, y)dz.

By Lemma 3.5.1 for each x and y the function z 7→ (h(x, z)+h(z, y)) is not piecewise

constant. So its derivative (whenever it exists) is not identically 0. Thus there is

an open set Vx,y and a vector field e such that ∂e[h(x, z) + h(z, y)] 6= 0 on Vx,y.

Integrating by parts in the direction of e we conclude that

lim
t→∞

∫
Vx,y

eit[h(x,z)+h(z,y)]p(x, z)p(z, y)dz = 0.

By compactness there are constants r0, ε0 such that for |t| ≥ r0 and all x and y in

M, |lt(x, y)| ≤ l0(x, y)− ε0. It follows that

‖L2
t‖ = sup

x

∫
M
|lt(x, y)|dy ≤

∫
M

l0(x, y)dy − ε0. (3.45)

The first term here equals

∫∫
M×M

p(x, z)p(z, y)dzdy = 1.

Hence for |t| ≥ r0, ‖L2
t‖ ≤ 1 − ε0 and so ||LNt || ≤ (1 − ε0)dN/2e. This proves (A4)

with no restriction on r1. Therefore, SN admits Edgeworth expansions of all orders.

Next we look at the case when (3.43) fails but the constants are not lattice

valued. Then, arguments for (A1), (A2) and (A3) hold. In particular, (3.44) cannot
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hold since it implies that(
h(x, y) +

θ(y)

t
− θ(x)

t

)
∈ λ
t

+
2π

t
Z

However, we have to impose a Diophantine condition on the values that h(x, y) can

take in order to obtain a sufficient control over ‖LNt ‖ and obtain (A4).

For fixed x, y let the range of z 7→ h(x, z) + h(z, y) be S = {c1, . . . , cd}. Note

that these ci’s may depend on x and y. However, there can be at most finitely many

values that h(x, z) + h(z, y) can take as x and y vary onM because h is piece-wise

smooth. So we might as well assume that S is this complete set of values. Also,

take Uk to be the open set on which z 7→ h(x, z) + h(z, y) takes value ck. Take

bk = ck − c1 and define d(s) = max {bks}. Assume further that there exists K > 0

such that for all |s| > 1,

d(s) ≥ K

|s|β

If β > (d− 1)−1 for almost all d−tuples c = (c1, . . . , cd), the above holds.

Note that,

|L2
tu(x)| =

∫ ∣∣∣∣∫ eit[h(x,z)+h(z,y)]p(x, z)p(z, y) dz

∣∣∣∣ |u(y)| dy

≤ ‖u‖
∫ ∣∣∣∣∣

d∑
k=1

eitck
∫
Uk

p(x, z)p(z, y) dz

∣∣∣∣∣ dy = ‖u‖
∫ ∣∣∣∣∣

d∑
k=1

pke
itbk

∣∣∣∣∣ dy
where and pk =

∫
Uk

p(x, z)p(z, y) dz. Therefore, p1 + · · ·+ pd = p(x, y).

Now the situation is similar to that of (3.42) and a similar calculation yields,∣∣∣∣∣
d∑

k=1

pke
itbk

∣∣∣∣∣ = p(x, y)− Cd(t)2 +O(d(t)3), C > 0

Therefore,

‖L2
t‖ ≤

∫ [
p(x, y)− Cd(t)2 +O(d(t)3)

]
dy = 1− C̃d(s)2
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From this we can repeat the analysis done in the finite state Markov chains example

following (3.42). In particular, when 1 < |t| < N
1−ε
2β , there exists θ > 0 such that

‖LNt ‖ ≤ e−θN
ε

which gives us (A4).

Finally, when (3.43) fails and h takes integer values with span 1, Xn is a

lattice random variable and we can discuss the existence of the lattice Edgeworth

expansion. In this case SN admits the lattice expansion of all orders. To this end,

only the condition (̃A3) needs to be checked. First note that L0 = L2πk for all k ∈ Z.

Also, assuming Lt has an eigenvalue on the unit circle, we conclude (3.44),

th(x, y)− λ+ θ(y)− θ(x) ≡ 0 mod 2π

This implies t(h(x, y) + h(y, x)) ∈ 2πZ + 2λ. Note that LHS belongs a lattice with

span t and RHS is a lattice with span 2π. Because t is not a multiple of 2π this

equality cannot happen. Therefore, when t 6∈ 2πZ, sp(Lt) ⊂ {|z| < 1} and we have

the claim.

3.5.3.2 Chains without densities.

We consider a more general case where transition probabilities may not have

a density. We claim we can recover (A1)–(A4) if the transition operator takes the

form

L0 = aJ0 + (1− a)K0

where a ∈ (0, 1) and J0 and K0 are Markov operators on L∞(M) (i.e. J0f ≥ 0 if

f ≥ 0 and J01 = 1 and similarly for K0),

J0f(x) =

∫
p(x, y)f(y) dµ(y)
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and

K0f(x) =

∫
f(y)Q(x, dy)

where p is a smooth transition density and Q is a transition probability measure.

Let h(x, y) be piece-wise smooth and put,

Jt(f) = J0(eithf) and Kt(f) = K0(eithf).

Defining Lt = aJt + (1− a)Kt we can conclude t 7→ Lt is analytic and that

Eµ(eitSn) =

∫
Lnt 1 dµ.

Now we show that conditions (A2), (A3) and (A4) are satisfied. Because

‖Jt‖ ≤ 1 and ‖Kt‖ ≤ 1 we have ‖Lt‖ ≤ 1. Thus the spectral radius of Lt is

≤ 1. Because aJt is compact, Lt and (1 − a)Kt have the same essential spectrum.

See [33, Theorem IV.5.35]. However the spectral radius of the latter is at most

(1− a). Hence, the essential spectral radius of Lt is at most (1− a).

Because both J0 and K0 are Markov operators we can conclude that 1 is an

eigenvalue of L0 with constant function 1 as the corresponding eigenfunction. From

the previous paragraph the essential spectral radius of L0 is at most (1−a). Because

Ln is norm bounded it cannot have Jordan blocks. So 1 is semisimple.

Suppose, Ltu = eiθu. Without loss of generality we may assume ‖u‖∞ = 1.

Assuming there exists a positive measure set Ω with |u(x)| < 1− δ we can conclude

that, for all x,

|u(x)| = |Ltu(x)| = |aJtu(x) + (1− a)Ktu(x)|

≤ a

∫
Ω

|u(y)|p(x, y)dµ(y) + a

∫
Ωc
|u(y)|p(x, y)dµ(y) + (1− a)
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≤ 1− aδµ(Ω).

This is a contradiction. Therefore, |u(x)| = 1. Put u(x) = eiγ(x). Then,

1 = a

∫
ei(th(x,y)+γ(y)−γ(x)−θ)p(x, y)dµ(y) + (1− a)e−i(θ+γ(x))Ktu

Hence,

∫
ei(th(x,y)+γ(y)−γ(x)−θ)p(x, y)dµ(y) = 1 =⇒ Jtu = eiθu. From section 3.5.3.1,

this can only be true when t = 0 and in this case θ = 0 and u ≡ 1. This concludes

that Lt, t 6= 0 has no eigenvalues on the unit disk and the only eigenvalue of L0 on

the unit disk is 1 and its geometric multiplicity is 1. As 1 is semisimple, it is simple

as required. This concludes proof of (A2) and (A3).

From the previous case, there exists r > 0 and ε ∈ (0, 1) such that such that

for all |t| > r we have ‖J 2
t ‖ ≤ 1− ε. From this we have,

‖L2
t‖ = ‖a2J 2

t + a(1− a)JtKt + (1− a)aKtJt + (1− a)2K2
t ‖ ≤ 1− a2ε.

Hence, for all |t| > r, for all N , ‖LNt ‖ ≤ (1 − a2ε)bN/2c which gives us (A4) with

no restrictions on r1. Therefore, SN admits Edgeworth expansions of all orders as

before.

As in the previous section, an analysis can be carried out when (3.43) fails.

The conclusions are exactly the same.

3.5.4 One dimensional piecewise expanding maps.

Here we check assumptions (3.1), (A1)–(A4) for piecewise expanding maps of

the interval using the results of [5, 37].
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Let f : [0, 1]→ [0, 1] be such that there is a finite partition A0 of [0, 1] (except

possibly a measure 0 set) into open intervals such that for all I ∈ A0, f |I extends

to a C2 map on an interval containing I. In other words f is a piece-wise C2

map. Further, assume that f ′ ≥ λ > 1 i.e. f is uniformly expanding. Next, let

An =
n∨
k=0

T−jA0 and suppose for each n there is Nn such that for all I ∈ An,

fNnI = [0, 1]. Such maps are called covering.

Statistical properties of piece-wise C2 covering expanding maps of an interval,

are well-understood. For example, see [37]. In particular, such a function f has

a unique absolutely continuous invariant measure with a strictly positive density

h ∈ BV[0, 1] and the associated transfer operator

L0ϕ(x) =
∑

y∈f−1(x)

ϕ(y)

f ′(y)

has a spectral gap.

Let g be C2 except possibly at finite number of points and admitting a C2

extension on each interval of smoothness. Define Xn = g ◦ fn and consider it

as a random variable with x distributed according to some measure ρ(x)dx, ρ ∈

BV[0, 1].

