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Abstract

We propose a general framework for obtaining asymptotic distributional bounds on the

stationary backlogWA1+A2;c in a bu�er fed by a combined �uid process A1+A2 and drained at

a constant rate c. The �uid process A1 is an (independent) on-o� source with average and peak

rates �1 and r1, respectively, and with distribution G for the activity periods. The �uid process

A2 of average rate �2 is arbitrary but independent of A1. These bounds are used to identify

subexponential distributions G and fairly general �uid processes A2 such that the asymptotic

equivalence P
�
WA1+A2;c > x

�
� P

�
WA1;c��2 > x

�
(x!1) holds under the stability condition

�1+�2 < c and under the non-triviality condition c��2 < r1. The stationary backlogW
A1;c��2 in

these asymptotics results from feeding source A1 into a bu�er drained at reduced rate c��2. This

reduced load asymptotic equivalence extends to a larger class of distributions G a result obtained

by Jelenkovic and Lazar [18] in the case when G belongs to the class of regular intermediate

varying distributions.
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1 Introduction

On-o� sources provide a natural and versatile tool for modeling incoming tra�c at a node (router)

or gateway of a network. An on-o� source is characterized as a stochastic process which alternates

between periods of silence (o�) and activity (on). During on periods such a source generates data

continuously at a constant rate, and becomes silent during o� periods; a more acurate de�nition

will be given in Section 2.

As tra�c �ows generated by multiple on-o� sources are typically multiplexed onto a single link, it

is of great practical importance to address the corresponding bu�ering issues in an e�ort to make

e�cient use of network resources. This is often carried out in the context of the following simple

model for a multiplexer: The superposition of these on-o� sources is o�ered to a single in�nite

capacity bu�er which is drained at a constant rate. If W denotes the resulting stationary backlog

(assumed to exist), then it is expected that its probability distribution crucially depends on the

statistics of the on periods. For instance, it is well known that for a single exponential on-o� source,

i.e., a source with on (and o�) periods which are exponentially distributed, the tail distribution

P [W > x] decays exponentially fast as x tends to in�nity [1]. This exponential decay property is

preserved under multiplexing in the sense that when several independent exponential on-o� sources

are combined, the tail distribution P [W > x] still decays exponentially fast [12]. Both situations

discussed so far are instances of a class of Markov modulated �uid models which has been extensively

studied [1, 12, 23, 27] since the seminal work of Kosten [20]. A fairly comprehensive theory has

been developed for such sources, and algorithms are now available for the numerical evaluation of

the tail distribution P [W > x] for all values of x [2, 27].

On the other hand, the situation is quite di�erent when at least one of the on-o� sources has

heavy-tailed on periods. The need for considering such models with heavy-tailed components can

be traced back to recent measurements of network tra�c [21] which exhibit long-range dependence

and burstiness over an extremely wide range of time scales. Along these lines, for a single on-o�

source with subexponential distribution G for the on periods, Jelenkovic and Lazar [18, Thm 9] have

shown that

P [W > x] � K0

Z 1

x=�0
(1�G(u)) du (x!1) (1.1)

for appropriate constants K0; �0 > 0 determined by the source statistics (such as average and peak

rates) and the bu�er release rate (Remark 4.1); typical examples of subexponential distributions

include the Weibull, log-normal and generalized Pareto distributions [14]. In fact, the asymptotic

(1.1) extended a result obtained earlier by Boxma [6, Thm 5.1] for generalized Pareto (or regularly

varying) distributions G of the form

1�G(x) = x��L(x); x > 0

with � > 0 and some regularly varying L : IR+ ! IR+ [5]. Recently, the case 1 < � < 2 has been

viewed with particular interest since it corresponds to the input process being long-range dependent.

Extensions of (1.1) to multiple on-o� sources have been considered in the literature, with a survey of
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related recent results available in [7]. In [6, Thm 6.1] Boxma already showed that if a single on-o�

source (source 1) with regularly varying on periods shares the bu�er with an exponential on-o�

source (source 2), then the former dominates the behavior of the bu�er. This result was extended

by Jelenkovic and Lazar [18, Thm 10] to two on-o� sources with more general statistics. It was

shown that source 1 dominates the behavior of the bu�er if its on periods have an intermediate

regular varying distribution [10] as long as the tail of the on periods of source 1 is heavier (in some

precise technical sense) than that of source 2. A noteworthy byproduct of the results in [6, 18]

is that the source 2 contributes to the asymptotic behavior of P [W > x] only through its average

�uid generation rate �2. In fact, the following rephrasing of these results was �rst pointed out by

Jelenkovic and Lazar [18, Thm 10]: Let A1 and A2 denote the on-o� sources 1 and 2 with average

rates �1 and �2, and peak rates r1 and r2, respectively. The combined (or multiplexed) �uid process

A1+A2 is o�ered to a bu�er which is drained at rate c (�uid units/sec) under the stability condition

�1 + �2 < c. Under the non-triviality condition c � �2 < r1, the corresponding stationary backlog

WA1+A2;c has the property

P

h
WA1+A2;c > x

i
� P

h
WA1;c��2 > x

i
(x!1) (1.2)

where the stationary backlog WA1;c��2 results from feeding source A1 into a bu�er drained at the

reduced rate c � �2. This asymptotic equivalence (1.2) re�ects the following intuitive notion: The

tail of Pareto distributed activity periods of source 1 is considerably heavier than the exponential

tails governing the exponential on-o� source 2. As a result, a single on period for source 1 is likely

to correspond to a large number of successive on and o� periods in source 2. Such a disparity in

time scales is enough for the Law of Large Numbers to kick in for source 2, e�ectively averaging out

random �uctuations about the mean �2 and replacing them by the average behavior of the source

2. It is now a small step to believe in the plausibility of (1.2).

The reduced load (asymptotic) equivalence (1.2) suggests a natural way of approximating the dis-

tribution of WA1+A2;c with that of WA1;c��2 . As this latter quantity is associated with the single

source A1, a reduction in computational e�orts may result, at least in principle. For instance, when

applicable, (1.1) and (1.2) together imply

P

h
WA1+A2;c > x

i
� K1

Z 1

x=�1
(1�G(u)) du (x!1)

for appropriate constants K1; �1 > 0 determined by the statistics of A1 and by the release rate

c � �2. Given its asymptotic basis, this approximation will become increasingly accurate with x

large, a property that might make it well suited in various contexts for evaluating very small cell

loss probabilities via bu�er over�ow probabilities. However, the accuracy of the resulting estimates

remains an open question, with some indications that it might be poor.

Leaving aside these computational issues, we note that the class of intermediate regular varying

distributions in [18] includes regularly varying distributions, but does not contain the log-normal and

Weibull distributions. Hence, the validity of (1.2) is already in question when the activity period of

source 1 is characterized by these standard subexponential distributions. However, the plausibility
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argument made for (1.2) in the Pareto case, if indeed correct, holds out the possibility that the

range of validity for (1.2) extends beyond the class of intermediate regular varying distributions.

In particular, in the same way that Boxma's result for single �uid with regularly varying activity

periods in [6] was generalized as (1.1) by Jelenkovic and Lazar [18], it is natural to speculate whether

(1.2) holds more generally for the class of subexponential distributed activity periods. This question

forms the motivation behind the developments presented here as we revisit the model in [18] when

source 1 has a subexponential activity period.

To help the reader navigate the many technical sections of the paper, we summarize below the

approach taken to establishing (1.2) and some of the paper's main contributions: The arguments

articulate around lower and upper bounds, which in the best of cases take the form

1 � lim inf
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

and lim sup
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

� 1: (1.3)

Our point of departure for establishing such bounds is the representation

WA1+A2;c =st sup
t�0

(A1(t) +A2(t)� ct) (1.4)

which holds under the usual assumptions (Section 2). As in [18] we introduce perturbations h :

IR+ ! IR in order to write (1.4) as

WA1+A2;c =st sup
t�0

(A1(t)� (c� �2)t+A2(t)� �2t)

= sup
t�0

(A1(t)� (c� �2)t+ h(t) +A2(t)� �2t� h(t)) : (1.5)

While only linear perurbations su�ced in [18], we shall need general perturbations for handling the

broader class of subexponential distributions. This decomposition (1.5) is then invoked in Section

2 in order to derive generic bounds. These bounding arguments hold in a fairly general framework,

and are given in terms of the �perturbed" backlog associated with source 1 after load reduction,

namely

WA1;c��2;h := sup
t�0

(A1(t)� (c� �2)t+ h(t)) :

Asymptotic bounds on the tail distribution of the random variable (rv) WA1;c��2;h are established

in Section 4 when the source A1 is a standard independent on-o� source with subexponential ac-

tivity periods; the needed facts on subexponential distributions are collected in Section 3. These

asymptotic bounds on WA1;c��2;h can now be used in conjunction with the bounds developed for

WA1+A2;c in Section 2. This is done in Sections 5, 6 and 7 when the source A1 is a standard inde-

pendent on-o� source with subexponential activity periods and source A2 is a fairly general �uid

source satisfying at minimum a Central Limit Theorem. The bounds are optimized by considering

perturbations of the form "h with " small and letting " go to zero in the resulting bounds.

Still we need to identify the best perturbation �direction" h, best in the sense of making the lower

(resp. upper) bound largest (resp. smallest). In the determination of a suitable h for either the
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lower or upper bound, a crucial and central role is played by the mapping mG : IR+ ! IR+ de�ned

by

mG(x) :=

R1
x (1�G(t)) dt

1�G(x) ; x � 0

with G denoting the distribution of the activity period. In fact, when G is subexponential but

not regularly varying, the requirements imposed on h for optimizing the bounds coincide with well-

known properties enjoyed by distributions in the maximum domain of attraction of the Gumbel

distribution [14], most notably properties characterizing the so-called auxiliary function associated

with such distributions. The Weibull, log-normal and Bentkander distributions belong to this max-

imum domain of attraction, thereby allowing us to take h(x) � mG(x) (x!1) in these cases and

to conclude to the validity of (1.2) under certain conditions; these examples are discussed in Section

8. The importance of the function mG is reinforced by a negative result of Dumas and Simonian [11]

to the e�ect that the asymptotic equivalence cannot hold if limx!1mG(x)=
p
x = 0. In particular,

while (1.2) holds for all log-normal distributions, it holds only for the Weibull distributions that

have heavy enough tails as in (8.17).

Generalized Pareto rvs belong to the maximum domain of attraction of the Féchet distribution, and

not of the Gumbel distribution [14]. However, the approach presented here applies to that case as

well; in fact, mG(x) � x (x ! 1) and points of contact with Extreme Value Theory also emerge

since the arguments of Jelenkovic and Lazar [18] were based on using linear perturbations. The

somewhat singular nature of the regularly varying case is made increasingly apparent in Section 9

where we provide various extensions for it: Following [18] we show that the validity of (1.2) also

holds when G belongs to the larger class of intermediate regular varying rvs [9]. The asymptotic

�scale invariance" property of these rvs is shown to imply the validity of the upper bound in (1.3)

without independence of the sources.

In Section 10.1 we consider the case when A1 is a superposition of independent on-o� sources.

Exact asymptotics for this case are notoriously hard to obtain in general; we contend ourselves with

a lower bound that extends an earlier result of Choudhury and Whitt [8]. Finally, in Section 10.2

we discuss the situation often encountered in practice where A2 itself is an aggregation of several

sources, typically with a simpler probabilistic structure (e.g., independent on-o� sources); we show

how the necessary technical conditions on the component sources transfer to the aggregate source.

Section 11 closes the paper with a list of open problems associated with the reduced load equivalence

(1.2).

To facilitate the reading of this long paper, we have relegated proofs of major technical results to

several appendices. A word on the notation in use: Throughout =)t denotes the convergence in law

with t going to in�nity. Equivalence in law or in distribution between rvs and stochastic processes

is denoted by =st, and we use �st for the strong stochastic ordering between rvs. Also for mappings

f; g : IR+ ! IR, the relation f(x) � g(x) is understood as limx!1
f(x)
g(x) = 1, the quali�er (x ! 1)

being omitted for the sake of notational simplicity. For any scalar x, we write x+ = max(x; 0)

and with any mapping ' : IR+ ! IR, we associate the mapping '+ : IR+ ! IR+ de�ned through
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'+(x) := ('(x))+ for all x in IR.

2 Generic bounds

We adopt the following framework in order to develop several generic bounds: A �uid process (or

source) is de�ned as any IR+-valued stochastic process A = fA(t); t � 0g with non-decreasing

right-continuous sample paths such that

lim
t!1

A(t)

t
= � a:s:;

as usual the non-negative constant � represents the average rate of the source.

We interpret A(t) as the amount of �uid generated by the source in the interval [0; t). If the �uid

process A := fA(t); t � 0g is o�ered to an in�nite capacity bu�er from which it is drained at the

constant rate of c (�uid units/sec), then it is well known that the corresponding backlog at time

t � 0 is given by

WA;c(t) = sup
0�s�t

(A(t)�A(s)� c(t� s))

provided the bu�er is empty at time t = 0.

The following facts are well known [22]: If the arrival process A has stationary increments, then

WA;c(t) =)t W
A;c where the stationary backlog rv WA;c has the representation

WA;c = sup
t�0

(AR(t)� ct) (2.1)

with AR := fAR(t); t � 0g denoting the time-reversed process associated with A. Moreover, the rv

WA;c is a.s. �nite under the stability condition � < c.

The �uid models encountered in practice have stationary increments. In such cases, in dealing

with (2.1), with a slight abuse of notation we denote the process AR by A instead, or equivalently,

we interpret the arrival process A backwards in time. We note that in many important instances

(Section 4), the distributional equivalence fAR(t); t � 0g =st fA(t); t � 0g holds.

Except in a few isolated cases (e.g., [1, 23, 27]), characterizing the distribution of the stationary

backlog rv WA;c is a di�cult task, not to say an impossible one. As a result, we resort to studying

the tail behavior of WA;c, and we do so by deriving lower and upper bounds on the quantity of

interest in structured situations. In particular, we have in mind situations where several �uid sources

are multiplexed onto a single link. As the bounds are obtained by a perturbation technique, we

�nd it useful to generalize the de�nition (2.1) by associating with any mapping h : IR+ ! IR the rv

WA;c;h given by

WA;c;h := sup
t�0

(A(t)� ct+ h(t)) :
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In due course, several assumptions will be imposed on such a perturbation mapping h.

