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Abstract

In this paper we present systolic algorithms and architectures for parallel and fully-
pipelined instantaneous optimal weight extraction for multiple sidelobe canceller (MSC)
and minimum variance distortionless response (MVDR) beamformer. The proposed systolic
parallelogram array processors are parallel and fully pipelined, and they can extract the
optimal weights instantaneously without the need for forward or backward substitution. We
also show that the square-root-free (3ivens method can be easily incorporated to improve
the throughput rate and speed up the system. As a result, these MSC and MVDR systolic
array weight extraction systems are suitable for real-time VLSI implementation in practical

radar/sonar systems.






1 Introduction

The problem of weight extraction for systolic adaptive beamforming systemns has
been the subject of intense research since the first well-known work of Gentleman
and Kung on recursive least squares (RLS) systolic arrays [1, 2]. Their approach is
based on the QR decomposition (QRD) which is numerically stable. Although the
QRD updates proposed in [1] are pipelined on a triangular array, their fully pipelined
weight extraction by using the RLS systolic array consists of the two separate steps
of QR-updates and backward substitution and has been shown to be unrealizable [3].

A major challenge in implementing the RLS algorithm for the multiple sidelobe
cancellation (MSC) adaptive beamforming system using systolic array processors is
to design a single fully pipelined structure. A critical obstruction appears because the
process of the QR-updates runs from the upper-left corner to lower-right corner of
the array, while the process of the backward substitution runs in exactly the opposite
direction as pointed out in [3]. Much research has been done on this subject recently
[4, 5, 6]. In [4], Hudson and Shepherd have proposed a Kalman closed-loop system
for the RLS parallel weight extraction problem that consists of a systolic QRD post-
processor to compute the least squares weighting vector. However, the parallel RLS
weight extraction system proposed is not efficient for VLSI hardware implementation.
The major hurdles are that this system, which requires two modes to update the data
and to freeze the updated data lor computing the weight vector error at the same
time, is inefficient in obtaining the instant weight vector recursively, and that the
feedback configuration may create serious routing problems in VLSI implementation
and roundoff noise accumulation [4].

In [5], McWhirter introduced a fixed parallelogram structure for the parallel weight
extraction in the RLS problem. However, McWhirter’s RLS weight extraction system

does not efficiently update the weight vector since the array must be frozen at each
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snapshot to compute the weights.

In a recent paper [7], a numerically stable and computationally efficient algorithm
for weight extraction for a constrained recursive least squares (CRLS) problem has
been described by Schreiber. Although the algorithm shown in [7] has robust nu-
merical properties, it is difficult to arrange the whole algorithm into a single fully
pipelined structure as pointed out in [8, 9]. The difficulty, which is the same as
that in the RLS case, arises because the CRLS algorithm consists of several steps
particularly involving the backward substitution step. Many MVDR adaptive beam-
formers with CRLS systolic array structures proposed in [8, 9, 10] are designed to
avoid the extra backward substitution processor for computing the residual. Unfor-
tunately, for the problem of parallel/pipelined weight extraction, very little has been
done in implementing the CRLS algorithm into a single fully pipelined systolic array
structure without requiring the backward substitution processors. Recently, Owsley
developed an adaptive MVDR beamformer with a systolic array implementation us-
ing Schreiber’s CRLS algorithm for weight extraction [11, 12]. Nevertheless, Owsley’s
CRLS systolic array structure which consists of several block processors including the
forward and backward substitution processors has been shown to be unpipelinable.
Subsequently, Tang, Liu, and Tretter [6, 13] presented systolic architectures for MSC
and MVDR adaptive array systems. During the preparation of this paper, the authors
discovered a paper by Shepherd et al. [14] in which they independently proposed a
similar concept for RLS and CRLS algorithms.

In this paper, fully parallel/pipelined systolic arrays for the MSC and MVDR
adaptive weight extraction systems without the need for forward or backward substi-
tution are described. The proposed MSC and MVDR systolic adaptive array systems
have five advantages: (1) they are simple, modular, and expandable so as to be very
suitable for VLSI hardware implementation, (2) the square root free Givens method

can be easily incorporated into the architectures, (3) they are fully pipelined since



the backward substitution is avoided, (4) they are open-loop systems without any
feedback arrangement, and (5) they function recursively to update the instantaneous
optimal weight vector since only one mode is required in the recursive updating.
This paper is organized as follows. In Section 2, two types of adaptive beamform-
ers are introduced. They are the multiple sidelobe canceller (MSC) formulated as
the recursive least squares (RLS) problem and the minimum variance distortionless
response (MVDR) beamformer formulated as the constrained recursive least squares
(CRLS) problem. In Section 3, the background and the new techniques to replace
the forward and backward substitutions by the parallel multiplication and accumula-
tion operation using systolic arrays are considered. In Section 4, the QR-based RLS
algorithm for the MSC adaptive beamforming system without the need for backward
substitution is described and its parallel/pipelined MSC weight extraction system
with systolic array processor is also presented. In Section 5, the QR-based CRLS
algorithm for the MVDR adaptive beamforming without the need for forward and
backward substitutions is described and the parallel/pipelined MVDR weight ex-
traction system with systolic array processor implementation is also considered. In
Section 6 the fast, square-root free, Givens method is employed for the MSC and

MVDR adaptive array systems.