Define a family of operators Lt : BV[0, 1]→ BV[0, 1] by

Ltϕ(x) =
∑

y∈f−1(x)

eitg(y)

f ′(y)
ϕ(y)

where t = 0 corresponds to the transfer operator. Because g is bounded, writing

eitg(y) as a power series we can conclude t → Lt is analytic for all t. This gives

(A1).
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(A2) follows from the fact that L0 has a spectral gap. We further assume

that

g is not cohomologous to a piece-wise constant function. (3.46)

In particular, g is not a BV coboundary.

The assumption (3.46) is reasonable. Indeed, suppose that g is piece-wise

constant taking values c1, c2 . . . ck. Then Sn takes less than nk−1 distinct values

so the maximal jump is of order at least n−(k−1) so Sn can not admit Edgeworth

expansion of order (2k − 2) in contrast to the case where (3.46) holds as we shall

see below.

A direct computation gives,

E(eitSn/
√
n) =

∫ 1

0

Lnt/√nρ(x) dx.

Therefore, there exists A such that,

lim
n→∞

E(e
itSn−nA√

n ) = e−t
2σ2/2 (3.47)

where σ2 ≥ 0. It is well know that σ2 > 0 ⇐⇒ g is a BV coboundary (see [24]).

From (3.47) it is clear that Sn satisfies the CLT.

To show (A3) holds, we first normalize the family of operators,

Ltv(x) =
∑
f(y)=x

eitg(y)h(y)

f ′(y)h ◦ f(y)
v(y)

Then, Lt = H−1 ◦Lt ◦H where H is multiplication by the function h. Therefore, Lt

and Lt have the same spectrum. However, the eigenfunction corresponding to the

eigenvalue 1 of L0 changes to the constant function 1.
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Assume eiθ is an eigenvalue of Lt. Then, there exists u ∈ BV[0, 1] with

Ltu(x) = eiθu(x). Observe that,

L0|u|(x) =
∑
f(y)=x

|u(y)|h(y)

f ′(y)h ◦ f(y)

≥
∣∣∣∣ ∑
f(y)=x

eitg(y)u(y)h(y)

f ′(y)h ◦ f(y)

∣∣∣∣ = |Ltu(x)| = |eiθu(x)| = |u(x)|

Also note that, L0 is a positive operator. Hence, Ln0 |u|(x) ≥ |u(x)| for all n. How-

ever,

lim
n→∞

(Ln0 |u|)(x) =

∫
|u(y)| · 1 dy

because 1 is the eigenfunction corresponding to the top eigenvalue. So for all x,∫
|u(y)| dy ≥ |u(x)|

This implies that |u(x)| is constant. WLOG |u(x)| ≡ 1. So we can write u(x) =

eiγ(x). Then,

Ltu(x) =
∑
f(y)=x

h(y)

f ′(y)h ◦ f(y)
ei(tg(y)+γ(y)) = ei(θ+γ(x))

=⇒
∑
f(y)=x

h(y)

f ′(y)h ◦ f(y)
ei(tg(y)+γ(y)−γ(f(y))−θ) = 1

for all x. Since,

L01 =
∑
f(y)=x

h(y)

f ′(y)h ◦ f(y)
= 1

and ei(tg(y)+γ(y)−γ(x)−θ) are unit vectors, it follows that

tg(y) + γ(y)− γ(f(y))− θ = 0 mod 2π (3.48)

for all y. Because g is not cohomologous to a piecewise constant function we have a

contradiction. Therefore, Lt and hence Lt does not have an eigenvalue on the unit

circle when t 6= 0.
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To complete the proof of (A3) one has to show that the spectral radius of Lt is

at most 1 and that the essential spectral radius of Lt is strictly less than 1. This is

clear from Lasota-Yorke type inequality in [5, Lemma 1]. In fact, there is a uniform

κ ∈ (0, 1) such that ress(Lt) ≤ κ for all t.

Next, we describe in detail how the estimate in [5, Proposition 1] gives us (A4).

To make the notation easier we assume t > 0 and we replace |t| by t. [5, Proposition

1] implies that there exist c and C such that if K1 large enough (we fix one such

K1) then for all t > K1,

‖Ldc ln te
t u‖t ≤ e−Cdc ln te‖u‖t (3.49)

where ‖h‖t = (1 + t)−1‖h‖BV + ‖h‖L1 . Therefore,

‖Lkdc ln te
t u‖t ≤ e−Cdc ln te‖L(k−1)dc ln teu‖t ≤ · · · ≤ e−Ckdc ln te‖u‖t

Also, ‖Lt‖t ≤ 1. So, if n = kdc ln te+ r where 0 ≤ r < dc ln te then

‖Lnt u‖t ≤ e−Ckdc ln te‖Lrtu‖t ≤ e−Cn
kdc ln te
kdc ln te+r ‖u‖t ≤ e−Cn

k
k+1‖u‖t

However,

(1 + t)−1‖h‖BV ≤ ‖h‖t ≤ [1 + (1 + t)−1]‖h‖BV

Therefore,

(1 + t)−1‖Lnt u‖BV ≤ [1 + (1 + t)−1]e−Cn
k
k+1‖u‖BV

which gives us

‖Lnt ‖BV ≤ (t+ 2)e−Cn
k
k+1
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and here k = k(n, t) = b n

dc ln te
c. When K1 ≤ |t| ≤ nr1 , kmin = b n

dc lnnr1e
c and

kmin

kmin + 1
→ 1 as n→∞. Also, 1 ≥ k

k + 1
≥ kmin

kmin + 1
and,

‖Lnt ‖BV ≤ (t+ 2)e−Cn
k(n,t)
k(n,t)+1 ≤ 2nr1e

−Cn kmin
kmin+1

Choosing n0 such that for all n > n0,
kmin

kmin + 1
>

1

2
(so this choice of n0 works for

all t) we can conclude that,

‖Lnt ‖BV ≤ 2nr1e−Cn/2

This proves (A4) for all choices of r1. In particular given r, we can choose r1 >
r − 1

2

in the above proof. This implies that Edgeworth expansions of all orders exist.

3.5.5 Multidimensional expanding maps.

LetM be a compact Riemannian manifold and f :M→M be a C2 expand-

ing map. Let g : M → R be a C2 function which is non homologous to constant.

The proof of Lemma 3.13 in [13] shows that this condition is equivalent to g not

being infinitesimally integrable in the following sense. The natural extension of f

acts on the space of pairs ({yn}n∈N, x) where f(yn+1) = yn for n > 0 and fy1 = x.

Given such pair let

Γ({yn}, x) = lim
n→∞

∂

∂x

[
n−1∑
k=0

g(fkyn)

]
= lim

n→∞

∂

∂x

[
n∑
k=1

g(yk)

]
=
∞∑
k=1

∂

∂x
g(yk).

g is called infinitesimally integrable if Γ({yn}, x) actually depends only on x but not

on {yn}.

Let Xn = g ◦fn. We want to verify (A1)–(A4) when x is distributed according

to a smooth density ρ. Note that assumption (3.1) holds with v = ρ, ` being the

102



Lebesgue measure and

(Ltφ)(x) =
∑

y∈f−1(x)

eitg(y)∣∣det
(
∂f
∂x

)∣∣φ(y).

We will check (A1)–(A4) for Lt acting on C1(M). The proof of (A1)–(A3) is the

same as in section 3.5.4. In particular, for (A3) we need Lasota–Yorke inequality

(see (3.52) below) which is proven in [13, equation (19)].

The proof of (A4) is also similar to section 3.5.4, so we just explain the differ-

ences. As before we assume that t > 0. Given a small constant κ let

‖φ‖t = max

(
‖φ‖C0 ,

κ‖Dφ‖C0

1 + t

)
.

Then by [13, Proposition 3.16]

‖Lnt φ‖t ≤ ‖φ‖t (3.50)

provided that n ≥ C1 ln t.

By [13, Lemma 3.18] if g is not infinitesimally integrable then there exists a

constant η < 1 such that

‖Lnt φ‖L1 ≤ ηn‖φ‖t. (3.51)

The Lasota–Yorke inequality says that there is a constant θ < 1, such that

‖D (Lnt φ)‖C0 ≤ C3 (t‖φ‖C0 + θn‖Dφ‖C0) (3.52)

Also,

‖Lnt φ‖C0 ≤ ‖Ln0 (|φ|)‖C0 ≤ C4 (‖ |φ| ‖L1 + θn‖ |φ| ‖Lip) (3.53)

where the last step relies on L0 having a spectral gap on the space of Lipshitz

functions. Combing (3.50) through (3.53), we conclude that Lt satisfies (3.49). The

rest of the argument is the same as in section 3.5.4.
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Chapter 4: Large Deviation Principles.

4.1 Asymptotics for Cramér’s Theorem.

In this section, we focus on sequences of i.i.d. random variables. First, we

prove the existence of weak asymptic expansions for Cramér’s LDP – Theorem 1.2.

Next, we deduce existence of the strong expansion in special cases. As expected, a

stronger assumption on the regularity of the law of the random variables is required

for the second step.

