
ABSTRACT

Title of dissertation: AUTOMATED SOFTWARE DEBUGGING
USING HYBRID STATIC/DYNAMIC ANALYSIS

Ethar Elsaka, Doctor of Philosophy, 2016

Dissertation directed by: Professor Atif Memon
Department of Computer Science

With the increasing complexity of today’s software, the software development

process is becoming highly time and resource consuming. The increasing number

of software configurations, input parameters, usage scenarios, supporting platforms,

external dependencies, and versions plays an important role in expanding the costs

of maintaining and repairing unforeseeable software faults. To repair software faults,

developers spend considerable time in identifying the scenarios leading to those faults

and root-causing the problems.

While software debugging remains largely manual, it is not the case with

software testing and verification. The goal of this research is to improve the software

development process in general, and software debugging process in particular, by

devising techniques and methods for automated software debugging, which leverage

the advances in automatic test case generation and replay.

In this research, novel algorithms are devised to discover faulty execution paths

in programs by utilizing already existing software test cases, which can be either

automatically or manually generated. The execution traces, or alternatively, the

sequence covers of the failing test cases are extracted. Afterwards, commonalities

between these test case sequence covers are extracted, processed, analyzed, and then

presented to the developers in the form of subsequences that may be causing the

fault. The hypothesis is that code sequences that are shared between a number of

faulty test cases for the same reason resemble the faulty execution path, and hence,

the search space for the faulty execution path can be narrowed down by using a

large number of test cases.

To achieve this goal, an efficient algorithm is implemented for finding common

subsequences among a set of code sequence covers. Optimization techniques are

devised to generate shorter and more logical sequence covers, and to select subse-

quences with high likelihood of containing the root cause among the set of all possible

common subsequences. A hybrid static/dynamic analysis approach is designed to

trace back the common subsequences from the end to the root cause.

A debugging tool is created to enable developers to use the approach, and

integrate it with an existing Integrated Development Environment. The tool is also

integrated with the environment’s program editors so that developers can benefit

from both the tool suggestions, and their source code counterparts.

Finally, a comparison between the developed approach and the state-of-the-

art techniques shows that developers need only to inspect a small number of lines

in order to find the root cause of the fault. Furthermore, experimental evaluation

shows that the algorithm optimizations lead to better results in terms of both the

algorithm running time and the output subsequence length.

AUTOMATED SOFTWARE DEBUGGING USING HYBRID
STATIC/DYNAMIC ANALYSIS

by

Ethar Elsaka

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Atif Memon, Chair/Advisor
Professor Amol Deshpande
Professor Udaya Shankar
Professor Eyad Abed
Professor Mihai Pop

c© Copyright by
Ethar Elsaka

2016

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, Professor Atif Memon for

giving me an invaluable opportunity to work on challenging and extremely inter-

esting projects over the past five years. He has always helped and gave a lot of

valuable advice. He always has believed in me and my ability to face any challenges

to complete my thesis.

Words cannot express the gratitude I owe my husband, Walaa Eldin Moustafa,

for his support and confidence in my ability to be a mom and a PhD student at

the same time. I owe my deepest thanks to my family, my mother Soher Gaber

and father Ibrahim Elsaka, who have always stood by me and guided me through

my career, and have pulled me through against impossible odds at times. I would

also want to thank my brothers, Islam, Ayman, and Atheer, who always pushed

me forward by their supporting words and advices. I would also like to thank my

kids Yaseen and Maryam for being such loving kids, and for giving me the energy

to carry on. I hope that I see their names on their own theses.

I deeply appreciate the support and care of my father in law Moustafa Mo-

hamed. I’m very grateful for all the time that he spent with my kids to give me the

opportunity to finish my thesis.

I can’t forget all my lovely friends for their support and their standing by

me at all times, especially Gannat, Omar, Ingy, Moustafa, Hend, Hossam, Ahmed

ii

Khalil and Mohamed Salem.

Lastly, thank you all and thank God!

iii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Existing Approaches . 4
1.2 Motivating Example . 5
1.3 Challenges . 11
1.4 Goals . 15
1.5 Overview . 15
1.6 Broader Impact and Intellectual Merit 19
1.7 Conclusions . 20

2 Related Work 22
2.1 Slicing . 22
2.2 Differential Techniques . 23

2.2.1 Techniques Based on Working and Non-working Program Ver-
sions . 23

2.2.2 Techniques Based on Passed and Failed Test Cases 27
2.3 Techniques based on Failed Test Cases 31
2.4 Machine Learning-based Approaches 31
2.5 Model-based Approaches . 34
2.6 Performance Debugging . 35
2.7 Conclusions . 36

3 Modeling Disqover 38
3.1 Motivating Example . 41
3.2 The Disqover Approach . 42

3.2.1 The Execution Trace & Logs Extraction 44
3.2.2 Test cases Partitioning . 44
3.2.3 Common Subsequences Extraction 45

3.2.3.1 Applying Code Coverage Intersection 46
3.2.3.2 Constructing the Common Subsequences Graph . . . 46
3.2.3.3 Extracting common subsequences 50

iv

3.2.4 Algorithm Optimizations . 51
3.2.4.1 Test case abstraction 51
3.2.4.2 Extracting the most important subsequences 55

3.2.5 Hybrid Dynamic/Static Analysis 56
3.2.6 Remote Debugging . 59

3.3 Implementation . 60
3.3.1 Sequence Debugging View . 60
3.3.2 Search Box . 61
3.3.3 Source Code Highlighting . 62

3.4 Conclusions . 62

4 Using Disqover 64
4.1 Case Study 1: Crossword Sage . 64
4.2 Case Study 2: ArgoUML . 69
4.3 Case Study 3: Freemind . 74
4.4 Conclusion . 77

5 Evaluation 78
5.1 Subject Applications and Faults . 79

5.1.0.1 Comparison with other approaches 84
5.1.0.2 Test case diversity experiment 89
5.1.0.3 Sequence Cover Length Experiments 92
5.1.0.4 Running Time Experiments 93
5.1.0.5 Common Subsequence Length Experiments 95

5.2 Conclusions . 95

6 Future Research Directions 97
6.1 Conclusions . 99

Bibliography 100

v

List of Figures

1.1 A sequence that results from applying developed approach on the
seeded fault in Crossword Sage application 9

3.1 Example program . 42
3.2 Sequence covers of three test cases . 42
3.3 Partitioning Output . 45
3.4 Disqover shows the sequence of lines for Crossword Sage NumberFor-

matException Exception . 61
3.5 The results of searching for “cw” keyword in the sequence 62
3.6 Highlighted lines with red in the class that appear in the sequence . . 63

4.1 Crossword Sage NumberFormatException 65
4.2 Sequence Explaining Fault for Crossword Sage 67
4.3 ArgoUML FileNotFoundException 70
4.4 Sequence Explaining Fault for ArgoUML 72
4.5 Freemind NullPointerException . 74
4.6 Sequence Explaining Fault for Freemind 76

5.1 Comparison with Tarantula and Fonly 89
5.2 (a-c) Test case diversity experiments and (d-f) Running time experi-

ments . 91
5.3 Sequence Cover Length Experiments 93

vi

Chapter 1: Introduction

Software debugging is a main activity in the software development process. It

is used extensively by software developers to localize faults, find sources of errors

and enhance software quality and performance in general. The most popular way

to localize faults is by manual debugging, which is hard and time consuming [1].

In order for the developer to manually debug an application that contains an error,

she has to first understand the way the application works and determine the root

cause of the error by backtracking, navigating through the code dependencies, and

possibly running the code multiple times and parsing the program logs in order to

collect clues about the reasons of the error, so that the developer can finally identify

the source of the error and fix it.

The need to understand the program functionality is very common, as there

are many programmers who participate in the development phase. Therefore, the

developer who works on fixing a specific bug may not necessarily have written the

code, and thus, has to understand unfamiliar program parts. This task takes a

considerable amount of effort and time [2]. Even after the developer becomes familiar

with the code, figuring out the line(s) of code that produces the error is also a non-

trivial task. The developer has to envision multiple scenarios (by exploring different

1

possibilities of the input space) to check all the potentially error-causing execution

paths. There has been some work in automating this step in the literature of software

testing [3–9].

The final step, which is determining the source of the error (fault localization)

is the hardest aspect of debugging [2] because it requires analyzing hundreds of

lines to determine the error-causing subset. The developer has to track the program

dependencies in the source code, and go through multiple dependency paths to know

which are the ones that are exercised by the failing scenario.

Although software debugging remains largely manual, it is not the case with

software testing. With recent advances in automatic software test case generation,

new approaches use automatically generated test cases to facilitate software testing

and detecting software bugs. There are different paradigms in the literature upon

which automatic test case generation techniques are based. Some techniques are

based on behavioral and interactional UML models [10–26]. Other techniques are

based on structure UML models [27–30]. Also, there are some techniques that are

based on other models such as Event Flow Graph model [31], Event Interaction

Graph model [32], Feature model [33] and the Mathematical model [34]. All these

approaches share the common goal of generating a large number of test cases for

automatically detecting software bugs.

In this research, the advances achieved in software testing are leveraged to

aid the process of automated software debugging. A novel approach for automated

software debugging is developed, which is called Disqover, or debugging via code

sequence covers. In this approach, automatically generated test cases are utilized

2

to discover bugs and to help the developer find the source (lines of code) of those

bugs. Sequences of lines of code that are executed by these test cases, are recorded,

analyzed, and output as a sequence of code statements (with dynamically-observed

values of variables) that cause the fault. A series of improvements are developed

to the basic algorithm to enhance the output sequence to be more comprehensible,

concise, and representative of the error execution scenario so that developers can

achieve maximum utilization of the approach’s output information.

The advantage of adopting a sequence based approach is that finding error-

causing code using the output in the form of code sequences is easier and more

convenient for the developer than inspecting the code itself for the following reasons.

• Code sequences are examined in linear order. Developers do not need to track

code dependencies and consider different paths through which the code can

be executed.

• Code sequences are derived from execution traces, and hence capture runtime

behavior as well.

• While generating code sequences, values of program variables are automati-

cally extracted, so that the developer can examine them, and relate the vari-

able assignments to the error.

• Code sequences are enhanced using multiple methods as discussed in Chapter

3, to make them more relevant to the error, and hence, minimize the time

needed by developers to root cause and fix the problem.

3

1.1 Existing Approaches

Several approaches to fault localization involve program slicing [35,36], regres-

sion containment [37], and delta debugging [38] and its variants [39, 40]. Slicing

identifies all the statements that can affect a variable in a program either stati-

cally [35, 36] or dynamically [41, 41–44]. Although slicing techniques reduce the

number of lines of code to be examined, the size of the slice can still be large.

Regression containment and delta debugging attempt to minimize the difference be-

tween working and non-working versions of software programs. Other techniques

try to minimize the difference between passed and failed test cases such as path

profiles [45], counter examples [46, 47], statement coverage [48, 49], and predicate

values [50, 51]. These techniques differ from each other based on the information

they rely on for analyzing the differences between passed and failed program exe-

cutions. Despite being useful, many of these approaches are not applicable in all

situations. Specifically, they rely on the existence of passed and failed test cases, or

working and non-working software versions, which are not always available. They

require the application to be run multiple times before localizing the fault which is

complex because it is not always possible to generate runnable configurations that

contain only specific parts of the code.

Furthermore, compared to the developed approach in this research, inspecting

code sequences is more useful than inspecting individual statement suggestions, or

parts of the code that are responsible of generating the error. As discussed above,

most of the existing approaches for automated debugging provide the developers

4

with a ranked list of statements or blocks of code, sorted by their likelihood of being

the root cause of the error. This is usually not useful, as the developer still needs

to consider those lines in their source code context to understand how they can be

causing the fault, and also the given suggestions may contain multiple code paths,

where some of them may be responsible of causing the error, while some are not.

1.2 Motivating Example

In this section, a debugging scenario is demonstrated using a bug in the open-

source Java application Crossword Sage.1

Crossword Sage is a tool for creating professional-looking crosswords with pow-

erful word suggestion capabilities. It can be used to build, load, and save crosswords.

It can suggest words for adding to the crosswords, and allows the crosswords builder

to give clues for them. Furthermore, in addition to building crosswords, it allows

users to load pre-built crosswords and solve them. Crossword Sage project consists

of 3072 lines of code, 34 classes and 238 methods.

In order for the user to create a new crossword puzzle, he/she needs to click

on the File menu and choose the New Crossword menu item. Then, the application

asks the user to input the size of the puzzle through a dialog box. When the user

inputs a numeric number between 2 and 20, the application creates an empty grid

to allow the user to start building his/her crossword puzzle.

Normally, if the user enters a non-numeric value as the size of the puzzle, an

1http://crosswordsage.sourceforge.net

5

error dialog box should appear that says wrong input value and asks the user to enter

another input value. However, in this application when the user enters a non numeric

value in the dialog box, the application crashes with a NumberFormatException.

Using the most popular debugging method, which is the manual debugging,

the developer may follow the following steps in order to locate the source of the

error and fix it.

• Initially, the developer locates the line in the source code that is responsi-

ble of throwing the exception. In the example, it is line number 33 in the

Grid class (setLayout(new GridLayout(Integer.parseInt(cw.getHeight()), In-

teger.parseInt(cw.getWidth())))).

• Then, the developer should go to this line to investigate the line and try to

extract any clues about the reason of the exception.

• From the line, the developer can conclude that the width or the height of

the “cw” object might not have been initialized correctly. So, when the Inte-

ger.parseInt() function parses the value of any of them, it leads to the Num-

berFormatException. Now, the user needs to locate where the height and the

width of the “cw” object have been firstly initialized.

• Furthermore, the developer may put a break point at this line to figure out the

values of the width and height variables to make sure they are not correctly

set as numeric values, and run the program once to validate this assumption.

• Using the “Find References” feature available on some IDEs, the developer

6

can find the methods calling the method containing the line 33. There are 4

choices. The developer may need to check each of them to see if they have

been on the execution path of that particular error.

• The developer may need to run the program once more to see which of the

options is on the execution path. He/she may also need to add more debugging

information. It will turn out that line 40 in the CrosswordCompiler class is

the one calling the line 33 in the Grid class, and passing the parameter values.

• This line shows that a new instance of the Grid is created with the cw object

passed as a parameter which is created in the previous line with the width and

height variables that are passed as CrosswordCompiler constructor parame-

ters.

• Also, the developer may again put a break point at this location and run the

program again to test the values of the width and height variables.

• The developer also may verify the creation of the cw object by going to the

Crossword class which shows that the Crossword constructor initializes the

width and the height of the object using the constructor parameters and it

assumes that valid values are passed.

• By repeating the procedure above, the developer can find that line 226 in the

MainScreen class is the line responsible of creating the CrosswordCompiler

object.

• The developer can see that the initialization of the CrosswordCompiler param-

7

eters is carried out through the ”reply” variable. This variable is initialized

in the previous line using an input from a dialog box and no check is made

regarding the type of the reply variable.

• Again the developer may put a break point at this location and run the pro-

gram again with different input values to initialize the reply variable and see

the effect of these values on the width and height variables.

• At this point the developer will discover that a check is needed to verify that

the values of the reply string are numeric, or otherwise the program cannot

proceed.

As can be seen, using manual debugging, the user has to navigate to the source

code many times in order to analyze the code and figure out the cause of the error.

Furthermore, the user may run the program again to find out the values that cause

the failure.

On the contrary, using Disqover, the user does not need to either navigate

to the source code nor run the program again. Figure 1.1 shows the resulting

subsequence from applying developed approach to the execution traces of a set of

test cases which fail by producing the NumberFormatException at the same line of

code.

In order for the developer to find the source of the error using developed

approach, the following activities will take place:

• In the Figure 1.1, the last highlighted line is the line (setLayout(new GridLay-

out(Integer.parseInt(cw.getHeight()), Integer.parseInt(cw.getWidth())));). This

8

Figure 1.1: A sequence that results from applying developed approach on the seeded

fault in Crossword Sage application
9

line is the line that throws the NumberFormatException.From this line, the

developer can conclude that this exception results from applying the Inte-

ger.parseInt() function to a non-numeric value.

• This non-numeric value may be assigned to either the height or the width

variables of the cw object (because the Integer.parseInt() appears twice in the

line).

• Now, the developer can go backwards in the subsequence to figure out where

these two variables get assigned.

• The developer can see that the cw object comes from the method parameter

as shown in line (public Grid(Crossword cw)).