2 Adaptive Beamforming Systems

In this section, two popular adaptive beamforming systems are described. We first
describe the multiple sidelobe canceller (MSC) which consists of a main antenna and
several auxiliary antennas. The multiple sidelobe cancellation technique is employed
to suppress the sidelobe interferences and noises. The interferences and noises are
estimated by multiplying the observed input data received through the auxiliary

antennas by the adaptive weights and then summing them together. The interferences



and noises are suppressed from the main radar channel by subtracting the estimates
from radar main channel output. Second, a minimum variance distortionless response
(MVDR)/beamformer is considered. The MVDR beamforming technique is used to
suppress the interferences and noises by constraining the response of the beamformer
to specific directions and then minimizing the output power subject to the response

constraints.

2.1 Multiple Sidelobe Canceller (MSC)

The block diagram of an multiple sidelobe canceller (MSC) is shown in Figure 1. It
is easy to see that the outputl at the 2th snapshot can be expressed as
N
y(t:) = Y wilti)w — 2(t:). (1)
=1

A set of n successive snapshots can be represented in the vector form

y(n) = X(njw(n) — z(n). (2)
where y(n) is an n by 1 output vector matrix
— y(t) —
y(n) = y(t2) 7 3)
L y(ta) |
z(n) is an n by 1 desired input data vector matrix
_ z(11) —
s =| )
| #(tn) |




X(n) is an n by N observed input data matrix

[ 21(t) aa(ty) -+ an(ty) |
X(n) = ;171(.1‘2) ;172('t2) fCNth) ’ 5)
| a(t) wa(t) o an(t) |
and w(n) is an N by 1 weight vector
i
winy = | | (6)
L wn(ta) |

The aim of the MSC system is to minimize the output residual of the total inter-
ferences and noises; i.e. to minimize the sum of the squares of the elements of the
n by 1 output residual vector y(n). This leads to a maximization of output residual
signal to noise (including interferences and receiver noises) ratio. Therefore, we have

the least-squares problem

min y ()| = min X(n)w(n) —z(n)l. (7)

The solution to this minimization problem is [15]

wps(n) = (X ()X (1)) X (n)z(n) = M~ ()X (n)z(n), (

o8]
~——

where the superscript H denotes Hermitian.
This direct solution, generally known as the sample matrix inversion (SMI) method
in adaptive array and multichannel applications, is often difficult to compute numer-

ically since M (n) is frequently ill conditioned.



2.2 Minimum Variance Distortionless Response (MVDR)

Beamformer

The minimum variance distortionless response (MVDR) adaptive beamforming sys-
tem can be formulated as a constrained recursive least squares (CRLS) problem. The
block diagram of the MVDR adaptive beamformer is shown in Figure 2. The output
y at the kth snapshot of the adaptive beamformer is

N
y(ty) = Zazl(tk)wl. (9)

=1

If n snapshots of input data are available, the output can be written in the vector
form
y(n) = X(n)w(n) (10)
where y(n), X (n), and w(n) are as defined in (3), (5), and (6), respectively.
A signal received from the direction of interest 6; is called a beamformer response
7 and is given by

- H

1=, (11)
JH . . . . .
where ¢ is the N by 1 mainbeain steering direction vector given by

= | ] G EDsin(0) %2 Dsin6) i3 (N=1) Dsin(6,)

€

with D being the distance between two sensors in the array, and A being the wave-

length. Taking expectation of gﬁ(n Jy(n) yields

E[yH(n)g(n)} = E[QH(n)Xn(n)X(n)w(n)] = wH(n)jW(n)w(n), (12)

by

where M (n) is the n by n covariance matrix of X (n).
In general, designing a MVDR beamformer requires solving a constrained least

squares optimization problem. The problem is

min w? Mw

w

-1



: H ~ . .
subjecttoc w=r', for i=1,2, -+, K,

where K is the number of look directions. Using the method of Lagrange multipliers,
the optimal weight vector, ’_L_U_ép“ is found to be [15]

r'M~(n)c

———— for 1=1,--- K. 13
Q211Av1~1(72)_c_2 for ? ) 9 L ( )

-LD—Zpt(n) =

In practice, M(n) used in Equation 8 and 13 is the sample covariance matrix of the

observed data X(n),
M(n) = X"(n)X(n) (14)

rather than the covariance matrix of X(n) used in Equation 12.

3 Systolic Array Linear Algebra Processing

In the emerging field of algorithmic engineering introduced by McWhirter [5], the
hybrid disciplines of designing numerically stable parallel algorithms suitable for par-
allel computation and mapping them onto VLSI systolic architectures to achieve
high throughput rates and VLSI hardware implementation are demanded for sophis-
ticated, high performance real-time modern signal processing. In real-time modern
signal processing applications, numerically reliable and computationally efficient al-
gorithms and architectures for techniques such as recursive least squares estimation
(RLS), constrained recursive least squares estimation (CRLS), solving linear systems,
and performing singular value decomposition are required. Furthermore, in these ap-
plications it is also necessary to design a highly parallel/pipelined structure for the use
in parallel supercomputers and for implementation by using VLSI systolic processors.