4.1.1 Weak asymptotic expansions.

We recall that a random variable X is called l−Diophantine if there exist

positive constants t0 and C such that |E(eitX)| < 1 − C

|t|l
for |t| > t0. It is known

that when X is l−Diophantine and r+2 moments exist weak Edgeworth expansions

exist. For example, see [4] and Section 3.5.1.

Given a random variable X with distribution function F , we define YX,γ to be

a random variable with distribution function Gγ given by,

dGγ(y) =
eyγdF (y)

µ(γ)
(4.1)
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where µ(γ) =

∫
eyγdF (y). Therefore,

E[YX,γ] =

∫
yeyγdF (y)∫
eyγdF (y)

. (4.2)

In Section 3.1 we defined the function spaces Fm
k : f ∈ Fm

k if f is m times

continuously differentiable and Cm
k (f) =

(
max

0≤j≤m
‖f (j)‖L1 + max

0≤j≤k
‖xjf‖L1

)
< ∞.

We call a function f , (left) exponential of order α, if lim
x→−∞

|e−αxf(x)| = 0. Denote

by F k
m,α the collection of all f ∈ F k

m with f (k) is exponential of order α.

We note that due to assumption f ∈ F k
m, f (k) being exponential of order α is

enough to guarantee that f (l) is exponential of order α for all 0 ≤ l ≤ k. To see

this suppose f, f ′ ∈ L1. Then, lim
|x|→∞

f(x) = 0. Suppose f ′ is exponential of order

α. Then, given ε > 0 there is M > 0 such that for x < −M , −εeαx < f ′(x) < εeαx.

So, −ε
∫ x

−∞
eαy dy ≤

∫ x

−∞
f ′(y) dy ≤ ε

∫ x

−∞
eαy dy =⇒ − ε

α
eαx ≤ f(x) ≤ ε

α
eαx for

x < −M . So f is also of exponential order α. Since f (l) ∈ L1 for all 0 ≤ l ≤ k,

we can repeat the same argument starting from k and conclude that all lower order

derivatives are of exponential order α.

It is clear that F k
m,α ⊂ F k

m,β if α > β. Finally, define, F k
m,∞ =

⋂
α>0

F k
m,α. This

intersection is non-empty. For example, the family of Gaussian functions and C∞c (R)

are in F k
m,α for all α > 0.

Recall from Chapter 1 that for a function f : R → (−∞,∞] with f 6= ∞,

Df = {x ∈ R|f(x) < ∞} and f ∗(x) = sup
t∈R

[tx − f(t)]. If f is convex, lower semi-

continuous with D̊f = (a, b) and f ∈ C2(a, b) with f ′′ > 0 on (a, b) then, D̊f∗ =

(A,B) where A = lim
t→a+

f ′(t) and B = lim
t→b−

f ′(t), f ∗ is continuously differentiable on

(A,B). For any f satisfying the above properties, for any x ∈ D̊f∗ the supremum in
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the definition of f ∗(x) is achieved at a unique point. f is called steep if lim
t→a+

|f ′(t)| =

lim
t→b−
|f ′(t)| =∞.

Theorem 4.1.1. Let X be a non-constant, real-valued, and centred random variable.

Assume that the logarithmic moment generating function h(θ) = logE(eθX) is finite

on a neighbourhood of 0. Further assume that there is l ∈ N such that for all θ ∈ D̊h,

YX,θ is l−Diophantine. Let Xn be a sequence of i.i.d. copies of X. Let r ∈ N and

a ∈ (0, sup(supp X)). Let θa be the unique θ such that

I(a) = sup
θ∈D̊h

(
aθ − log

∫
eyθdF (y)

)
= aθa − log

∫
eyθadF (y).

Take q >
l(r + 2)

2
+ 1 and α > θa. Then, for every f ∈ F q

r+1,α we have,

E(f(SN−aN))eI(a)N =

br/2c∑
p=0

1

Np+ 1
2

∫
Pp(z)fθa(z)dz+Cq

r+1(fθa)·or,θa
(

1

N
r+1
2

)
(4.3)

where fθ(x) = e−θxf(x) and Pp(z) polynomials depending on a.

Proof. Assuming F to be the distribution function of X we can define YX,γ by (4.1).

Let Yi’s be i.i.d. copies of YX,γ and take S̃N = Y1 + · · ·+ YN . A simple computation

gives us,

dGγ
N(y) =

eyγdFN(y)

µ(γ)N

where FN is the distribution function of SN and Gγ
N is the distribution function of

S̃N . Now, we formally compute,

E(f(SN − aN))eaγN = E(eaγNf(SN − aN))

= E(eγSNfγ(SN − aN))

=

∫
eγy2πfγ(y − aN)dFN(y)
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= µ(γ)N
∫

2πfγ(y − aN)dGγ
N(y)

= µ(γ)NEγ(2πfγ(S̃N − aN))

where fγ(s) =
1

2π
e−sγf(s). Hence,

E(f(SN − aN))e(aγ−log µ(γ))N = Eγ(2πfγ(S̃N − aN)). (4.4)

Put γ = θa. Then, YX,γ has mean a (see [17, Chapter 2]).

Since f ∈ F q
r+1,α with θa < α we have fθa ∈ F

q
r+1. We prove this when r = 0

and q = 1. The argument for general q and r is similar. Suppose, f(x), f ′(x), xf(x) ∈

L1 and f ′(x) is continuous. It is immediate that (e−θaxf(x))′ = −θae−θaxf(x) +

e−θaxf ′(x) is continuous. We need to show, e−θaxf(x), (e−θaxf(x))′, xe−θaxf(x) ∈ L1.

Since f and f ′ are of exponential order, it is enough to show, e−θaxg(x), xe−θaxg(x) ∈

L1 if g is exponential of order α(> θa). This is true because there is M > 0 such

that for x < −M , |e−θaxf(x)| < e(α−θa)x and |xe−θaxf(x)| < −xe(α−θa)x.

Therefore, from [4], RHS of (4.4) admits the weak Edgeworth expansion whose

coefficients are determined by moments of YX,θa . Therefore, we have that for all

functions f ∈ F q
r+1,α

E(f(SN − aN))eI(a)N =

br/2c∑
p=0

1

Np+ 1
2

∫
Pp,l(z)fθa(z) dz + Cq

r+1(fθa) · o
(

1

N
r+1
2

)
.

Remark 4.1.1.

1. The assumption of X being centred is just to simplify the notation. One can

easily reformulate the results for non-centred X using the corresponding results
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for X − E(X). Therefore, from now on we discuss results for centred random

variables only.

2. A similar result holds for a ∈ (inf(supp X), 0). In fact, one can deduce the

corresponding results for a < 0 by considering −X and (−a) > 0. But, for

simplicity we focus only on a > 0 hereafter.

3. Note that the requirement to expand Eγ(fθa(S̃N − aN)) is fθa ∈ F q
r+1 which

is indeed the case when f ∈ F q
θa,α

for some α > θa. In particular, this result

holds for f ∈ Cq
c (R).

4. In addition, if h(θ) is steep then sup(supp X) =∞ (see [30, Chapter 1]) and

the expansion holds for all a > 0.

We note that for a large class of random variables X, YX,θ is l−Diophantine.

For example, if X is 0−Diophantine then so is YX,θ because X is absolutely contin-

uous with respect to YX,θ (see [1, Lemma 4]). Also, we claim that if X is compactly

supported and l−Diophantine for l > 0 then so is YX,θ.

We recall from [4], that a random variable X with distribution function F is

l−Diophantine if and only if there exists C1, C2 > 0 such that for all |x| > C1,

inf
y∈R

∫
R
{ax+ y}2dF (a) ≥ C2

|x|l

where {z} = dist(z,Z). If X is compactly supported (say on [c, d]) then,

∫
R
{ax+ y}2dGθ(a) =

1∫ d
c
eθadF (a)

∫ d

c

{ax+ y}2eθadF (a)

≥ eθc∫
R e

θadF (a)

∫ d

c

{ax+ y}2 dF (a).
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Thus, for all |x| > C1,

inf
y∈R

∫
R
{ax+ y}2dGθ(a) ≥ eθc∫ d

c
eθadF (a)

C2

|x|l
.

So the random variable YX,θ with distribution function Gθ is l−Diophantine as

claimed earlier. From this we obtain the following corollary.

Corollary 4.1.2. Let X be a non-constant, real-valued, compactly supported and

l-Diophantine centred random variable. Let Xn be a sequence of i.i.d. copies of X.

Let r ∈ N and a ∈ (0, sup(supp X)). Let θa be the unique θ such that

I(a) = sup
θ∈D̊h

(
aθ − log

∫
eyθdF (y)

)
= aθa − log

∫
eyθadF (y).

Then, for every f ∈ F q
r+1,α with q >

l(r + 2)

2
+ 1 and α > θa we have,

E(f(SN − aN))eI(a)N =

br/2c∑
p=0

1

Np+ 1
2

∫
Pp(z)fθa(z)dz + Cq

r+1(fθa) · or,θa
(

1

N
r+1
2

)

for some polynomials Pp(z) depending on a.

4.1.2 Strong asymptotic expansions.

We prove a lemma that gives conditions for the point-wise limit of a sequence

of functions uniformly bounded in F q
r+1 to satisfy the asymptotic expansions.