In Sections 2.1 and 2.2, we consider the case when the �uid process A is obtained as the superposition

of two �uid processesA1 and A2 as understood earlier in this section, with no additional assumptions.

For each i = 1; 2, let �i denote the average rate of source Ai and let c > 0 denote the release rate

of the �uid.

2.1 Generic lower bounds

We begin with a generic lower bound on the tail distribution of the stationary backlog.

Proposition 2.1 Assume the arrival process A to be the superposition A = A1 + A2 of two inde-

pendent �uid processes such that

A1(t) � r1t; t � 0 (2.2)

Then, for any Borel mapping h : IR+ ! IR, it holds for each x � 0 that

P

h
WA1+A2;c > x

i
�
 

inf
ft:(r1+�2�c)t+h(t)>xg

P [A2(t) � �2t+ h(t)]

!
P

h
WA1;c��2;h > x

i
: (2.3)

Proof: Fix d > 1 and pick 0 < � < 1� d�1. Fix x � 0. There exists an a.s. �nite and nonnegative

rv �� such that

min
�
dx;WA1;c��2;h

�
� 1

1� � (A1(��)� (c� �2) �� + h(��)) :

This can be seen by considering separately the cases WA1;c��2;h =1 and WA1;c��2;h <1; the rv

�� may depend on x.

Let a(t) = �t+ h(t) (t � 0) with � := r1 + �2� c. The rv �� being independent of A2, it holds that

P

h
WA;c > x

i
� P [A1(��)� (c� �2)�� + h(��) +A2(��)� �2�� � h(��) > x]

� P [A1(��)� (c� �2)�� + h(��) > x;A2(��)� �2�� � h(��) � 0]

= P [A1(��)� (c� �2)�� + h(��) > x; a(��) > x;A2(��)� �2�� � h(��) � 0]

=

Z
ft :a(t)>xg

P [A2(t) � �2t+ h(t)] P [A1(t)� (c� �2)t+ h(t) > x j �� = t] P [�� 2 dt]

�
 

inf
ft:a(t)>xg

P [A2(t) � �2t+ h(t)]

!
P [A1(��)� (c� �2)�� + h(��) > x]

�
 

inf
ft:a(t)>xg

P [A2(t) � �2t+ h(t)]

!
P

�
min

�
dx;WA1;c��2;h

�
>

x

1� �
�

=

 
inf

ft:a(t)>xg
P [A2(t) � �2t+ h(t)]

!
P

�
WA1;c��2;h >

x

1� �
�
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where the �rst equality made use of the constraint (2.2) on source A1, and the last inequality follows

from the de�nition of ��. Letting � # 0 in this last inequality yields the desired conclusion.

The interest in this lower bound resides in the fact that the two sources have now been decoupled,

with source A1 (resp. A2) entering only the second (resp. �rst) factor. In Section 4, we focus on the

evaluation of the �rst factor in the more restricted context of stationary independent on-o� sources.

2.2 Generic upper bounds

The upper bounds derived in this paper all �ow from the following observation:

Lemma 2.1 Assume the arrival process A to be the superposition A = A1+A2 of two �uid processes.

For any mapping h : IR+ ! IR, it holds that

WA;c �WA1;c��2;h +WA2;�2;�h: (2.4)

Proof: We note that

WA;c = sup
t�0

(A1(t)� (c� �2)t+ h(t) +A2(t)� �2t� h(t))

� sup
t�0

(A1(t)� (c� �2)t+ h(t)) + sup
t�0

(A2(t)� �2t� h(t)) (2.5)

and the conclusion (2.4) follows.

This upper bound is interesting only when the rvs WA1;c��2;h and WA2;�2;�h are a.s. �nite; a

necessary condition on h for this to happen is given by

0 � lim inf
t!1

h(t)

t
� lim sup

t!1
h(t)

t
� c� (�1 + �2)

with the condition becoming su�cient if both outmost inequalities hold as strict inequalities. When

some of these outmost inequalities hold only as equalities, the conclusion depends on the growth

behavior of h at in�nity, such situations being discussed in Section 6.3.

3 Preliminaries

For easy reference, we collect below some de�nitions and technical facts that are used throughout

the paper. The proofs of the various lemmas are provided in Appendix A.

We �rst recall the de�nitions of various classes of probability distributions on IR+ which are of

interest here: An IR+-valued rv X is said to have
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a long tail, denoted X 2 L, if

lim
x!1

P [X > x� y]
P [X > x]

= 1; y 2 IR; (3.1)

a subexponential tail, denoted X 2 S, if

lim
x!1

P [X +X 0 > x]

P [X > x]
= 2

where X 0 is an independent copy of X.

Additional material on these classes of distributions can be found in the monograph [14]. It is well

known that the class S is a subclass of L [13]. Also, it is worth noting that (3.1) holds for all y � 0

if and only if it holds for all y � 0.

We follow up with some standard (and some less standard) results on long-tailed distributions.

Lemma 3.1 Let X, Y , Z and T denote four mutually independent IR-valued rvs such that X, Y

and Z are nonnegative.

(1) If X 2 S (resp. L) and P [Y > x] � cP [X > x] for some positive constant c, then Y 2 S
(resp. L);

(2) If X 2 L, then P [X � Y + d > x] � P [X > x] for any scalar d;

(3) If Z 2 S, P [X > x] � c1P [Z > x] and P [T > x] � c2P [Z > x] for constants c1 � 0 and

c2 � 0, then P [X + T > x] � (c1 + c2)P [Z > x]. In particular, (X + T )+ 2 S if c1 + c2 > 0.

Next, with any IR+-valued rv X with 0 < E [X] < 1, we associate the IR+-valued rv X? whose

distribution is the integrated tail distribution of X, namely

P [X? � x] = 1

E [X]

Z x

0
P [X > u] du; x � 0: (3.2)

Some useful facts concerning X? are contained in the following lemma.

Lemma 3.2 Let X and Y be independent IR+-valued rvs. If X 2 L with 0 < E [X] <1, then we

have
P [X > x] = o (P [X? > x]) (3.3)

and Z 1

x
P [X � Y > u] du � E [X]P [X? > x] : (3.4)
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The next two lemmas address the transfer of tail properties of the rv X to that of a transformed rv

'(X) for some mapping ' : IR+ ! IR+. References to absolute continuity are given in [19, p. 336].

Lemma 3.3 Consider a Borel mapping ' : IR+ ! IR such that

(i) ' is strictly increasing in the limit, i.e., there exists x0 � 0 such that the restriction ' :

[x0;1)! IR is strictly increasing, with limx!1 '(x) =1 and

�0 := sup
0�x�x0

'(x) <1; (3.5)

(ii) ' is absolutely continuous on (x0;1) and the limit

lim
x!1 '0(x) =: � (3.6)

exists and is �nite.

Then, for any IR+-valued rv X with 0 < E [X] ; E ['+(X)] <1, we have

P [('+(X))? > x]

P ['+(X?) > x]
� �

E [X]

E ['+(X)]
: (3.7)

Lemma 3.4 Let ' : IR+ ! IR be a mapping strictly increasing and convex in the limit, i.e., there

exists x0 � 0 such that the restriction ' : [x0;1)! IR is strictly increasing and convex. Under the

�niteness condition (3.5), it holds that '(X) 2 L (resp. S) if X 2 L (resp. S).

We close this section with facts that will help us identify the appropriate perturbation mappings

needed to apply the generic bounds of Sections 2.1 and 2.2. For any IR+-valued rv X, with

�(X) := sup fx � 0 : P [X � x] < 1g ;

we introduce the function mX : [0; �(X))! IR+ given by

mX(x) := E [X]
P [X? > x]

P [X > x]
; x 2 [0; �(X)): (3.8)

If �(X) = 1, then �(X?) = 1 and mX is de�ned on the entirety of IR+. This situation is not

restrictive for our purpose as we have �(X) =1 whenever X 2 L, in which case limx!1mX(x) =

1 by Lemma 3.2.

Lemma 3.5 Consider an IR+-valued rv X with �(X) =1 and 0 < E [X] <1. Assume that

lim
x!1

P [X > x+ y'(x)]

P [X > x]
= 
(y); y 2 IR (3.9)
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for mappings 
 : IR! IR+ and ' : IR+ ! IR+ such that limx!1 '(x) =1.

Then, for y in IR, it also holds that

lim
x!1

P [X? > x+ y'(x)]

P [X? > x]
= 
(y) (3.10)

provided

lim
x!1

mX(x+ y'(x))

mX(x)
= 1: (3.11)

Such limits are invariant under asymptotic equivalence, i.e., if ' and  are mappings IR+ ! IR+

such that '(x) �  (x), then ' satis�es (3.9) with limx!1 '(x) = 1 if and only  does with

limx!1  (x) =1, and the limiting function 
 is the same.

Limits of the type (3.9) are well known in Extreme Value Theory [14, 25] where they occur in the

characterization of maximum domains of attraction; we refer the reader to [14, Chap. 3] [25, Chap.

1] for additional information on this topic. Of particular interest are several technical facts which

are summarized below for easy reference. Recall the de�nition of the Gumbel distribution � as the

distribution on IR given by

�(x) = e�e
�x

; x 2 IR:

The needed results are culled from [14, Thm. 3.3.27, p. 143], [16, Thm. 2.5.1], [25, Lem. 1.3, p.

41] and [25, Cor. 1.7, p. 46], and are specialized below to IR+-valued rvs with in�nite support.

Lemma 3.6 The IR+-valued rv X with �(X) = 1 and ) < E [X] < 1 belongs to the maximum

domain of attraction of �, denoted X 2MDA(�), if and only if there exists a mapping ' : IR+ !
(0;1) such that (3.9) holds with

lim
x!1

P [X > x+ y'(x)]

P [X > x]
= e�y; y 2 IR:

A possible choice is ' = mX given by (3.8), in which case (3.11) holds.

The log-normal, Weibull and Benktander distributions belong to MDA(�) [14, pp. 149-150], among

others.

In view of Lemmas 3.5 and 3.6, we conclude that for any IR+-valued rv X with �(X) = 1 and

0 < E [X] <1, membership in MDA(�) implies

lim
x!1

P [X? > x+ ymX(x)]

P [X? > x]
= e�y; y 2 IR: (3.12)

As we shall see in Section 8, the conclusions of Lemma 3.6 hold mutatis mutandis for the class of

generalized Pareto distributions; interestingly enough these are exactly the rvs which are in the

maximum domain of attraction of Fréchet distributions �� (� > 0) [14, p. 121].
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4 On-o� sources

4.1 Preliminaries

An independent on-o� source with peak rate r is characterized by a succession of cycles, each

such cycle comprising an o�-period followed by an on-period. During the on-periods the source is

active and produces �uid at constant rate r (unit �uid/unit time); the source is silent during the o�-

periods. The on-period durations fBn; n = 0; 1; : : :g and the o�-period durations fIn; n = 0; 1; : : :g
are mutually independent sequences, each composed of i.i.d. rvs such that

0 < E [Bn] ;E [In] <1; n = 0; 1; : : : (4.1)

It is convenient to introduce the sequence of epochs fTn; n = 0; 1; : : :g marking the beginning of

successive cycles, namely T0 := 0 and Tn+1 :=
Pn

k=0 Ik + Bk for each n = 0; 1; : : :. Thus, at time

Tn begins the (n+ 1)st cycle with of-period duration In and on-period duration Bn. The activity

of the source is characterized by the f0; 1g-valued process � := f�(t); t � 0g given by

�(t) :=
1X
n=0

1 [Tn + In � t < Tn+1] ; t � 0; (4.2)

with the source active (resp. silent) at time t if �(t) = 1 (resp. �(t) = 0). The total amount of �uid

generated in [0; t) by the on-o� source is now simply given by

A(t) = r

Z t

0
�(s)ds; t � 0: (4.3)

The integrability condition (4.1) ensures these auxiliary quantities to be well de�ned and �nite.

Both processes fA(t); t � 0g and f�(t); t � 0g have right-continuous sample paths.

Under these assumptions, the following facts are well known: The process � admits a (time) sta-

tionary version which we still denote by f�(t); t 2 IRg (with a slight abuse of notation). Moreover,

its time-reversed version f�(�t); t 2 IRg is statistically indistinguishable from f�(t); t 2 IRg itself.
Consequently, the distributional equivalence fAR(t); t � 0g =st fA(t); t � 0g does hold here and

(2.1) takes the simpler form

WA;c =st sup
t�0

(A(t)� ct) (4.4)

where A = fA(t); t � 0g computed through (4.3) with the stationary version of (4.2). From now

on, with a slight abuse of terminology we refer to A so de�ned as a stationary (independent) on-o�
source.

We shall �nd it handy in the sequel to use the following construction of this stationary (indepen-

dent) on-o� source: We postulate rvs fIn; Bn; n = 0; 1; : : :g describing the alternating sequence

of o�- and on-period durations starting with an o�-period of duration I0; if I0 = 0 the source is

12



construed as starting in an on-period. In the stationary regime considered here, standard renewal-

theoretic considerations require that (i) (I0; B0), fIn; n = 1; : : :g and fBn; n = 1; : : :g be mutually
independent families of rvs; (ii) the rvs fIn; n = 1; : : :g (resp. fBn; n = 1; : : :g) be i.i.d. rvs with
I1 (resp. B1) distributed as the generic o�-period (resp. on-period), and (iii) the relations

[(I0; B0) j I0 > 0] =st (I
?
1 ; B1) and [(I0; B0) j I0 = 0] =st (0; B

?
1) (4.5)

hold with I?1 independent of B1. Under such assumptions, we check that

[I0 +B0 j I0 > 0] =st I
?
1 +B1 and [I0 +B0 j I0 = 0] =st B

?
1 (4.6)

and

P [I0 = 0] =
E [B1]

E [B1] +E [I1]
=: p:

The average rate � of the source is

� := lim
t!1

A(t)

t
= pr

and an independent on-o� source is a particular instance of a �uid process as de�ned in Section 2.

The construction developed here for a stationary on-o� source di�ers from the usual one (e.g., [17])

in two respects: The �rst cycle always starts at time t = 0 with an o�-period (albeit of possible

duration I0 = 0) so that every cycle contains an activity period. Moreover, the model is prescribed

through the requirement (4.5), instead of the more usual requirement (4.6) (implied by it). These

features will simplify the presentation and discussion of several results by permitting direct sample

path arguments, notably in Proposition 4.1.