In this section some key processors are developed as the basic tools for designing
sophisticated adaptive array systems. Moreover, the parallel/pipelined techniques

considered here make it possible to design more advanced adaptive array systems



such as the MSC and MVDR adaptive beamforming systems studied in this paper.
A Dbrief description of the key linear-algebra-based parallel algorithms with systolic

array processors is provided in the following subsections.

3.1 Systolic Array for Preventing Forward Substitution

The computation of R FF = X is usually called the forward substitution where F' is
n X m matrix, R is n X n upper triangular matrix, and X is n x m matrix. In [16]
it is carried out in two steps to obtain F' by the Comon-Robert’s algorithm when the
matrices R and X are given. In the first step, the matrix R~! is computed when the
matrix R is fed into the systolic array. In the second step, the vector X* is given as
input to compute X" R™!. As a result, the complex conjugate of X R~! is taken to
obtain F'. Similar to [8, 17], the systolic algorithm shown in Table 1 requires only one
step to generate F' with the matrix R prestored in the systolic array and the matrix
X as input fed into the array.

The systolic parallelogram array processor designed to obtain F' without comput-
ing forward substitution is illustrated in Figure 3. The systolic parallelogram array
processor is operated by sending X into the upper triangular systolic processor in

parallel to obtain F' [6].

3.2 Systolic Array for Preventing Backward Substitution

Backward substitution is required in many adaptive array algorithms. Assume the
vector z and the lower triangular matrix ™ are the given data. The question now
is how to design a systolic structure to compute b = R™'z, by using the given vector
z and lower triangular matrix R=7. Fortunately, this can be easily carried out on
a systolic array efficiently. The technique introduced in this subsection shows that

instead of solving Kb = z, the backward substitution, the parallel multiplication and



for i=1 ton
begin
. — 1 .
Yir = =-Ta
11
o parallel for j =2 to m
begin
Zij = X

i parallel for k=1 to 5 —1

L m~ . ] . ?*
ST S T Yk

—
y‘lj - ¥
JJ
end
end

Table 1: The Parallel/Pipelined Algorithm for Preventing Forward Substitution
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i parallel for t1=1tom, j=1to m
begin
temp(i, §) = =(j) *2°(i, )
end wn parallel
in parallel for 1=1 to m
begin
w(z) =0
m parallel for 3 =1 to m
begin
w(1) = w(?) + temp(i, 7)

end wn parallel

end wn parallel

Table 2: The Parallel/Pipelined Algorithm for Preventing Backward Substitution

accumulation of z and matrix R~ is employed.

In Table 2, the systolic algorithm for the parallel multiplication and accumulation
operation of a given vector z and matrix R™ to prevent computing backward substi-
tution is described. The systolic array shown in Figure 4 is designed by concurrently
sending each element of the vector z to multiply the complex conjugate of each ele-
ment of the matrix R~ and then by summing them together to obtain the vector
b. 1t is clear that the vector b can be obtained by the parallel multiplication and
accumulation operation of the data stored in the lower triangular part of the systolic

array processor without performing the backward substitution [6].

11



4 QRD-MSC Adaptive Beamformer

Pipelined data-parallel algorithms that can be implemented on systolic array pro-
cessors (SAPs) are called systolic algorithms (SAs). The SAs designed in this paper
not only can be implemented by SAPs but also are numerically stable, an important
property that the SMI method does not possess. The SAPs have additional nice
properties such as simplicity, modularity, and expandability which are very suitable
for implementations of adaptive beamforming systems onto VLSI. Conventional SMI
methods generally lead to some undesirable numerical properties. In order to alleviate
this difficulty, the QRD can then be used.

The QR based MSC adaptive beamforming system is described in this section
while the QR based MVDR adaptive beamformer will be considered in the next
section. In this section we introduce a single and fully pipelined systolic parallelogram
array processor for optimal weight extraction in the MSC adaptive beamforming
system. The adaptive beamforming system requires two modes for initialization and
only one mode for recursive updating to obtain the optimal weights. By using a QRD,
we avoid computing the sample covariance matrix inversion as needed in Equation 8

and Equation 13.

4.1 QR Based RLS Algorithm for MSC

The N-snapshot input data matrix X(N) is received during the initialization period

0 <n < N. Applying the QRD to the data matrix X (/N), we have
R(N)=Q(N)X(N), (15)

where R(N) is an N x N upper triangular matrix and Q(/N) is a unitary matrix with

QY (N)Q(N) = I. Then by applying the unitary matrix Q(N) to the desired data



z(N), the orthogonalized desired vector u(N) is given by

where y(N) is an N x 1 vector.

Combining Equations 15 and 16, that use the QRD, we have
ROY) () | =@ | x(v) =) |- (17)

Let us call this the mode 1 operation. Finally, using systolic parallelogram array
processor described in Subsection 3.1, the initial lower triangular matrix R=H(N)
can be generated as in Table 1 and Figure 3. This operation is called the mode 2
operation.