Lemma 4.1.3. Let q ≥ 0. Suppose {fk} is a sequence in F q
r+1, SN admits the weak

local Edgeworth expansion for fk, Cq
r+1(fk) ≤ C for all k, fk are uniformly bounded

in L∞(R), fk → f point-wise and for all p,

lim
k→∞

∫
Pp(z)fk(z)dz =

∫
Pp(z)f(z)dz. (4.5)
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Then,

√
NE(f(SN)) =

1

2π

br/2c∑
p=0

1

Np

∫
Pp(z)f(z)dz + C · or,β(N−r/2).

Proof. For large N ,

∣∣∣√NE(fk(SN))− 1

2π

br/2c∑
p=0

1

Np

∫
Pp(z)fk(z)dz

∣∣∣ ≤ Cq
r+1(fk) · or,β(N−r/2)

≤ C · or,β(N−r/2). (4.6)

LDCT gives us that,

lim
k→∞

E(fk(SN)) = E(f(SN))

This along with assumption (4.5) allows us to take the limit k →∞ in the RHS of

(4.6) and to conclude,

∣∣∣√NE(f(SN))− 1

2π

br/2c∑
p=0

1

Np

∫
Pp(z)f(z)dz

∣∣∣ ≤ C · or,β(N−r/2)

which implies the result.

Remark 4.1.2. The same would hold if we replace weak local by weak global. How-

ever, our focus here is on weak local expansions.

The next theorem specifies when the existence of weak expansions imply the

existence of strong expansions.

Theorem 4.1.4. Let Xn be a sequence of random variables not necessarily i.i.d.

Suppose SN = X1 + · · · + XN admits the weak asymptotic expansion of order r for

large deviations in the range (0, L) for f ∈ F 1
r+1,L+

where L+ > L when L <∞ and

L+ =∞ if L =∞. That is,

E(f(SN − aN))eI(a)N =

br/2c∑
p=0

1

Np+1/2

∫
Pp(z)fθa(z)dz + C1

r+1(fθa) · or,θa
(

1

N
r+1
2

)
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for all a ∈ (0, L) where I(a) and θa as in (4.11). Then, SN admits the strong

asymptotic expansion of order r for large deviation in (0, L).

Proof. If f ∈ C∞c then fθ ∈ F 1
r+1 for all θ. Therefore, we approximate 1[0,∞) by a

sequence fk of C∞c functions such that (fk)θa are uniformly bounded in F 1
r+1 (see

Appendix A.3 for such a sequence) and invoke Lemma 4.1.3 to establish,

P(SN ≥ aN)eI(a)N =
1

2π

br/2c∑
p=0

1

Np+1/2

∫ ∞
0

Pp(z)e−θazdz + C · or,θa
(

1

N
r+1
2

)
.

Remark 4.1.3. Note that the coefficients of the strong expansion are Cp(a) =

1

2π

∫ ∞
0

Pp(z)e−θaz dz obtained by replacing f with 1[0,∞) in coefficients of the weak

expansions. Since fk’s are bounded in F 1
r+1, we can do this without altering the

order of the error. However, for any q > 1, 1[0,∞) is not a pointwise limit of a

sequence of functions fk in F q
r with Cq

r+1(fk) bounded. To see this, assume that

‖fk‖1, ‖f ′k‖1, ‖f ′′k ‖1 are uniformly bounded and fk → 1[0,∞) point-wise. Then, for all

φ ∈ C∞c (R),

∫
δ′ φ = −

∫
δ φ′ =

∫
1[0,∞) φ

′′ = lim
k→∞

∫
fk φ

′′ = lim
k→∞
−
∫
f ′k φ

′ = lim
k→∞

∫
f ′′k φ

This implies that
|φ′(0)|
‖φ‖∞

≤ sup
k
‖f ′′k ‖1 for all φ ∈ C∞c (R). Clearly, this is a contra-

diction. Therefore, Theorem 4.1.1 does not automatically give us strong expansions.

Now we are in a position to state and prove the main result of this section,

which extends Cramér’s LDP for i.i.d. random variables when the random variables

have a sufficiently regular density.
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Theorem 4.1.5. Let X be a non-constant real valued centred random variable.

Assume that the logarithmic moment generating function h(θ) = logE(eθX) is finite

on a neighbourhood of 0. Further assume that, X is 0−Diophantine. Let r ∈ N.

Then for all a ∈ (0, sup(suppX)), there are constants Cp(a) such that

P(SN ≥ aN)eI(a)N =

br/2c∑
p=0

Cp(a)

Np+ 1
2

+ o

(
1

N
r+1
2

)

where

Cp(a) =
1

2π

∫ ∞
0

e−θazPp(z)dz

for some polynomials Pp(z) depending on a,

I(a) = sup
θ∈R

(
aθ − log

∫
eyθdF (y)

)

and θa is this unique point the supremum is achieved.

Proof. If X is 0−Diophantine then so is YX,θ as X is absolutely continuous with

respect to YX,θ (see [1, Lemma 4]). Since, YX,θ has moments of all orders, YX,θ admits

the strong Edgeworth expansion of all orders. Therefore, for each r ∈ N, YX,θ admits

the weak local Edgeworth expansion of order r for f ∈ F 1
r (see Appendix A.2).

From (4.4) we know that,

E(f(SN − aN))eI(a)N = Eγ(2πfθa(S̃N − aN))

where summands of S̃N have mean a. The assumptions allow us to expand RHS

using the weak local Edgeworth expansion and obtain,

E(f(SN − aN))eI(a)N =

br/2c∑
p=0

1

Np+ 1
2

∫
Pp(z)fθa(z)dz + C1

r+1(fθa) · or,β
(
N−r/2

)
.
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for f ∈ C∞c (R).

Now, we approximate 1[0,∞), by a sequence fk ∈ C∞c (R) such that (fk)θa are

bounded in F 1
r+1 (see Appendix A.3 for such a sequence) and use Theorem 4.1.4 to

obtain the required expansion.

Remark 4.1.4. This gives us an alternative proof of [1, Theorem 2] for X satisfying

the Cramér’s condition (which corresponds to Case 1 there).

There are two ways the coefficients Cp(a) depend on a. First note that θa

depends on the choice of a. Also, from Section 3.3, we know exactly how the

coefficients of Pp depend on the first p+ 2 asymptotic moments of S̃N and thus, on

the first p+ 2 moments of YX,θa . So the dependence of C(a) on a is explicit and one

can compute these coefficients. In addition, Cp(a) does not depend on r because

Pp(z)’s do not.

4.2 Higher order asymptotics in the non–i.i.d. case.

Let Xn be a sequence of random variables that are not necessarily i.i.d. with

asymptotic mean 0. Suppose that there exist a Banach space B, a family of bounded

linear operators Lz : B→ B and vectors v ∈ B, ` ∈ B′ such that

E
(
ezSN

)
= `(LNz v), z ∈ C (4.7)

and satisfying the following,

(B1) There exists δ > 0 such that z 7→ Lz is continuous on the strip |Re(z)| < δ

and holomorphic on the disc |z| < δ.
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(B2) 1 is an isolated and simple eigenvalue of L0, all other eigenvalues of L0 have

absolute value less than 1 and its essential spectrum is contained strictly inside

the disk of radius 1 (spectral gap).

(B1) and (B2) along with perturbation theory of operators (see [33]) imply

that there is δ0 ∈ (0, δ) such that

Lz = µ(z)Πz + Λz, |z| < δ0 (4.8)

where µ(z) is the top eigenvalue of Lz, Πz is the corresponding eigen–projection,

ΠzΛz = ΛzΠz = 0 and z 7→ µ(z), z 7→ Πz and z 7→ Λz are holomorphic. In addition,∥∥∥ dk
dzk

ΛN
z

∥∥∥ < βNk with 0 < βk < 1. Therefore,

LNz = µ(z)NΠz + ΛN
z

Combining this with (4.7) we have,

E(ezSN ) = µ(z)N`(Πzv) + `(Λzv). (4.9)

Then, plugging in z = 0 and taking N → ∞, we conclude that `(Π0v) = 1. Also,

taking the derivative at z = 0, dividing by N and taking the limit as N → ∞, we

obtain,

d

dz
µ(z)

∣∣∣
z=0

= lim
N→∞

E(SN)

N
= 0.

Taking the second derivative at z = 0, dividing by N2 and taking the limit as

N →∞, we obtain,

d2

dz2
µ(z)

∣∣∣
z=0

= lim
N→∞

E(S2
N)

N2

In addition, it follows from [24][Theorem 2.4] that there exists σ2 ≥ 0 such
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that
SN√
N

d−→ N (0, σ2). Since our interest is in SN that satisfies the CLT we would

asumme from now on that σ2 > 0.

We also assume the following:

(B3) µ(θ) > 0 for all θ ∈ (−δ0, δ0) (Here δ0 as in (4.8)).

Define Ω(θ) = log µ(θ) for θ ∈ (−δ0, δ0). Then, Ω(0) = log µ(0) = 0 and

Ω′(0) =
µ′(0)

µ(0)
= 0. Also, Ω′′(0) =

µ′′(0)µ(0)− µ′(0)2

µ(0)2
= µ′′(0) = σ2 > 0. Since Ω′′

is continuous, there exists δ1 ∈ (0, δ0) such that Ω is strictly convex on (−δ1, δ1).

