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Chapter 1: Introduction

The Central Limit Theorem (CLT) is one of the most fundamental concepts in
probability which was introduced by the work of Laplace and Bernoulli. It describes

the long term behaviour of random trials repeated under uniform conditions.
N
Let Sy = Z X,, be a sum of random variables. We say that Sy satisfies the
n=1

CLT if there are real constants A and o > 0 such that

— NA
lim P (SN— < z) = N(2) (1.1)
N—oo v N
z 1 yQ
where N(z) = / n(y)dy and n(y) = e 22,
o 2mo2

The usefulness of the CLT and related limit theorems depends on rapid con-
vergence of distributions of normalized partial sums to the limiting distribution.
This is because limit theorems are primarily used for approximating distributions
of sums of large but finite number of random variables. Therefore, an important
problem is to estimate the rate of convergence of (1.1).

In this regard, an asymptotic expansion as a series of increasing powers of
order n~1/? (now commonly referred to as the Edgeworth expansion) was formally
derived by Chebyshev in [8]. Kolmogorov and Gnedenko emphasize the importance
of these expansion in their monograph [23] by stating that the Edgeworth Expansion

is “the most powerful and general method of finding such corrections.”



Definition 1. Sy admits Edgeworth expansion of order r if there are polynomials

Pi(2),...,P.(2) such that

P <% < z> = N(z) + ; i’])g;)n(z) +o (N77?) (1.2)
£rn(2)

uniformly for z € R.
Remark 1.1. [t is an easy observation that Edgeworth expansion of Sy, if it exists,
is unique. Suppose {P,(2)}, and {]Bp(z)}p, 1 < p <r are polynomials corresponding

to two Edgeworth expansions. Then,
—~ P(2) ~ By(2) 2
z; ]\’[’p/Q n(z) = Zl ]\II)P/Q n(z) + o (N77?)
p= p=

Multiplying by VN taking the limit N — oo we have Py(z) = Pi(z). Therefore,

p; %n(z) = pg %n(z’) +o (N2

Then, multiplying by N and taking N — oo, Py(z) = Py(2). Continuing this r times
we can conclude P,(z) = IBp(z) for1<p<r.

Here and in what follows, A is the asymptotic mean i.e. A = ]}gnooE<S—]\][V)

Work of Lyapunov, Edgeworth and Cramér focus on the problem of finding
higher order asymptotics in the CLT. Their main focus was on independent and
identically distributed (i.i.d.) sequences of random variables. In 1928, Cramér in-
troduced a theory of Edgeworth expansions for a broad class of random variables.
For the first rigorous derivation of this expansion see [10]. The monograph [11] by
Cramér also gives a detailed account of his theory of Edgeworth expansions.
Theorem 1.1 (Cramér). Let X be a centred random variable with E(X?) = 0% > 0

and r + 2 absolute moments. Let Xi,...,Xn,... be sequence of i.i.d. copies of X.
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Assume further that

lim sup |E(e™X)| < 1. (1.3)

[t| =00

Then, S satisfies (1.2).

Many refinements of this result appear in later literature. A good introduction
to this theory and later developments can be found in [3,11,20, 23].

In the ii.d. case, P,’s are polynomials such that the characteristic function

o(t) = E(e™) and the Fourier transform &, x of &,y satisfy

E(X?3)

For example, & ,(2) = N(z) + n(z)6 T n
o

(1 —2?) and

Eanl(z) =N(2) +n(z) { \(/ﬁ l(l - 22+ B(X) = 307 5 )n 43 (32 — 2°)
E(X?®) 3, .5

Since all distributions with an absolutely continuous component satisfy (1.3),
this theorem covers a large class of random variables. However, (1.3) indicates that
the common distribution of X,,’s is far from being discrete. In fact, (1.3) fails when
random variables are purely discrete. Surprisingly, not much had been explored in
the case of discrete random variables, except in the lattice case. The purpose of my
first project [16], joint with Dmitry Dolgopyat, was to address this issue. A detailed
discussion about this can found in Chapter 2.

When X,,’s are i.i.d., it is known that the order 1 Edgeworth expansion exists if
and only if the distribution is non-lattice (see [19]). Therefore, the following asymp-
totic expansion for the Local Central Limit Theorem (LCLT) for lattice random
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variables is also useful.
Definition 2. Suppose that X,,’s are integer valued. We say that Sy admits a lattice
Edgeworth expansion of order r, if there are polynomials Fy g4, . .., Prq and a number

A such that

n(’f—NA> . Pp,d«k}gfvm

+o (N2
uniformly for k € 7.
Remark 1.2. Here, the subscript d in P,q refers to the fact that the expansion
1s for discrete lattice-valued random variables. A priori, there is no reason for the
polynomials P, in Definition 1 to be related to P, 4. In Section 3.3, we show how
these two polynomials are related.

As in remark 1.1, we can prove the uniqueness of this expansion. Because
P, q’s have finite degree, say at most q, choose N large enough so that Sx has more
than q values. Then the argument in remark 1.1 applies.

During the 20th century, the work of Lyapunov, Edgeworth, Cramér, Kol-
mogorov, Esséen, Petrov, Bhattacharya and many others led to the development of
the theory of these two asymptotic expansions. See [26,31] and references therein,

for more details.

It is immediate that Sy admits an order r Edgeworth expansion if

lim N™/? {IP (% < z) — €T7N(z)} = 0. (1.4)

uniformly in z. [3,4] discuss weak Edgeworth expansions where the LHS of (1.4) is
convolved with smooth compactly supported functions. These expansions yield the

asymptotics of E(f(Sn)).



To introduce these expansions, suppose (F, || -

|) is a function space.

.. P,

Definition 3. Sy admits weak global Edgeworth expansion of order r for f € F
(2) and A (which are independent of f) such

if there are polynomials Py 4(2),

that

that

! /Pm(z)n(z)f(z'\/ﬁ)dz + £l -0 (N_(T“W) .

E(f(Sy — NA))
p=0
Definition 4. Sy admits weak local Edgeworth expansion of order r for f € F if

there are polynomials Py(z),...P.i(2) and A (which are independent of f) such

1 lr/2] 1
VNE(f(Sy ~ NA) = 5= 3 o [ Bul@) )z + 1] -0 (V7).

We also introduce the following asymptotic expansion which yields an averaged

form of the error of approximation.
Definition 5. Sy admits averaged Edgeworth expansion of order r if there are
P, .(2) and numbers k,m such that for f € F we have

polynomials Py ,(2),
= gm) )
Pl ——<z4+—= | —-MN|2z+—= d
[l (3= VN Vg AR
— 1 / Y Y —r/2
:Z— Pp,a(z—l——)n(z—l——)f(y)dy—l—“fﬂ-O(N 2.
2w )" UR
Remark 1.3. Here, the subscripts g,l,a refer to global, local and averaged respec-
tively and used to distinguish the polynomials appearing each definition. In Sec-

tion 3.3, we show how these two polynomials are related.
All of these weak forms of expansions are unique provided that F is dense in

C. If there are two different weak global expansions with polynomials {P, ,} and



{P,,}, the argument in remark 1.1 yields,

/Pp,g(z)n(z)f(zx/ﬁ)dz = /Pp,g(z)n(z)f(zm)dz

for all f € C which gives us the equality, P, 4(z) = P,4(2). The same idea works
for the other two expansions.

We have seen that these asymptotic expansions are unique. They also form a
hierarchy. We discuss this in Appendix A.2. Due to this hierarchy, in the absence
of one, others can be useful in extracting information about the rate of convergence
in (1.1).

Previous results on existence of Edgeworth expansions, for example in [11,
20, 23], assume independence of random variables X,,. For many applications the
independence assumption of random variables is too restrictive. Because of this
reason, there have been attempts to develop a theory of Edgeworth expansions for
weakly dependent random variables where weak dependence often refers to asymp-
totic decorrelation. See [9,22,29,40,41] for such examples. Their focus is on the
classical expansions introduced in Definition 1 and Definition 2.

Except in [9], the sequences of random variables considered are uniformly er-
godic Markov processes with strong recurrent properties or processes approximated
by such Markov processes. In [9], the authors consider aperiodic subshifts of finite
type endowed with a stationary equilibrium state and give explicit construction of
the order 1 Edgeworth expansion. They also prove the existence of higher order
classical Edgeworth expansions under a rapid decay assumption on the tail of the

characteristic function.



The goal of [21], a joint work with Carlangelo Liverani, is to generalize these
results and to provide sufficient conditions that guarantee the existence of Edgeworth
expansions for weakly dependent random variables including observations arising
from sufficiently chaotic dynamical systems, and strongly ergodic Markov chains.
In fact, we introduce a widely applicable theory for both classical and weak forms
of Edgeworth expansions and significantly improve existing results. This work is
discussed in detail in Chapter 3.

The CLT and related asymptotic expansions provide accurate descriptions only
of typical events. For example, if X,,’s are centered i.i.d. random variables then for
all a > 0, ]\}iiréoIP’(SN > alN) = 0, due to the Law of Large Numbers i.e. SWN -0
in probability. Large Deviation Principles (LDPs) give better descriptions of these
non—typical events by specifying the exponential rate at which their probabilities
decay.

Before we present results related to LDPs, we recall the following definitions,
and facts whose proofs can be found in [17,30]. Given a function f: R — (—o00, o0]
with f # oo, define its effective domain to be Dy = {z € R|f(z) < oo} and
its Legendre transform by f*(z) = riug [tz — f(t)]. Then, f* is convex and lower

€
semi-continuous. Therefore, Dy« is an interval and f* is continuous on Ef*.

In addition, suppose f is convex, lower semi-continuous with D ;= (a,b) and
f € C*(a,b) with f” > 0 on (a,b) (possibly @ = —00 or b = +00). Then, Dj. =
(A, B) where A = tLHCEF f'(t) and B = tl_lgl_ f'(t), f* is continuously differentiable
on (A, B) and (f*) = (f")"'. For any f satisfying the above properties, for any
T € lo)f* the supremum in the definition of f*(z) is achieved at the unique point
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t € Dy which solves f'(t) = 2 and hence, f*(z) = sup [tz — f(t)]. Also, f is called
tEf)f
steep if lim | f'(¢)| = lim | f'(¢)| = oo.
t—a t—b

The following classical result, due to Cramér, is one of the fundamental results
in the theory of Large Deviations.
Theorem 1.2 (Cramér). Let X be a real valued random variable with mean A and
variance o> > 0. Suppose that the logarithmic moment generating function of X,
log B(e"), is finite in a neighbourhood of 0. Let X,, be a sequence of i.i.d. copies of

X. Then,

lim %logP(SN > Nz)=—I(z), if > A

N—oo

and

1
1 < _ :
]&gréoNlogIP(SN_Nz) I(z), ifz< A

where I is given by 1(z) = iuIIR? Az — logE(e)‘X)} (the Legendre transform of the
€

logarithmic moment generating function of X).

From the hypothesis it is immediate that [ is convex and lower semi-continuous.
Also, I” > 0 on D; = (inf(supp X),sup(supp X)), therefore I is strictly con-
vex on Dy, I(z) = 0 <= z = p and there is a unique A\* such that I(z) =
Nz —log E(et™).

Cramér’s LDP has an extension to the non-i.i.d. case. We refer the reader
to [6][Chapter V.6] for a proof of the following result.

Theorem 1.3 (Local Gértner—Ellis). Let X,, be a sequence of random variables not

necessarily i.1.d. Suppose there exists 0 > 0 such that for X € (=6,0),

: 1 ASNY
]\}1_>rr(1>o N log E(e™Y) = Q(\) (1.5)



where € is strictly convex continuously differentiable function with Q'(0) = 0. Then,

for all z € (0, @),

N—oo

lim %mgp(sjv > N2) = —I(2) (1.6)

where I(z) = sup [2A — Q(N)].
AE(—5,0)

Remark 1.4.

1. If the limit (1.5) exists for all X € R. Then, B = 5113)10 20) exists and (1.6)

holds for all z € (0, B).

2. The function I appearing in the theorem is called the rate function because it
gives us the exponential rate of decay of tail probabilities.

In an on-going joint work with Pratima Hebbar, we develop a theory of higher
order asymptotics for LDPs, using the weak forms of Edgeworth expansions and
extensions of results in [27, Chapter VIII]. As in the CLT case, higher order asymp-
totics are given as expansions.

Definition 6. Suppose Sy satisfies an LDP with rate function I. Then, Sy admits

strong asymptotic expansion of order r for large deviations in the range (0, L) if

there are functions C, : (0,L) — R for 0 < p < g and A > 0 such that for each

a€(0,L),
lr/2]
o Cy(a) 1
P(Sy — AN > aN)e' N = N§+1/2 Cra-0 <N'§1> .
p=0

These expansions are in the spirit of the higher order expansions found [1]
for i.i.d. sequences of random variables. In [7], authors refer to these expansions as
strong large deviation results. [7,32] establish the order 1 expansions under certain
assumptions on the behaviour of the moment generating functions. These strengthen

9



the results of [1] but only in the order 1 case. Here, we give an alternative way to
establish the so-called strong large deviation results of all orders. We also manage to
recover the results in [1] in the non-lattice setting. For applications of these results
to statisitcs, see examples listed in [1,7,32] and references therein.

We also introduce the following weak form of the expansion for LDPs. As in
the CLT case, we define these expansions over a function space (F, || - ||).
Definition 7. Suppose Sy satisfies an LDP with rate function I. Then, Sy admits
weak asymptotic expansion of order r for large deviations in the range (0,L) for
f € F, if there are functions D, : (0,L) — R for 0 < p < g and A > 0 such that

for each a € (0, L),

E S N I(a)N __ & Dp(a) C 1
(f(Sy —aN))e _;Np+1/2+ ra O W .

In fact, our results show that for a sequence X, of i.i.d. [—Diophantine random
variables with all exponential moments, for every r, Sy admits weak asymptotic
expansions of order r for large deviations on (0, 00) for sufficiently regular f. This
is a refinement of the LDP by Cramér for a broad class of random variables.

We also obtain similar results for certain classes of non—i.i.d. random variables.
As an application, we obtain asymptotic expansions for the LDP in the case of
Markov chains with smooth densities. In particular, let x,, be a time homogeneous
Markov chain on a compact connected manifold M with a smooth transition density
and h : M x M — R be smooth with non-degenerate critical points. Then X,, =
h(xy,, ,—1) admits asymptotic expansions for large deviations of all orders. These

results are presented in Chapter 4.
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Chapter 2: Central Limit Theorem: Discrete Random Variables.

2.1 Overview and main results.

Let X be a random variable with zero mean and positive variance 2. Let

S, = Xn:Xj where X; are independent identically distributed and have the same
=1

distribltion as X. Then, it is well-known that S,, satisfies the CLT with A = 0 and

o asin (1.1).

In this chapter, we consider a case which is opposite to X having a density,
namely we suppose that X has a discrete distribution with d+1 atoms where d > 2.
d = 2 is the simplest non-trivial case since distributions with two atoms are lattice
and as a result they do not admit even the first order Edgeworth expansion.

Thus, we suppose that X takes values aq, ..., aqy1 with probabilities py, ..., pai1

respectively. Since X should have zero mean we suppose that our 2(d + 1)—tuple

(a,p) belongs to the set

Q={p;>0, pr+-+pay1 =1, piag+--+par1as+1 = 0}.

It is easy to see that S, never admits the order d Edgeworth expansion. Indeed

TL' m M1
Pap(Sn < 2) = —— " pe (2.1)
mal. . mgyq!
my>0, 3 my=n 1+ - Mg41-
Y omja; <z

11



Applying the Local Central Limit Theorem to the time homogeneous Z%random
walk which jumps to e; from the origin 0 with probability p; for © = 1,...,d and

stays at 0 with probability ps.1 we conclude that if

> miai=nY_ api+O(V/n)

then

|
d/2 n: m1 M1
1 . Pr - -Pan

" !
miy:...Mqga1!

is uniformly bounded from below. Accordingly P, (S, < z) has jumps of order
n~%?. On the other hand E4(z) is a smooth function of z. So, it cannot approximate
both P, ,(S, <z —0) and Py (S, < 2+ 0) at the points of jumps.

Here we show that for typical (a,p) the order d Edgeworth expansion just

barely fails. We present two results in this direction. For the first result let
bj=a; —ay, forj=2...d+ 1.

Set

d(s) = dist(b;s, 27Z).
)= ety 0, 2n)

We say that a is S-Diophantine if there is a constant K such that for |s| > 1,

K
d(s) > —.
(s) > E

It is easy to see that almost all a is S-Diophantine provided that 8 > (d —1)! (see
136, 47)).

Theorem 2.1.1. If a is 3-Diophantine and

2(R—%)6<1 (2.2)

12



then

S,
lim nf |Pap [ —= <2 ) — & = 0.
tin” [P (55 =) ~2ot0)
Thus for almost every a the order (d — 1) Edgeworth expansion approximates the
Sn
o\v/n

Note that Theorem 2.1.1 applies for all 8s, in particular for Ss which are much

distribution of with error O(n°~%?) for any .

larger than (d — 1)~'. However if 3 is large, then the statement of the theorem can

be simplified. Namely, let r be the integer such that r < 2R < r + 1. (Note that
1

(2.2) can be rewritten as 2R < — + 1 so provided that 2R is suffciently close to

p
1
— +1 we can take 7 = | 37| + 1. Then,

B
S, 1
Pa,p (U\/ﬁ < Z) = gdfl(Z) +o0 (n_R)
1
=&((2)+o <n_R> + O (E-1(2) — &(2)) .
Since > R the first error term dominates the second and we obtain the

following result.

Corollary 2.1.1.

S,
lim n |P, <z =&()| =0
o [pen (5 2) - 50)
1
provided that a is (3-Diophantine, r = 1+ |71, and r < 2R < B + 1.
Theorem 2.1.1 shows that for almost every a and for r € {1,...,d — 1}, the

order r Edgeworth expansion is valid. Results that follow show that,

Pun (2 <) - €2 23)

is typically of order O(n~%?) but the O(n~%?) term has wild oscillations. To for-

mulate this result precisely we suppose that our 2(d + 1)-tuple is chosen at random

13



according to an absolutely continuous distribution P on Q. Thus (2.3) becomes a
random variable.
Theorem 2.1.2. There exists a smooth function A(a,p) such that for each z the

random variable

d/2 S
gy (40~ Por (g7 <
converges in law to a non-trivial random variable X .

More precisely we have,

|ad+1 - a1|

Ala,p) =
@P) = T D) oap)

(2.4)

where D,p is a (d — 1) x (d — 1) matrix defined by equations (2.37)-(2.38) of
Section 2.5, o(a, p) denotes the standard deviation of the distribution of the random
variable taking value a; with probability p; and X" is defined as follows.

Let M be the space of pairs (£, x) where £ is a unimodular lattice in R? and x
is a homeomorphism y : £ — T. In the formulas below, we identify T with segment
[0,1) equipped with addition modulo one. Given a vector w € R? we denote by
y(w) its first coordinate and by x(w) its last d — 1 coordinates.

Lemma 2.1.2. For almost every pair (L, x) € M with respect to the Haar measure

the following limit exists

X(L,y) = lim 3 SITX(W)) ()2 (2.5)

R P

In order to simplify the notation we will abbreviate expressions such as (2.5)

sin(2mx(w))
y(w)

o Ix(w)I?

XL= Y (26)

weL\{0}

14



The Haar measure on M can be defined in two equivalent ways. First, note
that y is of the form y(w) = eX™) for some linear functional ¥ € (R%)*. SL4(R)

acts on R @ (R%)* by the formula,
A(w,X) = (Aw, xA™).
Observe that if A(w,x) = (W, x) then,

X(w) = w(x). (2.7)
The above action of SLy4(R) induces the following action of SLy(R) x (R)* on M

given by,

(A, X)L, x) = (AL, ™% - (x o A7H)).

This action is transitive because SL4(R) acts transitively on unimodular lattices and
(R?)* acts transitively on characters. This allows us to identify M with (SLg(R) x
RY) /(SLy4(Z) x Z%) and so M inherits the Haar measure from SL4(R) x R?.

The second way to define the Haar measure is to note that the space M of
unimodular lattices is naturally identified with SL4(R)/SL4(Z) and so it inherits
the Haar measure from SL4(R). Next for a fixed £ the set of homeomorphisms
X : L — T is a d dimensional torus so it comes with its own Haar measure.

Now, if we want to compute the average of a function ®(L, y) with respect to
the Haar measure then we can first compute its average ®(£) in each fiber and then
integrate the result with respect to the Haar measure on the space of lattices. In
the proof of Lemma 2.1.2 given in Section A.1 the averaging inside a fiber will be
denoted by E, and the averaging with respect to the Haar measure on the space of

lattices will be denoted by E.

15



If we assume that the pair (£, x) is distributed according to the Haar measure
on M then X, defined in Lemma 2.1.2, becomes a random variable. This is the
variable mentioned in Theorem 2.1.2. Note that the distribution of X depends
neither on P nor on z.

Using the second representation of the Haar measure we can also describe X
as follows. Let wq,...,wy be the shortest spanning set of £. That is wy is the
shortest non zero vector in £ and, for j > 1, w; is the shortest vector which is
linearly independent of wy,...,w;_1. Given m = (mq,...,mg) € Z% let (y,x)(m),

y € R and x € R4, denote the point
miwy + - -+ + mgwy € L. (2.8)

Let §; = x(w;). Then 6; are uniformly distributed on T and independent of each
other. Set 0(m) =m0, + - - - + mgby. Now X (see definition in Lemma 2.1.2) can

be rewritten as

xo Y SCTO) e (29)
meZ\{0} y(m

where £ is uniformly distributed on the space of lattices, (y,x)(m) is defined by

(2.8), and (6, . ..0y) is uniformly distributed on T and independent of L.
Theorems 2.1.1 and 2.1.2 have analogues when we consider probabilities that

S, belongs to finite intervals. In particular, our results have applications to the

Local Limit Theorem.

Theorem 2.1.3. Let z1(n) and zo(n) be two uniformly bounded sequences such that

d/2

|z1(n) — 29(n)|n%* — oo. Then, the random vector,

A?:,/;) <ez%/2 [&1(21) ~P., (US\/"H < zl>] %/ [Ed(22) —Pap <US”n < Zz)]) (2.10)
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converges in law to a random vector (X (L, x1), X (L, x2)) where X (L, x) is defined
by (2.6) and the triple (L, x1, x2) is uniformly distributed on (SLy(R)/SL4(Z)) x
T x T

Here and below the uniform distribution of (£, x1, x2) means that £ is uni-
formly distributed on the space of lattices and for a given lattice, y; and xs are
chosen independently and uniformly from the space of characters.
Theorem 2.1.4. Let z1(n) < z2(n) be two uniformly bounded sequences such that
ln, = 2z2(n) — z1(n) — 0.

(a) If 1, > Cn==%? for some e > 0 then

Pap(zl < 0% < 2’2)

lnﬁ(Zl)

— 1 almost surely.