For n greater than NV, it is known [18] that, in recursive updating, the unitary

matrix ¢(n) consists of two factors given by

Qn) = Q(n)Q(n — 1), (18)

where Q(n) is a n by n unitary matrix obtained {rom a sequence of Givens rotations
that updates the new data row 27 (n), and Q(n —1) is a n by n unitary matrix given
by
Qn—-1) : 0
Tl — 1) =
0 |
Thus, when the unitary matrix Q(n) is applied to update the current data matrix

X(n), we have



Q(n)

BR(n —1)

zT(t,)

_ . (19)

L =

where (3, the forgetting factor, is defined as the weight factor applied to the previous

data. Applying the same unitary matrix Q(n) to the desired signal, we obtain

Qn)z(n) =

= Qn)

Q(n)

z(n —1)

z(ty)

L

u(n)

Bo(n —1) | (20)

#*

where u(n —1) is an N x 1 vector, v(n—1) is an (n — N —1) x 1 vector, and # denotes

an arbitrary value ol no interest in mathematical and physical concept. Equations 19

and 20 update R(n — 1) and u(n — 1) once the data row 27 (t,) and new desired data

z(t,) are available.

It is also necessary to update the lower triangular matrix R=H (n—1) for computing

the instantaneous optimal RLS weighting vector. It can be scen that the same unitary

matrix Q(n) can also be used to update the lower triangular matrix R~ (n — 1) as

given by

RE(m)R™H(n)

Ri(n — )R (n—1)

BRH(n —1) 0

L«

Q" (n)

14

(1)



Therefore, from Equation 21, we obtain,

R (n -1 R~H(n)
Q(n) # = # ' (22)
0 #

Combining the updatings for the upper triangular matrix R(n—1), the orthogonalized

desired vector u(n — 1), and the lower triangular matrix R~ (n — 1), we have

BR(n—1) i pun—~1) @ L1RH(n-1)

~ /3
Q(n) 0 : Po(n—1) #
2T(t,) 0 z(t,) 0
R(n) : u(n) P RH(n)
= 0 : Pen—-1) @ # : (23)

0 T &

Thus, the optimal weight vector for the RLS problem can be obtained by substituting

Equations 19, 20, and 23 into Equation 8 to give
wrs(n) = R7(n)u(n). (24)

Equation 24 shows how to compute the optimal weight vector using QRD. However,
the problem of designing a fully pipclined processor due to the backward substitu-
tion still remains. Since u(n) and R™(n) are available, the technique described in
Subsection 3.2 can he used to realize the backward substitution. Equation 24 is then

computed as follows:

wrsT(n) =l ()R (n), (25)

where w; 3T (n) is a 1 by N vector and T denotes transpose.



I. Initialize Conditions at n =0 by setting
R(0)=0 z(0)=0 RH0)=0
2. Initialization Procedure for 0 < n < N:
(a) R(N) : wu(N) | is generated by using mode 1 operation, QR decompo-
sition
(b) R~H(N) is obtained by mode 2 operation. the parallel multiplication and

accumulation operation

3. Recursive Procedure for n > N (Mode 1 only):

| BR(n—1) R(n)
(a) Qn) 0 = 0
2l (ta) 0
Butn 1) | [ i)
(b) Q)| Bun—1) | =| Ao
L 2(t) >
—%R”HUz—l) R~ (n)
(c) Q(n) 4 =| %
i 0 #

Table 3: Summary of Parallel/Pipelined QRD-RLS Algorithm
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d 2,2 .2)3 g, 1 ‘ 1
— (B + [2]°)2 y — —sprdcr Tou — — ST+ CTin Touy = ST+ CTyy
¢ B ro—eBr+ s*tr P Lor + s*7, 1 o
7 cfBr 4 stx 1 (—ﬁC7+b Tin r«—ﬁcr+5 Tin
8 g Yy e—r Wout — Y1* + Win
re«d

Table 4: The Mode 1 Operation of MSC

4.2 Systolic MSC Weight Extraction System

The systolic RLS weight extraction algorithm is summarized in Table 3. The par-
allel/pipelined weight vector obtained by this algorithm is defined only during the
recursive updating for n > N when the observed data matrix is of full rank. We
start with initializing the algorithm by setting the upper triangular matrix, the or-
thogonalized desired vector, and the lower triangular matrix to zero, i.e., R(0) = 0,
u(0) = 0, and R~H(0) = 0. In the initialization, mode 1 and mode 2 are required
while only mode 1 is needed in recursive updating. When the observed input data
matrix X(NV) is available, where N is the nwmber of sensors. Then, the initial up-
per triangular matrix R(N) and the orthogonalized initial desired vector u(N) are
generated by using the mode 1 operation, the QRD, and the lower triangular matrix
R~H(N) are obtained by employing the mode 2 operation, the parallel multiplication
and accumulation operation, as described in Subsection 3.1. Finally, for n > N, the
optimal parallel weights are obtained by using only the mode 1 operation to update
parameters and to carry out the parallel multiplication and accumulation instead of
backward substitution.

