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The primary purpose of this study is to investigate the impact of the local item 

dependence (LID) of testlet items on the performance of the multistage tests (MST) that 

make pass/fail decisions. In this study, LID is simulated in testlet items. Testlet items are 

those that physically share the same stimulus. In the MST design, the proportion of testlet 

items is a manipulated factor. Other studied factors include testlet item position, LID 

magnitude, and test length. The second purpose of this study is to use a testlet response 

model to account for LID in the context of MSTs. The possible gains of using a testlet 

model against a standard IRT model are evaluated. The results indicate that under the 

simulated conditions, the testlet item position has a very minimal effect on the precision 

of ability estimation and decision accuracy, while the item pool structure (the proportion 

of testlet items), the LID magnitude and test length have fairly substantial effects. 

Ignoring the LID effects and fitting a unidimensional 3PL model result in the loss of 



 
 

ability estimation precision and decision accuracy. The ability estimation is adversely 

impacted by larger proportion of testlet items, the moderate and high LID levels and short 

test lengths. As the LID condition gets worse (large LID magnitude, or large proportion 

of testlet items), the decision accuracy rates decrease. Fitting a 3PL testlet response 

model does not reach the same level of ability estimation precision under all simulations 

conditions. In fact, it proves that ignoring LID and fitting the 3PL model provides 

inflated ability estimation precision and the accuracy of decision accuracies.   
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Chapter 1: Introduction 
 

Background 
 

In recent years, a clear trend in the testing field has emerged: computer-based 

testing (CBT). Many large-scale high-stakes test programs such as the Graduate Record 

Examinations (GRE), the Graduate Management Admission Test (GMAT), the Law 

School Admission Test (LAST), the Armed Service Vocational Aptitude Battery 

(ASVAB), and several certification or licensure tests such as the Uniform Certified 

Public Accountant (CPA) Examination are administered by computers now. Some other 

tests, for example, K-12 education and adult education tests are in the transition from 

traditional paper-pencil test (PPT) to CBT.  

CBT, also known as Computer-Based Assessment (CBA), e-exam, computerized 

testing or computer-administered testing, is a method of administering tests in which 

examinees view and respond to test questions via a computer, and in some cases, via the 

Internet. The advantages of CBT over PPT include increased frequency of test delivery, 

administration and scoring efficiency, reduced costs associated with many aspects of 

testing such as test delivery and administration, improved security, consistency and 

reliability, instant scoring and faster decision making (Bergstrom & Lunz, 1999; 

Scheuermann & Bjornsson, 2009; TCExam, 2008). CBT also dramatically expands the 

realm of possibilities for innovations in assessment format (Parshall, Spray, Kalohn, & 

Davey, 2002).   

CBTs may take many forms. Based on test designs, CBTs can be divided into 

linear tests or adaptive tests. Linear tests are those that use the computer only as means of 
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administering which is in most respects identical to a PPT. With adaptive CBTs, different 

tests are assembled for different examinees. Important distinctions can also be made 

within adaptive test designs. For example, computerized adaptive tests (CAT) select 

items individually, with a decision as to what to administer next being made following 

each response. Multistage tests (MST) select items in pre-assembled blocks or sets, with 

decisions made only after each group of items is administered.  

In a CAT, items are selected for each examinee based on his or her responses to 

previous items in a way that targets and maximizes the precision of the examinee’s 

estimated ability.  Thus, one of the main advantages of CAT over PPT is that it offers a 

shorter test while still maintains an equivalent level of precision (Schnipke & Reese, 

1997; Wainer, 2000; Weiss, 1982). Currently, many large-scale tests are delivered in the 

format of CAT. These include the ACCUPLACER postsecondary placement exams 

(College Board, 1993), the GRE exam (Eignor, Stocking, Way, & Steffen, 1993), and the 

ASVAB (Sands, Waters, & Mcbride, 1997).  

The successful implementation of CAT requires a psychometric model, most often 

an item response theory (IRT) model.  IRT describes the application of mathematical 

models to analyze response data collected during testing/survey situations whose main 

objective is to measure individual persons’ latent trait, ability, or skill levels. By 

assuming these traits, abilities or skills on a continuous latent scale, the probability of a 

response of an item is modeled via a mathematical function of the student's trait 

parameters and the item parameters. The main advantage of IRT models is the 

invariance of the person and item parameters. It enables the administration of different 
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sets of items to different examinees while still being able to estimate their abilities on the 

same scale (Embretson & Reise, 2000). 

One of the fundamental assumptions of IRT models is local independence, or 

conditional independence of item responses given item parameters and examinee 

proficiency parameters. It means that an examinee’s performance on any item depends 

only on the examinee’s ability and the item’s characteristics, and that knowledge of the 

examinee’s performance on other items does not add any further information (Hambleton 

& Swamnathan, 1985; Mislevy & Chang, 2000). However, in some situations, local 

independence assumption may be violated. For example, in a reading test, several items 

are associated with the same passage, or students become fatigued at the end of the test, 

which is known as local item dependence (LID). In these situations, using IRT can lead 

to inaccurate estimation of the examinee and item parameters and over-estimation of test 

reliability (Chen & Wang, 2007; Sireci, Thissen, & Wainer, 1991; Wainer & Thissen, 

1996).  

In a CAT, decisions about item choice are dependent upon the local item 

independence assumption. However, in real testing situations, this assumption may not 

hold. For instance, in a math test, items with highly similar content, such as two items 

about factoring, are administered in the same session.  Or in another situation,  a CAT 

starts the session with difficult items, fatigue may adversely affect the examinees 

performance on the items at the end of session. So, locally dependent items will not work 

in these situations with traditional IRT models.  

In addtion to the LID problem , CAT has also been scrutinized with a number of 

non-psychometric problems. First, because CAT is  administered “on demand” rather 
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than on a  small number of fixed dates, items may be exposed at a faster rate than in 

conventional tests, which poses a serious test security problem (Schnipke & Scrams, 

1999; Yi, Zhang, & Chang, 2006).  Second, examinees taking a CAT are not permitted to 

review or skip items (Vispoel, 1998). Third, with CAT, it is possible to create millions of 

test forms from a single item pool, making it unfeasible for humans to review every test 

form in advance for quality assurance purposes (Luecht & Nungester, 1998).  

Because of these administrative shortcomings of CAT, an alternative CBT known 

as MST has been proposed and implemented in several large-scale tests. Rather than 

adapting the test to the current ability estimation of examinees by item as in CAT, MST 

adapts by a group of items in stages. It is viewed as a hybrid or compromise between 

conventional PPT and CAT formats (Armstrong, 2002). Different names have been given 

to MST.  For example, Luecht and Nungeter (1996, 1998, 2000) introduced it as 

computer-adaptive sequential testing or CAST. A similar design developed by 

Armstrong et al. (2004) is called multiple form structure design (MFSD). 

 Due to its capacity to eliminate some of the common criticisms of CAT, MST is 

gaining increased interest over the past few years. Several large-scale assessments have 

been implemented as MSTs. Examples include LSAT (LSAT), the Test of English as a 

Foreign Language (TOEFL), the National Council of Architectural Registry Board 

(NCARB), the National Assessment of Educational Progress (NAEP), the U.S. Medical 

Licensure Examination (USMLE) and the Uniform CPA Examination (Hendrickson, 

2007; Luecht, Brumfield & Breithaupt, 2006).  

The basic unit under the MST design is a module, which is composed of a group 

of items. The group of items could be a group of discrete items or a group of testlet items 
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(that share the same stimulus) or a combination of both discreate items and testlet items. 

The apparent reason to use testlet items is that it is more time efficient. To item writers, it 

is somewhat easier to write a series of related items around a common theme or stimulus 

than the same number of unrelated items or stand-alone items (Downing, 2006). Also if 

an examinee has to study a stimulus, it is more efficient to ask several related questions 

with the same stimulus. For example, in a medical certification exam, the common 

stimulus material could be a clinical situation, describing a patient’s relevant history or 

presenting a problem in sufficient detail for examinees to respond to several questions, all 

related to the common stimulus, asking for diagnosis, decisions, lab tests and likely 

complications, and so on.  

Testlets are known to be vulnerable to the problem of LID.  Ignoring LID can 

lead to overestimates of reliability or information and underestimates of the standard 

error of the ability estimates (e.g., Chen & Wang, 2007; Jiao, Wang, & Kamata, 2005; 

Wainer & Thissen, 1996; Yen, 1993; Zenisky, Hambleton, & Sireci, 2002) in the 

situation of PPTs. LID also can have substantial effect on CAT score precision 

(Pommerich & Segall, 2008). Due to the use of testlet items, LID is suspected to 

influence measurement precision as well as inferences based on it with MSTs. However, 

to date, there is no study investigating the effect of LID on MST with testlet items. Thus, 

this dissertation studies the impact of local item dependence on MST with testlet items 

for pass-fail decisions. To account for the LID due to testlets, this dissertation also 

explores using the testlet response model (TRT) in MSTs and comparing its performance 

with the 3PL model. 
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Objectives and Research Questions 
 

There are two objectives for this study. The first objective is to investigate the 

impact of LID of testlet items on the performance of MSTs for pass-fail decisions. MSTs 

are manipulated to have different proportions of testlet items. Various degrees of LID are 

simulated with testlet items. Due to the adaptive nature of MSTs, testlets are put into 

different stages, thus the impact of the position of LID is also studied. Another studied 

variable is test length because it is seen as insufficient in current research literature (Stark 

& Chernyshenko, 2006). Such a close examination can help us understand the underlying 

impact of LID. The second objective is to compare the performance of the conventional 

three parameter logistic (3PL) IRT model and a 3PL testlet response model in MSTs.  

Rather than ignoring, the 3PL testlet response model can account for LID.  

In sum, this study is intended to answer the following research questions.  

1. If the 3PL model is the measurement model used in analysis, how are 

measurement precision and classification decisions impacted by the proportion of testlet 

items in an MST, the position of testlet items (which stage?), and the magnitude of LID? 

And if the LID exists and the 3PL model is the measurement model, how are the 

measurement precision and classification decisions impacted by the test length of MSTs? 

2. Would the 3PL testlet model that can account for LID improve the overall 

measurement precision and classification decisions over the 3PL model? 

To answer above questions, simulation studies are carried out. The 3PL testlet 

model is used to generate item responses. The 3PL model and the 3PL testlet model are 

used to calibrate, construct MSTs and score examinees respectively. The factors 

manipulated include the proportion of testlet items in the MST, the testlet /discrete item 
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position, the testlet item effect magnitude and the test length. Details about the simulation 

study are presented in Chapter Three.  

Organization of the Study  

 
This study is presented in five chapters. Chapter One addresses the background of 

this study, the research objectives and questions associated with this study.  Chapter Two 

provides a literature review on the basics of IRT and MST. The review concentrates on 

four aspects: the basic components of IRT, CBT delivery models, the benefits of CAT, 

the components and construction of MST, and the problem of LID. Chapter Three 

describes the research design and the major steps of data preparation and analyses. 

Chapter Four provides a detailed report of the results for the analyses introduced in 

Chapter Three. Chapter Five summarizes the findings, discusses the implications of this 

study and provides some directions for future research.  
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Chapter 2: Literature Review 

 
This chapter reviews related background information to the proposed study. It 

includes six major sections. The first section reviews the general framework of IRT, 

which is the theorectial background of many current operational tests. It includes IRT 

assumptions, models, and its characteristics. The second section reviews current CBT 

delivery models. As a predecessor of the MST, a brief review of CAT and its advantages 

and disadvantages is provided in the third section. The fourth section provides 

information about the MST framework, including its components, considerations in 

developing an MST, and the LID problem with current operational MSTs. The fifth 

section is about the problem of LID. Its causes, consequences and models that can 

account for LID are reviewed in this section. Finally, research questions are restated at 

the end of this chapter. 

Item Response Theory 
 

General Framework of IRT 

 
Item response theory (IRT) is a family of statistical models used to analyze data 

from any tests or questionnaires.  It has the unique property of invariance. With this 

property, it is possible to solve some important measurement problems that have been 

difficult to solve in classical test theory (CTT) framework, such as those encountered in 

test equating and CATs (Hambleton, Swaminathan, & Rogers, 1991). When used 

appropriately, it can increase the efficiency and flexibility of the testing process and 

improve the precision of item or ability estimates. Currently, IRT is used for many 
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measurement applications including item banking, test construction, adaptive tests, 

scaling, equating, standard setting, and score reporting.  

The core of most IRT models is that it applies a particular mathematical function 

to describe the probability of a particular response, such as a correct response to an item, 

given item and person parameters. It is assumed that an examinee’s responses to different 

items are conditionally independent.  

Model Assumptions 

 
There are three main assumptions underlying an IRT model. They include: 

Dimensionality.  IRT models use examinee parameter(s) (also called person 

parameter(s), traits, abilities, or proficiencies) to describe the dimension(s) on which 

there are important differences among examinees as measured by the test items. Models 

that use only one dimension to describe the examinees are called unidimensional. Thus, 

unidimensional IRT models assume that only a single trait is measured by the set of 

items, and it is commonly referred as unidimensionality (Hambleton & Swamnathan, 

1985). Models that use two or more dimensions to describe the examinees are called 

multidimensional. However, in the majority of applications, unidimensional IRT models 

are used.  

Local Item Independence.  The local item independence assumption requires 

that given the person’s ability, the response to one item is independent to the response to 

another item conditional on item and person parameters (Hambleton & Swamnathan, 

1985). Under the assumption of the local independence, the probability of an examinee’s 

response pattern (X୧) is equal to the product of probabilities of the examinee’s responses 

to each of the J items given his/her ability θ୧ . It is expressed mathematically as 
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PሺX୧|θ୧ሻ ൌ ∏ P൫X୧୨ ൌ x୧୨ห
J
୨ୀଵ θ୧ሻ                                           (1) 

Namely, the probability of a correct response only depends on the item and person 

parameters (Lord, 1980; Mislevy & Chang, 2000). The assumption is that the true ability 

value is providing all the relavant information about the student’s performance and that 

the contribution of each item to the test can be evaluated independently of all other items. 

The violation of this assumption is called local item dependence (LID).  The  basic idea 

underlying LID is that there are additional factors that may affect students’ performance 

that are not accounted for by the IRT model. The causes and impacts of LID and models 

that can account for LID are reviewed more in the LID section.  

Independence of Examinees.  This assumption assumes that there is no 

relationship between the response patterns and the examinee subgroup memberships 

(such as gender, ethnicity, etc) after accounting for the differences of latent trait(s). With 

the assumption of examinee independence, the probability of observing all responses 

from all examinees is: 

PሺX|θሻ ൌ ∏ ∏ P൫X୧୨ ൌ x୧୨ห
J
୨ୀଵ θ୧ሻI

୧ୀଵ                                                 (2) 

This probability is also known as the likelihood for the data. Either the item 

parameters or the person parameters or both can be estimated by solving Equation 2 using 

the maximum likelihood (ML) method. 
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Unidimensional Dichotomous IRT models 

 
Unidimensional models differ in terms of the number of item parameters that are 

used to define each item’s essential characteristics. In a dichotomous 3PL model, 

assuming that θ୧ represents the ability level of person i, the probability of person i getting 

a correct response to item j can be modeled as (Hambleton & Swaminathan, 1985): 

P୧୨ሺθ୧ሻ ൌ c୨ ൅ ൫1 െ c୨൯
ୣ୶୮ ሾୟౠ൫θ౟ିୠౠ൯ሿ

ଵାୣ୶୮ ሾୟౠ൫θ౟ିୠౠ൯ሿ
                                               (3) 

where P୧୨ሺθ୧ሻ defines the probability of a correct response to item j by person i,  a୨ is the 

discrimination parameter for item j, b୨ is the difficulty parameter for item j, and c୨ is 

lower asymptote or “pseudo-guessing” parameter for item j. Equation 3 is known as item 

characteristic function (ICF), or graphically, item characteristic curve (ICC) for the 3PL 

model. 

The difficulty parameter b୨ indicates the relative difficulty of item j. It increases in 

value as the item is more difficult. Theoretically, the range of the difficulty parameter is 

from െ∞ to ൅∞. But most b values are typically between -3 and 3 on a logit scale. It is 

the point on theta scale where ICC has its maximum slope. 

The discrimination parameter a୨ identifies how well an item can distinguish 

between examinees in different regions on the latent continuum. The more discriminating 

an item is, the higher a value is. Theoretical values are positive and typically less than 2 

(Hambleton, Swaminathan, & Rogers, 1991). In ICC, a୨ equals to the slope value of ICC 

when θ=b୨ . 
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For items such as multiple-choice items, the parameter c୨ indicates that the 

probability that an examinee with extremely low abilities can get the item correct and its 

value represents the lower asymptote of the ICC. 

 A two-parameter logistic (2PL) model can be obtained by setting the pseudo-

guessing parameter at 0.  For one-parameter logistic (1PL) model or the Rasch model 

(Rasch, 1960), it is further assumed that all items share the same discrimination 

parameter. These are the three commonly used IRT models in large-scale testing 

programs.  

Information Functions and Standard Errors 

An important concept in IRT is information. This term reflects the measurement 

precision at each ability level. The item information function (IIF) is defined as follow 

(Embretson & Reise, 2000): 

                I୨ሺθ୧ሻ ൌ
ቂPౠ

′ ሺθ౟ሻቃ
మ

Pౠሺθ౟ሻൣଵିPౠሺθ౟ሻ൧
                                                                      (4) 

 
where I୨ሺθ୧ሻ defines the information provided by item j at ability level θ୧, P୨ሺθ୧ሻ is the 

probability of a correct response on item j with ability θ୧ as defined in Equation 3; and 

P୨
′ሺθ୧ሻ is the first derivative of  P୨ሺθ୧ሻ with respect to θ୧. For example, if the 3PL model is 

the measurement model, the item information function would be: 

                I୨ሺθ୧ሻ ൌ a୨
ଶ ൤ଵିPౠሺθሻ

Pౠሺθሻ ൨ ൤Pౠሺθሻିୡౠ

ଵିୡౠ
൨

ଶ
                                                       (5) 

The test information function (TIF) is the sum of the item information functions. 

It gives an overall impression of how much information a test could provide across all the 

items. Thus, 

TIሺθ୧ሻ ൌ ∑ I୨
J
୨ୀଵ ሺθ୧ሻ                                                                        (6)                      
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The standard error of measurement (SEM), also known as conditional standard 

error of  measurement, is defined as the reciprocal of the square root of the test 

information at a given ability level, which is: 

SEMሺθ୧ሻ ൌ 1/ඥTIሺθ୧ሻ                                                                    (7) 

Thus, the more information a test provides, the smaller the measurement error will be. As 

we will see later, target information function is one of the major specifications in the 

current automated test assembly (ATA) procedures for test constructions.  

IRT Model Parameter Estimation 

Item Parameter Estimation. Two common item parameter estimation methods are the 

joint maximum likelihood (JML) and the marginal maximum likelihood (MML) method. 

Currently, the latter is more frequently implemented, such as in the BILOG-MG software 

(Zimowski, Muraki, & Mislevy, 2003). BILOG-MG is used to calibrate item parameters 

in this dissertation for the 3PL model, thus its algorithm is briefly described as follows. 

Assuming that gሺθሻ is the probability density for θ, the marginal likelihood that is 

maximized is 

PሺX|ሼa, b, cሽሻ ൌ ׬ ∏ ∏ Pሺx୧୨
J
୨ୀଵ |θ୧ሻgሺθሻdθI

୧ୀଵ                                           (8) 

The item parameters are estimated by finding the maximum of Equation 8. In most cases, 

a continuous gሺθሻ is replaced by a finite set of discrete θ values, called quadrature points. 

In addition, an iterative Expectation and Maximization (EM) algorithm is applied 

(Mislevy & Stocking, 1989). This algorithm iterates to convergence between a) 

estimating the numbers of theoretical examinees with a particular values of θ that are 

expected to give response j to item i, and b) finding the item parameters that maximize 



14 
 

the likelihood of observing those numbers of examinees with those responses (Yen, 

2006).  

Person Parameter Estimation. When the item parameters are known, there are typically 

two methods to estimate the person parameters: Maximum likelihood (ML) or Bayesian 

methods. With Bayesian methods, a prior distribution is assumed for the parameter being 

estimated. Usually, a normal distribution is assumed for the ability parameters. Along 

with the likelihood of the observed item scores given the measurement model, a posterior 

distribution of ability parameters is obtained. When the mode of the posterior distribution 

is taken as the ability estimate, it is called maximum a posterior (MAP); when the mean 

of the posterior distribution is taken as the ability estimate, it is called an expected a 

posteriori (EAP) estimate. EAP method is applied in this dissertation to score examinees, 

thus its estimate (Mislevy & Bock, 1982) is described below. 

෠ߠ ൌ ∑ ொ௅ሺொሻௐሺொሻ
∑ ௅ሺொሻௐሺொሻ

                                                                               (9) 

where ܳ is a quadrature point in the ability scale, W(Q) is weight of the quadrature point. 

  .ሺܳሻ is the likelihood of a person’s response pattern at ܳ quadrature pointܮ

CBT Delivery Models 
 

There are at least five categories of CBT delivery models: (1) computerized fixed 

tests (CFT); (2) linear-on-the-fly (LOFT) tests; (3) item-level CAT; (4) testlet-based 

CAT; and (5) MST.  

CFT is a fixed-length test that pre-constructed, intact test forms that are 

administered by computers (Drasgow, Luechet, & Bennett, 2006). Different examinees 

may see different forms of the test; however, all examinees administered a given form see 



15 
 

exactly the same items, although the presentation sequence may be different during the 

administration. A CFT is directly analogous to having fixed-item PPT.  

LOFT is a fixed-length test, with test items uniquely assembled for each examinee 

according to pre-defined content and statistical specifications (Drasgow, Luechet, & 

Bennett, 2006; Prometric, 2010). That is, this method adjusts the item selection routine to 

account for item exposure. The benefits of LOFT include all those associated with CFTs 

with the addition of more efficient item pool usage and reduced item exposure.  

Item-level CAT is a form of CBT that adapts to the examinee’s ability. The test 

length associated with CAT can either be fixed or variable. The core idea behind CAT is 

that each item presented to examinees is based on his/her ability estimation on previously 

administrated items.  

Testlet-based CAT involves the adaptive administration of testlets to examinees, 

rather than single items. The primary adaptive unit is testlets, rather than items. Note that 

testlet-based CATS are only partially adaptive because items within a testlet are 

administrated in a linear fashion.  

MST is also a partial adaptation of the test to individual examinees. Rather than 

adapting the test to each examinee item by item in CAT, it adapts to examinees in stages. 

Each stage is composed of pre-constructed items (discrete items or testlet items).  

 

Computer Adaptive Testing 
 

General Framework of CAT 
 

CAT grew out of a motivation for more efficient and precise measurement of 

examinees across the entire distribution compared to that accomplished by linear tests 
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(Lord, 1980; Wainer, 1990).  It is different from conventional linear testing in that 

examinees are not presented with the same set of items in a particular form. An item is 

selected based on the scoring of the most recent response as well as the cumulative 

scoring (pattern of responses). It is considered as a more efficient way of testing because 

instead of answering all the items, only those items that are near the examinee's ability 

level are selected. Items that are too easy or too difficult for a given examinee are not 

administered.   

The successful implementation of CAT requires at least five important 

components:  a) a large item pool, b) a starting rule, c) a continuing rule, d) a scoring 

rule, and e) a stopping rule.  With these five components, it is administered as follows: 

1. The first item is presented to the examinee. 

2. Based on his/her previous response(s), the remaining items in the pool are 

searched for the next item according to the item selection rule. 

3. The examinee responds to the next item. 

4. The ability estimate is updated, based on his/her previous responses. 

5. The termination criterion is checked. If the termination criterion is reached, then 

stop the test, otherwise steps 2-4 are repeated.  

Usually, nothing is known about the examinee prior to the testing. The first item 

is often of easy to medium difficulty.  

An IRT model is the most important element in each component of the CATs 

except the starting rule. It is used to calibrate item pools, to update examinee’s ability 

estimation, to select the next item, and in some cases to terminate the test.    
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Benefits of CAT 

 
First, CAT can provide uniformly precise scores for most test-takers (van der 

Linden & Glas, 2000). Secondly, CAT can typically reduce the test length to 50% and 

still maintain a higher level of precision than a fixed test (Weiss & Kingsbugy, 1984). 

This means time and cost saving for both examinees and test administers. Third, like any 

CBT, CAT allows testing on demand, that is, examinees may take the test whenever 

wherever they are ready. It also may show results immediately after testing. Finally, it 

may reduce the item exposure of some items because examinees typically receive 

different sets of items rather than the whole population being administered a single set. 

However, items that of medium difficulty may have a higher risk of over-exposure.  

Criticisms of CAT 

 
Hendrickson (2007) summarized six potential problems with item-level adaptive 

tests. They include: (1) potential violation of the IRT assumptions of local independence 

and unidimensionality, (2) lack of control over non-statistical properties such as item 

ordering and context effect, (3) lack of control over content balancing, (4) the need for 

item exposure control, (5) lack of review opportunities for examinees, and (6) large data 

management and computer processing demands. 

The dimensionality and local item independence assumptions have been 

introduced in previous IRT section. The cause of the violation of the two assumptions is 

that there are other underlying traits/factors that influence examinees’ performance on the 

test that is not accounted for by the selected IRT model. For example, in the context of a 
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science test, violation of the two assumptions may occur if performing well on the 

science test requires high reading ability.   

The criticism of lack of control of non-statistical properties such as content 

balancing and possible item ordering effect and context effect is evident in that with the 

item-level CAT, millions of different test forms can be created with the same item bank, 

it is impossible for content experts to review each of these forms for quality assurance 

purposes (Luecht & Nungester, 1998) before test administration. 

The criticism of lack of review opportunities for examinees is due to the 

algorithm of CAT. A typical CAT does not allow examinees to skip or review test items. 

This may force them to abandon some of their favorite test-taking strategies and makes 

them complain the most about not being able to skip, review, or revise.  

Another criticism is the item exposure associated with CAT. This is one of the 

most serious problems with CAT. With CAT, items of medium difficulties have a higher 

risk of over-exposure. Highly exposed items can affect the accuracy and validity of test 

scores.  

Some other concerns of CAT include the use of test data collected from the CAT 

administration. Due to the sparseness nature of these data, it is difficult to conduct 

equating, different item functioning analysis or recalibration of item parameters 

(Armstrong, Jones, Koppel, & Pashley, 2004; Ban, Hanson, Yi, & Harris, 2002; Mead, 

2006; Stark & Chernyshenko, 2006). 

For these practical reasons, MST is gaining popularity in both the research fields 

and practical testing situations. The next section introduces MST and reviews its main 

components, routing rules, and test assembly rules associated with MSTs.  



19 
 

Multistage Tests 
 

Multistage tests (MST) are those in which pre-constructed sets of items are 

administered adaptively and scored as a unit (Hendrickson, 2007). They are very similar 

to CATs in that items are selected for each examinee based on their previous responses, 

but rather than selecting a single item, a set of items is selected which builds tests in 

stages. Thus it results in fewer adaptive points than an item-level CAT but is more 

adaptive than the traditional PPTs in which all examinees receive the same set of items. 

In an ideal situation, MST combines the advantage of both the adaptive and linear test 

forms (Berger, 1994). 

The idea of MST is not new. A kind of non-computerized MST was developed (e.g., 

Cronbach & Bleser, 1965; Lord, 1971 &1980) prior to CAT and applied in some 

operational tests. However, MST research was eclipsed by CAT (Mead, 2006). The 

newly improved MST formalizes a set of statistical targets and other specifications into a 

template that can be used in conjunction with automated test assembly (ATA) to generate 

large-scale, adaptive tests with desired parallel statistical and content characteristics. In 

comparison to CAT, MST provides better quality assurance because test forms can be 

created ahead of test administrations. Also, it can reduce test security risks by creating 

multiple parallel test forms (Luecht, Brumfield, & Breithaupt, 2006).  