(b) If 1,n¥? — oo then

Pap(z1 < U‘f% < 29)

lnﬂ(Zl)

=1

(here and below “=" denotes the convergence in law).

clagsr — a4

(c) If I, = o (@, p)ni/2 then
Pa (Zl < S < ZQ)
924=3 74, /det(D, P ovn 1
27 € ( ,p) lnn(zl) =Y
where

sin(27[x(w) — cy(w)]) — sin(27rx(w))e_”x(w)”2
y(w)

V(Lxe)= >

weL\{0}

and L, x are as in Theorem 2.1.2 and D,y given by equations (2.37)—(2.38).
The intuition behind this result is the following. Call y,, d-plausible if P(S,, =
Yn) > on~Y2. The discussion following (2.1) shows that for each § there are about
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C(6)n¥? §-plausible values. Therefore, if I, < n~%? then the interval [z;(n), z(n)]
would typically contain no plausible values. Hence, we should not expect the LLT
to hold on that scale. Theorem 2.1.4 shows that as soon as interval [z1(n), z2(n)]
contains many plausible values then the LLT typically holds for this interval.

Recall that,

n!
— mi mMd+1
Pap(Sy € [21,20]) = E P Pad
my>0, 3 my=n 1+-.-Mg41:-
21Xy mja;<z9

Thus, in Theorem 2.1.4 we just count the number of visits of a random linear form
Zmiai to a finite interval with weights given by multinomial coefficients. It is
also interesting to consider counting with equal weight. In this case the analogue
of Theorem 2.1.4(c) is obtained in [38] while for longer intervals only partial results
are available, for example see [15,34].

The chapter is organized as follows. Theorem 2.1.1 is proven in Section 2.2.
The proof is a minor modification of the arguments of [20, Chapter XVI|. The bulk
of the chapter is devoted to the proof of Theorem 2.1.2. In Section 2.3 we provide an
equivalent formula for X'. This formula looks more complicated than (2.6) but it is
easier to identify with the limit of the error term. Section 2.4 contains preliminary
reductions. We show that the density p on 2 could be assumed smooth and the
integration in the Fourier inversion formula could be restricted to a finite domain. In
Section 2.5, we show that main contribution to the error term comes from resonances
where characteristic function of .S, is close to 1 in absolute value. The proof relies
on several technical estimates which are established in Section 2.6. In Section 2.7,

we use dynamics on homogenuous spaces in order to show that the contribution of
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resonances converges to (2.6) completing the proof of Theorem 2.1.2. The proofs of
Theorems 2.1.3 and 2.1.4 are similar to the proof of Theorem 2.1.2. The necessary
modifications are explained in Section 2.8. We postpone the proof of Lemma 2.1.2

till Appendix A.1.

2.2 Edgeworth Expansion under Diophantine conditions.

Theorem 2.1.1 is a consequence of Theorem 2.2.1 below and the fact that in

our case there is a positive constant ¢ such that
|p(s)] < 1 — cd(s)?. (2.11)

(2.11) follows from inequality (2.35) proven in Section 2.5.
Theorem 2.2.1. If the distribution of X has d 4+ 2 moments and ils characteristic
function satisfies

o(s)] <1 — — (2.12)

and R < g 1s such that

(R - %) v<1 (2.13)

then

S.
lim n" P —=<z)— & =0.
[P (25 = 2) = 00)
Theorem 2.2.1 follows easily from the estimates in [20, ChapterXVI] but we

provide the proof here for completeness.

Proof. Denoting



we get by [20, Chapter XVI] that for each T

T

_ 1 [ov |¢"(s) — &
|An(a,p)| < _/ =BV g4 £ (2.14)
m™)__T_ S T
oV
R . C C € ,
Choose T' = Bn™ with B = = Then, T = & Take a small § and split the
n

integral in the RHS of (2.14) into two parts.

1 6
.

¢"(s) = 5d 1(so+/n)

¢"(s) = Ear(s0v/)

as + 1 f
§<|s|<BnE-1/2 /o

(2.15)

Again, by [20, Chapter XVI], we have that the first integral of (2.15) is O (n’d/Z).
Also, / —gd_l(sg\/ﬁ)
|s|>é

s
|s| < Bnf"1/2/5}. Thus, we only need to approximate,

/J 9"(s) ds < %/JW"(SH ds < %/Jexp (—E nl_(R_%)“/> ds (2.16)

where the last inequality is due to (2.12). By (2.13) the integral decay faster than

ds has exponential decay as n — co. Put J ={s: 0 <

d
any power of n. Because R < 2 the contribution of |s| < ¢ is also under control. [

2.3 Change of variables.

Here we deduce Theorem 2.1.2 from:

Theorem 2.1.2*. For each z the random variable

oo (559

converges in law to X where

—22/2 |ad+1 — a1| sin QWX(W) 6—47r2x(w)TDa7px(w) (217)

X(a,p,L,x) = ¢
( ) 20(a, p)V? Sty V(W)
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a=(ap,...,0441), p= (p1,...,par1) and (a,p) € Q are distributed according to P
and D, and o(a,p) are defined immediately after (2.4).

In order to deduce Theorem 2.1.2 from Theorem 2.1.2* we need to show that

A

A(a,p)

#/2 has the same distribution as X'. To this end we rewrite the sum in (2.17)

(&

as

1 sin(2mx(w)) o= 47211(y/Dapx(w))|?
(27)4=1det(y/Dqy) weﬁz\{o} y(w)/((2m)% 1 det(y/Dayp)) . (2.18)

Let A be the linear map such that

Yy
Aly,x) = , 21/ Dy x| .
(v %) ((27)‘1—1 dot(Day) » )

Put (£, %) = A(L, ). Then, using (2.7), (2.18) can be rewritten as:

1 SIMETX(W)) - e

d—1 A
(2m)-tdet(y/Dap) Tty V(W)
Since det(A) = 1, the pair (£, ) is distributed according to the Haar measure
on M proving our formula for X.
Sections 2.4-2.7 are devoted to the proof of Theorem 2.1.2*. Note that simi-

larly to (2.9) we have

$ —22/2 [Yd+1 — B1| ‘ad-i-l — a1| sin 27T0 ) —4m2x(m)T Dq px(m)

e e 2 ym)

ezh\{o0}

The statements of Theorems 2.1.2 and 2.1.2* look similar, however, there
is an important distinction. Namely the proof of Theorem 2.1.2* is constructive.
In the course of the proof given n, a and z we construct a lattice L£(a,n) and
a character x(a, p,n, z) such that the expression n’d/QQE'(a, p, L(a,n), x(a,p,n, z))
well-approximates the error in the Edgeworth expansion. We believe that such a
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construction could be made for more general distributions where the Edgeworth ex-
pansion fails, and this will be a subject of a future investigation. So the difference
between Theorems 2.1.2 and 2.1.2* is that in the first case we have only an approx-
imation in law while in the second case we are able to obtain an approximation in

probability.

2.4 Cut off.

2.4.1 Density.

Here we show that it is enough to prove Theorem 2.1.2* under the assumption

that P has smooth density supported on a subset
Q. ={(a,p) €Q:Vip; >k and Vi#j|a;, —a;| > K}

for some k > 0. Indeed suppose that the theorem is true for such densities. Let
p(a,p) the original density of P. Let ¢ be a bounded continuous test function.
Given ¢ we can find a smooth density p(a,p) supported on some €, such that

llp — p||z1 < e. In Section 2.7 we prove that

/ d(n2A,)pdadp — / / d(X(a,p, L,0))pdadpdu(L,0) (2.19)

Sn
oy/n
1

T?. Let pm(a, p) be the smooth density supported on €2, corresponding to e = m ™.

where A, = &;(2)—P ( < z) and p is the Haar measure on (SLy(R)/SLy(Z)) x

Passing to subsequence, p,, — p almost surely. Because |pné| < ||¢]/|pm| € L
and [pé| < ||¢[/|lp| € L' and ||¢|||pm| — ||#||[p| almost surely, Lebesgue Dominated

Convergence Theorem gives
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//¢ (a,p, £,0))pm dadp du(L, )
—>//¢ (a,p, £,0))pdadp du(L,0). (2.20)
Combining (2.19) and (2.20) we have that,
Jotapdadp = [ o) dadp + O(m o) (2:21)
=% [[o(2(ap.2.0)p dadpdu(c.6) + O~ o]

oo, //<b (a,p, £,0))pdadpdu(L,0).

2.4.2 Fourier transform.

As in the previous section let

A, =&i(z) — F.(z) where F,(2)=Pap ( Sn < z) .

oyn ~
1 1—cosTx
Denote by vr(x) = T I and let V(s,T) = (1 |T|> Lisj<7 be its
Fourier transform. Using the approach of [20, Section XV1.3] we let Tp = n***% and
decompose
A [gd — ] * UTQ( ) [Fn — Fn *UT2] (Z) + [gd — gd *’UTQ] (Z) (222)
To estimate the last term we split
[Ea— Eaxvp] (2) = / [Ea(2) — Ea(z — )] vy (x)d (2.23)
|z|<1

+ /|$>1 [Ea(2) = Ea(z — )] vy () da.

Since vr is even the first integral in (2.23) equals to

: & (y(z, 7)) ,
& (z)zvp, (x)dr — —————=z"vp,(v)dx
| eimnn — [ SR (@

|lz|<1
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:/ ENy(z,x)) 1 — COSTg.ﬁEdm _0 (i) ‘
lz|<1 2 b T

Since both &; and cosine are bounded the second integral in (2.23) is bounded

C’/ dx _g
w1 o2 Ty

Thus the last term in (2.22) is O (75 ') . To estimate the second term in (2.22) we

by

split the integral in F,, x vy, into regions {|z| > 1/4/T2} and {|z| < 1/4/T2}. The

contribution of {|z| > 1/4/T,} is bounded by

o /°° de  C
1/VTe Tha? \/E
On the other hand
/ [F(2) — Fu(z — z)] Vi, (2)dx = 0
|2|<1/VT2

unless there is a point of increase of F,, inside [Z —1/\/To, 2+ 1//T. g] . The prob-

ability that such a point exists is bounded by

Z P(m1a1+'--+md+1ad+1€ [z—l/\/i,z—i—l/\/ﬂ}). (2.24)

mi—+--+mygy1=n
Note that for each fixed (my, ..., mgy1) the random variable

miar + - -+ Mar10441

has a bounded density with respect to the uniform distribution on the segment of

length O (\/m% +--+ mzﬂ) and so

Pmaec J)=0 <ﬂ>

[
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1
TLTQ

d 1 _
O (n\n/Tg> . Thus with probability 1-O (ﬁ) we have that A,, = A, 2+0O <T2 1/2>

for any interval J. Hence each term in (2.24) is O ( ) and so the sum is

where
A Gl ) B N
Apo=— V(t, Ty)e "*dt
2 271— —Ty Zt ( 2)6
i ~
1 o\/n . n —_
- vn e—zsza\/ﬁ ¢ (S) fgd(SO—\/ﬁ)V(S’ n, TQ)dS :
2m J_ Ty 18
ovn
so\/n . . : :
V(s,n, T)=1- T and ¢(s) is the characteristic function of X given by

O(s) = pre™™ 4 -+ + pgar et

Let Ty = K md/ 2 and define

1 [ar n(s) — &
App = — e~iszoVn ¢"(s) 'd(sa\/ﬁ) V(s,n,Ty) ds.
’ 2m _% 18

Let Fn = Amg — An,l- Put

~ 1 ) n
r,=— e—zsw\/ﬁ (b—((S) V(s,n, Tg) ds.
2T Jisle[Ty /(o v/m) T/ (oy/m)] is

Then, we have I'), = L,+0O (e’ETIQ) due to the exponential decay of éd.
The main result of Subsection 2.4.2 is the following.

Proposition 2.4.1.
C

HF” e (2.25)
Proof.
2 —i(s1+s2)zo/n in n d51 d32
E(T:) = E (e ¢"(s1)0" (82)V(81,m, To)V (82, 1, Tg)) —
1 S2

We split this integral into two parts.

25



(1) In the region where |s; + s3] < 1 we use Corollary 2.5.2 proven in Section

2.5 to estimate the integral by

(9( / 1
sl [T1 /(v T (o m)] VST

The next result will be proven in Section 2.6.

E (|¢"(s1)]) dsl> . (2.26)

Lemma 2.4.2.

Plugging the estimate of Lemma 2.4.2 into (2.26) and integrating we see that
~ 1
. . . 2\ -
the contribution of the first region to E(I';) is O (—Tln y /2> .

(2) Consider now the region where |s; 4+ s3] > 1. Denote
bay1 = G441 — a1, ..., by =az —ay.
Then
Bs) = " (s) where (s) = py + pa€ + -+ + payrein

Denote v = (p1,...,pd, ba,...,bg). Then there exists a compactly supported density

p = p(ay,v) such that the contribution of the second region is

' ' dsy d
// (/ 671(81+52)za\/ﬁem(s1+52)a1¢”(Sl)wn(52>V(81)V<82)pdal dy) iﬁ
[s1+s2|>1

51 82

We are able to use a 2d-dimensional coordinate system because on (2
pr+- - +papr =1, and piay+ -+ payiaas = 0. (2.27)

To estimate this integral we integrate by parts with respect to a;. We use that

, 1 d1% .
6zsna1dal — |:__:| detsna
isn daq
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for some large k (for example we can take k = 2d + 1). The integration by parts

k
amounts to applying (di> to (eisw\/ﬁp[w(sl)w(@)]”> which leads to the terms
a1

{ (di> [t } { (di) [p]} { (di) [w<sl>¢<s2>m}

where ki + ko + k3 = k. (Note that both o and ¢ depend on a; implicitly due to the
second equation in (2.27)). Thus, the contribution of the above term to the integral

is bounded by

(514 59)" nk1/2)+ks " ds; dsy
C{/X;JwﬂﬁNJmBNWﬂ k E ("0l 25,

k
[s1+s2]=1 (Sl +82) n 5152

Using Lemma 2.4.2 again we can estimate the above integral by

C

k2

it kb >k-—2

C

herwise.
Tynk+d/2—Fk1/2—ks otherwise

Thus the main contribution comes from k; = ky = 0, k3 = k proving Proposition

2.4.1. [l

Proposition 2.4.1 shows that the contribution from T, to the L*limit of n?A,,

can be made arbitrarily small by choosing K; large. Also, on |s| < Ty/ov/n we

have
so\/n so
V(S,H,T2> = (1 - T2 ) :H-\s\<T2/a\/ﬁ =1- W
Hence A, ; = A, + o(n%) where
An . 1 (Z)n(s) — ?d(SO'\/E) e—iszo\/ﬁds

21 Jis\<ti /oy is

approximates well A, ; and hence, A,, too. Also, the error from this approximation

of n¥2A,, converges to 0 in L?. Hence, we only need to analyze n¥ 2A,, for large
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2.5 Simplifying the error.

Denote
2k
Sp= ——
Y
and let I be the segment of length ——— |b | centered at s,. Put Ky > K. Due to the
d+1

results of the previous section it is sufficient to study

>

k| <K2y/n

where

k= =
271

Foo L[ rivovn 9(5) ~ Ealsov/)
S

To = O(n~@Y/2) due to [20, Section XVI.2]. Next, &;(so+/n) decays exponentially
with respect to n outside of Iy. So, its contribution to Zj is negligible for k # 0.

Accordingly,
A, = Z Ik+0( (d+1)/ >
0<|k|<Ky/n

where

1 n
I, = — e—zszaf (b ( )

1 d
27 Jp, S|<Ti/mym 5

Introduce the following notation
Sp = argmax [§(s)],  @(5) = rxe'.
sely,

The following lemma is similar to the results of [12, Section 5.2].
Lemma 2.5.1. Suppose that

ri > n 00 (2.28)
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and
T,

+
o\/n

¢ Ij. (2.29)

Then

n
_ Lo
1\/TNo 5

Proof. Let e**% = e @ +Bi (k) Then

Ik e—z2/2 ein¢k_i§kzo\/ﬁ(1+0n—>oo(]‘))'

d+1

re= 3y cos(;(k)) (2:30)

j=1

and
d+1

D> pysin(B;(k)) = 0. (2.31)

Cl 1
Since (2.28) implies that r, > 1 — ;n’ (2.30) shows that |5;(k)| < Cy/ % and

so (2.31) gives
d+1 3/2
In*“n
> piBik) =0 (W) : (2.32)
j=1

Now we use Taylor expansion

" , (k)2 202
' Grtdla; _ idk (1 +4B;(k) — @) (1 + ia;0 — a]_)

Thus,

252

A d+1 azo ln3/2 n 3
G5k +0) = € Z;pj (cos(ﬁj(k‘)) - 37> O\ Tam O
=

‘ 252 1 3/2
- reid (1 - 02 > +0 (% + 53> (2.34)

where we have used (2.32) as well as

piar + -+ papi1aa41 = 0, pla% +e +Pd+1a3+1 =0’
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Hence for large n, the main contribution to Z; equals to

n 252\ "
T’.{I ei(nqbk,—\/?wzsk)/ 1 — o0 e—iazé\/ﬁdé‘
27T25k 2

n
~ Tk ei(ngbkf\/ﬁazgk) 670'26271/272'0'6\/52615
27Ti§k

Making the change of variables 0d+/n/2 = t we evaluate the last integral as

Corollary 2.5.2. If I is a finite interval of order 1. Then

1
/1 10" ()| Lisj<my joym ds = O (ﬁ) .

Proof. We can cover I by a finite number of intervals I. The intervals where r; <

I
0o contribute O (%) while the contribution of the intervals where r;; > oo
1
is O (T) due to Lemma 2.5.1. ]
n

d+1

Because 7, &~ 1, rp = [(3)| = |p1 + Y  pjes™
j=2

~ § pj. Therefore, a;5; ~

27T]€bj

d+1

~ 0 (mod 27) for all 2 < j < d and hence,

9kb,
T ol g,

a15, mod 27 for all j > 2. Thus,

¢(sk) ~ 1 which means s; and 5, are close. Define, & = S —sk, nj1 =
d+1

Ikb.
j =1,...,dwherel; is the unique integer such that ;T L +2ml;, ~ 0. Then,
d+1

d+1

ri=Y 0542 Y pipyeos[(b — by)&k + mk — njx] + 2paripr cos b1
=1 15,041
d

+ 2 ijpl cos(b;&r +njx). (2.35)

=2

Therefore

rp=1- Z pip; (0 = 0j)&x + Mk — Mjk)® — Paraprbi Ei
1>5,571
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d d
=Y pipa(bi&e +miw)* + O <f;§ + 277131@) :

j=2 =1

Taking 7, , = by = 0 we can write the above as,

re=—=G> ppibi—0,)* =286 > pipi(b— by)(mx — mjk)
1> >j
’ (LA

d
+1— > (b =)k — mjx)* + O <§}Z’ +> 7]?k> :
> =1

(L.3)#(d1)

Since we have r; approximated by a quadratic polynomial of &, (the unknown) we

can approximate &, by determining the maximizer of 73 (£), obtaining

Yo 55 pipi(b—b;) (e — 1K)

1,7)#(d,1
N ST TR +O (") (2:36)
>J

Substituting back we find 74 in terms of 7;; only. Ignoring higher order terms we

compute the maximum to be:

re=1— > ppi(b— b))k — njw)’
1>j
(1,5)#(d,1)

2
{Z ;i (be — b)) (e — ﬂj,k)}
(1,7)#(d,1)

d
+0 2
Zl>j pip; (b — b;)? (lzl mk)
—1

. Then,

_|_

Put R = Zplpj(bl — bj)2

>3

ri=14 Y (b= by) [ppi(b — b)) R — 1] (s — my)°
>j
L) AHdD)

+ > ppPapa(bi— ;) (b = ba) ROqk = 1) (e = M) + O (Z 771%)

I>jm>n >3
l#m,j#n

(1,3),(m,n)#(d,1)
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d
=1-2 Z Dy ;(a, p)minix + O <Z 7713,j> . (2.37)

1,j=2 >3

Thus,

d
re=1-) Di(ap)mus+ O (Z né”,j) =1 =0l Dapmy + Omil?)

1,j=2 1>

where Dy is a (d — 1) x (d — 1) matrix with
[Daplij = Dij(a, p) (2.38)

and 77;{ = (Mok, - - - »Nak). From this we have,

e/ (1 — 1 Dapny + O(lImi|1?))" pindR—iskzoyn

T, —
b /o Sk

(14 o(1)).

T
Let B(a, p) be the contribution of the boundary terms +—— € I,
o\/n

7

Lemma 2.5.3.

C
B(B)) < -

nd-1)/2"
Lemma 2.5.4. Let
i = i gjant st flepot ot+1)-

with a = [2(d — 1)]"*. Then there is a constant ¢ such that

1 .
E Z Z Zx,| | = O (WQK exp(—cQQK)> .

0<|k|<Knd-1/2 I>K

Lemmas 2.5.3 and 2.5.4 will be proven in Section 2.6.

Next we prove a lemma that would allow us to further simplify A,,.

Lemma 2.5.5. (a) 3, = s +w'n;, + O(|n||2) where w = w(a,p) is a 1 x (d — 1)

vector.

Inn
() If ([l = O (%) then ngy = nsyai + npanak + -« -+ + npanax + o(1).
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Proof. Since 5, — s = (i, part (a) follows by (2.36).

Next, by (2.34)

In*?%n
o = arg ¢(sk) + O (53 + W)

Note that,
O(s1) = € (py + pae”™* + -+ 4 pae”F + pyyy).
Thus,
arg(¢(sy)) = sgas + tan™' <p1 I pi;?i:jr ;+p§izisnn7d7i;k+ pd+1)
d
= spaj + mel,k +O(|ln,.[1*)
1=2

since the denominator in the first line is 1+O(||n||?). Now part (b) follows easily. [J

Now, we continue the analysis of the leading term in A,. Pick a small § and

define
A ={(a,p)| T, = 0 Vk,I s.t. |k| <on" Y2 and 1 < K}.
Then
Af = {(a,p)| Flk| < an V2 [kt ]| < 25}
Thus,
c C2K 59K
PAD) = > |k|@Dap@-D/2 — O(va27)
|k|<5n(d—1)/2
1
if o = m Hence, for a very large K and ¢ such that V62K is very small, we
k
can approximate A, by the sum of Z;’s with § < —(d|_1|)/2 < K and [k|*n**||n,| <
n

2K,
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k

We define the random vector X = v/nn, and Y), = NEEY)
n

. Then, combining
terms corresponding to £ and —k, we obtain the following approximation to the

distribution of A,, for large n

’bd-i-l ’6_ Z sin(ngy, — Spzo\/n) o~ X DapXi
nt2o/7 keS(n,6,K) Y

where S(n, 6, K) = {k > 010 < Vi < K, |Yi|]*|Xs| <25}

Define q = (p2, ..., pq). Then, Lemma 2.5.5 shows that

ney — spzoy/n = sg(na; — zo/n) + nq'n, — zov/nw’n, + o(1)

27m (\/_Ch 20)Y; + (v/nq — zaw)TXk +o(1).

