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Abstract

In this paper, the notion of fair reachability is generalized to cyclic protocols with n > 2
machines. Substantial state reduction can be achieved via fair progress state exploration. It
is shown that the fair reachable state space is exactly the set of reachable states with equal
channel length. As aresult, deadlock detection is decidable for P, the class of cyclic protocols
whose fair reachable state spaces are finite. The concept of simultaneous unboundedness is
defined and the lack of it is shown to be a necessary and sufficient condition for a protocol
to be in P. Through finite extension of the fair reachable state space, 1t is also shown that
detection of unspecified receptions, unboundedness, and nonexecutable transitions are all
decidable for P. Furthermore, it is shown that any protocol P is logically correct if and only
if there 1s no logical error in its fair reachable state space. This study shows that for the
class P, our generalized fair reachability analysis technique not only achieves substantial
state reduction but also maintains very competitive logical error coverage. Therefore, it is
a very useful technique to prove logical correctness for a wide variety of cyclic protocols.

1 Introduction

One of the most popular models for protocol specification and validation is the communicat-
ing finite state machine model. In this model, processes are modeled as finite state machines
communicating with each other via FIFO channels. Reachability analysis can be employed
to systematically explore the entire protocol state space to validate the logical correctness of
a protocol against some common errors, such as deadlocks, unspecified receptions, unbound-
edness, and nonexecutable transitions. However, for general protocols, finding out whether a
logical error exists is not always decidable [1]. Furthermore, even when decidability is ensured,
the explosion of state space during reachability analysis renders its use impractical for most real
world protocols. As a result, much of the research has been devoted to identifying the class of
protocols with decidable logical errors and devising state reduction techniques to overcome the
state explosion problem during state space exploration. For a survey of these methods, please
refer to [17].

Fair reachability analysis was proposed as one of the improved reachability analysis tech-
niques for protocols with two machines [16, 5]. In fair reachability analysis, two machines are
forced to make progress at the same time whenever possible. State reduction is achieved by
only generating those fair progress states. More importantly, if the reduced state space is fi-
nite, logical correctness of a protocol can be decided, although in some cases, finite extension
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of the reduced state space is necessary [5]. However, the concept of fair reachability and its
effectiveness for general protocols with more than two machines have not yet been studied. To
fill this gap, we investigate the generalization of this technique to cyclic protocols with n > 2
machines. Through the study, its effectiveness for cyclic protocol validation is shown.

The rest of the paper is organized as follows. In the following section, we briefly review
previous research on fair reachability analysis and cyclic protocols, and highlight the results
presented in this paper. Then the communicating finite state machine model is introduced. In
Section 4, we generalize the fair reachability notion for cyclic protocols and study the basic
properties of fair reachable state space. It is shown that for the class of cyclic protocols with
finite fair reachable state spaces, deadlock detection is decidable; however, for detection of
other logical errors, fair reachable state space is not sufficient. In Section 5, we show how
finite extension can be performed on a finite fair reachable space so that logical errors other
than deadlock can be detected effectively and efficiently. We summarize the paper with open
problems in Section 6. The proofs of some lemmas and theorems in this paper are given in the
appendix.

2 Previous Work

Fair reachability analysis was proposed as a strategy for reducing state explosion during val-
idation of protocols modeled as two communicating finite state machines. Rubin and West
first observed the redundancy of state exploration in reachability analysis due to equivalent
sequences of interleaving transitions [16]. Based on this observation, they proposed a canonical
sequence technique that forces the two machines to progress at the same speed during state
exploration. They reported a large percentage reduction in state generation when this tech-
nique was incorporated into reachability analysis. In [5], Gouda and Han named this technique
fair reachability analysis. For protocols whose fair reachable state spaces are finite, detection
of deadlock and unspecified reception were shown to be decidable in [16], while detection of
boundedness was proved to be decidable in [5]. Gouda et al also showed that if one of the
channels is bounded, then the protocol has a finite fair reachable state space [4].

Recently, Cacciari and Rafiq extended the above idea to protocols with “internal” transitions
using a technique called reduced reachability analysis [2]. In their approach, two machines are
allowed to proceed at the same time only if the parallelwise condition is satisfied. They showed
that detection of deadlock and unspecified reception are decidable for protocols whose reduced
reachable state spaces are finite. However, it is not clear under what conditions a protocol can
have a finite reduced reachable state space.