Note that due to convexity, Ω′(−δ1) < 0 < Ω′(δ1). In addition, when θ 6= 0,

µ(θ) > µ(0) = 1 by convexity.

Next, we consider the Legendre transform of Ω, I given by,

I(a) = sup
θ∈(−δ1,δ1)

[aθ − Ω(θ)], for a ∈ [0,Ω′(δ1))

which itself is a strictly convex function.

Because Ω′ is strictly increasing and continuous on [0,Ω′(δ1)], a − Ω′(θ) = 0

has a unique solution θa which depends continuously on a. Note that I(a) ≥ 0 for

all a and I(a) = 0 ⇐⇒ a = 0. Also, I(a) is continuous because I is convex and

I(0) = 0. In addition, I(Ω′(δ1)) = aδ1 − Ω(δ1).

Now, we are in a position to prove a Large Deviation Principle for SN using

Theorem 1.3. The following lemma shows that Theorem 1.3 applies in our case.

Lemma 4.2.1. Suppose (B1), (B2) and (B3) hold. Then, there exists 0 < δ2 ≤ δ1

such that for θ ∈ (−δ2, δ2),

lim
N→∞

1

N
logE(eθSN ) = log µ(θ)

Proof. Because `(Π0v) > 0, there exists δ2 and m > 0 such that for θ ∈ [−δ2, δ2]
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`(Πθv) > 2m. Because ‖ΛN
θ ‖ < Cµ(θ)N for large N , we have that

lim
N→∞

µ(θ)−N`(ΛN
θ v) = 0.

Hence, there exists N0 such that for N > N0,

m < `(Πθv) + µ(θ)−N`(ΛN
θ v) < 3m.

Hence,

lim
N→∞

1

N
ln
[
`(Πθv) + µ(θ)−N`(ΛN

θ v)
]

= 0.

Now, for θ ∈ (−δ2, δ2) we can rewrite (4.9) as

1

N
logE(eθSN ) = log µ(θ) +

1

N
log
[
`(Πθv) + µ(θ)−N`(ΛN

θ v)
]
.

This implies that,

lim
N→∞

1

N
logE(eθSN ) = log µ(θ).

Combining this lemma with Theorem 1.3 and the analysis proceeding it, we

have the following LDP.

Theorem 4.2.2. Suppose (B1), (B2) and (B3) hold. Then, there exists δ2 ∈ (0, δ1]

such that for all a ∈
(

0,
log µ(δ2)

δ2

)
,

lim
N→∞

1

N
logP(SN ≥ aN) = −I(a) (4.10)

where

I(a) = sup
θ∈(−δ2,δ2)

[aθ − log µ(θ)] = aθa − log µ(θa) (4.11)

and θa is the unique θ solving
(

log µ(θ)
)′

=
µ′(θ)

µ(θ)
= a.
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Remark 4.2.1. The range of a for which the LDP holds, is constrained by the

assumptions (B1), (B2) and (B3). We require a positive top eigenvalue µ(θ) to

exist, log µ(θ) to be strictly convex and `(Πθv) > 0. Larger the range of θ for which

these hold, larger the range of a. In particular, if these hold for all θ ∈ R, then by

convexity B = lim
δ→∞

log µ(δ)

δ
exists as an extended real number and for all a ∈ (0, B)

the LDP holds.

Next, we compute higher order asymptotics of this LDP. To this end, we make

two more assumptions about Lz.

(B4) For all θ ∈ (−δ2, δ2), for all real numbers t 6= 0, sp(Lθ+it) ⊂ {|z| < µ(θ)}.

(B5) There are positive real numbers r1, r2, C,K and N0 such that for all θ ∈

(−δ2, δ2), for all N > N0 and for all K < |t| < N r1 ,
∥∥LNθ+it∥∥ ≤ C

µ(θ)N

N r2
.

Remark 4.2.2. As in Remark 3.1.1 it follows that by slightly decreasing r1 we can

assume r2 to be as large as required for large enough N .

Pick a ∈
(

0,
log µ(δ2)

δ2

)
. Then,

E(f(SN − aN))eaθN = E(eθSN e−(SN−aN)θf(SN − aN))

=
1

2π

∫
f̂θ(t)e

−iatN`(LNθ+itv) dt

where fθ(x) =
1

2π
e−θxf(x). Now define, Lθ+it =

e−iat

µ(θ)
Lθ+it. Then,

E(f(SN − aN))eaθN = µ(θ)N
∫
f̂θ(t)`(L

N

θ+itv) dt.

From this we have,

E(f(SN − aN))e[aθ−log µ(θ)]N =

∫
f̂θ(t)`(L

N

θ+itv) dt.
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In particular,

E(f(SN − aN))eI(a)N =

∫
f̂θa(t)`(L

N

θ+itav) dt. (4.12)

Note that for |θa + it| < δ0 the top eigenvalue of Lθa+it is µ(θa + it) =
e−iat

µ(θa)
µ(θa +

it). As a function of t, µ(θa + it) is analytic in a neighbourhood of 0 by (4.8).

Further,

µ(θa) = 1, µ′(θa) =
d

dt
µ(z)

∣∣∣
t=0

= −ia+ i
µ′(θa)

µ(θa)
= 0, µ′′(θa) = −µ

′′(θa)

µ(θa)
= −σ2

a

with σa > 0. Thus, there exists δ such that

|µ(θa + it)| < e−σ
2
at

2/4, |t| < δ. (4.13)

We also notice that,

lim
N→∞

`(ΛN
θ v)

µ(θ)N
= 0

because the spectral radius of Λθ is strictly smaller than µ(θ). Combining this with

E(eθSN ) = µ(θ)N`(Πθv) + `(ΛN
θ v) we conclude that for all θ,

`(Πθv) = lim
N→∞

E(eθSN )

µ(θ)N
.

The following lemma allows us to obtain asymtotics of (4.12). We note that it

is analogous to Theorem 3.1.4 where asymptotics of E(f(SN−aN)) for f ∈ F q+2
r+1 are

discussed and can be proven using the ideas in the proof of Theorem 3.1.4. One just

has to replace Lt by Lθa+it there and introduce the corresponding changes.

Lemma 4.2.3. Suppose (B1) through (B5) hold. Let r ∈ N. Then, there exist

δ2 ∈ (0, δ) such that for all a ∈
(

0,
log µ(δ2)

δ2

)
there are polynomials Pp(z) such that

for g ∈ F q+1
r+1 with q >

r + 1

2r1

,

∫
ĝ(t)`(LNθa+itv) dt =

br/2c∑
p=0

1

Np+1/2

∫
Pp(z)g(z)dz + Cq+2

r+1 (g) · or,θa
(

1

N
r+1
2

)
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where θa is as in (4.11).

Proof. We state how to estimate LHS away from 0. The rest of the proof, which

contains the construction of polynomials Pp, is identical to that of Theorem 3.1.5

with it replaced by θa + it.

Fix δ > 0 as in (4.13). By (B4), for δ ≤ |t| ≤ K, there exists c0 ∈ (0, 1) such

that ‖Lnθa+it‖ ≤ cn0 . Thus,

∣∣∣∣ ∫
δ<|t|<K

ĝ(t)`(Lnθa+itv) dt

∣∣∣∣ ≤ C‖g‖1c
n
0 .

WLOG assuming r2 > r1 + (r + 1)/2,

∣∣∣∣ ∫
K<|t|<nr1

ĝ(t)`(Lnθa+itv) dt

∣∣∣∣ ≤ C‖g‖1

∫
K<|t|<nr1

‖Lnθa+it‖ dt ≤
C‖g‖1

nr2−r1

= ‖g‖1o(n
−(r+1)/2).

Since, g ∈ F q+2
r+1 , we have that tqĝ(t) = (−i)qĝ(q)(t) and ĝ(q) is integrable.

Integrability of ĝ(q) along with q >
r + 1

2r1

implies,

∣∣∣∣ ∫
|t|>nr1

ĝ(t)`(Lnθa+itv) dt

∣∣∣∣ ≤ ∫
|t|>nr1

|ĝ(t)| dt ≤
∫
|t|>nr1

∣∣∣ ĝ(q)(t)

tq

∣∣∣ dt (4.14)

≤ ‖ĝ
(q)‖1

nr1q
= ‖ĝ(q)‖1o(n

−(r+1)/2).

Therefore, ∣∣∣∣ ∫
|t|>δ

ĝ(t)`(Lnθa+itv) dt

∣∣∣∣ = o(n−(r+1)/2). (4.15)

Remark 4.2.3.

1. The proof is almost identical to the proof of Theorem 3.1.4 and hence, the

coefficients of polynomials Pp can be computed as shown in Section 3.3. In

particular, they depend on exponential moments of SN .
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2. Since θa depends on a, the coeffients of the polynomials Pp also depend on a.

As a direct consequence of Lemma 4.2.3 and equation (4.12), we have the

following theorem.