" Jbanl
Therefore, for large n and K and ¢ such that V2K s very small, the distribution

of A, is well approximated by

|bd+1\€ /2 sin (ﬁzﬁﬁ (vna; — zo)Yy + (Vnq — zaw)TXk>
nd/2g/13 keS(1,6,K) Y

e—XkTDa,pXk

A5, K) =

2.6  Expectation of characteristic function.

Proof of Lemma 2.4.2. Recall that d(s) = max d(b;s,0) where the distance is

2<j<d+1

computed on the torus R/(27Z). Formula (2.35) shows that there are positive con-

stants C ¢ such that
L _ ]¢"(s)|

6 < e—cnd(s)?

< C. (2.39)
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To prove the lemma we decompose E(e’cnd(S)Q) into the pieces where d(s)y/n is of

order 2! for some I < (log, n)/2. and use the fact that 0 has a bounded density.

(logy 1) /2
E(¢"(s)) < CP (d(s) < —) +C ) P(d(s)vne[2,2™) e

completing the proof. O

Proof of Lemma 2.5.53. Let k be such that

T
€ I,. Th
U\/ﬁ k en
Ti/ov/n ) n
T :/ e_“”\/ﬁ¢—(s) ds.
m(2k—1)/|bg+1] §

’7T(2]€ — ].) T1
ba1| "o/

C Ti/o\/n
B(T) < —pE ( / |¢"<s>|ds) .

7(2k—=1)/bay1|

Because T7 = Kln and s € [ } we have s ~ n'@1/2 Thus

We claim that for all fixed by,

C
// eicnd(s)z dsdby ... dbg_1 < W (240)

If this is true then using that p is a smooth compactly supported density of b; we

have that,

TI/U\/E Tl/Uf
E(/ 9" (s Ids> /// |p™ ()| ds dbg dbg_ . . . dby
m(2k—1)/]ba+1] 2k—1)/|bgs1]|
T /ov/n
<C/// e~ p(2) ds da dbg_y . .. dby
(2k—1) /||
<0/// —end() dgdby_y . .. dby p(x) da
1
Snd/Q p(x)dx =0 -
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Thus

C
E(|Z.]) < I CTRYCE (2.41)
. £ T < C :
Similarly, i o € Iy, then(2.41) holds. Hence, E(|B]) < a3 & required.

To prove (2.40) we decompose it into pieces where d(s)+/n is of order 2. Taking

i to be the product measure dsdbg_1 ... dby from (2.39) we have

// e~ dsdby_y ... dby < Cpu{(s, by, ..., ba1)|d(s) < 1/y/n}

(logy n)/2

+C Z M{(S’b27"-abd71)|d(s)\/ﬁe [21’21+1]}67c4l

(logg n)/2
C 4l _C4l C
< mtC ; ¢ S an

as required. O

Proof of Lemma 2.5.4. Because
ri =1 =m0 Dapmy + O(|lne|®) and [k[*n"[|m, | € [2', 2]

we can write

_ —3/4
rp =1 c’k|2a\/ﬁ+0(n ).
Accordingly
22l
ry < Ce [k,
Also
c2!
P ka 1/4 c 2[ 2l+1 < -
Hence,
NG [ l NG
Ce Ik 2 C2e k2
E(Zy,;) <

Vilkl /knd-0/4 = [k[F2n@ DA
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Thus

_ c22K Vn

C2Ke Tk
lz;( E(Ik,l) S W
>

Therefore we need to estimate

22K m
\k|20‘

C2Ke” B
Z \k|3/2n(d+1)/4 o

0<|k|<Kn(d=1)/2

1 N2K (d=1)/2 _ 22K m

C
- = |k[2o 2.42
reBD DR = e (2:42)

0<|k|<Knld—1)/2

Split the sum over

Kn(d—l)/2 Kn(d—l)/Q :|

WE[ TSR (2.43)

for s € N. Then, for a fixed s we have

_1
k2= 0 Katyn
2di1 ’

so each term in the sum (2.42) is of order

9K +(3s/2) 022K+ﬁ
K321z P\ T i :

d-1)/2

(
n . Hence, the sum over k in (2.43)

But the number of such terms is of order

is
oK +s/2 22K +75
O\ mr 2\ wm ) )
Summing over s we obtain the result. O]
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2.7 Relation to homogeneous flows.

Given u € R v € R consider the following function on space M of unimod-

ular lattices in R%:

sin2r(ufx +ovy) _,orp
Z(L) = Z e 4 Da,p ]1{6<y<K’ya||x||<2K}. (2.44)

(y2)EL\ {0} 4

1 —(d-1)t
Define v = 7N and introduce the matrices, H, = <01T ICZI)’ G, = (e (OdTl) ) )

etld—l

Then, we have

N b 2/
pirei, — aele ™ g ga g G,
oV
where
nd/2
u=+nq— zow and v = ——(v/na; — z0)
[ba41

and q and w are defined at the end of Section 2.5. Let £(n,a) be the unimodular

lattice Z4 H, G% Let
w;(n,a) = (y;(n,a),x,(n,a)), j=1,...,d
with y; € R and x; € R ! be the shortest spanning set of £. Put,
0;(n,(a,p)) =u’x;(n,a) +vy;(n,a), j=1,...,d.

Proposition 2.7.1. If (a,p) is distributed according to P then the distribution of

the random wvector
((a,p), L(n,a),8(n, (a,p)))

converges to Px i as n — oo, where pi is the Haar measure on [SLg(R)/SLq(Z)] x T
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If we restrict our attention only to ((a,p), £(n,a)) then the result is standard
(see [39, Theorem 5.8], as well as [18,35,45]). The proof in the general case follows

the approach of the proof of Proposition 5.1 in [14].

Proof. We need to show that for each bounded smooth test function f,

/Qf((a,p),ﬁ(n,a),e) dpP — o f((a,p), L,0)dP dLdo (2.45)

as n — oo. Write the Fourier series expansion of f:

f((ap),L(n,a),0)= > fil(a,p),L(n,a)) ™0, (2.46)

Then, it is enough to prove (2.45) for individual terms in (2.46).

If k = 0 then by [39, Theorem 5.8] we can conclude that

/Qfo((a, p),L(n,a))dP — fo((a,p), L) dP dL de.

QX MxTI
Now assume that k # 0. Since €2 is 2d dimensional, we can use (py, . . ., pa, a1, ba, . . ., bg)
as local coordinates. In these coordinates £ is independent of a;. Hence, y;’s and
x;’s are independent of a;. Put v = (pi,...,pa,ba,...,b4). Then there exists a

compactly supported density p such that,

Tuac= [ fellap), £l a)) 70 ap (247
— [ Ad@p). L)) exp2ei (Vir Y- kya;)
/2 .
X [/ play, V) exp 2mi (de (\/ﬁal — 20) Zyjkj — ZO'Z kjw Xj) dal] dv.
Note that,

/ fi((a,p), L(n,a)) e™"0d0, ... do,dP dL =0
Tdx Qx M
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because
/ 2™k 0q0  dh, = 0.
Td

Therefore, it is enough to prove that J, x converges to 0 as n — oo. To prove this

we use integration by parts as follows. Put,

2rnld+1)/2 Z Yj k’

gla1,v) = expi ( al) = expi (W 2p(v)ay)

[ba1]
) e
where ¢(v) = 2 2 yiks and,
|ba+1]
2 d/2
h(ay,v) = p(a1,v)exp [ (M + 47rz kijxj) zo(ay, l/):|
[ba+1]

Then, the inner integral in (2.47) is / g(ar,v)h(ay,v)day . Let ¢ > 0. On the set

Qx = {¢(v) > e} we can write

1

gy doxp (fan o).

g(ar,v)da; =

Integrating by parts on @k (note that h has compact support) and using trivial

bounds on @)}, we can conclude that

= V)n(@tD/2

exp (ian(d+H/2
[l < | [ R ent ) iy, vy da| + CP((ow) < o)

< W/M'(al,u)] day + CP({6(v) < ¢})
for small enough . But '(a;,v) = O(n%?), hence the first term is O(1/y/n).
Therefore, first taking n — oo and then taking ¢ — 0 we have the required result.

[]

Proposition 2.7.1 implies that as n — oo the distribution of n%?A,, (8, K)

converges to the distribution of

29 |Gar1 — aq sin2m(m) _yorp
/2 (0, p) /7 “ym) ) P sepyml <k, ym)le x| <2<y (2:48)
TGPV ez (o)
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Next we let 6 — 0 and K — oo in such a way that V625 =5 0. Then,

Lis<iy(m)| <K, ly(m)|o|x(m)|<2x} = 1.

Thus, (2.48) converges to X proving Theorem 2.1.2%.

2.8 Finite intervals.

The proofs of Theorems 2.1.3 and 2.1.4 are similar to the proofs of Theorems
2.1.1 and 2.1.2 so we just explain the necessary changes leaving the details to the

readers.

Proof of Theorem 2.1.3. The random vector (2.10) can be approximated by (21, Z(2))

where Z are defined as in (2.44) with u and v replaced by
u? = /nq — zow and v = ——

respectively. Define 89 as in Proposition 2.7.1 but u and v replaced by u® and
v, To complete the proof we prove an analogue of Proposition 2.7.1. Namely that
((a,p), L(n,a),0Y (n, (a,p)), 0P (n, (a,p))) converges to P x z’ as n — oo where
p/ is the Haar measure on [SLy(R)/SLy(Z)] x T x T¢.

As in the proof of Proposition 2.7.1 we prove that for individual terms in the

Fourier series of a smooth function f on [SL4(R)/SLy4(Z)] x T x T¢

S (@ p), Lin,a)) 200 @0 -0)
(kl,kQ)EZd xZ4

we have

Tusas = [ figal(ap). £, )60 K400 gp
Q
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% / frko (2, p), £)2T IO (01-02)] 4P 1 16, 1, .
QX MxTdxTd

The case k; = ky = 0 follows from [39, Theorem 5.8]. Note that

2mn®/
kl(oW — 0(2))] = (29(n) — z1(n ( T Zy]kgj + Zkgjw xj)

D1l
If k; = 0 choose appropriate local-coordinates in which ¢ is a coordinate. Integrating

/2 _y 50 we see that

by parts with respect to 0 = o(a, p) and using |z1(n) — 29(n)|n
Jnok, — 0 asn — oo.

If ki # 0 then using the same local coordinates (ai,v) as in the proof of
Proposition 2.7.1 we can integrate by parts to conclude that J, x, x, — 0 as n — oo.

The proof follows through because the leading term of k7’0W + kZ(@W — @) is

still n Y 2p(v)ay. O

Proof of Theorem 2.1.4. To prove part (a) pick £ < . Applying Theorem 2.1.1 we

obtain that for almost every (a, p)
Pa,p) (Z1 < S < Z2> =&x-1(20) — Eaa (1) + O (0 (d- 5)/2)
ovn
=n(z1)l, + O(12) + O(L,/v/n) + O (n~=9/2) .
According to the assumptions of part (a) the first term is much larger than the
remaining terms proving the result.
The proof of part (b) is similar except that we apply Theorem 2.1.3 instead of

Theorem 2.1.1 so we only get convergence in probability.

To prove part (c) we first prove the following analogue of Theorem 2.1.3 in

clagy — aq
nd/2g

nd/2 2 S ) s
#i/2 - L < 25 /2 . n <
A(a7 p) (6 lgd(zl) Pa,p (O' n Zl)] , € lgd(22> Pa,p (0_ ?’L_ ~ 22>‘|)

case z9 = 21 +




converges in law to a random vector (Xy, X3)(L, 6, ¢) where

) 2
o4 [x(m)]|

y(m) (sin O(m),sin(f(m) — cy(m))) _

(X, Xo)(L.0,c) = Y

mezd\ {0}
Once this convergence is established the proof of part (c) is the same as the proof of
part (b). The proof of convergence is similar to the proof of Theorem 2.1.3 except
that 8 and 8® are now not independent. Namely using the same notation as in
the proof of Theorem 2.1.3 we have that u® = u" +o(1), while v® = v —c+o(1).
Following the same argument as in the proof of Proposition 2.7.1 we obtain that
(L(n,a),0W(n,a),[0® — 8W](n,a)) converges as n — oo to (L*,0,8") where
(L*,0%) is distributed according to the Haar measure on SLq(R)/SLy4(Z) x T¢ and

A

0, = 07 — cy;. This justifies the formula for (X1, Ay). O
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Chapter 3: Central Limit Theorem: Weakly Dependent Random Vari-

ables.

3.1 Overview and main results.
N
Let Sy = ZX” be a sum of random variables. We assume that there is a
n=1
Banach space B and a family of bounded linear operators £; : B — B and vectors

v € B, ¢ € B such that

E (e"°V) = ¢(L)v), t € R. (3.1)
We will make the following assumptions on the family L.

(A1) t — L; is continuous and there exists s € N and 6 > 0 such that ¢t — £; is s

times continuously differentiable for |t| < 6.

(A2) 1 is an isolated and simple eigenvalue of Lo, all other eigenvalues of £y have
absolute value less than 1 and its essential spectrum is contained strictly inside

the disk of radius 1 (spectral gap).
(A3) For all t # 0, sp(L:) C {|]z] < 1}.

1
(A4) There are positive real numbers K, 7,79 and Ny such that Hﬁiv || < N for

all ¢ satisfying K < |[t| < N™ and N > Nj.
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Remark 3.1.1.
1. In practice we would check (A3) by showing that when t # 0, the spectral radius
of Ly is at most 1 and no eigenvalue of L; is on the unit circle. Because the
spectrum of a linear operator is a closed set this would imply that sp(L;) is

contained in a closed disk strictly inside the unit disk.

2. Suppose (A4) holds. Let Ny > Ny be such that N ~9™ > Ny. Then, for all

N > Nl,
N(r1—e€)/r1 e/r1 N(r1—€)/r1 €/r1
Il < Iles M <l hi
1 _
< T Jor K < Jt] < N7
"N(rlfe)/m"rgNl 1

< 1

- NT’QKNl
where Ky, = 7€ Neim Therefore fixing N1 large enough we can make

1

roKn, as large as we want. Hence, given (A4), by slightly reducing r1, we may
assume 19 s sufficiently large.
3. Suppose (Al),(A2) and (A3) are satisfied with s > 3. Then, [24, Theorem

2.4] implies that there exists A € R and o > 0 such that

—SN\;NN A 4 N0, 0%). (3.2)

Our interest is in Sy that satisfies the CLT i.e. the case o® > 0. Since in ap-

plications we specify conditions which guarantee this, in the following theorems

we always assume that o® > 0.

This is essentially an extension of Nagaev-Guivarc'h method. Some of the
spectral assumptions in the theorem can be found in the proofs of decay of corre-
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lations and the CLT using transfer operators. For example, see [24,29,37]. The
key novelty here is the condition (A4) which guarantees a sufficient control over the
characteristic function for intermediate values of ¢. This is analogous to the condi-
tion (1.3) in Theorem 1.1. In addition, parallels can be drawn between the moment
condition in Theorem 1.1 with the condition s = r + 2. The proof of the result
is based on classical perturbation theory in [33], applicable due to (A1), (A2) and
(A3), which provides the actual expansion and control of the error near 0, the Berry-
Esseen inequality (see (3.4) below) which reduces that error to a Fourier inversion
integral over an interval of size O(n’/?) and the condition (A4).

Now we are in a position to state our first result on the existence of the classical
Edgeworth expansion for random variables satisfying (A1) through (A4) which we
refer to as weakly dependent random variables.

Theorem 3.1.1. Let r € N with r > 2. Suppose (Al) through (A4) hold with
s=r+2andr > % Then Sy admits Edgeworth expansion of order r.

Next, we examine the error of the order 1 Edgeworth expansion in more detail.
We first show that the order 1 expansion exists if (A1) through (A3) hold with s = 3.
Then, we show that the error of approximation can be improved if (A4) holds.
Theorem 3.1.2. Suppose (Al) through (A3) hold with s > 3. Then, the order 1
Edgeworth expansion exists.

Theorem 3.1.3. Suppose (A1) through (A4) hold with s > 4. Then,

(Pt ) - o ()

where q¢ = min{l,%—l—rl}.
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As one would expect, more precise asymptotics than the usual o(N _%) are
available when the characteristic function has better decay. The proof shows that
the error depends mostly on the expansion of the characteristic function at 0. This
is an indication that the error in Theorem 3.1.2 cannot be improved more than by

factor of ! h is 1
a factor of —= even when ry is large.
VN

In [9], analogous results are obtained for subshifts of finite type in the sta-
tionary case and an explicit description of the first order Edgeworth expansion is
given. Here, we consider a wider class of (not necessarily stationary) sequences and

give explicit descriptions of higher order Edgeworth polynomials by relating the

coefficients to asymptotic moments. Also, we improve the condition
: n -1
H,: [E("v)] < K(l - #) , % <1, |t| > K

found in [9] by replacing it with (A4). In addition, this allows us to obtain better
asymptotics for the first order expansion.

We also extend the results in [4] on the existence of weak Edgeworth expan-
sions for i.i.d. random variables. In section 3.5.1, we compare their results with the
ours.

Before we mention our results, we define the space F}" of functions. Put

mry = O _ il
C™(f) = max 179 and Ci(f) = ma o7 o

0<j<m
Define
Cy'(f) = €™ (f) + Ci(f).
We say f € F" if f is m times continuously differentiable and C}"(f) < oc.
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Theorem 3.1.4. Suppose (A1) through (A4) hold with s = r+2. Choose ¢ € N such
that q > % Then, for f € Ff:f, Sy admits weak local Edgeworth expansion of
order 7.
Theorem 3.1.5. Suppose (A1) through (A4) hold with s = r+2. Choose q € N such
that q > % Then, for f € F{)HQ, Sy admits weak global Edgeworth expansion of
order 7.

In Theorem 3.1.4 and Theorem 3.1.5, f is required to have at least three
derivatives in order to guarantee the integrability of Fourier transforms of f and its
derivatives. In addition to (A1) through (A4), if we have,

(A5) There exists C,a > 0 and N, such that ||LN|| < t% for |t| > N™ for N > Nj.
then we can improve this assumption to f having only one continuous deriva-

tive.

r+1
(&

Theorem 3.1.4%*. Suppose (A1) through (A5) hold with s =7+ 2 and o >
for sufficiently large N. Then, for f € F.,,, Sy admits weak local Edgeworth
expansion of order r.

1
Tt for

Theorem 3.1.5*. Suppose (A1) through (A5) hold with s = r+2 and a > -
sufficiently large N. Then, for f € Fy, Sy admits weak global Edgeworth expansion
of order r.

The proofs of these theorems are minor modifications of the proofs of the previ-
ous two theorems. This is described in remark 3.2.2 appearing after the proofs.

The next theorem gives sufficient conditions for the existence of the averaged
Edgeworth expansion.

Theorem 3.1.6. Suppose (Al) through (A4) hold with s = r +2. Choose ¢ € N
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such that q > 2L7“1 Then, Sy admits averaged Edgeworth expansion of order r for
feF].

We note that for integer valued random variable assumptions (A3) and (A4)
cannot hold since the characteristic function of Sy is 2m-periodic. Therefore we
replace (A3) by,

(/Ax?:) When t & 277, sp(L:) C {|z| < 1} and when t € 27Z, sp(L;) C {|z| < 1}U{1}.
Also, because of periodicity of the characteristic function, an assumption similar to
(A4) is not required.

The following theorem provides conditions for the existence of asymptotic
expansions for the LCLT for weakly dependent integer valued random variables.
A similar result for X,’s that are Z%valued, is obtained in [42]. Compare with
Proposition 4.2 and 4.4 therein.

Theorem 3.1.7. Suppose X,, are integer valued, (A1), (A2) and (;1\?:) are satisfied
with s =1+ 2. Then Sy admits order r lattice Edgeworth expansion.

The layout of the rest of the chapter is as follows. In section 3.2 we prove the
results mentioned earlier by constructing the Edgeworth polynomials using char-
acteristic functions and concluding that they satisfy the required asymptotics. In
section 3.3 we relate the coefficients of these polynomials to moments of Sy and
provide an algorithm to compute coefficients. A few applications of the Edgeworth
expansions such as the Local Central Limit Theorem and Moderate Deviations, are

discussed in section 3.4. In the last section we give examples of sequences of random

variables for which our theory can be applied. First, we revisit the i.i.d. case and

49



recover previous results. Then, we focus on non-trivial examples like observations
arising from piece-wise expanding maps of an interval, Markov chains with finitely

many states and markov processes which are strongly ergodic.

3.2 Proofs of the main results.

Here we prove the results mentioned earlier. From now on we work in the

setting described in section 3.1.

Proof of Theorem 3.1.1. We seek polynomials P,(x) with real coefficients such that

Sn —nA - By(z) —r/2
P(Tgx)—m(x)zz 2 n(z) +o(n?). (3.3)

p=1
Once we have found suitable candidates for P,(z) we can apply the Berry-Esseen

inequality,

F\n(t) B é\r,n(w
t

Co
dt + T (34)

Fo(2) — Eonla)] < = /

mJ-T

where

Fo(z) = P <% < x) ) =@+ Y Z’If/?n@),

and Cj is independent of T'. We refer the reader to [20, Chapter XVI.3] for a proof
of (3.4). What follows is a formal derivation of P,(z). Later, we will use (3.4) along
with other estimates to prove (3.3).

It follows from (A1), (A2) and classical perturbation theory (see [33, IV.3.6
and VII.1.8]) that there exist 6 > 0 such that for |t] < §, £; has a top eigenvalue

w(t) which is simple and the remainder of the spectrum is contained in a strictly
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smaller disk. One can express L; as

where II; is the eigenprojection to the top eigenspace of £, and A, = (I — 1) L;.

Because Al = II,A; = 0, iterating (3.5), we obtain
L3 = p" (O, + A}

Using (A3) and compactness, there exist C' (which does not depend on n and t) and

0 < r < 1 such that ||A}|| < Cr"™ for all |t| < 6. By (3.1),

t

E(¢tSn/VA) = u(%)nz(nt/ﬁv) + (A7 ). (3.6)

Now, we focus on the first term of (3.6). Put
Z(t) = ((ILv). (3.7)

Then, substituting ¢ = 0 in (3.6) yields 1 = Z(0) + ¢(Agv). Also, we know that
7}1—{20 |Agv|| = 0. This gives nli_)rrolof(Agv) = 0. Therefore, Z(0) = 1 and Z(t) # 0
when |t| < 6. Also, this shows that ¢(A{v) = 0 for all n. Next, note that t — pu(t)
and t — II; are r + 2 times continuously differentiable on |¢t| < d (see [33, IV.3.6 and
VII.1.8]). Therefore, Z(t) is r + 2 times continuously differentiable on || < 0.

Now we are in a position to compute P,(x). To this end we make use of
ideas in [20, Chapter XVI| (where the Edgeworth expansions for i.i.d. random

variables are constructed) and [24] (where the CLT is proved using Nagaev-Guivarc’h

method).
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Consider the function 1 such that,

+i() = () = F e (7))

2t2

o ( t ) At o
&1 vn/  Jno 2n
_nAq2
where A = limE<&> is the asymptotic mean and o? = lim ]E([Sn—n] ) is
n—00 n n—o00 \/ﬁ

the asymptotic variance. (For details see section 3.3.)