One important aspect about fair reachability analysis is that in each fair reachable state, the
length of each channel is equal [16, 4]. We call this property the equal channel length property
of fair reachable state space. A reduced reachable state space generated in [2] does not always
have this property. This is, we feel, one of the major reasons that makes it more difficult to
find a (sufficient) condition for the class of protocols with finite reduced reachable state spaces.

Fair reachability analysis is of importance not only because it can reduce the number of
global states explored, but also because it has the capability to handle some protocols with
unbounded channels [5]. Although in [16], the authors claimed to extend this technique to
protocols with » > 2 communicating finite state machines, so far, we have not seen any follow-
up reports on this issue.

It should be noted that for bounded protocols, the classic reachability technique can be
used for protocols with n > 2 communicating finite state machines. But research in analysis



of protocols with unbounded channels has been mostly limited to only cyclic protocols [11,
12, 14, 15]. Jan Pachl is probably the first person who formalized and investigated the class of
cyclic protocols, though many of his important results are contained in his unpublished research
report [11]. His method is based on the channel expression concept. In [11], he showed that the
detection of deadlock and unspecified reception are decidable for the class of cyclic protocols
with one channel whose channel expressions are recognizable. However, he wrote in [11] that
the decision procedure is hopelessly inefficient for any practical purpose.

In [14], Peng and Purushothaman showed that for the class of cyclic protocols with exactly
one unbounded channel, deadlock detection problem is decidable. Their method relied on the
construction of a “stable cover set” and the construction of a finite automaton to recognize the
stable cover set. It is not clear, however, whether this procedure can be automated efficiently.
In [15], they proposed a data flow approach to analyzing deadlock and unspecified reception for
a protocol with n > 2 machines by computing a superset of the set of reachable states as an
approximate solution for a set of data flow equations. While this approach works for general
protocols, the results of the analysis are incomplete. It is unknown for what class of protocols
the data flow analysis can yield an exact solution. Furthermore, this approach also suffers from
state explosion, as stated by the authors in [15].

In summary, for the analysis of cyclic protocols with n > 2 communicating finite state ma-
chines, only the decidability aspect has been studied. The complexity of decision procedures has
been largely ignored. For practical analysis, it is highly desirable that the decision procedure be
efficient. Moreover, none of these techniques were targeted to the detection of unboundedness
and nonexecutable transitions. In addition, all the methods proposed for cyclic protocol vali-
dation analyze global states from the channel language perspective [10]. Reachability analysis,
which has been a main focus in the analysis of protocols with two machines, has not been
fully integrated into any of these approaches. As a matter of fact, it seems that there is a gap
between protocols with two machines and protocols with more than two machines. Most of the
methods, if not all, that have been proposed for the two machine case have not yet been carried
over to the n > 2 case.

In this paper, we bridge this gap by looking into the possibility of applying the fair reach-
ability technique to the validation for cyclic protocols with n > 2 communicating finite state
machines. This study produces many interesting new results. Our contributions in this paper
are summarized as follows: First, we show that the set of fair reachable states is exactly the
set of reachable states with equal channel length. As a result, deadlock detection is decidable
for the class of cyclic protocols whose fair reachable state spaces are finite. Second, we show
that the fair reachable state space of a cyclic protocol is finite if and only if (iff for short) the
channels of the protocol are not simultaneously unbounded. For the first time, the class of cyclic
protocols with finite fair reachability graphs can now be exactly characterized. Even for the
n = 2 case, this condition is weaker than the one in [5]. For completeness, we also show that
this condition is undecidable for cyclic protocols. Third, for logical errors other than deadlock,
we show how a finite fair reachable state space can be finitely extended so that these errors
can be detected effectively and efficiently. As a result, all logical errors are decidable for the
class of cyclic protocols with finite fair reachable state spaces. During the study, we also dis-
cover a complete characterization of fair reachable state space in terms of logical error coverage.
Fourth, regarding the class of cyclic protocols whose deadlock and unspecified reception detec-
tion are decidable, for n = 2, our result properly includes the ones studied in [16, 5]; for n > 2,
our result properly contains the one examined in [14] and complements the ones investigated
in [15, 11, 12]. More importantly, our decision procedure is much more straightforward and
efficient for practical analysis, which was lacking in both [14, 15] and [11, 12]. Furthermore,



we also show the decidability of unboundedness and nonexecutable transition detection for the
class of cyclic protocols with finite fair reachable state spaces, which are not addressed in any
previous approaches except the one in [5] for unboundedness in the n = 2 case.