• Since this method represents a constructor, there should be a line in the se-

quence that creates new object from the Grid class and passes the Crossword

object as a parameter as can be seen at the line (grid = new Grid(cw)).

• By going backwards, the developer can see that the Crossword object cw is

created at the line (cw = new Crossword(width,height);) and the width and

the height are passed as parameters.

• These width and height variables are passed to the function through the Cross-

wordCompiler constructor arguments at line (public CrosswordCompiler(String

width, String height)).

• Finally, by going backwards at crosswordsage.MainScreen class, the devel-

oper can see that these parameters are passed as arguments when creat-

10

ing a new instance of crosswordsage.CrosswordCompiler at line (cc = new

CrosswordCompiler(reply, reply)) and these arguments are both initialized by

the variable reply which takes string values in line (String reply = jOption-

Pane.showInputDialog(null, ”Please enter grid size (2 - 20)...”, null);).

As it can be seen from the example, the developer does not need to refer to the

source code because all the required information exists in the resulted subsequence.

Furthermore, the values that are assigned to the variables during the test cases

execution are also available for the developer’s convenience.

1.3 Challenges

There are a number of challenges involved in achieving the developed approach:

• The problem of software debugging is a hard problem. Even human developers

are challenged when addressing software problems. Finding software bug root

causes is a tedious effort that consumes significant engineering time.

To address this challenge, The advances in software testing, and the availabil-

ity of tools that can generate large numbers of test cases are utilized. Test

cases are not only rich in their ability to cover large portions of the software

execution traces, but also are rich in the information that can be extracted

from them, which can be further studied and analyzed to reach the bug root

cause.

11

• Most techniques for software fault localization localize the fault by providing

the software developer with a ranked list of statements according to their likeli-

hood of being the source of the problem. Using these techniques still requires

developers to spend time to understand the context where those individual

lines are executed, and find which faulty execution paths were they actually

part of in order to solve the problem.

To address this challenge, techniques are developed that not only rank the pro-

gram statements, but also provide the context where those faulty statements

took place. This context is in the form of program statement subsequences

that get executed when the fault takes place. This is accomplished by ob-

taining the common subsequences between the execution traces of failing test

cases, and designing novel algorithms to decrease the length of those common

subsequences and narrow them down to a small number of subsequences to be

considered by the developer.

• Finding commonalities between code sequence covers corresponds to the mul-

tiple common subsequences problem, which is NP-hard [52]. This problem is

also related to the multiple sequence alignment problem that is well studied

in the computational biology literature [53–55]. Most approaches for finding

multiple common subsequences focus only on finding the longest common sub-

sequence, and hence are not applicable in this case as the common subsequence

of lines that contains the faulty path is not necessarily the longest. Further-

12

more, approaches for multiple sequence alignment are mostly iterative, i.e.,

they only align one sequence at a time with the current set of sequences, and

hence are dependent on the evaluation order, and does not necessarily result

in the optimal alignment. Additionally, multiple sequence alignment allows

mismatches as a compromise to get longer subsequences, which is not allowed

in this case.

To address this challenge, a new efficient algorithm is designed for finding com-

mon subsequences between code sequence covers, and a new way is presented

to represent those common subsequences as a directed acyclic graph, known

as the common subsequences graph. Furthermore, various abstraction tech-

niques are implemented to make the input code sequence covers more concise

and developer-friendly.

• Software usually contains more than one fault, making the problem of fault

localization more difficult, because of additional dimensionality introduced by

every additional fault.

To address this challenge, the ability of test case generation techniques is

utilized to generate a large number of test cases for the same application,

and group them by their type. This grouping allows applying the developed

approach on every group independently, and providing a separate subsequence

to the developer, representing the root cause for each group separately.

13

• Although knowing which statements have executed and in what order help

with identifying the root cause of an error, an effective piece of runtime infor-

mation that can be utilized as well is the state of program during the execution.

Most techniques for automated debugging do not offer program state runtime

information as part of their output to assist the developers. Developers must

resort to other ways to obtain such information such as manual debugging,

printing the values of variables, or digging through program logs.

To address this challenge, the developed automated debugging approach is

integrated with remote debugging tools, which automatically query the pro-

gram state information during runtime, summarize it, and provide it to the

developer as part of the output.

• Finding common subsequences between faulty test cases by itself may not be

sufficient to help the developers spot the problem. Common sequences may

contain code that is unrelated to the fault, in addition to the root cause sub-

sequence.

To isolate the root cause subsequence, a hybrid static/dynamic dependency

analysis approach is designed to extract the program statements in the com-

mon subsequence that have a dependency relationship with the statement at

which the fault is discovered. That way, unrelated statements are filtered out,

and only relative statements are included in the output subsequence.

14

1.4 Goals

The goals of this research are the following:

• Enhance the software development in general and the software debugging in

particular by doing part of the work the developers are doing in their normal

debugging activities automatically, and hence minimize the time spent by the

developer on fixing errors, and enhance the overall software quality by spending

more time on introducing new and useful features.

• Overcome shortcomings in existing manual debugging approaches, or auto-

mated software debugging applications, which require the developer to navi-

gate through source code dependencies and envision runtime behavior.

• Provide developers with quality suggestions by utilizing the advances in the

research of automated software testing, and extending them to support auto-

mated software debugging.

1.5 Overview

At a high level, the developed approach consists of the following steps to

achieve the above goals.

• Automatic test case generation: In addition to the manually generated

test cases, the existing test case generation systems are utilized to support

automated debugging. Automated test case generation tools, such as [56],

15

build models from software applications to generate a large number of test

cases. Test cases that fail for the same reason are collected in the same group,

in order to extract commonalities between their execution traces as outlined

below.

• Generating code sequence covers: Once the test cases are generated, the

available statement coverage generation tools are extended to generate code

sequence covers. Code sequence covers are different from regular statement

coverage reports in that statement coverage reports just report the statements

touched during the code execution along with some statistics such as the num-

ber of times they were touched. On the other hand, code sequence covers

report a sequence of lines of code that are touched line by line during the

execution.

• Abstracting code sequence covers: Code sequence covers may be too de-

tailed for developers to inspect as is. There may be blocks that always appear

together to perform a certain functionality, which can be abstracted together

as a unit. There may be repetitions due to loops and iterative processing.

Two sequence cover abstraction techniques are implemented that minimize

the effect of these problems, by detecting code execution units (blocks), and

eliminating repetition, but with conserving runtime information. The ap-

proach for detecting code units (or blocks) is based on finding consecutive

lines that appear in the same order, possibly multiple times, in all test cases.

Suffix trees is used to detect such sequences. Identifying blocks by searching

16

cross sequences ensures that the common units (or blocks) are still detected

and not lost when abstracted one sequence at a time, as there are multiple

ways a block can be formed from the same set of lines. Secondly, the approach

for detecting repeated lines from loops is by detecting subsequences that are

repeated consecutively after each other. Those subsequences are abstracted

by listing one occurrence only of the repetition. This process is repeated until

no more loops are detected in order to account for nested loops.

• Finding common subsequences: The next step after abstracting code se-

quence covers is to extract their common subsequences. A novel algorithm

is presented to identify the common subsequences among a set of sequences

(which are sequence covers in this case). The algorithm has the following

characteristics:

1. Unlike most algorithms for finding common subsequences between mul-

tiple sequences, the algorithm does not find the longest common subse-

quence only. Longest common subsequences may be too long for devel-

opers to inspect, or worse, the root cause may not exist in the longest

subsequence at all.

2. Unlike most of the algorithms for finding biological sequence alignment,

the developed algorithm is not progressive, and hence does not depend

on the order of adding new sequences. It also does not stick in a local

optima as it considers all the sequences together.

3. Alternatively, the algorithm constructs a compact representation of all

17

possible common subsequences called the common subsequences graph,

which is a directed acyclic graph, and generates common subsequences

out of it.

4. The construction of the common subsequence graph is performed using

an efficient algorithm that avoids creating unnecessary nodes that do not

contribute to the final common subsequences.

• Ranking the common subsequences: After constructing the common sub-

sequences graph, common subsequences are generated by traversing paths from

that graph. Due to the large number of paths, path selection algorithms are

used to select the top-k paths in that graph, which represent the paths with

more likelihood of containing the root cause.

• Dependency information extraction: The extracted common subsequences

may still contain irrelevant lines to the error. To eliminate such irrelevant lines,

dependency information is used to automatically extract lines related to the

error.

• Variable values extraction: Finally, variable values are attached to their

corresponding variables in each line in the final subsequence.

Disqover is evaluated to understand whether it helps developers find root

causes of failures more effectively, whether diversifying the input test cases or in-

creasing their number reduces the number of statements in the common subsequence,

and whether Disqover algorithms lead to a more efficient evaluation of the common

18

subsequence given large software code bases, and a large number of execution traces.

Experiments are performed to measure the number of statements to exam-

ine by developers before reaching the root cause in comparison to other techniques

such as MUSE [57], Op [49], Tarantula [48] and Fonly [58]. Moreover, the effect of

choosing diverse input test cases is measured on the size of the output common sub-

sequence. Furthermore, the abstraction techniques are evaluated to measure their

effects on the length of the input sequence covers, and the effect of the number of test

cases is evaluated over both the running time and the length of resulting common

subsequence, comparing the developed approach to multiple baselines. The results

show that Disqover significantly reduces the number of lines needed to discover the

source of the fault, and show the effectiveness of the sequence cover abstraction tech-

niques, for reducing the computation time and the length of the output common

subsequences, especially, for the computationally intensive ones.

1.6 Broader Impact and Intellectual Merit

This research provides a novel technique for automated software debugging

that utilizes code sequences for suggesting code failure paths. The approach suggests

concise subsequences for developers which they can trace back to find the source of

the error. The approach is based on a novel and efficient algorithm which finds

common subsequences among a set of code sequence covers. In addition to the

algorithm’s applications in automated software debugging, it has a broader impact

and relationship to a whole set of other computational applications, such as the

19

alignment of DNA and protein sequences, word alignment for machine translation,

and finding optimal matching in optimization problems.

With respect to the impact on the field of software development, a Cambridge

research study [59] states that software debugging costs 312 billon annually. Further-

more, the research study states that developers spend 50% of their time debugging

software. Additionally, a user study that is performed as part of evaluating the de-

veloped approach shows that on average, it saves developers 79% of their debugging

time for the applications used in the study. Extrapolating this ratio to the costs

reported by the Cambridge study, the developed approach can save significant soft-

ware development costs and provide developers an additional 40% of their overall

software development time to enhance the software quality and introduce additional

features. That does not only save software development costs, but also increases

software quality, which further increases software value, software organization rep-

utation and credibility, and customer loyalty and appreciation.

1.7 Conclusions

In this chapter, the problem of automated software debugging is motivated,

and is briefly reviewed how this problem is being handled in existing systems. The

developed approach is presented for solving this problem, which overcomes some

of the shortcomings in existing systems. The developed approach utilizes the ad-

vances of software testing to aid the downstream activity of debugging by finding

the commonalities between the executions of failed test cases. An overview of the

20

work that has performed as part of this research is presented. In the next chapter,

the related work is discussed in detail, and the differences are highlighted between

the developed work and other research in the same area.

21

Chapter 2: Related Work

In this chapter, the related work to the research in the area of automated

software debugging is reviewed. First, the early research that has been done in

this field, which is a set of techniques called program slicing is presented. Second,

differential debugging techniques are presented. These techniques narrow down the

set of possible statements causing an error using the differences between either the

working and non-working software versions, or passed and failed test cases. Third,

a technique that is based on failed test cases only is discussed. Fourth, approaches

based on machine learning and data mining techniques and model-based approaches

are discussed. Finally, some related work about automated performance debugging

are presented.

2.1 Slicing

Research in the area of automated debugging started a long time ago by Weiser

[35, 36], who proposed program slicing. Slicing defines all the statements that can

affect a variable in a program. Therefore, given a variable v in a program P , slice

S contains all the statement in P that may affect the value of v. The main idea

is that if the statement that contains the variable v is erroneous, the source of this

22

error can be in slice S. Slicing is calculated either statically [35, 36] by finding the

relevant statement according to data and control dependencies, or dynamically [60]

by benefiting from information collected during the program execution. Although

dynamic slicing and its variations [41–44] potentially reduce the size of the slices and

improve debugging, the size of the slices is still fairly large and slicing techniques

are rarely used in practice. The slice, which is the output of the slicing algorithm,

is a reduced version of the original program. It only contains the statements that

affect the value of the output and has the same behavior as the original program.

Therefore, the debugger still has to run the reduced program again and manually

detect the source of the error. On the contrary, Disqover provides sequences of

statements that take place when running the failed test cases with each statement

associated with the possible variable values. Therefore, the debugger can easily find

the source of the error by backtracking these sequences.

2.2 Differential Techniques

2.2.1 Techniques Based on Working and Non-working Program Ver-

sions

This category assumes that there are at least two versions of the program,

a working version and a non-working one. This means that running a test case

passes in one version and does not in the other one. Therefore, a source of an error

can be found by computing the difference between the working and non-working

versions. One approach of this category is regression containment [37]. It isolates

23

the changes that cause the error by defining the set of changes that have been

done between the working and non-working (that is not passing the test) program

editions. Since there can be multiple changes, it encapsulates the related changes

together in identifiable objects called mods and orders them in chronological order

(i.e., by the order they were introduced to the original program). The mods are

removed from the non-working edition in reverse chronological order either linearly

(one by one) or binary until the test passes. The last mod that has been removed is

the mod that is responsible of the test failure. This method works effectively if one

change is causing the error, but not a combination of changes. Also, while a change

may contain hundred or even thousands of lines of code, only a few lines may be

responsible of the error. Finally, the chronological order of changes may not always

be available or easily obtained.

Delta debugging [24] is proposed to address the limitations of regression con-

tainment. It is similar to the regression containment technique in relying on the

existence of working and non-working versions of the software and investigating the

set of changes between the two versions. Assuming that a set S contains all the

changes that have been done between the passing and failing versions, if S contains

one change, this means that the source of the error is in S. Otherwise, S is parti-

tioned into two sets S1 and S2 and each set is tested separately. If either of S1 or

S2 produces the failure, this means that S1 or S2, respectively, contains the source

of the error and it is subject to more binary partitioning. If both of them pass, this

means that the source of the error comes from a combination of them. Therefore,

the combination of the two sets is partitioned in different ways until the minimal

24

combination of changes is identified . This divide-and-conquer algorithm takes care

of interference (i.e., a combination of changes is responsible of the error), and gran-

ularity (a single change may encompass hundreds of lines of code but a small subset

of it may be responsible of the error) which are not addressed in the regression

containment technique. Delta debugging not only minimizes the difference between

two program versions but also the differences between two inputs where one input

is correctly run by the program and the other one is failed to be run as proposed in

[25].

Other variations of Delta Debugging (DD) have been proposed to overcome

its limitations such as Hierarchical Delta Debugging (HDD) and Iterative Delta De-

bugging (IDD)[1]. Although, delta debugging effectively identifies the source of the

error, it is only applicable with independent change list in which each change in the

list is independent of the other changes, e.g., a change containing a for loop and

another containing its body form dependent changes, while two for loops are inde-

pendent. This constraint makes DD works poorly with the data that has hierarchical

structure like object oriented programs and XML input files. Therefore, HDD was

proposed to overcome this limitation by applying the DD algorithm on each level of

the algorithm’s input starting from coarsest to the finest levels. IDD finds an older

program version, among the existing versions, in which a test case passes but fails

in the current version. In some cases, a test case may not be applicable to older

versions. Therefore, IDD successively uses DD to apply the necessary changes from

the newer version to an older version until it finds an older version that allows a

test case to run. IDD starts with the current version Pc (which fails the test case

25

t). It successively goes back and checks the older versions Poi . If the output of Poi

for running t matches the output of Pc, IDD skips this version and proceeds with

Poi−1 version. If the output of Poi is undetermined, DD is applied between the two

versions Pc and Poi and another version is produced called P ′
oi which behaves the

same as Pc with the test case t. This process proceeds until either the version that

passes t is found or there is no more older versions.