By (3.6) we have,
E(eit%) _ exp (mb <L>>Z<L) + 6_%5(/\2@) (3.8)

Notice that ¢(0) = ¢'(0) = 0 and ¢ () is 7+2 times continuously differentiable.
Now, denote by t*,(t) the order (r + 2) Taylor approximation of 1. Then, 1, is
the unique polynomial such that (t) = t*¢,(t) + o(|t|""?). Also, ¥,.(0) = 0 and ¥,
is a polynomial of degree r. In fact, we can write ¥ (t) = %, (t) + tr+2d~1r(t) where

1, is continuous and t,(0) = 0. Thus,

t - 9 t I -/t
exp (o (ﬁ)) = e (1 %(%) o %(%))-
Denote by Z,.(t) the order—r Taylor expansion of Z(t) — 1. Then, Z,.(0) = 0 and

Z(t) = 14 Z.(t) + t"Z,.(t) with twice continuously differentiable Z,(t) such that

ZT(O) = (. Then, to make the order n9/2 terms explicit, we compute:

i (2)2(7)




m=1 k=1
r+2 t 1 rrz 3 r+1 —rtl
+ gt w<—n) - —t Z<—n> +HO(nF)
ARt t . e
= Z 2 + nr/QQO(%) +t +1(’)(n 2 ) (39)

k=0
where Ay = 1, (t) = t%),(t) — Z,(t) is continuous and (0) = 0. Here Z, is the

remainder of log Z(t) when approximated by powers of Z,.. Next write,

—~ A(t)
Q) =) 15 (3.10)
k=1
Notice that
A and k have the same parity. (3.11)

This can be seen directly from the construction, because we collect terms with the

t
172 4, and Z, are a polynomial in — with no constant term and

NG

we take powers of t%1,(t) and Z,(t), the resulting A will contain terms of the form

same power of n~

Cst28+k) .

We claim that,

n((LVZ(L) — eS8 50 (t
/ iR () ~ € e > @0 dt (3.12)
[t <o/ t
/ 2,2 |exp [nw(\/iﬁ) + log Z(\/Lﬁ)] —1—Qu(t) ”
= e 2
It <6y/m t

=0 (n_’"/2) )

We note that from the choice of @,

P [m/}(x/%) + loth(\/Lﬁ)] —1m @) = nrl/a (tle(%> + trO(n*%))
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where ¢(t) = o(1) as t — 0. As a result, for all € > 0 the integrand of (3.12) can be
made smaller than #(ﬂ_l + tT)e_# by choosing § small enough. This proves
the claim.

Even though the following derivation is only valid for |t| < dv/n, once the
polynomial function @, (¢) is obtained as above, we can consider it to be defined for
all t € R.

Suppose |t| < §. From classical perturbation theory (see [33, Chapter IV]
and [29, Section 7]) we have

1
A= — [ 2"(z— L) ' dz (3.13)

2mi Jp
where I" is the positively oriented circle centered at z = 0 with radius €y. Here gy is

uniform in ¢t and 0 < g < 1. Now,

1
An - An - n o -1 o -1 d
t 07T 5 FZ [(z — L) (2 — L) |dz
1
=5 A 2"[(z — Lo)NL — Lo)(z — L) M dx.
A? B Ag /
Because £; — Lo = O([t|) we have that T = O(ef). £ € B and ((Ajv) =0
implies that
—AE A, ) —A A Azv)
e vn " U e vn "o—v— Ajv
/ AV - / U O g
lt|<6v/n ltl<ovm t
AP — AR
SC’/ 0 dt = O(e).
\t|<6 t

This decays exponentially fast to 0 as n — oo. This allows us to control the second

term in the RHS of (3.6). Combining this with (3.12) we can conclude that,

/t|<6\/ﬁ

it Sn—mA t202

E(e" A7) — e — e Qu(t)
t

dt = o(n™""?). (3.14)

o4



Observe that,
o242 1 &5 e d
(it)ke= = T = —n(t)

- vVoro? Atk € dtk

where f(x) = / e " f(t) dt is the Fourier transform of f. Therefore,

R;(t)n(t) = \/%Aj (—z’%) [6222} . (3.15)

Then, the required P,(z) for p > 1, can be found using the relation,

n(2)R,(z) = — [n(x)Pp(x)] (3.16)

For more details, we refer the reader to [20, Chapter XVI1.3,4].

C
Given € > 0, choose B > — where Cp is as in (3.4). Let r € N. Then we
3

choose polynomials P,(x) as described above. Then, from (3.4) it follows that,

|F ( ) g ( )| < 1 /’B’nﬂ"/2 E(gitsn—\;ﬁn—A) _ €7t220'2 (1 _'_ Qn(t)) dt _I_ CO
n\T) — Cprnl\T =~
’ T —Bnr/2 t B?’Lr/2
€
Sh+h+I+—5
n
where
it Sn—nd _ %02
olf R -cFarem),
T Jjt<sy/m t
o [P
9= =
T J§\/n<|t|<Bnr/?
pelf em[lral,
T Jjt)>svm t

From (3.12) we have that I is o(n~"/?). Because our choice of & > 0 is arbitrary
the proof is complete, if I; and I3 are also o(n~"/?). These follow from (3.18), (3.19)

and (3.17) below.

95



It is easy to see that,

t2 2
_r o

for some ¢ > 0. Thus, we only need to control,

1+ Qn(t)
t

‘ dt = O(e™) (3.17)

F wSn/\/n
§y/m<|t|<Bnr/? t
E tSn/\/n E wSn/\/n
-/ B E(eS )|
Sy/m<t|<dy/m l 5/n<|t|<Bnr/? t

where § > max{6, K} with K as in (A4).

By (A3) the spectral radius of £; has modulus strictly less than 1. Because
t — L; is continuous, for all p < ¢, there exists v < 1 and C' > 0, such that
L] < CHy™ for all p < [t] < ¢ for sufficiently large m. Then using (3.1) for

sufficiently large n we have,

/6\/ﬁ<|t|<6\/ﬁ

This shows that the integral converges to 0 faster than any inverse power of v/n.

E(eitSn/V) 1 (o
M e 12 all dt <

~ 0V Jsyaci<sm VTR (3.18)

Next for sufficiently large n,

E(eits‘n/\/ﬁ) 1
dt < == 0(CT, —v)| dt (3.19
/5\/5<t|<3””2 L oN/n J5ymeiti<Bnr/? vt )
2Bn'/?

< =———
LI

—Cn'7 " = o(n™"/?).

1
The second inequality is due to assumption (A4) ie. (L} 7]l < —- where
n'f’

-1
L for large n due to Remark 3.1.1) and

Ty > (we can assume ry >

t
K<(5<M<Bn2 < n' for n € N with n'* lzB. O]

NZD
56



The proof of Theorem 3.1.2 follows the same idea. We include its proof for

completion.

Proof of Theorem 3.1.2. Because (Al) through (A3) hold with s > 3, we have (3.9)

C
where ¢ is continuous, ¢(0) = 0 and r = 1. Given € > 0, choose B > —% Then,

€
1B
Fula) - @l < - [
™ —Byn

. Sp—nA
Ztiﬁ ) o 6_

t

t2¢72
2

E(e (1+Qn(t)) Co

Byn

dt +

<hA D+t ——.

By/n
Because, ¢(t) = o(1) as t — 0 and

exp [m/J(\/iﬁ) + log Z(\/iﬁ)] —1—=Qu()

we have that,

n= [
[t|<dv/n

Also, I3 = O(e™"). Finally, because of (A3) there is v < 1 such that,

1(f) ' dt = o(n~1/2).

E itSn/v/n E(eitSn
/ Ble™) dt = / (™) dt <C sup |IL7|| < CHy"
§y/n<|ti<Byn t s<|t|<B s5<|t|<B
Combining these estimates we have the result. O

A slight modification of the previous proof gives us the proof of Theorem 3.1.3.
Higher regularity assumption gives us better asymptotics near 0 and the assumption
on the faster decay of the characteristic function gives us more control in the mid

range.

Proof of Theorem 3.1.3. Because (Al) through (A4) hold with s > 4, we have (3.9)

where ¢ is ', p(0) = 0 and r = 1. Then,

it Sn—mA +2

G Z e (14 Qu(t) Co
t dt + nl/2+r

nl/2+ry

E(e

Fo(z) - Eua(z)] < - /

™ J_pi/24m

o7



Co

§11+]2+13+n1/2+’"1

t
Because, gp( ) ~ ——= near 0 and
NZD

NG

exp [ (%) +1oth(¢%)] —1-Qu) %90(%) +t0<%)

we have that,

h:/
tl<dv/n

Also, I3 = O(e™"). As before, (3.18) holds for § > max{d, K}.

—e 2 —e 2 Ql(t)‘dt:(f)(l).

n

1 —_
ILE]] < —— where K <0 < [t| <n".
nT

ﬁ:/
§<|t|]<n™

1
Because 75 can be made arbitrarily large by choosing n large enough, I, = O(—).
n

E(eitsn/\/ﬁ)
t

itSn
E(e ) dt < Cnm—m—i—%

/5\/ﬁ<|t|<n1/2+’”1

Therefore,
1
[Fu(2) = Eva(@)| = O
n
. 1 . :
where s = min {1, 3 + 7“1} and we have the required conclusion. O

Remark 3.2.1. In the proof above, I gives the contribution to the error from the
expansion of the characteristic function near 0. This dominates when ry > 3
Weak forms of Edgeworth expansions are discussed in detail in [4]. We adapt
the ideas found in [4] to our proofs of Theorems 3.1.4 and 3.1.5. One key difference
is the requirement on f to have two more derivatives than required in [4]. This
compensates for the lack of control over the tail of the characteristic function of Sy.

In fact, it is enough to assume 1 + a more derivatives. But to avoid technicalities

o8



we stick to the stronger regularity assumption. In the i.i.d. case as shown in
[4], a Diophantine assumption takes care of this. See section 3.5.1 for a detailed

discussion.

Proof of Theorem 3.1.J. Recall that f(t) = /emf(a:) dx and pick A as in (3.2).

Then by Plancherel theorem,

E(f(S, —nA)) 2W/f et =nA)y gt (3.20)

s JRE(f(S, — nA)) = ;ﬂ / f(%) B 7 dt.

We first estimate RHS away from 0. Fix small 6 > 0. (A particular ¢ is chosen
later). Notice that for all 6 < |t| < K (where K as in (A4)), there exists ¢y € (0,1)

such that || £}]| < ¢f. Thus,

/ Tl E(eiS ) dt‘ < / Fweero)| dt < Cllfhe.
I<|t|<K 0<|t|<K

By Remark 3.1.1, for large n we can assume ro > r; 4+ (r + 1)/2. Therefore,

Iy i —-n n O”f“l
[ Fome s a < i) gy ar < S
K<|t|<n"1 K<|t|<n™ n
= || flho(n=*172).

—

Because f € F%2, we have that t/f(t) = (—i)"f@(t) and 7(‘1\) is integrable.

In fact, |fa)(t)\ < . Note that we are using only the fact that f is ¢ + 2

¢
(1 + [¢])

times continuously differentiable with integrable derivatives. Therefore for this to

— 1
be true f € FI is sufficient. Integrability of f(@ along with ¢ > Tt

r1
[ el < [ (R |
[t|>n"1 [t|>n"1 [t|>n"1

29

implies,

f(q

‘dt (3.21)



(AR

nriqa

<

= [[f@ so(n=+D/2).

Therefore,

‘ f(t)E(eit(S"’”A)) dt| = o(n~"+1/2), (3.22)
[t|>d

From (3.8), for [t| < §v/n, we have,

., Sp—nA

E(* 7 ) = o7 0O (1 4 O(6)) + O(el).

Thus, choosing small §, for large n when |t| < dy/n there exist ¢, C' > 0 such that

it Sn nA

B < ot

Then,
C

< —cDlogn __
<Ce v

ltsn nA

)

VDlogn < |t| < dv/n = ‘E

and

=)

. ~( t Sn-na  dt
(t)E(e(Sn—nA)) dt‘ = —) E(e”s ﬁA)_

f <
’ /\/Wgn<|t<5\/ﬁ \/ﬁ \/ﬁ
c ~ 26C
< G [ IR0l = 2
T/ PIEn <o n

/ Dlogn
’ V SRR <o

Combining this with (3.22) and choosing D such that, ¢D > (r+1)/2 we have that,

'/| _— F()E(eMSn—n)) dt‘ — o(n~ /2y, (3.23)
t> ogn
/D1
Next, suppose [t| < o8 Then,
n
Y - f(j)(o) j trt 2lr+1
t) = AN T (e(t
it = 3o e e

where 0 < |e(t)| < |t|. Note that,

’ﬂr+1)(€<t>)’ _ ‘/xr+l€—ie(t)xf($) dx

< [l (@) do < (1)
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Therefore,

AK J/DTogn (T) E(e"V ) dt

JY
z% Ini/2

)

/t|<\/Dlogn

1 1 / N
: e e ()
TEEEITER VI S ) NG
where
., Sp—nA t )
E ezt vn tr—&-lj/c\(r—i-l) el — dt‘ < Cr f / tr+1e—ct dt
Mewm ( ) ( (\/ﬁ>> w(f) [ 1

for large n. Hence,

<
“\H
—
<
~
~~
=)
~—r

PE( V) d + Crt (NO(n™THD12). (3.24)

jini’? /|t|<¢m

e 22E(e ~Vn ) =exp (mﬁ(%))Z(Lﬂ) +6_i7\>ét+02 K(At/\fv)

LAt t log D72 (p)

Substituting this in (3.24),

N t ztw
/|t<\/mf (%) E(e”™ va )dt (3.26)

fu
Z ‘n]/2

~ _fY(0)
JinGE+D/2
0

r (r+1)/2
o222 N\ Ai(1) log' (n)
te > o O — o

k=0

A<\/Dlogn

= I

AL e 2 dt 4 o(n~T7?).

k=0 j= /|;|<\/Dlogn
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Recall from (3.11) that Aj and k& have the same parity. Therefore, if k + j is odd
then

/ 7 A(H)e 2 dt = 0.
t/<vDlogn

So only integral powers of n~' will remain in the expansion. Also there is C that

depends only on r such that,

J —a?t? /2 4r —o?t?/2 ¢ _ C
t Ag(t)e dt < CA» Dlognt e dt < co2Dlog(n)/4 — po?D/4"

Aﬂzm

Choosing D such that 20°D > (r +1)/2,

/ AL (t)e " 2 dt = / A (H)e "2 dt 4 o(n”7?).
R t<vDlogn

Therefore, fixing D large, we can assume the integrals to be over the whole real line.

Now, define
apj = / AR (t)e= " F 2 dt
R
and substitute
Foo = [ iy sa

in (3.26) to obtain,

o~ Z-tSnan r " 1 . . _
/|t mf(%)]ﬁ:(e Vi )dt:ZZak,jW/R(—zt)ﬂf(t) dt + o(n™"/?)
< ogmn k=0 =0
(3.27)
T 1 ] )
=Y [0 Y ity dt o)



where

Bty = > 2 (=ity. (3.28)

1
hti=2p 7'

The final simplification was done by absorbing the terms corresponding to higher
powers of n~! into the error term. Note that P,; is a polynomial of degree at most
2p and that once we know A, ..., Ay, we can compute B, ;.

Finally combining (3.27) and (3.23) substituting in (3.20) we obtain the re-

quired result as shown below.

VAE(f (S, — nA)) = —

~/ t jtSn=nA
- / f(—)]E(e ) dt
27 Jy<yDlogn

n

+ vn FOE(eMSn =) gt
2 M>W

]

The proof of Theorem 3.1.5 uses the relation (3.25) derived in the previous
proof. But we do not use the Taylor expansion of ]?, so differentiability of fis not

required. So the assumption on the decay of f at infinity can be relaxed.
Proof of Theorem 3.1.5. Multiplying (3.25) by f and integrating we obtain,

/;|<\/Dlogn

o2

+2
2 dt+ || fllio(n"?).

#AK\/W J/C\(%)Ak(t)e

k=0
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As in the proof of Theorem 3.1.4 the integrals above can be replaced by inte-

grals over R without altering the order of the error because

o~

7 Ag(t)e™ 2 dt < || fll o(n™"/?)

()

/|t>¢m

for D such that 202D > (r + 1)/2. Therefore,
t

/t|<¢mf(ﬁ>E( )t - an/z/ " dt + || o(n ™).

We pick R, as in (3.15) and claim P, , = R,,.

Note that v/nf(tv/n) <— f(t/\/ﬁ) So by the Plancherel theorem,

1 -~ 242

/R\/ﬁf (t\/ﬁ) Rk(t)n(t) dt = % Rf(%)jélk(t)e_aQ "

Thus,

27rl\/_ |t|<v/Dlogn DlognA<%>E( ' ) df

7 [ VA RO () di -+ o)

Spn—nA
N

. 3‘H

1

" / (/) Ryltn(@) dt + 1 f 1ol 2).  (3.20)

i~
Il
o

Note that (3.23) holds because f € F¢*?. Now, combining (3.29) with the estimate

(3.23) completes the proof. O

Remark 3.2.2. Proofs of both the Theorem 3.1.4* and Theorem 3.1.5% are almost
identical except the estimate (3.21). In order to obtain the same asymptotics, the
assumption on the integrability of f(?) can be replaced by (A5) and the fact that

~

1
|f(t)| ~ n for as t — +oo.

‘/ (s, nA)dt‘<0/ ey at
[t|>n"1 [f>nm
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<l [ L,

— pri(a—e) tlte

+1

Since, rio > choosing € small enough we can make the expression || f||; o(n~"+1/2)

as required.

Proof of Theorem 8.1.6. Select A as in (3.2). Define P, by (3.15) and (3.16) and

fn(z) = f(—+/nz). Then the change of variables -4 y yields,
n

vn

/ [P(% <z+ %) — ‘ﬁ(m + i) - €T,n<x + %)}f(y)dy = /nA, * fo(x).

r

where &, ,,(z) = Z #Pp(x)n(x).

p=1
.. Sp—nA T
Notice that E(e"” v= )f, € L'. Therefore,

itSn—nA i~

@z*ﬁY@>=§%/?i”E@¢%)h@Mﬁ

Also,

r

n+ (Z#an)} v ) = — / et E (14 Qu(t)) fult) dt

=5
p=1 T

where R,’s are polynomials given by (3.15) and @, (¢) is given by (3.10). From these

we conclude that,

~

(1+Qn(t)) fult) dt. (3.30)

. Sp—nA 5242
i Vn )—e_ 2

mmeFi/aMMz

2T

We claim that,

L, Sp—nA 2,2
t2n— _ ot
e )—e 2

—it

1

<Awﬁmw=—i/amE@ (1+Qu) =

fa®)dt.  (3.31)

2
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Indeed, if the right side of (3.31) converges absolutely, then Riemann-Lebesgue

Lemma gives us that it converges 0 as |z| — oo. Differentiating (3.31) we obtain

(3.30). Thus the two sides in (3.31) can differ only by a constant. Since both are 0

at £oo, this constant is 0 and (3.31) holds.

Now, we are left with the task of showing that the right side of (3.31) con-

~

verges absolutely. From the definition of f, it follows that, f,(t) =

~

1
NS

Combining this with (3.14), we have that,

<oy o "
E(eltsn_nA) _ 5 t2 (1 + Qn(t )) ‘
< ! !
. /ﬂ«w t Fult)| dt
SN
\/_ [t <6vm '
= || fllio(nC+172).
Note that,
CWEEE — e (14 Qut) 2 ‘
T d
’/t|>6\/ﬁe ! e
E("F) — o (L1 Qo) 5t
AR
: AI>5 t f< \/ﬁ> |
_it(Sn—nA)) — e~ n2022t2 (1 + Qn(_\/ﬁt)) -
=/ /;:|>5 t f
—zt —TLA) ~
Put,

B 1
"oV Jyss

<~

E —it(Sn—nA)\
% (t)‘dt

)-

é\“

We claim J, = o(n~"*+1/2). This proves that (3.31) converges absolutely as required.
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To conclude the asymptotics of .J,, choose § > max{d, K} where K as in (A4).
From (A3) there exists 7 < 1 such that ||£}|| < 4" for all § < |t| < § for sufficiently
large n. Then, using (3.1) for sufficiently large n we have,

1
\/ﬁ s<|t|<d

]E(e—it(sn—nA)) R

5\/5 s<|t|<d

- 1
Next, for K <0 < [t| < n™, |[£}]| < ——. Hence, for n sufficiently large so that
n

€71 dt = O(").

r
T2>§,

E(e—it(sn—nA)> -

C i
S e G EETy B O

1 / t 1

— nr2+1/2
) r
Since ¢ > —, we have that,
27’1
1 E —it(Sn—nA)\ __ (9) 1 C ()
VI S jsnm t VI s [ETT narit1/2

_ O(?’L_(T—H)/Q).

Combining the above estimates, J,, = C?(f)o(n~"+1/2),

This completes the proof that (A, * f,)(z) = o(n~"*Y/2). Hence,

(S22 <2 - ) rov
— [ (o T ) dy VA (o)
_ p; . / By + =) n(e) ) dy+ C( o)
as Tequired. 0

In the lattice case, periodicity allows us to simplify the proof significantly
although the idea behind the proof is similar to the previous proofs.

67



Proof of Theorem 3.1.7. Under assumptions (Al) and (A2) we have the CLT for

Sn. Put A as in (3.2). We observe that,

27P(S, = k) = / e RE (5 dt = / e (L) dt.

After changing variables and using (3.6), (3.7) we have,

m/n ith m/n

_ itk t \" t _ itk "
27r\/ﬁIP’(Sn:k):/_7r\/ﬁe ﬁu(%) Z<%> dt+/_ﬂﬁe ﬁE(At/ﬁv) dt.

(3.32)

—~—

By (A3) there exists C' > 0 and r € (0,1) (both independent of t) such that
|0 (Afv)| < Cr" for all t € [—m,w|. Therefore the second term of (3.32) decays
exponentially fast to 0 as n — oc.

Now, we focus on the first term. Using the same strategy as in the proof of

Theorem 3.1.1 we have,

N(%)”Z(%) = I L4 Qult) + o(n"72)] (3.33)

where @, (t) is as in (3.10). Define R; as in (3.15).

2 /TP (S, = k) _zﬂ{ L -t (1+i (Rp(k—nA>/\/ﬁ>>}

\/ﬂ ni/2
m/n ith n
e e

o0 it(k—nA) o0 i 0242
—/ e eI gy —/ e_\/%e_Tth(t) dt + o(n~"/?).

o0

j=1

We estimate the RHS by estimating the three integrals given below,

! / Mt (L) (L) - e s Qunla
= e ﬁu(—) (—)—e vnooem 2 |14+ @)y, t
s v/ “\yn

_ itk t \n t
[2:/ e ﬁu(—) Z(—) dt
sy/m<t|<my/m Vn n
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Cit(h—nA) 242
I3 = / e Vroe 2z [14Q,(t)]dt.
[t|>6v/n

Clearly, |I3] decays to 0 exponentially fast as n — oo. Also, |u(27)] = 1 and
lu(t)| € (0,1) for 0 < |t| < 2m. Therefore, there exists € > 0 such that |u(t)| < € on

d < |t| <m. Put M = max |Z(t)|. Then,

s<ltl<n

|[Io] < Myv/n u()]" dt < 2M (7 — 6)+/ne".

e<|t|<m
Hence, |I3| decays to 0 exponentially fast as n — oco. From (3.33), we have that

(=) 2(5) - e T Q] = e o).