Generalized fair reachability analysis for cyclic protocols was first reported in [7], along
with the decidability result of deadlock detection for the class of cyclic protocols with finite
fair reachability graphs. Then, the fair reachability notion was revised to achieve further state
reduction and allow for easier proofs. The results on basic formulation and deadlock detection
were given in PSTV’94 [8], while the results on detection of other logical errors were presented
in ICNP’94 [9]. This paper is the combination of results in [8] and [9] with a few modifications.

3 The CFSM Model

Notation: (1) We use - to denote concatenation. Given a set M. M* denotes its reflexive and
transitive closure under concatenation. | M| denotes its cardinality. For Y € M*, |Y| denotes its
length. € denotes an empty string, |¢| = 0. (2) Given n, forany 1 <i¢<n,0<j < n,iBj = i+J
ifitj<nelseidj=(i+j)modn;icj=i—jifi>jelse it j=1—j+n, where mod
stands for the modulo operation. (3) An interval [i..j] is an ordered set of at most n consecutive
integers ¢,¢® 1,...,i@k = j, where (1 <7 < n)A(0 <k < n). The corresponding (unordered)
set is denoted as {i..j}. Let [¢'..j] and [i..j] be intervals, [¢'..j] C [i..j] iff {¢'..7"} C {i..j}.
Unless specified as [1..n], we assume |[i..j]| < n. (4) We designate n as the number of processes
in a protocol. Unless otherwise specified, we assume n > 2 and let i, j range over [1..n].

In the communicating finite state machine (CFSM) model, a protocol is specified as a set
of n processes P = (P, P,,..., P,), where each process P, is a finite state machine that can
communicate with other processes via F'IFO channels. For each P;, S; denotes the set of local
states in P,. The initial local state of P, is denoted as s. A channel from P, to P;,¢ # j, is
denoted as C;;. The set of messages that P, can send to P, is denoted as M;;. The content of
C,,, denoted as ¢,;, is a sequence of messages sent from P, to P;. When C; is empty, ¢,;; = €.
Let M, = (U, 2z A—m|m € M”}) U(U,xA{+m|m € M;}). 7 denotes the partially defined
transition function: J'_,(S; X M; — S,). For each P;, a transition defined at local state s, € S,
is denoted as 7(s;,0), where ¢ € M,. Tt is a sending (receiving) transition if 0 = —m (o = +m).
A transition cycle C; in P, is a cycle in the transition graph of P;. It is a sending (receiving) cycle
in P, iff all the transitions in C; are sending (receiving) transitions. s, is a sending (receiving)
local state iff all transitions defined in s, are sending (receiving) transitions. We use the notation
7' = 7(8;,0) to give a name 7’ for this transition, and use the notation s, = 7(s,,0) to denote
that s/ is the local state resulting from the execution of the transition. By definition, each P,
is deterministic but partially defined.

A protocol P = (P, P,,..., P,) is cyclic iff each P, has exactly one input channel C,o,; and
exactly one output channel C};q,. From now on, we are dealing with cyclic protocols. For
results established later in this paper, it should be clear that they apply to cyclic protocols
only.
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Frample: A cyclic protocol with four processes is depicted in Figure 1. This protocol will
be used as the example throughout this paper.