4.2 Bounds for on-o� sources

As is already apparent from the generic bounds discussed in Sections 2.1 and 2.2, it will be useful

to investigate the tail behavior of WA;
;h under a wide class of perturbations h : IR+ ! IR. This

will be done by �rst establishing bounds on WA;
;h, and then by identifying the tail asymptotics of

the bounds.

With any mapping h : IR+ ! IR, we associate the auxiliary mappings a; b : IR+ ! IR given by

a(t) := (r � 
)t+ h(t) and b(t) := �
t+ h(t); t � 0: (4.7)

The IR-valued rvs fXk; k = 0; 1; : : :g can now be de�ned by

Xk := a(Bk) + b(Ik); k = 0; 1; : : : (4.8)

and set

V A;
;h := max

 
h(0); sup

n=0;1;:::

nX
k=0

Xk

!
: (4.9)
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Under the enforced assumptions, the rv X0 is independent of the i.i.d. rvs fXk; k = 1; 2; : : :g.

A mapping h : IR+ ! IR is said to satisfy condition (Hr), r = 1; 2, if

(H1) h is absolutely continuous on IR+ with derivative h0 satisfying 
 � r � h0(t) a.e. on IR+;

(H2) h is absolutely continuous on IR+ with derivative h0 satisfying h0(t) � 
 a.e. on IR+.

Proposition 4.1 Consider a Borel mapping h : IR+ ! IR.

1. If h is superadditive, then V A;
;h �WA;
;h;

2. If both (H1) and (H2) hold, and h is subadditive, then WA;
;h � V A;
;h.

A proof of Proposition 4.1 is available in Appendix B.

4.3 Tail asymptotics of the rv V A;
;h

With the help of Proposition 4.1, we can bound the tail of the rvWA;
;h with that of V A;
;h. Hence,

of particular interest are the following asymptotics of the tail distribution of the rv V A;
;h.

Proposition 4.2 Consider a mapping h : IR+ ! IR which satis�es (H2) together with the conditions

(H3) The limit limx!1 h0(x) =: h0(1) exists and is �nite;

(H4) The mapping a given by (4.7) is strictly increasing in the limit with limx!1 a(x) =1.

Further, assume the following conditions:

(H5) The rv X1 is integrable with E [X1] < 0;

(H6) a+(B1) 2 L;

(H7) a+(B?
1) 2 S.

Then, it holds that V A;
;h 2 S with

P

h
V A;
;h > x

i
� (p+K(h))P

�
a+(B?

1) > x
�

(4.10)

where

K(h) := ((r � 
) + h0(1))
E [B1]

�E [X1]
: (4.11)

14



A proof of this result is given in Appendix C. Two useful consequences emerge by combining the

bounds of Section 4.2 with the asymptotics of Proposition 4.2. Indeed, Propositions 4.1(1) and 4.2

together imply the following lower bound asymptotics on the tail of WA;h;
.

Corollary 4.1 For any superadditive mapping h : IR+ ! IR which satis�es (H2)-(H7), it holds that

lim inf
x!1

P

h
WA;
;h > x

i
P [a+(B?

1) > x]
� p+K(h):

Upper bound asymptotics on the tail of WA;h;
 can also be obtained once we combine Propositions

4.1(2) and 4.2. We omit a formal statement of this result as we do not use it in that form in the

sequel.

4.4 Comments

We close this section with remarks that will be useful in the sequel:

Remark 4.1 We note that h = 0 satis�es the assumptions of both parts of Proposition 4.1, whence

WA;
 = V A;
;0. Moreover, the assumptions of Proposition 4.2 are automatically satis�ed provided

B1 2 L and B?
1 2 S, in which case specializing (4.10) yields the exact asymptotics

P

h
WA;
 > x

i
� (1� p)�


 � � P [(r � 
)B?
1 > x] : (4.12)

This result was �rst obtained by Jelenkovic and Lazar [18, Theorem 9] by resorting to the Palm

theory of stationary processes. This is to be contrasted with the direct approach taken here.

Remark 4.2 In the assumptions of Proposition 4.2, if we add in (H4) the requirement that the

mapping a is convex in the limit, then (H6) and (H7) are implied by the conditions (H6bis) and

(H7bis), respectively, with

(H6bis) B1 2 L;

(H7bis) B?
1 2 S.

This is a simple consequence of Lemma 3.4 applied to ' = a+.

Remark 4.3 A convex (resp. concave) mapping h : IR+ ! IR with h(0) = 0 is absolutely contin-

uous, and necessarily superadditive (resp. subadditive). Consequently, a convex (resp. concave)

perturbation function h is a natural choice when considering the lower (resp. upper) bound. In
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fact, many of the needed conditions appearing in Propositions 4.1 and 4.2 are then easily veri�ed

with the help of Jensen's inequality together with the observation that the limits

lim
t!1

h(t)

t
= lim

t!1h0(t) = h0(1)

take place monotonically (thus exist) and are �nite. Such a discussion is provided in Section 8.

5 Towards bounds for two independent sources

We now deal with the situation where the arrival process A is the superposition of two independent

�uid processes A1 and A2, i.e., A = A1 + A2, where A1 is a stationary �independent on-o�" as

understood in Section 4.1 and A2 is arbitrary. Source A1 has peak rate r1 > c� �2 and its generic

activity period B1 has the property that B1 2 L and B?
1 2 S. Its generic inactivity period I1 has

an arbitrary distribution with the only requirement that 0 < E [I1] <1.

Before presenting the lower and upper bounds in Sections 6 and 7, we pause to introduce some

notation that simpli�es the presentation of the results: In the context of the two sources described

above, we write

� := r1 + �2 � c (5.1)

and with any mapping h : IR+ ! IR, we recast the earlier de�nitions (4.7), (4.8) and (4.11). The

mapping a : IR+ ! IR is given by

a(x) := �x+ h(x); x � 0; (5.2)

and we set

K(h) := (�+ h0(1))
E [B1]

�E [X1]
(5.3)

with
X1 := �B1 � (c� �2)I1 + h(B1) + h(I1): (5.4)

We also write

L(h) :=
c� (�1 + �2)

(1� p)�1 (p+K(h)) (5.5)

with p := E [B1] (E [B1]+E [I1])
�1 denoting the stationary probability that source 1 is active. Note

that L(0) = 1 if h = 0.

Let

R(x;h) :=
P [a+(B?

1) > x]

P [�B?
1 > x]

; x � 0:

Under (H4), we see that

R�(h) := lim inf
x!1 R(x;h) = lim inf

x!1
P [a+(B?

1) > a+(x)]

P [�B?
1 > a+(x)]
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= lim inf
x!1

P [B?
1 > x]

P [�B?
1 > a(x)]

; (5.6)

and similarly,

R+(h) := lim sup
x!1

R(x;h) = lim sup
x!1

P [B?
1 > x]

P [�B?
1 > a(x)]

: (5.7)

We draw the reader's attention to the similarity of the limits (5.6) and (5.7) with those guaranteed

by Lemmas 3.5 and 3.6 (with particular reference to (3.12)). This connection will be exploited to

identify the appropriate perturbation functions h in the bounds developed thus far.

While the quantities L(h), R�(h) and R+(h) will help quantify the impact of the �rst source A1, the

generic lower bound (2.3) suggests that the contribution of the source A2 will be expressed through

the quantity

�(h) := lim inf
t!1 P [A2(t) � �2t+ h(t)] : (5.8)

Its alternate expression

�(h) = lim inf
t!1 P

�
A2(t)

t
� �2 � h(t)

t

�

indicates already the possibility that its value will be determined by re�nements to the assumed

�Law of Large Numbers"

lim
t!1

A2(t)

t
= �2 a:s: (5.9)

de�ning the average rate �2 for source A2. Such re�nements include the Central Limit Theorem

(CLT) in the form

Z2(t) :=
p
t

�
A2(t)

t
� �2

�
=)t �U (5.10)

with � > 0 and U denoting a Gaussian rv with zero mean and unit variance. This condition is

not prohibitive for it holds in great generality for a variety of on-o� sources (as implied by similar

results on renewal processes [15]) and for superpositions thereof. Moreover, the relation

P [A2(t)� �2t > h(t)] = P

�
Z2(t) >

h(t)p
t

�
; t � 0 (5.11)

points to the need to impose constraints on the behavior of h(t)p
t
for large t in order to get non-trivial

limits in (5.8).

6 Upper bounds for two independent sources

6.1 A basic upper bound for two sources

We begin with an intermediate result.
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Proposition 6.1 Consider a subadditive mapping h : IR+ ! IR which satis�es (H1)�(H7) [with


  c� �2 and � �1]. If

P

h
WA2;�2;�h > x

i
= o

�
P
�
a+(B?

1) > x
��
; (6.1)

then it holds that

lim sup
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

� L(h)R+(h) (6.2)

with L(h) and R+(h) given by (5.5) and (5.7), respectively.

In (6.1), the �niteness of the rv WA2;�2;�h is implicitly assumed for it is not necessarily guaranteed

under the conditions (H1)�(H7) imposed on h. This �niteness issue and the tail behavior of the rv

WA2;�2;�h are quite delicate when

lim
t!1

h(t)

t
= 0 (6.3)

as occurs in many interesting instances. This point is explored in some detail in Section 6.3.

Proof: Combining Lemma 2.1 and the upper bound of Proposition 4.1(2) we �nd

WA1+A2;c � V A1;c��2;h +WA2;�2;�h (6.4)

where the rvs V A1;c��2;h and WA2;�2;�h are taken to be independent. From Proposition 4.2 [with


  c� �2 and � �1], it holds that V
A;
;h 2 S with

P

h
V A1;c��2;h > x

i
� (p+K(h))P

�
a+(B?

1) > x
�

where K(h) is given by (5.3).

Parts (1) and (3) of Lemma 3.1 readily ensure under (6.1) that

P

h
V A1;c��2;h +WA2;�2;�h > x

i
� (p+K(h))P

�
a+(B?

1) > x
�
;

and it immediately follows from (6.4) that

lim sup
x!1

P

h
WA1+A2;c > x

i
P [a+(B?

1) > x]
� p+K(h): (6.5)

Remark 4.1 applied to source A1 [with 
  c� �2 and � �1] yields

P

h
WA1;c��2 > x

i
� (1� p)�1
c� (�1 + �2)

P [�B?
1 > x] (6.6)

and the desired conclusion (6.2) follows upon combining (6.5) and (6.6).
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6.2 An improved upper bound for two sources

Proposition 6.1 begs the question of how to choose the perturbation mapping h. In view of the form

of the upper bound (6.2), an obvious criterion for selecting h is that L(h)R+(h) be made as small as

possible in order to yield the best upper bound. To gain some insights on how this could be achieved,

we note that if h assumed non-negative values, i.e., h : IR+ ! IR+, then amongst its scaled versions

f"h; " � 0g, the smallest value of K("h) is achieved for " = 0 and that L(0) = lim"#0 L("h) = 1:

This remark leads to the following improvement to Proposition 6.1; its proof is straightforward and

therefore omitted for the sake of brevity.

Proposition 6.2 Consider a subadditive mapping h : IR+ ! IR such that whenever 0 < " < "? for

some "? > 0, the scaled mapping "h satis�es (H1)-(H7) [with 
  c� �2 and � �1]. If

P

h
WA2;�2;�"h > x

i
= o

�
P
�
a+" (B

?
1) > x

��
; 0 < " < "? (6.7)

with the mapping a" : IR+ ! IR given by a"(x) := �x+ "h(x) (x � 0), then it holds that

lim sup
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

� lim
"#0

R+("h): (6.8)

In order to improve the upper bound (6.8) we need only select the perturbation direction h

that makes lim"#0R+("h) as small as possible. For h � 0, we see that R+("h) � 1, whence

lim"#0R+("h) � 1, and it is therefore tempting to seek h : IR+ ! IR+ such that lim"#0R+("h) = 1,

in which case (6.8) becomes

lim sup
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

� 1: (6.9)

But, by virtue of Lemmas 3.5 and 3.6 (and (3.12)), whenever B1 2MDA(�), it holds that

R+("mB1) = lim
x!1

P [B?
1 > x]

P [B?
1 > x+ ��1"mB1(x)]

= e�
�1"; " > 0

and taking h = mB1 , we indeed get lim"#0R+("h) = 1, whence (6.9), provided the appropriate

assumptions are satis�ed. Thus, in most cases of interest, mB1 (or an asymptotic equivalent) is

expected to be the perturbation function of choice for getting the best possible upper bound (6.9)

in Proposition 6.2.

6.3 On the condition (6.1)

In order to assess the range of applicability of Propositions 6.1 and 6.2, we need to focus on condition

(6.1) which quanti�es the situation where the second source has a �lighter tail" than source A1. To
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that end, consider a mapping h : IR+ ! IR such that the limit

lim
t!1

h(t)

t
=: L (6.10)

exists and is �nite. The corresponding rv WA2;�2;�h will be a.s. �nite (resp. in�nite) if L > 0

(resp. L < 0, a case of no interest here). However, if instead, L = 0 (or equivalently, condition

(6.3) holds), then there is no a priori guarantee that the rv WA2;�2;�h will be a.s. �nite as already

indicated by the following result.

Lemma 6.1 Assume the CLT re�nement (5.10) to hold for source A2. Then, for any mapping

h : IR+ ! IR such that the limit

lim inf
t!1

h(t)p
t
=: H (6.11)

is �nite, we have WA2;�2;�h =1 a.s.

If h does satisfy (6.10) and (6.11), then L = 0 necessarily.

Proof: Fix t > 0 and x in IR. We note that

p
t

�
Z2(t)� h(t)p

t

�
�WA2;�2;�h;

whence

P

�
Z2(t)� h(t)p

t
� x

�
� P

h
WA2;�2;�h � x

p
t
i
:

Letting t go to in�nity along a sequence for which the the liminf in (6.11) is attained in this last

inequality and invoking (5.10), we �nd

P [�U �H � x] � lim
t!1P

h
WA2;�2;�h � x

p
t
i
= P

h
WA2;�2;�h =1

i
: (6.12)

Finally, we get the desired conclusion upon letting x go to �1 in (6.12).

Consequently, for the rv WA2;�2;�h to be a.s. �nite under (5.10), it is necessary that H = 1. We

now turn to �nding su�cient conditions on h under which the rv WA2;�2;�h is a.s. �nite. In the

process, we identify its tail behavior, thereby providing the means to check (6.1).