This implies || = o(n~"/?). Combining these estimates we have the required result.

O

3.3 Computing coefficients.

Since / | ]E(e“S") dt decays sufficiently fast, the Edgeworth expansion, and
t[>6
hence its coefficients, depend only on the Taylor expansion of E(e“s”) about 0. Here
we relate the coefficients of Edgeworth polynomials to the asymptotics of moments
of S,, by relating them to derivatives of p(t) and Z(t) at 0.

Suppose (A1) through (A4) are satisfied with s = r + 2. Recall (3.6):
E(e™) = p ()" £ () + £ (Av) . (3.34)

Put Z(t) = ¢ (Il,v) as before. Also write U, (t) = ¢ (A}v). We already know that

wu(t), Z(t) and U(t) are r + 2 times continuously differentiable. Using (3.13) one can
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show further that the derivatives of U, (t) satisfy:

sup [[UY]| < Ceg
<o

forallnand forall 1 < k <r -+ 2.

Taking the first derivative of (3.34) at t = 0 we have:

IE(S,) = np'(0) + Z'(0) + U (0) —> lim ZE(S—) _ /(0).

n—oo

In fact, using the Taylor expansion of log u(¢) and above limit one can conclude that

the number A we used in the statement of the CLT in (3.2), is given by

A= lim E(&>

n—oo n

Therefore one can rewrite (3.6) as

E (S =AYy = ¢~ O) (1" Z(t) + U (t) (3.35)

where U, (t) = e " OU,(t). Also note that its derivatives satisfy ||Uff) lloo = O(gp)
foralll <k <r+2.

From (3.35), it follows that moments of S,, —nA can be expanded in powers of
n with coefficients depending on derivatives of ;1 and Z at 0. However, only powers
of n upto order k/2 will appear. We prove this fact below.

Lemma 3.3.1. Let 1 < k <r + 2. Then for large n,

/2]
E([Sn —nAl") = apn’ + O(ef). (3.36)

=0
Proof. We first note that taking the kth derivative of (3.35) at t = 0,

dk

FE([S, —nAl*) = ym

[e_"t“/(o) " zw)| + 70
t=0
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dk
T dtk

O (1) Z(0)] + O(eh).

—ntu!(0)

Observe that all the derivatives of e w ()" Z(t) will only have positive integral

k
powers of n (possibly) up to order k. Therefore,

k
Z axjn’. We claim that for j > k/2, a;; = 0. This claim proves the result.
=0

d ot n
Tilico [T Oy 2(0)] =

We notice that the first derivative of e=#'(©) (t) at t = 0 is 0. Thus we prove
dkz
the more general claim that if g(0) = 1 and ¢'(0) = 0 then %L:O [g(t)"Z(t)] has no

terms with powers of n greater than k/2. From the Leibniz rule,

dk
dtk

l9()"].

t=0

sorze] =3 () 20 5

=0 1=0

Therefore it is enough to prove that %‘ 1—olg(?)"] has no powers of n greater than
/2.

To this end we use the order [ Taylor expansion of g(t) about ¢ = 0. Since
¢'(0) = 0 and g is r + 2 times continuously differentiable for [ < r + 2 there exists

¢(t) continuous such that,

g(t) =1+ agt> + -+ ait' +to(t)

n!
= gt)"= Y ———(apt?) TR g
kolka! - - Ky
ko+ko+-+kiy1=n
_ Z Ckgkz.“kuln! t2k2+m+(l+1)kl+1¢(t>kl+1 ‘
kolka! . Koy

k0+k2+--~+kl+1:n

After combining and rearranging terms according to powers of ¢, we can obtain
the order [ Taylor expansion of g(¢)". Notice that if k;.q > 1 then 2ky + -+ + (I +
Dkiyr > 1+ 1. Terms with kjyy > 1 are part of the error term of the order
[ Taylor expansion of g(t)". Since our focus is on the derivative at t = 0, the
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only terms that matter are terms with k., = 0 and 2ky 4+ --- + [k, = [. This
l

implies that ko + --- + k; < =. Because k;’s are non-negative integers, this means

I [
ko4 4k < LEJ Hence, kg > n — LéJ

N}

dl
This analysis shows that the largest contribution to @‘ 1—olg(?)"] comes from

the term,

C(n*L%J),L..-,LO,...,O n!

(n—13])!

tl

whose kth derivative at 0 is,

C(n_L%J)’Lm,LOV“’O ! n!

l L
pna U0 st (a4 1) et
Therefore,
d! . Il
S|l = 0mls),

]

It is immediate from the proof that the coefficients a; ; are determined by
the derivatives of u(t) and Z(t) near 0. For example, the constant term ayo =
(—i)¥Z®)(0). This follows from these three facts. The expansion (3.36) is the kth
derivative of the product of the three functions e ™' ® 1 (t)* and Z(t) at t = 0.
All derivatives of p (t)" and e ™*(© at t = 0 contain powers of n and thus, a
corresponds to the term Z(t) being differentiated & times in the Leibneiz rule. Both
e ™ O and p(t)" are 1 at t = 0. We will see later that the other coefficients ay
are combinations of y'(0) = A, higher order derivatives of u at 0 upto order k and
derivatives of Z at 0 upto order k — 1.

As a corollary to Lemma 3.3.1, we conclude that asymptotic moments of orders
upto 7 + 2 exist. These provide us an alternative way to describe ay ;.
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Corollary 3.3.2. Foralll<m<r+2and0<j < %,

_E([Sh = nA") = a0 — - =0l g, i,y
U, j = lim . 2=,

n—00 nJ

Proof. When m = 1, E([S,, — n4]) = a1 + O(¢)) and it is immediate that a; o =

lim E([S,, — nA]). For arbitrary k we have,

n—oo

E( [Sn - nA]k) = ak,Lk/QJnLkﬂJ + ak7Lk/2J_1nLk/2J—1 + - Fago + 0(68)

and dividing by n we obtain,

E([S, —nA]") 1
=kt +O(5).
Now, it is immediate that,
_ E([S, —nA")
Arlif2) = =
Having computed ay, ;, for r < j < L§J, we can write,
E([S, — nA]k) — ak,Lk/gjnLk/Qj — i —ap,n” = ap,n T e ag + O(eg).
Dividing by n" !, we obtain,
E([S, —nAl") —n"ay, —--- —nl¥/2q 1
(5 —nl) = sy L o(2)
Now, we can compute ay,41,—1,
o BUSe = A —wa — - ag
k=1 n—00 nr—1 ’
This proves the Corollary for arbitrary k € {1,...,r 4+ 2}. O
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Because the coefficients of polynomials A,(¢) (see (3.10)) are combinations of
derivatives of p(t) and Z(t) at t = 0, we can write them explicitly in terms of ay ;,
and hence, by applying Corollary 3.3.2, the coefficients of Edgeworth polynomials
can be expressed in terms of moments of S,,. Next, we will introduce a recursive
algorithm to do this and illustrate the process by computing the first and second
Edgeworth polynomials.

Taking the first derivative of (3.35) at t =0,
iE([S, — nA]) = Z'(0) + U, (0).

Then,

a1 = lim E([S, — nd]) = —iZ'(0).

n—oo

Next, taking the second derivative of (3.35) at ¢t = 0 we have,
PE([S, —nA") = n[u"(0) = 1/ (0)°] + 2"(0) + T,,(0).
Therefore, dividing by n and taking the limit we have,

t21 = 0= lim ([%] ) = J/(0)* = " (0), (3.57)

Once we have found as; we can find

azp = lim (E([S, — nA]*) — no®) = —Z"(0).

n—oo

We can repeat this procedure iteratively. For example, after we compute the 3rd

derivative of (3.35) at t = 0:

i3E([Sn — nA]?)) _ Z(?’)(O) + nﬂl<0)[2ﬂl(0)2 — 34"(0)] + nu(S)(O)
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+3nZ/(0)[1(0)> — 1" (0)] + T (0)

we get that,

as; = lim 1k ([Sn — nAP?) = —A(30* + A%) + iu®(0) — 3i62Z'(0)

n—oo M

= —A(30% + A%) +ipP(0) + 30%a0.
This gives us £®(0) and Z®(0) in terms of asymptotics of moments of S,,:
Z/.L(g) (O) = a3,;1 -+ A(30'2 + A2) — 302a1,0

iZ®(0) = lim (E([S, — nA]*) — nas1).

n—oo

Given that we have all the coefficients a;, 1 < k < m computed and
1#(0), Z8(0) for 1 < k < m expressed in terms of the former, we can compute
my1; and express g™ (0), 2™ (0) in terms of az;, 1 <k < m+ 1.

To see this note that ™ (0) appears only as a result of 4" (t) being differ-
entiated m + 1 times. So, ,u(mH)(O) only appears in derivatives of order m + 1 and
higher. It is also easy to see that it appears in the form nu™+9(0) in the (m + 1)th
derivative of (3.35). Thus, it is a part of a,,4+11 and all the other terms in a,,;1; are
products of 1™ (0), Z®(0) for 1 < k < m whose orders add upto m + 1 and hence
they are products of a;;, 1 <k < m.

Also, Z™(0) appears only in ;1. This is because Z™"!(0) appears only
as a result of Z(t) being differentiated m + 1 times. Thus, it appears only in
derivatives of (3.35) of order m + 1 or higher. In the (m + 1)th derivative of (3.35),
there is only one term containing Z™*V(¢) and it is e ™y (£)" Z™+(t). So
10 = (=)™ Z7H0).
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Using Corollary 3.3.2, we have,

E ([Sn — nA]mH) ‘

am-i—l,l_m;lj = llm

. . m—+1
Having computed ay,41,;, for r < j < | |, we compute Gy 410-1:
+1 m+1
) E([Sn—nA]m ) —nram+177-— _nL 2 Jam+17LmT-HJ
Umt1o—1 = lim —
n—oo n

This gives us Z™(0) = i™*a,, 10 and p™(0) in terms of a,, 1,1 and ay,
1 <k < m i.e. explicitly in terms of moments of S,,. Proceeding inductively we can
compute all the derivatives upto order r of u(t) and Z(t) at ¢ = 0 in this manner
by taking derivatives up to order r of (3.35) at ¢t = 0. This is possible because
our assumptions guarantee the existence of the first r + 2 derivatives of (3.35) near
t=0.
Remark 3.3.1. This representation of u*(0) and Z™(0) in terms of ay; is not
unique. However, it is convenient to choose the ay, ;’s with the lowest possible indices.
The inductive procedure explained above yields exactly this representation.

We will illustrate how the first and the second order Edgeworth expansion
can be computed explicitly once we have x4 (0), x¥(0), Z”(0) and Z'(0) in terms
of asymptotic moments of S,,. Because Ag(t) = 1 we have Ry(t) = 1. From the

derivation of (3.9) we have,

Ai(t) = (log M><3><o>§ — Z/(0)t = (u®(0) = 3u"(0)'(0) + 2u’<0>3>§ — Z'(0)t
= (u¥(0) +iA(30” + A2>)§ — Z'(0)t
= (asy — 3a2a170)% — ayo(it).
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After taking the inverse Fourier transform as shown in (3.15) we have,

2
az1 — 30 &170)
606

Rl(l‘) = (

r(30% — 2%) + —- .

Using (3.16) we obtain the first Edgeworth polynomial,

2
asz1 — 30 al,g)

_( 2 2y Q10
Pi(z) = o (07 —z%) p

Similar calculations give us,

it)8
Ag(t) = (0,3’1 + 302a170)2(7—2) + |:A2(60'2 + A4) + 4&371<A — 2&1,0)
.t 4 .t 2

- 302(2@70 —4Aayp + o?) + a4,1] (;i + (2&%70 — asp) (Z2)

From (3.15) and (3.16) we have,

5 2% — 150%* + 4502 — 150

Rg(t) :(a3,1 + 30’26L170) 79512

+ [A2(602 + A4) + 4(13,1 (A - 2&170) - 302(2a270 - 4ACL170 + 0'2) + 78]

@ - o)
204

x4 — 60%x% + 30
X ( Y ) + (2@%0 — GQ,O)

,2(150% — 100222 + )

Pg(t) :(CL371 + 30’26L1’0> 79510

+ A2<60'2 + A4) + 4@371(14 — 2@170) — 30’2(20/270 — 41466170 + 0'2) + &471]

r(30% — %) T

2
21os T (a0~ a20)5 5

Remark 3.3.2. Once we have R, for p € Ny and P, for p € N, the polynomials
P, Ppq and P, , are given by P,y = P, 4= R, and P, , = P,. These relations were
obtained in the proofs in section 3.2.

Also, one can compute P,; using (3.28):

Pulz)= 3 (i)’ / At~ dt.




For example,

o242 27
P[)J(ZL‘) = /A()(t)e_ 2 dt = F
02t2 o'2t2 .1'2 021&2
P () :/Ag(t)G_Q dt — im/tAl(t)e_ 2 dt — 5 t2Ag(t)e” 2 dt

Pu(ﬁ)
V21

:<(l3,1 + 302a170)2

5
2407
+ [A2(602 + AY + daz (A —2a10) — 302(2@70 —4Aay o + o?) + a4,1} e
1 1 2a10\z 2?
- (Q(I%,O - GQ,O)ﬁ - ((CL371 — 30'2CL1’0); + ?) E — ﬁ

Higher order Edgeworth polynomials can be computed similarly.
We can compare our results with the centered i.i.d. case. Then, we have that
A =0, a9 = 0 because the sequence is stationary. Also, az; = lim —E([S, —
n—oo M

nA]P) = E((X; — A)?), agp = 0 and ay; = E(X}). So, the above polynomials reduce

to,
Ar(t) = E(G D0, Ry(a) = Eéfﬁl)x(s,a? —?), Pi(x) = Eéfj)(ﬁ — )
An(t) = B UL 4 (m(xt) — 30D
Polw) 1 Pulr) EXP?5 (E(Xi") B §>1 CEXP)z 122
Vor o \V2or o’ 24 od o/ 8 o> 2 032

These agree with the polynomials found in [20, Chapter XVI] (to see this one has to
replace z by x /o to make up for not normalizing by o here) and [4]. The polynomials
Q. found in the latter are related to Py, by Qx(z) = %PM(:L’).

It is also easy to see that these agree with previous work on non-i.i.d. examples.

In both [9,29] only the first order Edgeworth polynomial is given explicitly. In [9],

because the sequence is stationary and centered, we can take A = 0 and a; = 0.
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Also, the pressure P(t) given there, corresponds to log u(t) here. So we recover

.t 3
Ai(t) = P"'(O)% in [9, Theorem 3]. In [29], sequence is centered but not assumed

to be stationary. So A = 0 and a;¢ # 0 and the asymptotic bias appears in the

(it)*

expansion and A, (t) = iu®(0) 5

— ayo(it) which agrees with [29, Theorem 8.1].

This dependence on initial distribution corresponds to presence of ¢ in (3.1).

3.4 Applications.

3.4.1 Local Limit Theorem.

Existence of the Edgeworth expansion allows us to derive Local Limit Theo-
rems (LLTs). For example see [16, Theorem 4]. Also, as direct consequences of weak
global Edgeworth expansions, an LCLT comparable to the one given in [27, Chapter
I1], holds. In fact, a stronger version of LCLT holds true in special cases.

To make the notation simpler, we assume that the asymptotic mean of Sy is

S
0. That is A= lim E(~>) =0.
Proposition 3.4.1. Suppose that Sy satisfies the weak global Edgeworth expansion

of order 0 for an integrable function f € (F,||-||) where ||-|| is translation invariant.

Further, assume that |xf(x)| is integrable. Then,

! 6_211\??72/f($)d$—|—0(1) (3.38)

uniformly for u € R.

Proof. After the change of variables VN — z in the RHS of the weak global
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Bdgeworth expansion,
VNE(f(Sy - u)
= [n(5 )1 =+ 1 1ol)
— [ (o) + = aw ()] #te = w1100
—n( ) [fe—wds+ 5 [ un(Z5) 5= ud +171o)

Here z, is between u and z and depends continuously on wu.

Notice that,

| [ =un(22) 5= wie] < [ 1= wste = wldz < sl

Therefore, after a change of variables z — u — z in the RHS,

VB (S =) = n(Z) [ etz + max{le . 11} o)
as required. O

In particular, the result holds for F = Fy. If the order 0 weak global Edge-
worth expansion holds for all f € F, then we have the following corollary. We note
that this is indeed the case for faster decaying |E(e"V)| as in Markov chains and
piecewise expanding maps described in sections 3.5.3.1, 3.5.3.2 and 3.5.4.
Corollary 3.4.2. Suppose that Sy admits the weak global Edgeworth expansion of

order 0 for all f € Fy. Then, for all a < b,

VN
(b—a)

u2
e v +0(1)

1
IP(SNE(u—i—a,u—I—b)) = Noro:

uniformly in u € R.
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Proof. Fix a < b. It is elementary to see that there exists a sequence f, € F,
with compact support such that fp — 1(y4qu+s) point-wise and fi.’s are uniformly
bounded in F}. This bound can be chosen uniformly in u, call it C.

Therefore, from the proof of Proposition 3.4.1, we have,

u
VNE((Sy =) = n( ) [ Az +Cl o)
Because 0 < C}(f;,) < C, taking the limit as & — oo we conclude,

\/NIP(SN € (u—l—a,u+b)> = n(%) /u+b1dz+00(1)

and the result follows. O]

In fact, u in the previous theorem need not be fixed. For example, for a

un
VN

Corollary 3.4.3. Suppose that Sy admits the weak global Edgeworth expansion of

sequence uy with — u, we have the following:

order O for all f € Fy. Let uy be a sequence such that A}im u_]]\if =wu. Then, for all
—00

a <b,
\/N 1 w2
li [P( , b) = 207
Ngrgo(b_a) Sy € (uy + a,uy +b) We

Now, we state the stronger version of LCLT in which we allow intervals to
shrink.
Definition 8. Given a sequence ex in RT with ex — 0 as N — oo, we say that Sy

admits an LCLT for ey if we have,

VN u
—]P’(SN € (u—en,u-+ eN)> = e 2va? +0o(1)
2€N

uniformly in u € R.
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The next proposition gives a existence of weak global Edgeworth expansions
as a sufficient condition for Sy to admit a LCLT for a sequence ey. Notice that
existence of higher order expansions allow ey to decay faster. In case expansions of
all orders exist, ey can decay at any subexponential rate.

Proposition 3.4.4. Suppose that Sy satisfies the weak global Edgeworth expansion
of order v (> 1) for all f € Fy. Let ey be a sequence of positive real numbers such

that ey — 0 and ENNT/2 — 00 as N — oo. Then, Sy admits an LCLT for ey.

Proof. WLOG assume ey < 1 for all N. As in the previous proof, there exists a
sequence f € FO1 with compact support such that f, — 1(y—cy utey) POint-wise and
fi’s are uniformly bounded in Fy. This bound can be chosen uniformly in N and
u, call it C.

Let N € N. Note that for all k,

E(f(Sy)) = Z % / P, (2)n(2) fx (z\/N) dz + CL(fy) o (N-0+1/2).

By taking the limit as k — oo and using the fact 0 < Cj(f) < C, we conclude,

r uten
1 VN

P<SN € (u—en,u+ eN)> = E VI ﬁ_; P,y(2)n(z)dz + Co (NUTD/2)
p=0 v

After a change of variables z — in the p = 0 term and divide the whole

2l

equation by 2ey to get,

@IP’(SN € (u—en,u+ EN)>

2€
N 1 r \/N u+6N 1
z VN
=— |1 — —d P d Co|———

where Jy = (—en, en).
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Note that for p > 1, there exists C, such that |P, ,(2)n(z)| < C,. Therefore,

uten u+epn
VN VN C,vN VN C
T P eom(2)de]| < 22X [T 1de < 2 = o(1)
2eyN2 Juew 7 2NNz Ju—en Np/2
VN VN

Also, as in the proof of Proposition 3.4.1,

) s 1 u U+€EN
2oy | T — () ds = () / e

+ ZGiN /uieN(z — u)n(juﬁ) dz

Note that,

c ey P C e Cey
- “)dz| < —u|dz =
2en N /“N (2 “>”<\/N> Z‘ = 2enN /“N z—uldz= 5y

Therefore,

1 z

en 1y (z — u)n(ﬁ) dz = n(%) + o(1).

Combining these estimates with ey N"/2 — oo we have that,

@P<SN € (u— €N>U+€N)> = “(%) +o(1)

2€ N
and it is straightforward from the proof that this is uniform. O]
Remark 3.4.1. We note that this result implies [16, Theorem /] because existence

of classical Edgeworth expansions imply the existence of the weak global Edgeworth

expansion and this result is uniform in wu.

3.4.2 Moderate Deviations.

While the CLT describes the typical behaviour or ordinary deviations from the
mean provided by the law of large numbers, it is not sufficient to understand prop-

83



erties of distribution of X,, completely. Therefore, the study of excessive deviations
is important.

For example, deviations of order n are called large deviations. An exponential
moment condition is required for a large deviation principle to hold, even for the
ii.d. case. However, when deviations are of order m (moderate deviations)
this is not the case. We show here that a moderate deviation principle holds for Sy
under a weaker assumption than the exponential moment assumption.

It is also worth noting that moderate deviations have numerous applications in
areas like statistical physics and risk analysis. For example, moderate deviations are
greatly involved in the computation of Bayes risk efficiency. See [44] for details.
Proposition 3.4.5. Suppose Sy admits the order r Edgeworth expansion. Then
for all c € (0,7), when 1 <z < Veo?In N,

Sny—AN
liml_]P< R S%)—1 (3.39)

Proof. Note that,

|- MN(a) — [1-1@(%@)] —P %q)—m(@
- Pp(fE)

uniformly in z. So it is enough to show that for 1 < z < Vco?In N,

: Py(z)n(z) NTR
ARy M T
Note that for x > 1,
|- ) = M) o(%)
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Thus,

—r/2 —r/2 —r/2
1]—V‘ﬁ<x> =1- mﬁ/m> -o( Mej—vsw)
- O( Nl(rrl—]gﬂ)
Say P,(x) is of degree g. Then for some C' and K,
Npi?(lw)—ng()x)) : CN(ZZE [—();8) - <fjvj/f )f(l O (%))
< C(IIIJ\JIVT);IH — 0 as N — oo.
This completes the proof of (3.39). O

Proposition 3.4.5 is a generalization of the results on moderate deviations
found in [43] to the non-i.i.d. case along with improvements on the moment condi-
tion. It should be noted that [4] contains an improvement of the moment condition
for the i.i.d. case. But the proof we present here is different from the proof presented
in [4].

As an immediate corollary to the above theorem, we can state the following
first order asymptotic for probability of moderate deviations.