For a cyclic protocol P = (P, P,,.. ., P,), a global state (state for short) S is represented as a
2n-tuple (8,8, .. 8,,€, 1 Crp--C,_y, ), Where s, is the local state of P, and ¢;q,; is the content
of channel C,q,;. In particular, the initial state S° is denoted as (% s3,...,5% 6¢6...,€). S is of

equal channel length iff all channel contents in .5 are of the same length. For convenience, we
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Figure 1: A Cyclic Protocol with 4 Machines

use s; € S to denote that s, is a local state of 5, and (m,s;) € S to denote that s, € S and m
is at the head of channel C;q;; in 5. S is in a sending cycle iff there is a local state s, € S that
is in a sending cycle of P,. As a convention, we use capital letters 5, X to denote a state and
small letters s,, z, to denote a local state of P;.

The reachability relation among states is formulated as follows. Given two states 5 = (s, s,,

3 Sy Cnty Cray ooy € 1) and 8" = ($), 8], .. sl e, o). S is directly reachable
from S, denoted as S +— 5, iff 3¢ € [1..n] such that the elements of S’ can be derived from
S by executing one of the following transitions: (1) s] = 7(s;,—m) and ¢, 5, = Ciig1 - M, (2)
s; = 7(s;,+m) and ¢;51; = m - €l,y,. Except for the elements affected by the one transition
applied, all other elements of S’ remain the same as those in S.

Denote —* as the reflexive, transitive closure of . S’ is reachable from S iff § —* 5.
When 5 = 5°, we say S’ is a reachable state. The set of reachable states in P is denoted as R,
called the reachable state space of P. A local state s! is reachable (from 9) iff there is a state
S" such that S° —* 57 (5 —* 5") and s/ € §7; (m,s!) is reachable (from §) iff there is a state
5" such that 5° —* 5" (9 > 5") and (m, s!) € §'. A sending cycle C; in P, is reachable (from
S') if one of the local states in C; is reachable (from 5).

Given a reachable state S. 5 is a deadlock state iff it is a receiving state and each channel
is empty. S5 has an unspecified reception ifl there is a receiving local state s; € § such that
Cion = m-c.,y,; and 7(s;,+m) is not defined. A transition 7(s,, o) defined at s; is executable if
there is a reachable state S such that (i) 0 = —m and s, € 5, or (ii) ¢ = +m and (m,s;) € 5;
otherwise it is nonexvecutable. P is unbounded iff for each K > 0 there is a reachable state
in which there is a channel whose length is greater than K. Deadlock, unspecified reception,
nonexecutable transition, and unboundedness are called logical errors. P is logically correct ift
R is free of logical errors. For protocol validation, we check states in R against logical errors.
This state exploration technique is called reachability analysis. However, it was shown in [1]
that even for n = 2, none of the logical errors is decidable for (cyclic) protocols. As a result,
none of the logical errors is decidable for cyclic protocols in general. For completeness, we list

this result as a theorem below.

Theorem 3.1 Detection of deadlock, unspecified reception, nonexecutable transition and
unboundedness are all undecidable for cyclic protocols.



4 Generalized Fair Reachability Analysis

In this section, we generalize the fair reachability notion to cyclic protocols with n > 2 machines
by incorporating the concepts of synchronization and concurrency into the formulation of fair
progress vectors. With that, we show that the set of fair reachable states is exactly the set
of reachable states with equal channel length. Then, we establish a necessary and sufficient
condition for a cyclic protocol to have a finite fair reachable state space. We also study the
logical error detection capability of fair reachable state space. For conciseness, we use “fair
reachability” for “generalized fair reachability” from now on.

4.1 Basic Formulation

Given a cyclic protocol P = (P, P,,...,P,). Let S = (5,8, ..4,5,¢,1,C-.C,_,,.) be a state
of P. The set of all executable transitions at s, in S is denoted as F;, = F7 U E}, where
and ET stand for the set of executable sending and receiving transitions at s, in .9, respectively.
We also denote EF* as the set of enabled transitions at s; in 9. (7(s;,0) is enabled iff 0 = +m,

Cio1i = €, and T(8;5,, —m) is defined.)

Convention: The notations defined above are implicitly bound to a state 5. For brevity,
S is dropped from the notations when S is given and no confusion arises. This convention is
adopted throughout the paper when a new notation is introduced. Whenever distinction is
necessary, the binding arguments, such as .5, will be put into the notation. For example, when
we talk about the set of executable transitions in P; in both S* and 57, we will use F;($") and
FE;(57), respectively.