The discussion will be carried out in the following regenerative framework which contains most �uid

models discussed in the literature, including the independent on-o� sources of Section 4: Source

A2 is a �uid process fA2(t); t � 0g process characterized by a succession of cycles, where for each

n = 1; 2; : : :, the (n+1)st cycle has duration Cn (with Cn > 0 a.s.) and is associated with source A2

producing �uid in amount Yn (with Yn > 0 a.s.). Alternatively, we have Yn := A2(Tn) �A2(Tn�1)

where Tn denotes the beginning of the n
th cycle (with the convention T0 = 0), i.e., Tn = C1+: : :+Cn.
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No additional details on the operation of source A2 will be needed. We assume that the rvs

f(Yn; Cn); n = 1; 2; : : :g are integrable and mutually independent with f(Yn; Cn); n = 2; 3; : : :g
being identically distributed rvs. By the Renewal Reward Theorem, the mean rate �2 given by (5.9)

can be evaluated as �2 = E [Y2] =E [C2]. A �uid process/source satisfying the above requirements

will be called a regenerative �uid process/source.

The other key probabilistic assumption is the existence of �nite exponential moments: There exists

a constant �0 > 0 such that

Mn(�) := E

h
e�Cn

i
<1 and Nn(�) := E

h
e�Yn

i
<1; 0 � � � �0; n = 1; 2: (6.13)

A regenerative �uid process satisfying (6.13) also admits the CLT re�nement (5.10).

Proposition 6.3 Let fA2(t); t � 0g be a regenerative �uid process satisfying (6.13). Consider a

nondecreasing mapping h : IR+ ! IR+ which satis�es both (6.10) with L = 0 and (6.11) with

H =1. De�ne the mapping g : IR+ ! IR+ by

g(t) =
p
t inf
s�t

h(s)p
s
; t � 0:

(1) Then, there exist �nite constants 
1; 
2 > 0 and 
3 � 0 such that

lim sup
x!1

P

h
WA2;�2;�h > x

i
Z 1


1x
e�
2g

2(t)=t dt
� 
3: (6.14)

(2) Furthermore, if there exists �0 in (0; 1=2) such that

lim inf
t!1

h(t)

t1=2+�0
=1;

then there exist �nite constants �1 > 0 and �2 > 0 such that

lim sup
x!1

P

h
WA2;�2;�h > x

i
x1�� e��1x�

� �2; � 2 (0; 2�0): (6.15)

A proof of this result is available in Appendix D. Proposition 6.3 provides a natural vehicle for

checking condition (6.1) as is done in Section 8 on a variety of examples. Note that the denominator

in (6.15) is vanishingly small with x large, so that this result does yield a non-trivial bound on the

tail of WA2;�2;�h.
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The situation where L > 0 in (6.10) can be handled in a variety of ways: Indeed, under such an

asymptotic linearity assumption on h, there exist constants �h and �h > 0 such that

h(t) � �h + �ht; t � 0

and the comparison

WA2;�2;�h �st WA2;�2+�h � �h
follows. Whenever the source A2 belongs to the class of Markov modulated �uid sources [12] or more

generally, is an exponential source, as understood in [18], then the tail behavior of WA2;�2;�h is at

most exponential since that ofWA2;�2+�h has exponential decay. On the other hand, ifA2 is an on-o�

source with subexponential activity periods, then the asymptotics (4.12) [with 
  �2+�h; r  �2].

can be invoked. In either case, these remarks serve as the basis for checking (6.1).

7 Lower bounds for two independent sources

7.1 A basic lower bound for two sources

Proposition 7.1 Consider a superadditive mapping h : IR+ ! IR which satis�es (H2)-(H7) [with


  c� �2 and � �1]. Then, it holds that

L(h)�(h)R�(h) � lim inf
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

(7.1)

with L(h), �(h) and R�(h) given by (5.5), (5.8) and (5.6), respectively.

Proof. Fix x � 0. We conclude from Proposition 2.1 applied to h that

 
inf

ft:a(t)>xg
P [A2(t) � �2t+ h(t)]

!
R(x;h)

P

h
WA1;c��2;h > x

i
P [a+(B?

1) > x]
�
P

h
WA1+A2;c > x

i
P [�B?

1 > x]
: (7.2)

As we have in mind to let x go to in�nity in (7.2), we note the following: By Corollary 4.1 applied

to h with the source A1 [and 
 = c� �2], it holds that

p+K(h) � lim inf
x!1

P

h
WA1;c��2;h > x

i
P [a+(B?

1) > x]
(7.3)

with K(h) given by (5.3). Moreover, under (H4), the mapping a is eventually strictly increasing

(thus invertible) with limx!1 a(x) =1, and we readily check that

lim inf
x!1 inf

ft:a(t)>xg
P [A2(t) � �2t+ h(t)] = lim inf

t!1 P [A2(t) � �2t+ h(t)] = �(h): (7.4)
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Thus, letting x go to in�nity in (7.2) and making use of (5.6), (7.3) and (7.4), we �nd

(p+K(h))�(h)R�(h) � lim inf
x!1

P

h
WA1+A2;c > x

i
P [�B?

1 > x]
(7.5)

and the conclusion (7.1) is an immediate consequence of (7.5) and of the equivalence (6.6) noted

earlier.

7.2 An improved lower bound for two sources

This time, in the same way that the upper bound in Proposition 6.1 leads to Proposition 6.2, we

have the following result from Proposition 7.1.

Proposition 7.2 Consider a superadditive mapping h : IR+ ! IR such that whenever 0 < " < "?

for some "? > 0, the scaled mapping "h satis�es (H2)�(H7) [with 
  c� �2 and � �1]. Then, it

holds that �
lim
"#0

�("h)

��
lim
"#0

R�("h)
�
� lim inf

x!1
P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

: (7.6)

The lower bound (7.6) can be improved by seeking a value for the product of the quantities

lim"#0 �("h) and lim"#0R�("h) that is as large as possible (if not the largest) among admissible

perturbations h. While �("h) � 1 is always true, it is often possible to argue that

lim
"#0

�("h) = 1 (7.7)

for the selected h, in which case (7.6) reads

lim
"#0

R�("h) � lim inf
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

: (7.8)

For instance, under the condition (5.9) on source A2, we �nd �("h) = 1 for each " > 0 whenever

(6.10) holds with L < 0. If, instead, the condition (6.3) holds (L = 0), then the CLT re�nement

(5.10) to (5.9) needs to be brought into the picture. If h is a convex mapping with h(0) = 0, then

(6.3) is equivalent to h0(1) = 0, and the requirements (H2)-(H4) naturally lead to taking h = �u
for some concave increasing mapping u : IR+ ! IR+ with u0(1) = 0. In that case (5.11) yields

P [A2(t)� �2t > "h(t)] = P

" p
t

u(t)
Z2(t) > �"

#
; t � 0

and the conclusion �("h) = 1 follows from (5.10) if �h satis�es (6.11) with H =1.
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We now focus on �nding a perturbation function h such that lim"#0R�("h) is as large as possible.
With h = �u as above,

R�("h) = lim inf
x!1

P [B?
1 > x]

P [B?
1 > x� ��1"u(x)]

� 1; " � 0;

and the requirement that lim"#0R�("h) is as large as possible will be met if lim"#0R�("h) = 1, in

which case the bound (7.8) becomes

1 � lim inf
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

: (7.9)

Here too, whenever B1 2MDA(�), Lemma 3.6 yields

R�(�"mB1) = lim
x!1

P [B?
1 > x]

P [B?
1 > x� ��1"mB1(x)]

= e��
�1"; " > 0

and taking h = �mB1 , we get lim"#0R�("h) = 1. Thus, in most cases of interest, �mB1 is expected

to be the perturbation function of choice for getting (7.9).

8 Applications

In the examples which we now discuss, we assume that the �uid A is the superposition of two

independent �uid processes A1 and A2, with A1 a stationary �independent on-o�". The conditions

�1 + �2 < c < r1 + �2 (8.1)

are enforced throughout. Propositions 6.2 and 7.2 will be invoked in that context.

8.1 In the maximum domain of attraction of the Gumbel distribution

As indicated already in some of the comments following Propositions 6.2 and 7.2, a fairly compre-

hensive discussion should be expected when B1 2 MDA(�). Before indicating in Proposition 8.1

the extent to which this is indeed the case, we present the following technical fact.

Lemma 8.1 Consider a mapping u : IR+ ! IR+ which is strictly increasing and concave in the

limit, i.e., there exists x0 � 0 such that the restriction u : [x0;1)! IR+ is strictly increasing and

concave. There exist an increasing concave mapping U : IR+ ! IR+, and a constant x? � x0 such

that U(0) = 0, U 0(0+) := limx#0 U 0(x) is �nite and u(x) = U(x) for all x � x?.

Proof. De�ne the mapping û : IR+ ! IR+ by û(x) = u(x0) if 0 � x � x0 and by û(x) = u(x)

if x � x0. This mapping, while non-decreasing, is not necessarily concave. Let ûc denote the
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concave hull of û, i.e., the smallest concave mapping ûc : IR+ ! IR+ such that û � ûc. In fact,

ûc = �conv(�û) where conv denotes the convex hull operation [26, p. 36]. It is easy to check that

ûc is increasing and concave with ûc(x) = û(x) from some x onward. The desired mapping U is

now obtained by taking U(x) = min(x; ûc(x)) for all x � 0.

The function U associated with u through Lemma 8.1 is clearly not unique. In speci�c examples the

one constructed in the proof can be safely replaced by a more natural one which derives naturally

from the form of u.

Proposition 8.1 Assume B1 and I1 to be IR+-valued rvs with 0 < E [B1] ;E [I1] < 1, such that

B1 2 L and B?
1 2 S. Suppose that the function mB1 given by (3.8) is asymptotically equivalent

to some mapping u : IR+ ! IR+ which is strictly increasing and concave in the limit, and let

U : IR+ ! IR+ denote any increasing concave mapping associated with u as in Lemma 8.1.

If B1 2MDA(�), then the following holds:

(1) There exists a subadditive mapping h : IR+ ! IR such that whenever 0 < " < "? for some

"? > 0, the scaled mapping "h satis�es (H1)-(H7) [with 
  c � �2 and �  �1]. A possible

choice is h = U , in which case

lim
"#0

R+("h) = lim
"#0

e�
�1" = 1; (8.2)

(2) There exists a superadditive mapping h : IR+ ! IR such that whenever 0 < " < "? for some

"? > 0, the scaled mapping "h satis�es (H2)�(H7) [with 
  c � �2 and �  �1]. A possible

choice is h = �U , in which case

lim
"#0

R�("h) = lim
"#0

e��
�1" = 1: (8.3)

A proof of this result is available in Appendix E.

We next indicate how Proposition 8.1 applies in some speci�c cases. It is worth pointing out that

in the context of Proposition 8.1, the task of checking (6.7) over some entire interval (0; "?) can be

greatly reduced: Indeed, with h = U , owing to the tail equivalence of a+" (B
?
1) and �B

?
1 (0 < " < "?)

noted in the proof of Proposition 8.1, we get that (6.7) is equivalent to

P

h
WA2;�2;�"h > x

i
= o (P [�B?

1 > x]) ; 0 < " < "?: (8.4)

8.2 Log-normal

By de�nition, we have B1 =st e
Z where Z is normally distributed with mean � and variance �2.

Recall that B1 2 S (and therefore B1 2 L) and B?
1 2 S [14, Example 1.4.7, p. 55]. It is also well
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known that B1 2 MDA(�) [14, p. 150]. Then, straightforward calculations yield the asymptotic

equivalences

P [B1 > x] � � e�(log x��)2=(2�2)
p
2� (log x� �) ; (8.5)

and

P [B?
1 > x] � �3 xe�(log x��)2=(2�2)

E [B1]
p
2� (log x� �)2 with E [B1] = exp(

1

2
�2 + �): (8.6)

Consequently,

mLN (x) � �2 x

log x� � � �
2 x

log x
;

with mLN the mapping associated through (3.8) with the rv X = B1. Note that mLN is asymptot-

ically equivalent to the mapping uLN : IR+ ! IR+ given by uLN (x) = �2(x= log x _ e) (x � 0). The

mapping uLN is concave and strictly increasing in the limit, whence Proposition 8.1 can be invoked

with ULN denoting the mapping associated with uLN through Lemma 8.1.

Lower bound: Applying the lower bound (7.6) with h = �ULN and using (8.3), we �nd

lim
"#0

�("h) � lim inf
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

: (8.7)

with

�("h) = lim inf
t!1 P

�
A2(t) � �2t� "�2 t

log t

�
; " > 0:

Assuming the CLT re�nement (5.10) to hold for source A2, we conclude that

�("h) = lim inf
t!1 P

"
Z2(t) > �"�2

p
t

log t

#
= lim

t!1P
�
log tp
t
Z2(t) > �"�2

�
= 1;

and we achieve the best possible lower bound

1 � lim inf
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

: (8.8)

Upper bound: Applying the upper bound (6.8) with h = ULN and making use of (8.2), we obtain

lim sup
x!1

P

h
WA1+A2;c > x

i
P [WA1;c��2 > x]

� 1 (8.9)

provided the second source A2 satis�es the condition (6.7), or equivalently (8.4). We now dis-

cuss this condition when A2 is a regenerative source as de�ned in Section 6.3 under the moment

conditions (6.13). With the choice h = ULN , for each " > 0 we have limt!1 "h(t)=t = 0 and
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limt!1 "h(t)=t1=2+�0 = 1 for each �0 in (0; 1=2). Therefore, Proposition 6.3 applies with L = 0

and H =1, we are lead to the conclusion that for each " > 0, there exist �nite constants 0 < �1;"

and �2;" � 0 such that

lim sup
x!1

P

h
WA2;�2;�"h > x

i
x1�� e��1;"x�

� �2;"; � 2 (0; 1): (8.10)

It is now plain from (8.6) and (8.10) that (8.4) indeed holds. We summarize the discussion as

follows:

Proposition 8.2 Let A = A1 +A2 be the superposition of two independent �uid processes A1 and

A2. Assume A1 to be a stationary �independent on-o�� source such that �1 + �2 < c < r1 + �2 with

activity period B1 distributed according to (8.5), and let A2 be a regenerative source (in the sense

discussed in Section 6.3) under the moment conditions (6.13). Then, it holds that

lim
x!1

P

h
WA;c > x

i
P [WA1;c��2 > x]

= 1: (8.11)

The lower bound (8.8) only requires that source 2 satis�es (5.10). Proposition 8.2 also holds when

B1 has a Benktander-type-I distribution [14, p. 149] since in that case B1 2MDA(�)\S with the

corresponding function (3.8) being asymptotically equivalent to mLN .