Corollary 3.4.6. Assume Sy admits the order r Edgeworth expansion. Then for

all c € (0,71),
1 1

P(Sy > AN 4+ Vco?NInN) NNy
C ¢ln

3.5 Examples

Here we give several examples of systems satisfying assumptions (A1)—(A4).
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3.5.1 Independent variables.

Let X, be i.i.d. with 7 + 2 moments. In this case we can take B = R, and
define L,v = E(e"*1v) = ¢(t)v where ¢ is the characteristic function of X;. Here
we have taken ¢ = 1. Put v = 1. Then, the independence of the random variables
gives us, L'l = E(e"") = ¢(t)". Also, the moment condition implies t — ¢(t) is
C"*2. This means (A1) is satisfied. (A2) is clear.

Suppose X; is [—Diophantine. That is there exists C' > 0 and ¢y > 0 such that

C _c
for all [t| > to, |o(t)| < 1 — e Then |p(t)] <e 1'. So |¢p(t)] <1 for all t # 0. So

we have (A3). Also, this implies that X is non-lattice. An easy computation shows

1
that when m < 7 there exists ro such that to < |t| < n™ = |¢(t)|" < n ™. In

fact, [¢(t)]" < e ™ where a = 1 — 711 > 0. So, (A4) is satisfied with r; < %
When | = 0 we see that (A4) is satisfied with r; > % Hence, by Theo-

rem 3.1.1 order r Edgeworth expansion for 5, exists. This is exactly the classical

result of Cramér because the condition: limsup |¢(¢)| < 1 corresponds to [ = 0.

[t|—o0

1 1)l
T > (r+1) . Then, by Theorem 3.1.4 and Theorem 3.1.5 we

Ch >
oose ¢ o 5

have that S,, admits weak global expansion for f € F(;”Q and weak local expansion

for f € Ffj:lz . These are similar to the results appearing in [4] but slightly weaker

(r+ 1)l
2

because we require one more derivative: ¢ + 2 > 2 + as opposed to 1 +

(r+ 1)1

. This is because we do not use the optimal conditions for the integrability
of the Fourier transform. If we required f € F9*! and £ to be a—Holder
for small «, then the proof would still hold true and we could recover the results

in [4].
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3.5.2 Finite state Markov chains.

Here we present a non-trivial example for which the weak Edgeworth expan-
sions exist but the strong expansion does not exist.

Consider the Markov chain xz, with states S = {1,...,d} whose transition
probability matrix P = (p;x)ixa is positive. Then, by the Perron-Forbenius theorem,
1 is a simple eigenvalue of P and all other eigenvalues are strictly contained inside the
unit disk. Suppose h = (hjx)axa € M(d,R) and that there does not exist constants

¢, and a d—vector H such that
rhjy, =c+ H(k) — H(j) mod 2w

for all j, k. Put X,, =h

TnTn+t+1-"
For the family of operators £; : C¢ — C¢,

d
(Etf)] = Z eithjkpjkfku j = 17 s 7d (340)

k=1

v =1 and ¢ = iy, the initial distribution, we have (3.1).
Define b, = hy; + hj, for all j,r =1,....dand k = 2,...,d. Put d(s) =
max {(by;xr — br1x)s} where { . } denotes the fractional part. We further assume

that h is f—Diophantine, that is, there exists K € R such that for all |s| > 1,

d(s) > % (3.41)

If g > 7 then almost all h are f—Diophantine.

1
(d—1)—1
Because 5, can take at most O(nd2_1) distinct values, S, has a maximal jump

(@-1) " Therefore, the process X® = h,, . _, does not admit the

of order at least n™
order 2(d* — 1) Edgeworth expansion.
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The Perron-Forbenius theorem implies that the operator L, satisfies (A2).
Because (3.40) is a finite sum, it is clear that ¢ — £, is analytic on R. So we also
have (Al). Also the spectral radius of £; is at most 1. Assume £; has an eigenvalue

on the unit circle, say e*, with eigenvector f, then,

d
e = (Lof); = Z "4 p i fi
k=1
Assuming max | f;| = |f.],
J
d d d
ol =12l = | Y e™rpfe] <D palfil = > pirllfil = 1£]) >0
k=1 k=1 k=1

Because |fy| — |f+] <0 for all k£ and pj; > 0 for all j and k we have |fi| = | f,| for all

k. Therefore, there exist a d—vector H such that f, = Re® for all k. Then,
d

ei)\ReiH(j) — Zeith]kp RezH(k:
k=1

0 — ij thjk+H ) H(])*)\) . 1)
= thj, =A+H(j)— H(k) mod 27

But this is a contradiction. Therefore, (A3) holds. Next we notice that,

ii it(hrj+hj) DriDj kfk

7j=1 k=1

d d
Z (Z ezt hoj+hjig Prjpjk) fk
k=1 j=1
d
<111( X Ze“bwpmpjk

) (3.42)

k=1 =
Now we estimate |b, x(t)| where
d d
E ity ; __ itb, E it(by j k. —by
bT,k<t> e e ’]’kprjpjk: —=e , 1k e ( L0k ’l’k)p’l‘jpjk
j=1 7j=1
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Then we have,

d d
b,k (1)]* = qu%jp?k +2 Zprjpjkprlplk cos((brjx — brix)t)

7=1 j>l

d 2 d
= <Zprjpjk) =2 pepisprpie]l — cos((brjx — brip)t)]
j=1

j>l
d 2
— <me‘pjk) —204d(t)* + O(d(t)*), C >0
j=1

d
o) = 3 prpie — Cd(t) + O(d(1)*), € >0

=1
Therefore,
d

ith, ik
E e " PriPik

j=1

>

k=1

= () e+ otaey

j=1

=1-Cdt)*+0(d(t)*), C >0

From the Diophantine condition (3.41), we can conclude that there exists # > 0 such

that for all |¢| > 1,

||£?|| <1 —Qd(t)Q — ||££V|| < (1 _Hd(t)Q) [N/2] < e—Gd(t)2N/2 < e—Ht*ZBN/Q

—e ¢ 1—
When 1 < |t]| < NlTﬁ, we have, || L] < e %N/ which gives us (A4) with 7, = 256
. r+1
where € > 0 can be made as small as required. Because for small e, (m] =
—€

r+1
2

1
1, choosing ¢ > %B, we conclude that for f € FZ™ weak global and for

[

fe Frqu weak local Edgeworth expansions of order r for the process X exist. Also,

Sy admits averaged Edgeworth expansions of order r for f € F;. In the special

case of f > these hold for a full measure set of h even though the

1
Ed—1)—1’

order r strong expansion does not exist for r + 1 > d*.
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3.5.3 More general Markov chains.

3.5.3.1 Chains with smooth transition density:.

First we consider the case where z,, is a time homogeneous Markov process
on a compact connected manifold M with smooth transition density p(z,y) which
is bounded away from 0, and X,, = h(z,_1,%,) for a piece-wise smooth function

h: M x M — R. We assume that h(x,y) can not be written in the form

W, y) = H(y) — H(x) + c(z,y) (3.43)

where ¢(z,y) is piece-wise constant.

In particular, there is no constant ¢ and a function H such that h(x,y) =
H(y)—H(z)4+c. Also, the transition probability P(zx,dy) of X,, has a non-degenrate
absolute continuous component. Then, by [25], the CLT holds with o2 > 0.

To check the assumption 3.43 we need the following;:

Lemma 3.5.1. (3.43) holds iff there exists o € M such that the function x +—

h(o,x) + h(z,y) is piece-wise constant for each y.

Proof. If (3.43) holds then for each 0 € M

h(o,z) + h(z,y) = c(o,x) + c(z,y) + H(y) — H(0)

where (o0, x) + ¢(x,y) is piece-wise constant in x for each y.

Conversely, suppose for some o € M, x — h(o,x) + h(x,y) is piece-wise
constant for each y. Fix y. Let ¢ = h(o,0) and H(z) = h(o,z) — h(0,0). Then,
h(o,0) + h(o,y) and h(o,z) + h(z,y) differ by a piece-wise constant function. Then
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(3.43) holds because h(o, z)+ h(z,y) — (h(o,0)+h(o,y)) = h(z,y)+ H(x)— H(y) —c

is piecewise constant. ]

Let B = L°°(M) and consider the family of integral operators,

(o) (x) = / P, 1) =D u(y) dy.

Let p be the initial distribution of the Markov chain and {F,} be the filtration

adapted to the processes. Then, using the Markov property,
E,.[e"5"] = E,[e"*"1 £,1].
By induction we can conclude

E,(e") = /ﬁ?l du

Because h is bounded, expanding e™"(®¥)

as a power series in t, we see that t — L;
is analytic for all ¢. This shows that (A1) is statisfied.

From the Weierstrass theorem there exist functions g, 7. on M such that
p(z,y) is a uniform limit of functions of the form iqk(a:)rk(y) Therefore, L,

k=

is a uniform limit of finite rank operators and is conllpact. Compact operators
have a point spectrum hence the essential spectral radius of £; vanishes. It is also
immediate that ||£;]| < 1 for all £. Hence the spectrum is contained in the closed

unit disk.

In addition, Ly : L>(M) — L>(M) given by

(Lou)(z) = / Pz, y)uly) dy

is a positive operator. Note that (Ly1)(z) = 1 for all z. Thus, 1 is an eigenvalue
of Ly with eigenfunction 1. Also, eigenvalue 1 is simple and all other eigenvalues
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[ are such that |3| < 1. This follows from a direct application of Birkhoff Theory

(see [2]). Thus, we have (A2).

Next we show that if § € sp(L;), t # 0 then |3 < 1. If not, then there exists

A and u € L*(M) such that

[ Pl e uty) dy = Puta)

Suppose sup |u(z)| = R then for each € > 0 there exists z, such that

R—e < |u(z.)| = |e™u(z.)| = ‘/p(x,y)e“"(w’y)uw) dy‘ < /p(:v,y)IU(yH dy
Therefore,
[ pellutw)] - Ridy =

But |u(y)] — R < 0. Hence, |u(y)| = R a.e. Therefore, u(y) = Re®™ a.e. for some

function € and we may assume 6 € [0, 27).
/p(:L’, y)eith(x,y)ReiG(y) dy _ Rei)\eiH(x)
N / P, ) [ AW -0 _ 1] gy =

— th(x,y) — A+ 0(y) —0(x) =0 mod 27 (3.44)

Fix y and t. Then, for all z, x — h(y, x) + h(z, z) does not depend on x modulo 27
i.e. it is piece-wise constant for all ¢ # 0. By Lemma 3.5.1, h(z,y) satisfies (3.43).
This contradiction proves (A3).

Recall that if IC is integral operator

(Ku) (z) = / Kz, y)u(y)dy
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then
1Kl = sup / k(2. y)|dy.

In our case £? has the kernel,

(z,y) = / e @ ThElp (2 2)p(z, y)de.

By Lemma 3.5.1 for each  and y the function z — (h(z, z)+h(z,y)) is not piecewise
constant. So its derivative (whenever it exists) is not identically 0. Thus there is
an open set V,, and a vector field e such that O0.[h(x,2) + h(z,y)] # 0 on V,,,.

Integrating by parts in the direction of e we conclude that

lim eth@A+hEly (2 p(2, y)dz = 0.

t—o00 Vi

By compactness there are constants 7y, o such that for |[t| > ry and all z and y in

M, (2, y)] < lo(z,y) — 0. Tt follows that

122]] = sup / ly(z, y)ldy < / lo(, y)dy — <o, (3.45)
T M M

The first term here equals

//MXM p(z, 2)p(z,y)dzdy = 1.

Hence for [t| > 7o, |£2]] < 1 — g and so ||LN]| < (1 — &o)/™/?I. This proves (A4)

with no restriction on ry. Therefore, Sy admits Edgeworth expansions of all orders.

Next we look at the case when (3.43) fails but the constants are not lattice

valued. Then, arguments for (A1), (A2) and (A3) hold. In particular, (3.44) cannot
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hold since it implies that

t t

<h(m,y) L+ 9w Q(x)) e ? + 27”2

However, we have to impose a Diophantine condition on the values that h(x,y) can
take in order to obtain a sufficient control over ||£ || and obtain (A4).

For fixed z,y let the range of z — h(z, z) + h(z,y) be S = {c1,...,cq}. Note
that these ¢;’s may depend on x and y. However, there can be at most finitely many
values that h(z, z) + h(z,y) can take as x and y vary on M because h is piece-wise
smooth. So we might as well assume that S is this complete set of values. Also,
take Uy to be the open set on which z — h(z,z) + h(z,y) takes value ¢;. Take
br = ¢ — ¢ and define d(s) = max {bys}. Assume further that there exists K > 0
such that for all |s| > 1,

K

d(s) > E

If 3> (d—1)"" for almost all d—tuples ¢ = (cy, ..., cq), the above holds.

Note that,

|Ciu(z)| = ' / 6it[h(’”’z)+"(z’y”p(:r, 2)p(z,y) dz| u(y)| dy

itby,

dy =

itey / z, 2)p(z,y) dz

where and pj, = / p(z, 2)p(z,y) dz. Therefore, py + - -+ + pg = p(x,y).
Uy

Now the situation is similar to that of (3.42) and a similar calculation yields,

d

E D eitbk

k=1

= p(z,y) — Cd(t)* + O(d(t)*), C >0

Therefore,

€21 < [ [ple.) - Cate + O dy =1 - Ca(s)
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From this we can repeat the analysis done in the finite state Markov chains example
following (3.42). In particular, when 1 < |t| < N12;/3€, there exists § > 0 such that
1LY < e which gives us (A4).

Finally, when (3.43) fails and h takes integer values with span 1, X, is a
lattice random variable and we can discuss the existence of the lattice Edgeworth
expansion. In this case Sy admits the lattice expansion of all orders. To this end,

only the condition (A3) needs to be checked. First note that Lo = Loy for all k € Z.

Also, assuming £; has an eigenvalue on the unit circle, we conclude (3.44),
th(z,y) — A+ 6(y) —0(x) =0 mod 27

This implies ¢(h(x,y) + h(y, x)) € 27Z + 2X. Note that LHS belongs a lattice with
span t and RHS is a lattice with span 27. Because t is not a multiple of 27 this
equality cannot happen. Therefore, when t ¢ 27Z, sp(L;) C {|z| < 1} and we have

the claim.

3.5.3.2 Chains without densities.

We consider a more general case where transition probabilities may not have
a density. We claim we can recover (Al)-(A4) if the transition operator takes the
form
Lo=aJo+ (1 —a)ky
where a € (0,1) and Jy and Ky are Markov operators on L>=(M) (i.e. Jof > 0 if

f>0and Jy1 =1 and similarly for Ky),

Tof (2) = / P, ) () du(y)
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and
Kof (z) = / F()Q(e. dy)

where p is a smooth transition density and () is a transition probability measure.

Let h(z,y) be piece-wise smooth and put,
Ji(f) = To(e® f) and Ki(f) = Ko(e™ f).

Defining £; = aJ; + (1 — a)K; we can conclude t — L, is analytic and that

E, (") = / LM dp.

Now we show that conditions (A2), (A3) and (A4) are satisfied. Because
| < 1 and ||| < 1 we have ||£;]| < 1. Thus the spectral radius of L; is
< 1. Because aJ; is compact, £; and (1 — a)K; have the same essential spectrum.
See [33, Theorem IV.5.35]. However the spectral radius of the latter is at most
(1 — a). Hence, the essential spectral radius of £; is at most (1 — a).

Because both J, and Ky are Markov operators we can conclude that 1 is an
eigenvalue of Ly with constant function 1 as the corresponding eigenfunction. From
the previous paragraph the essential spectral radius of Ly is at most (1 —a). Because
L™ is norm bounded it cannot have Jordan blocks. So 1 is semisimple.

Suppose, L = eu. Without loss of generality we may assume ||ul. = 1.
Assuming there exists a positive measure set {2 with |u(z)| < 1 —4 we can conclude

that, for all x,

u(2)] = |Lyu(z)| = |aTru(z) + (1 — a)Kyu(z)|

<o [ e n)dut) +a | 1uw)lpte)duts) + (1 =)
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<1 —adu(9).
This is a contradiction. Therefore, |u(z)| = 1. Put u(z) = ¢”'®. Then,
1= a / @)+ (1 V() + (1 — a)e OOy

Hence, /ei(th(x’y)ﬂ(y)wx)e)p(x,y)du(y) =1 — Ju = ¢u. Fromsection 3.5.3.1,
this can only be true when ¢t = 0 and in this case § = 0 and v = 1. This concludes
that £, t # 0 has no eigenvalues on the unit disk and the only eigenvalue of Ly on
the unit disk is 1 and its geometric multiplicity is 1. As 1 is semisimple, it is simple
as required. This concludes proof of (A2) and (A3).

From the previous case, there exists r > 0 and € € (0,1) such that such that

for all [t| > r we have ||7?|| < 1 — e. From this we have,
1£2]| = ||a*T2 + a(l — a)TiK; + (1 — a)aKeJ; + (1 — a)*K?|| < 1 — a’e.

Hence, for all [t| > r, for all N, |V < (1 — a®¢)"/? which gives us (A4) with
no restrictions on ry. Therefore, Sy admits Edgeworth expansions of all orders as
before.

As in the previous section, an analysis can be carried out when (3.43) fails.

The conclusions are exactly the same.

3.5.4 One dimensional piecewise expanding maps.

Here we check assumptions (3.1), (A1)-(A4) for piecewise expanding maps of

the interval using the results of [5,37].
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Let f:[0,1] — [0, 1] be such that there is a finite partition 4, of [0, 1] (except
possibly a measure 0 set) into open intervals such that for all I € Ay, f|; extends
to a C? map on an interval containing I. In other words f is a piece-wise C?
map. Further, assume that f/ > X\ > 1 i.e. f is uniformly expanding. Next, let
A, = \"/ T3 A, and suppose for each n there is N, such that for all I € A,,
e :k[:(;], 1]. Such maps are called covering.

Statistical properties of piece-wise C? covering expanding maps of an interval,
are well-understood. For example, see [37]. In particular, such a function f has

a unique absolutely continuous invariant measure with a strictly positive density

h € BV|0, 1] and the associated transfer operator

o(y)
f'(y)

Lop(x) = Z

yef~(z)

has a spectral gap.

Let g be C? except possibly at finite number of points and admitting a C?
extension on each interval of smoothness. Define X, = g o f" and consider it
as a random variable with z distributed according to some measure p(z)dz, p €
BVI[0, 1].

Define a family of operators £, : BV|[0, 1] — BV][0, 1] by

eit9(v)

Lip(x) = - ¢(y)
S (%)

yef~ (=

where ¢t = 0 corresponds to the transfer operator. Because g is bounded, writing

e as a power series we can conclude ¢ — £, is analytic for all . This gives

(A1)
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(A2) follows from the fact that £, has a spectral gap. We further assume
that

g is not cohomologous to a piece-wise constant function. (3.46)

In particular, g is not a BV coboundary.
The assumption (3.46) is reasonable. Indeed, suppose that g is piece-wise
constant taking values c¢y,c¢y...c,. Then S, takes less than n*~! distinct values

*=1) 50 S, can not admit Edgeworth

so the maximal jump is of order at least n~
expansion of order (2k — 2) in contrast to the case where (3.46) holds as we shall

see below.

A direct computation gives,

1
E(e5n/Vn) = / L} p(x) de.
0
Therefore, there exists A such that,
lim E(e"™) = e °07/2 (3.47)

where o > 0. It is well know that 0> > 0 <= g is a BV coboundary (see [24]).
From (3.47) it is clear that S, satisfies the CLT.
To show (A3) holds, we first normalize the family of operators,

6ztg(

— N Ihiy)

Then, £, = H 'o L, 0 H where H is multiplication by the function h. Therefore, £,

and £; have the same spectrum. However, the eigenfunction corresponding to the

eigenvalue 1 of £, changes to the constant function 1.
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Assume ¢” is an eigenvalue of £,. Then, there exists v € BV[0,1] with

Lou(z) = e“u(z). Observe that,

£0|U| Z f,u hy)

o f(y)
SO |
_'ﬂy)zz o = (L) = e ute)] = )

Also note that, Ly is a positive operator. Hence, Ly |u|(z) > |u(x)| for all n. How-
ever,
hm (Lo lu|)(z / lu(y)| - 1dy

because 1 is the eigenfunction corresponding to the top eigenvalue. So for all z,

[ 1wy > Jut)

This implies that |u(z)| is constant. WLOG |u(z)| = 1. So we can write u(z) =

¢"'®) Then,

i(tg(y)+7(y) — Li(0+v(2))
Etu f? e ho )e e
y)=x

e+ (W)= (f(¥)-0) —
— f(z) f’ ho ) 1

for all z. Since,

_ h(y) _
1= 2 Fhe 1)

and /MWW =7@)=0) are ynit vectors, it follows that

tg(y) +v(y) —(f(y)) =€ =0 mod 27 (3.48)

for all y. Because g is not cohomologous to a piecewise constant function we have a
contradiction. Therefore, £, and hence £, does not have an eigenvalue on the unit
circle when t # 0.
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To complete the proof of (A3) one has to show that the spectral radius of £, is
at most 1 and that the essential spectral radius of L; is strictly less than 1. This is
clear from Lasota-Yorke type inequality in [5, Lemma 1]. In fact, there is a uniform
k € (0,1) such that r.ss(L:) < & for all .

Next, we describe in detail how the estimate in [5, Proposition 1] gives us (A4).
To make the notation easier we assume t > 0 and we replace |¢| by ¢. [5, Proposition
1] implies that there exist ¢ and C' such that if K; large enough (we fix one such

Ki) then for all t > K,
12i ulle < €T ull (3.49)
where ||h|l; = (1 +t) "' ||h|lgv + ||h|l;1. Therefore,
||£ff01ﬂﬂu”t < e—C[clnt]||£(k—1)(clnﬂu”t <. . < e—Ck(clnt]“th
Also, ||L¢||s < 1. So, if n = k[cInt] +r where 0 < r < [cInt]| then
et onk
|Crully < emOHeR | Lrull, < e MR ull, < e R |full,

However,

(L+6) " sy < Al < 1+ @+ lAlBy

Therefore,

—Onk
(L+ )M Lrullsy < [1+ (1+6) e 5 lullpy

which gives us

L2 sy < (t+ 2)eCnmer
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n n
and here k = k:(n,t) = LWJ When Kl S |t| S nna kmin = Lmj and
_jﬁﬁL__+1 s 00. Also. 1> By Fan nd
kmin T as n Q. SO, =kl k‘min T and,

Fmin

|LE By < (t+ 2)670"% < e i i1

kmin 1 . .
> — (so this choice of ny works for

Choosi h that for all n > e
oosing ng such that for all n > ny, 112

all t) we can conclude that,

1L} By < 2n"e” 2

-1
This proves (A4) for all choices of 1. In particular given r, we can choose 1, > TT

in the above proof. This implies that Edgeworth expansions of all orders exist.