Given a state S and an interval [i..j]. A pseudo transition vector in S is a tuple E[i“]] =
(tistigry---,t;) such that Vk € [i..j] : t, € E, U ETTU{A}, where A stands for a null transition
in P,. ’E[i“]] is a transition vectorin S iff Vi € [l.n]: E; # 0 and Vi € [1..n] : t; € E;. We drop
[i..7] from the notation when {i..j} = {1..n}.

Let TV = {t = (t,,t,,...,t,)} such that () Vi € [l.n] : ¢, € B,UEF if B UEF £ (0:¢, = A
otherwise, and (ii) Vi € [1..n], if t; = (s;,+m) € Et, then t,o, = (s;51,—m) € E,. For each
pseudo transition vector te TV, we compute a pseudo transition vector v = (v,,v,,...,0,)
from t according to one of the following three cases:

(1) t € (X[_,E7) U (X,_,Ef). In this case, set ¥ = t. In other words, ¥ has either all
processes sending or all processes receiving. v is called a concurrency vectorin 5.

(2) 3j: (t; € E7) A (tyg1 € Efyy U EFL). (fiorst,) is called a send-receive pair in t. For
each i € [L.n],if ((t; € E7) A (tign € Efy, UETR))V ((tier € B ) A (t € EF UETY)),
then set v, = ¢,; else set v, = . In other words, ¥ retains all the send-receive pairs in t.
v is called a synchronization vector in 5.

(3) Neither condition (1) nor condition (2) holds. In this case, set each v; = A. The resulting
pseudo transition vector is called the null vector, indicating no progress from any process
P in 5.

For each ¥ thus computed, ¥ is a fair progress vector in S iff it is either a concurrency vector
or a synchronization vector in 5. Denote V. (V;) as the set of concurrency (synchronization)
vectors in 5. Let V = V.U V;. V is called the fair progress vector space in S. It should be clear
that if Vi € [1..n] : B, U Ef+ # (), then a fair progress vector can be derived from each t € TV.

The fair reachability relation can be defined as follows. Given two states S = (s, 85, . ., S,
Cots Craye v o C1y) annd 8" = (84,85, ..., 80, by, gy oo osClq,), S5 5" HE IV € V(9) that leads
the system from S to S’. There are three cases to consider:
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Figure 2: Fair Reachability Graph

(1) v € V4(5). For each send-receive pair (v;,v,q,),¢ € [1..n], there are two subcases to
consider:

(a) Ciigr = €. Let v, = 7(s;,—m) and v, = T(S;g:,+m). Execution of (v;,v,4,) will
cause transition 7(s,, —m) to be taken, followed by transition 7(s,5,,+m), where
s;=7(s;,—m) and sl = T(S;g1,+m).

(b) ciig1 # € Let v; = 7(s;, —m), Vg1 = T(Sig1, +m'), and ¢;;50 = m'- ¢},
of (v;, vig,) Will cause transitions 7(s;, —m) and 7(8,4,, +m’') to be taken in arbitrary

I _ / —_ ! /
order, where s = 7(s;, =m), 8., = T(8ig1, +m'), and ¢ | - m.

Execution

= Clion
Except for the elements affected by the transitions applied in each of the send-receive
pairs, all other elements of S’ remain the same as those in 5.

(2) veV(S)A(Viel.n]: v, =7(s;,—m,;) € E7). The result of applying v on S is such
that Vi € [1.n] : s = 7(s;, —m;) and ¢, ;) = €iig1 - M.

(3) v.e Vi(S)AN(Vi € [Ll.n] : v; = 7(s;,+m;) € EF). Assume that before applying v,
Vi€ [l.n]:cigr = mi-c,,. The result of applying v on S is such that Vi € [1..n]: sl =

7(s:, +m;) and ¢

.
o1 — G

el

Denote —% as the reflexive, transitive closure of ;. 5" is fair reachable from S iff .S =% S7.
When S = 5° 5" is fair reachable. We can also define fair reachability (from 5) for s/, (m, s}),
and sending cycle C;, respectively. The set of fair reachable states, denoted as F, is called the
fair reachable state space of P.