Theorem 4.2.4. Suppose (B1) through (B5) hold. Let r ∈ N. Then, for a ∈(
0,

log µ(δ2)

δ2

)
there exist θa ∈ (0, δ2) and polynomials Pp(z) such that for f ∈ F q+2

r+1,α

with q >
r + 1

2r1

and α > δ2,

E(f(SN − aN))eI(a)N =

br/2c∑
p=0

1

Np+1/2

∫
Pp(z)fθa(z)dz + Cq+2

r+1 (fθa) · or,θa
(

1

N
r+1
2

)

where fθ(x) =
1

2π
e−θxf(x), I and θa as in (4.11).

Remark 4.2.4. In particular, the theorem holds for all f ∈ C∞c (R).

This is the weak asymptotic expansion which gives us the required higher order

asymptotics for (4.10), the LDP in Theorem 4.2.2.

Next, we replace (B5) by the following stronger assumption which allows us

to conclude existence of strong expansions for the LDP. Compare this assumption

with assumption (A5) in Chapter 3.

(̃B5) There are positive real numbers r1, r2, r3, C,K and N0 such that for all θ ∈

(−δ2, δ2), for all N > N0 and for all |t| > K,
∥∥LNθ+it∥∥ ≤ C

µ(θ)N

N r2|t|r3
.

As in the case of (B5), we can assume r2 and r3 to be large after slightly

reducing r1. Therefore we have the following theorem.

Theorem 4.2.5. Suppose (B1) through (B4) and (̃B5) hold. Let r ∈ N. Then,

there exists 0 < δ2 ≤ δ such that SN admits a weak asymptotic expansions for the

LDP in the range
(

0,
log µ(δ2)

δ2

)
for f ∈ F 1

r+1,α with α > δ2.
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In particular, for all a ∈
(

0,
log µ(δ2)

δ2

)
there exist constants Cp(a) such that

P(SN ≥ aN)eI(a)N =

br/2c∑
p=0

Cp(a)

Np+1/2
+ Cr,θa o

(
1

N
r+1
2

)
.

where

Cp(a) =
1

2π

∫ ∞
0

e−θazPp(z)dz

for some polynomials P0(z), . . . , Pr(z) depending on a and unique θa ∈ (0, δ2) such

that

I(a) = sup
θ∈(−δ2,δ2)

[aθ − log µ(θ)] = aθa − log µ(θa).

Proof. The proof of the first part is similar to that of Theorem 4.2.4. The only

difference is the estimate (4.14).

Since f ∈ F 1
r+1,α, we have g = fθ ∈ F 1

r+1. So tĝ(t) = (−i)ĝ′(t). WLOG assume

r3 >
r + 1

2r1

. Then,

∣∣∣∣ ∫
|t|>nr1

ĝ(t)`(Lnθa+itv) dt

∣∣∣∣ ≤ C

∫
|t|>nr1

|ĝ(t)|‖Lnθa+it‖ dt ≤ C

∫
|t|>nr1

∣∣∣ ĝ′(t)
t1+r3

∣∣∣ dt
≤ C‖g′‖1

nr1r3

= ‖g′‖1o(n
−(r+1)/2)

Now, the existence of the strong expansion follows from the first part of the theorem

and Theorem 4.1.4.

As in the i.i.d. case, Cp(a) does not depend r because θa and Pp do not. Also,

there are two ways the coefficients C(a) depend on a. First note θa depends on

the choice of a. Also, from Section 3.3, we know exactly how the coefficients of Pp

depend on the derivatives of the µ(z) and `(Πz(·)) at θa and thus, on the exponential
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moments of SN . Since this dependence of C(a) on a is explicit, one can compute

these coefficients.

4.3 An application to Markov Chains.

Take xn to be a time homogeneous Markov process on a compact connected

manifold M with smooth transition density p(x, y) which is bounded away from 0,

and Xn = h(xn−1, xn) for smooth function h :M×M→ R. We assume that h(x, y)

can not be written in the form

h(x, y) = H(y)−H(x) + c(x, y) (4.16)

where c(x, y) is piece-wise constant. (An equivalent condition is given in Lemma 3.5.1).

This is exactly the setting we worked in Section 3.5.3.1.

We need the following lemma to establish (B1) through (B5).

Lemma 4.3.1. Let K(x, y) be a smooth positive function on M×M. Let P be an

operator on L∞(M) given by Pu(x) =

∫
M
K(x, y)u(y) dy. Then, P has a simple

leading eigenvalue λ > 0 and the corresponding eigenfunction g is positive and

smooth.

Proof. From the Weierstrass theorem, K(x, y) is a uniform limit of functions of the

form
∑
r≤n

Jr(x)Lr(y). Therefore, P can be approximated by finite rank operators.

So P is compact. Since P is an operator which leaves the cone of positive functions

invariant, by a direct application of Birkhoff Theory (see [2]), P has a leading

eigenvalue λ which is positive and simple. The corresponding eigenfunction g is also

positive.
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Because P is compact, there is l ∈ (0, λ) such that spL∞(P )∩{|z| > r} = {λ}.

Next, we consider P acting on C1(M). Observe that,

d

dx
(Pu)(x) =

∫
M

∂K

∂x
(x, y)u(y) dy.

So, ‖Pu(x)‖C1 ≤ C‖u‖∞ for some C. Since ‖ · ‖∞ ≤ ‖ · ‖C1 unit ball with respect to

‖ · ‖C1 is relatively compact with respect to ‖ · ‖∞. Therefore the essential spectral

radius is 0 by [24, Lemma 2.2]. This gives us, spC1(P ) ∩ {|z| > r} ⊆ {λ}.

To see that equality holds, note that the constant function 1 ∈ C1(M). By

positivity of P ,

1 ≥ g

sup g
=⇒ P n1 ≥ P ng

sup g
=⇒ P n1 ≥ λng

sup g
=⇒ |‖P n‖| ≥ λn‖ g

sup g
‖C1 ≥ λn

where |‖ · ‖| is the operator norm of P acting on C1(M). Therefore, the spectral

radius of P is ≥ λ. This establishes that g ∈ C1. We can repeat the argument and

show g ∈ Cr for r ∈ N.

Take B = L∞(M) and consider the family of integral operators,

(Lzu)(x) =

∫
M
p(x, y)ezh(x,y)u(y) dy, z ∈ C.

Let µ be the initial distribution of the Markov chain. Then, using the Markov prop-

erty, we have Eµ[ezSn ] = µ(LNz 1). Now, we check conditions (B1) through (B5).

Conditions (B1) and (B2) coincide with the conditions (A1) and (A2) in Chap-

ter 3 and we verify them in Section 3.5.3.1. In particular, (B1) holds with δ = ∞.

Note that, for all θ, Lθ is of the form P in Lemma 4.3.1. Therefore, (B3) holds for

all θ. Take λ(θ) be the top eigenvalue and gθ to be the corresponding eigenfunction.

Then, gθ is smooth.
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To show (B4) and (B5) we define a new operator Qθ as follows.

(Qθu)(x) =
1

λ(θ)

∫
M
eθh(x,y)p(x, y)u(y)

gθ(y)

gθ(x)
d(y).

It is easy see to that pθ(x, y) =
eθh(x,y)p(x, y)

gθ(x)λ(θ)
and dmθ(y) = gθ(y) d(y) defines a

new Markov chain xθn with the associated Markov operator Qθ. That is, Qθ is a

positive operator and Qθ1 =
1

λ(θ)

∫
M
eθh(x,y)p(x, y)

gθ(y)

gθ(x)
dy = 1 because gθ is the

eigenfunction corresponding to eigenvalue λ(θ) of Lθ.

Now, we can repeat the argument in Section 3.5.3.1 to establish properties of

the perturbed operator given by

(Qθ+it)u(x) =

∫
M
eith(x,y)pθ(x, y) dmθ(y)

Since (4.16) does not hold we conclude that sp(Lθ+it) ⊂ {|z| < 1}.

Take Gθ to be the operator on L∞(M) that corresponds to multiplication by

gθ. Then, Lθ+it = λ(θ)GθQθ+itG
−1
θ . Therefore, sp(Lθ+it) is the sp(Qθ+it) scaled by

λ(θ). This implies sp(Lθ+it) ⊂ {|z| < λ(θ)} as required.

Since (4.16) does not hold, the asymptotic variance σ2
θ of Xθ

n = h(xθn−1, x
θ
n) is

positive. Taking γ(θ+ it) to be the top eignevalue of Qθ+it, λ(θ+ it) = λ(θ)γ(θ+ it).

Thus, (log λ(θ))′′ = − d2

dt2
log λ(θ + it)

∣∣∣
t=0

= − d2

dt2
log γ(θ + it)

∣∣∣
t=0

= −γ
′′(θ)

γ(θ)
+(γ′(θ)

γ(θ)

)2

= −γ′′(θ) + γ′(θ)2 (∵ γ(θ) = 1). Put SθN = Xθ
1 + · · · + Xθ

N . Since,

E(eitS
θ
N ) =

∫
QN
θ+it1 dµ, from (3.37), we have that γ′(θ)2 − γ′′(θ) = σ2

θ . Thus,

(log λ(θ))′′ = σ2
θ > 0. Therefore, log λ(θ) is a strictly convex function.