3.5.5  Multidimensional expanding maps.

Let M be a compact Riemannian manifold and f : M — M be a C? expand-
ing map. Let g : M — R be a C? function which is non homologous to constant.
The proof of Lemma 3.13 in [13] shows that this condition is equivalent to g not
being infinitesimally integrable in the following sense. The natural extension of f
acts on the space of pairs ({yn fnen, ) where f(yni1) = y, for n > 0 and fy; = z.

Given such pair let

. 8 n—1 i . a n o] a
P({yn} @) = Jim — Lz:% g(f yn)] = lim -~ L; g(yk)] =D 5-0(m).
g is called infinitesimally integrable if I'({y, }, ) actually depends only on x but not

on {yn}.
Let X,, = go f". We want to verify (A1)—(A4) when z is distributed according

to a smooth density p. Note that assumption (3.1) holds with v = p, £ being the

102



Lebesgue measure and

et9(v)

(Lio)(z) = Z d—3f¢(y)-
yeffl(gj) ‘ et (%)‘

We will check (A1)-(A4) for £; acting on C'(M). The proof of (A1)-(A3) is the

same as in section 3.5.4. In particular, for (A3) we need Lasota—Yorke inequality

(see (3.52) below) which is proven in [13, equation (19)].

The proof of (A4) is also similar to section 3.5.4, so we just explain the differ-

ences. As before we assume that ¢t > 0. Given a small constant & let

D
foll = mas eleo, “L224E )
Then by [13, Proposition 3.16]
L8]l < o]l (3.50)

provided that n > CyInt.
By [13, Lemma 3.18] if g is not infinitesimally integrable then there exists a

constant 7 < 1 such that
L2l < 0" (3.51)
The Lasota—Yorke inequality says that there is a constant # < 1, such that
1D (Li)llco < Cs (¢l|@llco + 6" Dl o) (3.52)
Also,
1£7 Nl co < N1L5(10N o < Ca(ll o] 2t + 6" |9] lLip) (3.53)
where the last step relies on Ly having a spectral gap on the space of Lipshitz
functions. Combing (3.50) through (3.53), we conclude that £, satisfies (3.49). The

rest of the argument is the same as in section 3.5.4.
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Chapter 4: Large Deviation Principles.

4.1 Asymptotics for Cramér’s Theorem.

In this section, we focus on sequences of i.i.d. random variables. First, we
prove the existence of weak asymptic expansions for Cramér’s LDP — Theorem 1.2.
Next, we deduce existence of the strong expansion in special cases. As expected, a
stronger assumption on the regularity of the law of the random variables is required

for the second step.

4.1.1 Weak asymptotic expansions.

We recall that a random variable X is called [—Diophantine if there exist

: C
O < 1 — — for [t| > to. It is known

positive constants ¢y and C' such that |E(e i

that when X is [—Diophantine and r 42 moments exist weak Edgeworth expansions
exist. For example, see [4] and Section 3.5.1.
Given a random variable X with distribution function F', we define Yx , to be

a random variable with distribution function G” given by,

_eVdF (y)

=0

(4.1)
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where p(vy) = / e’"dF (y). Therefore,

E[Vx.] = %. (4.2)

In Section 3.1 we defined the function spaces F}": f € F" if f is m times
continuously differentiable and CJ*(f) = <Or§njag§n [Fa Dax. H:UijLl) < o0.
We call a function f, (left) exponential of order a, if xl_i)r_n()() le™** f(x)| = 0. Denote
by vaw the collection of all f € ijz with f® is exponential of order a.

We note that due to assumption f € F* f *) heing exponential of order « is
enough to guarantee that f is exponential of order a for all 0 < [ < k. To see
this suppose f, f € L'. Then, lim f(x) = 0. Suppose f’ is exponential of order

|z|—o0

«. Then, given € > 0 there is M > 0 such that for z < —M, —ee®” < f'(z) < ee®”.

So, —6/ eYdy < / fy)dy < e/ eYdy = _ Lo < f(z) < —e®* for
. o

—00 —00

Sl

r < —M. So f is also of exponential order . Since f® e L' for all 0 < | < £k,
we can repeat the same argument starting from k& and conclude that all lower order
derivatives are of exponential order a.

It is clear that Frlfm C Ffw if a > . Finally, define, Ffwo = ﬂ Frlfha. This
intersection is non-empty. For example, the family of Gaussian functiofsoand C(R)
are in F,fw for all o > 0.

Recall from Chapter 1 that for a function f : R — (—o00,00] with f # o0,
D¢ = {zr € R|f(z) < oo} and f*(x) = iuﬂg [tx — f(t)]. If f is convex, lower semi-

S
continuous with D; = (a,b) and f € C?(a,b) with f” > 0 on (a,b) then, Dj. =
(A, B) where A = ltl_i)r;qJr f'(t) and B = t1_1>rbn_ f'(t), f* is continuously differentiable on

(A, B). For any f satisfying the above properties, for any = € jjf* the supremum in
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the definition of f*(z) is achieved at a unique point. f is called steep if tlinzr If' ()| =
—a

lim | f(t)] = oo

t—b—

Theorem 4.1.1. Let X be a non-constant, real-valued, and centred random variable.
Assume that the logarithmic moment generating function h(0) = log E(e’™) is finite
on a neighbourhood of 0. Further assume that there is | € N such that for all § € lo)h,
Yx ¢ is l—Diophantine. Let X,, be a sequence of i.i.d. copies of X. Let r € N and

€ (0,sup(supp X)). Let 0, be the unique 0 such that

I(a) = sup (a9 ~log / ey%zF(y)) = af, — log / Ve dF (y).

QEf)h

[(r+2

Take q > ) +1 and o > 0,. Then, for every f € F,, , we have,

Lr/2]

E(f(Sy—aN)) Z

1
i [ PG ) ona, () 49

where fo(x) = e " f(x) and P,(2) polynomials depending on a.

Proof. Assuming F' to be the distribution function of X we can define Yx ., by (4.1).
Let Y;’s be i.i.d. copies of Yy , and take gN =Y+ -+ Yy. A simple computation

gives us,
eVdFn(y)
()N

where Fly is the distribution function of Sy and G is the distribution function of

dGy(y) =

Sy. Now, we formally compute,
E(f(Sx —aN))e®™ = E(e”™ f(Sy — aN))
=E(e"Nf,(Sy — aN))

_ / W2 f. (y — aN)dFy (y)
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- M(V)N/wav(y —aN)dGy(y)

= M(V)NE'Y(%TJCW(SN —aN))
where f,(s) = %e““’f(s). Hence,
E(f(Sy — aN))el@ 8rODN — | _(o7f (Sy — aN)). (4.4)

Put v = 6,. Then, Yy, has mean a (see [17, Chapter 2]).

Since f € F},, , with 0, < a we have fy, € F!,;. We prove this when r = 0
and ¢ = 1. The argument for general ¢ and r is similar. Suppose, f(x), f'(z),zf(z) €
L' and f'(z) is continuous. It is immediate that (e7%%f(z)) = —f,e %" f(x) +
e~ %% f'(z) is continuous. We need to show, e ™% f(x), (e %" f(x)), xze %" f(x) € L*.
Since f and f’ are of exponential order, it is enough to show, e %®g(z), re " g(x) €
L' if g is exponential of order a(> 6,). This is true because there is M > 0 such
that for < —M, |e™%® f(z)| < €@ %)% and |ze 0 f(z)| < —zel@0a),

Therefore, from [4], RHS of (4.4) admits the weak Edgeworth expansion whose

coefficients are determined by moments of Yxg,. Therefore, we have that for all

functions f € I, ,

Lr/2]

(f(SN - GN el (@N Z

2 dz 4 O () -0 (NL).

2

NP+

Remark 4.1.1.
1. The assumption of X being centred is just to simplify the notation. One can

easily reformulate the results for non-centred X using the corresponding results
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for X —E(X). Therefore, from now on we discuss results for centred random
variables only.

2. A similar result holds for a € (inf(supp X),0). In fact, one can deduce the
corresponding results for a < 0 by considering —X and (—a) > 0. But, for
simplicity we focus only on a > 0 hereafter.

3. Note that the requirement to expand E,(fs,(Sy — aN)) is fs, € FL, which
15 indeed the case when f € Feqa,a for some a > 60,. In particular, this result
holds for f € C4(R).

4. In addition, if h(0) is steep then sup(supp X) = oo (see [30, Chapter 1]) and
the expansion holds for all a > 0.

We note that for a large class of random variables X, Yx ¢ is [—Diophantine.
For example, if X is 0O—Diophantine then so is Yx ¢ because X is absolutely contin-
uous with respect to Yy g (see [1, Lemma 4]). Also, we claim that if X is compactly
supported and [—Diophantine for [ > 0 then so is Yy 4.

We recall from [4], that a random variable X with distribution function F' is

[—Diophantine if and only if there exists Cy, Cy > 0 such that for all |z| > C,

Co
ER

mf /{ax +y}2dF(a) >

where {z} = dist(z,Z). If X is compactly supported (say on [c,d]) then,

/R {az + y)2dG"(a) = / {az + y}2e*dF(a)

[T etadF(a

ZW/{MJFZJ}ZC[F()
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Thus, for all |z| > Cf,

690 02

2 30
mf/{ax—I—y} dG’(a) > sz.
So the random variable Yy, with distribution function G? is [—Diophantine as
claimed earlier. From this we obtain the following corollary.

Corollary 4.1.2. Let X be a non-constant, real-valued, compactly supported and

I-Diophantine centred random variable. Let X,, be a sequence of i.i.d. copies of X.

Let r € N and a € (0,sup(supp X)). Let 0, be the unique 6 such that

IQU::SWJ<a9—1m{/erFQ0)::an—lq{/ewwﬂﬂy)

Geﬁh

l 2
Then, for every f € F!,, , with q > M + 1 and o > 6, we have,
/2] 1
B Sy a9 = 3 () + Clalfa) - ona, (7

for some polynomials P,(z) depending on a.

4.1.2 Strong asymptotic expansions.

We prove a lemma that gives conditions for the point-wise limit of a sequence
of functions uniformly bounded in F | to satisfy the asymptotic expansions.
Lemma 4.1.3. Let ¢ > 0. Suppose {fi.} is a sequence in F |, Sn admits the weak

local Edgeworth expansion for fi, CY, . (fr) < C for all k, fi are uniformly bounded

in L*(R), fr — f point-wise and for all p,

lim guﬁmw_/g@ﬂmw (4.5)
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Then,

\/N]E(f(SN)) = % Z %/Pp(z)f(z)dz +C- oTﬂ(N—r/2)'
p=0
Proof. For large N,
1 b2y
VNE(fi(Sv) = 5= D> / Po(2) fu(2)dz] < Gl (i) - 0npg(N772)
< C-o0.5(N""?). (4.6)
LDCT gives us that,
Tim E(/i(Sx)) = E(/(S))

This along with assumption (4.5) allows us to take the limit & — oo in the RHS of

(4.6) and to conclude,

VNE(f(Sn) = 5= D =S / Pp<z)f(z)dz] < C-0,5(N"/?)

which implies the result. O

Remark 4.1.2. The same would hold if we replace weak local by weak global. How-
ever, our focus here is on weak local expansions.

The next theorem specifies when the existence of weak expansions imply the
existence of strong expansions.
Theorem 4.1.4. Let X, be a sequence of random wvariables not necessarily i.i.d.
Suppose Sy = X1 + -+ + Xn admits the weak asymptotic expansion of order r for
large deviations in the range (0, L) for f € FrlJrl,LJr where L, > L when L < oo and

L, =00 if L =00. That is,

lr/2]

Z 1 1
]E’(f(SN - aN))el(a)N = Np+1/2 /Pp(z)fea (Z)dz + 07}+1(f0a) ' OT’,QQ <Nr-51 )

p=0
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for all a € (0,L) where I(a) and 0, as in (4.11). Then, Sy admits the strong

asymptotic expansion of order r for large deviation in (0, L).

Proof. It f € C° then fy € FrlJrl for all 6. Therefore, we approximate 1j ) by a
sequence fi of C2° functions such that (fy)e, are uniformly bounded in F' ; (see
Appendix A.3 for such a sequence) and invoke Lemma 4.1.3 to establish,

lr/2]
1 1> s 1
%ZW\/O\ Pp(z)e dZ+C'OT,0a (NTJQFI)

p=0

P(Sy > aN)e!@N =

]

Remark 4.1.3. Note that the coefficients of the strong expansion are Cyla) =
1 [e.9]

27 Jo

P

p(z)e_eaz dz obtained by replacing f with 1 in coefficients of the weak

expansions. Since fi’s are bounded in F7}+1, we can do this without altering the
order of the error. However, for any q > 1, ljg) @5 not a pointwise limit of a
sequence of functions fi, in FI with Cy, (fx) bounded. To see this, assume that

| fells 1 fulls L e Il are uniformly bounded and fi, — 1o point-wise. Then, for all

¢ € CX(R),

[oo==[o0=[tom o=t [feor =t~ [fio=tm [5

|#/(0)]
11l

diction. Therefore, Theorem 4.1.1 does not automatically give us strong expansions.

This implies that < sup || frll1 for all ¢ € CF(R). Clearly, this is a contra-
k

Now we are in a position to state and prove the main result of this section,
which extends Cramér’s LDP for i.i.d. random variables when the random variables

have a sufficiently regular density.

111



Theorem 4.1.5. Let X be a non-constant real valued centred random wvariable.
Assume that the logarithmic moment generating function h(#) = log E(e’™) is finite
on a neighbourhood of 0. Further assume that, X is 0—Diophantine. Let r € N.

Then for all a € (0,sup(suppX)), there are constants Cy(a) such that

P(S~ > aN I(a)N __ & Cp(a) 1
(B = e _z%NP+é+O N
p:

where
1 0o oo
Cpla) = o /. e " Py(z)dz

for some polynomials P,(z) depending on a,

0cR

I(a) = sup <a9 —log / eyedF(y))

and 0, s this unique point the supremum is achieved.

Proof. If X is 0—Diophantine then so is Yy as X is absolutely continuous with
respect to Yy g (see [1, Lemma 4]). Since, Yx p has moments of all orders, Y g admits
the strong Edgeworth expansion of all orders. Therefore, for each r € N, Yx y admits
the weak local Edgeworth expansion of order 7 for f € F' (see Appendix A.2).

From (4.4) we know that,
E(f(Sy — aN))e!' N =& (21 f,,(Sy — aN))

where summands of Sy have mean a. The assumptions allow us to expand RHS

using the weak local Edgeworth expansion and obtain,

/2]
E(f(Sy —aN))e! @V = Z

Np+ fea dZ + O —l—l(fea) Orvﬁ (N_T/Q) :
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for f € C(R).
Now, we approximate 1jg ., by a sequence f, € C:°(R) such that (fy)s, are
bounded in F! +1 (see Appendix A.3 for such a sequence) and use Theorem 4.1.4 to

T

obtain the required expansion. O

Remark 4.1.4. This gives us an alternative proof of [1, Theorem 2] for X satisfying
the Cramér’s condition (which corresponds to Case 1 there).

There are two ways the coefficients Cy(a) depend on a. First note that 6,
depends on the choice of a. Also, from Section 3.3, we know exactly how the
coefficients of P, depend on the first p 4+ 2 asymptotic moments of Sy and thus, on
the first p+ 2 moments of Yx 4,. So the dependence of C'(a) on a is explicit and one
can compute these coefficients. In addition, C,(a) does not depend on r because

P,(z)’s do not.

4.2 Higher order asymptotics in the non—i.i.d. case.

Let X, be a sequence of random variables that are not necessarily i.i.d. with
asymptotic mean 0. Suppose that there exist a Banach space B, a family of bounded

linear operators £, : B — B and vectors v € B, ¢ € B’ such that
E (V) = ¢(L)v), z€ C (4.7)

and satisfying the following,
(B1) There exists 6 > 0 such that z +— L, is continuous on the strip |Re(z)| < ¢

and holomorphic on the disc |z] < 4.
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(B2) 1 is an isolated and simple eigenvalue of Ly, all other eigenvalues of £y have
absolute value less than 1 and its essential spectrum is contained strictly inside
the disk of radius 1 (spectral gap).

(B1) and (B2) along with perturbation theory of operators (see [33]) imply

that there is dy € (0,6) such that
L. =p2)I, +A,, |z| <d (4.8)

where p(z) is the top eigenvalue of L., II, is the corresponding eigen—projection,
LA, = AT, =0and z — pu(z), 2~ II, and z — A, are holomorphic. In addition,

dk
H_d kAiV < 5,];[ with 0 < Bx < 1. Therefore,
z

LY = M(Z)NHZ + Aiv

z

Combining this with (4.7) we have,
E(e®N) = pu(2)N0(Iv) + ((Aw). (4.9)

Then, plugging in z = 0 and taking N — oo, we conclude that ¢(IIyv) = 1. Also,
taking the derivative at z = 0, dividing by /N and taking the limit as N — oo, we

obtain,

Taking the second derivative at z = 0, dividing by N? and taking the limit as

N — 00, we obtain,

In addition, it follows from [24][Theorem 2.4] that there exists o> > 0 such
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S
that — % A/ (0,0%). Since our interest is in Sy that satisfies the CLT we would

VN
asumme from now on that o® > 0.
We also assume the following;:

(B3) w(0) > 0 for all 6 € (—dp,dp) (Here dg as in (4.8)).

Define Q(0) = logu(0) for 6 € (—do,d). Then, 2(0) = logu(0) = 0 and

'(0) p"(0)p(0) — ' (0)” .
(0 :,u( = 0. Also, Q"(0) = = u"(0) = 0% > 0. Since "
0= v u(07 o)
is continuous, there exists d; € (0,d) such that € is strictly convex on (—dy,d;).
Note that due to convexity, Q'(—d;) < 0 < €/(6;). In addition, when 6 # 0,
1(0) > 11(0) = 1 by convexity.

Next, we consider the Legendre transform of €2, I given by,

I(a) = sup [af —Q(6)], for a € [0,Q'(d1))
96(—51,51)

which itself is a strictly convex function.

Because ' is strictly increasing and continuous on [0,Q'(1)], a — Q'(9) = 0
has a unique solution 6, which depends continuously on a. Note that I(a) > 0 for
all @ and I(a) =0 <= a = 0. Also, I(a) is continuous because I is convex and
I(0) = 0. In addition, I(Q'(d1)) = ad; — Q(dy).

Now, we are in a position to prove a Large Deviation Principle for Sy using
Theorem 1.3. The following lemma shows that Theorem 1.3 applies in our case.
Lemma 4.2.1. Suppose (B1),(B2) and (B3) hold. Then, there exists 0 < d < &y

such that for 6 € (—ds,ds),

GSN)

1
lim N logE(e = log u(0)

N—oo

Proof. Because ((Ilyv) > 0, there exists do and m > 0 such that for § € [—ds, 0o
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((Mgv) > 2m. Because ||A) || < Cu(6)™ for large N, we have that

lim p(0)"N¢(AYv) = 0.

N—oo

Hence, there exists Ny such that for N > Ny,
m < £(Mgv) 4+ p(0) V(A v) < 3m.

Hence,

lim %m [(TTg0) + 1(8) (Y )] = 0.

N—o0

Now, for 6 € (—d2,02) we can rewrite (4.9) as

1 1

N log E(e?%) = log () + N log [¢(ITgv) + p(0) "N (A v)].
This implies that,

N—oo

1
lim N log E(e?°V) = log 1u(6).
[

Combining this lemma with Theorem 1.3 and the analysis proceeding it, we
have the following LDP.

Theorem 4.2.2. Suppose (B1),(B2) and (B3) hold. Then, there exists o5 € (0, 1]

1
such that for all a € (O, M),
02
1
_— S _
]\}1_{1(1)0 N logP(Sy > aN) I(a) (4.10)
where
I(a) = sup [af —logu(8)] = ab, — log u(6,) (4.11)
9€(*52,52)
o . ;)
and 0, is the unique 6 solving (log M(Q)) =0 a.
1
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Remark 4.2.1. The range of a for which the LDP holds, is constrained by the
assumptions (B1),(B2) and (B3). We require a positive top eigenvalue () to
exist, log 1u(0) to be strictly convex and ((Ilgv) > 0. Larger the range of 6 for which

these hold, larger the range of a. In particular, if these hold for all 8 € R, then by

1 )
convexity B = lim %()
d—00

the LDP holds.

exists as an extended real number and for all a € (0, B)

Next, we compute higher order asymptotics of this LDP. To this end, we make
two more assumptions about L..
(B4) For all § € (—ds,02), for all real numbers ¢ # 0, sp(Ly.i) C {|2| < u(6)}.
(B5) There are positive real numbers ry, 75, C, K and Ny such that for all 6§ €

9 N
(=09, 09), for all N > Ny and for all K < |t| < N™, ||.C§V+,-tH < C'u](w)z .

Remark 4.2.2. As in Remark 3.1.1 it follows that by slightly decreasing r1 we can

assume 19 to be as large as required for large enough N.

Pick a € (o, k’ggﬂ> Then,
2

E(f(Sy — aN))e®™N = E(efSve=Onv=aN)i £(5 — g N))
1 N —ia
-4 / o) oL, ) dt
i e—iat

where fy(x) = 2#6791 f(z). Now define, Lg,s = mﬁgﬂ-t. Then,

B/ (S — e = ()" [ FiOUE o) .

From this we have,

~

E(f(Sy — aN))elas-1osn@IN _ / UL ) dt
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In particular,

E(f(Sy — aN)) / Fon (DT ) d. (4.12)

—iat

11(0,)

it). As a function of ¢, [i(f, + it) is analytic in a neighbourhood of 0 by (4.8).

Note that for |, + it| < &y the top eigenvalue of Lg, i is 7i(f, + it) =

1(0a +

Further,
— — d_ . W (6) — 1" (0a)
9(1:1 lea:_ = - =0 ”9a:— = —g?
(0.) = 1, 7(0) = ()] = —iat it gt =0, w6, = ~Hd = o
with o, > 0. Thus, there exists ¢ such that
70, + it)] < e a4 |t] < 3. (4.13)

We also notice that,

(A v)

N—oo u(Q)N :O

because the spectral radius of Ay is strictly smaller than p(#). Combining this with

E(e?*V) = u(0)N¢(Ilyv) + £(A)v) we conclude that for all 6,

' E(605N>
K(HG'U) = ]\}I—IE(I)O u(@)N .

The following lemma allows us to obtain asymtotics of (4.12). We note that it
is analogous to Theorem 3.1.4 where asymptotics of E(f(Sy —aN)) for f € FII7 are
discussed and can be proven using the ideas in the proof of Theorem 3.1.4. One just
has to replace L; by Ly, there and introduce the corresponding changes.

Lemma 4.2.3. Suppose (B1) through (B5) hold. Let r € N. Then, there exist

d2 € (0,0) such that for all a € (0, bggﬂ
2

1
f07"g€F+1 wzthq>r+ ,
2T1

Lr/2] 1

~ =N 1
JAOUEL vt =Y s [ Belatedaz + ) onn, (e )

p=0 2

) there are polynomials Py(z) such that
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where 0, is as in (4.11).

Proof. We state how to estimate LHS away from 0. The rest of the proof, which

contains the construction of polynomials F,, is identical to that of Theorem 3.1.5

with it replaced by 6, + it.