Components of MST 

 
Like CAT, the successful implementation of MST requires an item pool and a 

testing algorithm. Additionally it has several unique components. Using the terminology 

developed by Luecht & Nungester (1998), the new components include: modules, stages, 

routing rules, and panels. 
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Modules. Modules are sets of items that are preconfigured. The number of items 

within a module may range from several items to well over 100 items. They are also 

refered to as item bundles or testlets (Jodoin, Zenisky, & Hambleton, 2006; Hendrickson, 

2007) or bins (Armstrong, Jones, Koppel, & Pashley, 2004 & 2006). A module may 

include discrete items or items that share a common stimulus. To avoid confusion, in this 

disseration, the term testlet means a set of items which share the same stimulus. Thus, a 

module is larger than a testlet. A module may contain several discrete items or one or 

more testlets. In MST, modules are designed for different ability groups. They are 

targeted to have specific statistical properties (e.g.,  a particular averaged item difficulty) 

and content balancing.  

Stages. A test taker visits exactly one module at each stage of an MST. The 

modules are administered in sequence, one stage at a time. Each stage can have one or 

more modules.  

Routing Rules. After each module, a decision must be made as to which module an 

examinee should take in the next stage. The rules must be based on the examinee’s recent 

ability estimation.  

Panel. A panel is a particular combination of modules and routing rules. Each panel 

must meet the specified statistical targets, content areas, as well as other constraints. To 

control for the exposure of modules and items, multiple panels can be assembled and 

randomly assigned to examinees just like multiple test forms.  

Figure 1 shows a panel of a three-stage MST in which there is one module on Stage 

1, three modules on Stage 2 (2E, 2M, and 2H) and three modules on Stage 3 (3E, 3M, and 

3H). It is labeled as a 1-3-3 panel and has been used in several studies (e.g., Hambleton 
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& Xing, 2006; Jodoin, Zenisky, & Hambleton, 2006; Keng, 2008; Luecht & Nungester, 

1996 & 1998 ). The letters E, M, and H denote the average difficulty of the modules (E = 

relatively easy, M = moderately difficulty; and H = relatively hard). Each line in the 

figure represents a particular route. Routing from Stage 1 to Stage 2 is purely based on 

examinees’ performance on Stage 1. Lower performance examinees are routed to the 

easy module on Stage 2 (2E); moderate performance examinees are routed to the 

moderately difficulty module on Stage 2 (2M), and top performing examinees are routed 

to the difficulty one on Stage 2 (2H). Routing decisions to Stage 3 is based on the 

examinee’s cumulative performance on previous two stages. The specific criteria for 

determining which module an examinee should take on the next stage is built into the 

routing rules, which is one of the most important decisions to make in designing an MST.  
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Figure 1: A Panel of 1-3-3 MST 

 
 
 
 

In Figure 1, There are seven possible routes indicated by the panel: 1-2E-2E; 1-2E-

3M; 1-2M-3E; 1-2M-3M; 1-2M-3H; 1-2H-3M; and 1-2H-3H. The panel is explicitly 

constructed so that any of those pathways provides a content balanced test that meets all 

relevant test-level specifications (e.g., item counts, content balance, word counts, etc). 

Many panels like this can be constructed before the operational use.  

Considerations in Developing MST 
 

Creating an MST requires many of the same considerations as developing a linear 

PPT or an item-level CAT. Some basic considerations include: the purpose of the test, the 

type of the test (norm-referenced or criterion-referenced), the examinee population, and 

the decisions to make after the test. These considerations will help to guide the following 

decisions, such as the structure of the item pool, the number of stages, the number of 
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modules of each stage, and the number of items or testlets under each module, the routing 

rules, as well as the test assembly process. Details of these test design considerations as 

well as studies that have examed them are summarized as below. 

Item Pool 

  
An MST requires modules to be assembled to meet both the psychometric and 

content requirements. In MST design, modules of different difficulties must be created. 

In practical MST designs, parallel versions of modules are also needed. Thus, the item 

pool must support the assembly of an MST (Hendrickson, 2007). Available methods to 

assemble modules are reviewed in the next section. This section will further review 

several studies that have studied the impact of the item pool to MSTs.  

Xing & Hambleton (2004) studied the effect of the item bank size and the item 

quality on an MST. In their study, the item bank size was set at two values: 240 and 480. 

240 represented the size of an existing credential testing item pool; 480 was the size of a 

hypothesized item pool which doubles the current pool. Item quality was defined as the 

average of the discriminating values of the items in the bank. Three different levels of 

item quality were studied: .60, 1, and 1.4 representing poor, original and improved item 

bank quality respectively. Their results showed that the doubled bank size and the 

improved item quality can improve the final measurement precision of the MST design.  

With a real item pool of 238 items, Jodoin, Zenisky, & Hambleton (2006) 

compared two traditional linear test forms with several variations of MSTs for making 

pass-fail decisions. They tried with three different passing scores. They found that all 60-

item tests, regardless of the MST design or the passing scores, all test forms produced 

accurate ability estimates and acceptable decision consistency and decision accuracy. 
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However, they observed that the 60-item MSTs did not perform better than the original 

test form. The reason they explained was that the MSTs were held to a somewhat higher 

standard of content matching and that the test assembly software could not match the 

items in the current pool to those intended targets. That is, the current item bank was just 

not deep enough in quality and quantity. The conclusion is that MSTs will not be optimal 

unless there is an item bank rich enough to support the test design.   

With a simulated relatively larger item bank (with 3222 items), which statistically 

reflects a current operational item bank (with 358 items), Zenisky & Hambleton (2004) 

studied the effects of target test information on a highly selective test (with a pass rate of 

30%). They observed that as the amount of test information decreased, the levels of 

misclassification and inconsistent classification increased.  

From above studies, one can see that not only the pool itself (pool size, item 

quality) has a direct impact on the measurement precision of the MST design, also the 

way of the pool used influence the accuracy of ability estimation and classification 

decisions made with the MST.  

MST Structure 

 
Before assembling an MST, several questions need to be answered first. As 

Hendrickson (2007) put it, these questions include: the number of stages, the number of 

modules at each stage, the number of items within a module or the total length of the test.  

Number of Stages. Theoretically, the possible number of stages ranges from one to 

the total number of items. Most recent research and applications have used three or four 

stages (Hendrickson, 2007). More stages and more variety of difficulty of modules within 

the stages allows for greater adaptation and thus more flexibility. Patsula (1999) found 
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that increasing the number of stages from two to three increased the accuracy of ability 

estimates as well as the efficiency of the MST design relative to the PPT and the CAT at 

most ability levels (-.75 to 2.25). However, researchers cautioned that adding more stages 

to the test increases the complexity of the test assembly, without necessarily improve the 

measurement precision of the final test forms (Luecht, Nungester, & Hadadi, 1996; 

Luecht & Nungester, 1998).  

Number of Modules in Each Stage. Many MST studies have used one module in the 

first stage and two or three modules in later stages. For example, Figure 1 presents a 

design of 1-3-3. Patsula (1999) found that increasing the number of modules in later 

stages from three to five increased the accuracy of ability estimation. Zenisky & 

Hambleton (2004) studied the design structure effects in which they compared four 

designs: 1-2-2, 1-3-3, 1-2-3, and 1-3-2. However, they did not find any design structure 

differences with respect to decision accuracy. In general, research indicates that a 

maximum of four modules is desirable at the last stage and that three levels may be 

adequate (Armstrong, 2002; Armstrong, et al., 2004). 

Number of Items in a Module. Some recent studies (e.g., Hambleton &  Xing, 2006; 

Jodoin, Zenisky, & Hambleton, 2006) have implemented 20 items within each module. 

The length of the modules may also vary across the stages. Some tests have longer first 

stage module(s) and shorter modules in subsequent stages (e.g., Schnipke & Reese, 1997; 

Xing & Hambleton, 2004). Kim and Plate (1993) found that increasing the length of the 

first stage test was most important in reducing the size of the ability estimation errors. 

However, in their study, the total number of items in the test was not fixed. Patsula 

(1999) studied the effect of the distribution of item numbers in each stage. In his study, 
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the total test length was kept constant. He found that at most ability levels (-.75 to 2.25), 

varying the number of items per stage had little effect on the accuracy of the ability 

estimates. Luecht and Nungester (1998) discussed that using smaller modules in later 

stages allows test developers to better target the information provided by these latter-

stage modules toward the extremes of the ability distribution.  

From Equation 6, we can see that the total test information is directly associated 

with the number of items. Zenisky (2004) did a simulation study in which the total test 

information was held constant and the distribution of information over stages was a 

variable. She found that with limited amount of overall test information, it is better to 

capitalize more information on early stages so that examinees can be routed into more 

appropriate difficulty level of modules of later stages.  

One caution is that for the reason of fairness, the module length on each stage 

should be kept constant for all examinees so that the total test length is consistent. An 

exception is that in some classification test situations, different examinees may receive 

different numbers of modules. This is because as any variable-length classification test, 

the main purpose of the test is to classify examinees into mutually exclusive categories 

rather than a precise estimate of examinees’ abilities.  

Routing Method 
 

After an examinee finishes a module in one stage, a decision has to be made as to 

which module in the next stage to be presented to the examinee. Routing rules are used to 

make such decisions. Two kinds of routing rules exist. One is based on the cumulative 

number of correct responses. The other is based on the most recent ability estimation. 

Also, the routing can be designed either to classify the examinees into ability groups or to 
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maximize information. Maximizing information is a standard criterion in CAT. Thus, 

using maximizing information method or minimizing standard error can achieve better 

ability estimation. However, if the goal is to classify examinees to ability groups and the 

modules are created to match that purpose, the classification approach can also provide as 

much as information as the maximizing information method (Armstrong, 2002). 

Luecht & Nungester (1998) empirically demonstrated that the cumulative number 

of correct scoring is sufficiently accurate for purposes of selecting modules. IRT scoring 

(maximum likelihood or Bayesian estimation) is also possible after each stage. 

Armstrong (2002) did a simulation study in which four routing rules are compared in the 

MST design in terms of ability estimation precision. The four rules he studied include:  

(1) route to maximize information, basing the decision on the ability estimate for the 

examinees at the time of routing; (2) route to classify the test taker to a percentile group 

defined by the design, basing the decision on the ability estimate at the time of routing; 

(3) route to maximize information, basing the decision on the number of correct 

responses; and (4) route to classify the examinees into a percentile group, basing the 

decision on the number of correct responses. Item pools for Logical Reasoning, 

Analytical Reasoning and Reading Comprehension sections of the LSAT were used to 

create the MSTs. For ability estimates, he used the EAP method. His results did not show 

any significant differences among any of the rules with regard to the correlation between 

the true ability and the ability estimate or the root mean square error (RMSE) of the 

scoring measure being compared. However, the first rule performed slightly better than 

the other rules and showed on average a 2% or 3% drop in RMSE. 
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Scoring and Ability Estimation Method 
 

While the number correct responses could be used to score items for adaptation, a 

measurement model is still needed for calculating true scores and for final ability 

estimation. Recent research and applications of MST have often used the 3PL model (e.g. 

Jodoin, Zenisky, & Hambleton, 2006; Luecht & Nungester, 2000) or a polytomous IRT 

model (e. g. Davis & Dodd, 2003; Thissen, Steinberg, & Mooney, 1989). If the 3PL 

model is applied, it is assumed that the items between and within modules are 

conditionally independent from each other; if a polytomous model is applied to 

accumulate scores over individual items, it is only assumed that the items between 

modules are independent. The testlet response theory (TRT) model is an extension of the 

dichotomous IRT models, in which the LID within a testlet is modeled as part of the item 

characteristic function. Zenisky (2004) and Hendrickson (2007) suggested to use the TRT 

as the measurement model for MST. Keng (2008) first tried the use of TRT with MST 

design using a item pool for a statewide reading test. However, for each examinee, the 

testlet effect variable was assumed to be the same across different testlets in his study.   

After an IRT model is selected, any method used in CAT to estimate final ability 

can be applied in an MST. These methods include the MLE (e.g. Jodoin, Zenisky, & 

Hambleton, 2006; Kim & Plake, 1993), EAP (e.g. Armstrong, 2002; Hambleton &  Xing, 

2006; Keng, 2008; Luecht, Brumfield, & Breithaupt, 2006) or MAP (e.g. Schnipke & 

Reese, 1999).  

Test Assembly 

 
Before a real multistage test can be administered, different panels must be 

assembled. The assembly process is very complicated because multiple panels must be 
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constructed to be parallel and subjected to both the psychometric properties and content 

constraints. The psychometric property constraints involve the use of target test 

information function (target TIF, Luecht & Nungester, 1998). Other constraints include 

test length, content balancing, item format, word count, and answer key positions etc. 

These constraints must be specified before the assembly.  

Luecht and Nungester (1998) discussed two strategies for panel assembly—bottom 

up and top down. With the bottom up strategy, items are assembled into modules such 

that each module as a self-contained unit meets the requisite information, content, and 

item feature targets selected for the test. With this method, modules are interchangeable 

and can be mixed and matched to create multiple overlapping panels. The top down 

strategy requires only test level specifications of statistical and non-statistical targets. 

Modules are assembled in such a fashion that any path through the panel will result in a 

test of appropriate precision, content, and item type, although modules are not 

exchangeable either within or across panels. Examples of bottom-up (e.g. Jodoin et al., 

2006; Luecht et al., 2006) and top-down (e.g. Davis & Dodd, 2003) strategies can also be 

found in the MST literature.   

The automated test assembly (ATA) algorithm which uses optimization 

algorithms or heuristics, or both to select items from a bank can be used with both bottom 

up or top down strategies (e.g., Armstrong, Jones, Koppel, & Pashley, 2004; Luecht & 

Nungester, 1998; van der Linden, 1998 & 2005). In MST, the target TIF for individual 

modules or particular routes (i.e., module combinations) is expressed as objective 

functions; then this function is subject to other requirements and restrictions (i.e., the total 

test length, word count, etc). Once the model is defined, it is solved by mixed-integer 
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programming (MIP) methods in which algorithms iteratively assess every possible 

solution relative to the target until the optimal combination is reached. Some commercial 

computer softwares such as CPLEX 10.0 can help test developers to solve large and 

complex test assembly problems with discrete items.  

Actually, the development of ATA is not unique to MST and it has occurred in 

more general contexts of optimal test design and assembly (Parshall, Spray, Kalohn, & 

Davey, 2002; Swanson & Stocking, 1993; van der Linden, 1998; van der Linden, 2005). 

Most of the recent MST studies have used the ATA method. However, when the 

constraints are relatively few, manual assembly of MST is also possible (e.g., Davis & 

Dodd, 2003; Keng, 2008).  

Advantages of MST 

 
Compared to traditional linear tests, MST allows for more efficient and precise 

measurement across the proficiency scale (Kim & Plake, 1993; Schnipke & Reese, 1997; 

Patsula, 1999). It can lead to reduced test length and testing and score reporting time. It 

has been shown to provide equal or higher predictive and concurrent validity of score 

inferences (Wainer, 1995; Weiss, 1982) .  

Compared to the item-level CAT, advantages of using MST include: (1) with 

MST design, adaption happens between modules, thus content experts could review pre-

assembled modules and make the quality assurance more feasible, (2) MST provides 

examinees with opportunities to skip, review or revise within a module without the 

concern of test integrity, (3) with MST, multiple parallel panels can be built and item 

exposure rate can be controlled at each modules, and (4) the data from MST are block 

sparse and thus more tractable to statistical analysis than CAT.  
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In summary, MSTs allow test developers to have more control over the test 

process and test quality assurance. Thus more appealing in operational use. The GRE 

revised General Test which is scheduled to launch in August 2011 chooses the MST 

design over the CAT design which is seen in current GRE test (ETS, 2010).  

Local Item Dependence Problem with MST 

 
As long as there are testlet items, MST is not exempt from the problem of LID. 

Hendrickson (2007) discussed that MSTs can better assure the local item independence 

assumption because items within a module can be treated as one polytomous item and 

thus independence of responses within the module is not required. While the use of 

polytomous IRT model have been shown to work well in some situations (e.g., Wainer, 

1995), there are two circumstances where it falls short (Wainer, Bradlow, & Du, 2000). 

One situation occurs when more information such as item characteristics is needed. With 

a regular polytomous IRT model (e.g., Masters’ partial credit model (Master, 1982); 

Samejima’s graded response model (Samejima, 1969)) cannot differentiate the response 

pattern within a module and thus each item’s characteristics under the same module are 

ignored. The second one is when ad hoc testlet construction is needed. For example, a 

stimulus has a total of twenty items and only ten items are needed to be presented to 

examinees along with the stimulus. A polytomous IRT model cannot help with such 

intelligent selection of the ten items. Thus far, there is no study evaluating the robustness 

of MST to the violation of the local item independence assumption. The next section will 

review more about the LID problem and studies that address the LID problem with other 

testing designs such as linear tests and CAT.  
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Local Item Dependence 
 

Previous IRT section of this chapter reviews the local item independence 

assumption. The violation of this assumption is called LID. This section will review the 

LID and the causes of LID, consequences of LID, as well as models that can account for 

LID.  

LID and Causes of LID 

LID arises from the existence of an additional factor that consistently affects the 

performance of students on some items to a greater extent than on other items (Habing & 

Roussos, 2003). LID can be positive or negative (Yen, 1993). Positive LID between 

items means that, if a student perform better (or lower) than expectation on one item, he 

or she will perform higher (or lower) than expectation on the other. Negative LID 

between items means that if a student performs unusually well on one item, he or she 

probably will perform unusually poorly on the other.  

Yen (1993) listed a variety of reasons that can cause LID. They include: external 

assistance or interference with some items, speededness, fatigue, practice, variation in 

response format (such as multiple-choice vs. constructed-response), a shared stimulus or 

passage, item chaining, items requiring explanation of a previous answer, cloze items (in 

which examinees fill in multiple blanks in one passage), scoring rubrics or raters, unique 

content knowledge or abilities, and different opportunity to learn. With the recent 

popularity of performance assessment, researchers also found that performance 

assessment tend to have items that are locally dependent due to common stimulus 

information or the requirement of explanation of previous response (e.g.,  Sireci, Thissen, 

& Wainer, 1991; Ferrara, Huynh, & Baghi, 1997; Ferrara, Huynh, & Michaels, 1999). In 
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short, as Yen & Fitzpatrick (2006, Page 141) stated: “the basic principle involved in 

producing LID is the existence of an additional factor that consistently affects the 

performance of some students on some items to a greater extent than on other items”. 

Chen & Thissen (1997) divided LIDs into two categories: “underlying local 

dependence” ( e.g., items share the same stimulus ) and “surface local dependence” (e.g., 

item similarity or test speededness effect). This study will focus on the former LID that is 

caused by the shared stimulus.  

Consequences of Ignoring LID  

 
Ignoring LID can result in biased IRT person and item parameter estimation, 

overestimation of reliability, and equating errors (e.g., Chen & Thissen, 1997; 

Embretson, 2000; Hambleton & Swaminathan, 1995; Sireci, Thissen, & Wainer, 1991; 

Tuerlinckx & De Boeck, 2001). Ackerman (1987) reported that when LID exists, the 

calibrated dependent item discrimination parameters were over-estimated; difficulty 

estimates tend to become homogeneous; and ability estimates were affected by the degree 

of dependence increased. Thissen, Steinberg, and Mooney (1989) showed that the testlet 

information with the 3PL model was substantially larger than the testlet information with 

a polytomous model for passage related items. Yen (1993) identified artificially inflated 

information curves when LID items from language arts and mathematics performance 

assessments were treated as independent dichotomous items. Wainer & Wang (2000) 

found that if the 3PL model was applied to analyze testlet response data, the item 

difficulties were well estimated and the estimates for the item discrimination and pseudo-

guessing parameters were biased, and that test information was substantially over-

estimated. In a simulation study by Glas, Wainer, & Bradlow (2000), they compared the 



34 
 

performance of the 3PL and the 3PL testlet model when the data was simulated using the 

3PL testlet model. They found that when the testlet effect was ignored, the mean absolute 

error of the estimates of the discrimination and diffiulty parameters were both worse 

using the 3PL model. Wainer, Bradlow, & Du (2000) did a similar study and got similar 

results in terms of the mean absolute error of the parameter estimation. They further 

showed that the inferences (such as classification decisions) made based on the 3PL 

model would be biased if the testlet effect was ignored. DeMars (2006) reported that 

when LID exists the 3PL model inflated reliablity for ability estimates. Zhang (2008) did 

a simulation study in which he compared the equating results using the 3PL model and a 

polytomous IRT model (GPC, generalized partical credit model) in the existence of LID, 

he found that the GPC method was more effective in equating. His results suggest that 

ignoring LID would lead to less precise parameter estimates.  

In CAT, items are chosen adaptively to provide the most efficient measurement. 

Usually, the calibration of item parameters and the decision about the item choices are 

based on the assumption of local item independence. Reese (1999) first explored the 

impacts of LID on CATs. She pointed out that the impact of LID with PPTs is different 

from that with CAT in that the effects are equalized across examinees, since all 

examinees are asked to respond to the same set of items. By directly manipulating the 

correlation structures among test items, she found that only extreme level of LID is 

problematic in the CAT design. Pommerich & Segall (2008) found strong evidence for 

local dependence in a CAT of mathematics tests. They further did a simulation study to 

evaluate the impact of LID on the precision of test scores when the 3PL model is used for 
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item selection and scoring. Their results suggested that LID in examinees’ responses had 

a fairly substantial effect on score precision, depending on the degree of LID present.  

In sum, ignoring LID can negatively affect the IRT model parameter estimation as 

well as inferences based on the model estimation.  

Models That Can Account for LID 

 
To date, different models have been proposed to account for LID within a testlet. 

One general idea is that a random variable is added into the unidimensional model to 

account for the LID caused by the shared stimulus. The other idea is to model the LID as 

a second dimension.  

Examples of adding a random effect variable into the model include Bayesian 

random-effects testlet models (Bradlow, Wainer & Wang, 1999; Wainer, Bradlow, & Du, 

2000; Wang, Bradlow, & Wainer, 2002; Wainer, Bradlow, & Wang, 2007), one-

parameter multilevel testlet model (Jiao, Wang, & Kamata, 2005), and Rasch Testlet 

models (Wang & Wilson, 2005). With the Bayesian random-effect testlet models, a 

random-effect parameter is added into the standard two- or three- parameter IRT models. 

Jiao et al. (2008) further proved that the one-parameter multilevel testlet model is 

algebraically equivalent to the Rasch testlet model, which is also a special case of 

Bayesian random-effect three-parameter testlet response model (3PL testlet, Wainer, 

Bradlow, & Wang, 2007). The 3PL testlet response model can be expressed as: 

P୧୨ሺθ୧ሻ ൌ c୨ ൅ ሺ1 െ c୨ሻ
ୣ୶୮ሾୟౠቀθ౟ିୠౠିγ౟ౚሺౠሻቁሿ

ଵାୣ୶୮ሾୟౠቀθ౟ିୠౠିγ౟ౚሺౠሻቁሿ
                                  (10) 

where θ୧ is the person ability, a୨,  b୨, and  c୨ denote the item difficulty, discrimination and 

pseudo-asymptote parameters respectively, γ୧ୢሺ୨ሻ is the testlet effect (interaction) of item j 
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with person i that is nested within testlet dሺjሻ, and P୧୨ሺθ୧ሻ is the probability of a correct 

response at the ability level of θ୧ to item j. Note that the testlet effect parameter γ୧ୢሺ୨ሻis 

both a person and testlet parameter. This means that for a given testlet dሺjሻ, the effect of 

the local dependency varies for the examinees. σγ౟ౚሺౠሻ
ଶ  is used to represent the magnitude 

of testlet effect. The larger the σγ౟ౚሺౠሻ
ଶ , the greater the proportion of total variance in test 

scores that is attributable to the given testlet.  

As in IRT models, a two-parameter logistic testlet (2PL testlet) response model 

(Bradlow, Wainer, & Wang, 1999) can be obtained by assuming that the pseudo-guessing 

parameter in Equation 10 is 0. And by further assuming the items share the same 

discrimination parameter, a Rasch testlet model (Wang & Wilson, 2005) can be obtained.  

Li, Bolt, & Fu (2006) pointed that the previous testlet response model (Equation 

10) applies a common item discrimination parameter to both the general ability and 

testlet factor. They relaxed this assumption and included separated discrimination 

parameters for ability and the testlet effect. Their results suggested that their new model 

provided better fit to both simulated testlet response data and real data. Though they did 

not include a pseudo-guessing parameter in their model, based on their suggestions, an 

alternative testlet response model can be written as  

P୧୨ሺθ୧ሻ ൌ c୨ ൅ ሺ1 െ c୨ሻ
ୣ୶୮ሾୟౠభθ౟ି୲ౠାୟౠమγ౟ౚሺౠሻሿ

ଵାୣ୶୮ሾୟౠభθ౟ି୲ౠାୟౠమγ౟ౚሺౠሻሿ
                                   (11) 

where t୨ is a threshold parameter related to difficulty of the item; a୨ଵ and a୨ଶ indicates the 

discriminating power of an item with respect to θ and γ.  

Above random effect testlet models can be estimated by the Bayesian estimation 

using Markov Chain Monte Carlo (MCMC) method. For detailed specifications of the 
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priors and hyper-prior of the parameters in the models, please refer to Wainer, Bradlow, 

& Wang (2007) and Li, Bolt, & Fu (2006).  

Reckase’s compensatory multidimensional extensions of the 3PL model (Reckase, 

1997) also can be used to model the LID with testlet.  His model can be expressed as: 

P୧୨ሺθ୧ሻ ൌ c୨ ൅ ሺ1 െ c୨ሻ
ୣ୶୮ሾ௔ౠ

′ θ౟ାୢౠሿ

ଵାୣ୶୮ሾ௔ౠ
′ θ౟ାୢౠሿ

                                                 (12) 

where ܽ୨
′  is the vector of item discriminations for item j in each of the dimensions; θ୧ is 

examinee i’s vector of abilities; and d୨ is a scalar parameter that is affected by the 

difficulty of the item i. Note that d୨ is added, rather than substracted as in the 

unidmensional IRT models. Thus, higher values of d୨ indicates easier items. When the 

LID is modeled as the second dimension, Equation 12 can be re-written as: 

P୧୨ሺθ୧ሻ ൌ c୨ ൅ ሺ1 െ c୨ሻ
ୣ୶୮ሾୟౠభθభାୟౠమθమାୢౠሿ

ଵାୣ୶୮ሾୟౠభθభାୟౠమθమାୢౠሿ
,                                     (13)  

By treating the testlet effect as the secondary trait, DeMars (2006) used such a bi-

factor model in Equation 13 to estimate LID with testlets. She further compared the 

results based on four different models: the bi-factor model, the 3PL model, the testlet-

effects model as in Equation 10, and a polytomous IRT model. Her results suggests that 

parsimoniously the model choice should be the testlet response model expressed in 

Equation 10.  

Rijmen (2009) reviewed three multidimensional IRT models that can account for 

LID: the bi-factor model, the testlet model, and the second-order model. In the second 

order model, the items only load on the testlet-specific factors. The correlations between 

the testlet-specific factors are modeled through a second-order factor. In his paper, it is 
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shown that the testlet model is equivalent to the second-order model with a dimension for 

each testlet. And the testlet model in turn is a bi-factor model.  