8.3 Weibull

With a > 0 and 0 < � < 1,

P [B1 > x] = exp
�
�ax�

�
; x � 0: (8.12)

Again we have that B1 2 S \MDA(�) (and therefore B1 2 L since S � L) [14, Example 1.4.7, p.

55] and B?
1 2 S [14, p. 150]. All the moments of this distribution are �nite, and in particular, we

have

E [B1] =
�(��1)

�a
1
�

where the Gamma function � : (0;1)! IR+ is de�ned by

�(s) :=

Z 1

0
xs�1e�xdx; s > 0:

By appealing to properties of the incomplete Gamma function, we readily see that

P [B?
1 > x] � a

1��

�

�(��1)
x1�� exp

�
�ax�

�
; (8.13)
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and we �nd

mW (x) � 1

a�
x1��

where mW denotes the mapping associated through (3.8) with the Weibull rv X = B1

Note that mW is asymptotically equivalent to uW : IR+ ! IR+ given by uW (x) := (a�)�1x1��

(x � 0). The mapping uW is concave and strictly increasing on IR+ with uW (0) = 0, and Proposition

8.1 can be applied with UW denoting the mapping associated with uW through Lemma 8.1.

Lower bound: Applying the lower bound (7.6) with h = �UW and using (8.3), we also �nd (8.7)

with

�("h) = lim inf
t!1 P

�
A2(t) � �2t� "

a�
t1��

�
; " > 0:

Under the CLT re�nement (5.10) for source A2, we see that

�("h) = lim inf
t!1 P

�
Z2(t) > � "

a�
t
1
2
��
�
= lim

t!1P
�
t��

1
2Z2(t) > � "

a�

�
= 1

provided the condition

0 < � <
1

2
(8.14)

holds, in which case the best possible lower bound (8.8) is achieved.

Upper bound: Applying the upper bound (6.8) with h = UW and making use of (8.2), we obtain

the upper bound (8.9) provided the second source A2 satis�es the condition (6.7). This condition is

discussed now when A2 is a regenerative source under the moment conditions (6.13). For the choice

h = UW , for each " > 0 we have limt!1 "h(t)=t = 0 and limt!1 "h(t)=t1=2+�0 = 1 for each �0 in

(0; 1=2) such that

� + �0 <
1

2
: (8.15)

Hence, whenever we pick �0 in (0; 1=2) such that (8.15) (thus (8.14)) holds, we can invoke Proposition

6.3 while still guaranteeing (8.8). Hence, with each " > 0, there exist �nite constants 0 < �1;" and

�2;" � 0 such that (8.10) still holds but only for � in the interval (0; 1 � 2�). It is now plain from

(8.13) that (8.4) indeed holds if there exists such an admissible value of � with the property that

lim sup
x!1

x1�� exp (��1;"x�)
x1�� exp (�a���x�) = 0; (8.16)

a requirement equivalent to � < �. Therefore, (8.4) will hold if there exists � in (0; 1) such that

� < � < 1� 2�, a non-vacuous condition only if

� <
1

3
: (8.17)

We summarize the �ndings as follows:
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Proposition 8.3 Let A = A1 +A2 be the superposition of two �uid processes A1 and A2. Assume

A1 to be a stationary �independent on-o�� source such that �1 + �2 < c < r1 + �2 with activity

period B1 distributed according to (8.12) with (8.17), and let A2 be a regenerative source under the

moment conditions (6.13). Then, (8.11) holds.

Here, the lower bound (8.8) requires only that source 2 satis�es (5.10) but under the additional

condition (8.14) which de�nes the so-called moderately heavy-tail case. On the other hand, the

upper bound (8.9) is shown to hold only under the more stringent condition (8.17); this constraint

amounts to period of activity B1 of source 1 to being heavy-tailed enough! At this point, the reader

may wonder whether Proposition 8.3 still holds when the parameter � in (8.12) lies in the interval

(1=3; 1). Of course, such a conclusion, if correct, would have to be reached by arguments di�erent

from the ones used here. The following fact due to Dumas and Simonian [11] implies a partial

negative answer to the question:

Proposition 8.4 Let A = A1 +A2 be the superposition of two independent �uid processes A1 and

A2. Assume A1 to be a stationary �independent on-o�� source such that �1 + �2 < c < r1 + �2 with

activity period B1, and let A2 be a �uid source which satis�es (5.10). Whenever

lim
x!1

mB1(x)p
x

= 0 (8.18)

with mB1 given in (3.8), then it holds that

lim
x!1

P

h
WA;c > x

i
P [WA1;c��2 > x]

=1: (8.19)

Dumas and Simonian establish this negative fact (8.19) through a very simple argument akin to

the one used in deriving the generic lower bound in Proposition 2.1. When applied to the setup of

Proposition 8.3 with 1
2 < � < 1, Proposition 8.4 implies the failure of the equivalence (8.11) since

we now have

lim
x!1

mB1(x)p
x

= lim
x!1

x1��p
x

= 0:

A condition similar to (8.18) was also encountered in recent work by Asmusssen, Klüppelberg and

Sigman [3, Thm. 4.1] on distributional properties of the sample of a process at subexponential times;

there as well connections with Extreme Value Theory naturally emerge. When specialized to the

family of Weibull distributions, their results do hold for � in the entire range (0; 1=2). This analogy

holds up the possibility that Proposition 8.3 might indeed be valid for � in the interval (1=3; 1=2).

After all, the argument behind the upper bound in Proposition 8.3 relies in an essential manner on

the decay rates given in Proposition 6.3; there is no reason a priori to believe that they are best

and cannot be improved! As a case in point, we remark that the reduced load approximation (8.11)
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does hold when the rvs f(Yn; Cn); n = 2; : : :g characterizing source 2 are deterministic (as would be

the case for an on-o� source A2 with deterministic on and o� periods). Indeed, we then get (6.15)

with �0 = 1=2 as we note that E
h
e�(Y2��2C2)

i
= 1 in (D.13) so that g(t)2=t may be replaced by g(t)

in (D.18), and (8.16) holds with � > �.

When B1 has a Benktander-type-II distribution [14, p. 149], it is also the case that B1 2MDA(�)\
S, and under the condition (8.14), Proposition 8.3 also holds since the corresponding function (3.8)

is asymptotically equivalent to mW .

8.4 Generalized Pareto

With 1 < � < 2, this corresponds to

P [B1 > x] = x��L(x); x � 0 (8.20)

for some slowly varying function L : IR+ ! IR+. The rv B1 is integrable but with in�nite variance,

and its integrated tail distribution is given by

P [B?
1 > x] � E [B1]

�1 x��+1L(x):

We denote by mP the mapping associated through (3.8) with the rv X = B1.

Generalized Pareto rvs (8.20) do not belong toMDA(�) but to the maximum domain of attraction

of the Fréchet distribution �� [14, p. 121]. The reader will �nd this matter discussed in [14, Thm.

3.3.7, p. 131]. Consequently, Proposition 8.1 cannot be invoked, and while this may be viewed as

an unfortunate development, we shall see shortly that the case of generalized Pareto rvs is in fact

easier than the cases treated thus far.

Indeed, we have

mP (x) � x;
and in the spirit of Proposition 8.1, mP is asymptotically equivalent to the (strictly increasing)

linear mapping uP : x! x (so that here we can take UP to coincide with uP in Lemma 8.1). This

suggests taking perturbation mappings which are linear. For each � in IR, the mapping �UP does

satisfy conditions (H1)-(H4) provided

c� (r1 + �2) < � < c� (�1 + �2);

a non-vacuous constraint under (8.1). With the notation (E.2) and (E.3), the integrability of the

rvs B1 and I1 implies that of the rvs X�
1 and a�(B1) (thus of a

+
� (B1)). Under the stability condition

we then �nd E [X�
1 ] < 0 for � in a small enough neighborhood of the origin, whence (H5) holds for

�UP . Finally, B1 2 L and B�
1 2 S [14], so that a+� (B1) 2 L and a+� (B

?
1) 2 S by linearity, hence

(H6) and (H7) are satis�ed. Consequently, for � in a small enough neighborhood of the origin, the

mapping �UP does satisfy conditions (H1)-(H7)!
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Lower bound: We apply Proposition 6.2 with h = �UP . We readily conclude that (8.8) holds here

as well upon noting

�("h) = P

�
A2(t)

t
� �2 > �"

�
= 1; " > 0

under the condition (5.9), and that

R�("h) = lim inf
x!1

P [(�� ")B?
1 > x]

P [�B?
1 > x]

=

�
�� "
�

���1

; " > 0:

Upper bound: This time Proposition 6.2 will be applied with h = UP . We have

R+("h) = lim sup
x!1

P [(�+ ")B?
1 > x]

P [�B?
1 > x]

=

�
�+ "

�

���1

; " > 0 (8.21)

so that (8.9) is also obtained provided condition (6.7) holds. Here as well, this condition takes the

simpli�ed form

P

h
WA2;�2+" > x

i
= o (P [�B?

1 > x]) ; 0 < " < "? (8.22)

owing to the fact that the rvs f(�+ ")B?
1 ; " > 0g are all tail equivalent to �B?

1 by virtue of (8.21).

If the second source A2 is a regenerative source under the moment conditions (6.13), then (8.22)

always holds. In the Pareto case, the validity of (6.7), or equivalently of (8.22), holds more widely,

even when source A2 fails to have �nite exponential moments. For instance, if source A2 is an

independent on-o� source with generic activity period B2 such that B2 2 L and B?
2 2 S, then by

Remark 4.1 we have

P

h
WA2;�2+" > x

i
� K"P [(r2 � (�2 + "))B?

2 > x]

for some appropriate constant K" > 0 determined by the source statistics. Hence, (8.22) holds

provided the condition

P [(r2 � (�2 + "))B?
2 > x] = o (P [�B?

1 > x]) ; 0 < " < "?

is met. Collecting all these remarks leads to the following result �rst obtained by Jelenkovic and

Lazar [18].

Proposition 8.5 Let A = A1 +A2 be the superposition of two independent �uid processes A1 and

A2. Assume A1 to be a stationary �independent on-o�� source such that �1 + �2 < c < r1 + �2 with

activity period B1 distributed according to (8.20) with (5.9), and let A2 be a �uid source satisfying

(8.22) (e.g., source 2 is a regenerative source under the moment conditions (6.13)). Then, (8.11)

holds.

We complete the discussion by noting that if X is a generalized Pareto rv, then for any mapping

' : IR+ ! IR+ which is asymptotically equivalent to mP , we have

lim
x!1

P [X > x+ y'(x)]

P [X > x]
= (1 + y)�� ; y > �1

The reader will note the analogy with a similar limit in Lemma 3.6 for rvs in MDA(�).
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9 Additional results for intermediate regular varying rvs

In this section we strengthen Proposition 8.5 along several directions, thereby con�rming the singular

position occupied by generalized Pareto rvs and their extensions.

9.1 Intermediate Regular Variation

Jelenkovic and Lazar [18, Thm. 10] show that Proposition 8.5 remains true if B1 belongs to the

larger class of intermediate regular varying rvs: Following [10, De�nition (1.2)], we say that an

IR+-valued rv X is an intermediate regular varying rv, denoted X 2 IR, if

lim
�#1

lim inf
x!1

P [X > �x]

P [X > x]
= lim

�#1
lim sup
x!1

P [X > �x]

P [X > x]
= 1: (9.1)

The de�ning relation (9.1) is easily seen to be equivalent to

lim
�"1

lim inf
x!1

P [X > �x]

P [X > x]
= lim

�"1
lim sup
x!1

P [X > �x]

P [X > x]
= 1: (9.2)

It is known that R � IR � S, where R is the class of regular varying distributions (which coincides

with the class of generalized Pareto rvs) [5, p. 18].

Our approach can also be used to extend the validity of Proposition 8.5 to the case when B1 2 IR.
The proof is analogous to that of Proposition 8.5 upon selecting the mapping h(x) = �x in the lower

bound and h(x) = x in the upper bound. The only di�erence is that now the limits lim�#0R�("h) = 1

(with h(x) = �x) and lim�#0R+("h) = 1 (with h(x) = x) follow directly from (9.1)-(9.2) together

with the (easily checked) property that B?
1 2 IR if B1 2 IR with 0 < E [B1] <1.

9.2 Upper bound without independence

This last result obtained by Jelenkovic and Lazar [18, Thm 10] can be improved along yet another

direction.

Proposition 9.1 Let A = A1 +A2 be the superposition of two �uid processes A1 and A2. Assume

A1 to be a stationary �independent on-o�� source such that �1+�2 < c < r1+�2 with activity period

B1 2 IR and let A2 be a �uid source satisfying (8.22) for some "? > 0. Then, it holds that

lim sup
x!1

P

h
WA;c > x

i
P [WA1;c��2 > x]

� 1: (9.3)

In contrast with Theorem 10 in [18] we do not require sources A1 and A2 to be independent. This

is made possible by the asymptotic scale invariance implied by (9.1) and (9.2).
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Proof. Pick " in (0;min(c � (�1 + �2); "
?)) as in (8.22). Lemma 2.1 with h(t) = "t (t � 0) and a

standard union bound argument yield

P

h
WA;c > x

i
� P

h
WA1;c��2�" > �x

i
+P

h
WA2;�2+" > (1� �)x

i
; x � 0 (9.4)

for any � in (0; 1). Using (4.12) [with 
  c� �2 � ", � �1] for B1 2 IR (thus B?
1 2 IR), we get

P

h
WA1;c��2�" > �x

i
� (1� p)�1
c� (�1 + �2)� " P [(�+ ")B?

1 > �x] ; � 2 [0; 1]; " 2 [0; "?) (9.5)

with � given by (5.1) as usual.