Fzample (Cont’d): Figure 2 shows the fair reachability graph for the protocol in Fig-
ure 1. In this case, F = {5° 5"}, where S° = (1,1,1,1,¢,¢,¢,¢) is the initial state while
St =1(2,2,1,1,¢,¢€,¢,¢€) is another fair reachable state. The fair progress vectors in 5° and S*
are (—a,+a, A\, \) and (=b,4b, A, X), respectively. Note that this protocol is unbounded since
both P, and P, have a reachable sending cycle. However, F is finite.

Note that S° € F is a state with equal channel length of zero. Furthermore, any fair
progress vector in 5° maintains the equal channel length property in the resulting state. Using
this argument inductively, we can conclude that F is included in the set of reachable states
with equal channel length. In the following subsection, we show that the converse is also true.
Denote F,,k > 0, as the set of fair reachable states whose channel length is k. The following
lemma is straightforward.

Lemma 4.1 Given a fair reachable state space F', the following statments hold: (1) V&, k', k
2K :F,NFo=0. 2)F=U;L,Fy. B)VS €F,,if §+—; 5 then S € F, UF, when k = 0;
5" € Fy_y UF, UF,,, otherwise. (4) F, is finite. In fact, |F,| < (TT/_, |Si]) * (IT/—, [ M1 |®)-
(5) F is finite iff 3K : K > 0,F;,, = 0.



4.2 Partial Fair Execution Sequence

Let S and S’ be two states such that S —* S’. An execution sequence from S to S’, denoted
1 2 k

as e, is a sequence X° = X' 5 ... 5 X* k> 0, such that X° = §,Vj € [1.k] : X77' — X

via transition 77, and X* = §’. The length of e, denoted as |e|, is defined as the number of

transitions in e, i.e., |e| = k& > 0. The corresponding local execution sequence in P, is denoted

as e;. The length of ¢,, denoted as |e,;|, is defined as the number of transitions in e,. We use the

. A . .
notation e = {e,, e,,...,¢,} to denote the correspondence among an execution sequence and its
local execution sequences. {e;,é€,,...,¢e,} is called a local execution sequence set from S to 5.
When S = 5°, {e;,e,,...,e,} is called a local execution sequence set for 5. For each reachable

state 9, there exists at least one execution sequence. Let e and ¢’ be two execution sequences
for 5, e = ¢ iff they have the same local execution sequence set. It is obvious that = is an
equivalence relation over the set of execution sequences for 5. Fach local execution sequence
set characterizes a set of execution sequences for 5. For state exploration, it is sufficient to
examine these local execution sequence sets for each reachable state.

Similarly, if 5" is fair reachable from 5, then there is a sequence X° ixr % % X5 k>
0, such that X° = S, Vj € [1..k] : X?~' —; X via fair progress vector v,, and X* = 5"
Such a sequence is called a fair execution sequence from S to S’, denoted as fs. The length
of fs, denoted as |fs|, is defined as the number of fair progress vectors in the sequence, i.e.,

|fs| = k > 0. We also use the notation fs 2 {€1,€5,...,€,} to denote the correspondence
among a fair execution sequence and its local execution sequences. {e;, e,,...,e,} is called a
fair local execution sequence set from 5 to S’. When S = 5°, {e,,e,,...,€,} is called a fair
local execution sequence set for S’. Note that if S € F, then Vj € [0..k] : X7 € F.

Given a reachable state 5. Let {ej,e,,...,¢e,} be a local execution sequence set for S.

We construct a fair execution sequence seq = X° At X! 2% X* k > 0, such that
X =5°Vje[l.k]: X’7' —; X’ via v, and no fair progress vector can be derived from
the remaining transitions from {e;,e,,...,e,} in state X*. It is not difficult to show that both
seq and X* are unique w.r.t {e;,e,,...,¢e,}. seq and X* are called the partial fair execution
sequence and the fair precursor for 5 w.a.t {e,,e,, ..., e,}, respectively, denoted as pfs and

— D gP D P P yd
fp=(s8s8 .. s8R P .. cP_ ).