Among all these reviewed models here, the random testlet effect model expressed 

in Equation 10 can explicitly model the LID within testlet without adding complexity. It 

also can easily facilitate the transformation from the convential IRT to TRT models 

mathematically and conceptually (Bradlow et al, 1999; Wainer et al. 2007). Thus, it is 

used in the current study to generate locally dependent response data.  

Research Statement 
 

In most research or operational use of the MST, a measurement model (e.g. the 

3PL model) that assumes the local item independence is applied. When testlet items are 

included in MST, LID is suspected to influence the ability estimation as well as 

classification decisions. However, to date, there is no study investigating the effect of 

LID on the MST with testlet items yet. Thus, this dissertation evaluates the impact of 

local item dependence of testlet items with MSTs for pass-fail decisions. Also, to explore 

the possibility of accounting for the LIDs associated with testlet items in the MST, a 3PL 

testlet model is applied.  

Specifically, this study has three purposes: 

Firstly and mainly, to exam the impact of different LID conditions on MSTs with 

testlet items. The basic research design for this purpose follows the logic of previous LID 

impact studies on PPTs. Locally dependent data are first generated and calibrated with a 

unidimensional IRT model. Unidimensional item parameter estimates are used to 

construct the MST panels. The administration of panels are then simulated. During the 

administration, examinee responses are simulated to be locally dependent, while ability 
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estimation, assuming unidimensional data, is based on the unidimensional item parameter 

estimates. The estimated abilities are evaluated against “true” abilities to assess the 

impact of local dependence.  

However, unlike previous studies, this study focuses on the potential capacity of 

MST to “control” the local dependence by prescribing the proportion of testlet items in an 

MST and the position of testlet /discrete items. The rationale for such a focus is explained 

as follows: 

In this study, discrete items are those physically independent items. Testlet items 

refer to item sets that are physically clustered under common stimuli. In real tests, 

examinees may encounter different combination of discrete items and testlet items. For 

example, the two real data analysis reported in Wainer et al. (2000) include two different 

testlet item proportions: about 30% for the GRE-Verbal test and about 50% for the SAT-

Verbal test, while the Analytical Reasoning section and Reading Comprehensive section 

of the LSAT have 100% of testlet items in their MST forms appeared in Armstrong, 

Jones, Koppel, & Pashley (2004). More testlet items imply more chances for LID. Thus, 

the proportion of testlet items is manipulated. Particularly, in this study, MSTs are built 

with the same proportion of testlet items as the studied item pool. Thus, the proportion of 

the testlet items in the item pool is then manipulated in this study. 

The position of the testlet /discrete items is a new factor that is uniquely related 

with MST designs. The nature of MST is that it is an adaptive test: a module of items is 

administered to examinees and that the selection of next module is based on the 

performance of previous modules. If the testlet items appear in the early stages, the 

impact of LID would be complicated: a simple model such as the 3PL model gives an 
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imprecise temporary estimate of the examinee’s ability; which in turn could route the 

examinee to an inappropriate module for the next stage. And inappropriate items within 

inappropriate modules would further lead to worse ability estimate and thus make more 

routing mistakes till the final ability estimated. On the contrary, if the testlet items appear 

in a later stage of MST, the impact of LID would be expected to be simpler and smaller 

than those in the early stages.  

The second purpose of this study is to investigate the effect of another MST factor: 

test length. Test length is an important factor that can influence the measurement 

precision. In previous studies, for example, Jodoin, Zenisky, & Hambleton (2006) 

compared two-stage 40-item MST with three-stage 60-item MST for classification 

decisions; Zhang (2006) studied the multidimenionality issue with three-stage 60-item 

MSTs. Stark and Chernysheko (2006) commented that 40 or 60 items are too many for an 

MST. Current AICPA test has a structure of 1-2-2 with 25 or 30 items in total. This study 

will study two test length situations: one has 36 items as the long test; the other has 24 

items as the short test.  

The third purpose of this study is to explore the possible use of the 3PL testlet 

model to account for LID associated with testlet items in the MSTs. By adding a random 

effect variable to the 3PL model, the 3PL testlet model can account for LID with testlet 

items. And it has been proved useful in some certification tests ( e.g., Wainer, et al., 

2006).Thus, this study also attempts to apply the 3PL testlet model to account for the LID. 

Specifically, the 3PL testlet model is used to calibrate item parameters, to construct 

MSTs, and to get examinees’ both interim and final ability estimates. The possible gains 
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on ability estimation precision and classification decisions using the more complicated 

3PL testlet model against the use of the 3PL model are studied.  
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 Chapter 3: Methodology 

This chapter addresses the methodology applied in this study. It is divided into 

three main sections. The first section specifies the MST design simulated in this study. It 

is followed by a detailed description of the factors of investigation. In the second section, 

a step-by-step data generation method is provided, which includes the generation of item 

pools, the construction of MST panels and the administration and scoring of the MST 

tests. Finally, the evaluation methods of the results are presented.  

Specification of the MST design 

Chapter 2 introduced an MST with a structure of 1-3-3, where modules have three 

different levels: easy, moderate, and hard. The MST design used in this study, however, 

is of a structure of 1-2-2, which is presented in Figure 2. It is chosen to resemble the 

current certified public accountant credential test (Breithaupt & Hare, 2007). For a 

certification test like the CPA, it has two primary purposes: one is to provide accurate and 

consistent pass-fail decisions; the other is to provide diagnostic information for those who 

fail the test. This structure has also been studied in Zhang (2006) and van der Linden, 

Breithaupt, Chuah, & Zhang (2007).  
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Figure 2: The MST design used in this study 

 

The MST presented in Figure 2 is a panel with five modules of multiple-choice 

items. Each module is targeted at a specific difficulty level: Stage 1 has one moderate 

module; Stage 2 and Stage 3 each have a moderate module and a hard one. During the 

administration, a panel is randomly selected first. An examinee encounters a moderate 

module in the first stage. According to the routing rule, the examinee is routed to one of 

the two modules in Stage 2. And at the end of stage 2, the routing rule is applied again to 

select another module in Stage 3. In total, each examinee is administered three modules, 

and selections are tailored at Stage 2 and Stage 3 to the ability of the examinee. 

Following Breithaupt & Hare’s (2007) example, the H modules in this study are 

specified so that test information would be maximized within the area of the passing 

score of θ ൌ 1; and the M modules are set to have most precision at θ ൌ 0. The midpoint 

θ ൌ .5 between the M and H modules is used as the routing cut score. That is, after Stage 

1 or 2, if the ability estimate is less than or equal to .5, the examinee is routed to an M 

module; otherwise, the examinee is routed to an H module.  

 
 
 
 
 
 
 

1M 

2H

3M 

3H 

2M

 Stage 1                                     Stage 2                                   Stage 3    



44 
 

With this design, both interim and final abilities are estimated using the EAP 

method. To reduce estimation bias, a relatively weak normal prior with mean of zero and 

standard deviation of two is used for the target examinees. The EAP method is selected 

over the MLE method is because that though MLE has the desirable property of unbiased 

estimation, it is unstable for short tests and can be unbounded (Davey & Pitoniak, 2006). 

The application of EAP is also seen in other MST studies (e.g., Armstrong, 2002; 

Hambleton &  Xing, 2006; Luecht, Brumfield, & Breithaupt, 2006). 

No content control is implemented in this study. In real tests, the content control 

is implemented through the MST assembly procedure by specifying a set of constraints 

either at the module level or at the route level. A full treatment of content control is 

beyond the scope of this study. No content control is also seen in Edwards & Thissen 

(2007) and Pommerich & Segall (2008). However, the maximum item exposure rate is 

controlled at .25 in this study. 

Specification of the Manipulated Factors 

Measurement Models: the 3PL Model vs. the 3PL Testlet Model 

With MST, a measurement model can be applied in three places. First, the 

measurement model is used to calibrate the item parameters in the pool. The calibrated 

item parameters are then used to assemble the panels. Secondly, the measurement model 

can be used to estimate the examinee’s ability temporally to route examinees to the next 

stage. Third, the measurement model is applied to estimate the examinee’s ability at the 

end of the test.  

Two measurement models are considered in this study: the 3PL model and the 

3PL testlet model. The 3PL model is the one that is the most applied measurement model 
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in operational tests and commonly seen in the literature about MSTs (e.g., Armstrong & 

Roussos, 2005; Hambleton &  Xing, 2006; Jodoin, Zenisky, & Hambleton, 2006; Xing & 

Hambleton, 2004). The 3PL testlet model is the one that can account for the LID within 

testlets. It has been applied in many PPTs. However, only Keng (2008) tried it with an 

MST.  

Item Pool Structure 

 
In this dissertation, the studied item pools are of dichotomously scored multiple-

choice (MC) items. Two kinds of MC formats are seen in many operational tests: discrete 

items and testlet items. In this dissertation, discrete MC items are those that have a single 

stem and several options. They do not share the same stimulus and are conditionally 

independent from each other. Testlet items are defined as those items that share the same 

stimulus. With a fixed test length, more testlet items in an MST are expected to have 

more influence on the final inferences. It is also assumed that the final MSTs are 

constructed to have the same proportion of testlet items as the item pool. Four 

proportions will be studied: 0, .33, .67, and 1, correspondingly to represent no item, 33%, 

67%, and 100% of the items in the pool are testlet items. They are presented in the 

second column of Table 1. 
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Table 1: Item Pools 

Item 
Pool 

Proportion 
of Testlet 

Items 

Number of 
Items 

(Discrete/Testlet 
Items) 

Magnitude 
of LID 

 1 0 1200/0 N/A 
 2 0.33 800/400 0.25 
 3 0.33 800/400 1 
 4 0.33 800/400 1.5 
 5 0.67 400/800 0.25 
 6 0.67 400/800 1 
 7 0.67 400/800 1.5 
 8 1 0/1200 0.25 
 9 1 0/1200 1 
10 1 0/1200 1.5 

 
According to Table 1, there are 1200 items in each item pool. The choice of 1200 

items is based on the consideration of previous studied MST pool size and the needs of 

the current study. Different pool sizes have been used in previous MST studies. It varies 

from 238 to 3222. However, around 1000 is more commonly applied. For example, Ariel, 

van der Linden, & Veldkamp (2006) applied an item pool of 1066 items; Breithaupt & 

Hare (2007) reported the use of a pool of 1340 items; and Keng (2008) used an item pool 

of 1008 items. The reason that a pool size of 1200 used in this study is due to the 

combination of the discrete items and testlet items. 

LID Conditions 
 

The studied LID conditions include LID magnitudes and LID positions. LID 

magnitudes have been previously proved to have an impact on PPTs (Glas, Wainer, & 

Bradlow, 2000; Wainer, Bradlow, & Du, 2000). Three levels of LID magnitude are 

studied by setting σ୰౟ౚሺౠሻ
ଶ =.25, 1, and 1.5 or standard deviation of .5, 1, and √1.5 
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correspondingly to represent small, moderate and large effects. These magnitudes of 

testlet effects have been previously studied by Wainer, Bradlow, & Du (2000) or Wang 

&Wilson (2005). Empirical work (e.g., SAT, GRE, TSE and North Carolina Test of 

Computer Skills) has demonstrated that these are plausible values. Further assuming that 

testlets in the same pool have the same magnitude of LID, along with the item pool 

structure factor, a total of ten item pools are studied in this dissertation. They are listed in 

Table 1.  

Another studied LID condition in this dissertation is the LID position factor. In 

the MST context, due to its adaptive nature, the position of the LID may also influence 

the final ability estimation. In an MST, modules are selected based on examinees’ 

performance on previous stages. If LID exists in an early stage and the 3PL models 

applied, the impact of LID would be two-fold: one is on the routing decision that is based 

on the current ability estimation; the other is on the final ability estimation. On the 

contrary, if the LID exists in a later stage, even though it would impact the final ability 

estimation, it is expected that this impact would be less than those MSTs with LID in 

early stages. To fully understand the LID position effect, depending on the proportion of 

testlet items in the MST test, eight different LID position conditions are studied.  They 

are listed in Table 2. 
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Table 2: LID position conditions 

Proportion 
of Testlet 

Items 
Stage1 Stage2 Stage3 

0 dsct dsct dsct 
0.33 dsct dsct  tslt  
0.33 dsct tslt  dsct 
0.33 tslt dsct dsct 
0.67 dsct tslt tslt 
0.67 tslt dsct tslt 
0.67 tslt tslt dsct 

1 tslt tslt tslt 
Note. dsct: Discrete items; tslt: Testlet Items. 

 
In Table 2, column 2 to column 4 represents the item property on each stage: 

either discrete items or testlet items. Particularly, if 33% items are testlet items, Item Pool 

2, 3, and 4 are applied. If 67% items are testlet items, Item Pool 5, 6, and 7 are applied. 

Similarly, Item Pool 8, 9 and 10 are applied when all items are testlet items. 

Test Length 
 

Test length is an important consideration in test development. The primary reason 

for the developments of CAT or MST is the improvement of measurement efficiency. 

Previously MST studies have mainly set the test length as fixed (e.g., Jodoin, Zenisky, & 

Hambleton, 2006; Xing & Hambleton, 2004; Zenisky & Hambleton, 2004; Zhang, 2006). 

Only Jodoin (2003) and Keng (2008) studied the effect of test length of the performance 

of MST. They found that the overall test reliabiliy and conditional measurement precision 

as well as classification precision would increase as the test length increases.  

Two test length conditions are simulated in this dissertation: long and short. Tests 

under the long test condition consist 36 items, with each module having 12 items. This 

test length has been seen in Armstrong, Jones, Koppel, & Pashley (2004) and Edwards & 



49 
 

Thissen (2007). Tests under the short test length condition consist 24 items, with each 

module having 8 items. An exam that is two thirds of the length could reduce exam costs 

for examinees and the testing agency, reduce testing time, lower item exposure levels, 

and possibly require smaller item banks. 

Data Generation 

A group of 2500 examinees are simulated to take each panel of the MST. They 

are defined as 100 ݏߠ from -3 to 3 in increments of .25. This flat distribution is used so 

that the precision of ability estimates across the entire ability range could be determined 

accurately.  

From the initial item pool creation to the administration and scoring of MST, data 

preparation can be divided into three major steps. These steps are briefly described below 

as an overview, and more detailed descriptions of each step are provided later in this 

section.    

Step1: Simulation of Items Pools. In this step, item parameters are generated 

instead of taken from a real test. To mimic the reality that true parameters are never 

known, item responses for item pool calibration are first generated and then used to 

calibrate the item parameters in the pool.  

Step 2: Assembly of MSTs. In this major step, item information is calculated at 

two ability levels. Based on their information, items are selected and assembled into 

panels.  

Step 3: Administration and scoring of MSTs. In this major step, target examinees’ 

responses to the selected MST items are generated using true item and ability parameters. 

Then the administration and scoring of examinees of MST are simulated.  
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BILOG-MG and SCORIGHT are used to calibrate item parameters. All other 

steps are executed using SAS. Detailed procedure for each step is described as follows:  

Step 1: Simulation of Item Pools 

This major step includes the generation of item parameters, the generation of item 

responses for item pool calibration, as well as the calibration of item parameters in the 

pools.  

Generation of Item Parameters 
 

For any condition in Table 1 that has discrete items, the item parameters are 

generated according to the following specifications:  

1. The item difficulties are drawn from a normal distribution with mean of 0 

and standard deviation of 1, within the interval of (-2.5 to 2.5),  

2. The item discrimination parameters are drawn from a log-normal 

distribution with mean of 0 and standard deviation of .5, with the range of 

(.4, 1.5).  

3. The guessing parameters are set to have a random uniform distribution 

with range of (0, .3).  

Items are simulated to have various degrees of discrimination, difficulty, and 

guessing. The draws of item parameters are made independently. The summary statistics 

of true item parameters are listed inTable 3. The same set of item parameters are used in 

each item pool. 
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Table 3: Summary statistics of true item parameters (N=1200) 

Item Parameter Min Max Mean S. D 

a 0.4004 1.4998 0.9201 0.2896 

b -2.4380 2.4334 -0.0398 0.9629 

c 0.0002 0.2996 0.1462 0.0852 

 

For any item pool in Table 1 that has testlet items, testlets are simulated instead of 

discrete items. Each testlet has 20 items. In the literature, the reported testlet size varies 

from 2 to 32 (e.g., Keng, 2008). The reason to choose 20 in this study is to enable and 

illustrate the testlet ad hoc construction property mentioned in Chapter 2. The item 

parameters within each testlet are randomly generated according to the same 

specifications as above. The LID parameters  r୧ୢሺ୨ሻ are generated from ܰሺ0, σ୰౟ౚሺౠሻ
ଶ ) with 

specified σ୰౟ౚሺౠሻ
ଶ  in Table 1. 

Generation of Item Responses for Pool Calibration 

For the calibration sample, 3000 known ability levels are drawn from a standard 

normal distribution. Response strings are generated for each simulee for each item in the 

pool. 3000 represents a large number of examinees that can help get stable parameter 

estimates. Particularly, if an item is a discrete item, the response is generated using the 

3PL model; if an item is a testlet item, the response is generated using the 3PL testlet 

model.  

In real testing situations, the calibration of such large item banks is not feasible as 

it is impossible for each examinee to take all the items in the item pool at one time. A 

common practice is to have a calibration scheme in which sparse data are collected to 
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ensure that all items can be jointly calibrated to a common scale (e.g., Ban, Hanson, Yi, 

& Harris, 2002; Chuah, Drasgow, & Luecht, 2006; Wainer & Mislevy, 2000).  

The algorithm for generating dichotomous response data is as follows: for each 

simulee and each item, the probability of obtaining a correct response is computed using 

Equation 3 or Equation 10 depending on whether it is a discrete item or a testlet item. 

Then a random number from the uniform distribution between 0 and 1 is generated and 

compared with the probability. If the probability is larger than the random number, a 

score of 1 is assigned to the item; otherwise a score of 0 is produced.  

Calibration of Item and Testlet Parameters 

The 3000 simulees’ response data created for each pool are used to calibrate item 

parameters under each measurement model. If the 3PL model is the measurement model, 

the item parameters are calibrated using the BILOG-MG (Zimowski, Muraki, Mislevy, & 

Bock, 2003) software. If the 3PL testlet model is the measurement model, the item 

parameters are calibrated using SCORIGHT (Wang, Bradlow, & Wainer, 2005). 

SCORIGHT is a very general computer program for scoring tests. It models tests that are 

made up of dichotomously or polytomously rated items or any kind of combination of the 

two through the use of a generalized IRT formulation. The items can be presented 

independently or grouped into testlets or in any combination of the two. The estimation is 

accomplished within a fully Bayesian framework using MCMC procedures. In particular, 

the priors used in the Bayesian framework for TRT models include (Wainer, Bradlow, & 

Wang, 2007, p. 136):  

θ୧ ~ Nሺ0,1ሻ 

log ሺa୨ሻ ~ N൫μୟ, σୟ
ଶ൯ 
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b୨ ~ N൫μୠ, σୠ
ଶ൯ 

γ୧ୢሺ୨ሻ ~ N൫0, σୢሺ୨ሻ
ଶ ൯ 

logit ሺc୨ሻ ~ N൫μୡ, σୡ
ଶ൯ 

For the data analysis here, the default hyperpriors for parameters in SCORIGHT 

are applied. SCORIGHT was run using two independent chains for an initial burn-in 

period of 8000 draws and 2000 iterations thereafter.  

BILOG-MG uses MML procedures to estimate item parameters. To avoid 

possible confounding of model with estimation method, the 3PL model could have been 

estimated using SCORIGHT too. However, one of the purposes of this study is to 

compare these two models as they are used in practice. A direct comparison of estimation 

results from the MML method to those from the MCMC is also seen in DeMars (2006).  

For each item pool and each measurement model, item parameter estimates (aො, b෠, 

and cො) and testlet effect estimates σො୰౟ౚሺౠሻ
ଶ  are stored and used in the following MST panel 

constructions and administrations.  

Step 2: Assembly of MST Panels 

The bottom-up strategy by Luecht & Nungester (1998) is applied in this study. 

Particularly, the assembly of MST is accomplished following Armstrong et al. (2004)’s 

two-phase method, though it is a simplified version by not considering content control or 

other practical constraints, such as word counts or answer key count. In the first phase, 

items are selected from the original item pool to appear in the panels of MST. In the 

second phase, parallel panels are created with the selected items.  
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With eight panels, the panel exposure rate for each test examinee group is 

expected to be 12.5%. Thus, the module exposure rate is expected to be no larger than 

12.5%. However, discrete items and testlets can be shared among modules between 

panels. Thus, the actual item exposure rate might be higher than 12.5%. For example, if 

the same item in a testlet appears in two panels, the expected exposure rate would be 

25%. Thus, to control for the item exposure rate to be less than 25%, each independent 

item and testlet is set to appear in no more than two modules in total.  

Phase I  

From an item pool with estimated item parameters, select items/testlets in the 

pools to be assembled. From Figure 2, we know that each panel has five modules, with 

three modules at moderate level, and two modules at hard level. Target information 

functions are introduced in Chapter 2. They are used to select discrete items or testlets to 

each module. In this study, the TIFs for the three moderate modules are set to peak at 

ߠ ൌ 0 1and the TIFs for the two hard modules are set to peak at ߠ ൌ 1. If the MSTs 

constructed with only discrete items, the MST is constructed as follows: 

The item information of each individual item in the pool is calculated both at 

ߠ ൌ 0 and ߠ ൌ 1. The item information function for discrete items is given in Equation 5. 

Constrain that each item can only appear in one module and in one panel, a total of 

(8*5*module length) are needed. For example, if the module length is 12, then a total of 

480 items are selected from the item pool, of which 288 (8*3*12) items that provide the 

most information at ߠ ൌ 0 and 192 (8*2*12) items that provide the most information at 

                                                 
1 In operational ATA, the target information functions are typically computed for a vector 
of theta points along the proficiency scale. 
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ߠ ൌ 1. Note that some items in the pool may appear in both the 288 most informed items 

at ߠ ൌ 0 and the 192 most informative items at ߠ ൌ 1. Further assume that these items 

can only appear in one group and it is only selected for the location that they provide 

more information than the other. Thus, a total of 480 discrete items out of 1200 are 

selected to be assembled in the MSTs. If the studied module length is 8, then only 

8*3*8=192 items are needed for moderate modules; and 8*2*8=128 items are needed for 

hard modules. They are selected using the same procedure as previously described.  

For MSTs constructed with only testlet items, the item information of each item in 

each testlet is calculated both at ߠ ൌ 0 and ߠ ൌ 1. If the measurement model is the 3PL 

model, the item information is calculated by using Equation 5. If the measurement model 

is the 3PL testlet model, the calculation of item information within a testlet is elaborated 

as follows: 

According to Wainer, Bradlow, & Du (2000), the expected Fisher information at 

θ୧, for a single item in a testlet is given by 

Iሺθ୧ሻ ൌ a୨
ଶሺ

ୣ୶୮ൣୟౠ൫θ౟ିୠౠି୰౟ౚሺౠሻ൯൧
ଵାୣ୶୮ ሾୟౠ൫θ౟ିୠౠି୰౟ౚሺౠሻ൯

ሻଶ ଵିୡౠ

ୡౠାୣ୶୮ൣୟౠ൫θ౟ିୠౠି୰౟ౚሺౠሻ൯൧
                (14) 

To calculate item information, a୨, b୨, and c୨ in Equation 14 can be replaced with 

estimated parameters aො୨, b෠୨, and cො୨. Li (2009)’s method of treating unknown r୧ୢሺ୨ሻ is 

applied here. Since testlet effect parameter r୧ୢሺ୨ሻ is independent of ability parameter θ, it 

is appropriate to obtain the expected information by taking the integral over r୧ୢሺ୨ሻ. Thus, 

Equation 14 can be rewritten as: 

Iሺθ୧ሻ ൌ ሼaො୨׬ 
ଶ ൬

ୣ୶୮ൣୟොౠ൫θ౟ିୠ෡ౠି୰౟ౚሺౠሻ൯൧
ଵାୣ୶୮ ሾୟොౠ൫θ౟ିୠ෡ౠି୰౟ౚሺౠሻ൯

൰
ଶ ଵିୡොౠ

ୡොౠାୣ୶୮ൣୟොౠ൫θ౟ିୠ෡ౠି୰౟ౚሺౠሻ൯൧
ሽ φሺ r୧ୢሺ୨ሻሻdሺ r୧ୢሺ୨ሻሻ  

                                                                                                             (15) 
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where φሺ r୧ୢሺ୨ሻሻ represents the distribution of r୧ୢሺ୨ሻ.  

In the MCMC estimation, r୧ୢሺ୨ሻ is assumed to be drawn from a normal distribution 

with mean of 0 and variance of σγ౟ౚሺౠሻ
ଶ . σγ౟ౚሺౠሻ

ଶ  is estimated during item pool calibration 

process. Quadrature points can be used to approximate the continuous distribution. 

Lesaffre & Spiessens (2001) suggested that it is often sufficient to use 10 quadrature 

points. 15 equally spaced quadrature points from -4 to 4 are used in this study. 15 is also 

the default number of quadrature points used in BILOG-MG. Thus, item information 

within a testlet can be further written as: 

Iሺθ୧ሻ ؆

 ∑ ሼaො୨
ଶ ൬

ୣ୶୮ൣୟොౠ൫θ౟ିୠ෡ౠିPౡሺ୰౟ౚሺౠሻሻ൯൧
ଵାୣ୶୮ ሾୟොౠ൫θ౟ିୠ෡ౠିPౡሺ୰౟ౚሺౠሻሻ൯ሿ

൰
ଶ ଵିୡොౠ

ୡොౠାୣ୶୮ൣୟොౠ൫θ౟ିୠ෡ౠିPౡሺ୰౟ౚሺౠሻሻ൯൧
ଵହ
Kୀଵ wሺP୩ሺr୧ୢሺ୨ሻሻሻሽ   

                                                                                                                      (16) 

where P୩ሺr୧ୢሺ୨ሻሻ is the kth quadrature point and wሺP୩ሺr୧ୢሺ୨ሻሻሻ is the corresponding weight. 

The quadrature point weights are calculated using SAS PROBNORM function, a practice 

that has been applied by Raîche & Blais (2006) and Li (2009).  

For each testlet, the items are sorted by their information. For a module that 

requires a testlet with 12 items, the 12 most informed items at ߠ ൌ 0 and ߠ ൌ 1 make a 

candidate module. Each testlet provides two candidate modules. The sum of the 

information provided by the 12 most informed items is the module information. Then the 

module information is sorted in descending order both at ߠ ൌ 0 and at ߠ ൌ 1. In total, 24 

moderate testlets and 16 hard testlets are selected. 12 items are selected within each 

testlets.  
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In short, in this step, items are first screened inside testlets; testlets are then 

judged with the information that the selected items within that testlet can provide.  Note 

that the same testlet with different combination of items can be selected to be in two 

candidate modules if it provides more information at both ߠ ൌ 1and ߠ ൌ 0 than the 

remaining testlets. To avoid that examinees may encounter the same testlet twice during 

the administration, it is constrained that a testlet cannot appear twice or more in the same 

panel.  

For any MST that contains both discrete items and testlet items, items are selected 

with similar methods: discrete items are selected based on their information at the 

desirable location; testlets are selected based on their testlet information provided by the 

most informative items associated with it.  

Phase II 

This phase assigns selected items/testlets into different modules of the panels. As 

mentioned in Phase I, items/testlets are already selected based on their statistical 

properties. According to the desired properties of each module in each panel, the 

assignments of items or testlets to panels are done as follows.  