In Figure 5, the MSC systolic parallelogram array processor is illustrated for the

case of four sensors to receive the observed input data and the desired input data,

17
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"
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—
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then r « sx

Table 5: The Mode 2 Operation of MSC

and to instantaneously generate the optimal updated weights in parallel. The system
needs two procedures which are the initialization and the recursive updating. The
initialization is further divided into two parts. First, under the mode 1 operation,
the 3 x 3 observed input data X, the 3 x 1 desired input data z, and the 3 x 3 zero
matrix are fed into the MSC systolic array to compute the 3 x 3 upper triangular
matrix R and the 3 x 1 orthogonalized desired vector u stored in the upper left part
of the systolic parallelogram array processor. Secondly, under the mode 2 operation,
the 3 x 3 identity matrix, 1 x 3 matrix of 1's, and zeroes are sent into the processor
to generate the 3 x 3 lower triangular matrix B~ which is stored in the lower right
triangular part of the array processor. The upper left triangular processors perform
the parallel multiplication and accumulation operation instead of forward substitution
to generate the lower triangular matrix R~ when 3 x 3 identity matrix is received,
and the lower right triangular processors function as the loading operation when 1 x3
matrix of 1’s is received. Finally, during recursive updating, the optimal weight vector
is obtained in parallel under the mode 1 operation. When the 1 x 3 observed input
data vector, the desired input data, and 1 x 3 zero vector are fed into the processor,
the 1 x 3 updated optimal weight vector is obtained instantaneously at the bottom
of the array.

The four processor elements of the systolic array are given in Figure 6. The mode

1 operation for the MSC systolic array for each processor element is described in

18



Table 4, and the mode 2 operation is presented in Table 5. The mode 1 operation
is used to carry out the QRD and parallel multiplication in both initialization and
recursive updating. Under mode 1 operation, the processor element 1 generates the
rotation coeflicients ¢ and s when zeroing out the observed input data. The processor
elements 2 and 3 perform the rotation of the received input data according to the
rotation coefficients. The processor element 4 not only perform the rotation but also
carries out the parallel multiplication and accumulation operation to compute the
optimal weights. The mode 2 operation is employed to carry out the parallel multi-
plication and accumulation operation without computing the forward substitution to
generate the lower triangular matrix 277(n). The processor element 1 of the mode 2
operation is used to generate parameters while the processor 2 and 3 are employed to
carry out the parallel multiplication and accumulation operation. The processor ele-
ment 4 is simply used to store the lower triangular matrix. It is illustrated in Figure 5
that the two different modes described in Table 4 and 5 are used in the initialization.
The recursive updating for parallel/pipelined weight extraction used for n > N only
requires mode 1 operation. Since the optimal weight vector obtained in the recur-
sive updating requires only one mode, the parallel MSC systolic parallelogram array

processor proposed is fully pipelined.

5 QRD-MVDR Adaptive Beamformer

Since weight extraction in the conventional QR-based constrained recursive least
squares (QRD-CRLS) algorithms requires both recursive orthogonalization and back-
ward substitution [7, 11, 12], it is impossible to update the whole system in a fully
pipelined manner. The new QRD-CRLS technique proposed is able to obtain the

optimal weights without performing backward substitution.

19



5.1 QR Based CRLS Algorithm for MVDR Beamformer

In this subsection, a parallel and fully pipelined algorithm is introduced for weight
extraction in a systolic MVDR beamformer. When the N-snapshot observed input
data matrix X (N) is available, by applying the QRD to the observed data X (N), the

initial upper triangular matrix R(N) is given by
R(N) = Q(N)X(N), (26)

where X (N) is an N by N observed data matrix consisting of N row vectors and
each row vector is a snapshot of N sensors, and () is an N by N unitary matrix. The

initial parameter vector s'(N) is defined by
S(N) = RN, (27)

where ¢ is the steering vector defined in Equation 11. The initial lower triangular
matrix R™7(N) is obtained by replacing the stecring vector in Equation 27 by an
identity matrix. It is shown in Subsection 3.1 that the initial parameter vector s'(N)
and the initial lower triangular matrix 27 (V) can be computed by using the systolic
parallelogram array processor described without computing the forward substitution.

When n is greater than N, the number of sensors, it has been shown in Subsec-
tion 4.1 that a QRD can be carried out recursively to update the optimal weights.

The upper triangular matrix can be updated as before, 1.e.

[ BR(n —1) R(n)
: 0 0
Q(n)X(n) = Q(n) - . (28)

27 (1) 0

To update a parameter vector s(n — 1), notice that

gi = RH(n)k_cei(n)



5s'(n —1)
= | BRH(n —1) 0 z*(t,) | Q" (n)Q(n) # (29)
0
Therefore,
Lin—1) | | si(n)
Q(n) # =| # | (30)
0 #

As described in the MSC system, the same unitary matrix used to update the upper

triangular matrix R(n—1) can also be employed to update the lower triangular matrix

R~ (n —1), that is

Q(n) # = 4 : (31)

Updating for the upper triangular matrix £2(n—1), the parameter vector s'(n—1). and

the lower triangular matrix R~ (n — 1) can be described by the combined equation

BR(n —1) %g‘(n—l) CLR P —1)

~ A
Q(n) 0 : 7 : #
() 0 5 0
R(n) siin) 1 R7H(n)
= 0 # 1 # (32)
0 # #
For convenience, let

@ (n) =" ()R (n). (33)



On substituting Equations 28, 29, and 33 into 13, the MVDR weight vector wi gy ¢(n)

becomes

whpps(n) = s @' (n), for i=1,---,K, (34)