Fix § > 0 as in (4.13). By (B4), for § < |t| < K, there exists ¢y € (0,1) such

that |[Ly .|| < . Thus,

J Gl dt] < Cllglhe.
I<|t|<K

WLOG assuming o > r1 + (r+1)/2,

o Sl
' [ e e dt\ <Clolh [ el < S10
K<|t|<n K<|t|<n™ n

= llgllo(n="172).

o~

Since, g € F%7, we have that t7G(t) = (—i)7¢@(t) and g/(;) is integrable.

Integrability of g

70

Therefore,

Remark 4.2.3.

) along with ¢ > implies,
1
(@) t
ULy ) dt‘ / G(6)| dt < / g—”‘ dt (4.14)
[t|>n"1 [t|>n"1 4

1991 (r+1)/2

< =gt J0)10(n /).
[ O ) | = oo, (4.15)

>

1. The proof is almost identical to the proof of Theorem 3.1.4/ and hence, the

coefficients of polynomials P, can be computed as shown in Section 3.5. In

particular, they depend on exponential moments of Sy .
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2. Since 0, depends on a, the coeffients of the polynomials P, also depend on a.

As a direct consequence of Lemma 4.2.3 and equation (4.12), we have the
following theorem.

Theorem 4.2.4. Suppose (B1) through (B5) hold. Let r € N. Then, for a €

1
<0, M) there exist 0, € (0,08,) and polynomials P,(z) such that for f € FE7

52 r+1,«
1
with q > It and o > 09,
1
[r/2] 1 1
E(f(Sy — aN))e' N =Y~ W/Pp(z)foa(z)dz + CHY(fo,) - 0r0, (NT)
p=0
1
where fy(x) = 2—6’9””f(a:), I and 0, as in (4.11).
s

Remark 4.2.4. In particular, the theorem holds for all f € C°(R).

This is the weak asymptotic expansion which gives us the required higher order
asymptotics for (4.10), the LDP in Theorem 4.2.2.

Next, we replace (B5) by the following stronger assumption which allows us
to conclude existence of strong expansions for the LDP. Compare this assumption

with assumption (A5) in Chapter 3.

(B5) There are positive real numbers ry,re, 73, C; K and Ny such that for all 6 €

n(0)

(—d2,82), A

As in the case of (B5), we can assume 75 and r3 to be large after slightly

reducing r;. Therefore we have the following theorem.

—_—

Theorem 4.2.5. Suppose (B1) through (B4) and (B5) hold. Let r € N. Then,

there exists 0 < 09 < 0 such that Sy admits a weak asymptotic expansions for the

log 11(32)

LDP in the range (0, 5
2

)f f€Fl, witha > 0.
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log p(d2)

In particular, for all a € (O, 5
2

) there exist constants Cy,(a) such that

[r/2] C (a) 1
P(Sy > aN)e! @V = Z b5 +Cro, 0 <W) :

Np+1/2
p=0
where
1 > —042
Cpla) = o /. e " Py(z)dz
for some polynomials Py(z), ..., P.(z) depending on a and unique 0, € (0,0,) such
that

I(a) = sup [af —log u(0)] = af, — log pu(6,).
6’6(—52,52)

Proof. The proof of the first part is similar to that of Theorem 4.2.4. The only
difference is the estimate (4.14).

Since f € F' ,, we have g = fy € F',,. So tg(t) = (- g (t). WLOG assume

1
r3 > Tt . Then,
ST g(t)
)U(Ly,+iv) dt| < C 9O Lo, il dt < C T
|t|>n7"1 [t|>n"1 [t|>n"1 t
/
_ Cllgl
nrirs
= [|g/lo(n” D7)

Now, the existence of the strong expansion follows from the first part of the theorem

and Theorem 4.1.4. O

As in the i.i.d. case, Cp(a) does not depend r because 6, and P, do not. Also,
there are two ways the coefficients C'(a) depend on a. First note 6, depends on
the choice of a. Also, from Section 3.3, we know exactly how the coefficients of P,
depend on the derivatives of the u(z) and ¢(I1,(-)) at 6, and thus, on the exponential
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moments of Sy. Since this dependence of C'(a) on a is explicit, one can compute

these coeflicients.

4.3 An application to Markov Chains.

Take x, to be a time homogeneous Markov process on a compact connected
manifold M with smooth transition density p(z,y) which is bounded away from 0,
and X,, = h(x,_1, x,) for smooth function h : M x M — R. We assume that h(z,y)

can not be written in the form
h(z,y) = H(y) — H(x) + c(z,y) (4.16)

where c(x, y) is piece-wise constant. (An equivalent condition is given in Lemma 3.5.1).
This is exactly the setting we worked in Section 3.5.3.1.

We need the following lemma to establish (B1) through (B5).
Lemma 4.3.1. Let K(z,y) be a smooth positive function on M x M. Let P be an
operator on L>(M) given by Pu(z) = /MK(x,y)u(y) dy. Then, P has a simple
leading eigenvalue X > 0 and the corresponding eigenfunction g is positive and

smooth.

Proof. From the Weierstrass theorem, K (z,y) is a uniform limit of functions of the
form Z J.(x)L,(y). Therefore, P can be approximated by finite rank operators.
So P :sg Zompact. Since P is an operator which leaves the cone of positive functions
invariant, by a direct application of Birkhoff Theory (see [2]), P has a leading
eigenvalue A which is positive and simple. The corresponding eigenfunction ¢ is also

positive.
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Because P is compact, there is [ € (0, A) such that spre(P)N{|z| > r} = {A}.
Next, we consider P acting on C*(M). Observe that,

P = [ St dn

So, |[[Pu(z)|lcr < C||lul|s for some C. Since || - ||oc < ||-]|cr unit ball with respect to
| - [[cr is relatively compact with respect to || - ||. Therefore the essential spectral
radius is 0 by [24, Lemma 2.2]. This gives us, spci(P) N {|z| > r} C {\}.

To see that equality holds, note that the constant function 1 € C*(M). By

positivity of P,

pn A"
1> — pu>—2 — pu>2L — P = M- > A
sup g sup g sup g sup g
where ||| - ||| is the operator norm of P acting on C*(M). Therefore, the spectral

radius of P is > \. This establishes that g € C'. We can repeat the argument and

show g € C" for r € N. ]

Take B = L*(M) and consider the family of integral operators,

(Lau)(z) = /M p(, )™ @u(y) dy, = € C.

Let u be the initial distribution of the Markov chain. Then, using the Markov prop-
erty, we have E, [¢*"] = u(L£Y1). Now, we check conditions (B1) through (B5).

Conditions (B1) and (B2) coincide with the conditions (A1) and (A2) in Chap-
ter 3 and we verify them in Section 3.5.3.1. In particular, (B1) holds with § = occ.
Note that, for all 6, Ly is of the form P in Lemma 4.3.1. Therefore, (B3) holds for
all 0. Take A(#) be the top eigenvalue and gy to be the corresponding eigenfunction.
Then, gy is smooth.
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To show (B4) and (B5) we define a new operator @y as follows.

Qo) (x) = ﬁ /M Dz, y)uly)

@) p(z, y)

It is easy see to that py(x,y) = and dmg(y) = ge(y) d(y) defines a

go(x)A(0)
new Markov chain :UZ with the associated Markov operator Qy. That is, Qg is a
1
positive operator and (Qyl = —/ @Dz, 1) 90(9) dy = 1 because gy is the
A(0) J i 9o()

eigenfunction corresponding to eigenvalue A(6) of Ly.
Now, we can repeat the argument in Section 3.5.3.1 to establish properties of

the perturbed operator given by

(Qosie)ulz) = / D py (2, ) dma(y)

M

Since (4.16) does not hold we conclude that sp(Ly4) C {|z] < 1}.
Take Gy to be the operator on L>(M) that corresponds to multiplication by
go- Then, Lo, i = MN0)GeQoritGy". Therefore, sp(Lgyi:) is the sp(Qgyit) scaled by

A(#). This implies sp(Lot:t) C {|2| < A(f)} as required.

0 0

Since (4.16) does not hold, the asymptotic variance o3 of X? = h(2% |, 2%) is

positive. Taking (6 +it) to be the top eignevalue of Qpi, A(0+it) = X(0)y(0+1t).

d? d? ’Y”(@)
———log \(# + it = ——logvy(0 + it =
gz 08 AO )] gz 080 +it)| | ~(6)

7 (6)\2 " N2 (.. . 0 o P )
(7(0)> = —"(0) + ' (0)° (- () = 1). Put S, = X + --- + X%. Since,

E(e5%) = /Qé\ﬂritl dp, from (3.37), we have that 7/(6)* — 4"(8) = o2. Thus,

Thus, (logA(0))" =

+

(log M(9))" = o5 > 0. Therefore, log \(6) is a strictly convex function.

Note that, £y = A(0)IIp+Ay where Il is the projection onto the top eigenspace.
From [27, Chapter III}, IIy = go ® @y where @y is the top eigenfunction of @), the
adjoint of QQp. Because Q) itself is a positive compact operator acting on (L*)* (the
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space of finitely additive finite signed measures), @y is a finite positive measure.
Hence, u(Ilyl) = @p(1)pu(ge) > 0 for all 6.

As a result, Lemma 4.2.1 holds with d, arbitrary large and hence, Theo-
rem 4.2.2 holds with 0, arbitrary large. So the rate function /(a) in Theorem 4.2.2

1
is finite for @ € (0, B) where B = lim M.

00— o0

We observe that B < oo be-

S B
cause h is bounded i.e. WN < ||h]|so surely. In fact, we claim B = A}im =Y where
—00
N
By = sup Z h(xzj_1,z;) (the supremum taken over all possible realizations of
L0,y XN =1

the Markov chain x,,).
First note that By is subadditive. So lim 2 exists and | to inf 2¥
1Ist note a N 1S suba 1t1ve. (6] N1—>H<1>o N €X1STtS and 1s equal to 1% N .
SN BN

Given, a > B there exists Ny such that for all N > Nj, N < N < a. Therefore,

P(Sy > aN) = 0 for all N > N; and hence, I(a) = co. Next, given a < B, for

all N, By > aN. Fix N. Then, there exists a realization xi,...,zy such that
alN < EN: h(xzj_1,2;) < B. Since h is uniformly continuous on M x M, there exists
=1
0>0 sjuch that by choosing y; from a ball of radius J centred at z; i.e. y; € B(x;,0),
N
we have aN < Z h(yj_1,y;) < B. We estimate the probability of choosing such a
realization yq, . ]:,lyN and obtain a lower bound for P(Sy > aN):

P(Sy > aN) > /

/ / p(yn—1,Yn) - p(Wo, y1) di(yo) dys - - . dyn
B(zn,0) B(z1,d) J B(z0,9)

> M(B(wo,é))< mir/ap(:c,y))Nvol(IB%g)N

RIS

Therefore, I(a) < oo as required.
Also, because gy is smooth we can repeat the argument in Section 3.5.3.1 to

obtain (3.45) for Q4. That is, there is ¢y and 7, such that ||Q5,; || < (1 — €) for
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all |t| > rg. Therefore,
1254l = MON1GoQ5 Gy | < MO IGalll Q8 lllI Gy I} < CAO)Y (1 — e9) N7

This establishes (B5).

Since the rate in (B5) is exponential and Theorem 4.2.2 holds for (0, B), we
conclude that for all » € N, these Markov chains admit weak expansions for large
deviations of order r in the range (0, B) for FEJFLBJF where B+ = o0, if B = 0o and
B+ > B, if B < 0.

We need a stronger assumption on h to establish (]fB\B) Suppose,
For all z,y critical points of z — (h(x, z) + h(z,y)) are non-degenerate. (4.17)

Since critical points of z — (h(z,z) + h(z,y)) are non-degenerate we can use the

stationary phase asymptotics in [48, Chapter VIII.2], to obtain,

’ / eit(h(w,z)+h(z’y)p(x; Z)p(Z, y>€9(h(m’Z)+h(Z’y)) dz S |t|—d/2
M

M
where M is a constant and d is the dimension of M. Therefore, ||£5 | < a2

1
Choose K = (2M)*?. Then for all |t| > K, ||Qa,|| < B and hence,

_ 1\ LV=2)/2] M
hefll < NESENILE el < (5) T > K
By convexity, A(f) > 1. Thus,
1\ L(V=2)/2] \(9)N
1255l < M<§> S > K.

This establishes (B5).
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In particular, when h depends only on one variable, i.e. h(z,y) = H(x) for
some H, we have that h(z, z) + h(z,y) = H(x) + H(z). Then, the condition (4.17)
reduces to critical points of H being non-degenerate.

Again, because Theorem 4.2.2 hold for all (0, B) and the rate in (B5) is ex-
ponential, we conclude that these strongly ergodic Markov chains admit strong

expansions for large deviations of all orders in the range (0, B).
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Chapter A: Appendix

A.1 Convergence of X.

We need some background information. Given a piecewise smooth function
g : R* = R of compact support its Siegel transform is a function on the space of

lattices defined by

weL\{0}

We need an identity of Siegel, see ( [38, Section 3.7] or [46, Lecture XV]) saying

that
Be(S(o) = [ gwiaw. (A1)

In particular, if B is a set in R? with piecewise smooth boundary not containing 0
then
P.(LNB#0)<P(S(1p)(L)>1) <E,(S(1p)) = Vol(B). (A.2)

sin(2my(w))

y(w)

Proof of Lemma 2.1.2. Let LT = {w € L : y(w) > 0}. Since is even
it is enough to restrict the attention to w € £7.

Throughout the proof we fix two numbers ¢ > 0,7 < 1 such that e < (1-7) <

1. Tt is easy to see using (A.2) and Borel-Cantelli Lemma that for almost every lattice
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C
L, there exists C' and  such that y(w) > Wl It follows that
w

in 2 .
3 SIN 2T (W) o) 2 < 3 Cllw|fe ™

W

weLTt: ||z(w)||>]||w]|¢ y weLt

converges absolutely. Hence it suffices to establish the convergence of
= S SI2TX (W) _jla(w)l?
weer: ol <ne YY)
Let R; ) = ok 4otk i =0,...2077k To prove the convergence of X we will show

that for all £ almost all y satisfy two estimates below

V sequence {ji} /?Rjk,k converges as k — 00, (A.3)
max sup |Xr — Xj| = 0 as k — oo. (A.4)
J  Rjk<R<Rj 1k

To prove (A.3) let

sin 2
S — T SIN 2T (W) o)

Yy\w
weLt: [Ja(w)||<|[wl[*, Ry <IIWII<Rj41

Using that E, (sin(27(x(w)))) = 0 and for wy # £w, we have

E, (sin(27 (x(w1))) sin(27(x(w2)))) = 0

we see that E, (S5;;) = 0 and

o—2lx(w)]?
Vary(S) = 2. o (w)
WL fa(wl|<I Wl Ry S| WIS Ry 1.0
1
< o Card(w : [la(w)]| < [[WIF, Ry < |[WI| < Ryor)
_ Cl)

oo Vol(w s [lz(w)l] < |Iw]*, Ry < |lwl] < Bjrp)

< C(£>2(T+E(d*1)72)k.
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Hence by Chebyshev inequality for each j
PX (Sj,k Z 2—(1—T+€)k) S C(E)Q(&d—’l’)k

and so

PX (3] . Sng > 2—(1—T+E)k) < C<£)2(1+ad—2‘r)k'

Thus if € is sufficiently small and 7 is sufficiently close to 1 then Borel-Cantelli

Lemma shows that for almost every x, if k is large enough, then for all 7 5;; <

9—(1=7+9)k 414 thus Z Sik < 9—ck proving (A.3). Likewise,
J

sup ‘XR — Xj,k‘
Rjr<R<Rji1k

1 2
< ozl
2 ly(w)]

weLlt: ||lz(w)l|<[|w|[%,||Wl|E[R;,k,Rj41,k]

< C(L)27Vol(w + [|la(w)|| < [|wll, Rjx < [|W] < Rji1x)

< C«(£>27+6(d71)71

proving (A.4). Lemma 2.1.2 is established. O
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A.2 Hierarchy of Expansions.

In the discussion below, we do not assume the abstract setting introduced in
section 3.1. Therefore the hierarchy of asymptotic expansions provided here holds
true in general.

We observe that the classical Edgeworth expansion is the strongest form of
asymptotic expansion among the expansions for non-lattice random variables. The
following proposition and remark A.2.1 establish this fact.

Proposition A.2.1. Suppose Sy admits order r Edgeworth expansions, then it also
admits order v weak global expansion for f € Fy and order r averaged expansions
for f € L*. Further, if the polynomials P, in the Edgeworth expansion has opposite
parity as p then Sy admits order r — 1 weak local expansion for f € F}.

Remark A.2.1. Section 3.5.2 contains examples for which the weak and averaged
forms of expansions exist but the strong expansion does not. Therefore none of the

above implications are reversible.

Proof of Proposition A.2.1. Suppose f € FOI. Let F, = P(% < m) and put
n
- Py(z)
Ernlw) =N(z) + ) L n(a).
p=1
Observe that F,(z) — &,(z) = o(n™"/?) uniformly in z and,
1 , , " R,(x
dE, . (z) = n(z) do + 2 — 5 [Py (@)n (@) + By ()] do = 0 ;p</ 2>n(g;) dx
p= p=

where R, are polynomials given by R, = P, + P,Q and Q is such that n'(z) =
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Q(z)n(z). Next, we observe that,

nA

E(f(S, — nA)) = E(f(%\/ﬁ)) — [ favidr,(a)
/f (zv/n) dE,,(x /f (zv/n) d(F, — &) (2).

Now we integrate by parts and use &, ,,(00) = F,(c0) = land &, ,,(—o0) = F,,(—00) =

0 to obtain,
B (S, = 1) = [ F@vi) dEsu(e) + (F — ) ) (o)
- [(F = ) @)af (o) da
~ [ atamta) e o (77) [ Var(avi

« P p/2
= Z: L/ n(x) f(zv/n)dz + o (n—r/2) :

This is the order r» weak global Edgeworth expansion. The existence of the
order r — 1 weak local expansion follows from this. This is our next theorem. So we
postpone its proof.

For f € L' substituting = by = + Y in the Edgeworth expansion for S,, we

NG

have

(55 e ) )

~ 1 ) Y —r/2
= E ——P (a:+—)n(:v+—> +o(n T’/).
2°D
1 np/ \/ﬁ \/ﬁ
For fixed z, the error is uniform in y. Therefore, multiplying the equation by f(y)

and then integrating we can conclude that the order r averaged expansion exists. [J

Remark A.2.2. We have seen from the derivation of the Edgeworth expansion in
section 3.2 that Py(x) and p have opposite parity in the weakly dependent case. This
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implies that B, , has the same parity as p. This is true in the i.1.d. case as well.
Even though this assumption may look artificial in the general case, it is reasonable.
When using characteristic functions to derive the expansions, one is likely to end
up with Hermite polynomials which is the reason behind the parity relation.

Next, we compare the the relationships among the weak and averaged forms
of Edgeworth expansions.
Proposition A.2.2. Suppose Sy admits order r weak global Edgeworth expansion
for f € FI*" for some ¢ > 0. If the polynomials P,, in the global Edgeworth

expansion has the same parity as p then Sy admits order r — 1 weak local expansion
for f.
Proof. Assume, f € F'. Then, from the Plancherel formula,

/R\/ﬁf /) Bpaliinia) do = % i f (%)Ap(t)e”?z dt

where A,(t) are polynomials constructed using the following relation,

11711779(75)(3_;722 = ;Ap <—2i) [6_2%].
V2ro? dt
By construction P,, and A, has the same parity. This means A, has the same
parity as p.
First replace

/Ppyg(:v)n(:v)f(x n)dz

1 02152

QW\/H/RJ/C(%)APG)@_? dt
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in the weak global expansion to obtain,

VnE(f(S, —nA)) =5 Z 7 / _# dt + o (n""1/2).

Then substituting for fwith its order » — 1 Taylor expansion,

\/_ (f(S — nA ZZ 'n ]+p 7 /t_] 702152/214 ( )dt +o (n*(rfl)/2) .

Put
. = J _J2t2/2A d — 0 d (]) 0 - —1 J d
Uy, /Rt e L(t) dt and fY(0) /( it)’ f(t) dt

to get,

r

VIE(f(S, —nA)) ;ﬂzz 'nf’ﬁp) /2 / i) f(t) dt + o (n~7H/2)

p=0 j=
Since p and A, are of the same parity, when j + p is odd. a,; = 0. So we collect
terms such that p + 7 = 2k where £ =0,...,r — 1 and write,
Piw= Y 2 (-ity
kaw — ]|
p+j=2k

Then, rearranging, simplifying and absorbing higher order terms to the error, we

obtain,
=172}
VRE(f(S, — nA)) — / Pro(t)f(t) dt + 0 (n~ 7 D/2)
=
which is the order » — 1 weak local Edgeworth expansion. O]
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A.3 Construction of {f;}.

For each k, let fi(x) = %tan_l(kx)+% for x € [—1,k]. Extend f; to [—2, k+1]
in such a way that fy(—2) = fe(k+ 1) = 0, f is continuously differentiable and
satisfying the following conditions.

1. fg is increasing on [—2, k| with derivative on [—2, —1] is bounded above by 1.

2. fy is decreasing on [k + 1/2, k + 1] with derivative bounded below by —5.

3. 1fil <b5on [k k+1].

4. 0< fr, <1lon [-2,k+ 1] and f, = 0 elsewhere.
Then, f; is supported on [—2, k + 1]. Here our choice of bounds 1 and —5 in some
sense arbitrary. As long as they are large enough and independent of k, we obtain
an appropriate sequence of functions.

As an example, when k& = 5, the graph of f5 looks like:

For all v > 0,

[l = [l plar< [ewin =< o

2

because 0 < fr < 1.
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Since |f;] <5 on [k, k+1],0 < fr <1 and fj, is increasing on [—2, k],

/ ((fe)) () de = / e fi() + e fi()] da

2

< [ e + )

-2

k k k1
< / ye " dx + / fr(x)de + / (ye 7 +5e77") dx
2 —1 k

k1
§1—|—/ (b+7y)e ™dr=C,2 < 0
—2

Also, note that |z'fi(2)| < 2'e™ for all z € [~2, k + 1]. Hence,

/|$lfk(l‘)| dr < / gle™ " dr = J,; < 00

2
Put J,.(y) = max Jyu and C,(r) = max{J,(7),Cy1,C52}. Then, C(r) is finite and
depends only on v and r.
Now, we have the following,
L. Gl ((fr)y) < Cy(r) for all k.
2. Since, %tan_l(kx) + % converges pointwise to 1j .oy (), it is easy to see that
fr = 1jo,00) POiIntwise.
3. Since for each p, e "*P,(2)fr(z) converges pointwise to e *P,(2)1[x)(2),
e *|Py(2)|1[-2,00) Is integrable and |e™"*P,(2) fr(2)| < e 7*|Pp(2)|1[-2,00), We

can apply the LDCT to conclude,

/Pp(z)gk (z)dz = /_OO e ZPy(z) fx(z)dz — /000 e *P,(z)dz.

2
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