For the panel constructed with only discrete items, the assignment of the selected 

items to the eight panels is done through the following two steps: 

[Step 1]: The selected items that provide the most information at ߠ ൌ 0 are 

assigned to moderate modules of each panel. Initially, the first 1/3 of the most 

informative items are randomly assigned to the eight first-stage modules. For example, if 

the module length is 12, then 288 items have been selected to provide more information 

at ߠ ൌ 0. The first 96 of the 288 items are randomly assigned to the eight first-stage 
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panels. Then, the next 1/3 of the most informative items are randomly assigned as the 

second stage moderate modules. Finally, the remaining 1/3 of the selected items are 

randomly assigned to a panel as the third-stage moderate modules. Putting most 

informative items in early stages is based on the results of Zenisky (2004). She found that 

with limited amount of overall test information, it is better to get more information on 

early stages such that examinees can be routed into more appropriate difficulty levels of 

the modules of later stages.  

[Step 2]: The selected items that provide the most information at ߠ ൌ 1 are 

assigned to hard modules of each panel. The same algorithm as in Step 1 is applied here: 

assign the first half of the items that has the most information at ߠ ൌ 1 randomly to the 8 

hard modules on Stage 2; the remaining half items are randomly assigned to the hard 

panels on Stage 3.  

For MSTs constructed with only testlet items, the assignments of testlets to 

modules are done through the following steps:  

[Step 1]: The 24 selected moderate testlets are assigned to panels. First, the first 8 

most informative testlets are randomly assigned to each of the eight first stage modules. 

Then, the next 8 most informative testlets are randomly assigned as the second stage 

moderate modules. Next, the remaining 8 are randomly assigned to a panel as the third 

stage moderate modules.  

[Step 2]: The 16 hard testlets are assigned to panels. The same algorithm as in 

Step 1 is applied here: assign the 8 most informative testlets randomly to the 8 hard 

modules on Stage 2; the next 8 are randomly assigned to the hard panels on Stage 3.  
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[Step 3]: Check additional constraints. The constraints applied in this study 

include: no testlet appears more than once in the same panel, and no testlet appears more 

than twice in all panels.  

[Step 4]: If there is violation of the constraints, repeat step [1-3] until there is no 

violation.  

For any MST that has both discrete items and testlet items, discrete items are 

selected using the same procedure as the MST having only discrete items, and testlet 

items are selected using the same methods as those MSTs with only testlet items. Testlet 

items are then put into different stages according to the specified position in Table 2. And 

the general rule is that more informative items are put in earlier stages.  

Step 3: Administration and Scoring of MSTs 

Generation of Candidate Examinees’ Responses 

In this step, candidate examinees’ responses to all items in all eight panels are 

simulated. Their responses are generated using the same algorithm as the examinees’ 

responses; only that MST examinees’ abilities are generated from a flat distribution.  

Simulation of MST Administration 

Each examinee is assigned to take each of the eight panels. The module in Stage 1 

is first presented to the examinees. After he/she finishes the module in Stage 1, the ability 

estimate (θ෠) is computed using the EAP. If  θ෠ is greater or equal to .5, the examinee is 

routed to the hard module in Stage 2; otherwise, the examinee is routed to take the 

moderate module in Stage 2. Similarly, at the end of Stage 2, θ෠ is updated based on his/ 

her responses to those items in Stage 1 and 2. Again, if the θ෠ is greater or equal to .5, the 

examinee is routed to the hard module in Stage 3; otherwise, the moderate one is 



60 
 

administered. After Stage 3, the final ability is estimated with the entire set of responses 

using EAP. Classification decisions are made based on θ෠. If θ෠ is larger than or equal to 1, 

then the examinee passes the exam; otherwise, he or she fails the test.  

It should be noted that though at first examinees’ responses to all items in a panel 

are simulated, only those responses to the items in the selected routes are included in the 

analysis.  

Data Analysis 
 

This study evaluates the ability estimation through MST administrations in two 

perspectives: ability estimation precision and accuracy of classification decisions.  

Evaluation of Ability Estimation 
 

The ability estimation precision are assessed by the degree of true ability 

parameters (θ) recovered by the estimation (θ෠). To accomplish this purpose, two different 

measures are used in this study.  

The first evaluation criterion is the bias. For each individual, bias is calculated as 

the difference between the estimated ability parameters and the true ability parameters. A 

positive value indicates that the ability was overestimated; negative value indicates that 

ability was underestimated. The second evaluation criterion is the root mean square error 

(rmse). It shows the extent to which the estimated ability estimate matches the true ability.  

 

For each ability level with each simulation condition, the bias is calculated as: 

bias ൌ ∑ሺθ෠ିθሻ
୬

                                                                                  (17) 

For each ability level with each simulation condition, the rmse is calculated as: 
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rmse ൌ ට∑ሺθ෠ିθሻమ

୬                                                                            (18) 
 

where n equals to 100 because at each ability level, there are 100 simulated examinees.  

Using the 2500 (100 θs from -3 to 3 with increment of .25) examinee’s response 

data to approximate a standard normal distribution, the overall BIAS and RMSE for the 

standard normal distribution with each simulation condition is calculated as follows: 

ܵܣܫܤ ൌ ∑ biasכweight
∑ weight

                                                                       (19) 

ܧܵܯܴ ൌ ට∑ሺrmseమሻכweight
∑ weight

                                                              (20) 

where the weight is calculated using the SAS PROBNORM, the same practice used in 

previous calculation of quadrature point weights.  

Evaluation of Decision Accuracy 
 

The decision accuracy can be determined by comparing each simulated 

examinee’s true ability (θሻ and estimated score (θ෠) to the established cut score 1. The four 

possible classification decision outcomes are depicted in Figure 3.  

Figure 3: A two-by-two table of possible decision classifications 

 
Estimated Ability 

෠ߠ ൐ ෠ߠ ௖௨௧ߠ ൏  ௖௨௧ߠ

True Ability
ߠ ൐ ௖௨௧ Correct Passߠ False 

Negative 

ߠ ൏  ௖௨௧ Falseߠ
Positive Correct Fail 

 
Correct-pass decisions occur when both the examinee’s true ability and estimated 

score are greater or equal to the cut score. Conversely, correct-fail decisions occur when 

both the true and estimated ability score are below the cut score. False-negative errors 
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result when examinees who should pass, based on their true ability, fail to attain the 

passing score on a particular test form. False-positive errors occur when examinees that 

should not pass the examinee, based on their true ability, pass an examination by chance.  

For each ability level, the decision accuracy rate is calculated as: 

da ൌ ୡ୭୰୰ୣୡ୲ ୮ୟୱୱାୡ୭୰୰ୣୡ୲ ୤ୟ୧୪
୬

  , where n=100.                                              (21) 

The overall DA rate for the standard normal distribution for each simulation 

condition is calculated as follows: 

ܣܦ ൌ ∑ daכweight
∑ weight

                                                                                          (22) 

 

The above MST panel construction, MST administration and scoring, and data 

analysis are replicated 30 times for each simulation condition. All statistics are averaged 

across the 30 replications. Moreover, a series of analysis of variance (ANOVA) are 

applied to investigate the effects of studied factors. Finally, multiple comparison 

procedures are carried out if necessary.  

For each ANOVA test, the partial eta-squared effect size measure is used to assess 

the degree of relationship of the dependent variables with the predictors. Specifically, the 

partial eta-squared measure describes the proportion of variance explained in the 

dependent variable by a factor partialling out other factors from the total non-error 

variation (Pierce, Block, & Aguinis, 2004).    
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The formula for partial eta squared is as follow:  

Partial ߟଶ ൌ ௌௌfactor
ௌௌfactorାௌௌerror

                                                                          (19) 

where SSfactor is the variation attributable to the factor and SSerror is the error variation.  

The general accepted regression benchmark for effect size is applied in this study: 

small=.01; medium=.06 and large=.14 (Cohen, 1988; Lomax, 2007; Stevens, 1992).  
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Chapter 4: Results 

 
This chapter describes the results of the simulation study discussed in Chapter 3. 

It is divided into two sections. Each section addresses a research question.  

Research Question I 

To answer research question 1 “If the 3PL model is the measurement model, how 

are the measurement precision and classification decisions impacted by the proportion of 

testlet items in an MST, the position of the testlet items (which stage?), as well as the 

magnitude of LID?”, the 3PL model is used to calibrate the item pools, to construct MST 

panels and to estimate examinees’ abilities. The results of locally independent data (Pool 

1) are described first, followed by the results of locally dependent data (Pool 2-10).  

Results under Locally Independent Data 

Figure 4 shows the results of bias and rmse at each ability level for the locally 

independent data (Pool 1) with the long test length. This condition represents the ideal 

condition where there is no local dependence in the data and the MST is long. The results 

under this condition serve as a baseline to which the other manipulated conditions are 

compared. It shows that lower end of abilities are overestimated and the large end of the 

abilities are underestimated. Largest magnitude of bias and rmse is obtained at the two 

tails of the ability level. Smallest magnitude of bias and rmse is obtained around θ=0.5. 

This is because the modules are designed to provide most information either at ߠ ൌ 0 or 

ߠ ൌ 1. A combination of the modules can provide most information at ߠ ൌ .5.  
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Figure 4: The bias and rmse plots under item independent condition  

 

 

Table 4 contains the classification decisions for ability levels where examinees 

are misclassified. The frequencies in Table 4 are computed per 100 examinees for each 

ability level. Table 4(a) indicates false positive errors are made for examinees at ability 

level of ߠ ൌ .75. Table 4(b) indicates that false negative errors are made for examinees 

with ability level ߠ ൌ 1. Theoretically, the false negative errors and correct pass rates at 

the cut score of ߠ ൌ 1 should be 50% and 50%. Here a much lower false negative error 
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rate (32.8%) is observed because that EAP method is applied in this study to make ability 

estimation. EAP method intends to have estimates toward the mean of the prior 

distribution which is set at zero. False negative errors are observed at ability level of 

ߠ ൌ 1.25 (see Table 4(c)). The overall decision accuracy rate after correction for a 

standard normal distribution is 95.6%. 

Table 4: Decision classifications under item local independence condition (Pool 1) 

 
Estimated Ability 

෠ߠ ൒ ෠ߠ ௖௨௧ߠ ൏  ௖௨௧ߠ

True Ability 
ߠ ൌ .75 

ߠ ൒  ௖௨௧ 0 0ߠ

ߠ ൏  ௖௨௧ .7 99.3ߠ
(a) True ability =.75 

 
Estimated Ability 

෠ߠ ൒ ෠ߠ ௖௨௧ߠ ൏  ௖௨௧ߠ

True Ability 
ߠ ൌ 1 

ߠ ൒  ௖௨௧ 32.8 68.2ߠ

ߠ ൏  ௖௨௧ 0 0ߠ
(b) True ability =1 

 
Estimated Ability 

෠ߠ ൒ ෠ߠ ௖௨௧ߠ ൏  ௖௨௧ߠ

True Ability 
ߠ ൌ 1.25 

ߠ ൒  ௖௨௧ 94.8 5.2ߠ

ߠ ൏  ௖௨௧ 0 0ߠ
(c) True ability =1.25 
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Results under Locally Dependent Data 

Table 5 presents the averaged BIAS, RMSE, and DA rates over 30 replications 

under each simulation condition with the 3PL model. A total of 22 conditions are studied, 

in which the first simulation condition is the locally independent condition, and the 

remaining 21 are locally dependent data conditions. Item pool 1 has only discrete items. 

Item pool 8-10 has only testlet items. Thus the testlet/discrete item position factor is not 

investigated with these item pools.  Depending on the proportion of testlet items in the 

MST, the testlet/discrete items are manipulated to appear on one of the three stages with 

item pool 2-7 according to Table 2. Table 5 also reports the evaluation criteria under two 

different test length conditions: long and short. Under the long condition, each module is 

composed of 12 items; under the short condition, each module has only 8 items.   

BIAS evaluates the ability estimates against their true values. As shown in Table 

5 the values of BIAS are all close to zero. This is probably because positive and negative 

biases cancel out each other between different ability levels and across the replications. 

There is no obvious trend of BIAS with different simulation conditions, except that the 

absolute values of BIAS under long test length conditions are smaller than those under 

short test length conditions which indicate that longer test yields better ability estimation.   

RMSE represents the overall accuracy of ability estimates. Several trends can be 

observed from Table 5. First, under each simulation condition the long MST yields 

smaller RMSE. Second, with the same LID magnitude and the same testlet item 

proportion, the testlet/discrete item position effect appears to exist. For example, when 

the testlet item proportion equals to .33, with moderate or large LID magnitude, the 

RMSE decreases as the testlet-items’ position changed from Stage 1 to Stage 3. However, 
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contrary to expectation, when the testlet item proportion equals to .67, with each studied 

LID magnitude, the RMSE also decreases as the discrete-items’ position changed from 

Stage 1 to Stage 3. This phenomenon needs further investigation. Third, with the same 

proportion of testlet items, the RMSE increases as the LID magnitude increases. This 

result is consistent with those from other simulation studies of testlet effects (e.g., 

Bradlow, et. al., 1999; DeMars, 2006; Jiao & Wang, 2008; Wainer, et al. 2007). Fourth, 

with the same LID magnitude, the RMSE increases as the proportion of testlet items 

increases. It implies that the accuracy of ability estimates deteriorates as the level of 

model misspecification increases. The reason is that the 3PL model does not fit every 

item during the MST administration. As the proportion of testlet items increases, the level 

of model misfit increases.  

The decision accuracy (DA) rates reported in Table 5 represent the proportion of 

examinees’ true pass-fail status recovered through the MST administration under each 

simulation condition. The larger the DA rate, the better the recovery. Similar trends are 

observed with DA rates as the RMSE. First, with the same simulation condition, the long 

test yields higher DA rate. Second, with the same LID magnitude and the same 

proportion of testlet items, the effects of testlet/ discrete item position seem exist with 

decision accuracy. For example, when the testlet item proportion equals to .33, with each 

level of LID magnitude, the condition with testlet items positioned on Stage 1 produces 

the smallest DA; when the testlet item proportion equals to .67, with each level of LID 

magnitude, the condition with discrete items positioned on Stage 1 yields the largest DA.  

However, under each proportion of testlet items and each level of LID magnitudes, the 

DA rates with testlet/discrete items positioned on Stage 2 and Stage 3 are the same or 
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close with each other, which may imply that the position effect may not be significantly 

different between Stage 2 and Stage 3.  Third, if the proportion of testlet items is kept the 

same, the DA rate decreases as the LID magnitude increases.  Fourth, if the LID 

magnitude keeping the same, the DA rate decreases as the proportion of testlet items 

increases.  

These results confirm our expectations that each of these studied factors may have 

an effect on the precision of the ability estimation and the accuracy of decision 

classifications with the MST design. Their effects are further studied with a series of 

ANOVA tests. The results are presented in the following sections.  
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Table 5: Evaluation criteria under the 3PL model 

Simulation 
Condition 

Item 
Pool 

LID 
Magnitude

Testlet 
Item 

Proportion Position

BIAS RMSE 
Decision 
Accuracy 

Long Short Long Short Long Short 
1 1 0 0 N/A 0.039 0.038 0.167 0.205 0.956 0.948 
2 

2 0.25 0.33 

tslt_s1 -0.014 -0.013 0.190 0.225 0.933 0.927 
3 tslt_s2 -0.014 -0.013 0.185 0.223 0.939 0.933 
4 tslt_s3 -0.013 -0.011 0.186 0.223 0.939 0.932 
5 

3 1 0.33 

tslt_s1 -0.010 -0.006 0.209 0.246 0.930 0.922 
6 tslt_s2 -0.011 -0.006 0.200 0.236 0.937 0.930 
7 tslt_s3 -0.008 -0.004 0.199 0.236 0.938 0.931 
8 

4 1.5 0.33 

tslt_s1 -0.002 0.000 0.216 0.253 0.930 0.923 
9 tslt_s2 -0.007 -0.006 0.204 0.244 0.937 0.930 
10 tslt_s3 -0.003 -0.001 0.203 0.243 0.938 0.929 
11 

5 0.25 0.67 

dsct_s1 -0.011 -0.014 0.207 0.242 0.937 0.929 
12 dsct_s2 -0.015 -0.016 0.205 0.240 0.932 0.926 
13 dsct_s3 -0.015 -0.014 0.204 0.239 0.933 0.925 
14 

6 1 0.67 

dsct_s1 -0.007 -0.005 0.240 0.279 0.934 0.925 
15 dsct_s2 -0.006 -0.004 0.241 0.279 0.929 0.919 
16 dsct_s3 -0.007 -0.003 0.238 0.277 0.929 0.919 
17 

7 1.5 0.67 

dsct_s1 -0.005 -0.006 0.257 0.294 0.932 0.921 
18 dsct_s2 -0.008 -0.008 0.261 0.298 0.923 0.914 
19 dsct_s3 -0.008 -0.008 0.257 0.294 0.924 0.915 
20 8 0.25 1 N/A -0.018 -0.017 0.215 0.247 0.936 0.927 
21 9 1 1 N/A -0.014 -0.011 0.281 0.314 0.925 0.915 
22 10 1.5 1 N/A -0.011 -0.006 0.317 0.350 0.917 0.907 

Note. tslt_s(x): testlet items positioned on Stage (x); dsct_s(x): discrete items positioned on Stage (x), x=1, 2, or 3. 
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Effect of Test Length 

As discussed before, Table 5 shows that the BIAS and the RMSE under short test 

conditions are larger than those under long test conditions; the DA rates under short test 

conditions are lower than those under long test conditions. The 22 independent one-way 

ANOVA results are summarized in Table 6. The detailed ANOVA results for each 

simulation condition are presented in Appendix E-1. For all three evaluation criteria, the 

test length effects are found to be statistically significant under all simulation conditions 

(p-value൑.05). This is what we expected that long tests produce high ability estimation 

precision. Reducing the test length would increase the standard error of measurement and 

thus decrease the decision accuracy. With the 22 simulation conditions, the averaged 

partial ߟଶ for BIAS is .549, the averaged partial  ߟଶ for RMSE is .602; and the averaged 

partial ߟଶ for DAs is .581. According to the rule of thumb, the test length effect is large 

with all three evaluation criteria. Note that the experiment wise significanct level over 22 

significance tests with a nominal .05 level is than than or equal to . 6765 ൌ 1 െ

ሺ1 െ .05ሻଶଶ. Graphs are used to assist the interpretation of the ANOVA test results. The 

same caution are taken in the following multiple ANOVA tests. 
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Table 6: Summary statistics for the twenty-two ANOVA results for test length 

effect 

Evaluation 
Criterion Statistics

Sum of 
Squares F-value 

p-
value 

Partial 
eta 

squared 

BIAS 

min 0.000 0.550 0.000 0.009 
max 0.022 5420.458 0.461 0.989 
mean 0.007 1495.804 0.044 0.549 
std 0.010 2189.599 0.113 0.371 

RMSE 

min 0.000 0.000 0.000 0.000 
max 0.024 3924.519 0.985 0.985 
mean 0.007 885.472 0.094 0.602 
std 0.009 1288.030 0.248 0.378 

Decision 
Accuracy 

min 0.000 0.078 0.000 0.001 
max 0.024 5110.499 0.781 0.989 
mean 0.008 1360.944 0.067 0.581 
std 0.010 1848.775 0.193 0.391 
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Figure 5 compares the bias and the rmse curves between the two conditions of test 

length with simulation condition 2 along the ability distribution. In each graph, the X-axis 

is the ability scale; the Y-axis is the bias or the rmse. Higher magnitude of bias and rmse 

associated with short test length are observed at the two tales of the theta scale. This 

implies that the decreased overall ability estimation precision with the short test length is 

mainly attributable to the measurement of examinees with very high or very low abilities. 

The bias and the rmse curves for other locally dependent simulation conditions show 

similar pattern. They are presented in Appendix F-1.  
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Figure 5: Comparison of bias and rmse for test length effect using the 3PL model with 
simulation condition 2 

 

 
 
 

‐1.5

‐1

‐0.5

0

0.5

1

1.5

‐3 ‐1 1 3

bi
as

short long

0

0.2

0.4

0.6

0.8

1

1.2

‐3 ‐1 1 3

rm
se

short long



75 
 

Effect of Testlet/Discrete Item Position 

From Table 1 we know that with item pool 2-4, testlet items are manipulated to 

appear on Stage 1, 2 or 3; with item pool 5-7, discrete items are manipulated to appear on 

Stage 1, 2 or 3. Since the test length is found to have effects on all three evaluation 

criteria, this section describes the results for the effects of testlet/discrete item position 

and possible interaction effects between test length and item positions.   

The two-way ANOVA results are presented in Table 7 and Table 8. Based on the 

ANOVA outputs, the effect of testlet/discrete item position on each of the three 

evaluation criteria is found to be significant under all studied conditions except BIAS 

with item pool 2 and 6. Using the ANOVA outputs, it is reasonably to say that under 

small proportion of testlet items (item pool 2-4), the testlet item position has large effect 

on RMSE and DA. The partial ߟଶ for RMSE ranges from .361 to .840; and the partial ߟଶ 

for DA ranges from .467 to .616. The interaction between test length and testlet/discrete 

item position neither is significant (with p-value >.05) nor has large effect (with partial 

 ଶ <.14) on each of the three evaluation criteria. Under moderate proportion of testletߟ

items (item pool 5-7), the discrete item position has moderate effect on BIAS with small 

and large LID magnitudes (item pool 5 and 7) with partial ߟଶ values of .123 and .093 and 

small effect on BIAS with moderate magnitude (item pool 6) with the partial ߟଶ of .010. 

The discrete item position has large effect on RMSE with the partial ߟଶ ranges from .186 

to .307, and large effect on DA with partial ߟଶ ranges from .280 to .563. The interaction 

between test length and testlet/discrete item position is neither significant (with p-value 

>.05) nor has large effect (with partial ߟଶ <.14) on each of the three evaluation criteria. In 



76 
 

summary, the position factor has large effect on RMSE and DA. There is no large effect 

caused by the interaction of test length and the position of testlet/discrete items.  

Table 7: ANOVA results for testlet position, test length and their interaction 

effect with item pool 2-4 

 

Item 
Pool 

Dependent 
Variable Source df 

Sum of 
Squares F-value 

p-
value 

Partial 
Eta 

Squared

2 

BIAS 
Length 1 0.000 10.499 0.001 0.057 
Position 2 0.000 1.550 0.215 0.018 

Length*Position 2 0.000 0.363 0.696 0.004 

RMSE 
Length 1 0.060 13037.115 0.000 0.987 
Position 2 0.000 49.074 0.000 0.361 

Length*Position 2 0.000 9.347 0.000 0.097 

Decision 
Accuracy 

Length 1 0.002 202.210 0.000 0.537 
Position 2 0.001 76.129 0.000 0.467 

Length*Position 2 0.000 0.471 0.625 0.005 

3 

BIAS 
Length 1 0.001 73.605 0.000 0.297 
Position 2 0.000 11.517 0.000 0.117 

Length*Position 2 0.000 1.902 0.152 0.021 

RMSE 
Length 1 0.062 13690.309 0.000 0.987 
Position 2 0.004 427.482 0.000 0.831 

Length*Position 2 0.000 0.600 0.550 0.007 

Decision 
Accuracy 

Length 1 0.002 255.138 0.000 0.595 
Position 2 0.003 139.375 0.000 0.616 

Length*Position 2 0.000 0.595 0.553 0.007 

4 

BIAS 
Length 1 0.000 8.244 0.005 0.045 
Position 2 0.001 41.957 0.000 0.325 

Length*Position 2 0.000 0.162 0.850 0.002 

RMSE 
Length 1 0.067 12423.334 0.000 0.986 
Position 2 0.005 457.733 0.000 0.840 

Length*Position 2 0.000 13.762 0.000 0.137 

Decision 
Accuracy 

Length 1 0.003 336.220 0.000 0.659 
Position 2 0.002 119.061 0.000 0.578 

Length*Position 2 0.000 1.872 0.157 0.021 
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Table 8: ANOVA results for testlet position, test length and their interaction effect with 
item pool 5-7 

 

Item 
Pool 

Dependent 
Variable Source df 

Sum of 
Squares F-value 

p-
value 

Partial 
Eta 

Squared

5 

BIAS 
Length 1 0.000 1.650 0.201 0.009 
Position 2 0.000 12.230 0.000 0.123 

Length*Position 2 0.000 3.069 0.049 0.034 

RMSE 
Length 1 0.057 8705.904 0.000 0.980 
Position 2 0.000 20.114 0.000 0.188 

Length*Position 2 0.000 0.153 0.858 0.002 

Decision 
Accuracy 

Length 1 0.002 260.058 0.000 0.599 
Position 2 0.001 33.887 0.000 0.280 

Length*Position 2 0.000 2.981 0.053 0.033 

6 

BIAS 
Length 1 0.000 26.720 0.000 0.133 
Position 2 0.000 0.858 0.426 0.010 

Length*Position 2 0.000 0.424 0.655 0.005 

RMSE 
Length 1 0.067 11246.016 0.000 0.985 
Position 2 0.000 19.910 0.000 0.186 

Length*Position 2 0.000 4.567 0.012 0.050 

Decision 
Accuracy 

Length 1 0.004 400.872 0.000 0.697 
Position 2 0.001 59.649 0.000 0.407 

Length*Position 2 0.000 0.181 0.835 0.002 

7 

BIAS 
Length 1 0.000 0.024 0.878 0.000 
Position 2 0.000 8.900 0.000 0.093 

Length*Position 2 0.000 0.447 0.640 0.005 

RMSE 
Length 1 0.063 8230.723 0.000 0.979 
Position 2 0.001 38.629 0.000 0.307 

Length*Position 2 0.000 0.371 0.691 0.004 

Decision 
Accuracy 

Length 1 0.004 398.177 0.000 0.696 
Position 2 0.002 112.177 0.000 0.563 

Length*Position 2 0.000 1.503 0.225 0.017 
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Scheffe’s multiple-comparison procedure is further applied to compare the mean 

differences of BIAS, RMSE, and DA with different testlet/discrete item positions. The 

results are summarized in Table 9 and Table 10, in which they suggest that the means of 

the interested criterion (BIAS, RMSE, or DA) on Stage 1 are significantly different from 

those on Stage 2 or Stage 3; and the mean differences may not be statistically significant 

between Stage 2 and Stage 3. For example, with large proportion of testlet items (item 

pool 5-7) the means of DA are not significantly different between discrete item 

positioned on Stage 2 and Stage 3. With small proportion of testlet items (item pool 2-4) 

the means of RMSE are not significantly different between testlet item positioned on 

Stage 2 and 3. In all studied conditions (item pool 2-7), the means of DA rates are not 

significantly different between testlet/discrete item positioned on Stage 2 and Stage 3.  
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Table 9: Group comparison results for testlet/discrete item position effect under long test 
length 

Item Pool Evaluation Criterion 
Testlet Item Position 

Stage 1 Stage 2 Stage 3 

2 
BIAS A A A 
RMSE A B B 

DA A B B 

3 
BIAS A A B 
RMSE A B B 

DA A B B 

4 
BIAS A B A 
RMSE A B B 

DA A B B 

Item Pool Evaluation Criterion 
Discrete Item Position 

Stage 1 Stage 2 Stage 3 

5 
BIAS A B B 
RMSE A A B 

DA A B B 

6 
BIAS A A A 
RMSE A A B 

DA A B B 

7 
BIAS A B B 
RMSE A B A 

DA A B B 
Note.1. DA: Decision accuracy.  
         2. In the table, A, B, C are norminal values.  They are only compared within     
each row.  
         3. Within each row, the same letter means that the means of an evaluation 
criterion between /among different groups are not significantly different; different 
letters indicate that there are significant mean differences between/among the 
comparison groups. 