5.2 Systolic MVDR Weight Extraction System

A single fully pipelined structure is shown in Figure 7 for the case of three sensors
with one constraint. Another single fully pipelined structure is shown in Figure 8 for
three sensors with multiple constraints. There are {ive processor elements as shown 1n
Figure 9 for our proposed fully pipelined structure. Both parallel weight extraction
MVDR systems require two procedures: the initialization and recursive updating.
The initialization can be further divided into two modes. Under the mode 1 operation,
the 3 x 3 upper triangular matrix R is generated and stored in processor elements 1
and 2, when the 3 x 3 input observed matrix and the 4 x 3 zero matrix are received.
Then, under the mode 2 operation described in Subsection 3.1 functioned as the
parallel multiplication and accumulation operation instead of forward substitution,
the 3 x 1 initial parameter vector s and the 3 x 3 lower triangular matrix R~ are
obtained and stored in processor clements 3 and 4, when a 3 x 1 steering vector
and a 3 x 3 identity matrix on the left, and a 1 x 4 matrix of 1’s and zeroes on
the right are received. Finally, in recursive updating, the systolic parallelogram array
processor performs updating, accumulating and adding, multiplying, and normalizing
operations to compute the optimal weights when a 3 x 1 observed input data and
zeros are received.

To demonstrate how the parallel/pipelined weight extraction system functions,
the summary of the whole system to obtain the optimal weight vector for MVDR
adaptive beamforming is described in Table 6. The mode 1 operation and the mode

2 operation for each processor element are given in Table 7 and Table 8. Under the

SV
oo



1. Initialize Conditions at n = 0 by setting

R(0)=0 s(0)=0 R™H(0)=0
2. Initialization Procedure for 0 < n < N:

(a) R(NV) is generated by using mode 1 operation, QR decomposition
(b) s*(N) and R~ (N) are obtained by mode 2 operation, the parallel multipli-

cation and accumulation operation

3. Recursive Procedure for n > N (Mode 1 only):

~ - ~ -

BR(n —1) R(n)
(a) Q(n) 0 =| o0
L IT(tn) J L 0 A
[ %g’(n —-1) — - s(n) ]
() Q)| # =| #
. 0 - L # .
%R"H(n - 1) R~ (n)
() Q(n) # =| #
L 0 #

Table 6: Summary of Parallel/Pipelined QRD-CRLS Algorithm
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Table 7: The Mode 1 Operation of MVDR

PEl PE2 PL3 PFE4 PES
8 — % Y — CT — 8T Toup ¢ Tin Tout < Lin Woyt « Win
¢« 1 if v, —1 of z;,, <1

then r « s+ then r « sx

Table 8: The Mode 2 Operation of MVDR




mode 1 operation, the processor element 1 generates the rotation coefficients ¢ and s,
while processor elements 2, 3, and 4 rotate the received data. The processor elements
3 and 4 also performs the multiplication-and-accumulation operation to compute the
normalization coefficient and optimal weight vector before normalization. The pro-
cessor element 5 performs the normalization for the optimal weights. Under mode
2 operation, the processor elements 1 and 2 perform the parallel multiplication and
accumulation operation without exactly computing the forward substitution while
the remaining processor elements operate as temporary storage for the parameter
vector and the lower triangular matrix. The system is started by setting the whole
parallelogram array processor to zero, i.e., R(0) = 0, s(0) = 0, and R~H(0) = 0 at
time n = 0. The initialization is then performed during time 0 < n < N to obtain
the initial upper triangular matrix R(N), the initial parameter vector s(/V), and the
initial lower triangular matrix R~ (N). Two different modes described are employed
in the initialization. The upper triangular matrix R(NN) is generated by using mode 1
operation while the initial parameter vector s(N) and the initial lower triangular ma-
trix R~ (N) are obtained by using mode 2 operation described in Subsection 3.1. In
recursive updating, the systolic parallelogram array processor uses mode 1 operation

to update and compute the optimal weights in parallel during time n > N.

6 Fast Givens Based Adaptive Beamforming Sys-

tems

It is important in implementing the QR decomposition by VLSI to avoid the square
root [8, 18]. Since computation of the square root is complicated, it limits the through-
put of the VLSI processors. To speed up the system, a square-root-free version of the

Givens method is essential and is referred to as the fast Givens method by Gentleman



[19] and Hammarling [20].

6.1 Fast Givens Based RLS Algorithm for MSC
The upper triangular matrix R(n) can be rewritten as
R(n) = D%(n)ﬁ(n) = Q(n)X(n) (35)

where D(n) is a N by N diagonal matrix with the form

[ di(t) 0 0]
0 dy(t,) - 0
00 dw(t) |

and R(n) is an upper triangular matrix with the form

1 7'1‘2(tn) 7113(tn) e rlfV(tn)
0 1 7‘2:3(%) te 7‘2N(tn)
0 0 L ()
0 0 0 . 1

In the QRD, we can also factor the diagonal matrix D3 out of the orthogonalized

desired vector u, and a lower triangular matrix R~ (n) as follows
w(n) = D¥a(n), (36)
and
R (n) = D¥R " (n). (37)

Then, it can be readily seen that the LS weight vector can be computed without a
square root as

w(n) =R (n)@(n), (38)



where D7 is never explicitly computed.
In the initialization the upper triangular matrix R(N), and orthogonalized desired

vector W(V) can be generated without explicitly computing Dz
QN | X(N) & y() ] _ DY) [ RN) © a(N) | (39)

Similar to the last two sections, the initial lower triangular matrix R_“H(N ) can also
be obtained easily.