All these techniques rely on the existence of either working and non-working

versions of the program under test, or passing and failing inputs. This assumption

is not true in most cases because of either the absence of older program versions or

the absence of another version that allows the test case to run. Also, extracting the

changes between two program versions and applying parts of these changes to the

working version are very time consuming because of the execution time required to

run multiple combinations of these changes especially for large applications, and it

also cannot be done in parallel because the run at one iteration depends on the out-

put of the run at the previous iteration. Furthermore, applying part of the changes

to the working version may not always result in an executable version. Moreover,

the output of all the previous techniques is a set of lines without any further infor-

mation. Finally, those approaches operate on static versions of the programs and do

not incorporate runtime information back into the debugging output. Conversely,

Disqover just relies on the current version of the program. Also, It does not need

to worry about changing the source code or generating executable versions of the

program. Lastly, it uses the dynamic execution trace of the program and generates

sequences of statements that take place when running the failed test cases with each

26

statement associated with the possible variable values.

2.2.2 Techniques Based on Passed and Failed Test Cases

The idea of the second category is based on finding at least one passing test

case that is approximately similar to a failing one and extracting the difference

between the execution of the test cases. There are multiple types of test-case-

based automated debugging techniques such as approaches based on path profiles

[45], counter examples [46, 47], statement coverage [48, 49], statement mutants [57],

predicate values [50, 51] and Program states [61, 62]. These approaches differ from

each other in the type of information that they rely on to define the characteristics

of the program execution.

Approaches based in path profiles [45] identify the program paths that are

explored during the passed and the failed test cases by instrumenting the program

during the test case execution. Then it finds the differences between the two sets

of paths. In other words, it defines the paths that are present during the execution

of the passed test cases and are not present during the execution of the failed test

cases Sp and visa-versa Sf . Finally, it calculates the shortest prefixes that appear in

all the paths of Sp and do not appear in all the paths of Sf . These prefixes present

the critical portions of the code that the programmer should investigate to define

the source of the error.

Approaches based on Counter examples [46, 47], use the trace reports that

result from model checking tools for passing and failing test cases. Then, it takes

27

the differences between the two trace reports. For each error, it compares one error

trace with one correct trace.

Approaches based on statement coverage [48, 63] use visualization tools to

represent the suspicious code statements. These tools use different techniques to

color the program statements according to their participation in the test case exe-

cution. [63] uses one color to mark the statements that exist in the dynamic slices of

the failed test cases and do not exist in the dynamic slices of the passed test cases.

Theses statements most probably contain the source of the fault. At the same time,

it uses another color to color the statements that exist in the dynamic slices of the

execution of all the test cases. These statements less likely contain the source of

the error. [48] colors the statements according to their percentage of participation

in running the test cases. So, the statements that participate in the execution of

more failed test cases than passed test cases are colored with more red-ish color. On

the other hand, the statements that participate in the execution of more passed test

cases than failed test cases are colored with more green-ish color. The statements

that have the same percentage of participation are colored with yellow color. Also,

Wong et al. [64] define the suspiciousness of each statement based on the relationship

between its coverage and the execution results (failed/passed) of test cases. This is

done by calculating the crosstab of each statement in which the columns represent

the coverage information (covered/not covered) and the rows represent the execu-

tion results information (failed/passed). Furthermore, Naish et al. [49] calculate the

suspiciousness of a statement according to the following formula:

28

Op = aef −
aep
P + 1

, where aef is the number of failed test cases that execute s, aep is the number

of passed test cases that execute s, and P is the total number of passed test cases.

They expect that buggy statements have high aef and low aep, which leads to a high

suspiciousness score. Therefore, statement with the highest suspiciousness score are

most likely to be buggy.

One of the most recent and effective techniques is [57]. It creates mutants

for each statements according to different characteristics. To create a mutant for

a statement, it should be hit by a failed test case. Finally, they calculate the

suspiciousness of a statement according to the following formula:

suspiciousness(e) =
1

|mut(s)|
∑

m∈mut(s)

(
|fp(s) ∩ pm|
|fp|

− α |pp(s) ∩ fm|
|pp|

)

, where mut(s) is the number of mutants that are generated for a statement s,

|fp(s)∩pm|
|fp| is the proportion of tests that failed on P but now pass on a mutant m

that mutates s over tests that failed on P , |pp(s)∩fm|
|pp| is the proportion of tests that

passed on P but now fail on a mutant m that mutates s over tests that passed on

P , and α as

α =
f2p

|mut(P)| · |fp|
· |mut(P)| · |pp|

|p2f |

, where f2p and p2f are the number of test result changes from failure to pass

and vice versa between before and after all mutants of P , mut(P) is the number

29

of mutants that are generated for all the statements of P . Their hypothesis is that

mutating a faulty statement will either keep the program faulty, or fix the program

partially. At the same time, mutating a correct statement is more likely introduce

a new fault.

Approaches based on predicate values [50, 51] associate bugs in the program

with predicates that are instrumented during the execution of the program. The al-

gorithm in [50] computes two probabilities for each predicate P . Failure(P), which

is the probability of P being true implies failure, and Context(P), which is the prob-

ability of executing P may produce failure. Then, it discards the predicates that

have Failure(P)−Context(P) ≤ 0. Finally, it prioritizes the remaining predicates

based on their score. On the other hand, the algorithm in [51] computes the proba-

bility of a predicate P is evaluated to true in each run as π(p) = n(t)/(n(t) + n(f))

where n(t) is the number of times that P is evaluated to true in a specific run and

n(f) is the number of times that P is evaluated to false. Then, it correlates a pred-

icate to a bug if its distribution during the failed test cases is significantly different

from that in successful test cases.

Zeller [61] and Cleve et al. [62] propose approaches based on the differences

between the program states (which consists the variables and their values at par-

ticular point during the program execution) during the passed and failed program

executions.

The problem with these techniques is that the number of lines of code that

they identify for inspection by the developer can still be high because it is not

always possible to find close enough failing and passing test cases. Furthermore, the

30

developer still needs to inspect the source code to understand the context of the

suggested statements. Also, some techniques like [57] takes too much time in order

to calculate the statements suspiciousness.

2.3 Techniques based on Failed Test Cases

Zhang et al. [58] propose a fault localization technique that is based on failing

test cases only. Their hypothesis is that the more faulty runs that go through a

program entity (e.g. statement), the more likely this entity can lead to the failure.

They use the following formula to calculate the suspiciousness of a statement:

suspiciousness(e) =∑
c∈D[c(Y (c)− Y (0))]× cmax/

∑
c∈D c

2√∑
c∈D(Y (c)− Y (0))2 − (

∑
c∈D[c(Y (c)− Y (0))])2/

∑
c∈D c

2

, where c is the number of times in which a test case executes e, Y (c) is the number

of test cases that executes e c times and Y (0) is the number of test cases that never

execute e. This technique still has the same problems of the techniques that are

discussed in section 2.2.2 because it provides the developer with a list of ranked

statements.

2.4 Machine Learning-based Approaches

A number of research studies propose machine learning and data mining meth-

ods for fault localization. Wong et al. [65] propose an approach based on back-

propagation (BP) neural networks for fault localization. It utilizes the statement

coverage information for passing and failing test cases to train a BP neural network

31

in which the network learns the relationship between the coverage and the success or

failure of test cases. Then it computes the suspiciousness of the program statement

by including this statement in a virtual test case and using the virtual test case as

an input to the BP network. Furthermore, Wong et al. [66] use the same algorithm

that is proposed by [65] but using RBF (radial basis function) networks to overcome

the limitations of BP neural network such as network paralysis (network learning

stops) and local optimization.

Briand et al. [67] analyze test case specifications in terms of their input and

output to identify distinct conditions of failure using C4.5 decision trees. Each path

in this type of trees represents a rule for distinct failure condition with a probability

prediction for distinct failure. The statement coverage for the passed and failed test

cases are used for ranking failure conditions. Then the ranking of failure conditions

is used for the final ranking of the statements that should be examined to detect

the source of a failure.

Brun et al. [68] propose a machine learning approach based on Support Vector

Machines or Decision Trees. This approach consists of two phases: training and

classification phases. The training phase builds a model using previously known

errors and program properties (e.g. program variables). The input to this phase

is two program versions, one has one fault and the other does not have that fault.

The properties of each version are extracted and classified to fault-revealing, which

exist in the faulty version and do not exist in the non-faulty one and non-fault-

revealing, which exist in both versions. The classification phase applies the training

model to the set of properties that are specified by the user and outputs the set

32

of properties that are more likely related to the error ordered by their likelihood of

being fault-revealing.

Nessa et al. [69] compute a set of subsequences of length N (N-grams) from

the traces of test cases execution. In order to define these N-grams, they identify

the execution blocks by constructing Execution Sequence Graph. In this graph,

the vertices represent the lines of code and the edges represent the consecutive

relationship between the lines. An edge exists between two vertices if they are

executed consecutively in at least one test case. This definition of blocks reduces

the size of the trace and helps in defining possible branches. Using these blocks, all

possible N-grams of lengths 1 to N are generated. Then, the number of occurrences

of each N-gram is calculated in the failed test cases and the ones that are greater

than a specified threshold are selected. Finally, the chosen N-gram subsequences

are ordered based on their calculated conditional probabilities that a given test case

is failed because the appearance of a specific N-gram.

Cellier et al. [70] propose a data mining method to identify rules between the

statement execution and test case failure based on association rules and Formal

Concept Analysis (FCA). First, they build the trace context in which the objects

are the execution traces of the test cases and the attributes are the lines of the

program and if the test case pass or fail. Second, they generate the association rules

that are strongly related to the failure and specify a minimum threshold. Third,

they define the relation between the defined rules using the rule context and rule

lattice. Finally, to detect the fault, the rule lattice is investigated bottom up in

order to investigate the more specific rules first, then the more general ones.

33

None of these approaches ensures that the statement that contains the source

of the error will exist in the resulting suggested statements. Furthermore, the user

still needs to examine the source code to define the source of the error using the

clues (list of statements, which are ordered according of their suspiciousness) that

are reported by these approaches.

2.5 Model-based Approaches

Some research studies are proposed to analyze the relationship between the

failures and the faults or between the source and the failure. Wotawa, et al. [71]

propose a model-based approach that exploits the program variable dependencies,

the control flow and the whole semantics of the program. The model behavior is

extracted from the test cases in terms of their input and output. For searching

for the bug locations when a test case contradicts with the model, each program

statement is assumed to be correct or incorrect by default, then this assumption is

revised during the debugging process until identifying the cause of the error. Mateis,

et al. [72] propose a model-based approach for a subset of features of Java programs

such as classes, methods, assignments, conditionals and while-loop. The program is

statically compiled to a model, which can be divided into two parts: the structural

part and the behavioral part. The structural part presents the program components

and the connectivity relations between them. The behavioral part, which helps in

defining the faulty statements represents the behavior of these components using a

logic-based language. Mayer et al., [73, 74], extended this model-based approach to

34

handle the unstructured control flows of Java programs such as exceptions, recursive

method calls, return and jump statements.

Furthermore, DeMillo et al. [75] propose a model-based approach that de-

scribes the relationship between the failure and the faults. The model consists of

failure modes and failure types. Failure modes describe the different symptoms of

the program failure. Using these failure modes a program failure is categorized.

Failure types describe the nature of the failures. In order to localize the failure, the

following steps are followed. First, the failure mode is identified. Then using the

model, which describes the relations between the modes and the types, the type of

the failure is identified. Finally, using heuristics based on dynamic instrumentation

and testing information, the search domain is reduced for predicting possible faulty

statements.

Model-based approaches are difficult to apply on real applications because it

is extremely hard or impossible to generate a model that accommodates all program

behaviors, which makes the model incomplete.

2.6 Performance Debugging

Some approaches have been proposed also for debugging software performance.

These approaches focus on defining the system bottlenecks that result from I/O op-

erations, CPU or memory consumption. One of these approaches is [76], which is

an approach for summarizing the execution profiles of large systems and identify-

ing overlaps between these summaries. Using a search tool over the summaries,

35

the system bottlenecks can be identified. Also, [77] proposes an approach that

uses thresholding and filtering to define a small set of costly methods invocations.

Thresholding chooses only the components that exceed the user-defined threshold

and filtering filters out the user-defined components. [78] provides a visualization

tool called Jinsight EX that allows the user to choose the most valuable information

that should be included during performance analysis. This tool is used to define

Java applications bottlenecks. [79] proposes StackMine, a tool for effectively identi-

fying the cause of performance bugs that are reported through the execution traces

of a huge number of users. It applies mining algorithms on these execution traces to

define the most costly subsequences of function calls that account for a non trivial

waiting time, then it identifies the signature that causes this delay. [80] focuses on

identifying the cause of the idle time in server applications by analyzing their states

of idleness during the execution time using WAIT tool.

2.7 Conclusions

In this chapter, the existing automated debugging approaches are reviewed

and the differences between them and the developed approach are discussed. One

of the first techniques that have been proposed in this area is the slicing technique,

which is proposed by Weiser. Then, other different approaches are discussed that

are based on finding the differences between passed and failed either test cases or

software versions. Furthermore, other research studies are introduced that are based

on machine learning, data mining and model-based techniques. Finally, some studies

36

are presented aimed at automating software performance debugging. In the next

chapter, Disqover modeling is discussed in details.

37

Chapter 3: Modeling Disqover

In this chapter, Disqover, an automated debugging approach is discussed. Dis-

qover is applicable to all types of softwares. The section starts by stating some basic

definitions, then it discusses Disqover in detail in the following subsections.

Definition 1 (Test case) Given a software S, a test case is a set of inputs

i1, i2, . . . in that satisfy a set of preconditions, along with a set of expected outputs

o1, o2, . . . om that satisfy a set of postconditions. When i1, i2, . . . in are given to soft-

ware S, S should produce o1, o2, . . . om in order for the test case to pass.

Definition 2 (Passing/failing test case) Given a software S and a test case t,

t passes if S runs t to completion correctly, producing the expected output, and t fails

if t causes S to produce an unexpected output during the execution of t.

In the approach, the failing test cases that fail for the same reason (i.e. that

find the same type of error or the unexpected output at the same statement) are

grouped together under the same test cases group. Test case groups enable debugging

applications that have multiple errors at the same time.

Definition 3 (Test cases group) A test cases group is a set that contains one or

more test cases that fail at the same location, producing the same type of error or

unexpected output.

38

Furthermore, two types of statements that are essential for such type of auto-

mated debugging are defined, failure statement, and root cause subsequence.

Definition 4 (Failure statement) is the statement where the unexpected output

is detected. The failure can also take the form of an application error.

It is noticed that neither the failure statement nor its function call stack trace

are necessarily responsible for the unexpected output, and hence, the need for iden-

tifying the root cause becomes apparent, which is the bulk of the software debugging

process, and the objective of Disqover.

Definition 5 (Root cause subsequence) is a subsequence of statements that is

the main reason for the unexpected output. This subsequence may consist of a single

or multiple statements. Fixing this subsequence prevents the unexpected output from

being produced.

In this approach, the commonalities between multiple test cases which fail for

the same reason (i.e., from the test case group) are extracted. By using more than

one failing test case, the subsequence responsible for the error is narrowed down, by

eliminating irrelevant statements that are not shared between the execution traces

of all the test cases.

A straightforward way for implementing the above observation is by finding a

simple set intersection of the statements shared by test cases in a group (code cover-

age intersection). However, this approach is inadequate, as it returns an unordered

set of statement with no relationship between them. Therefore, the basic idea of the

39

developed approach is to extract the common subsequence among the failing test

cases sequence covers. Using sequence covers as opposed to code coverage intersec-

tion has a number of advantages. Tracing the common subsequence back starting

from the failure statement makes the debugging process as simple as a linear scan, as

opposed to exploring the highly interconnected program dependency graph to trace

back an application error. Furthermore, exploiting the fact that the program state-

ments execute in sequence can reduce the number of statements reported, because

in this case, not only the statements that are just shared between the sequences will

be considered, but also these statements must be executed in the same order. The

existence of this additional restriction further decreases the number of the resulting

statements that the developer needs to consider at a time.

Below a motivating application is presented for using sequence covers for au-

tomated debugging, as opposed to using code coverage intersection, but first, these

both terms are defined.

Definition 6 (Test case code coverage C(t)) Given a test case t, the test case

code coverage C(t) is a set of statements that are executed during the execution of

t.

Definition 7 (Test case sequence cover S(t)) Given a test case t, a sequence

cover, S(t), is the ordered list of statements that are executed during the execution

of t according to their execution order.