 

  



80 
 

Table 10: Group comparison results for testlet/discrete item position effect under short 
test length 

Item Pool Evaluation Criterion 
Testlet Item Position 

Stage 1 Stage 2 Stage 3 

2 
BIAS A A A 
RMSE A B B 

DA A B B 

3 
BIAS A B B 
RMSE A B B 

DA A B B 

4 
BIAS A B A 
RMSE A B B 

DA A B B 

Item Pool Evaluation Criterion 
Discrete Item Position 

Stage 1 Stage 2 Stage 3 

5 
BIAS A A A 
RMSE A B B 

DA A B B 

6 
BIAS A A A 
RMSE A B B 

DA A B B 

7 
BIAS A B B 
RMSE A B A 

DA A B B 
Note.1. DA: Decision accuracy.  
         2. In the table, A, B, C are norminal values.  They are only compared within     
each row.  
         3. Within each row, the same letter means that the means of an evaluation 
criterion between /among different groups are not significantly different; different 
letters indicate that there are significant mean differences between/among the 
comparison groups 

 

The means of the three evaluation criteria with item pool 2-7 under both test 

length conditions are plotted in Figure 6 and Figure 7 respectively. In each figure, part (a) 

compares the BIAS differences; part (b) compares the RMSE differences; and part (c) 

compares the DA differences. In each part, two graphs which represent the proportion of 
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testlet items are presented side by side. In each graph, the X-axis specifies three levels of 

item positions; the Y-axis specifies an evaluation criterion; and each line represents a 

different LID magnitude which is shown in the legend. Figure 6(a) shows that under all 

conditions, the BIASes are smaller than zero. However, there is not a neat trend. For 

example, with testlet item proportion of .33, the absolute value of BIAS is largest when 

the testlet items are put on Stage 2. Figure 6(b) shows that with small proportion of testlet 

items, the RMSE changes slightly from the position of Stage 1 to the position of Stage 2; 

it almost remains the same as the position of testlet/discrete items changes from Stage 2 

to Stage 3. It echoes with the previous finding that the mean differences of RMSE are not 

significant between positions of Stage 2 and 3. With moderate proportion of testlet items, 

the RMSE slightly decreases as the discrete items position changes from Stage 1 to Stage 

2 and from Stage 2 to Stage 3. Figure 6(c) is based on the decision accuracy. With 1/3 of 

testlet items, the DA rate increases as the position of testlet items changes from Stage 1 to 

Stage 2; the DA rate stays almost at the same level as the position of testlet items changes 

from Stage 2 to Stage 3. With 2/3 of testlet items, the DA rate decreases as the position of 

discrete items changes from Stage 1 to Stage 2; the DA rate stays almost at the same level 

as the position of discrete items changes from Stage 2 to Stage 3.This result echoes with 

previous findings that the mean difference of DA is not significant between discrete items 

positioned on Stage 2 and Stage 3. Figure 7 shows the same trends as those observed in 

Figure 6. However, the differences of each evaluation criterion between positions of 

Stage 1 and Stage 2 in Figure 7 are smaller than those observed in Figure 6.  
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Figure 6: Comparison of testlet item positions with the 3PL model under the long test 
length condition 
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Figure 6, continued 

 
(b) RMSE 
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Figure 6, continued 
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Figure 7: Comparison of testlet item positions under the 3PL model under the short test 
length condition 
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Figure 7, continued 

 
(b) RMSE 
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Figure 7, continued 

 
(c) Decision Accuracy 
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bias/rmse with the position of Stage 1 is quite different from those with the position of 

Stage 2 and 3, where the latter two stay close with each other. This indicates that the 

testlet/discrete item position mainly influences the estimation precision of high ability 

examinees. Since this study sets the cut score at 1 which is relatively high in the ability 

distribution, the accuracy of the final pass-fail decisions are influenced by the position of 

testlet/discrete items. Bias and rmse with other item pools (pool 2-4 and pool 6-7) show 

similar pattern. They are presented in Appendix F-2.  

 

Figure 8: Comparison of bias and rmse for the item position effect with item pool 5 
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Effect of Testlet Item Proportion 

Figure 6 (b) and Figure 7(b) show that the RMSE under testlet item proportion 

of .33 are lower than those under testlet item proportion of .67. Figure 6(c) and Figure 7(c) 

indicate that the DAs under testlet item proportion of .33 are higher than those under 

testlet item proportion of .67. These results suggest that the testlet item proportion has 

effects on the precision of ability estimation and decision accuracy.  

To study the effect of testlet item proportion and its possible interaction effect 

with test length on the MST design, the three evaluation criteria from item pool 2-7 are 

averaged across all testlet/discrete item positions with the same replication number. The 

averaged means for item pool 2-7 and means for item pool 1 and 8-10 under both test 

length conditions are reported in Table 11. These data are used in the following ANOVA 

analysis.  

It appears that in Table 11 with the same test length condition and the same LID 

magnitude, the RMSE increases and the DA rate decreases as the proportion of testlet 

items increases. The BIAS does not have a clear trend.   
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Table 11: Averaged evaluation criteria with each item pool using the 3PL model 

Item 
Pool 

Testlet 
Item 

Proportion 
LID 

Magnitude
BIAS RMSE 

Decision 
Accuracy 

Long Short Long Short Long Short 
1 0 0 0.039 0.038 0.167 0.205 0.956 0.948 
2 0.33 0.25 -0.014 -0.012 0.187 0.224 0.937 0.931 
3 0.33 1 -0.010 -0.005 0.203 0.240 0.935 0.927 
4 0.33 1.5 -0.004 -0.002 0.208 0.246 0.935 0.927 
5 0.67 0.25 -0.014 -0.014 0.205 0.241 0.934 0.927 
6 0.67 1 -0.007 -0.004 0.240 0.278 0.931 0.921 
7 0.67 1.5 -0.007 -0.007 0.258 0.296 0.926 0.917 
8 1 0.25 -0.018 -0.017 0.215 0.247 0.936 0.927 
9 1 1 -0.014 -0.011 0.281 0.314 0.925 0.915 
10 1 1.5 -0.011 -0.006 0.317 0.350 0.917 0.907 

 

Several independent ANOVA tests are conducted to investigate whether there are 

significant mean differences with different proportion of testlet items. Based on the 

ANOVA outputs (see Table 12), it is reasonable to say that at each LID magnitude the 

proportion of testlet items has large effect on each of the three evaluation criteria (as their 

partial ߟଶ values are way above .14). The partial ߟଶ values for the interaction effect of 

test length and testlet item proportion on the RMSE range from .221 to .280, which 

indicates that the interaction effect on the precision of ability estimation is large. The 

partial ߟଶ values for the interaction of test length and the proportion of testlet items on the 

BIAS and DA are below .14 but larger than .01. These indicate that the interaction has at 

most moderate effect on BIAS and DA; and large effect on RMSE. In summary, the 

proportion of testlet items has large effect on RMSE and DA, and the interaction between 

test length and the proportion of testlet items has large effect on the RMSE, and at most 

moderate effect on BIAS and DA.   
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Table 12: ANOVA results for testlet item proportion, test length and their interaction 
effect 

LID 
Magnitude 

Dependent 
Variable Source df 

Sum of 
Squares F-value p-value 

Partial 
Eta 

Squared 

0.25 

BIAS 
Length 1 0.000 4.558 0.034 0.026 

Proportion 2 0.001 43.986 0.000 0.336 
Length*Proportion 2 0.000 3.489 0.033 0.039 

RMSE 
Length 1 0.054 18049.265 0.000 0.990 

Proportion 2 0.020 3400.510 0.000 0.975 
Length*Proportion 2 0.000 33.311 0.000 0.277 

Decision 
Accuracy 

Length 1 0.003 627.675 0.000 0.783 
Proportion 2 0.000 49.046 0.000 0.361 

Length*Proportion 2 0.000 8.204 0.000 0.086 

1 

BIAS 
Length 1 0.001 66.211 0.000 0.276 

Proportion 2 0.002 108.088 0.000 0.554 
Length*Proportion 2 0.000 0.978 0.378 0.011 

RMSE 
Length 1 0.059 15714.456 0.000 0.989 

Proportion 2 0.176 23424.953 0.000 0.996 
Length*Proportion 2 0.000 33.780 0.000 0.280 

Decision 
Accuracy 

Length 1 0.003 772.367 0.000 0.816 
Proportion 2 0.004 406.357 0.000 0.824 

Length*Proportion 2 0.000 5.094 0.007 0.055 

1.5 

BIAS 
Length 1 0.000 24.341 0.000 0.123 

Proportion 2 0.001 53.292 0.000 0.380 
Length*Proportion 2 0.000 12.699 0.000 0.127 

RMSE 
Length 1 0.059 9401.560 0.000 0.982 

Proportion 2 0.341 27192.293 0.000 0.997 
Length*Proportion 2 0.000 24.739 0.000 0.221 

Decision 
Accuracy 

Length 1 0.004 772.272 0.000 0.816 
Proportion 2 0.011 1145.551 0.000 0.929 

Length*Proportion 2 0.000 3.693 0.027 0.041 
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The group comparison results for the effect of the proportion of testlet items are 

presented in Table 13. It indicates that each of the evaluation criteria is significantly 

different under each proportion of the testlet items. The exceptions are the BIAS for the 

small LID magnitude under long test length condition and BIAS for moderate LID 

magnitude under short test length condition in which the BIAS may be statistically not 

significant different between two adjacent testlet item proportions. The DA rates under 

small LID magnitude under short test length condition are not significantly different 

between proportion of .67 and 1 neither.   
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Table 13: Group comparison results for testlet item proportion effect 

Test 
length 

LID 
Magnitude 

Dependent 
Variable 

Testlet Item Proportion 
0.33 0.67 1 

Long 

0.25 
BIAS A A B 
RMSE A B C 

DA A B C 

1 
BIAS A B C 
RMSE A B C 

DA A B C 

1.5 
BIAS A B C 
RMSE A B C 

DA A B C 

Short 

0.25 
BIAS A B C 
RMSE A B C 

DA A B B 

1 
BIAS A B B 
RMSE A B C 

DA A B C 

1.5 
BIAS A B C 
RMSE A B C 

DA A B C 
Note.1. DA: Decision accuracy.  
         2. In the table, A, B, C are norminal values.  They are only compared 
within each row.  
         3. Within each row, the same letter means that the means of an 
evaluation criterion between /among different groups are not significantly 
different; different letters indicate that there are significant mean differences 
between/among the comparison groups 

 
Figure 9 conveys the same message as that indicated in Table 5 and Table 11. 

With each level of the LID magnitude, there is no clear trend of BIAS as the proportion 

of testlet items increases; the RMSE increases and the DA decreases as the proportion of 

testlet items increases.  
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Figure 9: Evaluation criteria with different LID magnitude and testlet item proportion I 

 
(a) BIAS 
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Figure 9, continued 

 
(b) RMSE 
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Figure 9, continued 
 

 
(c) Decision accuracy 

Figure 10 compares the bias and the rmse across the three proportions of testlet 

items with the long test length. When the LID magnitude is small, Figure 10(a) shows 

very similar degrees of bias and rmse throughout the entire theta range across the three 

proportions, with smallest bias and rmse in the middle of ability distribution and 

increasing values as the ability become more extreme. When the LID magnitude is 
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moderate or large, Figure 10(b) and Figure 10(c) show that the values of the bias and 

rmse also increases at each ability level as the proportion of testlet items increases. The 

pattern is consistent with those reported in Table 13. The bias and the rmse across the 

three proportions of testlet items with the short test length condition show similar pattern. 

They are presented in Appendix F-3.  
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Figure 10: Comparison of bias and rmse across different testlet item proportion levels 
with long test length condition 

 
(a) Small LID magnitude, long test length 
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Figure 10, continued 

 
(b) Moderate LID magnitude, long test length 

  

-1.5

-1

-0.5

0

0.5

1

1.5

‐3 ‐2 ‐1 0 1 2 3

bi
as

LID=1, Long

Prop_33 Prop_67 Prop_100

0

0.4

0.8

1.2

‐3 ‐2 ‐1 0 1 2 3

rm
se

LID=1, Long

Prop_33 Prop_67 Prop_100



100 
 

Figure 10, continued 
 

 
(c) Large LID magnitude, long test length 

 
Effect of LID Magnitude 
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magnitude of 1 or 1.5. Figure 11 plots these trends. All these results suggest that the LID 

magnitude also has an effect on the precision of ability estimation and decision accuracy.  

The results in previous sections indicate that the test length and the proportion of 

testlet items have effect on the precision of ability estimation and decision accuracy. Here 

a three-way ANOVA test is carried out to test the significance of the LID magnitude 

effect using the same dataset that is applied to test the effects of the proportion of testlet 

items.  

The ANOVA results (See Table 14) suggest that the LID magnitude has large 

effect on each of the three evaluation criteria (with partial ߟଶ values of .624, .803 

and .993 respectively). The interaction between the test length and the LID magnitude 

has small effect on each of the three evaluation criteria (with partial ߟଶ values 

of .032, .034 and .017 respectively). The partial ߟଶ value for the interaction between 

testlet item proportion and LID magnitude is .138 for BIAS which is very close to the 

threshold of large effect. The interaction effects between testlet item proportion and LID 

magnitude are large on RMSE and DA (with partial ߟଶ values of .978 and .638 

respectively). The interaction effect among test length, testlet item proportion and LID 

magnitude is small on each of the three evaluation criteria (with partial ߟଶ values 

of .031, .011 and .021).  
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Table 14: Three-way ANOVA results for test length, testlet item proportion, LID 
magnitude and their interaction effect 

Dependent 
Variable Source df 

Sum of 
Squares F-value 

p-
value 

Partial 
Eta 

Squared 

BIAS 

LEG 1 0.001 76.869 0.000 0.128
PRO 2 0.003 161.150 0.000 0.382
MAG 2 0.007 432.434 0.000 0.624
LEG*PRO 2 0.000 9.932 0.000 0.037
LEG*MAG 2 0.000 8.523 0.000 0.032
PRO*MAG 4 0.001 20.839 0.000 0.138
LEG*PRO*MAG 4 0.000 4.218 0.002 0.031

RMSE 

LEG 1 0.172 39605.718 0.000 0.987
PRO 2 0.435 50176.347 0.000 0.995
MAG 2 0.328 37862.280 0.000 0.993
LEG*PRO 2 0.001 82.251 0.000 0.240
LEG*MAG 2 0.000 9.060 0.000 0.034
PRO*MAG 4 0.102 5885.130 0.000 0.978
LEG*PRO*MAG 4 0.000 2.849 0.023 0.021

DA 

LEG 1 0.010 2169.765 0.000 0.806
PRO 2 0.011 1197.180 0.000 0.821
MAG 2 0.010 1063.647 0.000 0.803
LEG*PRO 2 0.000 13.817 0.000 0.050
LEG*MAG 2 0.000 4.550 0.011 0.017
PRO*MAG 4 0.004 229.756 0.000 0.638
LEG*PRO*MAG 4 0.000 1.479 0.207 0.011

Note.  DA: Decision accuracy; 
          LEG: test length; 
          PRO: testlet item proportion; 
          MAG: LID magnitude. 
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The group comparison results are presented in Table 15. It indicates that the 

RMSE is strongly associated with the LID magnitude. With other factor’s conditions 

keeping constant, the RMSE at one LID magnitude is significantly different from the 

RMSE at another LID magnitude. The DA rate also has a strong relationship with the 

LID magnitude. But when the testlet item proportion is small (.33), LID magnitude of 1 

and 1.5 may produce the same level of DA rates. The relationship between the BIAS and 

the LID magnitude is relatively weak. Moderate and large LID magnitudes may produce 

the same level of BIAS, for example, with all testlet items under short test length 

condition. This is probably due to that the positive and negative BIAS cancel out each 

other during the replication and across different positions with item pool 2-7.  
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Table 15: Group comparison results for LID magnitude effect 

Test 
length 

Testlet Item 
Proportion Dependent Variable 

LID Magnitude 
0.25 1 1.5 

Long 

0.33 
BIAS A B C 
RMSE A B C 

DA A B B 

0.67 
BIAS A B B 
RMSE A B C 

DA A B C 

1 
BIAS A B C 
RMSE A B C 

DA A B C 

Short 

0.33 
BIAS A B C 
RMSE A B C 

DA A B B 

0.67 
BIAS A B C 
RMSE A B C 

DA A B C 

1 
BIAS A B B 
RMSE A B C 

DA A B C 
Note.1. DA: Decision accuracy.  
         2. In the table, A, B, C are norminal values.  They are only compared 
within each row.  
         3. Within each row, the same letter means that the means of an 
evaluation criterion between /among different groups are not significantly 
different; different letters indicate that there are significant mean differences 
between/among the comparison groups. 
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Figure 11: Evaluation criteria under different LID and testlet item proportions II 

 
(a) BIAS 
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Figure 11, continued 

 
(b) RMSE 
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Figure 11, continued 
 

 
(c) Decision Accuracy 
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Previous results also suggest that the position of testlet/discrete items has effect 

on both ability estimation and decision accuracy. Thus, the effect of the LID magnitude, 

the position of testlet/discrete items, the test length, and their interaction effects are 

studied with item pool 2-4 and item pool 5-7 separately.  The results are presented in 

Table 16 and 17.  

Using the ANOVA output (Table 16) with the item pool 2-4 data, it is reasonable 

to say that with small proportion of testlet items, the interaction between the LID 

magnitude and the testlet item position has moderate effect on BIAS, large effect on 

RMSE and small effect on DA because their partial િ૛ values are .087, .357 and .025 

respectively. The interaction effects among the LID magnitude, the position of 

testlet/discrete items, and the test length has no or small effect on each of the three 

evaluation criteria because their p-values are either larger than .05 or the partial િ૛ value 

smaller than .06.  Using the ANOVA output (Table 17) for the item pool 5-7 data, it is 

reasonable to say that with moderate proportion of testlet items, the interaction between 

LID magnitude and testlet item position has small effect on BIAS, moderate effect on 

RMSE and small effect on DA because their partial િ૛ values are .041, .103 and .054 

respectively. The interaction effects among the LID magnitude, the position of 

testlet/discrete items, and the test length has ignorable effect on each of three evaluation 

criteria because their p-values are larger than .05. In summary, the interaction between 

LID magnitude and the position of testlet items has effect on each of three evaluation 

criteria. However, these effects decrease as the proportion of testlet items increases. The 

interaction effect among LID magnitude, the position of testlet/discrete items and the test 
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length has no effect on BIAS and DA. And the interaction has small effect on RMSE. As 

the proportion of testlet items increases, the interaction effect on RMSE among LID 

magnitude, the position of testlet/discrete items and the test length becomes ignorable.   

 

Table 16: ANOVA results for testlet/discrete item position, LID magnitude, test length, 
and their interaction effects with item pool 2-4 data 

Dependent 
Variable Source df 

Sum of 
Squares F-value p-value 

Partial 
eta 

square
BIAS LEG 1 0.001 70.933 0.000 0.120
  POS 2 0.001 30.804 0.000 0.106
  MAG 2 0.009 392.716 0.000 0.601
  LEG*POS 2 0.000 0.886 0.413 0.003
  LEG*MAG 2 0.000 9.538 0.000 0.035
  POS*MAG 4 0.001 12.485 0.000 0.087
  LEG*POS*MAG 4 0.000 0.740 0.565 0.006
RMSE LEG 1 0.189 39008.391 0.000 0.987
  POS 2 0.008 810.139 0.000 0.756
  MAG 2 0.044 4567.186 0.000 0.946
  LEG*POS 2 0.000 13.935 0.000 0.051
  LEG*MAG 2 0.000 11.304 0.000 0.042
  POS*MAG 4 0.001 72.495 0.000 0.357
  LEG*POS*MAG 4 0.000 5.464 0.000 0.040
DA LEG 1 0.007 779.401 0.000 0.599
  POS 2 0.006 327.478 0.000 0.556
  MAG 2 0.001 54.486 0.000 0.173
  LEG*POS 2 0.000 1.036 0.356 0.004
  LEG*MAG 2 0.000 2.282 0.103 0.009
  POS*MAG 4 0.000 3.369 0.010 0.025
  LEG*POS*MAG 4 0.000 0.888 0.471 0.007
Note.  DA: Decision Accuracy; 
           POS: Testlet/discrete item position; 
           LEG: test length; 
           MAG: LID magnitude. 
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Table 17: ANOVA results for testlet/discrete item position, LID magnitude, test length, 
and their interaction effects with item pool 5-7 data 

Dependent 
Variable Source df 

Sum of 
Squares F-value p-value 

Partial 
eta 

square 
BIAS LEG 1 0.000 5.032 0.025 0.010
  POS 2 0.000 10.084 0.000 0.037
  MAG 2 0.008 286.040 0.000 0.523
  LEG*POS 2 0.000 2.495 0.083 0.009
  LEG*MAG 2 0.000 12.065 0.000 0.044
  POS*MAG 4 0.000 5.635 0.000 0.041
  LEG*POS*MAG 4 0.000 0.584 0.675 0.004
RMSE LEG 1 0.187 27811.321 0.000 0.982
  POS 2 0.001 51.236 0.000 0.164
  MAG 2 0.273 20340.704 0.000 0.987
  LEG*POS 2 0.000 1.094 0.336 0.004
  LEG*MAG 2 0.000 17.424 0.000 0.063
  POS*MAG 4 0.000 14.985 0.000 0.103
  LEG*POS*MAG 4 0.000 1.778 0.132 0.013
DA LEG 1 0.011 1053.817 0.000 0.669
  POS 2 0.004 196.400 0.000 0.429
  MAG 2 0.007 346.604 0.000 0.570
  LEG*POS 2 0.000 1.756 0.174 0.007
  LEG*MAG 2 0.000 8.018 0.000 0.030
  POS*MAG 4 0.000 7.494 0.000 0.054
  LEG*POS*MAG 4 0.000 1.392 0.235 0.011
Note.  DA: Decision Accuracy 
          POS: Testlet/discrete item position; 
           LEG: test length; 
           MAG: LID magnitude. 
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Figure 12 compares the bias and the rmse functions across the three LID 

magnitudes with the long test length condition. Figure 12 (a) shows that the bias and the 

rmse functions for the three LID magnitudes are virtually close to each other throughout 

the entire theta range when the proportion of testlet items is small. When the proportion 

of testlet items is moderate or large, Figure 12(b) and Figure 12(c) show that the bias and 

the rmse increases as the LID magnitude increases at each ability level. The differences 

of bias and rmse between any two LID magnitudes become large as the proportion of 

testlet items becomes large.  
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Figure 12: Comparison of bias and rmse across the three LID magnitude levels under 
long test length condition 

 
(a) The proportion of testlet items=.33; Long 
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Figure 12, continued 
 

 
(b) The proportion of testlet items=.67; Long 
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Figure 12, continued 
 

 
(c) The proportion of testlet items=1; Long 
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Each locally dependent test data is simulated according to a combination of 

specified factors. The studied factors include: the test length, the proportion of testlet 

items, the position of testlet/discrete items, and the LID magnitude associated with the 

testlets. The expectation is that each factor will contribute to the overall LID in the 

examinees response data. Ignoring LID and fitting a unidimensional 3PL model will 

result in the loss of ability estimation precision and decision accuracy. The following 

findings confirmed the expectations.  

First, among all the simulated conditions, the panels of locally independent data 

with the long test length produce the lowest RMSE and highest DA. Comparing with the 

item locally independent data, all MSTs of locally dependent data yield larger RMSE and 

smaller DA.   

Second, consistent with many test length studies, longer tests yield smaller 

magnitude of BIAS and RMSE, and higher DA. The test length of the MST design has 

large effect on each of the three evaluation criteria. The loss of ability estimation 

precision with short test length is probably mainly due to the poor measurement of 

examinees with high or low abilities.  

Third, the position of testlet/discrete items in the MST design is found to have 

large effect on the overall decision accuracy. Its effect on the precision of ability 

estimation is ignorable or small. Its large effect on decision accuracy is mainly because of 

the estimation differences of high ability examinees between testlet/discrete items 

positioned on Stage 1 or on Stage 2 and Stage 3. In most situations, there are no 

significant mean differences of BIAS, RMSE or DA between position of Stage 2 and 

Stage3.   
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Fourth, the effects of the proportion of testlet items in the MST design are found 

to be statistically significant. When the LID magnitude is at least moderate, large 

proportions (.67 or 1) would produce large BIAS and RMSE, and small DA at each 

ability level; Small proportion of testlet items would produce small BIAS and RMSE, as 

well as large DAs at each ability level..  

Fifth, the effects of the LID magnitude are found to be statistically significant in 

terms of ability precision and decision accuracy. Testlets with moderate and large LID 

magnitudes generate large magnitude of BIAS and RMSE and small DAs, and vice versa. 

Sixth, the interaction effects exist at the four studied factors. Among all possible 

combination of interactions, the interaction between the LID magnitude and the 

proportion of testlet items have large effect on each of the three evaluation criteria. The 

other combinations may produce large effect on ability estimation but small to moderate 

effect on the decision classifications.  

In short, each of the four studied factors would influence the precision of ability 

estimation and decision accuracy. Among all the studied factors, the testlet/discrete item 

positions are found to be less influential than the other factors. Among all the possible 

interactions, the interaction effects between the LID magnitude and the testlet item 

proportion and the interaction between the testlet item proportion and the test length are 

the most important.  They are non-ignorable and may have large effect on the accuracy of 

ability estimation and decision accuracy.  
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Research Question II 

To answer research question 2 “Would the 3PL testlet model that can account for 

LID improve the measurement precision, and decision accuracy over the 3PL model?”, 

the 3PL testlet model is used to calibrate the item pools, to construct MST panels and to 

estimate examinees’ abilities under the 21 item dependent conditions. The three 

evaluation criteria are then computed and compared with those under the 3PL model.  

Model Effect 

The means of BIAS, RMSE, and DA over 30 replications with the 3PL testlet 

model under both test length conditions are presented in Table 18. It appears that the 

overall BIAS are negative under all simulation conditions, indicating that examinees’ true 

abilities are underestimated. Comparing with the results presented in Table 5, with the 

same simulation condition the absolute values of BIAS with the 3PL testlet model is 

larger than those with the 3PL model; the RMSEs with the 3PL testlet model are higher 

than those with the 3PL model; and the DA rates with the 3PL testlet model are lower 

than those with the 3PL model with a few exceptions under the short test length 

condition.  
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Table 18: Evaluation criteria with the 3PL testlet model 

Simulation 
Condition 

Item 
Pool 

LID 
Magnitude

Testlet 
Item 

Proportion Position
BIAS RMSE 

Decision 
Accuracy 

Long Short Long Short Long Short 
2 

2 0.25 0.33 

tslt_s1 -0.039 -0.046 0.358 0.422 0.924 0.919 
3 tslt_s2 -0.044 -0.045 0.357 0.420 0.933 0.934 
4 tslt_s3 -0.043 -0.044 0.352 0.423 0.939 0.932 
5 

3 1 0.33 

tslt_s1 -0.039 -0.053 0.377 0.439 0.920 0.913 
6 tslt_s2 -0.047 -0.043 0.372 0.436 0.925 0.931 
7 tslt_s3 -0.044 -0.048 0.365 0.444 0.933 0.930 
8 

4 1.5 0.33 

tslt_s1 -0.030 -0.048 0.385 0.451 0.922 0.911 
9 tslt_s2 -0.041 -0.034 0.378 0.446 0.926 0.930 
10 tslt_s3 -0.039 -0.043 0.371 0.451 0.934 0.925 
11 

5 0.25 0.67 

dsct_s1 -0.033 -0.043 0.400 0.456 0.913 0.920 
12 dsct_s2 -0.021 -0.032 0.391 0.441 0.921 0.920 
13 dsct_s3 -0.039 -0.041 0.400 0.443 0.922 0.916 
14 

6 1 0.67 

dsct_s1 -0.040 -0.039 0.462 0.527 0.904 0.900 
15 dsct_s2 -0.025 -0.040 0.463 0.517 0.906 0.906 
16 dsct_s3 -0.037 -0.043 0.461 0.544 0.912 0.905 
17 

7 1.5 0.67 

dsct_s1 -0.018 -0.025 0.480 0.565 0.901 0.893 
18 dsct_s2 -0.019 -0.033 0.481 0.547 0.901 0.893 
19 dsct_s3 -0.024 -0.043 0.479 0.544 0.908 0.905 
20 8 0.25 1 N/A -0.062 -0.064 0.472 0.489 0.919 0.908 
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21 9 1 1 N/A -0.037 -0.040 0.639 0.641 0.881 0.879 
22 10 1.5 1 N/A -0.043 -0.047 0.721 0.728 0.858 0.858 

Note. tslt_s(x): testlet items positioned on Stage (x); dsct_s(x): discrete items positioned on Stage (x), x=1, 2, or 3 
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To study the model effect, a series of ANOVA tests are carried out. Since the 

simulation conditions of test length and measurement model are fully crossed, the 

interaction between measurement model and test length are also studied. Table 19 

summarizes the twenty-one ANOVA results.  Detailed ANOVA results are presented in 

Appendix E-2.  The results suggest that on average the measurement model has large 

effect on each of the three evaluation criteria. On average the interaction effect between 

the test length and the measurement model also can have large effect on each of the three 

evaluation criteria. 