In order to update the optimal weight vector recursively, a vector w(n — 1) and a
lower triangular matrix _—E_H(n — 1) must be updated at each new data sample. The

following equation shows how to update all of the parameters together

BDi(n —1)R(n—1) i ADi(n—1)mn—1) i ID¥n—1R "(n—1)
Q(n) 0 : Ao(n — 1) ; 4
2T (t,) 5 y(tn) 5 0
D3(n)R(n)  Di(n)u(n) i DF(n)R " (n)
= 0 ©BT(n —1) # ,(40)
0 : 4 : 4

where # denotes an arbitrary matrix or vector with no special interest. Finally, the

optimal weight vector is then computed by

wh(n) =7 ()R~ (n). (41)

The square-root-free algorithm and its systolic array processor are described in
Table 9 and Figure 10. The proposed fast MSC weight extraction system consists
of four processor elements as given in Figure 11. In Table 10, the mode 1 operation
performs the fast Givens rotations and parallel multiplication without computing
backward substitution. In addition, under the mode 1 operation, the PE 1 is used to

generate parameters without computing the square root, the PE 2 and 3 are operated
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1. Initialize

item Dz(0)R(0) =0 m(0)=0 R

Conditions at n = 0 by setting

70y =0

2. Initialization Procedure for 0 <n < N:

@ QM [ xv) ¢ =) | =D [ R ¢ oaw)
(b) R™7(N) is generated by Mode 2 operation
3. Recursive Procedure for n > N (Mode 1 only):
— ADz(n —1)R(n —1) Dz(n)R(n)
(a) Q(n) 0 = 0
i 2" (ty) 0
— B3D3(n — Da(n —1) D2 (n)T(n)
(b) Q(n) i = #
z(t,) #
%D%(n — 1)F~H(n —1) D%(n)ﬁ_ (n)
(c) Qn) 2 = #
0 7

(d) w'(n) =2 ()R (n)

*

(Mode 1)

Table 9: Summary of Fast Givens-RLS Algorithm
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Table 10: The Mode 1 Operation of Fast MSC

PE1 PI2 PE3

PE4
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c«—1
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if i — 1

then r «— s%

Table 11: The Mode 2 Operation of Fast MSC




to transform the input data by those parameters, and the PE 4 is employed not only
to transform input data but also to carry out the accumulation and addition operation
for obtaining the optimal weights. In Table 11, the mode 2 operation functions as
the parallel multiplication and accumulation operation without the need for forward
substitution. The functions of the four processor elements in the fast MSC systolic
array processor are performed in the same way as in the MSC systolic array processor

described in Section 4.2.

6.2 Fast Givens Based CRLS Algorithm for MVDR
Similarly, for MVDR. beamforming we can factor D2 out as follows
R(n) = D*(n)R(n), (42)
and
s(n) = D (n)3(n), (43)

and

R Hmn) = D%(n)ﬁ I(n). (44)

All the parameters must also be updated for computing the optimal weight vector.

The following equation shows how all the parameters can be updated together

ﬂD%(n—l)ﬁ(n—l) : %Dﬂn-l)g(n -1) : %D%(n—l)ﬁ_n(n -~ 1)
Qn) 0 : i : 4
2" (1) : 0 ' 0

Finally,
7.i

E(n)D1(n)z(n)

w(n) = w(n), for t=1,--- K. (46)

30



1. Imitiahize Conditions at n = 0 by setting
item D3 (0)R(0)=0 50)=0 F 7(0)=0
2. Initialization Procedure for 0 < n < N:
(a) QUINYX(N) = D%(N)_]?(N) under mode 1 operation

(b) 3(N) and —R—#H(N) are obtained by sending the steering vector ¢ and a unit

matrix into systolic array under mode 2 operation

3. Recursive Procedure for n > N (Mode 1 only):

i BD3(n — D)R(n — 1) D3(n)R(n)
(a) Q(n) 0 = 0

] al(t,) 0

1D —1sn—1) | | Diws(n)
(b) Q(n) # = 4

L O #

- %D%(n - 1)72_—}1(72 —1) D3(n)E 7 (n)
(c) Q(n) 4 = i

L 0 #

(d) w(n) = E—H(n)Dr—l(n)E(n)]? ](n)D‘l(n)E(n)

Table 12: Summary of Fast Givens-CRLS Algorithm
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Table 13: The Mode 1 Operation of Fast MVDR
PE1  PE2 PE3 PE4 PE>5
S &= T Y &= CT — 81 Lyyg ¢ Lip Tout < Tin Wout < Wip
c+ 1 if wie—1 if &1
then r e 3 then r « sx

Table 14: The Mode 2 Operation of Fast MVDR




The fast Givens-CRLS algorithm and systolic array processor are described in Ta-
ble 12 and Figures 12 and 13. There are five processor elements in the systolic array.
Processor elements are illustrated in Figure 14 and the functions of each processor

element under the two modes are also described in Tables 13 and 14.