By writing

P

h
WA2;�2+" > (1� �)x

i
P [WA1;c��2 > x]

=
P

h
WA2;�2+" > (1� �)x

i
P [WA1;c��2 > (1� �)x]

P

h
WA1;c��2 > (1� �)x

i
P [WA1;c��2 > x]

;

we conclude from (8.22), (9.2) and (9.5) that

lim
�"1

lim sup
x!1

P

h
WA2;�2+" > (1� �)x

i
P [WA1;c��2 > x]

= 0: (9.6)

On the other hand, application of (9.5) on each of the factors in

P

h
WA1;c��2�" > �x

i
P [WA1;c��2 > x]

=
P

h
WA1;c��2�" > �x

i
P [WA1;c��2 > �x]

P

h
WA1;c��2 > �x

i
P [WA1;c��2 > x]

gives

lim sup
x!1

P

h
WA1;c��2�" > �x

i
P [WA1;c��2 > x]

=
c� (�1 + �2)

c� (�1 + �2)� " lim sup
x!1

P
�
B?

1 > �(� + ")�1x
�

P [B?
1 > x]

lim sup
x!1

P [B?
1 > �x]

P [B?
1 > x]

: (9.7)

Hence, by appealing twice to (9.2) and using (9.7) we obtain

lim
"#0

lim
�"1

lim sup
x!1

P

h
WA1;c��2�" > �x

i
P [WA1;c��2 > x]

� 1; (9.8)

and combining now (9.4), (9.6) and (9.8) readily leads to (9.3).

10 Superposition of independent �uid sources

Sections 5 onward have dealt with the multiplexing of two independent �uid sources A1 and A2,

where A1 was assumed to be a stationary �independent on-o�� source and A2 was arbitrary. In this

section we consider the case when A1 (respectively, A2) is in turn obtained by the superposition of

independent on-o� (respectively, �uid) sources.
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10.1 Superposition of independent on-o� sources in A1

We �rst consider the situation where the �uid process A1 = fA1(t); t � 0g results from the su-

perposition of N mutually independent �uid processes A1;i := fA1;i(t); t � 0g, i = 1; 2; : : : ; N ,

namely

A1(t) :=
NX
i=1

A1;i(t); t � 0: (10.1)

For each i = 1; 2; : : : ; N , the source A1;i is assumed to be a �stationary independent on-o�" source

with peak rate r1;i, and we set r1 :=
PN

i=1 r1;i.

It is natural to seek an extension of the reduced load approximation result that follows from Propo-

sitions 6.2 and 7.2 when A1 is a superposition of on-o� sources as de�ned above and r1 > c � �2.
Unfortunately, such an extension turns out to be extremely di�cult, and we contend ourselves with

only a lower bound. Proposition 10.2 generalizes a result due to Choudhury and Whitt [8, Thm 3]

by allowing the presence of a �background� source A2 that essentially reduces the service capacity

c by its mean rate �2. We present an intermediate result �rst.

For each i = 1; : : : ; N , we denote by f(In;i; Bn;i); n = 0; 1; : : :g the alternating sequence of o� and on

periods for the stationary version of the independent on-o� source A1;i as described in Section 4.1.

Proposition 10.1 Let A1 =
PN

i=1 A1;i be as in (10.1), and assume r1 > c � �2. Then, for any

mapping h : IR+ ! IR+, with a(t) := (r1 � (c� �2))t� h(t) (t � 0), it holds that

P

h
WA1;c��2;�h > x

i
�

NY
i=1

 
E [B1;i]

E [B1;i] +E [I1;i]

!
P

h
a(B?

1;i) > x
i
; x � 0: (10.2)

Proof. De�ne B0
0 := mini=1;:::;N B

0
0;i where B

0
0;i := B0;i1 [I0;i = 0], i = 1; : : : ; N . Then, starting

from the obvious bound

A(B0
0)� (c� �2)B0

0 � h(B0
0) �WA1;c��2;�h;

and noting that A(B0
0) = r1B

0
0, we see that

P

h
WA1;c��2;�h > x

i
� P

�
r1B

0
0 � (c� �2)B0

0 � h(B0
0) > x

�
= P

�
a(B0

0) > x
�

� P

�
min

i=1;:::;N
a(B0

0;i) > x

�

=
NY
i=1

P

h
a(B0

0;i) > x
i

�
NY
i=1

P [I0;i = 0]P [a(B0;i) > xjI0;i = 0]
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and (10.2) follows from the fact that [a(B0;i)jI0;i = 0] =st a(B
?
1;i), i = 1; : : : ; N .

The next result follows from Proposition 10.1 and Proposition 2.1 in a manner similar to the proof

of Proposition 7.1.

Proposition 10.2 Let A1 =
PN

i=1 A1;i be as in (10.1), and assume r1 > c � �2. Then, for any

mapping h : IR+ ! IR+ which satis�es (H4) [with r  r1, 
  c� �2, h �h], it holds that

lim inf
x!1

P

h
WA1+A2;c > x

i
QN
i=1P

h
(r1 � c+ �2)B

?
1;i > x)

i � �(h)
NY
i=1

R�;i(h)
NY
i=1

 
E [B1;i]

E [B1;i] +E [I1;i]

!

with �(h) given by (5.8) and R�;i(h) by (5.6) with B?
1 replaced by B?

1;i.

When the on periods B1;i of A1;i have generalized Pareto, log-normal, or Weibull (with 0 < � < 1=2)

distributions and A2 satis�es a CLT, we can obtain

�(h)
NY
i=1

R�;i(h) = 1

as done in Section 8 by chosing an appropriate sequence of h. In that case we obtain the same

constant as [8, Theorem 3]. More generally, by choosing h � 0, and by assuming that A2 satis�es

a CLT we can obtain

�(h)
NY
i=1

R�;i(h) = 1=2

with no further assumptions on the on periods B1;i of A1;i.

10.2 Superposition of independent �uid sources in A2

Propositions 6.2 and 7.2 require fairly mild conditions on source A2. In practice, it is often the case

that source A2 is the superposition of independent �uid processes, say regenerative �uid sources, or

even more speci�cally, independent on-o� sources. The question thus naturally arises as whether

the requisite conditions on the aggregate source A2 which appear in Propositions 6.2 and 7.2 are

implied by these conditions on the component sources.

We investigate these issues in the following context: Let A2;i := fA2;i(t); t � 0g, i = 1; 2; : : : ; N ,

be N mutually independent �uid processes with average rates �2;1; : : : ; �2;N , respectively. The �uid

process resulting from the superposition of A2;1; : : : ; A2;N is the �uid process A2 := fA2(t); t � 0g
de�ned by

A2(t) :=
NX
i=1

A2;i(t); t � 0; (10.3)
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its average rate is given by �2 :=
PN

i=1 �2;i. As we refer to the examples treated in Sections 8 and 9,

we note that the choice of appropriate perturbation directions h in the lower and upper bounds are

governed by the distribution of the activity period of source 1, with the selection ensuring the largest

and smallest possible values for lim"#0R�("h) and lim"#0R+("h), respectively, among admissible

perturbations. It remains therefore to explore how the impact of the individual sources on these

bounds a�ects the impact of the aggregate source A2.

Lower bound: In Proposition 7.2, the contribution of source A2 to the lower bound (7.6) arises only

through the constant lim"#0�("h) for some appropriate perturbation function h : IR+ ! IR, and

it is desirable to have (7.7), i.e., lim"#0�("h) = 1. The mutual independence of the component

sources A2;1; : : : ; A2;N implies

�S("h) :=
NY
i=1

lim inf
t!1 P

�
A2;i(t)� �2;it � "

N
h(t)

�
� �("h); " > 0

so that we may substitute the constant lim"#0�S("h) in the left-hand side of (7.6) for lim"#0 �("h).

Hence, if for some "? > 0, we have

�i("h) := lim inf
t"1

P [A2;i(t)� �2;it � "h(t)] = 1; 0 < " < "? (10.4)

for all i = 1; 2; : : : ; N , or even simply,

�i := lim
"#0

�i("h) = 1; i = 1; 2; : : : ; N; (10.5)

then lim"#0 �S("h) = 1, thus lim"#0�("h) = 1. In other words, the desired requirement (7.7) on

A2 is implied by the similar requirement (10.5) on each of the sources A2;1; : : : ; A2;N . As pointed

out earlier, and as further discussed in Section 8, (10.4) or (10.5) will hold in many cases of interest

when, depending on h, either the Law of Large Numbers (5.9) or the Central Limit Theorem (5.10)

holds for each of the processes A2;1; : : : ; A2;N .

Upper bound: We now turn to the upper bound (6.8) in Proposition 6.2 when A2 is given by

the superposition (10.3). In that case, the required condition (6.7) with respect to some mapping

h : IR+ ! IR will read as

P

"
sup
t�0

 
NX
i=1

(A2;i(t)� �2;it)� "h(t)
!
> x

#
= o

�
P
�
a+" (B

?
1) > x

��
; 0 < " < "?: (10.6)

Therefore, if the conditions

P

h
WA2

i ;�2;i;�"h > x=N
i
= o

�
P
�
a+" (B

?
1) > x

��
; 0 < " < "?;

for all i = 1; 2; : : : ; N , are simultaneously satis�ed, then a standard union bound argument implies

that

P

"
sup
t�0

 
NX
i=1

�
A2
i (t)� �2;it

�
� "h(t)

!
> x

#
�

NX
i=1

P

h
WA2

i ;�2;i;�"h > x=N
i

= o
�
P
�
a+" (B

?
1) > x

��
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for 0 < " < "?, and (10.6) holds. This argument does not require that the sources be independent.

11 Conclusions and open problems

Although we have succeeded in providing some conditions under which the reduced load equivalence

(1.2) holds, the picture is far from complete, with many questions still left unanswered. We review

some of them below:

In view of the negative result of Dumas and Simonian [11] described in Proposition 8.4, the equiva-

lence (1.2) cannot hold under (8.18), and it is natural to speculate as to the form of the asymptotics

for the tail probabilities P
h
WA1+A2;c > x

i
even in the simple case when A2 is an exponential on-o�

source.

Underlying the discussion presented here is the non-triviality condition r1 + �2 > c to ensure that

source 1 is not immediately �ushed out when �uid is released at the reduced rate c � �2. The

equivalence (1.2) is therefore meaningless if r1 + �2 � c, and a completely di�erent approach is

needed for obtaining the correct asymptotics of P
h
WA1+A2;c > x

i
even in the simple case when A2

is an exponential on-o� source.

The generic condition (6.1) is a natural one for establishing the upper bounds in the context of

subexponential distributions, e.g., Lemma 3.1(3) and the line of argument �owing from the bound

(6.4). In Section 6.3, by the intermediary of Proposition 6.3, we are now in possession of conditions

to check the validity of (6.1) in terms of the rate of growth for the perturbation function h and

the statistics of the source A2. Proposition 6.3 (with linear perturbation functions) implies that

the class of regenerative on-o� sources constitutes a subclass of the class of exponential sources

introduced by Jelenkovic and Lazar [18] to ensure their version of (6.1). However, what was needed

here is an estimate on the rate of decay of tail probabilities associated with WA2;�2;�h for non-linear
perturbation functions! In establishing this rate of decay, �nite exponential moments were essential

for allowing the repeated use of Cherno� bounds. Therefore, several questions suggest themselves

very naturaly: As the discussion following Proposition 8.3 clearly indicates, a better decay rate is

needed if one is to handle successfully the moderately ligh tailed case in its entirety. Also, it is

of interest to �nd out what happens when source 2, while still regenerative, does not have �nite

exponential moments; a completely new approach would be required to get the appropriate version

of Proposition 6.3 in that case.

Finally, in the introduction we mentionned the possibility of using the reduced load equivalence (1.2)

for computational purposes. It seems intuitive that the heavier the tail of B1 the better should the

approximation be, but further work is required to con�rm this fact.
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A Proofs of Lemmas 3.1�3.5

A proof of Lemma 3.1.

The proof of Claim 1 is straightforward when X 2 L and available in [24, Lemma 2] when X 2 S.
The proof of Claim 2 is an easy exercise based on bounded convergence and is therefore omitted.

When the rv T is non-negative, the proof of Claim 3 can be found in [4] or in [9, Thm. 1, p. 533].

When T is an IR-valued rv, the proof of Claim 3 proceeds as follows: Fix x � 0 and note that

P [X + T > x] = P [X + T > x jT > 0] q +P [X � jT j > x jT � 0] (1� q) (A.1)

with q := P [T > 0]. Conditionally on [T > 0] the rvs X and T are independent with

P [T > x jT > 0] =
1

q
P [T > x] � c2

q
P [Z > x]

and
P [X > x jT > 0] � P [X > x] � c1P [Z > x] :

Thus, applying Lemma 3.1(3) to the conditional rvs [XjT > 0](=st X) and [T jT > 0] which are

non-negative, we �nd

P [X + T > x jT > 0] �
�
c1 +

c2
q

�
P [Z > x] :

In a similar way, conditionally on [T � 0] the rvs X and T are independent rvs with

P [X > x jT � 0] � P [X > x] � c1P [Z > x] :

Consequently, by Lemma 3.1(1), the rv [X jT � 0] belongs to S, thus to L, while [jT j jT � 0] has

support in IR+. A straighforward application of Lemma 3.1(2) to these conditional rvs yields

P [X � jT j > x jT � 0] � P [X > x] � c1P [Z > x] : (A.2)

The proof is completed upon collecting (A.1)-(A.2).

A proof of Lemma 3.2.

It is plain from (3.2) that

P [X > x]

P [X? > x]
= E [X]

�Z 1

0

P [X > x+ t]

P [X > x]
dt

��1

; x > 0: (A.3)
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Because X 2 L, we also have limx!1
P[X>x+t]
P[X>x] = 1 for each t � 0, whence

lim
x!1

Z 1

0

P [X > x+ t]

P [X > x]
dt =1 (A.4)

by Fatou's lemma, and the conclusion (3.3) is now a straightforward consequence of (A.3)-(A.4).

Next, for each x � 0, we note that

E [X]P [X? > x]�
Z 1

x
P [X � Y > u] du =

Z 1

x
(P [X > u]�P [X > u+ Y ])du

=

Z 1

x
P [X > u]

�
1� P [X > u+ Y ]

P [X > u]

�
du:

By Lemma 3.1(2), X and X � Y have the same right tail, i.e., for every " > 0, there exists

u? = u?(") > 0 such that

0 � 1� P [X > u+ Y ]

P [X > u]
� "; u � u?:

Consequently,

0 � 1� 1

E [X]

R1
x P [X � Y > u] du

P [X? > x]
� "; x � u?

and the conclusion (3.4) immediately follows.