40

3.1 Motivating Example

Consider the code snippet listed in Figure 3.1, which has the statements

s1, s2, s3, s4 and s5 (the if and the for statements are excluded from the sequence

for simplicity). It can also execute two test cases t1 and t2, which are from the

same test case group. t1 executes the statements s1, s3, s4, s5 in the following order

s1 → s3 → s4 → s5 and t2 executes the statements s2, s3, s4, s5 in the following

order s2 → s5 → s3 → s4. The two test cases execute each statement only once.

In this case, the code coverage set C(t1) is {s1, s3, s4, s5} and the code coverage

set C(t2) is {s2, s3, s4, s5}. Therefore, the statements that result from applying the

code-coverage intersection technique are (s3, s4, s5). On the other hand, if the order

of statement execution is utilized, it can be said that either the subsequence s3, s4

or the subsequence s5 is responsible of the error because in the first test case, s5

appears before s3, s4 and in the second it appears after them. Therefore, s5 can be

inspected in isolation of s3 and s4 by the developer, which minimizes the number

of statements to consider at a time, and minimizes the number of interactions and

dependencies that the developer needs to keep track of while tracing back the state-

ments. In this case, the execution trace of each test case is generated as a sequence

of statements, and the common ordered statements between all the test cases are

extracted.

41

if (t1) s1;

if (t2) s2;

for (i in 0,1) {

if(t1 && i=0 || t2 && i=1) {

s3; s4; }

if(t1 && i=1 || t2 && i=0) s5;

}

Figure 3.1: Example program

S(t1) = a b a c

S(t2) = c a b a

S(t3) = a b d a

Figure 3.2: Sequence covers of three test cases

3.2 The Disqover Approach

Now, Disqover, an automated debugging approach is discussed. Disqover takes

as an input the test suite and the source code of the application under test (AUT)

and outputs the detected faults with their recommended code subsequence that lead

to the source of the sfault.

Disqover consists of 5 steps:

1. The Execution Trace & Logs Extraction, which extracts the test cases exe-

cution traces and the test cases execution logs. The execution traces present

the order of the statements that are touched during the execution of the test

cases. The execution logs present the output of each test case, i.e., whether it

42

passed or failed.

2. Test cases Partitioning, which groups the test cases according to the type and

the location of the faults caught by the test cases execution. It takes as an

input the test cases execution logs and outputs test case groups. Each group

has the test cases that are failed for the same fault (exception, error, or false

assertion) type at the same location in the source code. In addition, it outputs

an additional group for all the passed test cases.

3. Common Subsequence Extraction, which extracts a common subsequence of

lines found in the trace of the failing test cases.

4. Hybrid Dynamic/Static Analysis, which uses both static information coming

from code dependency analysis and dynamic information coming from the

common subsequence from the pervious step, to provide the dependency of

the failed line within the common subsequence. It takes as input the common

subsequence and outputs a final subsequence. This subsequence explains the

fault since it contains only the lines that affect the failed line.

5. Remote Debugging, which provides the values of the variables that included

in the subsequence that explains the fault.

In the following subsections, each step is discussed in more details.

43

3.2.1 The Execution Trace & Logs Extraction

To analyze the failed test cases, the test case execution trace and execution log

are captured. Test case execution trace presents which statements where touched

during the test case execution. Since we care about the order of execution of the

statements in addition to the statements themselves, this order is captured as well.

Test case execution log presents the output of the test case (e.g. whether it passes

or fails) .To extract the test cases execution trace, a code instrumentation tool,

Cobertura [81], is modified to achieve this task. Cobertura is an open source Java

tool that calculates the percentage of code accessed by test cases. It instruments

Java byte-code after program compilation. It can generate either HTML or XML

reports. Each line is represented by package name, class name, method name, line

number and the number of hits during running the test case. In this research,

Cobertura source code is modified so that it can output a report of the program

execution trace in the form of a sequence of program lines that are touched during

replaying the test case.

3.2.2 Test cases Partitioning

In the partitioning step, the test cases are partitioned into groups. Each group

has test cases that fail for the same reason. In other words, all the test cases that

belong to the same group throw the same type of exception at the same location.

This step takes as an input the logs of the test cases that result from executing

the test cases. According to the type of the error and the location of this error

44

Figure 3.3: Partitioning Output

in the source code, the test cases are grouped together. At the same time, all the

passed test cases are grouped together to compare them to the test oracle in order to

detect more faults. Figure 3.3 shows an example of an HTML-based output of the

partitioning step, partitioning the test cases of one of GUI applications, Crossword

Sage, into groups according to the two types of errors found by running those test

cases: NullPointerException, and NumberFormatException, along with the number

of test cases relevant to each error, and a hyperlink to the detail pages explaining

the reasons of those failures.

3.2.3 Common Subsequences Extraction

In this section, the algorithm for finding code sequence coverage intersection

is discussed in detail. The goal of the algorithm is to detect subsequences of state-

ments that appear in all the test cases in the same order, and at the same time,

not necessarily consecutively, i.e., they can have arbitrary gaps between them. For

example, assuming the three execution traces in Figure 3.2 are obtained, the algo-

rithm is needed to detect that the subsequence (a, b, a) is the one that is common

between them. Applying the Longest Common Subsequences, LCS, algorithm is

45

not suitable in this research as it outputs the longest common subsequence only,

which may not contain the root cause of the error, as it is just one of the possible

subsequences among all the common subsequences. In this section the approach for

finding all the common subsequences is discussed, and in Section 3.2.4, how to rank

the subsequences according to their importance is shown so that the subsequence

with the highest rank is outputted according to that criteria.

To enumerate all the possible common subsequences between a set of se-

quences, the steps outlined below are followed.

3.2.3.1 Applying Code Coverage Intersection

As an initial step, all the code coverage sets of the test cases are intersected

to get the set of statements that are common between them. Clearly, the common

subsequences must be composed of statements in that intersection only. This set is

denoted as C = C(t1) ∩ C(t2)...

3.2.3.2 Constructing the Common Subsequences Graph

The problem of generating all common subsequences among a set of sequences

is difficult because there is an exponential number of combinations that can be

considered in order to construct the common subsequence. If a statement appears

multiple times in each sequence, say n1, . . . , nm times, then there are O(
∏

i ni) ways

to construct smaller subsequences recursively out of the original ones to continue

finding the common subsequences among them and so on. In this subsection, how

46

to model that problem is discussed using the common subsequences graph, and how

to compute the the common subsequences efficiently by only considering meaningful

combinations, because not all of the possible combinations can make it to the final

common subsequences.

Since each statement can occur multiple times in each sequence cover, a par-

ticular combination of occurrences of a statement is defined in all sequence covers to

be an instance of that statement, as it can possibly contribute to a common subse-

quence. For example, in Figure 3.2, b has only one possible instance of occurrence:

(2, 3, 2), which means that b occurs at position 2 in S(t1), position 3 at S(t2), and

position 2 at S(t3). However, a has eight possible instances, since it occurs in S(t1)

at positions 1, 3, in S(t2) at positions 2, 4, and in S(t3) at positions 1, 4. Therefore,

a’s possible combinations are (1, 2, 1), (1, 2, 4), (1, 4, 1), . . . etc.

Now that the instances of occurrences for each statement are defined, a com-

mon subsequence is a sequence of instances (inst1, inst2, .., instn) such that all

positions in insti are strictly less than their corresponding positions in insti+1, for

all 1 ≤ i < n.

Definition: (Operator <) Given two instances insti and instj, insti < instj

if and only if all the positions in insti are less than their corresponding positions in

instj.

Likewise, > is defined over pairs of instances, insti and instj using their cor-

responding positions.

Example: consider the instance of a’s occurrence inst1 = (1, 2, 4) and the

instance of b’s occurrence inst2 = (2, 3, 2). A common subsequence cannot consist

47

of inst1 followed by inst2, because inst1 6< inst2, because at the third place, a

occurs at position 4 while b occurs at position 2, which means that a precedes

b in all the test case sequences, but not in the third, where b precedes a, which

means that (inst1, inst2) is not a valid common subsequence. On the other hand,

if we consider inst1 as the instance (1, 2, 1), then (inst1, inst2) becomes a valid

common subsequence, because inst1 < inst2, where for every position in inst1,

its corresponding position in inst2 is strictly greater than it, which means that a

precedes b in all test cases.

The naive way for generating the common subsequences using the instances is

by generating all possible instances (inst1, inst2, . . .) for all statements and finding

which of them follows the others, i.e., insti < instj. This approach has a number of

disadvantages:

1. It is quadratic in the number of instances, which is exponential in the number

of test cases to begin with. So, it is very inefficient.

2. This approach may result in redundant common subsequences. For exam-

ple, consider the instances inst1 = (1, 2, 1), representing a, and inst2 =

(2, 3, 2), representing b, and inst3 = (3, 4, 4), representing another occurrence

of a. An approach that blindly constructs common subsequences if the po-

sitions are strictly increasing will generate both the common subsequences

(inst1, inst2, inst3), i.e., aba, and (inst1, inst3), i.e, aa, because both follow

the strictly increasing position criteria. However, a wiser approach should

generate (inst1, inst2, inst3) only, as (inst1, inst3) is already a subset of it.

48

3. This approach requires enumerating all the possible instances, even if we are

not going to use them. For example, once we generate the instance inst1 =

(1, 2, 1) for a, there is no need to generate inst2 = (1, 4, 1) for a, as inst2

cannot appear with inst1 in any common subsequence, and hence we can save

a lot of the exponential time complexity involved in generating all possible

instances.

As it can be seen, it is inefficient to use an enumeration-based approach. In the

experimental evaluation, this approach was evaluated as a baseline; however it failed

to find the common subsequences as it resulted in an out of memory exception due

to its high memory requirements.

To make this process more scalable, an algorithm that generates the instances

on demand, and avoids constructing redundant subsequences during the common

subsequence building time is developed. The algorithm is based on constructing a

graph of instances, where nodes of the graph represent instances, and an edge from

instance insti to instj means that insti > instj and there is no other instk such

that insti > instk and instk > instj, i.e., there is no intermediate instance that can

appear in the common subsequence between insti and instj, and hence, edges of the

graph are constructed between nodes that represent instances that directly follow

each other.

In order to generate the instances on demand, the least instance for each

statement in the code coverage intersection is created, its edges are generated, and

recurse. For example, considering the sequence coverage in Figure 3.2, the algorithm

49

starts by defining the least instance for a : (1, 2, 1), and the least instance for

b : (2, 3, 2) and adds them to a stack. Then, it picks (1, 2, 1) from the stack, generates

its edges by choosing from the next least possible instances relative to it, and adds

those next least possible instances back to the stack if they do not already exist or if

they have not been already processed. To generate the next least possible instances

efficiently, binary search are used by constructing an array pos[s, ti] storing the

positions of each statement s in each sequence cover of ti in sorted order. Given an

instance (p1, . . . , pm) of a statement s′, the next least position to pi is found in the

sequence of ti by searching for pi in that sequence. Consuming nodes from the stack

are continued until the stack becomes empty, the point at which a precedence graph

is generated on the instances, where any path in that graph represents a common

subsequence between the execution traces of all test cases.

Definition: (Common subsequences graph) a common subsequences

graph is a directed acyclic graph whose nodes represent instances of occurrence

of statements in the sequence cover of all test cases, and its edges represent the

direct < relationship between those instances. Any path in this graph represents a

common subsequence of the execution traces of all test cases.

3.2.3.3 Extracting common subsequences

To generate the common subsequences between the execution traces of all

test cases, the algorithm starts from the node representing the failure statement in

the common subsequences graph, and traverses its neighbors, generates all possi-

50

ble paths. Each of these paths is a common subsequence. Algorithm 1 lists the

pseudocode for the common subsequence extraction process.

3.2.4 Algorithm Optimizations

The developed algorithm is enhanced by 1) abstracting the test cases, and 2)

extracting the most important subsequences only. Test case abstractions transform

the the sequence covers to more abstract, shorter versions. Most important subse-

quence extraction selects a subsequence from the common subsequences graph that

is most likely to contain the faulty line.

3.2.4.1 Test case abstraction

Test case abstraction is achieved using two techniques: loop-based abstraction,

and block-based abstraction.

Loop-based abstraction While creating the graph of instances, it is found that the

algorithm spent a lot of time and memory in building the graph because of the

existence of repeated lines resulting from program loops. Loops result in lines that

are repeated multiple times in each sequence cover, and their occurrence in multiple

sequence covers results in a number of instances in the graph that is exponentially

proportional to the number of test cases. Therefore, this approach is impractical.

Furthermore, from the developer’s point of view, inspecting a single occurrence

of each line in the loop may be more convenient than inspecting all iterations of

the loop unrolled. Therefore, before extracting the intersected lines among all the

51

Algorithm 1 Common subsequences generation algorithm

1: procedure Get Common Subsequence
2: C = C(t1) ∩ C(t2) ∩ . . . C(tn)
3: for statement s ∈ C do
4: for test case ∈ ti do
5: pos[s, ti] = all the positions of stmt s ∈ S(ti)
6: end for
7: end for
8: for statement s ∈ C do
9: for test case ∈ ti do

10: min instance[s, i] = -1
11: end for
12: end for
13: for statement s ∈ C do
14: for test case ∈ ti do
15: min instance[s, i] =
16: min(pos[s, ti]) s.t. pos[s, ti] >
17: min instance[s, i]
18: end for
19: instances = instances ∪min instance[s]
20: end for
21: while instances is not empty do
22: inst = pop(instances)
23: for statement s ∈ C do
24: instc = least instance i of s such that i > inst
25: if instc ! = null then
26: pred[instc] = pred[instc] ∪ inst
27: if instc does not exist in instances && instc was not processed

before then
28: instances = instances ∪ instc
29: end if
30: end if
31: end for
32: end while
33: starting from the failure statements in the graph, generate all possible paths
34: end procedure

52

test cases, each loop in each test case sequence is compressed to appear as one

iteration. Loops are identified as any subsequence of program lines in the execution

trace that is consecutively repeated more than once. Note that this does not affect

the variable values reported to the developer as part of the tool output, as those

values are extracted anyway for each iteration of the loop as part of the variable

value extraction technique discussed in Section 3.2.6. Therefore, although the line

appears once in the results, all possible variable values are still preserved.

Block-based abstraction Furthermore, another observation is that there are pro-

gram lines in the sequence cover of each test case which always appear consecutively

either within the same test case or across all the test cases. So, there is no need to

build graph instances for each line individually while one instance can be created for

all of them together representing a single block, and hence, save a lot of time and

memory. Therefore, an efficient technique is developed for identifying consecutive

lines of code that are shared between all the test cases. After extracting these com-

mon consecutive lines and representing them as individual blocks in the instance

graph, those blocks are mapped back to their corresponding lines while outputting

the results to the developer.

The approach for extracting common consecutive subsequences among all test

cases is non-trivial. The first approach is constructing the graph containing all

instances, and extracting paths whose instances are before each other by exactly

one position, which guarantees that the resulting subsequences are consecutive in

each test case. However, this approach does not work for tests with large sequences

53

as building the graph is still very time-consuming, which defeats the purpose of

efficiently building and processing the graph. On the other hand, the graph with a

subset of the instances that are only consecutive to each other could not be built,

as this still requires to consider all possible graph instances in order to find out

whether they have consecutive neighbors or not.

In order to extract consecutive common subsequences efficiently, the developed

approach starts from common subsequences within each test case separately, which

significantly reduces the search space. For each test case, the suffix tree algorithm

is used to extract all repeated consecutive subsequences in that test case, where the

entire test case sequence is treated as a string, and each line in that sequence as

a character in the suffix tree string. The output of that process is a set of subse-

quences which are repeated multiple times within the test case. Note that those

subsequences vary in their length and number of repetitions, which affects their ab-

straction power, where subsequences with higher length and number of repetitions

have more abstraction power over those with less. Those subsequences may also

overlap, where applying one of them (i.e., using it to compress the test case into

individual blocks) may invalidate the possibility of applying others. Therefore, to

address these two issues, each subsequence is assigned a score, that is the result of

multiplying its length by its number of repetitions, and hence, each subsequence is

associated with a measure of its importance or abstraction power. This consecutive

repeated subsequence detection process is applied for each sequence cover, and af-

ter extracting the repeated consecutive subsequences for each test case, the set of

those repeated subsequences are intersected across all sequence covers to identify the

54

blocks that appear in all sequences multiple times. The score of each subsequence

in the intersection is updated to be the sum of its scores in the individual sequences

to reflect its abstraction power relative to all sequences. Finally, the subsequences

are sorted according to their scores and apply them in order. Note that we cannot

substitute subsequences locally in each test case sequence without ensuring that

the subsequence exists in other test case sequences as well, as this will hide lines

underlying each block, which can be shared across all sequences, but cannot be seen

when represented as a single block that does not necessarily appear in all test cases.