7T Conclusion

In this paper, we consider the QRD based recursive least squares (RLS) and con-
strained recursive least squares (CRLS) problems for MSC and MVDR weight ex-
traction systems. Both weight extraction systems require two modes for initialization
and one mode for recursive updating. Since the optimal weight vectors obtained for
MSC and MVDR beamformers are defined solely in recursive updatings with only one
mode, it is shown that the weight extraction systems proposed are fully pipelined to
compute the optimal weights instantaneously. Compared to the conventional weight
extraction system involving the forward and backward substitutions which may lead
to significant obstruction in designing a fully pipelined systolic architecture to update
the optimal weights instantaneously, our proposed systolic parallelogram structure is
very promising for VLSIT implementation. Furthermore, the fast Givens method with-
out square root operation is employed to improve the throughput for parallel weight
extraction systems and to increase the operational speed for MSC and MVDR. adap-

tive array systems.
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Figure 3: Systolic Array Processors for Forward Substitution
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Figure 4: Systolic Array Processors for Backward Substitution

39



0
0 0
z 0 0
X 2 0 0
x X z 0 1
M ox X « 0 0 0
. X X ! 0 1 0
X 0 0 0 0 0
-0 1 0 4 0 0
M z 0
0 0 X
2 1 X X 4
- X X
T X X
X
PE1 PE2 ] PE2 PE3 - PE4
Y Y ! L J
PE1 | | PE2 PE3 PE4 | | PE4

OO OO0 —0 OO0

PET

PE3

PE4

P

optimal weight vector

Figure 5: Parallel Weight Extraction for MSC

10




x
x

[, 2 o

PE1 PE2
r ——C C r -
S s S
2
X
lm Xin Ivin
PE3 4 y PE4 y
—] r | C C r ——
S S S
X out l
Xout W)ut

Figure 6: Processor Elements of MSC Systolic Array Processor



0
0 0
0 0 1
0 0 0 0
M X 0 0 1 0
X X 0 0 0 0
1 X X 1 0 1 0 0
X 0 0 0 Y 0 0
o0 1 0 1 0 0 0
0 0 c 0 0 0
2 ] c X 0 0
o X X 0
- x X X
T X
X
PEI || PE2 || PE2 PE3 . I
Y y ! Y J l
PEI || PE2 PE3 |} PE4 PE4
Y ! Y Y ‘
PEI PL3 ] PE PE4 PE4
Y Y Y
o] PES PES PES

Figure 7: Parallel Weight Extraction for MVDR with One Constraint




0
0 0
0 0 1
0 0 0 0
X 0 0 1 0
X X 0 0 0 0
X X 1 0 1 0 0
X 0 0 0 0 0 0
0 1 0 1 0 0 0
0 0 C 0 0 0
] c X 0 0
c X X 0
- ¥ X X L ] ° [ ] ®
X X L ] Py [ ] L ]
X [ ] ° *® L ]
PET L PE2Z [ PE2 [oes PE4 u
PEI —g| PE2 :q PE3 PE4 PE4
PEI -:% PE3 PE4 :q;| PE4 PE4
PES ;dd:ws PES
. hd °
SR I
[ ] ¢ L]

optimal weight vector
optimatl weight vector

Figure 8: Parallel Weight Extraction for MVDR with Multiple Constraints



x
x

PE1 PE2
—p-C ¢ r - €
r 5 s S
y
“in 'in R W,
in

y
C — p r | C N r —
S S 5
HOU't noul H W,y
out

PES

I'UOUQ

Figure 9: Processor Elements of MVDR Systolic Array Processor

44



0
Y 0
z 0 0
X z 0 0
X X z 0 1
M x X X 0 0 0
X X 1 0 1 0
X 0 0 0 0 0
w0 i 0 z 0 0
0 0 X ¥4 0
2 X X 2
- X X
M X
1 X
X
PE PE2 | | PE2 PE3 || p541 J
PEI | | PE2 PE3 PE4 | PE4

OO OO0 —0O OO0

PE1

optimal weight vector

Figure 10: Fast MSC Systolic Array Processor




x

6in
PE1 K
- C
r s
5out
X in
K PE3
| r T—
5
X out

Figure 11: Processor Elements of IFast MSC Systolic Array Processor

X
K PE2
C o r
]
Y
Xin lvvin
Y PE4
g —> r
xout Wout




0
0 0
M X 0 0
X X 0 0
1 X X ! 0 1
X 0 0 0 0
';1' 0 1 0 1 0
0 0 o 0 0
2 C X 0 0
C X X 0
- x X X
" ><
X
PE1 | PE2 PE2 PE3 1

[eNeNeNeoNo o NeoNe]

Figure 12: Fast MVDR Systolic Array Processor with One Constraint

OO OO0 — OO0

PE! PE2 ] PES ] PEA4 1
Y ! Y Y

Pel gl PES | P PE4 1

Y Y Y

Ly} res PES PES




PE1

F_» PE2 | gl PE2

1
-

PEl |l PE2

I

PE3

L]
PE4 1
PE4 PE4 1
PES PES PES
- ¥
.
L]

optimal weight vector

Figure 13: Fast MVDR Systolic Array Processor with Multiple Constraints

48



xX
x

PE | K ‘ PE2
. —C ¢ — r —
S 5 S
5out y
R
in'in H W,
l ml
K PES y PE4 y
C r — C e r — ¢
S s S .
] n l
out 'out HOUt Wy

PES

wOU(

Figure 14: Processor Elements of I'ast MVDR Systolic Array Processor

49