A proof of Lemma 3.3.

Under the assumptions on ', there exists x? > 0 such that on the interval [x?;1), ' is strictly

increasing with the sets '([x?;1)) = ['(x?);1) and '([0; x?)) being non-intersecting. Moreover,

x? can always be selected large enough so that x? > x0 and '(x
?) > 0. Consequently, the restriction

of ' to [x?;1) is a.e. di�erentiable and invertible with limy!1 '�1(y) =1 and we have fy 2 IR+ :

'(y) > ug = ('�1(u);1) as soon as '(x?) � u.

For x � '(x?), we note that

E
�
'+(X)

�
P
�
('+(X))? > x

�
=

Z 1

x
P ['(X) > u] du

=

Z 1

'�1(x)
P ['(X) > '(v)]'0(v)dv

=

Z 1

'�1(x)
P [X > v]'0(v)dv: (A.5)

The lower bound

P [('+(X))? > x]

P [X? > '�1(x)]
� inff'0(v) : v � '�1(x)g E [X]

E ['+(X)]
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is immediate and letting x go to in�nity in it, we conclude that

lim inf
x!1

P [('+(X))? > x]

P [X? > '�1(x)]
� lim

x!1 inff'0(v) : v � '�1(x)g E [X]

E ['+(X)]
: (A.6)

Similarly, we have the upper bound

P [('+(X))? > x]

P [X? > '�1(x)]
� supf'0(v) : v � '�1(x)g E [X]

E ['+(X)]
;

so that

lim sup
x!1

P [('+(X))? > x]

P [X? > '�1(x)]
� lim

x!1 supf'0(v) : v � '�1(x)g E [X]

E ['+(X)]
: (A.7)

The result (3.7) readily follows from (A.6) and (A.7) under the existence of the limit (3.6).

A proof of Lemma 3.4.

We �rst establish the result in the special case when the mapping ' : IR+ ! IR is strictly increasing

and convex on IR+ with '(0) = 0. Under these assumptions, ' is continuous and has a uniquely

de�ned inverse '�1 on IR+ with '�1(0) = 0. The convexity of ' implies the concavity of '�1, and

we have limx!1 '(x) = limx!1 '�1(x) =1.

(Claim 1): It is always the case that

lim sup
x!1

P ['(X) > x+ y]

P ['(X) > x]
� 1; y � 0:

On the other hand, the concavity of '�1 coupled with '�1(0) = 0 implies the subadditivity of '�1,

i.e., '�1(x+ y) � '�1(x) + '�1(y) for all x; y � 0. Hence, �xing y � 0, we �nd

P ['(X) > x+ y] = P

h
X > '�1(x+ y)

i

� P

h
X > '�1(x) + '�1(y)

i
; x � 0:

Consequently,

P ['(X) > x+ y]

P ['(X) > x]
� P

�
X > '�1(x) + '�1(y)

�
P [X > '�1(x)]

; x � 0

and using the fact that X 2 L, we see that

lim inf
x!1

P ['(X) > x+ y]

P ['(X) > x]
� 1; y � 0:

The desired conclusion '(X) 2 L follows.
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(Claim 2): This time, the convexity of ' and the condition '(0) = 0 imply ' superadditive, i.e.,

'(x + y) � '(x) + '(y) for all x; y � 0. Consequently, with a rv X 0 distributed like X but

independent of it, we have

P
�
'(X) + '(X 0) > x

� � P �'(X +X 0) > x
�
; x � 0

so that

P ['(X) + '(X 0) > x]

P ['(X) > x]
� P

�
X +X 0 > '�1(x)

�
P [X > '�1(x)]

; x � 0:

The condition X 2 S yields

lim sup
x!1

P ['(X) + '(X 0) > x]

P ['(X) > x]
� 2;

and the conclusion '(X) 2 S is now immediate once we note that it is always the case that

lim inf
x!1

P ['(X) + '(X 0) > x]

P ['(X) > x]
� 2:

We now turn to the general case by considering a mapping ' which satis�es the weaker assumptions

of the lemma. By convexity, limx!1 '(x) =1, and by the �niteness of �0, there exists x
? � x0 such

that on the interval [x?;1), ' is strictly increasing and convex with �0 � '(x?) and 0 < '(x?)

(hence 0 < '(x) for x > x?). Now, consider the interpolated mapping '? : IR+ ! IR+ given

by '?(x) = '(x?)
x? x (0 � x � x?) and '?(x) = '(x) (x? � x). By construction, the mapping

'? : IR+ ! IR is strictly increasing and convex on IR+ with '?(0) = 0. Therefore, by the �rst part

of the proof, whenever X belongs to L (resp. to S), it follows that '?(X) is an element of L (resp.

of S). The desired conclusion on '(X) now follows from Lemma 3.1(1) once we observe that the

rvs '(X) and '?(X) have equivalent right tails, i.e.,

lim
x!1

P ['(X) > x]

P ['?(X) > x]
= 1;

a fact readily veri�ed from the construction of h? under the assumptions on h.

A proof of Lemma 3.5. Fix x � 0 and y in IR. The desired conclusion (3.10) is an immediate

consequence of the obvious relation

P [X? > x+ y'(x)]

P [X? > x]
=
mX(x+ y'(x))

mX(x)

P [X > x+ y'(x)]

P [X > x]

and of the assumed limit (3.11).
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B A proof of Proposition 4.1

We drop the superscripts A, h and 
 from the notation as these quantities are �xed throughout the

discussion. As in Section 4.1 we write T0 = 0 and Tn+1 :=
Pn

k=0(Ik +Bk) for n = 0; 1; : : :. We also

note that A(Tn+1) = r
Pn

k=0Bk for n = 0; 1; : : :.

(Claim 1): Restricting attention to the epochs fTn; n = 0; 1; : : :g in the supremum entering the

de�nition of W and noting that

h(Tn) �
n�1X
k=0

h(Ik) + h(Bk); n = 1; 2; : : : (B.1)

by the superadditivity of h, we obtain the bound

W � sup
n=0;1;:::

(A(Tn)� 
Tn + h(Tn))

� max

 
h(0); sup

n=1;2;:::

 
n�1X
k=0

(rBk � 
(Ik +Bk) + h(Ik) + h(Bk))

!!

= max

 
h(0); sup

n=0;1;:::

 
nX

k=0

Xk

!!
= V:

(Claim 2): Condition (H1) (resp. (H2)) ensures that the mapping a (resp. b) is monotone increasing

(resp. decreasing), and it is therefore easy to check that

W = sup
n=0;1;:::

(A(Tn)� 
Tn + h(Tn)) ; (B.2)

where this time around, the subadditivity of h yields

h(Tn) �
n�1X
k=0

h(Ik) + h(Bk); n = 1; 2; : : : : (B.3)

Consequently, by an argument similar to that given in the proof of Claim 1, we get

W � max

 
h(0); sup

n=1;2;:::

 
n�1X
k=0

(rBk � 
(Ik +Bk) + h(Ik) + h(Bk))

!!

= max

 
h(0); sup

n=0;1;:::

 
nX

k=0

Xk

!!
= V:
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C A proof of Proposition 4.2

Here as well, we drop the superscripts A, h and 
 from the notation. Note from (4.9) the relation

P [V > x] = P [X0 +M > x] ; x � h(0) (C.1)

with X0 independent of the rv M which is given by

M :=

 
sup

n=1;2;:::

nX
k=1

Xk

!+

: (C.2)

As we have in mind to invoke Lemma 3.1(3), we consider in turn the asymptotic behavior of each

the rvs X0 and M .

(Step 1) The discussion will make use of several technical facts which we now develop: Under (H2)

the inequality

h(t)� h(0) =
Z t

0
h0(s)ds � 
t; t � 0

holds, so that

b(t) � b(0); t � 0 (C.3)

and

a+(t) � ((r � 
)t+ h(0) + 
t)+ � h(0)+ + rt; t � 0: (C.4)

As a result of (C.4), the integrability of B1 implies that of a+(B1); Tchebychev's inequality now

yields

xP
�
a+(B1) > x

� � E �a+(B1)
�
; x > 0 (C.5)

and the rv a+(B1) being long-tailed by (H6), we can select x large enough to conclude

0 < E
�
a+(B1)

�
<1: (C.6)

Next, under (H3) and (H4) it follows from (C.4) that a+ satis�es the conditions (i) and (ii) of

Lemma 3.3. Thus, applying Lemma 3.3 [with ' = a+ and X = B1], we get

P
�
(a+(B1))

? > x
� � �(r � 
) + h0(1)

� E [B1]

E [a+(B1)]
P
�
a+(B?

1) > x
�

(C.7)

given (4.1) and (C.6).

(Step 2) The tail of asymptotics of M will be identi�ed through a well-known result of Veraverbeke

[28, Theorem 2(B), p. 35]. To prepare for it, with the de�nition (4.8) ofX1, we remark the inequality

X1 � a(B1) + b(0) via (C.3), whence X+
1 � a+(B1) + b(0)+, and the integrability of X+

1 is implied

by that of a+(B1). Also, appealing to (C.3) again, we get

P [X1 > x] = P
�
a+(B1)� j b(I1)� b(0) j +b(0) > x

�
� P

�
a+(B1) > x

�
(C.8)
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where the equivalence is validated by Lemma 3.1(2) [with X = a+(B1), Y =j b(0) � b(I?1 ) j and
d = b(0)] under the independence of the rvs B1 and I1. In conclusion, we have

P

h
X+

1 > x
i
� P �a+(B1) > x

�
(C.9)

so that X+
1 2 L under (H6). Now, the same arguments based on Tchebychev's inequality which

gave (C.6), when applied to the rv X+
1 , yield

0 < E

h
X+

1

i
<1: (C.10)

Consequently, the integrated tail rv (X+
1 )? associated with X+

1 is well de�ned, and the equivalence

(C.9) gives Z 1

x
P

h
X+

1 > u
i
du �

Z 1

x
P
�
a+(B1) > u

�
du: (C.11)

Hence, under (C.6), by the de�nition of the integrated tail of the rv a+(B1), we conclude thatZ 1

x
P [X1 > u] du �

Z 1

x
P
�
a+(B1) > u

�
du

� E
�
a+(B1)

�
P
�
(a+(B1))

? > x
�

(C.12)

� ((r � 
) + h0(1))E [B1] P
�
a+(B?

1) > x
�

(C.13)

where the asymptotic equivalence (C.13) follows from (C.7).

Using (H7) we conclude from (C.13) and Lemma 3.1 that the rv X+
1 has an integrated tail in S.

Since E [X1] < 0 under (H5), Theorem 2(B) of [28, p. 35] yields

�E [X1] P [M > x] �
Z 1

x
P [X1 > u] du (C.14)

and upon substituting (C.13) into (C.14), we readily obtain the asymptotics

P [M > x] � K(h)P
�
a+(B?

1) > x
�

(C.15)

where K(h) is given by (4.11).

(Step 3) To discover the tail asymptotics of the rv X0, we observe from (4.5) that

P [X0 > x] = (1� p)P [a(B1) + b(I?1 ) > x] + pP [a(B?
1) + b(0) > x] ; x � 0 (C.16)

with I?1 , B1 and B?
1 independent rvs.

Under (H6), the rv a+(B1) belongs to L. Thus, recalling (C.3) and applying Lemma 3.1(2) [with

X = a+(B1), Y =j b(0)� b(I?1 ) j and d = b(0)], we get

P [a(B1) + b(I?1 ) > x] � P
�
a+(B1)� j b(0) � b(I?1 ) j +b(0) > x

�
= P

�
a+(B1) > x

�
: (C.17)
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Lemma 3.2 [with X = a+(B1)] and (C.7) successively yield

P
�
a+(B1) > x

�
= o(P

�
(a+(B1))

? > x
�
)

= o(P
�
a+(B?

1) > x
�
); (C.18)

the required moment conditions 0 < E [B1] ;E [a+(B1)] <1 in Lemma 3.2 hold owing to (4.1) and

(C.6). It is now plain from (C.17) and (C.18) that

P [a(B1) + b(I?1 ) > x] = o(P
�
a+(B?

1) > x
�
): (C.19)

On the other hand, a+(B?
1) belongs to S under (H7) (thus to L), whence asymptotically equivalent

to a+(B?
1) + b(0), i.e.,

P [a(B?
1) + b(0) > x] � P �a+(B?

1) > x
�
: (C.20)

Combining (C.16), (C.19) and (C.20) we �nd

P [X0 > x] � pP �a+(B?
1) > x

�
: (C.21)

(Step 4) Collecting (C.15) and (C.21), we readily conclude to (4.10) and (4.11) by an application

of Lemma 3.1(3) [with X = M , T = X0, Z = a+(B?
1), c1 = K(h), c2 = 1]. By Lemma 3.1(1),

membership of V in S follows from that of a+(B?
1) in S.

D A proof of Proposition 6.3

We need the following fact later in the proof:

Lemma D.1 Consider an IR-valued rv X such that E [X] = 0 and

E

h
e�X

i
<1; j�j � �? (D.1)

for some �? > 0. Then, there exists �?? in the interval (0; �?) and � > 0 such that

E

h
e�X

i
< e

�

2
�2 ; j�j � �??: (D.2)

Proof: Fix � in IR. It is a simple matter to check the identity

e�x = 1 + �x+ �2
Z x

0

�Z t

0
e�sds

�
dt; x 2 IR:
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The zero-mean condition implies

E

h
e�X

i
= 1 + �2K(�) with K(�) := E

"Z X

0

�Z t

0
e�sds

�
dt

#
;

and we conclude

E

h
e�X

i
� 1 + �2jK(�)j � e�2jK(�)j:

The proof of (D.2) is now completed by noting that condition (D.1) ensures the existence of some

�?? in the interval (0; �?) such that

� :=
1

2
sup

j�j��??
jK(�)j <1:

To proceed with the proof of Proposition 6.3, we set C := E [C2] > 0, and pick scalars

x � 0; �; " > 0; �; � 2 (0; 1) and � 2 (0; C):

We also write

z(x) :=
(1� �)
"

x and n(x) := b(1� �)z(x)
C + �

c

and for easy reference, we set

Mi := sup
0����0

Mi(�) =Mi(�0) and Ni := sup
0����0

Ni(�) = Ni(�0); i = 1; 2:

The de�nition of the rv WA2;�2;�h and the monotone character of h immediately yield

WA2;�2;�h � sup
n=0;1;:::

(A2(Tn+1)� �2Tn � h(Tn)) ;

so that information on the tail of the rv WA2;�2;�h can in principle be obtained by considering the

tail of the maximum associated with the �perturbed random walk� fA2(Tn+1)� �2Tn� h(Tn); n =

0; 1; : : :g. However, the matter is not straightforward, especially when L = 0 in (6.10), as we note

then that

lim
n!1

1

n
(A2(Tn+1)� �2Tn � h(Tn)) = 0 a:s:

Although a Large Deviations Principle will hold for fA2(Tn+1)� �2Tn; n = 0; 1; : : :g (and even for

the perturbed random walk under some additional conditions on h), this is not enough to guarantee

exponential decay for the tail of the rv WA2;�2;�h. The basic idea of the proof will be to �rst

�extract" the exponential tails associated with the various underlying Large Deviations Principles.