Lemma 4.2 Let fp be the fair precursor for a reachable state S w.r.t {e;,e,,...,e,}. If
S ¢ F, then fp # 5 and the following statements are true in fp: (1) 3k € [1..n] : |e,] # 0. (2)
dk € [1..n] : |ex] = 0. (3) If |ex| # 0, then 7f, the transition from e, at s}, is executable. (4)
fp—" 5 via the remaining transitions from {e,,e,,...,e,} in fp.

Based on this lemma, we can show that each reachable state with equal channel length is
fair reachable.

Theorem 4.1 F is exactly the set of reachable states with equal channel length.

An important implication of this theorem is that the notion of fair reachability is consistent
with the notion of fair execution sequence in the sense stated in the following theorem.

Theorem 4.2 Let {e,,e,,...,e,} be alocal execution sequence set for 5. If {e,,e,,...,e,}is
a fair local execution sequence for 5, then any other local execution sequence set {e!, e}, ... e’}
for ' is also a fair execution sequence for 5. In other words, if ' is fair reachable, then it is fair
reachable via any execution sequence for 5.



4.3 Finiteness of F

Given a cyclic protocol P. We perform fair reachability analysis for P by generating the fair
reachable state space F. In order for the procedure to terminate, F has to be finite. For n = 2,
a sufficient condition has been established for P to have a finite F, namely, one of the channels
being bounded [4]. However, no necessary and sufficient condition, even for n = 2, has been
established so far. On the other hand, it is known that F can be finite even if P has a reachable
sending cycle. This motivates us to look for other factors for causing F to become infinite.

We first investigate the class of cyclic protocols without reachable sending cycles. We notice
that for a cyclic protocol without sending cycles, the notion of unboundedness is equivalent to
that of “simultaneous unboundedness”.

Definition 4.1 A cyclic protocol P is simultaneously unbounded if for any constant K > 0,
there exists a reachable state S = (s1,85,..., 8, Cn1y Cray- -+, Cn_1p) Such that Vi € [l..n] :
|ciig1| > K; otherwise, it is not simultaneously unbounded.

Lemma 4.3 Given a cyclic protocol P without reachable sending cycles. If P is unbounded,
then P is simultaneously unbounded.

Then, we show that for a simultaneously unbounded cyclic protocol, we can find a fair
reachable state whose channels are simultaneously unbounded.

Lemma 4.4 Given a cyclic protocol P = (Py, P,,..., P,), if there is a reachable state
S = (81,82, 50,Cn1,C125 - - -5 Cn1n) such that Vi € [1.n] @ |cug1]| > K for some constant
K > 0, then there exists a fair reachable state S" = (s}, s},...,s0,¢l,¢\5, ..., ¢, _4,) such that
Vie[ln]:|cig| > K.

With these two lemmas, we can establish an equivalence between the finiteness of R and
finiteness of F for the class of cyclic protocols without sending cycles.

Theorem 4.3 Given a cyclic protocol P without reachable sending cycles. F is finite iff R
is finite.

A rephrase of this theorem gives us a necessary and sufficient condition for a cyclic protocol
with a finite F to be unbounded, a generalization of the result in [5] for n = 2 to n > 2.

Theorem 4.4 Given a cyclic protocol P with a finite F. P is unbounded iff it has a reach-
able sending cycle.

Now we can confirm that simultaneous channel unboundedness is the fundamental factor in
causing F to become infinite.

Theorem 4.5 Given a cyclic protocol P. F is finite iff P is not simultaneously unbounded.

This necessary and sufficient condition provides an exact description of the class of cyclic
protocols with finite fair reachable state spaces from the protocol operational semantics view-
point. To the best of our knowledge, this is the first necessary and sufficient condition for a
cyclic protocol to have a finite fair reachable state space. However, as expected, the decidabil-
ity aspect of this condition is negative, as is stated in the following theorem. The proof of the
theorem is based on showing it is true for n = 2, an easy reduction by using the decidability
result of boundedness detection established in [5].



Theorem 4.6 It is undecidable whether a cyclic protocol P has a finite F.

The next theorem says that if a cyclic protocol has a finite F, then we will be able to find
the least upper bound K > 0 such that each reachable state has at least one channel whose
length is bounded by K.

Theorem 4.7 Given a cyclic protocol P with a finite F. Let K be the longest channel
length among all the states in F'. Then each reachable state of P has at least one channel whose
length is bounded by K.