Note that, Lθ = λ(θ)Πθ+Λθ where Πθ is the projection onto the top eigenspace.

From [27, Chapter III], Πθ = gθ ⊗ ϕθ where ϕθ is the top eigenfunction of Q∗θ, the

adjoint of Qθ. Because Q∗θ itself is a positive compact operator acting on (L∞)∗ (the
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space of finitely additive finite signed measures), ϕθ is a finite positive measure.

Hence, µ(Πθ1) = ϕθ(1)µ(gθ) > 0 for all θ.

As a result, Lemma 4.2.1 holds with δ2 arbitrary large and hence, Theo-

rem 4.2.2 holds with δ2 arbitrary large. So the rate function I(a) in Theorem 4.2.2

is finite for a ∈ (0, B) where B = lim
θ→∞

log λ(θ)

θ
. We observe that B < ∞ be-

cause h is bounded i.e.
SN
N
≤ ‖h‖∞ surely. In fact, we claim B = lim

N→∞

BN

N
where

BN = sup
x0,...,xN

N∑
j=1

h(xj−1, xj) (the supremum taken over all possible realizations of

the Markov chain xn).

First note that BN is subadditive. So lim
N→∞

BN

N
exists and is equal to inf

N

BN

N
.

Given, a > B there exists N0 such that for all N > N0,
SN
N
≤ BN

N
< a. Therefore,

P(SN ≥ aN) = 0 for all N > N0 and hence, I(a) = ∞. Next, given a < B, for

all N , BN > aN . Fix N . Then, there exists a realization x1, . . . , xN such that

aN <
N∑
j=1

h(xj−1, xj) ≤ B. Since h is uniformly continuous onM×M, there exists

δ > 0 such that by choosing yj from a ball of radius δ centred at xj i.e. yj ∈ B(xj, δ),

we have aN <
N∑
j=1

h(yj−1, yj) ≤ B. We estimate the probability of choosing such a

realization y1, . . . , yN and obtain a lower bound for P(SN ≥ aN):

P(SN ≥ aN) ≥
∫
B(xN ,δ)

· · ·
∫
B(x1,δ)

∫
B(x0,δ)

p(yN−1, yN) . . . p(y0, y1) dµ(y0) dy1 . . . dyN

≥ µ(B(x0, δ))
(

min
x,y∈M

p(x, y)
)N

vol(Bδ)N

Therefore, I(a) <∞ as required.

Also, because gθ is smooth we can repeat the argument in Section 3.5.3.1 to

obtain (3.45) for Qθ+it. That is, there is εθ and rθ such that ‖Q2
θ+it‖ ≤ (1− εθ) for
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all |t| > rθ. Therefore,

‖LNθ+it‖ = λ(θ)N‖GθQ
N
θ+itG

−1
θ ‖ ≤ λ(θ)N‖Gθ‖‖QN

θ+it‖‖G−1
θ ‖ ≤ Cλ(θ)N(1− εθ)bN/2c.

This establishes (B5).

Since the rate in (B5) is exponential and Theorem 4.2.2 holds for (0, B), we

conclude that for all r ∈ N, these Markov chains admit weak expansions for large

deviations of order r in the range (0, B) for F 3
r+1,B+ where B+ =∞, if B =∞ and

B+ > B, if B <∞.

We need a stronger assumption on h to establish (B̃5). Suppose,

For all x, y critical points of z 7→ (h(x, z) + h(z, y)) are non-degenerate. (4.17)

Since critical points of z 7→ (h(x, z) + h(z, y)) are non-degenerate we can use the

stationary phase asymptotics in [48, Chapter VIII.2], to obtain,

∣∣∣ ∫
M
eit(h(x,z)+h(z,y)p(x, z)p(z, y)eθ(h(x,z)+h(z,y)) dz

∣∣∣ ≤ M

|t|d/2

where M is a constant and d is the dimension of M. Therefore, ‖L2
θ+it‖ ≤

M

|t|d/2
.

Choose K = (2M)2/d. Then for all |t| > K, ‖Q2
θ+it‖ ≤

1

2
and hence,

‖LNθ+it‖ ≤ ‖LN−2
θ+it ‖‖L

2
θ+it‖ ≤

(1

2

)b(N−2)/2c M

td/2
, |t| > K.

By convexity, λ(θ) > 1. Thus,

‖LNθ+it‖ ≤M
(1

2

)b(N−2)/2cλ(θ)N

td/2
, |t| > K.

This establishes (̃B5).
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In particular, when h depends only on one variable, i.e. h(x, y) = H(x) for

some H, we have that h(x, z) + h(z, y) = H(x) +H(z). Then, the condition (4.17)

reduces to critical points of H being non-degenerate.

Again, because Theorem 4.2.2 hold for all (0, B) and the rate in (B̃5) is ex-

ponential, we conclude that these strongly ergodic Markov chains admit strong

expansions for large deviations of all orders in the range (0, B).
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Chapter A: Appendix

A.1 Convergence of X .

We need some background information. Given a piecewise smooth function

g : Rd → R of compact support its Siegel transform is a function on the space of

lattices defined by

S(g)(L) =
∑

w∈L\{0}

g(w).

We need an identity of Siegel, see ( [38, Section 3.7] or [46, Lecture XV]) saying

that

EL(S(g)) =

∫
Rd
g(w)dw. (A.1)

In particular, if B is a set in Rd with piecewise smooth boundary not containing 0

then

PL(L ∩B 6= ∅) ≤ P(S(1B)(L) ≥ 1) ≤ EL(S(1B)) = Vol(B). (A.2)

Proof of Lemma 2.1.2. Let L+ = {w ∈ L : y(w) > 0}. Since
sin(2πχ(w))

y(w)
is even

it is enough to restrict the attention to w ∈ L+.

Throughout the proof we fix two numbers ε > 0, τ < 1 such that ε� (1−τ)�

1. It is easy to see using (A.2) and Borel-Cantelli Lemma that for almost every lattice
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L, there exists C and β such that y(w) >
C

‖w‖β
. It follows that

∑
w∈L+: ||x(w)||≥||w||ε

sin 2πχ(w)

y(w)
e−||x(w)||2 ≤

∑
w∈L+

C||w||βe−||w||2ε

converges absolutely. Hence it suffices to establish the convergence of

X̄ :=
∑

w∈L+: ||x(w)||≤||w||ε<Rε

sin 2πχ(w)

y(w)
e−||x(w)||2 .

Let Rj,k = 2k + j2τk, j = 0, . . . 2(1−τ)k. To prove the convergence of X̄ we will show

that for all L almost all χ satisfy two estimates below

∀ sequence {jk} X̄Rjk,k converges as k →∞, (A.3)

max
j

sup
Rj,k≤R≤Rj+1,k

∣∣X̄R − X̄j,k∣∣→ 0 as k →∞. (A.4)

To prove (A.3) let

Sj,k =
∑

w∈L+: ||x(w)||≤||w||ε, Rj,k≤||w||≤Rj+1,k

sin 2πχ(w)

y(w)
e−||x(w)||2 .

Using that Eχ(sin(2π(χ(w)))) = 0 and for w1 6= ±w2 we have

Eχ(sin(2π(χ(w1))) sin(2π(χ(w2)))) = 0

we see that Eχ(Sj,k) = 0 and

Varχ(Sj,k) =
∑

w∈L+: ||x(w)||≤||w||ε,Rj,k≤||w||≤Rj+1,k

e−2‖x(w)‖2

2y2(w)

≤ 1

22k+1
Card(w : ||x(w)|| ≤ ||w||ε, Rj,k ≤ ||w|| ≤ Rj+1,k)

≤ C(L)

22k
Vol(w : ||x(w)|| ≤ ||w||ε, Rj,k ≤ ||w|| ≤ Rj+1,k)

≤ C(L)2(τ+ε(d−1)−2)k.
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Hence by Chebyshev inequality for each j

Pχ

(
Sj,k ≥ 2−(1−τ+ε)k

)
≤ C(L)2(εd−τ)k

and so

Pχ

(
∃j : Sj,k ≥ 2−(1−τ+ε)k

)
≤ C(L)2(1+εd−2τ)k.

Thus if ε is sufficiently small and τ is sufficiently close to 1 then Borel-Cantelli

Lemma shows that for almost every χ, if k is large enough, then for all j Sj,k ≤

2−(1−τ+ε)k and thus
∑
j

Sj,k ≤ 2−εk proving (A.3). Likewise,

sup
Rj,k≤R≤Rj+1,k

∣∣X̄R − X̄j,k∣∣
≤

∑
w∈L+: ||x(w)||≤||w||ε,||w||∈[Rj,k,Rj+1,k]

1

|y(w)|
e−||x(w)||2

≤ C(L)2−2kVol(w : ||x(w)|| ≤ ||w||ε, Rj,k ≤ ||w|| ≤ Rj+1,k)

≤ C̄(L)2τ+ε(d−1)−1

proving (A.4). Lemma 2.1.2 is established.
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A.2 Hierarchy of Expansions.

In the discussion below, we do not assume the abstract setting introduced in

section 3.1. Therefore the hierarchy of asymptotic expansions provided here holds

true in general.

We observe that the classical Edgeworth expansion is the strongest form of

asymptotic expansion among the expansions for non-lattice random variables. The

following proposition and remark A.2.1 establish this fact.