Therefore, by making sure the blocks appear in all sequences, we know that the

underlying lines match among those blocks in all sequences as well, and hence, are

still be seen in the final output.

One final optimization is related to the suffix tree construction algorithm,

which may not scale to very large test case sequences with tens of thousands of

lines of code. The test case sequence is partitioned to a number of partitions, each

with a smaller number of lines in the sequence, apply the suffix tree algorithm to

each partition, and finally union the resulting subsequences from each partition and

update their scores accordingly.

3.2.4.2 Extracting the most important subsequences

Traversing all the paths starting from the throwing exception node in large

graphs is time consuming, results in a large number of paths, and may cause out

of memory exceptions, while we are only interested in just one sequence to present

55

to the user, which should highly likely contain the trace back from the throwing

line to the source line. Therefore, in the developed algorithm, instead of traversing

all paths, scores are assigned to the nodes in the graph according to their degrees,

which indicate the likelihood of those nodes participating in faulty sequences, and

then the path that passes along the nodes with the highest scores is generated.

3.2.5 Hybrid Dynamic/Static Analysis

Although the number of the statements in the output common subsequence

can be small after applying the abstraction techniques discussed above, they can still

include some statements that do not have any effect on failing statement. These

statements may be a source of distraction to the developer while backtracking the

common subsequence to find the source of the error.

To backtrack the lines, call and data dependency information of the program

are employed. Obtaining the common subsequences between the execution traces

has an advantage. The existence of those common subsequences enables us to avoid

expanding the entire dependency graph of the entire program. Therefore, in order

to extract these dependencies efficiently, the common subsequences is utilized to

restrict the search space of the dependency graph. This is done by generating

the call graph for only the subset of the classes and the methods that appear in

the common statement subsequence. For each method, the def-use graph is built of

their statements. This graph contains a node for each statement and there is an edge

between two nodes if a control can flow from one node to the other one. At the same

56

time, the dependency of the failure statement is extracted and the dependency is

restricted to the subset of statements appearing in the common subsequence. There

are three main algorithms that are used to achieve this type of hybrid dynamic/static

analysis:

1) In the first algorithm, the call graph of the methods that the statements of the

common subsequence belong to is generated. This procedure is stated in Algorithm

2 .

Algorithm 2 Call Graph Generation Algorithm

1: procedure Get Call Graph(Sequence q)
2: for statement s ∈ q do
3: classes = classes ∪ s.class name
4: end for
5: g = Generate Call Graph(classes)
6: return g
7: end procedure

2) To get the def/use chain of an individual statement, the variables and the meth-

ods that are referenced in that statement are extracted. Then, for the referenced

variables, the statements that assign these variables are added to the chain. The

variables could be passed as method parameters, in which case the assigning state-

ment is found in the calling method which passes the parameter value, and hence

step 1 is used to obtain the calling-callee information. For the referenced methods,

their return statements are added(if any) to the chain, in addition to any statements

that change non-local variables. This procedure is listed in Algorithm 3.

3) Now, starting from the failure statement, its dependencies are got as outlined in

the previous step and for each dependency (element of the chain), the algorithm

recurses on it only if it is part of the common subsequence obtained in Section 3.2.4.

57

This procedure is listed in Algorithm 4. The inputs for that procedure are the call

graph, the failure statement, the in sequence, which is initialized to the common

subsequence generated as discussed in Section 3.2.4, and the out sequence, which is

initialized to φ for the first call.

Algorithm 3 Def/Use Chain Extraction Algorithm

1: procedure Get DefUse Chain(Statement s, Sequence q)
2: g = Get Call Graph(q)
3: uses = get referenced methods and vars(s)
4: for e ∈ uses do . e could be a variable or method
5: if e is a variable then
6: if e is passed as the enclosing method m parameter then
7: m′ = g.get calling(m)
8: e′ = variable corresponding to e in m′

9: s′ = get assigning stmt(e′,m′)
10: else
11: s′ = get assigning stmt(e,m)
12: end if
13: chain = chain ∪ s′
14: else . e is a method
15: chain = chain ∪ return stmts(e)
16: chain = chain ∪
17: stmts assigning non local vars(e)
18: end if
19: end for
20: return chain
21: end procedure

To implement this hybrid analysis, Soot [82] is used. Soot is a software engi-

neering tool for analyzing and optimizing Java programs. It provides program call

graph and intra-procedural data flow analysis. For the intra-procedural data flow

analysis, it operates on a control-flow graph called UnitGraph.

58

Algorithm 4 Dependency Extraction Algorithm

1: procedure Get Dependencies(Stmt s, Call Graph g, Sequence in, Sequence
out)

2: out′ = out ∪ s
3: chain = Get DefUse Chain(s)
4: for s′ ∈ chain do
5: if s′ ∈ in then
6: Get Dependencies(s, g, in, out′)
7: end if
8: end for
9: return out′

10: end procedure

3.2.6 Remote Debugging

This step is responsible of extracting the variable values. It takes the common

subsequence and the application source code as inputs and outputs each line at-

tached with each variable values. Since in this research Java applications are used,

the Java Debugger (JDB) [83] command line debugging tool is used to automate ex-

tracting the variable values. JDB is a full-fledged Java debugging tool that is based

on Java Platform Debugger Architecture that provides inspection and debugging

of a local or remote Java virtual machines. It allows setting breakpoints, stepping,

suspending on exceptions, all through a command line interface. A script that au-

tomatically sets debugging breakpoints at the lines of the program constituting the

common subsequence, steps over those breakpoints, and dumps the values of the

variables appearing in those lines is written. Variable values in a line can only be

retrieved after the line has been fully executed, including any methods that it may

call. If those methods have breakpoints too, which is usually the case, we keep track

of the method call stack, in order to remember a line when we return back to its

59

method after its execution, as JDB does not simply return to the same line after it

exhausts the entire call stack, and at the same time, does not necessarily return to

the line next to it in cases like if statements or loops. Therefore, there is no built-in

way in this case to know at which point variables values can be already extracted

so that they express the state of the program directly after executing a particular

line, and hence, a new approach is implemented on top of JDB.

3.3 Implementation

A tool is implemented to enable developers to use the developed approach.

The implementation of this tool is discussed in this section.

3.3.1 Sequence Debugging View

In this plugin, a new menu item is added to the package explorer called “Se-

quence Debugging”. This menu item is displayed when the user right clicks a project

in the package explorer. It has a sub menu called “Show Sequence Debugging View”.

When the user clicks this submenu, the “Common Sequence Debugging View” is

opened if the project has failures. The view contains all the project failures along

with with the common subsequence for each failure. If the project does not contain

failures, a dialog message appears stating that there are no failures in this project.

As can be seen in Figure 3.4 the subsequence presented to the developer ends with

the failed line. The view organizes the information as a hierarchy, in which the top

level is the failure name, followed by the class names at the second level, and the

60

!"#$%&'()"*'(+$",,()"*'(-'./01(2#34".%&'(5"&#"6$'()"*'(5"&#"6$'(5"$%',(

!"#$'1(7#4'(800.(+"%,'(

Figure 3.4: Disqover shows the sequence of lines for Crossword Sage NumberFor-

matException Exception

individual lines at the bottom level. This individual line may be a method signature

with dark yellow color or a line code with black color. The user can expand or col-

lapse the subsequence at any level. Furthermore, If any of the lines that are at the

bottom level is an assignment statement, the line is associated with all the values

that the assigned variable took during the execution of all the failed test cases, so

that the developer can correlate those values with the failure.

3.3.2 Search Box

The view contains a search box, which allows the developer to search for any

keyword in the sequence, so that the developer can conveniently navigate through

the sequence and quickly see where variables are defined/used. If the developer

writes any keyword in the search box, only the lines that contains the keyword will

stay and all the other lines will disappear. Figure 3.5 shows the results of looking

for “cw” keywords in the sequence in Figure 3.4.

61

!"#$%&'()*'

+,-."$"/'0,1"2'

Figure 3.5: The results of searching for “cw” keyword in the sequence

3.3.3 Source Code Highlighting

Since the plugin is part of the Eclipse IDE, the user can navigate or run the

source code at any time. Also, the user can see an individual line or a group of lines

that are under one class in the subsequence in their actual location in the source

code by double clicking the line or the class name (respectively) in the view. If the

user double clicks an individual line, the plugin opens the file containing this line in

the editor, sets the cursor position at this line, and highlights that line with a green

color. If the user double clicks a class, the plugin opens the file containing this class,

highlights all the lines that are under this class in the sequence with a red color and

sets the cursor position at the first line as can be seen in Figure 3.6.

3.4 Conclusions

In this chapter, Disqover approach is discussed in detail. Disqover contains

of 5 main steps: The Execution Trace & Logs Extraction, which extracts test case

execution traces and test case execution logs; Test cases Partitioning, which groups

the test cases according to the type and the location of the faults caught by the test

62

Figure 3.6: Highlighted lines with red in the class that appear in the sequence

cases execution; Common Subsequence Extraction, which extracts a common sub-

sequence of lines found in the trace of the failing test cases; Hybrid Dynamic/Static

Analysis, which uses both static information coming from code dependency analysis

and dynamic information coming from the common subsequence from the pervious

step to provide the dependency of the failed line within the common subsequence;

Remote Debugging, which provides the values of the variables that included in the

subsequence that explains the fault. The chapter concludes by describing the tool

that is generated to facilitate using the resulting common subsequence to the user.

In the next chapter, 3 case studies are presented to show how a developer can use

the resulting common subsequence to find the source of the error.

63

Chapter 4: Using Disqover

In this chapter, three case studies of three errors in three different applications

are discussed. The applications are Crossword Sage, ArgoUML, and Freemind. The

application sizes vary from thousands of lines of code to hundreds of thousands of

lines of code. Throughout the case studies, concrete examples of the developed

approach’s capability are shown to find and identify root causes of bugs, and ways

of showing them to the developer in a self-explained manner are presented. Also,

the final output of the developed approach for each error is shown, along with the

number of lines to inspect in that output. Since all the applications that are used

here are GUI-applications, an automated test case generation called GUITAR [56]

is utilized to generate a large number of test cases. Furthermore, the developed

common subsequence algorithm is not applied to the test case traces only, but also

to the test cases (which contain a sequence of events).

4.1 Case Study 1: Crossword Sage

In order for the user to create a new crossword puzzle, he/she needs to click

on the File menu and choose the New Crossword menu item. Then, the application

asks the user to input the size of the puzzle through a dialog box. When the user

64

java.lang.NumberFormatException: For input string: ""

at java.lang.NumberFormatException.forInputString

(NumberFormatException.java:48)

at java.lang.Integer.parseInt(Integer.java:470)

at java.lang.Integer.parseInt(Integer.java:499)

at crosswordsage.Grid.<init>(Grid.java:33)

at crosswordsage.CrosswordCompiler.<init>

(CrosswordCompiler.java:40)

at crosswordsage.MainScreen.showCrosswordBuilder

(MainScreen.java:226)

at crosswordsage.MainScreen.access$3(MainScreen.java:216)

at crosswordsage.MainScreen$MenuListene

.actionPerformed(MainScreen.java:423)

Figure 4.1: Crossword Sage NumberFormatException

inputs a numeric number between 2 and 20, the application creates an empty grid

to allow the user to start building his/her crossword puzzle.

Normally, if the user enters a non-numeric value as the size of the puzzle, an

error dialog box should appear warning the user about the wrong input format and

asks the user to enter another input value. However, in this application when the

user enters a non numeric value in the dialog box, the application crashes with a

NumberFormatException as can be seen in Figure 4.1.

65

Now, we discuss how using Disqover, the developer can get the concise sequence

of statements explaining the error as shown in Figure 4.2. The steps performed by

Disqover are listed below. All of those steps are performed automatically.

Step 1: The process starts by generating and running the application test

suite using the automated testing framework GUITAR [56]. The output of this step

is 347 test cases and their execution logs.

Step 2: At the same time, the test case execution traces are extracted using

the modified Cobertura during the test cases execution.

Step 3: Then, the test cases that reveal the NumberFormatException are

grouped together using the technique discussed in Section 3.2.2. This step detects

41 test cases that fail because of the exception that is shown in Figure 4.1.

Step 4: Next, the common subsequence algorithm that is discussed in Section

3.2.3 is applied to the 41 test cases. This step returns the common events that cause

the NumberFormatException, which are File → New Crossword → Cancel.

Step 5: Then, for each event in the common events, the common subse-

quence algorithm is applied again for the event code to get the common statement

subsequence.

Step 6: Then, the hybrid dynamic/static analysis discussed in Section 3.2.5

gets the dependency of the line that throws the exception. The output of this step

is shown in Figure 4.2.

Step 7: Finally, the remote debugger that is explained in Section 3.2.6 is

applied to the final output to get the variable values of each assignment statement.

In order for the developer to find the source of the error using the developed

66

1 private void showCrosswordBuilder()

2 String reply = JOptionPane.showInputDialog(null,"Please enter grid size (2-20)...", null);

3 cc = new CrosswordCompiler(reply, reply);

4 public CrosswordCompiler(String width, String height)

5 cw = new Crossword(width, height);

6 public Crossword(String width, String height)

7 isEditable = true;

8 this.width = width;

9 this.height = height;

10 words = new ArrayList();

11 public CrosswordCompiler(String width, String height)

12 grid = new Grid(cw);

13 void Grid(Crossword cw)

14 setLayout(new GridLayout(Integer.parseInt(cw.getHeight()), Integer.parseInt(cw.getWidth())));

Figure 4.2: Sequence Explaining Fault for Crossword Sage

67

approach, only the following activities will take place:

• The last line in the sequence is line 14 (setLayout(new GridLayout(Inte-

ger.parseInt(cw.getHeight()), Integer.parseInt(cw.getWidth())));). This line

is the line that throws the NumberFormatException. From this line, the

developer can conclude that this exception results from applying the Inte-

ger.parseInt() function to a non-numeric value.

• This non-numeric value may be assigned to either the height or the width

variables of the cw object (because the Integer.parseInt() appears twice in the

line).

• Now, the developer can go backwards in the subsequence and see that the

cw object comes from the method parameter as shown in line 13 (public

Grid(Crossword cw)).

• Going backward, there is a line in the sequence that creates new object from

the Grid class and passes the Crossword object as a parameter as can be seen

at the line 12 (grid = new Grid(cw)).

• By going backwards further, the developer can see that the Crossword object

cw is created at the line 5 (cw = new Crossword(width,height);) and the width

and the height are passed as parameters.

• These width and height variables are passed to the function through the

Crossword- Compiler constructor arguments at line 4(public CrosswordCom-

piler(String width, String height)).

68

• Finally, by going backwards at crosswordsage.MainScreen class, the developer

can see that these parameters are passed as arguments when creating a new

instance of cross- wordsage.CrosswordCompiler at line 3 (cc = new Cross-

wordCompiler(reply, reply)) and these arguments are both initialized by the

variable reply which takes string values in line 2 (String reply = jOption-

Pane.showInputDialog(null, Please enter grid size (2 - 20)..., null);).

As can be seen, the developer needs only to inspect 6 lines to find the root cause of

the bug. Those 6 lines are self-contained, and do not require prior knowledge of the

code, as the problem can be seen by just inspecting those lines.

4.2 Case Study 2: ArgoUML

When the user exports the graphics using the Export All Graphics menu item,

and saves them to a file, if the user enters a directory location that does not exist on

disk, the application throws a FileNotFoundException as can be seen in Figure 4.3,

and exits the Save dialog without notifying the user of the problem. The error is

thrown when the application is actually trying to save the file, while it is originated

when the user chooses the improper directory.

The output of Disqover after being applied to this exception is shown in Figure

4.4. To obtain that output, Disqover, performs all the following steps automatically.

Step 1: The process starts by applying GUITAR framework to ArgoUML.

This step generates and runs 6317 test cases.