 

Table 19: Summary statistics of ANOVA results for measurement model effect, test 
length and their interaction effect 

Dependent 
Variable Source 

Sum of 
Squares F-value p-value 

Partial 
eta 
squared

BIAS 

Length 0.001 64.623 0.174 0.259
Model 0.030 3557.569 0.000 0.953
Length*Model 0.001 86.358 0.030 0.319

RMSE 

Length 0.071 12645.684 0.000 0.985
Model 1.568 280282.296 0.000 0.999
Length*Model 0.006 1117.282 0.000 0.858

Decision 
Accuracy 

Length 0.001 190.465 0.037 0.511
Model 0.012 1914.186 0.004 0.709
Length*Model 0.000 46.644 0.134 0.209
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Figure 13 compares the BIAS and the RMSE between two models with 

simulation condition 2 of the long test length condition. Results for other simulation 

conditions and short test length conditions are similar (See Appendix F-5). Under the 3PL 

model, the BIAS and RMSE are smallest in the middle of ability distribution. The values 

of BIAS and RMSE increase as the ability becomes more extreme.  Under the 3PL testlet 

model, the curves for BIAS and RMSE are more flat comparing to those with the 3PL 

model. They show less magnitude of BIAS and RMSE at the two tales of the ability 

distribution (large than 2 or smaller than -2), but higher values of BIAS and RMSE in the 

middle of ability distribution (between -2 and 2).  
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Figure 13: Comparison of bias and rmse under simulation condition 2 with long test 
length 
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Summary 

To answer research question 2, with the twenty-one item local dependent 

simulation conditions, the 3PL testlet model is used to calibrate item parameters, to 

construct MST panels and to get examinees’ both interim and final ability estimation. The 

final ability estimation is further compared with the predefined cut score to make pass-

fail decisions. The results under the 3PL testlet model surprisingly do not “improve” the 

ability estimation under all simulation conditions. The ANOVA results suggest that the 

model effect is significantly large on all three evaluation criteria. A close examination of 

the bias and the rmse across the ability scale shows that comparing with the true 3PL 

testlet model, the 3PL models yields larger bias and rmse at the two tales of theta scale 

and smaller bias and rmse in the middle of ability distribution. 

Examination of Item Parameter Calibration and Information Provided by MST Panels 

Since the 3PL testlet model does not provide the same level of accuracy of ability 

estimation and decision classifications, efforts are made to exam the performance of the 

3PL testlet model in the first two steps of MST: the calibration of item parameters in the 

pool and the construction of MST panels.  

Using the 3PL testlet model to calibrate items in the pools, it improves the item 

parameters estimation (as suggested in Appendix B), especially for the a parameters. 

Using the results presented in Table B-1, it appears that the a-parameter estimation is 

strongly associated with the properties of item pools. Item pools of larger proportions of 

testlet items and larger LID magnitudes of testlets will produce worse estimation of the a 

parameters as measured by the correlation between their true values and estimated values 

and the RMSE. The results presented on Table B-2 suggest that the estimation of the a 
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parameters are not influenced by the item pool structure or the magnitudes of testlets. No 

matter what the proportion of testlet items is and at what LID magnitude, using the 3PL 

testlet response model would generate the same level of estimation.  

Figure 14 shows the comparison plots of the a and b parameters across the 3PL 

model and the 3PL testlet model with item pool 8. Figure 14(a) indicates larger a values 

for the 3PL model, while Figure 14(b) shows close alignment of the b parameters. These 

results are consistent with those from Acherman (1987) and Wainer et al. (2000) that 

when the LID exists the item discrimination parameters would be over-estimated using 

the IRT model, while the difficulty parameter are well estimated.  This implies that the 

loss of the precision of ability estimation and decision accuracy is partially caused by the 

poor calibration of item parameters in the pool, especially the a parameters. 
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Figure 14: Comparison of the a and b parameters across the 3PL model and the 3PL 
testlet model 
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Figure 15 compares the information functions with a panel between the two 

models with item pool 8. Each information curve represents the information provided by 

a panel constructed under a model. Note that the two panels may be composed of 

different items or testlets. Figure 15 indicates that the panel constructed by the 3PL 

model provides more information in the middle of the ability distribution, while the 3PL 

testlet model has more information at the two tales of the ability distribution. This is 

different from the information curves listed in Yen (1993) in which the two information 

curves representing locally independent and LID never overlap with each other along the 

ability scale. This is probably because the information curved presented here includes the 

impact of the item selection and construction of MST panels, while in Yen (1993), the 

items are the same and the test is fixed.  Figure 15 is also consistent with previous RMSE 

plot (Figure 13(b)) and implies that the inflated a-parameter estimation may cause 

inappropriate items or testlets to be included in the MST panels and produce inflated 

reliability for examinees that are in the middle of ability distribution.    

Figure 15: Comparison of panel information functions across the two models 
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Chapter 5: Summary and Discussion 
 

This chapter provides a summary and discussion of the study. It begins with a 

brief restatement of the research questions and a summary of the methodology used in 

this study. This is further followed by a discussion of the major findings of the study. 

Conclusions and practical applications are then described. Limitations of the study and 

directions for future research are given in the final section.  

Restatement of Research Questions 

As mentioned in Chapter 1, there are two objectives in this study. The first 

objective is to investigate the impact of LID of testlet items on the performance of MSTs 

for pass-fail decisions.  The magnitude of LID is manipulated. Several MST design 

variables which could further influence the impact of LID are also studied. These 

variables include the proportion of testlet items, the testlet/discrete items positions, and 

the module/test length. The second objective is to apply the 3PL testlet model to account 

for LID, and to compare its performance with the 3PL model. In other words, this study 

tries to provide information in response to the following two research questions: 

1. If the 3PL model is the measurement model, how are the measurement 

precision and classification accuracy impacted by the proportion of testlet items in an 

MST, the position of the testlet items (which stage?), the magnitude of LID, and the test 

length? 

2. Would the 3PL testlet model that can account for LID improve the 

measurement precision and classification accuracy over the 3PL model?  

Simulated data sets are used to investigate the objectives of this study. The 

selected MST design is of 1-2-2 structure. In this design, each panel has five modules. 
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Each module is targeted at a specific difficulty level. Stage 1 has one moderate module, 

Stage 2 and Stage 3 each has a moderate module and a hard one. The routing cut score is 

set at θ=.5. The final pass-fail cut score is set at θ=1. To control the item exposure rate 

less than .25, eight panels are constructed at each simualtion condition.  

Four factors that are associated with the MST design is manipulated in this study. 

The first factor is the testlet item proportion in the item pool. The item pool is structured 

to have both discrete item and testlet items. It is assumed that the final MSTs are 

constructed to have the same proportion of testlet items as the item pool. Four 

proportions are studied: 0, 33%, 67%, and 100%, correspondingy to represent no items, 

33%, 67%, and all items in the pool are testlet items. Each item pool is designed to have 

1200 items. The second factor is the position of testlet/discrete items. Depending on the 

proportion of testlet items, the minority items could be placed on one of the three stages. 

The third factor is the LID magnitude. Three levels of LID magnitude are studied by 

setting σ୰౟ౚሺౠሻ
ଶ =.25, 1, and 1.5 or standard deviation of .5, 1, and √1.5 correspondingly to 

represent small, moderate and large effects. The last factor of interest is the module 

length. Two module lengths are considered in this study: 12 and 8.  

The 3PL testlet model is used to generate item responses. The 3PL model and 

3PL testlet model are used to calibrate, to construct MSTs and to score examinees 

seperately. A total of 88 simulated conditions are studied. Each simulation condition is 

replicated 30 times. A group of 2500 examinees are simulated to take each panel of MST. 

They are defined as 100 ݏߠ from -3 to 3 in increments of .25. The MSTs are constructed 

to put most informative items on early stages. During the administration, an examinee 

encounters a moderate module in the first stage. Accoring to the routing rule, the 
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examinee is routed to one of the two modules on Stage 2. At the end of Stage 2, the 

routing rule is applied again to select one of the two modules on Stage 3 for the 

examinee. In total, each examinee is administered three modules, and selections are 

tailored at Stage 2 and Stage 3 to the ability of examinees.  

To evaluate ability estimation and classification results under various simulation 

conditions, the 2500 examinees true and estimated ability and pass-fail status are 

compared. Summary indices – BIAS, RMSE and DA over 30 replications are computed 

and used for final comparisons. ANOVA tests are conducted to identify the significant 

performance differences among the studied factors.  

Discussion of Major Findings 

Results of the above analysis are described in detail in Chapter Four. Here some 

highlights of the findings are summarized and discussed.  

Research Question 1 

First, the results of this study show that panels of locally independent data yield 

the smallest RMSE and the highest DA. Ignoring the testlet effects and fitting a 

unidimensional 3PL model result in the loss of ability estimation precision and decision 

accuracy. This finding is consistent with many of the previous studies of LID caused by 

testlet items on PPTs. This finding is also consistent with Glas & van der Linden (2003) 

and Pommerich & Segall (2008) in which the precision of ability estimation was 

negatively affected when the dependences between items were ignored. Their LID was 

caused by item cloning which belongs to another family of LID. The explanation is that 

ignoring LID in the response data and fitting a unidimensional IRT model is a case of 
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model misspecification, which generally leads to bias in parameter estimation and hence 

to the classification decisions.  

Second, consistent with many test length studies, this study finds that MSTs 

composed of more items would produce smaller magnitude of BIAS and RMSE , and 

higher DA for a standard normal distribution. The test length has large effect on each of 

the three evaluation criteria. Comparing to other MST studies (e.g., Hambleton &  Xing, 

2006; Jodoin, Zenisky, & Hambleton, 2006; Zhang, 2006), the long test length condition 

specified in this study is relatively short. But this study still produces comparable 

decision accuracy rates even with the worst LID conditions. This results proves Stark & 

Chernyshenko (2006)’s suspect that the test length specified in those studies might be too 

long to reveal the psychometric benefits of MST as compared to traditional static tests. 

As stated in Jodoin et al. (2006)’s paper, reducing test length would reduce exam costs 

for examinees, test developers as well as test administers with the benefit of reducing 

testing time, lowering item exposure levels, and requiring a smaller item pool. Of course, 

the test length is also determined by the needs of content coverage, the requirement of 

measurement precision as wells as other concerns of operational usage. Whether an even 

shorter test as used in this study is feasible in operation depends on the specific needs of 

testing agencies, the characteristics of examinee population and the inferences to be 

drawn from the examination. 

Third, the position of testlet/discrete items in the MST design is found to have 

effect on the three evaluation criteria. Among the three studied testlet/discrete item 

positions, the DA associated with Stage 1 is significantly different from those associated 

with Stage 2 or Stage 3, where there are no significant differences between Stage 2 and 
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Stage 3. This is probably because the item type and the choice of measurement model for 

the first stage are more important than for the rest stages. For example, when the 

proportion of testlet items is .33, if the only testlet items are put on Stage 1, the misuse of 

the 3PL model would influence the ability estimation after Stage 1, thus the routing 

decisions by putting examinees into the wrong modules of Stage 2. If the only testlet 

items are put on Stage 2, the 3PL model is the correct model for Stage 1 items. Though it 

is still the wrong model for items on Stage 2, its impacts on the ability estimation is much 

smaller and may not influence the routing decisions because at this stage the number of 

items already doubled.  If the only testlet items are put on Stage 3, the impact of using the 

3PL model is only on the final ability estimation. In another words, the position effect 

might be mitigated by increasing the number of items that are used to making routing 

decisions in the MST design. Future studies might appropriately focus on simulation 

studies that aim to understand the misclassification of routing decisions and final 

classification decisions by having varying number of items on each stage.  

Fourth, the effects of the proportion of testlet items are found to be significant. 

Large proportion of testlet items on the MST will produce large BIAS and RMSE, and 

small DAs at each ability level. The explanation for this finding is that the proportion of 

testlet items reflects the degree of model misspecification in an MST design.  The large 

proportion of testlet items in an MST design is, the large the degree of model 

misspecification is. Thus the poor person parameter estimation is. As suggested in Yen 

(2006), while the effect of LID can be very large when estimating the amount of 

information that comes, the effects can be minimized by reducing the proportion of testlet 

items.  
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Fifth, this study finds that the ability estimation is adversely impacted by the 

moderate and high LID levels simulated here. Increasing the LID magnitude will lead to 

the increase in the BIAS and the RMSE and the decrease in the DA.   

Sixth, this study finds that the interaction between the proportion of testlet items 

and the LID magnitude has large effect on each of the three evaluation criteria. As the 

overall LID conditions become severe (e.g., larger proportion of testlet items, bigger LID 

magnitude associated with each testlet), the ability estimation becomes worse and the 

classification errors spread to more ability levels. However, the 3PL model is robust with 

LID when the proportion of testlet items and the LID magnitudes associated with testlets 

are small.   

Research Question 2 

This study also uses the 3PL testlet model to calibrate item parameters in the pool, 

to construct MST panels and to score examinees. The results indicate that using the 3PL 

testlet model to calibrate items in the pools, it improves the item parameters estimation. 

The results also suggest that using the 3PL testlet model, the estimation of the a 

parameters are not influenced by the item pool structure or the magnitudes of testlets 

which contribute to the item parameter estimates using the 3PL model.  

The panel constructed by the 3PL testlet model has more information at the two 

tales of the ability distribution, while the 3PL model provides more information in the 

middle of the ability distribution. This is different from the information curves listed in 

Yen (1993) in which the two information curves representing locally independent and 

LID never overlap with each other along the ability scale. This is probably because the 

information curved presented here includes the impact of the item selection and 
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construction of MST panels, while in Yen (1993), the items are the same and the test is 

fixed.   

For ability estimation and decision classifications, the results indicate that the 3PL 

testlet model does not “improve” the overall ability estimation and the classification 

accuracy. Actually, the results prove that using the 3PL model to calibrate item pools, to 

construct MST panels and to score examinees is wrong when there is large proportion of 

testlet items and their LID magnitudes are large. As to the classification accuracy, the DA 

rates under the 3PL model are still higher than those using the 3PL testlet model. 

Whether test developers would want to use the 3PL testlet model in their MSTs would 

still be a question.  

Practical Implications 

MST is a new computerized test delivery technology aimed at enhancing the 

quality of credentialing exams. Many studies (e.g., Hambleton & Xing, 2006; Jodoin et 

al. 2006; Keng, 2008) have compared the MST design with PPT and CAT and concluded 

that though MST could not reach the same measurement precision as CAT; it has the 

potential to increase testing efficiency and decision accuracy comparing to traditional 

linear fixed length tests or computerized fixed tests. To test developers, MST provides 

better test security with a single item pool, as it is possible to create many panels that are 

parallel in content and information, and panels can be randomly assigned to examinees. It 

also allows greater control over test construction because subject experts have the 

opportunity to review all panels and conduct analyses examining dimensionality, adverse 

impact and differential test function before the publication of the test. Comparing to 

CAT, MST can better accommodate testlet items. Recently, there has been an increased 
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interest in applications of testlet items (Downing, 2006). Comparing to PPT, MST is 

adaptive in nature and is therefore more efficient than PPT. All these make the MST 

design appealing to many testing agencies. To test takers, comparing to CAT, MST 

provides greater flexibility. And examinees like the ability to review the items within 

modules and may apply their favorite testing strategy within a stage. 

To design an MST test, there are a number of factors to consider. First 

consideration is the test specification which includes “the content covered by the test, 

proposed number of items, format(s) of the item, desired psychometric properties of 

items, and item and section arrangement” (American Educational Research Association 

[AERA], American Psychological Association [APA], & National Council on 

Measurement in Education [NCME], 1999). Second important consideration is the item 

pools which include the pool size and pool composition. The third important 

consideration is about measurement. In other words, use which method (CTT or IRT) and 

which model if the method is IRT to describe the relationship between items, examinees 

abilities, and their responses. This study tries to address some of factors mentioned 

above, but not all. The addressed factors include test specification (the number of items in 

each module, the item types as well as their stage arrangements); the item pool structure 

(proportion of testlet items); and the measurement model (3PL model or 3PL testlet 

model). Thus, the findings from this study contribute to the expanding knowledge base in 

the field of research and provide practical guidelines to programs that are considering 

MST as the test delivery model.  

First, this study evaluates the robustness of using the 3PL model with MSTs that 

are designed to make pass-fail decisions when there are testlet items which are causing 



135 
 

the LID problem. To the author’s knowledge, that is no other literature addressing this 

issue yet. Each simulation generates data according to the 3PL testlet model. The 

evaluation determines how successfully the 3PL model would recover the examinees’ 

true ability values and true pass-fail status despite the presence of LID. The results 

suggest that using the 3PL model with the MST design when there are testlet items is 

fairly robust to the violation of local independence assumption as long as the LID 

magnitude associated with the testlets is small and the proportion of testlet items is small. 

This warrants the test developers that if there are testlet items that have small LID 

magnitude, they still can be put on the MST panels. The conventional 3PL model may 

still be applicable to calibrate the item pools, to construct MST panels and to score 

examinees as long as the test length is sufficiently long.  

Second, the study evaluates several factors that may contribute to the local item 

dependence in the examinees’ response data through the MST administration and 

therefore affect the final ability estimation and decision accuracy. The factors include the 

proportion of testlet item in the MST panels (or in the pool), the position of 

testlet/discrete items, and the LID magnitude associated with each testlet. The results help 

us to understand each of the factors and their interaction effects on the final ability 

estimation and decision accuracy. To test developers, the simulation results may help 

them to decide the proportion of testlet items and their positions to appear in the MST 

panels. For example, if the test developers decide that the testlet item proportion is .33 

and the test length is long, the testlet items appearing on Stage 2 or 3 do not have 

significant difference on decision accuracy. This may give test developers some 

flexibility in arranging their items without worrying about the loss of decision accuracy. 
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The simulation results also help them to decide what levels of LID magnitude are 

tolerable. Since the costs associated with item develop (item writing, pretesting) are high, 

test developers will be glad to retain testlet items in the MST panels knowing that  they 

do not cost too much loss of the accuracy of ability estimation and classification 

decisions.  

Third, the studied factors include the test length. Comparing to traditional PPT, 

MST has the benefits of efficiency. Efficiency is partially defined by the test length. 

Short MST panels with the same item pool means less item exposure rate and thus less 

test security problems. However, short test length is always accompanied with less test 

precision. The results in this study help test developers to see the lost ability estimation 

precision and decision accuracy, and help them to make a decision whether they would 

tolerate the lost precision and decision accuracy by shortening the test length. The results 

of this study also suggest that the effects of the above studied factors (e.g., testlet item 

proportion, testlet/discrete item position, and LID magnitude) may be large or small 

depending on the test length. Comparing to other MST studies, the short test length is 24 

items (8 items per module), is much shorter than those on other MST studies. The results 

partially provide response to Stark & Chernyshenko (2006)’s question that shorter tests 

(15-20) of MST may provide increase in efficiency over traditional paper-pencil tests.  

Fourth, the study demonstrates the use of 3PL testlet model with testlet items in 

constructing MST panels and scoring examinees. The testlet items are designed to appear 

in one module and with only one stimulus. Thus, in this study, the original number of 

items associated with a stimulus is high (twenty in the simulation design). Either twelve 

or eight items are selected during the construction of MST panels. The application of 
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polytomous response models to calibrate the item parameters and to select item 

intelligently may not be practical. This study also contributes to the research community 

with the computation of item information and EAP estimation of abilities with the 3PL 

testlet response model. All these demonstrate that the 3PL testlet model is a viable option 

for testing programs considering the MST design.  

Finally, based on the results of this study, some suggestions can be made to 

minimize the effect of LID on the MSTs that are designed to make pass-fail decisions. 

First, LID and its effects can be minimized by constructing the tests with discrete items 

that are independent with each other. If testlet items are included in the MST design, 

testlet items can put on later stages rather than in the first stage. If the proportion of testlet 

items is large in the MSTs, the 3PL testlet model can be used as the measurement model 

appropriately to account for LID.  

Limitations of This Study and Future Research Directions 

In general, this study tries to mimic an MST from the calibration of item 

parameters in the pools, to construct MSTs and to administer and score examinees. 

Comparing to operational use, the simulation design has its limitations in the first two 

aspects.   

The calibration of item parameters in the pool in this study uses a simple scheme 

in which 3000 examinees respond to all 1200 items in each pool. This is not achievable in 

reality. The item parameters are typically estimated by pilot- or field-testing of each item 

prior to its appearance on an operational test form. A common model for pretesting is to 

administer each examinee some number of pretest items (which do not contribute to 

scoring) alongside his or her operational test. Some equating methods are then used to put 



138 
 

item parameters in the same scale. Alternatively, testing programs can seek volunteers to 

take sets of new items. In either case, none of examinees respond to all of the pretest 

items. However, for testing agencies to carry out the calibration of new items, a lot of 

questions need to be answered before implementing it, such as what is the sample size 

requirement? What is the number of pretest items? What is the number of linking items to 

appear in each form? Where to put the new testlet items and how many of them in the 

case of test forms composed of both of testlet items and discrete item? Testing agencies 

want new items to be accurately and reliably calibrated before they can be used in the 

operational MST panels. This study does not seek to provide responses to those 

questions. Future studies can address these issues.  

The construction of MST in this study only considers the psychometric property 

of items. There are several limitations. First, in practice, content control is a very 

important consideration during test construction. In operational tests, due to the limitation 

of item pools, sometimes the psychometric property has to be sacrificed in order to reach 

the goal of adequate content coverage. This study ignores that. Second, in the simulation, 

each testlet is set to have 20 items. 12 items are selected within a testlet to make up a 

module. Thus, a large proportion of items in a testlet would not be used. In reality, a 

module may consist both discrete and testlet items. Thus, the testlet itself does not have 

to have a large number of items. Third, the construction of MST in this study considers 

test information only at two ability levels: ߠ ൌ 0, and ߠ ൌ 1. There is no further 

assurance that in a wide range the test information provided by different MST panels are 

similar. van der Linden (2005)  suggested to use linear programming approach to 

construct test forms. Luecht, Brumfield, & Breithaupt (2006) described some steps 
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necessary to construct MST panels via ATA. In both methods, complicated content 

specifications can be implemented. However, they only focus on discrete items. Future 

studies can explore the usage of those methods with testlet items in constructing MST 

panels.  

As for any study that uses simulated data, the findings of this study are restricted 

by the prescribed LID data conditions and the levels of each studied factors.  

As to the LID data condition, this study addresses the issues of LID with testlet 

items, in which LID could easily be described using the 3PL testlet model. There are 

other situations that may result LID. For examples, LID due to the relationship between 

item pairs, such as item clones, reverses, or alternatives. These LID items appear as 

discrete items. Future studies can evaluate the impact of LID caused by those factors on 

the MST design.  

In this study, the proportion of testlet items and the position of testlet/discrete 

items are partially determined by the structure of the studied MST: 1-2-2. Other MST 

designs such as 1-3-3 or 1-2-3-4 might accommodate more levels of testlet item 

proportions. Or other small (e.g., .20) or large (e.g., .80) proportion of testlet items can be 

arranged with the current MST structure by specifying certain modules having a 

combination of both discrete and testlet items. The allocation of items across the stages 

(e.g., longer or shorter initial and final stages) can also be varied in future studies.   

In the simulation, the LID magnitudes are kept constant (small, moderate and 

large) with each item pool. In reality, different testlet would probably exhibit varying 

levels of LID magnitude ranging from none to very large. Simulating a range of LID 
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magnitude rather than a constant value with the same item pool might be one option for 

future research.  

The MSTs in this study are designed to provide pass-fail decisions. Only one cut 

score is specified in this study. And the hard module in the MST panels is designed to 

provide most information at the cut score. Other cut scores (e.g., .5, 0 or -.5) may produce 

different results with current simulation design.  

In summary, this study investigates the impacts of using the 3PL model with 

testlet items in the MSTs where the local item independent assumption is violated and 

tries to solve the problem by using the 3PL testlet model. However, MST is a relatively 

new computer delivery model. From the initial item development to the final 

administration of MST panels, further investigation is still needed.   
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Appendix A: EAP Estimation with the 3PL Testlet Model 
 

Under the 3PL model, the ability estimate is: 

෠ߠ ൌ
∑ ሺܳሻܹሺܳሻܮܳ
∑ ሺܳሻܹሺܳሻܮ  

In which,  ܳ is a quadrature point in the ability scale, and W(Q) is weight of the 

quadrature point. ܮሺܳሻ is the likelihood of a person’s response pattern at ܳ quadrature 

point.  

Under the 3PL testlet model, 

P୧୨ሺθ୧ሻ ൌ c୨ ൅ ሺ1 െ c୨ሻ
expሾa୨ ቀθ୧ െ b୨ െ γ୧ୢሺ୨ሻቁሿ

1 ൅ expሾa୨ ቀθ୧ െ b୨ െ γ୧ୢሺ୨ሻቁሿ
 

Since γ୧ୢሺ୨ሻis unknown, the quadrature point idea is applied. Assume ܳఏ represents 

quadrature point in the ability scale; ܳఊ represents quadrature point in the testlet effect 

scale; W(ܳఏ) is weight of the ability quadrature point; and W(ܳఊ) is the weight of the 

testlet effect  quadrature point, the EAP estimate is: 

෠ߠ ൌ
∑ ܳఏܮሺܳఏሻܹሺܳఏሻ

∑ ሺܳఏሻܹሺܳఏሻܮ ,  

Assuming that the testlet effect parameter is independent of theta, which is the standard 

assumption, one can get that ܮሺܳఏሻ ൌ ∑  ,൫ܳఏ,௥൯ܹሺܳ௥ሻܮ

thus, 

෠ߠ ൌ
∑ ܳఏሾ∑ ൫ܳఏ,௥൯ܹሺܳ௥ሻሿܹሺܳఏሻܮ

∑ሾ∑ ൫ܳఏ,௥൯ܹሺܳ௥ሻሿܹሺܳఏሻܮ
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In this study, for an MST that has testlet items on its all three stages, the ability 

estimate could be written as: 

෠ߠ ൌ ∑ ொഇ௅ሺொഇሻௐሺொഇሻ
∑ሾ∑ ௅ሺொഇሻௐሺொഇሻ

,  

where ܮሺܳఏሻ ൌ ௧௦௟௧ଵሺܳఏሻܮ כ ௧௦௟௧ଶሺܳఏሻܮ כ  ௧௦௟௧ଷሺܳఏሻ, andܮ

௧௦௟௧ሺ௜ሻሺܳఏሻܮ ൌ ∑ ௧௦௟௧ሺ௜ሻ൫ܳఏ,௥൯ܮ ௧ܹ௦௟௧ሺ௜ሻሺܳ௥ሻ; i=1, 2, or 3. 