Proposition A.2.1. Suppose SN admits order r Edgeworth expansions, then it also

admits order r weak global expansion for f ∈ F 1
0 and order r averaged expansions

for f ∈ L1. Further, if the polynomials Pp in the Edgeworth expansion has opposite

parity as p then SN admits order r − 1 weak local expansion for f ∈ F 1
r .

Remark A.2.1. Section 3.5.2 contains examples for which the weak and averaged

forms of expansions exist but the strong expansion does not. Therefore none of the

above implications are reversible.

Proof of Proposition A.2.1. Suppose f ∈ F 1
0 . Let Fn = P

(Sn − nA√
n

≤ x
)

and put

Er,n(x) = N(x) +
r∑
p=1

Pp(x)

np/2
n(x).

Observe that Fn(x)− En(x) = o(n−r/2) uniformly in x and,

dEr,n(x) = n(x) dx+
r∑
p=1

1

np/2
[
P ′p (x) n (x) + Pp(x)n′(x)

]
dx =

r∑
p=0

Rp(x)

np/2
n(x) dx

where Rp are polynomials given by Rp = P ′p + PpQ and Q is such that n′(x) =
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Q(x)n(x). Next, we observe that,

E(f(Sn − nA)) = E
(
f
(Sn − nA√

n

√
n
))

=

∫
f(x
√
n) dFn(x)

=

∫
f(x
√
n) dEr,n(x) +

∫
f(x
√
n) d(Fn − Er,n)(x).

Now we integrate by parts and use Er,n(∞) = Fn(∞) = 1 and Er,n(−∞) = Fn(−∞) =

0 to obtain,

E(f(Sn − nA)) =

∫
f(x
√
n) dEr,n(x) + (Fn − Er,n)(x)f(x

√
n)
∣∣∣∞
−∞

−
∫

(Fn − Er,n)(x)
√
nf ′(x

√
n) dx

=

∫ r∑
p=0

1

np/2
Rp(x)n(x) f(x

√
n)dx+ o

(
n−r/2

) ∫ √
nf ′(x

√
n) dx

=
r∑
p=0

1

np/2

∫
Rp(x)n(x) f(x

√
n)dx+ o

(
n−r/2

)
.

This is the order r weak global Edgeworth expansion. The existence of the

order r− 1 weak local expansion follows from this. This is our next theorem. So we

postpone its proof.

For f ∈ L1 substituting x by x +
y√
n

in the Edgeworth expansion for Sn we

have

P
(
Sn − nA√

n
≤ x+

y√
n

)
−N

(
x+

y√
n

)
=

r∑
p=1

1

np/2
Pp

(
x+

y√
n

)
n

(
x+

y√
n

)
+ o

(
n−r/2

)
.

For fixed x, the error is uniform in y. Therefore, multiplying the equation by f(y)

and then integrating we can conclude that the order r averaged expansion exists.

Remark A.2.2. We have seen from the derivation of the Edgeworth expansion in

section 3.2 that Pp(x) and p have opposite parity in the weakly dependent case. This
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implies that Pp,g has the same parity as p. This is true in the i.i.d. case as well.

Even though this assumption may look artificial in the general case, it is reasonable.

When using characteristic functions to derive the expansions, one is likely to end

up with Hermite polynomials which is the reason behind the parity relation.

Next, we compare the the relationships among the weak and averaged forms

of Edgeworth expansions.

Proposition A.2.2. Suppose SN admits order r weak global Edgeworth expansion

for f ∈ F q+1
r for some q ≥ 0. If the polynomials Pp,g in the global Edgeworth

expansion has the same parity as p then SN admits order r− 1 weak local expansion

for f .

Proof. Assume, f ∈ F 1
r . Then, from the Plancherel formula,

∫
R

√
nf
(
x
√
n
)
Pp,g(x)n(x) dx =

1

2π

∫
R
f̂
( t√

n

)
Ap(t)e

−σ
2t2

2 dt

where Ap(t) are polynomials constructed using the following relation,

Pp,g(t)e
− t2

2σ2 =
1√

2πσ2
Ap

(
−i d
dt

)[
e−

t2

2σ2

]
.

By construction Pp,g and Ap has the same parity. This means Ap has the same

parity as p.

First replace ∫
Pp,g(x)n(x) f(x

√
n)dx

by

1

2π
√
n

∫
R
f̂
( t√

n

)
Ap(t)e

−σ
2t2

2 dt
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in the weak global expansion to obtain,

√
nE(f(Sn − nA)) =

1

2π

r∑
p=0

1

np/2

∫
R
f̂
( t√

n

)
Ap(t)e

−σ
2t2

2 dt+ o
(
n−(r−1)/2

)
.

Then substituting for f̂ with its order r − 1 Taylor expansion,

√
nE(f(Sn − nA)) =

1

2π

r∑
p=0

r−1∑
j=0

f̂ (j)(0)

j!n(j+p)/2

∫
R
tje−σ

2t2/2Ap(t) dt + o
(
n−(r−1)/2

)
.

Put

apj =

∫
R
tje−σ

2t2/2Ap(t) dt = 0 and f (j)(0) =

∫
(−it)jf(t) dt

to get,

√
nE(f(Sn − nA)) =

1

2π

r∑
p=0

r−1∑
j=0

apj
j!n(j+p)/2

∫
R
(−it)jf(t) dt+ o

(
n−(r−1)/2

)
Since p and Ap are of the same parity, when j + p is odd. apj = 0. So we collect

terms such that p+ j = 2k where k = 0, . . . , r − 1 and write,

Pk,w =
∑

p+j=2k

apj
j!

(−it)j

Then, rearranging, simplifying and absorbing higher order terms to the error, we

obtain,

√
nE(f(Sn − nA)) =

1

2π

b(r−1)/2c∑
k=0

1

nk

∫
R
Pk,w(t)f(t) dt+ o

(
n−(r−1)/2

)
which is the order r − 1 weak local Edgeworth expansion.
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A.3 Construction of {fk}.

For each k, let fk(x) =
1

π
tan−1(kx)+

1

2
for x ∈ [−1, k]. Extend fk to [−2, k+1]

in such a way that fk(−2) = fk(k + 1) = 0, fk is continuously differentiable and

satisfying the following conditions.

1. fk is increasing on [−2, k] with derivative on [−2,−1] is bounded above by 1.

2. fk is decreasing on [k + 1/2, k + 1] with derivative bounded below by −5.

3. |f ′k| ≤ 5 on [k, k + 1].

4. 0 ≤ fk ≤ 1 on [−2, k + 1] and fk = 0 elsewhere.

Then, fk is supported on [−2, k + 1]. Here our choice of bounds 1 and −5 in some

sense arbitrary. As long as they are large enough and independent of k, we obtain

an appropriate sequence of functions.

As an example, when k = 5, the graph of f5 looks like:

For all γ > 0,

∫
|(fk)γ(x)| dx =

∫
|e−γxfk(x)| dx ≤

∫ ∞
−2

e−γx dx = Cγ,1 <∞

because 0 ≤ fk ≤ 1.
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Since |f ′k| ≤ 5 on [k, k + 1], 0 ≤ fk ≤ 1 and fk is increasing on [−2, k],

∫
|((fk)γ)′(x)|dx =

∫ k+1

−2

|γe−γxfk(x) + e−γxf ′k(x)| dx

≤
∫ k+1

−2

(
γe−γxfk(x) + e−γx|f ′k(x)|

)
dx

≤
∫ k

−2

γe−γx dx+

∫ k

−1

f ′k(x) dx+

∫ k+1

k

(γe−γx + 5e−γx) dx

≤ 1 +

∫ k+1

−2

(5 + γ)e−γx dx = Cγ,2 <∞

Also, note that |xlfk(x)| ≤ xle−γx for all x ∈ [−2, k + 1]. Hence,

∫
|xlfk(x)| dx ≤

∫ ∞
−2

xle−γx dx = Jγ,l <∞

Put Jr(γ) = max
1≤l≤r

Jγ,l and Cγ(r) = max{Jr(γ), Cγ,1, Cγ,2}. Then, Cγ(r) is finite and

depends only on γ and r.

Now, we have the following,

1. C1
r+1((fk)γ) ≤ Cγ(r) for all k.

2. Since,
1

π
tan−1(kx) +

1

2
converges pointwise to 1[0,∞)(x), it is easy to see that

fk → 1[0,∞) pointwise.

3. Since for each p, e−γzPp(z)fk(z) converges pointwise to e−γzPp(z)1[0,∞)(z),

e−γz|Pp(z)|1[−2,∞) is integrable and |e−γzPp(z)fk(z)| ≤ e−γz|Pp(z)|1[−2,∞), we

can apply the LDCT to conclude,

∫
Pp(z)gk (z) dz =

∫ ∞
−2

e−γzPp(z)fk(z) dz →
∫ ∞

0

e−γzPp(z) dz.
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Birkhäuser Basel, Boston, 1985, xi+284 pp.

[7] Chaganty, N. R., Sethuraman, J., Strong Large Deviation and Local Limit The-
orems, Ann. Probab. 21 (1993), no. 3, 1671-1690.
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