Step 2: At the same time, the trace execution extraction in Section 3.2.1

69

java.io.FileNotFoundException: /crash/crash/ClassDiagram.png (No such file or directory)

at java.io.FileOutputStream.open(Native Method)

at java.io.FileOutputStream.<init>(FileOutputStream.java:179)

at java.io.FileOutputStream.<init>(FileOutputStream.java:131)

at org.argouml.uml.ui.ActionSaveAllGraphics.saveGraphicsToFile

(ActionSaveAllGraphics.java:230)

at org.argouml.uml.ui.ActionSaveAllGraphics.trySaveDiagram

(ActionSaveAllGraphics.java:161)

at org.argouml.uml.ui.ActionSaveAllGraphics.trySave

(ActionSaveAllGraphics.java:130)

at org.argouml.uml.ui.ActionSaveAllGraphics.trySave

(ActionSaveAllGraphics.java:106)

at org.argouml.uml.ui.ActionSaveAllGraphics.actionPerformed

(ActionSaveAllGraphics.java:98)

Figure 4.3: ArgoUML FileNotFoundException

70

finds out that the average number of lines per test case trace is 221795 lines. This

large number of lines makes the manual debugging impractical.

Step 3: From the 6317 test cases, the partitioning step in Section 3.2.2 finds

out that only 122 test cases reveal the FileNotFoundException exception that is

shown in Figure 4.3.

Step 4: Now, after applying the common subsequence algorithm that is dis-

cussed in Section 3.2.3 on the 122 failed test cases, it detects that the common

events that cause the exception are File → Export All Graphics... → Save As: →

Save.

Step 5: Then, for each event in the common events, the common subsequence

algorithm is applied again for the event code to get the common statement subse-

quence. This step reduces the number of lines that need to be inspected to 234

lines.

Step 6: Then, the hybrid dynamic/static analysis in Section 3.2.5 gets the

final common statement subsequence. The number of lines to be inspected is reduced

again to be 31 lines. A relevant subset of those lines is shown in Figure 4.4.

Step 7: Finally, the remote debugging that is explained in Section 3.2.6 gets

the variable values of each assignment statement in the final sequence.

In order for the developer to find the source of the error using our developed

approach, only the following activities will take place:

• The last line in the sequence is line 15 (fo = new FileOutputStream(theFile

)). This line is the line that throws the FileNotFoundException. From this

71

1 public void actionPerformed(ActionEvent ae)

2 trySave(false);

3 public boolean trySave(boolean canOverwrite)

4 return trySave(canOverwrite, null);

5 public boolean trySave(boolean canOverwrite, File directory)

6 Project p = ProjectManager.getManager().getCurrentProject();

7 File saveDir = (directory != null) ? directory : getSaveDir(p);

8 for (ArgoDiagram d : p.getDiagramList())

9 okSoFar = trySaveDiagram(d, saveDir);

10 protected boolean trySaveDiagram(Object target, File saveDir)

11 File theFile = new File(saveDir, defaultName + "." + SaveGraphicsManager.getInstance().getDefaultSuffix());

12 SaveGraphicsAction cmd = SaveGraphicsManager.getInstance().

getSaveActionBySuffix(SaveGraphicsManager.getInstance()

.getDefaultSuffix());

13 boolean result = saveGraphicsToFile(theFile, cmd);

14 private boolean saveGraphicsToFile(File theFile, SaveGraphicsAction cmd)

15 fo = new FileOutputStream(theFile);

Figure 4.4: Sequence Explaining Fault for ArgoUML

72

line, the developer can conclude that this exception results from an attempt

to output stream to a file ”theFile” and this file does not exist.

• Now, the developer can go backwards in the subsequence and see that the “the-

File” variable comes from the method parameter as shown in line 14 (private

boolean saveGraphicsToFile(File theFile, SaveGraphicsAction cmd)).

• Going backward, there is a line in the sequence that calls the saveGraphic-

sToFile function as can be seen at the line 13 (boolean result = saveGraphic-

sToFile(theFile, cmd)).

• Since the developer is investigating the variable ”theFile”, we can see that this

variable is defined at line 11 (File theFile = new File(saveDir, defaultName +

”.” + SaveGraphicsManager.getInstance().getDefaultSuffix())).

• This line uses a ”saveDir” variable that is passed as the method parameter as

can be seen at line 10 (protected boolean trySaveDiagram(Object target, File

saveDir)).

• By going backwards further, the developer can see that the function ”trySave-

Diagram” is called at line 9 (okSoFar = trySaveDiagram(d, saveDir)).

• Finally, by going backwards at ”trySave” function, the developer can see that

the ”saveDir” variable is set at line 7 (File saveDir = (directory != null) ?

directory : getSaveDir(p)) to non existing location ”/crash/crash”.

As it can be seen, the total number of lines that are needed to be inspected are only

7.

73

java.lang.NullPointerException at freemind.modes.ControllerAdapter.remove

(ControllerAdapter.java:339)

at freemind.modes.ControllerAdapter.delete

(ControllerAdapter.java:297)

at freemind.modes.ControllerAdapter$RemoveAction

.actionPerformed(ControllerAdapter.java:671)

Figure 4.5: Freemind NullPointerException

4.3 Case Study 3: Freemind

The exception shown in Figure 4.5 is thrown by the application when the user

attempts to remove a node from the Freemind graph. This is because the selected

node is set to null, which causes the application to throw the NullPointerException.

To get the output that is shown in Figure 4.6, the same steps that are used in

the previous case studies are followed.

The output of Disqover for this exception is shown in Figure 4.6. To obtain

that output, the following steps take place automatically.

Step 1: The process starts by applying GUITAR framework to Freemind,

which generates and runs 3055 test cases.

Step 2: At the same time, the trace execution extraction in Section 3.2.1

finds out that the average number of lines per test case trace is 14806 lines.

Step 3: The partitioning in Section 3.2.2 finds out that only 417 test cases

74

are able to reveal NullPointerException exception that is shown in Figure 4.5.

Step 4: Now, after applying the common subsequence algorithm that is dis-

cussed in Section 3.2.3, it detects that the common events that cause the exception

are Edit → Node → Remove Node.

Step 5: Then, for each event in the common events, the common subse-

quence algorithm is applied again for the event code to get the common statement

subsequence. This step reduces the number of lines to be inspected to 56 lines.

Step 6: Then, the hybrid dynamic/static analysis in Section 3.2.5 gets the

final common statement subsequence. The number of lines to be inspected is shrunk

down to 6 lines only as can be seen in Figure 4.6.

Step 7: Finally, the remote debugging that is explained in Section 3.2.6 gets

the variable values of each assignment statement in the final sequence.

Only the following activities are performed by the developer:

• The last line in the sequence is line 11 (if (!node.isRoot())). This line is the

line that throws the NullPointerException. From this line, the developer can

conclude that this exception results from an attempt to access the isRoot()

function using null object, which is the ”node” object.

• Now, the developer can go backward in the subsequence and see that the

”node” object is passed as the method parameter as shown in line 10 (public

void remove(NodeView node)).

• Going backward, the developer can figure out that there is a line in the

sequence that calls the ”remove” function as can be seen at line 5 (get-

75

1 public void actionPerformed(ActionEvent e)

2 NodeView selected = null;

3 delete(selected);

4 void delete(NodeView node)

5 getMode().getModeController().remove(node);

6 protected Mode getMode()

7 return mode;

8 public ModeController getModeController()

9 return modecontroller;

10 public void remove(NodeView node)

11 if (!node.isRoot())

Figure 4.6: Sequence Explaining Fault for Freemind

76

Mode().getModeController().remove(node)).

• Again, by going backwards in the sequence, the developer can figure out that

the ”node” object that is passed in line 5 is passed as the method parameter

as can be seen at line 4 (void delete(NodeView node)).

• By going backwards further, the developer can see that the ”delete” function

is called by line 3 (delete(selected)).

• Finally, by going backwards, the developer can detect that the ”selected”

variable that is passed in line 3 is set to null at line 2 (NodeView selected =

null) in the sequence.

The total number of lines that are needed to be inspected are 6.

4.4 Conclusion

This chapter discusses three case studies for three different errors in three

different GUI applications. Each case study starts by describing the error. Then,

it lists the steps that are done by Disqover to automatically generate the common

subsequence that leads to the root cause of the error. Finally, it discusses how using

the output a developer can get the source of the error. In the next chapter, the

experiments that are performed to evaluate the developed approach are discussed.

77

Chapter 5: Evaluation

To evaluate Disqover, a set of experiments are performed to answer the fol-

lowing research questions:

RQ1 Does Disqover help developers find root causes of failures more effec-

tively?

RQ2 Does diversifying the input test cases or increasing their number reduces

the number of statements in the common subsequence?

RQ3 Do the developed algorithms lead to a more efficient evaluation of the

common subsequence?

RQ2 How does hybrid static/dynamic analysis affect the length of the output

common subsequence?

This section starts by describing the subject applications and stating some of

their code complexity metrics. Then the types of faults in those applications, and

the scenarios that result in those faults are presented. Finally, the experiments are

described in detail. In those experiments, the above questions are answered using a

variety of metrics such as the number of lines to examine, algorithm execution time,

and the number of lines of code in the output subsequence.

78

5.1 Subject Applications and Faults

To evaluate Disqover, 7 open source applications, which consist of 4 GUI

applications, and 3 non-GUI applications are used. The GUI applications are Ar-

goUML [84], Crossword Sage [85], Buddi [86], and Freemind [87]. The non-GUI

applications are Commons Math [88], Joda-Time [89], and Commons Lang [90].

All 3 applications are part of the defects4j suite [91]. Defects4j is a database of

reproducible and isolated real software faults, and features a framework to enable

controlled studies in software testing research. Table 5.1 lists some code complexity

metrics of the subject applications such as the number of lines of code (LOC) in

each application, the number of classes, and the number of methods. As it can

be seen, the number of lines of code of those applications vary from thousands of

lines of code (e.g., Crossword Sage) to hundreds of thousands of lines of code (e.g.,

ArgoUML).

Both seeded and real faults are used to evaluate Disqover. Below, the faults

used with each of the applications are described. Table 5.2 summarizes them. Below,

the faults used with each of the applications are described.

ArgoUML In this application, a real fault is used. When the user exports the

graphics using the “Export All Graphics” menu item, and saves them to a file, if

the user enters a directory location that does not exist on disk, the application

throws a FileNotFoundException, and exits the Save dialog without notifying the

user of the problem. The error is thrown when the application is actually trying to

79

App LOC # Classes # Methods

ArgoUML 152513 1787 13117

Crossword Sage 3072 34 238

Buddi 20922 257 1580

Freemind 7702 136 788

Commons Math 85000 678 5441

Joda-Time 28000 208 3501

Commons Lang 22000 150 1358

Table 5.1: Application code complexity metrics

save the file, while it is originated when the user chooses the improper directory.

Crossword Sage In this application, two seeded errors are used. For the first error,

when the user creates a new crosswords puzzle, the application asks the user to

input the size of the puzzle through a dialog box. Normally, if the user inputs a

non-numeric value, the application tries to parse that value, and catches the resulting

NumberFormatException and informs the user with the error. To seed the first fault,

the code is modified by removing the try/catch block, and letting the application

store the return value of the dialog box in a String, which allows the application to

proceed normally for a while, until it crashes when trying to actually construct the

new puzzle. For the second error, when the user selects the menu item to load a

80

previously saved crossword from a file, a dialog box is shown for the user to select

the crossword file. If the user presses Cancel, the dialog box disappears and the

user returns to the main screen. The code is modified so that if Cancel is pressed,

the method returning the crossword object returns a null value. At some point, the

application crashes because it tries to construct a null crossword.

Buddi In this application, a real fault is used. If the user selects the “Save As”

menu item, and then enters a directory name that does not exist, the application

throws a FileNotFoundException and continues quietly, instead of informing the

user of the problem and that it did not actually save the file.

Freemind In this application, two real faults are used. If the user selects the

“Save As” or “Open” menu items, and then enters a directory name that does

not exist, the application throws a FileNotFoundException and continues quietly,

instead of informing the user of the problem and that it did not actually save the

file. Furthermore, a new fault is seeded in the application. When a user removes a

selected node, the application throws NullPointerException. This is done by setting

a selected node to Null.

All the defects4j bugs are assertions that fail because the program execution be-

haves in an unexpected way.

Table 5.3 summarizes the number of faulty versions used for each applica-

tion and the number of passing and failing test cases for each fault. The non-GUI

application faults are randomly selected from the defects4j repository of each appli-

81

Application Fault Event Exception Seeded
or
real?

ArgoUML Export FileNotFoundException real

Crosswordsage
Crosswordsage1 Load crossword NullPointerException seeded
Crosswordsage2 New crossword NumberFormatException seeded

Buddi Save As FileNotFoundException real

Freemind
Freemind1 Save As FileNotFoundException real
Freemind2 Open FileNotFoundException real
Freemind3 Remove Node NullPointerException seeded

Commons Math

Bug 16 assertion real
Bug 35 A assertion real
Bug 35 B assertion real
Bug 36 assertion real

Joda-Time

Bug 5 assertion real
Bug 7 assertion real
Bug 10 assertion real
Bug 14 assertion real

Commons Lang

Bug 8 assertion real
Bug 30 A assertion real
Bug 30 B assertion real
Bug 30 C assertion real
Bug 34 assertion real
Bug 57 assertion real
Bug 57 assertion real
Bug 61 assertion real

Table 5.2: Application faults

82

Application Fault # Passing TCs # Failing TCs

ArgoUML Export All Graphics 100 22

Crosswordsage
Load crossword To Edit * 265 83
New crosswords * 330 38

Buddi Save As 100 44

Freemind
Save As 301 418
Open 301 339
Remove Node * 301 339

Commons Math

Bug 16 2 2
Bug 35 A 1 2
Bug 35 B 1 2
Bug 36 2 4

Joda-Time

Bug 5 2 3
Bug 7 2 2
Bug 10 2 2
Bug 14 2 6

Commons Lang

Bug 8 2 2
Bug 30 A 2 2
Bug 30 B 2 4
Bug 30 C 2 2
Bug 34 2 2
Bug 57 2 11
Bug 57 2 2
Bug 61 2 2

Table 5.3: Application fault test cases

cation. For all the applications from the defects4j repository, the test cases reported

in defects4j are used as well, while for the other applications (GUI application),

GUITAR [32] is used to generate their test cases. As it can be noticed, the number

of test cases that are used for defects4j faults is small as they are not automatically

generated as it is the case with the GUI applications.

In the following subsections, the experiments that are performed to evaluate

Disqover are discussed. An experiment is performed to measure the number of

83

statements to examine by developers before reaching the root cause in comparison

to other techniques such as MUSE [57], Op [49], Tarantula [48] and Fonly [58].

Moreover, an experiment is performed to measure the effect of choosing diverse

input test cases on the size of the output common subsequence. Furthermore, the

developed abstraction techniques are evaluated to measure their effect on the length

of the input sequence covers. Moreover, the effect of the number of test cases over

both the running time and the length of resulting common subsequence is evaluated

by comparing the developed approach to multiple baselines. The results show that

Disqover significantly reduces the number of lines needed to discover the source of

the fault, and they also show that the effectiveness of the developed sequence cover

abstraction techniques on reducing the computation time and the length of the

output common subsequences, especially, for the computationally intensive ones.

5.1.0.1 Comparison with other approaches

In this experiment, RQ1 is addressed by comparing Disqover with four state-

ment ranking techniques, MUSE [57], Op [49], Tarantula [48] and Fonly [58]. MUSE

[57] and Op [49] are the most recent state-of-the-art approaches. Tarantula is chosen

because Jones et al. [48] show that Tarantula outperforms many other ranking tech-

niques in fault localization. Furthermore, Fonly is chosen, as it is the only technique

that uses failed test cases only in fault localization like the developed technique.

All techniques rank the program statements according to their suspiciousness of be-

ing the root cause using a scoring formula that assigns a score to each statement.