For a MST with both individual and testlet items, ܮሺܳఏሻ can be seen as the 

combination of ܮௗ௦௖௧ሺܳఏሻ and ܮ௧௦௟௧ሺܳఏሻ, where ܮ௜ௗ௦௖௧ሺܳఏሻ is the likelihood of the 

response pattern for discrete items and ܮ௧௦௟௧ሺܳఏሻ is the likelihood of the response pattern 

for testlet items. For example, if the first stage of an MST consists of testlet items and the 

second and third stages are discrete items, an examinee’s ability can be obtained using 

the following formula: 

෠ߠ ൌ
∑ ܳఏܮሺܳఏሻܹሺܳఏሻ

∑ ሺܳఏሻܹሺܳఏሻܮ ,  

In which ܮሺܳఏሻ ൌ ௧௦௟௧ଵሺܳఏሻܮ כ ௗ௦௖௧ଶሺܳఏሻܮ כ  ௧௦௟௧ଵሺܳఏሻ represents theܮ ௗ௦௖௧ଷሺܳఏሻ, andܮ

likelihood of responses of stage 1 items; ܮௗ௦௖௧ଶሺܳఏሻand ܮௗ௦௖௧ଷሺܳఏሻ represent the 

likelihood of responses of stage 2 and stage 3 respectively.  
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Appendix B: Item Parameter Estimates  
 

Table B- 1: Summary statistics for estimated item parameters by the 3PL model 
(N=1200) 

Item 
Pool 

Parameter 
Estimate Min Max Mean S.D Correlation RMSE 

1 

a_est 0.389 1.949 0.991 0.296 0.935 0.128 
b_est -2.966 2.672 0.167 0.942 0.967 0.321 
c_est 0.012 0.400 0.200 0.071 0.688 0.083 

2 

a_est 0.371 1.796 0.987 0.283 0.926 0.129 
b_est -3.215 2.402 0.116 0.946 0.962 0.305 
c_est 0.014 0.474 0.202 0.072 0.677 0.085 

3 

a_est 0.346 1.764 0.953 0.271 0.879 0.143 
b_est -2.606 2.351 0.123 0.937 0.959 0.318 
c_est 0.019 0.479 0.202 0.072 0.661 0.086 

4 

a_est 0.392 1.897 0.934 0.272 0.846 0.157 
b_est -2.701 2.437 0.123 0.938 0.961 0.312 
c_est 0.019 0.447 0.202 0.070 0.651 0.087 

5 

a_est 0.385 1.764 0.975 0.276 0.914 0.130 
b_est -2.858 2.635 0.116 0.943 0.960 0.312 
c_est 0.016 0.419 0.202 0.071 0.656 0.086 

6 

a_est 0.306 1.791 0.863 0.250 0.807 0.181 
b_est -3.504 2.559 -0.009 0.986 0.926 0.376 
c_est 0.000 0.399 0.165 0.090 0.386 0.099 

7 

a_est 0.287 1.592 0.832 0.242 0.767 0.207 
b_est -3.299 2.367 -0.004 0.991 0.918 0.397 
c_est 0.000 0.474 0.165 0.092 0.354 0.103 

8 

a_est 0.247 1.612 0.883 0.261 0.899 0.132 
b_est -3.054 2.697 -0.018 1.030 0.936 0.363 
c_est 0.001 0.405 0.165 0.089 0.409 0.097 

9 

a_est 0.282 1.391 0.792 0.201 0.824 0.212 
b_est -3.128 2.452 -0.010 1.022 0.918 0.406 
c_est 0.001 0.500 0.167 0.093 0.363 0.103 

10 

a_est 0.284 1.244 0.748 0.182 0.813 0.247 
b_est -3.360 2.612 0.003 1.018 0.913 0.419 
c_est 0.001 0.448 0.169 0.092 0.351 0.104 
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Table B- 2: Summary statistics for estimated item parameters by the 3PL Testlet 
model (N=1200) 

Item Pool 
Parameter 
Estimate Min Max Mean S.D Correlation RMSE 

2 
a_est 0.405 1.595 0.903 0.260 0.940 0.101 
b_est -2.543 2.543 -0.034 0.947 0.962 0.264 
c_est 0.014 0.465 0.151 0.072 0.655 0.067 

3 
a_est 0.367 1.639 0.917 0.273 0.943 0.096 
b_est -2.484 2.493 -0.064 0.935 0.966 0.249 
c_est 0.013 0.494 0.146 0.066 0.694 0.062 

4 
a_est 0.387 1.760 0.911 0.276 0.946 0.095 
b_est -2.505 2.499 -0.059 0.928 0.967 0.247 
c_est 0.013 0.461 0.148 0.070 0.694 0.062 

5 
a_est 0.355 1.607 0.891 0.271 0.937 0.105 
b_est -2.619 2.584 -0.080 0.962 0.964 0.260 
c_est 0.014 0.475 0.139 0.067 0.647 0.066 

6 
a_est 0.400 1.719 0.912 0.272 0.943 0.096 
b_est -2.378 2.440 -0.048 0.924 0.958 0.278 
c_est 0.012 0.573 0.146 0.075 0.683 0.064 

7 
a_est 0.354 1.813 0.913 0.278 0.945 0.095 
b_est -2.613 2.436 -0.057 0.948 0.970 0.236 
c_est 0.013 0.461 0.144 0.066 0.728 0.059 

8 
a_est 0.373 1.630 0.865 0.254 0.932 0.120 
b_est -2.614 2.762 -0.011 0.969 0.955 0.290 
c_est 0.015 0.501 0.164 0.074 0.625 0.072 

9 
a_est 0.381 1.563 0.883 0.264 0.946 0.102 
b_est -2.478 2.892 -0.057 0.969 0.968 0.245 
c_est 0.015 0.458 0.146 0.068 0.734 0.058 

10 
a_est 0.323 1.589 0.885 0.271 0.947 0.099 
b_est -2.835 2.591 -0.073 0.970 0.966 0.255 
c_est 0.012 0.432 0.147 0.072 0.758 0.056 
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Table B- 3: Summary statistics for estimated testlet magnitude by the 3PL testlet 
model 

Item 
Pool 

True LID 
Magnitude n Min Max Mean S.D 

2 0.25 20 0.232 0.303 0.273 0.019 
3 1.00 20 0.928 1.190 1.014 0.054 
4 1.50 20 1.402 1.750 1.577 0.094 
5 0.25 40 0.132 0.319 0.265 0.027 
6 1.00 40 0.927 1.179 1.033 0.055 
7 1.50 40 1.357 1.741 1.552 0.096 
8 0.25 60 0.261 0.351 0.303 0.022 
9 1.00 60 0.983 1.224 1.095 0.060 
10 1.50 60 1.424 1.893 1.647 0.101 
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Appendix C: Example SAS codes to Assemble MST with Testlet Items and to 
Estimate Examinee Abilities with the 3PL Testlet Model 

 
proc printto log='c:\dissertation\auto.log' new; 
run; 
Options notes; 
 
 
%let pool=8; 
%let Total_item=1200; * total number of items in the pool; 
%let J=20; *number of total items with each testlet; 
%let T=60; 
 
 
libname one "c:\dissertation\pool&pool\"; 
libname two "c:\dissertation\pool&pool\scoright\step2\"; 
libname three "c:\dissertation\pool&pool\scoright\step2\step3\"; 
 
%let seed=1+round(1000*time()); 
%let Total_item=480; *total number of items in the panels; 
%let length_module=12; 
 
%let r=.25; *the magnitude of LID; 
 
%let nqpt=15; 
/* Set mean and variance for prior distribution */ 
%let mean = 0; 
%let sigma = 4; 
/* Set number of replications */ 
%let num_rpl=30; 
 
 
/*calculate item information*/ 
 
data qp_tslt (keep=qp_tslt1-qp_tslt&nqpt); 
     array qp_tslt{&nqpt} qp_tslt1-qp_tslt&nqpt; 
     qp_tslt1=-4; 
     do i=2 to &nqpt; 
         qp_tslt{i}=qp_tslt{i-1}+2*4/(&nqpt-1); 
     end; 
run; 
/*read in estimated testlet effect*/ 
 
filename tslt "c:\dissertation\pool&pool\scoright\res\testlet.est"; 
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data tslt; 
      infile tslt firstobs=4; 
 input tslt $ a $ est se_est; 
run; 
 
data tslt_item; 
     set one.item_3plt; 
run; 
proc iml; 
 
 /*calculate testlet item information */ 
     use tslt_item; 
      read all var {b_est1} into B;  
      read all var {a_est1} into A; 
      read all var {c_est1} into C;  
 close tslt_item; 
 
  w=j(1,15,1);  
  b=b*w; a=a*w; c=c*w; 
 
  *calculate item information at theta=0; 
  use qp_tslt; 
      read all into testlt; 
  close qp_tslt; 
  x=j(1200,1,1); 
  testlt=x*testlt; 
 
   
     D11=0-B-testlt;D12=A#D11;  
  D13=EXP(D12);  D14=1+D13;  
     D15=D13/D14;  D16=(D15#D15)#(A#A); 
     D17=(1-C)/(C+D13); 
  info0_tslt1=d16#d17; 
 
     D11=1-B-testlt;D12=A#D11;  
  D13=EXP(D12);  D14=1+D13;  
     D15=D13/D14;  D16=(D15#D15)#(A#A); 
     D17=(1-C)/(C+D13); 
  info1_tslt1=d16#d17; 
 
  use qp_tslt; 
        read all into qp; 
      close qp_tslt; 
 
     use tslt; 
     read all var {est} into tslt_1; 
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     close tslt;  
    
     do i=1 to &T; /*do it for each items*/ 
        tslt_var=tslt_1[i,]; 
     qpw=probnorm((qp+2*4/((&nqpt-1)*2))/sqrt(tslt_var)) 
              -probnorm((qp-2*4/((&nqpt-1)*2))/sqrt(tslt_var)); 
  qpw=t(qpw); 
     
  info0_tslt=info0_tslt1[(i-1)*20+1:20*i,]*qpw; 
  info1_tslt=info1_tslt1[(i-1)*20+1:20*i,]*qpw; 
        infotsl0=infotsl0//info0_tslt; 
        infotsl1=infotsl1//info1_tslt; 
  end; 
 
     infotslt=infotsl0||infotsl1;  
     info=info_indi//infotslt; 
 
  create item_info from info; 
  append from info; 
 
quit; 
 
data a; 
     do item_id=1 to 1200; 
  output; 
  end; 
run; 
data two.item_info; 
     set a; 
     set item_info;  
  rename col1=I0; 
     rename col2=I1; 
run; 
 
 
/*selection of tslt items*/ 
%macro select_items_tslt (level=); 
 
 
data item_infoT; 
      set two.item_info ;  
run; 
 
data a; 
     do T=1 to 60;  /*the item pool has 60 testlets*/ 
     do j=1 to 20; 
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  output; 
  end; 
  end; 
  keep T; 
run; 
 
data item_infoT; 
     set a; 
  set item_infoT; 
run; 
 
 
/*select the most 12 informed items at specified level;*/ 
data item_info&level; 
      set item_infoT; 
   keep  T item_id I&level; 
run; 
 
proc sort data=item_info&level; 
      by T descending I&level; 
run; 
 
data top12at&level(drop=count); 
  set item_info&level; 
  by T descending I&level; 
  if first.T then count=0; 
  count+1; 
  if count le &length_module then output; 
run; 
 
data top12at&level; 
      set top12at&level; 
   diff=&level; 
run; 
 
/*calculate the total information provided by 12 selected items within each testlet;*/ 
 
data info_eachTat&level (keep=T T_info&level); 
      set top12at&level; 
   by T; 
   if first.T then T_info&level=0; 
   T_info&level+I&level; 
   if last.T then output; 
run; 
 
proc sort data=info_eachTat&level out=three.info_eachTat&level; 
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      by descending T_info&level; 
run; 
 
%mend select_items_tslt; 
 
 
%macro assemble_module_tslt ; 
   
      data one; 
           set three.info_eachTat0 (obs=8); 
   run; 
   data two; 
           panel=0; 
           do i=1 to 8; 
        x=ranuni(&seed); 
     panel=panel+1; 
     stage=1; 
     diff=0; 
     output; 
        end; 
      run; 
      proc sort data=two out=two1 (keep=panel stage diff); 
           by x; 
      run; 
 
   data stage1m_T; 
           set one; 
        set two1; 
     rename T_info0=T_info; 
      run; 
 
   data module_info_tslt1; 
        retain panel stage diff module_info; 
        set stage1m_T (rename=(T_info=module_info)); 
     drop T; 
   run; 
 
       
 
   proc sort data=stage1m_T; 
           by T; 
      run; 
 
   data stage1m; 
           merge top12at0 stage1m_T ; 
        by T; 
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        if panel ne .; 
     drop T T_info; 
     rename I0=info; 
      run; 
 
  
 
      data one; 
      set three.info_eachTat1 (obs=8); 
      run; 
   data two; 
           panel=0; 
           do i=1 to 8; 
        x=ranuni(&seed); 
     panel=panel+1; 
     stage=2; 
     diff=1; 
     output; 
        end; 
      run; 
      proc sort data=two out=two1 (keep=panel stage diff); 
           by x; 
      run; 
   
      data stage2h_T; 
           set one; 
        set two1; 
     rename T_info1=T_info; 
      run; 
   data module_info_tslt2; 
        retain panel stage diff module_info; 
        set stage2h_T (rename=(T_info=module_info)); 
     drop T; 
   run; 
 
   
 
   proc sort data=stage2h_T; 
           by T; 
      run; 
 
   data stage2h; 
           merge top12at1 stage2h_T ; 
        by T; 
        if panel ne .; 
     drop T T_info; 
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     rename I1=info; 
      run;  
 
 
      data one; 
              set three.info_eachTat0 (firstobs=17 obs=24); 
      run; 
     data two; 
           panel=0; 
           do i=1 to 8; 
        x=ranuni(&seed); 
     panel=panel+1; 
     stage=3; 
     diff=0; 
     output; 
        end; 
      run; 
      proc sort data=two out=two1 (keep=panel stage diff); 
           by x; 
      run; 
 
    data stage3m_T; 
                   set one; 
        set two1; 
                  rename T_info0=T_info; 
      run; 
 
   data module_info_tslt5; 
        retain panel stage diff module_info; 
        set stage3m_T (rename=(T_info=module_info)); 
     drop T; 
   run; 
 
       
 
   proc sort data=stage3m_T; 
           by T; 
      run; 
 
   data stage3m; 
           merge top12at0 stage3m_T ; 
        by T; 
        if panel ne .; 
     drop T T_info; 
     rename I0=info; 
      run; 
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   data one; 
           set three.info_eachTat0 (firstobs=9 obs=16); 
   run; 
   data two; 
           panel=0; 
           do i=1 to 8; 
        x=ranuni(&seed); 
     panel=panel+1; 
     stage=2; 
     diff=0; 
     output; 
        end; 
      run; 
      proc sort data=two out=two1 (keep=panel stage diff); 
           by x; 
      run; 
 
   data stage2m_T; 
           set one; 
        set two1; 
     rename T_info0=T_info; 
      run; 
 
   data module_info_tslt3; 
        retain panel stage diff module_info; 
        set stage2m_T (rename=(T_info=module_info)); 
     drop T; 
   run; 
 
       
 
   proc sort data=stage2m_T; 
           by T; 
      run; 
 
   data stage2m; 
           merge top12at0 stage2m_T ; 
        by T; 
        if panel ne .; 
     drop T T_info; 
     rename I0=info; 
      run; 
 
      data one; 
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      set three.info_eachTat1 (firstobs=9 obs=16); 
      run; 
   data two; 
           panel=0; 
           do i=1 to 8; 
        x=ranuni(&seed); 
     panel=panel+1; 
     stage=3; 
     diff=1; 
     output; 
        end; 
      run; 
      proc sort data=two out=two1 (keep=panel stage diff); 
           by x; 
      run; 
   
      data stage3h_T; 
           set one; 
        set two1; 
     rename T_info1=T_info; 
      run; 
   data module_info_tslt4; 
        retain panel stage diff module_info; 
        set stage3h_T (rename=(T_info=module_info)); 
     drop T; 
   run; 
 
   
 
   proc sort data=stage3h_T; 
           by T; 
      run; 
 
   data stage3h; 
           merge top12at1 stage3h_T ; 
        by T; 
        if panel ne .; 
     drop T T_info; 
     rename I1=info; 
      run; 
 
 
      data module_info_tslt; 
        set module_info_tslt1 module_info_tslt2 
               module_info_tslt3 module_info_tslt4 
               module_info_tslt5; 
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   run; 
 
%mend assemble_module_tslt; 
 
%macro ass; 
 
%select_items_tslt (level=0); 
%select_items_tslt (level=1); 
%assemble_module_tslt ; 
 
%mend ass; 
 
 
 
%macro assemble_mst; 
 
/*put moderate moduels together*/ 
 
data moderate; 
     set stage1m stage2m stage3m; 
  
run; 
 
proc sort data=moderate; 
      by panel stage; 
run; 
 
/*put hard moduels together*/ 
 
data hard; 
     set stage2h stage3h; 
run; 
 
 
proc sort data=hard; 
      by panel; 
run; 
 
/*put moderate and hard modules together */ 
 
data all_module; 
      retain panel stage diff item_id Info; 
      set moderate hard; 
run; 
 
proc sort data=all_module; 
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     by panel stage diff; 
run; 
%mend assemble_mst; 
 
 
%macro mstfinal; 
 
proc sort data=all_module; 
      by item_id; 
run; 
 
data one; 
      merge one.item_3plt all_module; 
      by item_id; 
      if panel ne .; 
run; 
 
proc sort data=one; 
      by panel stage diff; 
run; 
 
 
data three.mst_items; 
      retain panel stage diff T item_id a b c a_est1 b_est1 c_est1; 
   set one; 
run; 
 
data three.module_info; 
     set module_info module_info_tslt; 
run; 
 
 
%mend mstfinal; 
 
%macro dupcheck; 
 
data moderate_T; 
     set stage1m_T stage2m_T stage3m_T; 
   
run; 
 
proc sort data=moderate_T; 
      by panel stage; 
run; 
 
/*put hard moduels together*/ 
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data hard_T; 
     set stage2h_T stage3h_T; 
   
run; 
 
 
proc sort data=hard_T; 
      by panel; 
run; 
 
/*put moderate and hard modules together */ 
 
data all_module_tslt; 
      set moderate_T hard_T; 
run; 
 
proc sort data=all_module_tslt; 
     by panel stage diff; 
run; 
 
data check; 
      set all_module_tslt; 
   keep T panel; 
run; 
 
proc sort data=check; 
     by panel T; 
run; 
 
 
data dups nodups ; 
  set check ; 
  by panel T ; 
/* 
     Compare the values of the FIRST.CLASS and LAST.CLASS variables. 
     Write an observation to NODUPS or DUPS, depending on the outcome 
     of the comparison. 
*/ 
  if first.T and last.T then output nodups ; 
  else output dups ; 
run; 
 
 
data _null_; 
if 0 then set dups nobs=count; 
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call symput("no",left(put(count,8.))); 
stop; 
run; 
 
%mend dupcheck; 
 
%macro frecheck; 
/*check whether each panel has the same item appear more than once*/ 
 
proc freq data=all_module; 
      tables item_id*panel /nocol norow nopercent out = item_freq (where = (count>1)) 
noprint; 
run;  
 
data _null_; 
if 0 then set item_freq nobs=count; 
call symput("no1",left(put(count,8.))); 
stop; 
run; 
%mend frecheck; 
 
 
%macro assemble; 
 
%if (&no1 EQ 0) %then %do; 
    %mstfinal 
 %end; 
 %else %do; 
       %do %until  (&no1 EQ 0); 
          
              %assemble_module_tslt ; 
     %assemble_mst; 
     %dupcheck; 
     %frecheck; 
     %end; 
       %mstfinal 
 %end; 
%mend assemble; 
 
 
%macro initial; 
 
 data module_info; 
     retain panel stage diff module_info; 
run; 
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%mend initial; 
 
 
 
%macro step2; 
%initial; 
%ass; 
%assemble_mst; 
%frecheck; 
%assemble ; 
 
%mend step2; 
 
 
%macro test_examinee_par ; 
 
data three.examinees; 
        retain i j id theta class_true; 
  id=0; theta=-3.25; 
        do i=1 to 25; 
                do j= 1 to 100; 
        theta=theta+.25; 
     if theta <1 then class_true='0'; 
      else class_true='1'; 
        id=id+1; 
              output; 
           end; 
   end; 
   drop q; 
run; 
 
%mend test_examinee_par; 
 
%test_examinee_par 
 
 
filename tslt "c:\dissertation\pool&pool\scoright\res\testlet.est"; 
 
data tslt; 
      infile tslt firstobs=4; 
   input tslt $ a $ est se_est; 
run; 
 
data a; 
     do tslt_id=1 to &T; 
    output; 



160 
 

  end; 
run; 
 
data two.tslt; 
     set a; 
  set tslt; 
  keep tslt_id est; 
  rename est=tslt_var; 
run; 
 
%macro item_pars; 
/*read in estimated tslt var information*/ 
data items; 
     set three.mst_items; 
run; 
 
data itempar_tslt; 
     set items; 
  do i=1 to &T; 
     m=(i-1)*20; 
     n=+20*i; 
  if (item_id > m) & (item_id <= n) then tslt_id=i; 
       
  end; 
run; 
 
proc sort data=itempar_tslt; 
     by tslt_id; 
run; 
      
 
data itempar_tslt1; 
     merge itempar_tslt two.tslt ; 
    by tslt_id; 
    if panel ne .; 
run; 
 
proc sort data=itempar_tslt1 out=itempar; 
     by panel stage diff; 
run; 
%mend; 
 
 
 
 
/*EAP estimation of 3PL testlet model*/ 
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%macro qp; 
data qp (keep=qp1-qp&nqpt) qpw (keep=qpw1-qpw&nqpt); 
      
     array qp{&nqpt} qp1-qp&nqpt; 
     array qpw{&nqpt} qpw1-qpw&nqpt; 
   
  qp1=-1*(&thetamax); 
     do i=2 to &nqpt; 
         qp{i}=qp{i-1}+2*(&thetamax)/(&nqpt-1); 
     end; 
 
  *Determine weights of normal distribution at quadrature points; 
  sum=0; 
  do j=1 to &nqpt; 
     qpw{j}=probnorm((qp{j}+2*(&thetamax)/((&nqpt-1)*2))/sqrt(&sigma)) 
              -probnorm((qp{j}-2*(&thetamax)/((&nqpt-1)*2))/sqrt(&sigma)); 
  /*the same procedure has been used in SIMCAT1.0 by Gilles Raiche &Jean-Guy 
Blais*/ 
  end; 
 
run; 
%mend qp; 
 
%qp 
 
 
 
%macro qp_tslt (stage=); 
 
    %if &stage=1 %then %do;  
    data a; 
      set itempar10 (firstobs=1); 
   run; %end; 
 
 %else %do; 
     data a; 
      set itempar&stage&diff (firstobs=1); 
 run; 
 %end; 
 
    data _null_; 
      set a; 
   if _n_=1 then 
      call symputx ("sigma_tslt", tslt_var);  
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    else stop; 
     run; 
 
data qp_tslt (keep=qp_tslt1-qp_tslt&nqpt) qpw_tslt(keep=qpw_tslt1-qpw_tslt&nqpt); 
      
     array qp_tslt{&nqpt} qp_tslt1-qp_tslt&nqpt; 
     array qpw_tslt{&nqpt} qpw_tslt1-qpw_tslt&nqpt; 
   
  qp_tslt1=-1*(&thetamax); 
     do i=2 to &nqpt; 
         qp_tslt{i}=qp_tslt{i-1}+2*(&thetamax)/(&nqpt-1); 
     end; 
 
  *Determine weights of normal distribution at quadrature points; 
  do j=1 to &nqpt; 
     qpw_tslt{j}=probnorm((qp_tslt{j}+2*(&thetamax)/((&nqpt-1)*2))/sqrt(&sigma_tslt)) 
              -probnorm((qp_tslt{j}-2*(&thetamax)/((&nqpt-1)*2))/sqrt(&sigma_tslt)); 
  /*the same procedure has been used in SIMCAT1.0 by Gilles Raiche &Jean-Guy 
Blais*/ 
  end; 
 
run; 
 
%mend qp_tslt; 
 
%macro response (person=, item=); 
 
Proc IML; 
  
     use &person; 
     read all var {theta} into theta; /* Theta matrix is person parameter vector*/ 
 
  N=nrow(theta); /*get the number of examinees */ 
  call symputx ("N_person", N);  /*generate macro variable N_person to use later*/ 
 
  Use &item; 
  read all var {b} into B; B=J(N,1,1)*t(B); 
  read all var {a} into A; A=J(N,1,1)*t(A); 
  read all var {c} into C; C=J(N,1,1)*t(C); 
  J=ncol(B); /*get the number of items */  call symputx ("N_item", J); 
  x = J(1,J,1); /*CREATES A 1 X J with all ones MATRIX */ 
 
  Theta = theta * x;  
   
     tslt10=rannor(j(2500,1,345))*sqrt(&r); 
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  tslt20=rannor(j(2500,1,12345))*sqrt(&r); 
  tslt21=rannor(j(2500,1,793451))*sqrt(&r); 
  tslt30=rannor(j(2500,1,345789))*sqrt(&r); 
  tslt31=rannor(j(2500,1,7934531))*sqrt(&r); 
 
     tslt10=tslt10*j(1,12,1); 
        tslt20=tslt20*j(1,12,1); 
  tslt21=tslt21*j(1,12,1); 
  tslt30=tslt30*j(1,12,1); 
  tslt31=tslt31*j(1,12,1); 
 
 
     tslt=tslt10||tslt20||tslt21||tslt30||tslt31; 
 
      
  *compute probablity; 
   D11=THETA-B-TSLT;D12=A#D11;  
  D13=EXP(D12);  D14=1+D13;  
        D15=D13/D14;  P=C+(1-C)#D15; 
 
  *generate random variable; 
        R=ranuni(J(N,J,&seed)); 
 
  *generate response; 
  X=(P>=R);   
 
  CREATE response from X;  
  APPEND from X; 
 
     Close &person; 
     Close &item; 
 
Quit; 
     
%mend response; 
 
%macro lkhd (stage=);  /*caculate likelihood at each quadrature point of theta on stage 1 
or stage 3)*/ 
 
Proc IML; 
     use qp; 
     read all into theta; 
  theta=t(theta); 
  close qp; 
 
  N=nrow(theta); /*get the number of examinees */ 
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  call symputx ("N_person", N);  /*generate macro variable N_person to use later*/ 
 
 
             Use itempar&stage&diff; 
                read all var {b_est1} into B; B=J(N,1,1)*t(B); 
                read all var {a_est1} into A; A=J(N,1,1)*t(A); 
                read all var {c_est1} into C; C=J(N,1,1)*t(C); 
       close itempar&stage&diff;  
 
         
         use resp&stage&diff; 
             read all into res; 
         close resp&stage&diff; 
 
             J=ncol(B); /*get the number of items */  call symputx ("N_item", J); 
           x = J(1,J,1); /*CREATES A 1 X J with all ones MATRIX */ 
    
 
  Theta = theta * x;  
 