What remains will provide us with a way to capture the e�ect of the perturbation h.

46



By the union bound, it is then plain that

P

h
WA2;�2;�h > x

i
�

1X
n=0

P [A2(Tn+1)� �2Tn � h(Tn) > x]

� A(x) +B(x) (D.3)

with

A(x) :=
1X
n=0

P [A2(Tn+1)� (�2 + ")Tn > �x]

and

B(x) :=
1X
n=0

P [A2(Tn+1)� �2Tn � h(Tn) > x;A2(Tn+1)� �2Tn � "Tn + �x] :

The remainder of the proof consists in bounding each of the terms A(x) and B(x).

(Step 1) Using a Cherno� bound argument on each term of A(x) and the independence assumptions

on the rvs f(Cn; Yn); n = 1; 2; : : :g, we conclude that

A(x) = P [Y1 > �x] +
1X
n=1

P

"
Yn+1 +

nX
i=1

(Yi � (�2 + ")Ci) > �x

#

� e���xN1

 
1 +N2

1X
n=0

�
E

h
e�(Y2�(�2+�)C2)

i�n!
; 0 < � < �0:

For � in [0; �0], r1(�) := E

h
e�(Y2�(�2+�)C2)

i
� N2(�) < 1 under (6.13), and we get r01(0) =

�"E [C2] < 0 by the de�nition of �2. Hence, r1(�) < 1 for all � in (0; �1) with 0 < �1 � �0, so that

A(x) � D1(�) e
���x with D1(�) := N1

�
1 +

N2

1� r1(�)
�
<1: (D.4)

(Step 2) To handle B(x) we note the following: Whenever A2(Tn+1) � �2Tn � h(Tn) > x and

A2(Tn+1)� �2Tn � "Tn+ �x, then necessarily A2(Tn+1)� �2Tn > h(Tn) and h(Tn) + x < "Tn+ �x,

the latter inequality implying z(x) < Tn+1. Hence,

B(x) �
1X
n=0

P [A2(Tn+1)� �2Tn > h(Tn); z(x) < Tn+1]

� C(x) +D(x) (D.5)

with

C(x) :=
1X
n=0

P

h
(n+ 1)(C + �) + �z(x) < Tn+1

i

and

D(x) :=
1X
n=0

P

h
A2(Tn+1)� �2Tn > h(Tn); z(x) < Tn+1 � (n+ 1)(C + �) + �z(x)

i
:
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A Cherno� bound argument on each term of C(x) yields

C(x) �
1X
n=0

e���z(x)E
h
e�(Tn+1�(n+1)(C+�))

i

� M1e
��(�z(x)+C+�)

1X
n=0

r2(�)
n

for � in [0; �0] where we have set r2(�) := E

h
exp(�(C2 �C � �))

i
. Since r2(0) = 0 and r02(0) = �� <

0, there exists �2 > 0 such that r2(�) < 1 on (0; �2). Hence, on the range 0 < � < �3 := minf�1; �2g,
we have

C(x) � D2(�) e
���z(x) with D2(�) :=

M1e
��(C+�)

(1� r2(�)) <1: (D.6)

(Step 3) Next, we note that the condition z(x) < Tn+1 � (n+ 1)(C + �) + �z(x) is vacuous unless

(n+1)(C + �) + �z(x) > z(x), or equivalently, unless n(x) � n, whence the �rst n(x) terms in the

sum D(x) equal zero. With �1 := C � � > 0, we get

D(x) � E(x) + F (x) (D.7)

with

E(x) :=
1X

n=n(x)

P [Tn < n�1]

and

F (x) :=
1X

n=n(x)

P [A2(Tn+1)� �2Tn > h(Tn); n�1 � Tn] :

The usual Cherno� bound argument now yields

E(x) � e��1
1X

n=n(x)

r3(�)
n�1 (D.8)

for all � > 0, where r3(�) := E

h
e�(�1�C2)

i
. Since r3(0) = 1 and r03(0) = �� < 0, there exists �4 in

(0; �0) such that r3(�) < 1 for all � in (0; �4). Hence, on the range 0 < � < �5 := minf�3; �4g, we
deduce from (D.8) that

E(x) � D3(�) r3(�)
n(x) with D3(�) :=

e��1

r3(�) (1� r3(�)) <1: (D.9)

(Step 4) Collecting the bounds (D.3), (D.5) and (D.7), we �nd

P

h
WA2;�2;�h > x

i
� R(x) + F (x) (D.10)
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with
R(x) := A(x) + C(x) +E(x):

Making use of (D.4), (D.6) and (D.9), it follows that

R(x) � D1(�) e
���x +D2(�) e

���z(x) +D3(�) r3(�)
n(x)

whenever 0 < � < �5. Let 
0 be a constant such that n(x) � 
0x for x large enough, e.g., select 
0

as 
0 := (1� �)(1� �)=(2"(C + �). With this notation we get

R(x) � D(�) e�dx (D.11)

for x large enough, where 0 < d := min (��;�
0 log(r3(�)); ��(1� �)=") and D(�) :=
P3

i=1 Di(�).

(Step 5) For the last term F (x), observe from the monotone character of h that h(Tn) � h(n�1) if

n�1 � Tn, whence

F (x) �
1X

n=n(x)

P [A2(Tn+1)� �2Tn � h(n�1) > 0] : (D.12)

Pick � in the interval (0; �0). For each n = 1; 2; : : :, a Cherno� bound argument gives

P [A2(Tn+1)� �2Tn � h(n�1) > 0]

� e��h(n�1)E
h
e�(Y1��2C1)

i
E

h
e�Yn+1

i
E

h
e�(Y2��2C2)

in�1

� N1N2e
��h(n�1)E

h
e�(Y2��2C2)

in�1
: (D.13)

By Lemma D.1, under the moment relation E [Y2] = �2E [C2], there exist � > 0 and �6 in (0; �0)

such that

E

h
e�(Y2��2C2)

i
� e �2 �2 ; � 2 (0; �6): (D.14)

Combining (D.13) and (D.14), we �nd

P [A2(Tn+1)� �2Tn � h(n�1) > 0] � N1N2e
�(h(n�1)��n�

2
�2): (D.15)

This last upper bound is best, i.e., smallest, for � = h(�1n)=n�, a quantity that can be made

arbitrary small since (6.10) holds with L = 0, hence smaller than �6, for n large enough, in which

case (D.15) can be tightened to

P [A2(Tn+1)� �2Tn � h(n�1) > 0] � N1N2e
�h(n�1)

2

2n� : (D.16)

In particular, for x large enough, we conclude from (D.12) and (D.16) that

F (x) � N1N2

1X
n=n(x)

e
�h(n�1)

2

2n� : (D.17)
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Consequently, for x large enough, we have n(x) � 
0x, and with 
1 := �1
0 and 
2 := �1=2�, a

standard bounding argument shows that

1X
n=n(x)

e�
h(n�1)

2

2n� �
1X

n=n(x)

e
� 
2g(n�1)

2

n�1

�
Z 1


0x
e�
2g(�1t)

2=�1t dt

=
1

�1

Z 1


1x
e�
2g(t)

2=t dt =:
1

�1
Rg(x) (D.18)

as we note that t! g(t)=
p
t = infs�t h(s)=

p
s is nondecreasing. Reporting (D.18) into (D.17) yields

F (x) �MRh(x) with M := N1N2=�1, so that (D.10) and (D.11) together now imply

P

h
WA2;�2;�h > x

i
� D(�) e�dx +MRg(x) (D.19)

for x large enough.

(Step 6) We are now in position to prove (6.14) and (6.15). In view of (D.19), (6.14) will fol-

low with 
3 = M if we show that limx!1 e�ax=Rg(x) = 0 for any a > 0, or equivalently that

limx!1Rg(x)e
ax =1 for any a > 0. To that end, with

G(t) :=
a


1
t� 
2 g(t)

2

t
; t > 0

we get

Rg(x)e
ax = eax

Z 1


1x
eG(t) e�at=
1 dt

�
�

inf
t�
1x

eG(t)
�
�
Z 1


1x
eax�at=
1 dt =


1
a

inf
t�
1x

eG(t):

The desired conclusion is obtained if we show that limt!1G(t) = 1, a fact which follows from

L = 0 in (6.10), the fact g(t)=t � h(t)=t (t > 0) and the identity

G(t) = t

 
a


1
� 
2

�
g(t)

t

�2
!
; t > 0:

We now turn to the proof of (6.15). For any given constant C > 0, assumption (2) implies that

h(t)2=t � Ct2�0 � Ct� for t large enough whenever � lies in (0; 2�0). Therefore, for x large enough,

a simple bounding argument and the well-known asymptotics of the incomplete Gamma function

lead to

Rg(x) �
Z 1


1x
e��t

�

dt � �0 (
1x)1�� e��(
1x)� (D.20)

with � := C 
2 and �0 := �(1��)=��(�). Combining (6.14) and (D.20) gives (6.15) with �1 = �
�1 ; �2 =


3�0

(1��)
1 .
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E A proof of Proposition 8.1

We show that the choices h = U and h = �U meet the requirements of Claims 1 and 2, respectively.

To avoid unnecessary repetitions, we start with some comments that are common to both Claims.

(Fact 1): Because limx!1mB1(x) = 1 by Lemma 3.2, the same property holds for u by the

asymptotic equivalence mB1 � u, hence for U . The mapping U being concave and increasing on

IR+, the convergence

lim
t!1

U(t)

t
= lim

t!1
u(t)

t
= lim

t!1u0(t) =: u0(1) (E.1)

takes place in a monotonically decreasing manner, whence the limit exists and is �nite.

(Fact 2): With (5.2) and (5.4) in mind for the situations at hand, for every � in IR we write

a�(x) := �x+ �U(x); x � 0; (E.2)

and
X�

1 := �B1 � (c� �2)I1 + �(U(B1) + U(I1)): (E.3)

By Jensen's inequality we have 0 � E [U(B1)] � U(E [B1]) < 1, with similar inequalities for I1,

whence the rvs U(B1) and U(I1) are both integrable. Thus, the rvs a�(B1) and X
�
1 are integrable;

we have E [X�
1 ] < 0 for small enough � in view of the fact that lim�#0 E [X�

1 ] < 0 by the stability

condition.

(Fact 3): For a given � in IR, whenever the mapping a� is strictly increasing in the limit, we have

lim
x!1

P

h
a+� (B1) > x

i
P [�B1 > x]

= lim
x!1

P

h
a+� (B1) > a+� (x)

i
P

h
�B1 > a+� (x)

i

= lim
x!1

P [B1 > x]

P

h
�B1 > a+� (x)

i = e�
�1� (E.4)

by virtue of Lemma 3.6 since B1 2MDA(�) (and mB1 � U). A similar argument, making use this

time of the consequence (3.12) of Lemma 3.6, also yields

lim
x!1

P

h
a+� (B

?
1) > x

i
P [�B?

1 > x]
= lim

x!1
P [B?

1 > x]

P

h
�B?

1 > a+� (x)
i = e�

�1�: (E.5)

In other words, whenever the mapping a� is strictly increasing in the limit, we conclude from (E.4)

that the rvs �B1 and a+� (B1) are both tail equivalent, while (E.5) implies that the rvs �B?
1 and

a+� (B
?
1) are tail equivalent. By Lemma 3.1 (1) the rvs a+� (B1) and a

+
� (B

?
1) are elements of L and

S, respectively.

We are now ready to discuss Claims 1 and 2.
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(Claim 1): De�ne h := U and �x " > 0. The mapping h is subadditive and absolutely continuous

by concavity (with h(0) = 0). The scaled mapping "h automatically satis�es (H3) and (H4) (under

the second half of (8.1)). From this latter condition we conclude via Fact 3 that a+" (B1) and a
+
" (B

?
1)

are elements of L and S, respectively, i.e., conditions (H6) and (H7) both hold for "h. Conditions

(H1), (H2) and (H3) on "h are equivalent to

c� (r1 + �2) � "U 0(x) � c� �2 a:e: on IR+ (E.6)

with U 0(1) �nite. Because U is a non-decreasing and concave function, it follows that 0 � U 0(1) �
U 0(x) � U 0(0+) a.e. on IR+ with U 0(0+) �nite by Lemma 8.1. The constraints (E.6) are therefore

implied by requiring

c� (r1 + �2) � "U 0(1) � "U 0(0+) � c� �2 a:e: on IR+ (E.7)

and under (8.1) this is obviously satis�ed if " is chosen su�ciently small. If " is taken small enough,

we see from the discussion above that (H5) holds as well.

(Claim 2): This time, de�ne h := �U and �x " > 0. The absolutely continuous mapping h is now

superadditive. Since U is non-decreasing, the scaled mapping "h automatically satis�es (H2), while

condition (H3) holds by the remarks leading to (E.1). Moreover, by Fact 2 we see that "h satis�es

(H5).

The mapping a�" will be strictly increasing if a0�"(x) > 0 a.e. on IR+, or equivalently,

a0�"(x) = r1 + �2 � c� "U 0(x) > 0 a:e: on IR+: (E.8)

By remarks made in the proof of Claim 1, this last requirement will hold if

a0�"(x) � r1 + �2 � c� "U 0(0+) > 0 a:e: on IR+ (E.9)

by virtue of the concavity of U . This is always possible owing to (8.1) by selecting " su�ciently

small, in which case a�" is strictly increasing on IR+ with limx!1 a�"(x) =1.

Consequently, for " su�ciently small, it is the case that "h satis�es (H4), hence (H6) and (H7) by

appealing to Fact 3.
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