84

MUSE creates mutants for each statement according to different characteristics and

calculates the statement suspiciousness as:

suspiciousness(s) =

1

|mut(s)|
∑

m∈mut(s)

(
|fp(s) ∩ pm|
|fp|

− α |pp(s) ∩ fm|
|pp|

)

, where mut(s) is the number of mutants that are generated for a statement s,

|fp(s)∩pm|
|fp| is the proportion of tests that failed on P but pass on a mutant m that

mutates s over tests that failed on P , |pp(s)∩fm|
|pp| is the proportion of tests that passed

on P but fail on a mutant m that mutates s over tests that passed on P . α is defined

as

α =
f2p

|mut(P)| · |fp|
· |mut(P)| · |pp|

|p2f |

, where f2p and p2f are the number of test result changes from failure to pass

and vice versa between before and after all mutants of P , mut(P) is the number of

mutants that are generated for all the statements of P . Op calculates the statement

suspiciousness as:

Op = aef −
aep
P + 1

, where aef is the number of failed test cases that execute s, aep is the number of

passed test cases that execute s, and P is the total number of passed test cases. The

suspiciousness of a statement e according to the Tarantula method is calculated as:

suspiciousness(s) =

failed(s)
totalfailed

passed(s)
totalpassed

+ failed(s)
totalfailed

85

, where failed(s) is the number of failed test cases that execute s and passed(s) is

the number of passed test cases that execute s. On the other hand, suspiciousness

of statements according to the Fonly technique is calculated as:

suspiciousness(s) =∑
c∈D[c(Y (c)− Y (0))]× cmax/

∑
c∈D c

2√∑
c∈D(Y (c)− Y (0))2 − (

∑
c∈D[c(Y (c)− Y (0))])2/

∑
c∈D c

2

, where c is the number of times in which a test case executes s, Y (c) is the number

of test cases that executes s c times and Y (0) is the number of test cases that never

execute s.

The four approaches are implemented and their formulas are used to rank

statements of the applications under test. Regarding the mutants, µJava [92], which

is a mutation system for Java programs is used. It automatically generates mutants

for both operator mutation testing and class-level mutation testing. It is modified

to generate operator mutants for the statements that are executed by the failed test

cases.

To compare the developed system to other systems, a metric that quantifies

the “number of inspected statements” until the source is found is used. For the

developed system, this metric is simply the number of statements that a developer

traces back in order to identify the root cause starting with the failure statement.

For the other approaches, this metric is defined as the number of statements whose

score is greater than or equal to the score of the root cause statement. To express

an average case, instead of counting all the statements whose score is equal to the

score of the root cause statement if many of them share the same score, half of them

86

(to express the expectation of inspecting the root cause statement if statements

with equal score are randomly ordered) are counted. We note that even with this

type of comparison, developed approach still has an advantage, which is that the

statements being inspected are not disconnected, or parts of unrelated methods or

classes. They actually form a sequence as one statement leads to the other, and

helps the developer understand the execution sequence that leads to the error, while

with the other four approaches, the developer will probably have to carry out the

task of understanding the sequence causing the bug of each suggested statement on

his/her own. Therefore, the developed approach produces a number of statements

that explain an individual root cause, while other systems produce a number of

disconnected statements that are missing their explanation.

In this experiment, all the bugs that are listed in Table 5.3, which also shows

the number of passing and failing test cases are used with every application. Results

are presented in Table 5.4. The results of MUSE are omitted because we tried it on

a number of faults, and found that f2p value is always either zero, or only a very

small fraction of all the test cases, which leads to zero or extremely small scores of all

the statements. Furthermore, after spending several hours (5 on average) processing

517 mutants per application on average, the root cause was either nonexistent in the

output or existent with a very poor score. Compared to other approaches, it is found

that the developed system leads to a significantly smaller number of statements.

For example, on average the number of statements that need to be inspected by

the developed approach is 112 times smaller than Tarantula’s number of statements

to be inspected, and 147 times smaller than Fonly’s number of statements to be

87

Application Fault Disqover Op Tarantula FOnly

ArgoUML Export All Graphics 12 6498 121 5156

Crosswordsage Load crossword To Edit 11 231 12 230

New crosswords 10 5 27 83

Buddi Save As 5 73 5937 817

Freemind Save As 7 10 32 487

Open 6 13 104 1059

Remove Node 5 2 49 428

Commons Math Bug 16 3 151 108 75

Bug 35 A 1 4 9 5

Bug 35 B 1 4 12 5

Bug 36 1 178 156 178

Joda-Time Bug 5 11 577 273 557

Bug 7 118 781 799 666

Bug 10 32 879 913 829

Bug 14 9 10 103 873

Commons Lang Bug 8 3 63 64 169

Bug 30 A 2 1 5 11

Bug 30 B 2 4 35 2

Bug 30 C 3 15 21 24

Bug 34 1 38 106 168

Bug 57 1 3 80 3

Bug 61 2 7 17 29

Table 5.4: Comparison results

88

1

10

100

1000

10000

Cros
sw

ord
1

Cros
sw

ord
2

Bud
di

Argo
UML

Fre
em

ind
1

Fre
em

ind
2

Fre
em

ind
3

Av
er

ag
e

#
 o

f s
ta

tm
en

ts
 t

o
be

 in
sp

ec
te

d

Application

Disqover
Tarantula
Fonly

Figure 5.1: Comparison with Tarantula and Fonly

inspected. On the other hand, in the case of Buddi bug, the developed system

needs to inspect a number of statements that is 1250 times shorter than Tarantula,

and in ArgoUML bug is 4291 times shorter than Fonly. It is also noticed that Op

is the approach that performed best among all the four baselines.

5.1.0.2 Test case diversity experiment

In this experiment, RQ2 is addressed by studying the effect of the diversity of

the input test cases on the size of the output common subsequence. As expected, the

more diverse the input test cases are, the smaller the size of the output subsequence

is. To capture this type of performance, two approaches for selecting the input

test cases are compared. The first approach selects sufficiently diverse subset of

test cases among the set of all input test cases, and the other approach selects

a random subset. To measure diversity between two test cases, the size of the

intersection of their code covers is used. The smaller the number of the intersection,

89

the more diverse the two test cases are. Therefore, to select a diverse subset of

test cases of size n, the experiment starts with the the two test cases with the

highest diversity according to the definition above, and incrementally add one test

case that will maximize the diversity, until all n test cases are added. Although

this approach is greedy and may lead to a local optima, it is adopted because of

its efficiency. An observation that is seen during implementing this experiment is

that many attempts of running random caused an out of memory exception to occur,

and took a very long time to evaluate the common subsequence before finally timing

out (after hours of letting it run). To enable the comparison, an example attempt

of running the random approach that did not cause an out of memory exception

and did not time out, and show its results in the figures is chosen. The results of

the comparison are shown in Figures 5.2 (a), (b), (c) for the faults of CrossWord

Sage (NumberFormatException), Buddi, and ArgoUML, respectively. The number

of test cases is varied, and the output common subsequence length for both random

and diverse selections is measured. As it can be seen, for the same size of input test

cases, the test cases that are more diverse lead to a shorter common subsequence

size than that resulting from the random selection approach. Note that the last

point in each figure has the same value for both approaches because the same set of

test cases is used as input to both approaches. Also, as it can be seen from Figure

5.2 (b), Buddi with the random selection approach always times out after using 5

test cases.

90

30

35

40

45

50

2 5 10 15 20 25 30 35 39

Si
ze

 o
f S

ub
se

qu
en

ce

Number of test cases

Diverse Random

40
1040
2040
3040
4040
5040
6040

2 5 10 15 20 25 30 35 40 45

Si
ze

 o
f S

ub
se

qu
en

ce

Number of test cases

Diverse Random

(a) Crossword Sage (b) Buddi

100

150

200

250

300

350

400

2 5 10 15 20 22

Si
ze

 o
f S

ub
se

qu
en

ce

Number of test cases

Diverse Random

40

400

2 5 10 15 20 25 30 35 39

T
im

e
in

 m
ill

ise
co

nd
s

Number of test cases

No compression
With both compression
With block-based compression

(c) ArgoUML (d) Crossword Sage

40

400

4000

40000

400000

4000000

2 5 10 15 20 25 30 35 40 45

T
im

e
in

 m
ill

ise
co

nd
s

Number of test cases

No Compression
With both compression
With block-based compression

40

400

4000

2 5 10 15 22

T
im

e
in

 m
ill

ise
co

nd
s

Number of test cases

No Compression
With both compression
With block-based compression

(e) Buddi (f) ArgoUML

Figure 5.2: (a-c) Test case diversity experiments and (d-f) Running time experiments

91

5.1.0.3 Sequence Cover Length Experiments

In this experiment, RQ3 is addressed by evaluating the effect of the designed

sequence cover abstraction techniques over the average size of sequence cover. Four

faults are used. For each fault, the length of the sequence covers is evaluated in

the following cases 1) no initialization code removal and no sequence abstraction

techniques, 2) with removing the initialization code but without applying any of

the abstraction techniques, 3) with removing the initialization code and applying

block-based abstraction only, 4) with removing the initialization code and applying

loop-based abstraction only, and 5) with removing initialization code and applying

both abstraction techniques. The results of this experiment are shown in Figure

5.3, where the average length of the sequence cover using each approach for each

fault on log scale is plotted. As it can be seen, removing the initialization code

results in a significant reduction of the average sequence cover length relative to the

original length, averaging a length that is 20% of the original average sequence cover

length. After applying the loop-based abstraction, the average length drops to 3%

of the original length, which is significantly lower than the reduction ratio without

that abstraction technique, illustrating the benefit of that approach. On the other

hand, both removing initialization code and block-based abstraction only lead to

4% average length, which is slightly higher than removing initialization code and

applying loop-based abstraction only, but still has a significant effect. The overall

length after applying all techniques together is 2.7% of the original length. The

reason is that when applying both loop-based and block-based abstraction together,

92

1

10

100

1000

10000

100000

1000000

ArgoUML Buddi Crossword1 Crossword2

Average test case size

Average test case size after
removing initilaization code

Average test case size after
applying loop based comperssion

Average test case size after
applying block-based compression

Average test case size after
applying both compression

Figure 5.3: Sequence Cover Length Experiments

the effect of block-based abstraction is not as high as if it is applied by itself, but

as it can be seen, applying them together is still beneficial. That effect is more

obvious when considering the running time of the algorithm using both abstraction

techniques, as discussed in Section 5.1.0.4.

5.1.0.4 Running Time Experiments

In these experiments, RQ3 is addressed by evaluating the effect of the num-

ber of test cases on the algorithm running time using Disqover, and a number of

baselines. The running time using the developed approach is compared to the run-

ning time using 1) block-based abstraction only, 2) loop-based abstraction only,

and 3) none of the abstraction techniques. The initialization code is removed in

all cases. It is also compared against the naive approach for constructing the com-

mon subsequences graph which discussed in Section 3.2.3. However, the results of

that approach from the discussion, as it does not scale, and causes out of memory

93

exceptions in all cases are omitted. The results are shown in Figures 5.2 (d), (e),

(f), for the faults: Crossword Sage (NumberFormatException), ArgoUML (FileNot-

FoundException), Buddi (FileNotFoundException), respectively. As it can be seen,

the baselines outperform the developed approach only in the case of Crossword

Sage, because the length of sequence covers is already very small. Therefore, the

overhead introduced by applying the abstraction techniques does not lead to much

overall computation reduction over the case without abstraction. However, in the

other two cases, ArgoUML and Buddi, the developed approach evaluates the com-

mon subsequences in much less time than the baselines, especially in the case of

Buddi, where the average sequence cover length is very high, the advantages of the

developed approach are much more obvious. The highest running time using the

developed approach is 1.4 minutes (from Buddi), while all other approaches could

only run for one or two data points, and broke the timeout limit which is 5 min-

utes for these experiments in all other cases. Just for the purpose of illustration,

the timeout constraint is removed on the data point with 5 test cases in the case

of Buddi using block-based abstraction only, and the common subsequence evalu-

ation took 19 minutes, which is 2456 times slower than the developed optimized

approach. Another observation is related to the relationship between the number

of test cases and the running time. As expected, the running time increases with

the increase of the number of test cases, with the developed approach being the

most stable to increasing the number of test cases, which shows that the developed

abstraction approaches play an important role in keeping the developed approach

scalable.

94

5.1.0.5 Common Subsequence Length Experiments

In this experiment, RQ4 is addressed by evaluating the effect of the depen-

dency analysis technique over the size of the common subsequence. All defects4j

faults are used. For each fault, the length of the common subsequence before and

after applying the dependency analysis is reported. The results of this experiment

are shown in Table 5.5, where the first column represents the length of the common

subsequence before applying the dependency analysis and the second column rep-

resents the length after applying dependency analysis. As it can be seen, applying

the dependency analysis significantly reduces the number of lines to be inspected

by the developer and in some cases, it directly points to the source of the error.

5.2 Conclusions

In this chapter, the experimental evaluation of the developed approach is pre-

sented. The experimental evaluation shows the effectiveness of the developed ap-

proach in terms of minimizing the developer’s debugging time and minimizing the

common subsequences algorithm output size and running time. In the next chapter,

the future research directions are discussed.

95

Application Fault Subsequence
length before

Subsequence
length after

ArgoUML Export All Graphics 235 12

Crosswordsage Load crossword To Edit 43 5

New crosswords 45 5

Buddi Save As 435 5

Freemind Save As 217 52

Open 164 44

Remove Node 56 5

Commons Math Bug 16 149 4

Bug 35 A 8 1

Bug 35 B 8 1

Bug 36 930 1

Joda-Time Bug 5 4750 67

Bug 7 5394 245

Bug 10 7191 47

Bug 14 3432 16

Commons Lang Bug 8 638 16

Bug 30 A 34 10

Bug 30 B 8 8

Bug 30 C 31 5

Bug 34 427 1

Bug 57 15 1

Bug 61 44 10

Table 5.5: Effect of applying dependency analysis

96

Chapter 6: Future Research Directions

The future research directions are discussed in this section.

1. This work focuses on identifying erroneous code paths and recommending them

to software developers. An equally important area of research is profiling of

resource consumption. For example, when faced with Out of Memory errors,

they have to optimize the software’s memory usage, but at the same time, it

is quite challenging to figure out which parts of the code consume the most

memory, so that they can be further improved. Ideas from this research can

be extended to debug memory using code instrumentation and finding com-

monalities between execution traces which lead to high memory consumption.

2. As discussed in the above point, the memory footprint of a software is one

area that can be improved using automated debugging. Garbage collection

is another bottleneck that challenges many programmers, but there is a lack

of helpful analytical software and tools that profile garbage collection perfor-

mance. Another line of research is automatically recommending code changes

in order to reduce garbage collection overhead. This can be performed using

instrumentation methods which extract garbage collection information from

the runtime.

97

3. Along the lines of static analysis and call graph construction, research can be

performed to extract the call graph or def/use chains of a software to analyze

them to quantify the quality of the code and whether good software engineer

practices are being followed. Further analysis can be performed to suggest im-

provements to the code base to achieve more isolation and modularity between

different software components.

4. On the front of dynamic analysis, visualization techniques can be helpful to

summarize the coverage of test cases, and help developers quickly identify

problems. For example, execution traces can be depicted on top of a visual-

ization of the program call graph, along with a color coding for the program

statements representing how frequently they are part of passing versus failing

test cases. Such visualization can reveal many important observations such as

which parts of the program are not covered by test cases, and which participate

in more failing test cases than others.

5. Semantic program profiling: profiling is using a software tool to study the

program performance at different levels (e.g., each class or line of code) at

run time, and reporting the time (or space) consumption at those levels (e.g.,

a specific function call consumes 90% of the entire program runtime). Most

profilers job ends after reporting the statistics given a specific input configu-

ration. It is up to the developer to understand the relationship between the

input and output. A new way of performing profiling is to understand the

context of input parameters, and build a model which correlates a set of in-

98

put configurations and an output of the profiling experiments, which can be

referred to as semantic profiling. For example, in this new type of profiling, a

profiler should be able to reason that with specific inputs a function call takes

80% of the overall runtime, and with other inputs it takes only 10%. Semantic

profiling can enable the developers to see insights regarding the factors that

make the performance degrade at a higher level.

6.1 Conclusions

In this chapter, the future research directions were discussed. The aim is

to discuss other ways of utilizing the ideas developed in this thesis to enhance the

software development process along many other dimensions, including improving re-

source consumption and utilization, enabling visualization of the debugging process,

building frameworks to understand the impact of input configurations on software

behavior, and analyzing programs to improve code quality and structure.

99

Bibliography

[1] Iris Vessey. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies, 23(5):459–494, 1985.

[2] Glenford J. Myers. The art of software testing (2. ed.). Wiley, 2004.

[3] Patrice Godefroid, Jonathan de Halleux, Aditya V. Nori, Sriram K. Rajamani,
Wolfram Schulte, Nikolai Tillmann, and Michael Y. Levin. Automating software
testing using program analysis. IEEE Software, 25(5):30–37, 2008.

[4] Qing Xie and Atif M. Memon. Using a pilot study to derive a gui model for
automated testing. ACM Trans. Softw. Eng. Methodol., 18(2), 2008.