  
    *compute probablity; 
   D11=THETA-B;D12=A#D11;  
  D13=EXP(D12);  D14=1+D13;  
                        D15=D13/D14;  P=C+(1-C)#D15; 
 
                 x=j(15, 12,0); lk=j(15,1,1); 
                   do  j=1 to 12; 
                         if res[,j]=1 then x[,j]=p[,j]; 
                 else if res[,j]=0 then x[,j]=1-p[,j]; 
            else x[,j]=1; 
               lk[,1]=lk[,1]#x[,j]; 
                   end; 
                             lkhd=t(lk); 
 
 create lkhd&stage from lkhd; 
 append from lkhd; 
Quit; 
 
%mend lkhd; 
 
%macro lkhd_tslt (stage=); 
 
 
Proc IML; 
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     w=j(1,&nqpt,1); 
   
  use qpw;/*read in quadrature point of theta*/ 
     read all into qpw; /* Theta matrix is person parameter vector*/ 
  close qpw; 
 
     /*prepare item parameters*/ 
  Use itempar&stage&diff;   
  read all var {b_est1} into B;  b1=b; *print b; 
  read all var {a_est1} into A;  a1=a; 
  read all var {c_est1} into C;  c1=c; 
  close itempar&stage&diff; 
 
   
 
  N_item=nrow(B); /*get the number of items */  
 
     do i=2 to &nqpt; /*do it for each item and each person */ 
          b=b//b1; a=a//a1; c=c//c1; 
  end; 
  b=b*w; a=a*w; c=c*w; 
 
     use qp;/*read in quadrature point of theta*/ 
     read all into theta; /* Theta matrix is person parameter vector*/ 
  read all into qp; 
  theta=J(&nqpt*N_item,1,1)*theta;  /*   (15*40)    */ 
  close qp; 
 
  /*prepare tslt*/ 
    use qp_tslt; 
        read all into tslt; tslt=t(tslt); 
    close qp_tslt; 
    use qpw_tslt; 
     read all into qpw_tslt;  
    close qpw_tslt; 
     x=J(N_item,1,1); tslt2=x*tslt[1,]; 
    do i=1 to &nqpt; /*each quadrature point repeated for  times*/ 
       tslt2=x*tslt[i,]; 
       tslt1=tslt1//tslt2;  
    end; 
       tslt=tslt1*w; 
    
 
  /*compute probability*/ 
 
   D11=THETA-B-TSLT;D12=A#D11;  
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  D13=EXP(D12);  D14=1+D13;  
                       D15=D13/D14;  P=C+(1-C)#D15; 
 
 
  /*prepare response data*/ 
             Use resp&stage&diff;   
  read all var _num_ into response;  
  close resp&stage&diff; 
 
   /*nth person's response*/ 
 
     resp=response ;  /* nth person's response pattern 1*40  */ 
                res=t(resp);   /* nth person's response pattern 40*1  */ 
     res=res*w; 
 
  res1=res; 
  do i=2 to &nqpt; 
     res=res//res1; 
  end; 
     
     /*compute p or q*/ 
       xx=j(&nqpt*N_item,&nqpt,0); 
       do i=1 to &nqpt*N_item; 
          do j=1 to &nqpt;   
       if res[i,j]=1 then xx[i,j]=p[i,j]; 
          else xx[i,j]=1-p[i,j]; 
       end; 
       end; 
 
    /*compute likelihood at each quadrature point of tslt and each quadreture point 
of theta*/ 
  
  lkhd=j(&nqpt+1,1,1); /*likelihood at all quadreutre points of theta*/          
     
 do qp_theta= 1 to &nqpt; /*for each quadrature point of theta*/ 
  lkhd_v=j(1,1,1);/*likelihood at  all quadrature point of tslt*/ 
     do i=1 to &nqpt;  /*for each quadrature point of testlet*/ 
               x=N_item*(i-1)+1; y=N_item*i; 
            xxqp=xx[x:y,qp_theta];  /*xx for each quadrature point of testlet*/ 
                     lk=1; 
            do a= 1 to N_item; /*for each item*/     
                      xx_qp_qp=xxqp[a,]; 
          lk=lk*xx_qp_qp;  
      end; 
            lkhd_v=lkhd_v//lk; 
       end; 
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    lkhd=lkhd||lkhd_v; 
     end; 
     lkhd=lkhd[2:&nqpt+1,2:&nqpt+1];    
 
 
     /* compute quadature point of tslt times the likelihood at each quadrature point of 
tslt*/ 
           lkhd_qp_theta=qpw_tslt*lkhd; 
   
     create lkhd&stage from lkhd_qp_theta; 
     append from lkhd_qp_theta; 
quit; 
 
%mend lkhd_tslt; 
 
 
%macro eap_est (stage=); 
proc iml; 
      
     if &stage=1 then do; 
       Use lkhd&stage;   
       read all var _num_ into lkhd&stage;  
       close lkhd&stage; 
            lkhd_qp_theta=lkhd&stage; 
      end; 
        else if &stage=2 then do; 
    use lkhd1; 
    read all into lkhd1; 
    close lkhd1; 
    
             Use lkhd2;   
          read all var _num_ into lkhd2;  
          close lkhd2; 
          lkhd_qp_theta=lkhd1#lkhd2; 
       end; 
 
       else if &stage=3 then do; 
    use lkhd1; 
        read all into lkhd1; 
    close lkhd1; 
    
             Use lkhd2;   
             read all var _num_ into lkhd2;  
          close lkhd2; 
 
    use lkhd3; 
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        read all var _num_ into lkhd3;  
          close lkhd3; 
 
          lkhd_qp_theta=lkhd1#lkhd2#lkhd3; 
       end;    
 
     use qpw;/*read in quadrature point of theta*/ 
     read all into qpw; /* Theta matrix is person parameter vector*/ 
  close qpw; 
 
  use qp;/*read in quadrature point of theta*/ 
  read all into qp; 
    /* compute EAP estimate for each person */ 
  a=t(qpw); 
  denomi=lkhd_qp_theta*a; 
  b=t(qp#qpw); 
  numera=lkhd_qp_theta*b; 
     eap=numera/denomi;   
 
 /*write estimate to SAS data file*/ 
       CREATE est&stage from eap /*[colname=¡¯eap_theta¡¯]*/;;  
       APPEND from eap; 
  
quit; 
%mend eap_est ; 
 
%macro route (stage=); 
    data est&stage; 
         set est&stage; 
       if col1≤.5 then diff=0; 
           else diff=1; 
       call symputx("diff", diff); 
    run; 
 %put _user_; 
%mend route; 
 
%macro itempar; 
 
 
data itempar10; 
     set items_panel ; 
  if stage=1; 
run; 
data itempar20; 
     set items_panel ; 
  if stage=2 and diff=0; 
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run; 
data itempar21; 
     set items_panel ; 
  if stage=2 and diff=1; 
run; 
data itempar30; 
     set items_panel ; 
  if stage=3 and diff=0; 
run; 
 
data itempar31; 
     set items_panel ; 
  if stage=3 and diff=1; 
run; 
 
%mend itempar; 
 
 
 
%macro eap_all (panel=); 
 
data est; 
run; 
 
%do n=1 %to 2500; 
 
     data resp10(keep=col1-col12) 
          resp20 (keep=col13-col24) 
          resp21 (keep=col25-col36) 
          resp30 (keep=col37-col48) 
    resp31 (keep=col49-col60) 
                ; 
     set response (firstobs=%eval(&n) obs=%eval(&n)); 
     run; 
 
 
     data _null_; 
      a=0; 
   if _n_=1 then 
      call symputx ("diff", a);  
    else stop; 
     run; 
 %qp_tslt (stage=1); 
    %lkhd_tslt (stage=1); 
 %eap_est (stage=1); 
 %route (stage=1); 
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 %qp_tslt (stage=2) 
    %lkhd_tslt (stage=2); 
    %eap_est (stage=2) 
    %route (stage=2); 
    %lkhd_tslt (stage=3); 
    %eap_est (stage=3); 
 
data est; 
  set est est3; 
run; 
 
%end; 
data three.est&panel; 
     set est (firstobs=2); 
run; 
 
%mend eap_all; 
 
%macro result; 
   %do panel=1 %to 8; 
           data result; 
                set result; 
                set three.est&panel (rename=(col1=est&panel)); 
            run; 
  %end; 
%mend; 
 
 
 
%macro step3; 
 
%item_pars; 
 
%do panel=1 %to 8; 
    data items_panel; 
         set itempar; 
      if panel=&panel; 
    run; 
 
 %response (person=three.examinees, item=items_panel); 
 %itempar; 
 %eap_all (panel=&panel); 
 
%end; 
 
data result; 
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     set three.examinees; 
run; 
%result; 
 
 
   /*calculate estimate*/ 
 
data estimate; 
     set result; 
  estimate=(est1+est2+est3+est4+est5+est6+est7+est8)/8;  
  if estimate<1 then class='0'; 
     else class='1';  
  bias=estimate-theta; bias_sq=bias*bias; 
  *keep theta estimate class bias bias_sq; 
  if (class='1') and (class_true='1') then cp=1; else cp=0; 
     if (class='0') and (class_true='0') then cf=1; else cf=0; 
  if (class='1') and (class_true='0') then fp=1; else fp=0; 
     if (class='0') and (class_true='1') then fn=1; else fn=0; 
 
run; 
 
proc sort data=estimate; 
     by theta; 
run; 
 
proc means noprint data=estimate; 
     by theta; 
  var estimate bias bias_sq; 
  output out=estimate1 mean=estimate bias bias_sq; 
run; 
 
data three.bias&rep; 
     set estimate1; 
  drop _type_ _freq_; 
  rmse=sqrt(bias_sq); 
  drop bias_sq; 
run; 
 
 
/*evaluate pass-fail decisions*/ 
proc means noprint data=estimate mean; 
     var cp cf fp fn; 
  by i; 
  output out=pass_fail mean= cp cf fp fn; 
run; 
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data three.decisions&rep; 
     set pass_fail; 
  drop _type_ _freq_; 
  deci_corr=cp+cf; 
  deci_incorr=fp+fn; 
run; 
 
 
%mend step3; 
       
 
%macro replication; 
     %do rep=1 %to &num_rpl; 
      %initial 
      %step2 
                %step3; 
   %end; 
%mend replication; 
 
%replication; 
 
 
proc printto log=log; 
run; 
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Appendix D: Examples of MST Test Information Curves 

 
Figure D-1: One of the panels with item pool 2 using the 3PL model 
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Figure D-2: One of the modules across the panels with item pool 2 using the 3PL 
model 
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Figure D-3: One of the panels with item pool 8 using the 3PL testlet model 
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Figure D-4: One of the panels with item pool 8 using the 3PL testlet model 
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Appendix E: ANOVA Analysis Results 

Table E- 1: ANOVA results for test length effect 

Condition 
Dependent 
Variable df 

Sum of 
Squares F-value 

p-
value 

Partial 
Eta 

Squared

1 

BIAS 1 0.000 0.550 0.461 0.009
RMSE 1 0.021 5420.458 0.000 0.989

DA 1 0.001 118.397 0.000 0.671

2 

BIAS 1 0.000 1.548 0.218 0.026
RMSE 1 0.018 3857.085 0.000 0.985

DA 1 0.001 60.703 0.000 0.511

3 

BIAS 1 0.000 5.037 0.029 0.080
RMSE 1 0.022 4388.489 0.000 0.987

DA 1 0.001 65.696 0.000 0.531

4 

BIAS 1 0.000 4.351 0.041 0.070
RMSE 1 0.021 4851.487 0.000 0.988

DA 1 0.001 75.976 0.000 0.567

5 

BIAS 1 0.000 19.772 0.000 0.254
RMSE 1 0.021 4704.740 0.000 0.988

DA 1 0.001 124.330 0.000 0.682

6 

BIAS 1 0.000 46.280 0.000 0.444
RMSE 1 0.020 4267.946 0.000 0.987

DA 1 0.001 70.437 0.000 0.548

7 

BIAS 1 0.000 14.150 0.000 0.196
RMSE 1 0.021 4737.559 0.000 0.988

DA 1 0.001 71.120 0.000 0.551

8 

BIAS 1 0.000 1.582 0.214 0.027
RMSE 1 0.020 3723.154 0.000 0.985

DA 1 0.001 117.038 0.000 0.669

9 

BIAS 1 0.000 2.327 0.133 0.039
RMSE 1 0.024 3965.819 0.000 0.986

DA 1 0.001 73.778 0.000 0.560

10 

BIAS 1 0.000 5.296 0.025 0.084
RMSE 1 0.024 4822.561 0.000 0.988

DA 1 0.001 170.095 0.000 0.746
11 BIAS 1 0.000 7.473 0.008 0.114
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RMSE 1 0.019 3037.227 0.000 0.981
DA 1 0.001 104.027 0.000 0.642

12 

BIAS 1 0.000 0.078 0.781 0.001

RMSE 1 0.019 3096.720 0.000 0.982
DA 1 0.001 91.236 0.000 0.611

13 

BIAS 1 0.000 0.460 0.500 0.008
RMSE 1 0.019 2624.966 0.000 0.978

DA 1 0.001 73.020 0.000 0.557

14 

BIAS 1 0.000 7.237 0.009 0.111
RMSE 1 0.023 5110.499 0.000 0.989

DA 1 0.001 112.652 0.000 0.660

15 

BIAS 1 0.000 7.476 0.008 0.114
RMSE 1 0.021 2787.624 0.000 0.980

DA 1 0.001 143.074 0.000 0.712

16 

BIAS 1 0.000 12.150 0.001 0.173
RMSE 1 0.024 3924.519 0.000 0.985

DA 1 0.001 149.568 0.000 0.721

17 

BIAS 1 0.000 0.675 0.415 0.011
RMSE 1 0.021 3243.123 0.000 0.982

DA 1 0.002 158.465 0.000 0.732

18 

BIAS 1 0.000 0.307 0.581 0.005
RMSE 1 0.021 2373.047 0.000 0.976

DA 1 0.001 170.560 0.000 0.746

19 

BIAS 1 0.000 0.000 0.985 0.000
RMSE 1 0.021 2769.236 0.000 0.979

DA 1 0.001 90.817 0.000 0.610

20 

BIAS 1 0.000 2.914 0.093 0.048
RMSE 1 0.015 2684.296 0.000 0.979

DA 1 0.001 206.915 0.000 0.781

21 

BIAS 1 0.000 9.845 0.003 0.145
RMSE 1 0.016 2034.272 0.000 0.972

DA 1 0.001 188.294 0.000 0.765

22 

BIAS 1 0.000 20.094 0.000 0.257
RMSE 1 0.016 1148.344 0.000 0.952

DA 1 0.001 149.873 0.000 0.721
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Table E-2: ANOVA analysis results for test length, model and their interaction 
effect 

Simulation 
Condition 

Dependent 
Variable Source df 

Sum of 
Squares F-value p-value 

Partial 
eta 

square 

2 
 

BIAS 

Length 1 0.000 35.122 0.000 0.232 
Model 1 0.025 3350.616 0.000 0.967 

Length*Model 1 0.000 63.627 0.000 0.354 

RMSE 

Length 1 0.072 14831.005 0.000 0.992 
Model 1 0.996 205855.343 0.000 0.999 

Length*Model 1 0.006 1252.595 0.000 0.915 

DA 

Length 1 0.001 129.829 0.000 0.528 
Model 1 0.002 323.586 0.000 0.736 

Length*Model 1 0.000 1.058 0.306 0.009 

3 

BIAS 

Length 1 0.000 1.188 0.278 0.010 
Model 1 0.028 3003.511 0.000 0.963 

Length*Model 1 0.000 5.549 0.020 0.046 

RMSE 

Length 1 0.075 13616.701 0.000 0.992 
Model 1 1.018 184119.217 0.000 0.999 

Length*Model 1 0.004 803.253 0.000 0.874 

DA 

Length 1 0.000 24.794 0.000 0.176 
Model 1 0.000 20.270 0.000 0.149 

Length*Model 1 0.000 58.788 0.000 0.336 

4 

BIAS 

Length 1 0.000 0.694 0.407 0.006 
Model 1 0.028 3723.139 0.000 0.970 

Length*Model 1 0.000 9.048 0.003 0.072 

RMSE 

Length 1 0.089 23417.215 0.000 0.995 
Model 1 1.001 263863.827 0.000 1.000 

Length*Model 1 0.009 2343.294 0.000 0.953 

DA 

Length 1 0.002 240.959 0.000 0.675 
Model 1 0.000 3.081 0.082 0.026 

Length*Model 1 0.000 0.051 0.821 0.000 

5 

BIAS 

Length 1 0.001 98.619 0.000 0.460 
Model 1 0.044 5542.320 0.000 0.979 

Length*Model 1 0.002 292.875 0.000 0.716 

RMSE 
Length 1 0.073 9922.876 0.000 0.988 
Model 1 0.978 132266.298 0.000 0.999 
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Length*Model 1 0.004 607.051 0.000 0.840 

DA 

Length 1 0.002 217.633 0.000 0.652 
Model 1 0.003 342.600 0.000 0.747 

Length*Model 1 0.000 2.438 0.121 0.021 

6 

BIAS 

Length 1 0.001 93.472 0.000 0.446 
Model 1 0.040 4925.493 0.000 0.977 

Length*Model 1 0.000 0.941 0.334 0.008 

RMSE 

Length 1 0.076 16524.941 0.000 0.993 
Model 1 1.040 226987.839 0.000 0.999 

Length*Model 1 0.006 1235.844 0.000 0.914 

DA 

Length 1 0.000 0.209 0.648 0.002 
Model 1 0.001 92.938 0.000 0.445 

Length*Model 1 0.001 158.904 0.000 0.578 

7 

BIAS 

Length 1 0.000 0.206 0.651 0.002 
Model 1 0.049 5800.673 0.000 0.980 

Length*Model 1 0.000 47.785 0.000 0.292 

RMSE 

Length 1 0.102 21629.505 0.000 0.995 
Model 1 1.044 222023.062 0.000 0.999 

Length*Model 1 0.013 2811.915 0.000 0.960 

DA 

Length 1 0.001 114.683 0.000 0.497 
Model 1 0.000 35.246 0.000 0.233 

Length*Model 1 0.000 11.554 0.001 0.091 

8 

BIAS 

Length 1 0.002 198.784 0.000 0.631 
Model 1 0.043 4269.352 0.000 0.974 

Length*Model 1 0.003 263.429 0.000 0.694 

RMSE 

Length 1 0.077 13161.189 0.000 0.991 
Model 1 1.009 171582.234 0.000 0.999 

Length*Model 1 0.006 1101.372 0.000 0.905 

DA 

Length 1 0.002 401.376 0.000 0.776 
Model 1 0.003 540.166 0.000 0.823 

Length*Model 1 0.000 17.995 0.000 0.134 

9 

BIAS 

Length 1 0.000 53.048 0.000 0.314 
Model 1 0.029 3554.243 0.000 0.968 

Length*Model 1 0.000 23.645 0.000 0.169 

RMSE 

Length 1 0.088 17546.867 0.000 0.993 
Model 1 1.063 211819.642 0.000 0.999 

Length*Model 1 0.006 1221.214 0.000 0.913 
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DA 

Length 1 0.000 5.141 0.025 0.042 
Model 1 0.001 94.811 0.000 0.450 

Length*Model 1 0.001 124.390 0.000 0.517 

10 

BIAS 

Length 1 0.000 9.066 0.003 0.072 
Model 1 0.046 6927.549 0.000 0.984 

Length*Model 1 0.000 48.865 0.000 0.296 

RMSE 

Length 1 0.108 22655.125 0.000 0.995 
Model 1 1.061 221948.566 0.000 0.999 

Length*Model 1 0.012 2517.824 0.000 0.956 

DA 

Length 1 0.002 417.523 0.000 0.783 
Model 1 0.001 90.206 0.000 0.437 

Length*Model 1 0.000 0.023 0.880 0.000 

11 

BIAS 

Length 1 0.001 160.146 0.000 0.580 
Model 1 0.019 2537.829 0.000 0.956 

Length*Model 1 0.000 62.127 0.000 0.349 

RMSE 

Length 1 0.062 10387.721 0.000 0.989 
Model 1 1.247 207430.108 0.000 0.999 

Length*Model 1 0.003 501.856 0.000 0.812 

DA 

Length 1 0.000 2.638 0.107 0.022 
Model 1 0.009 1042.494 0.000 0.900 

Length*Model 1 0.002 221.106 0.000 0.656 

12 

BIAS 

Length 1 0.001 112.348 0.000 0.492 
Model 1 0.004 501.202 0.000 0.812 

Length*Model 1 0.001 102.282 0.000 0.469 

RMSE 

Length 1 0.055 12365.106 0.000 0.991 
Model 1 1.119 252398.045 0.000 1.000 

Length*Model 1 0.002 387.111 0.000 0.769 

DA 

Length 1 0.000 64.634 0.000 0.358 
Model 1 0.002 395.326 0.000 0.773 

Length*Model 1 0.000 30.627 0.000 0.209 

13 

BIAS 

Length 1 0.000 0.190 0.664 0.002 
Model 1 0.020 2560.812 0.000 0.957 

Length*Model 1 0.000 2.960 0.088 0.025 

RMSE 

Length 1 0.046 9924.570 0.000 0.988 
Model 1 1.203 259441.378 0.000 1.000 

Length*Model 1 0.000 79.510 0.000 0.407 
DA Length 1 0.001 189.722 0.000 0.621 
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Model 1 0.003 431.901 0.000 0.788 
Length*Model 1 0.000 1.422 0.236 0.012 

14 

BIAS 

Length 1 0.000 11.183 0.001 0.088 
Model 1 0.033 4054.366 0.000 0.972 

Length*Model 1 0.000 1.791 0.183 0.015 

RMSE 

Length 1 0.082 16518.971 0.000 0.993 
Model 1 1.653 333674.618 0.000 1.000 

Length*Model 1 0.005 1031.274 0.000 0.899 

DA 

Length 1 0.001 128.943 0.000 0.526 
Model 1 0.022 2304.296 0.000 0.952 

Length*Model 1 0.000 23.317 0.000 0.167 

15 

BIAS 

Length 1 0.001 123.409 0.000 0.515 
Model 1 0.022 2665.156 0.000 0.958 

Length*Model 1 0.002 257.163 0.000 0.689 

RMSE 

Length 1 0.062 10353.238 0.000 0.989 
Model 1 1.587 266961.573 0.000 1.000 

Length*Model 1 0.002 333.230 0.000 0.742 

DA 

Length 1 0.001 81.135 0.000 0.412 
Model 1 0.010 1107.118 0.000 0.905 

Length*Model 1 0.001 86.898 0.000 0.428 

16 

BIAS 

Length 1 0.000 5.470 0.021 0.045 
Model 1 0.037 3642.278 0.000 0.969 

Length*Model 1 0.001 73.409 0.000 0.388 

RMSE 

Length 1 0.111 6597.188 0.000 0.983 
Model 1 1.802 106777.697 0.000 0.999 

Length*Model 1 0.013 798.307 0.000 0.873 

DA 

Length 1 0.002 246.412 0.000 0.680 
Model 1 0.007 873.187 0.000 0.883 

Length*Model 1 0.000 5.205 0.024 0.043 

17 

BIAS 

Length 1 0.000 44.889 0.000 0.279 
Model 1 0.008 839.382 0.000 0.879 

Length*Model 1 0.000 28.155 0.000 0.195 

RMSE 

Length 1 0.111 12399.554 0.000 0.991 
Model 1 1.819 203216.288 0.000 0.999 

Length*Model 1 0.017 1900.034 0.000 0.942 

DA 
Length 1 0.003 317.438 0.000 0.732 
Model 1 0.027 3216.005 0.000 0.965 
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Length*Model 1 0.000 7.456 0.007 0.060 

18 

BIAS 

Length 1 0.001 131.297 0.000 0.531 
Model 1 0.010 1029.090 0.000 0.899 

Length*Model 1 0.001 152.990 0.000 0.569 

RMSE 

Length 1 0.082 12398.162 0.000 0.991 
Model 1 1.649 249853.613 0.000 1.000 

Length*Model 1 0.006 941.298 0.000 0.890 

DA 

Length 1 0.002 318.170 0.000 0.733 
Model 1 0.014 1912.356 0.000 0.943 

Length*Model 1 0.000 0.878 0.351 0.008 

19 

BIAS 

Length 1 0.003 275.145 0.000 0.703 
Model 1 0.020 2031.291 0.000 0.946 

Length*Model 1 0.003 276.270 0.000 0.704 

RMSE 

Length 1 0.078 12131.528 0.000 0.991 
Model 1 1.667 259210.674 0.000 1.000 

Length*Model 1 0.006 891.762 0.000 0.885 

DA 

Length 1 0.001 122.846 0.000 0.514 
Model 1 0.005 506.528 0.000 0.814 

Length*Model 1 0.000 23.139 0.000 0.166 

20 

BIAS 

Length 1 0.000 0.278 0.599 0.002 
Model 1 0.062 7767.534 0.000 0.985 

Length*Model 1 0.000 14.720 0.000 0.113 

RMSE 

Length 1 0.018 5780.463 0.000 0.980 
Model 1 1.865 613153.501 0.000 1.000 

Length*Model 1 0.002 553.189 0.000 0.827 

DA 

Length 1 0.003 650.983 0.000 0.849 
Model 1 0.009 1912.941 0.000 0.943 

Length*Model 1 0.000 3.598 0.060 0.030 

21 

BIAS 

Length 1 0.000 0.010 0.922 0.000 
Model 1 0.020 2577.276 0.000 0.957 

Length*Model 1 0.000 36.049 0.000 0.237 

RMSE 

Length 1 0.010 2228.398 0.000 0.951 
Model 1 3.514 823936.565 0.000 1.000 

Length*Model 1 0.007 1629.035 0.000 0.934 

DA 

Length 1 0.001 208.756 0.000 0.643 
Model 1 0.048 10007.879 0.000 0.989 

Length*Model 1 0.000 81.445 0.000 0.412 
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22 

BIAS 

Length 1 0.000 2.522 0.115 0.021 
Model 1 0.039 3405.834 0.000 0.967 

Length*Model 1 0.001 49.836 0.000 0.301 

RMSE 

Length 1 0.011 1169.044 0.000 0.910 
Model 1 4.590 469408.138 0.000 1.000 

Length*Model 1 0.005 521.961 0.000 0.818 

DA 

Length 1 0.001 115.937 0.000 0.500 
Model 1 0.087 14944.972 0.000 0.992 

Length*Model 1 0.001 119.223 0.000 0.507 
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Appendix F: Comparison of BIAS and RMSE under different simulation conditions 

 
Figure F-1: Comparison of BIAS and RMSE for test length effect 
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F-1: Comparison of BIAS and RMSE for test length effect, continued 
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F-1: Comparison of BIAS and RMSE for test length effect, continued 
 

 F-1:  
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F-1: Comparison of BIAS and RMSE for test length effect, continued 
 

 F-1:  
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F-1: Comparison of BIAS and RMSE for test length effect, continued 
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F-1: Comparison of BIAS and RMSE for test length effect, continued 
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Figure F-2: Comparison of BIAS and RMSE for testlet/discrete item position effect 
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F-2: Comparison of BIAS and RMSE for testlet /discrete item position effect, continued 
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F-2: Comparison of BIAS and RMSE for testlet /discrete item position effect, continued 
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Figure F-3: Comparison of BIAS and RMSE for testlet /discrete item proportion 
effect under short test length conditions 
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Figure F-4: Comparison of BIAS and RMSE for LID magnitude effect under short 
test length conditions 
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Figure F-5: Comparison of BIAS and RMSE for model effect  
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F-5: Comparison of BIAS and RMSE for model effect, continued 
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F-5: Comparison of BIAS and RMSE for model effect, continued 
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F-5: Comparison of BIAS and RMSE for model effect, continued 
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F-5: Comparison of BIAS and RMSE for model effect, continued 
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F-5: Comparison of BIAS and RMSE for model effect, continued 
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F-5: Comparison of BIAS and RMSE for model effect, continued 
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