[5] Atif M. Memon and Qing Xie. Studying the fault-detection effectiveness of GUI
test cases for rapidly evolving software. IEEE Trans. Softw. Eng., 31(10):884–
896, 2005.

[6] Fevzi Belli. Finite-state testing and analysis of graphical user interfaces. In
ISSRE, pages 34–43, 2001.

[7] Fevzi Belli, Christof J. Budnik, and Lee White. Event-based modelling, analysis
and testing of user interactions: approach and case study. Softw. Test., Verif.
Reliab., 16(1):3–32, 2006.

[8] Ana C. R. Paiva, Nikolai Tillmann, João C. P. Faria, and Raul F. A. M. Vidal.
Modeling and testing hierarchical guis. In Abstract State Machines, pages 329–
344, 2005.

[9] Richard K. Shehady and Daniel P. Siewiorek. A method to automate user
interface testing using variable finite state machines. In Proceedings of the 27th
International Symposium on Fault-Tolerant Computing (FTCS ’97), FTCS ’97,
pages 80–, Washington, DC, USA, 1997.

[10] Linzhang Wang, Jiesong Yuan, Xiaofeng Yu, Jun Hu, Xuandong Li, and Guo-
liang Zheng. Generating test cases from uml activity diagram based on gray-box
method. In APSEC, pages 284–291, 2004.

100

[11] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik, and In-Young Ko. Test
cases generation from uml activity diagrams. In SNPD (3), pages 556–561,
2007.

[12] Mingsong Chen, Prabhat Mishra, and Dhrubajyoti Kalita. Coverage-driven
automatic test generation for uml activity diagrams. In ACM Great Lakes
Symposium on VLSI, pages 139–142, 2008.

[13] Mingsong Chen, Xiaokang Qiu, and Xuandong Li. Automatic test case gener-
ation for uml activity diagrams. In AST, pages 2–8, 2006.

[14] Mingsong Chen, Xiaokang Qiu, Wei Xu, Linzhang Wang, Jianhua Zhao, and
Xuandong Li. Uml activity diagram-based automatic test case generation for
java programs. Comput. J., 52(5):545–556, 2009.

[15] Chin yu Huang, Jung hua Lo, Sy yen Kuo, and Michael R. Lyu. Software reli-
ability modeling and cost estimation incorporating testing-effort and efficiency.
In Proceedings of the 10th International Symposium on Software Reliability En-
gineering (ISSRE’99, pages 62–72, 1999.

[16] Trung Dinh-Trong. A systematic approach to testing uml design models. In
In Doctorial Symposium, 7th International Conference on the Unified Modeling
Language: Lisbon, Portugal, 2004.

[17] Philip Samuel and Anju Teresa Joseph. Test sequence generation from uml
sequence diagrams. In SNPD, pages 879–887, 2008.

[18] Monalisa Sarma, Debasish Kundu, and Rajib Mall. Automatic test case gen-
eration from uml sequence diagrams. In Proceedings of the 15th International
Conference on Advanced Computing and Communications, pages 60–67. IEEE
Computer Society, 2007.

[19] Abu Zafer Javed, Paul A. Strooper, and Geoffrey Watson. Automated genera-
tion of test cases using model-driven architecture. In AST, pages 3–9, 2007.

[20] Noraida Ismail, Rosziati Ibrahim, and Noraini Ibrahim. Automatic generation
of test cases from use-case diagram. In Proceedings of the International Con-
ference on Electrical Engineering and Informatics Institut Teknologi: Bandung,
Indonesia, 2007.

[21] Santosh Kumar Swain and Durga Prasad Mohapatra. Article:test case gen-
eration from behavioral uml models. International Journal of Computer Ap-
plications, 6(8):5–11, September 2010. Published By Foundation of Computer
Science.

[22] Matthias Riebisch, Ilka Philippow, and Marco Götze. Uml-based statistical test
case generation. In NetObjectDays, pages 394–411, 2002.

101

[23] Shaukat Ali, Lionel C. Briand, Muhammad Jaffar-Ur Rehman, Hajra Asghar,
Muhammad Zohaib Z. Iqbal, and Aamer Nadeem. A state-based approach to
integration testing based on uml models. Information & Software Technology,
49(11-12):1087–1106, 2007.

[24] Shinpei Ogata and Saeko Matsuura. Towards the reliable integration testing:
Uml-based scenario analysis using an automatic prototype generation tool. In
Proceedings of the 9th WSEAS International Conference on Software Engi-
neering, Parallel and Distributed Systems, SEPADS’10, pages 151–159, Stevens
Point, Wisconsin, USA, 2010. World Scientific and Engineering Academy and
Society (WSEAS).

[25] Shinpei Ogata, Saeko Matsuura, Shinpei Ogata, and Saeko Matsuura. A
method of automatic integration test case generation from uml-based scenario.

[26] Christian Pfaller. Requirements-based test case specification by using informa-
tion from model construction. In AST, pages 7–16, 2008.

[27] Alessandra Cavarra, Charles Crichton, Jim Davies, Alan Hartman, and Lau-
rent Mounier. Using uml for automatic test generation. In IN INTERNA-
TIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS IS-
STA. Springer-Verlag, 2002.

[28] Qurat ul-ann Farooq, Muhammad Zohaib Z. Iqbal, Zafar I. Malik, and Aamer
Nadeem. An approach for selective state machine based regression testing. In
A-MOST, pages 44–52, 2007.

[29] Vahid Garousi, Lionel C. Briand, and Yvan Labiche. Control flow analysis of
uml 2.0 sequence diagrams. In ECMDA-FA, pages 160–174, 2005.

[30] Aysh Alhroob, Keshav P. Dahal, and M. Alamgir Hossain. Automatic test cases
generation from software specifications. e-Informatica, 4(1):109–121, 2010.

[31] Atif M. Memon. An event-flow model of gui-based applications for testing.
Software Testing, Verification and Reliability, 17(3):137–157, 2007.

[32] Xun Yuan and Atif M. Memon. Generating event sequence-based test cases us-
ing gui runtime state feedback. IEEE Trans. Softw. Eng., 36(1):81–95, January
2010.

[33] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon.
Automated and scalable t-wise test case generation strategies for software prod-
uct lines. In ICST, pages 459–468, 2010.

[34] Stefania Gnesi, Diego Latella, Mieke Massink, Via Moruzzi, and I Pisa. Formal
test-case generation for uml statecharts. In Proc. 9th IEEE Int. Conf. on Engi-
neering of Complex Computer Systems, pages 75–84. IEEE Computer Society,
2004.

102

[35] Mark Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357,
1984.

[36] Mark Weiser. Programmers use slices when debugging. Commun. ACM,
25(7):446–452, 1982.

[37] Brian Ness and Viet Ngo. Regression containment through source change iso-
lation. In COMPSAC ’97: Proceedings of the 21st International Computer
Software and Applications Conference, pages 616–621, Washington, DC, USA,
1997. IEEE Computer Society.

[38] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In
ESEC / SIGSOFT FSE, pages 253–267, 1999.

[39] Ghassan Misherghi and Zhendong Su. Hdd: hierarchical delta debugging. In
ICSE, pages 142–151, 2006.

[40] Cyrille Artho. Iterative delta debugging. STTT, 13(3):223–246, 2011.

[41] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning dynamic slices with
confidence. In PLDI, pages 169–180, 2006.

[42] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Critical slicing for
software fault localization. In ISSTA, pages 121–134, 1996.

[43] Tibor Gyimothy, Arpad Beszedes, and Istvan Forgacs. An efficient relevant
slicing method for debugging. In ESEC / SIGSOFT FSE, pages 303–321, 1999.

[44] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic slicing
algorithms. In ICSE, pages 319–329, 2003.

[45] Thomas W. Reps, Thomas Ball, Manuvir Das, and James R. Larus. The use of
program profiling for software maintenance with applications to the year 2000
problem. In ESEC / SIGSOFT FSE, pages 432–449, 1997.

[46] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to cause:
localizing errors in counterexample traces. In POPL, pages 97–105, 2003.

[47] Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding counterexam-
ples with explain. In CAV, pages 453–456, 2004.

[48] James A. Jones, Mary Jean Harrold, and John T. Stasko. Visualization of test
information to assist fault localization. In ICSE, pages 467–477, 2002.

[49] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model for spectra-
based software diagnosis. ACM Trans. Softw. Eng. Methodol., 20(3):11, 2011.

[50] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, and Michael I.
Jordan. Scalable statistical bug isolation. In PLDI, pages 15–26, 2005.

103

[51] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. Sober:
statistical model-based bug localization. In ESEC/SIGSOFT FSE, pages 286–
295, 2005.

[52] Qingguo Wang, Dmitry Korkin, and Yi Shang. A fast multiple longest common
subsequence (mlcs) algorithm. IEEE Trans. Knowl. Data Eng., 23(3):321–334,
2011.

[53] Christopher Lee, Catherine Grasso, and Mark F. Sharlow. Multiple sequence
alignment using partial order graphs. Bioinformatics, 18(3):452–464, 2002.

[54] Robert C. Edgar. Muscle: Multiple sequence alignment with improved accuracy
and speed. In CSB, pages 728–729, 2004.

[55] Michael Brudno and Burkhard Morgenstern. Fast and sensitive alignment of
large genomic sequences. In CSB, pages 138–, 2002.

[56] Bao Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. Guitar: an in-
novative tool for automated testing of gui-driven software. Automated Software
Engineering, pages 1–41, 2013.

[57] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. Ask the mu-
tants: Mutating faulty programs for fault localization. In Seventh IEEE In-
ternational Conference on Software Testing, Verification and Validation, ICST
2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA, pages 153–162,
2014.

[58] Zhenyu Zhang, W. K. Chan, and T. H. Tse. Fault localization based only on
failed runs. IEEE Computer, 45(6):64–71, 2012.

[59] T. Britton, G. Carver L. Jeng, P. Cheak, and T. Katzenellenbogen. Reversible
debugging software. Technical report, University of Cambridge, Judge Business
School, 2013.

[60] Hiralal Agrawal and Joseph Robert Horgan. Dynamic program slicing. In
PLDI, pages 246–256, 1990.

[61] Andreas Zeller. Isolating cause-effect chains from computer programs. In SIG-
SOFT FSE, pages 1–10, 2002.

[62] Holger Cleve and Andreas Zeller. Locating causes of program failures. In ICSE,
pages 342–351, 2005.

[63] Joseph Ruthruff, Eugene R. Creswick, Margaret Burnett, Curtis Cook, Shree-
nivasarao Prabhakararao, Marc F. Ii, and Martin Main. End-user software
visualizations for fault localization. In SoftVis ’03: Proceedings of the 2003
ACM symposium on Software visualization, pages 123–132, San Diego, CA,
USA, June 2003. ACM Press.

104

[64] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. A crosstab-based statistical
method for effective fault localization. In Proceedings of the 2008 International
Conference on Software Testing, Verification, and Validation, ICST ’08, pages
42–51, Washington, DC, USA, 2008. IEEE Computer Society.

[65] W. Eric Wong and Yu Qi. Bp neural network-based effective fault localiza-
tion. International Journal of Software Engineering and Knowledge Engineer-
ing, 19(4):573–597, 2009.

[66] W. Eric Wong, Yan Shi, Yu Qi, and Richard Golden. Using an rbf neural
network to locate program bugs. In ISSRE, pages 27–36, 2008.

[67] Lionel C. Briand, Yvan Labiche, and Xuetao Liu. Using machine learning to
support debugging with tarantula. In ISSRE, pages 137–146, 2007.

[68] Yuriy Brun and Michael D. Ernst. Finding latent code errors via machine
learning over program executions. In ICSE, pages 480–490, 2004.

[69] Syeda Nessa, Muhammad Abedin, W. Eric Wong, Latifur Khan, and Yu Qi.
Software fault localization using n-gram analysis. In WASA, pages 548–559,
2008.

[70] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. Formal
concept analysis enhances fault localization in software. In ICFCA, pages 273–
288, 2008.

[71] Franz Wotawa, Markus Stumptner, and Wolfgang Mayer. Model-based debug-
ging or how to diagnose programs automatically. In IEA/AIE, pages 746–757,
2002.

[72] Cristinel Mateis, Markus Stumptner, and Franz Wotawa. Modeling java pro-
grams for diagnosis. In In Proceedings of the European Conference on Artificial
Intelligence (ECAI, page 2000. Press, 2000.

[73] Wolfgang Mayer and Markus Stumptner. Modeling programs with unstruc-
tured control flow for debugging. In Australian Joint Conference on Artificial
Intelligence, pages 107–118, 2002.

[74] Wolfgang Mayer, Markus Stumptner, and Franz Wotawa. Debugging program
exceptions. In IN PROC. DX03 WORKSHOP, pages 119–124, 2003.

[75] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Failure and fault
analysis for software debugging. In COMPSAC, pages 515–521, 1997.

[76] Glenn Ammons, Jong deok Choi, Manish Gupta, and Nikhil Swamy. Finding
and removing performance bottlenecks in large systems. In In Proceedings of
ECOOP. Springer, 2004.

105

[77] Kavitha Srinivas and Harini Srinivasan. Summarizing application performance
from a components perspective. In Proceedings of the 10th European Soft-
ware Engineering Conference Held Jointly with 13th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, ESEC/FSE-13,
pages 136–145, New York, NY, USA, 2005. ACM.

[78] Gary Sevitsky, Wim De Pauw, and Ravi Konuru. An information exploration
tool for performance analysis of java programs. In TOOLS (38), pages 85–101.
IEEE Computer Society, 2001.

[79] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. Performance
debugging in the large via mining millions of stack traces. In ICSE, pages 145–
155, 2012.

[80] Erik R. Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell. Perfor-
mance analysis of idle programs. In OOPSLA, pages 739–753, 2010.

[81] Cobertura (A code coverage utility for Java). http://cobertura.github.io/
cobertura/.

[82] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
and Vijay Sundaresan. Soot - a java bytecode optimization framework. In Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies on Collabo-
rative Research, November 8-11, 1999, Mississauga, Ontario, Canada, page 13,
1999.

[83] jdb - The Java Debugger. http://docs.oracle.com/javase/7/docs/

technotes/tools/windows/jdb.html.

[84] ArgoUML. http://argouml.tigris.org/.

[85] Crossword Sage. http://sourceforge.net/projects/crosswordsage/.

[86] Buddi. http://buddi.digitalcave.ca/.

[87] FreeMind. http://freemind.sourceforge.net/wiki/index.php/Main_

Page.

[88] Commons Math. https://commons.apache.org/proper/commons-math/.

[89] JodaTime. http://www.joda.org/joda-time/.

[90] Commons Lang. https://commons.apache.org/proper/commons-lang/.

[91] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database of
existing faults to enable controlled testing studies for java programs. In Inter-
national Symposium on Software Testing and Analysis, ISSTA ’14, San Jose,
CA, USA - July 21 - 26, 2014, pages 437–440, 2014.

[92] µJava . https://cs.gmu.edu/~offutt/mujava/.

106

http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://argouml.tigris.org/
http://sourceforge.net/projects/crosswordsage/
http://buddi.digitalcave.ca/
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://freemind.sourceforge.net/wiki/index.php/Main_Page
https://commons.apache.org/proper/commons-math/
http://www.joda.org/joda-time/
https://commons.apache.org/proper/commons-lang/
https://cs.gmu.edu/~offutt/mujava/

	List of Figures
	Introduction
	Existing Approaches
	Motivating Example
	Challenges
	Goals
	Overview
	Broader Impact and Intellectual Merit
	Conclusions

	Related Work
	Slicing
	Differential Techniques
	Techniques Based on Working and Non-working Program Versions
	Techniques Based on Passed and Failed Test Cases

	Techniques based on Failed Test Cases
	Machine Learning-based Approaches
	Model-based Approaches
	Performance Debugging
	Conclusions

	Modeling Disqover
	Motivating Example
	The Disqover Approach
	The Execution Trace & Logs Extraction
	Test cases Partitioning
	Common Subsequences Extraction
	Algorithm Optimizations
	Hybrid Dynamic/Static Analysis
	Remote Debugging

	Implementation
	Sequence Debugging View
	Search Box
	Source Code Highlighting

	Conclusions

	Using Disqover
	Case Study 1: Crossword Sage
	Case Study 2: ArgoUML
	Case Study 3: Freemind
	Conclusion

	Evaluation
	Subject Applications and Faults
	Conclusions

	Future Research Directions
	Conclusions

	Bibliography