Denote P as the class of cyclic protocols whose F’s are finite. From now on, we will restrict
our study to class P. In the rest of the paper, unless otherwise stated explicitly, when we
mention a cyclic protocol P, we mean P € P; when we mention F, we mean that it is finite.

4.4 Fault Coverage of F

As with states in R, we define logical errors for states in F in a similar way. Give a state S € F.
S is a fair deadlock state iff 5" is a receiving state and all the channels are empty. 5 is a fair
unspecified reception state iff there is a receiving local state s; € 5 such that (i) ¢;,51; = m-¢}_;
and 7(s;,+m) is not defined, or (ii) ¢ic1i = €, T(Sie1, —m) is defined, and 7(s;,+m) is not
defined.

Several comments are in order here. A fair unspecified reception state 5" is not an unspecified
reception state when ¢;,;, = €. However, let S’ be the following state by executing transition
T(Si01,—m) in S, S” will be an unspecified reception state. In other words, in fair reachability
analysis, unspecified reception is sometimes detected in a “look-ahead” manner due to the
incorporation of enabled transitions in fair progress vectors. Second, there might be “dead
end” states in F whose V' = (). However, it is not difficult to show that in this case S is either
a fair deadlock state or a fair unspecified reception state. Thus the occurrence of dead end
states does not introduce new types of logical errors in F. Third, for unboundedness detection,
we know from Theorem 4.4 that we only need to detect reachable sending cycles. As a result,
we define a reachable state S as an unbounded state iff it is in a sending cycle. 5 is a fair
unbounded state iff it is an unbounded state in F.

State reduction achieved by fair reachability analysis is measured by the factor R\ F. In
general, F is much smaller than R, thus the saving is substantial. However, the study of logical
error coverage of F is crucial to evaluating the usefulness of fair reachability analysis. For n = 2,
it was shown that both deadlock and unspecified reception are detectable within F [16], and
that unboundedness can be detected via finite extension of F [5]. Note that even for n = 2,
nonexecutable transition detection has not been studied in the context of F. For n > 2, we
know that F is exactly the set of reachable states with equal channel length. Since all deadlock
states are of equal channel length zero, we have the following theorem on deadlock detection.

Theorem 4.8 Deadlock detection is decidable for P.

In fact, we showed in [8] that livelock detection is also decidable for P. However, it is not
difficult to see that for detection of logical errors other than deadlock, F is not sufficient, and
thus finite extension of F is needed.

Fzample (Cont’d): In Figure 2, both 5° and S* are fair unbounded states. However, just
inspecting F' cannot detect unboundedness caused by P, and an unspecified reception in channel
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('5,. In this case, the behavior of P; and P, were not explored during state generation. As we
will see in the following section, this is caused by the sending cycle in P,, and this is not a
coincidence.

Following the same formulation as [5], we reduce the detection of logical errors other than
deadlock in P to two local state reachability problems as follows:

P-1 Given a local state s;, decide whether s, is reachable.
P-I1 Given a local state s; and a message m € M,.,,, decide whether (m,s;) is reachable.

It should be clear that for P, if we can solve P-I (P-II), then we can solve unboundedness
(unspecified reception) detection, and if we can solve both P-I and P-II, then we can solve
detection of nonexecutable transitions. Although neither P-I nor P-1I is decidable in general
[1], we will show that both of them are decidable for P in the following section.

5 Finite Extension of F

In this section, we study the finite extension of F to detect logical errors other than deadlock
for P. For brevity, we use the term “ logical errors” for “logical errors other than deadlock” in
the rest of this section, unless otherwise explicitly stated.

Intuitively, there is a simple argument that shows that both P-I and P-1I, and thus all
logical errors, are decidable for the class of cyclic protocols P via fair reachability plus finite
extension. Then the only issue remaining is how efficient the process is. The argument goes as
follows: If a local state s, is reachable, then there is a reachable state X such that s, € X. Thus,
there is a local execution sequence set {e,,e,,...,e,} from S° to X in R. From {e,,e,,...,€,},
a partial fair execution sequence pfs can be derived to get to fp. Note that fp is in the path
of the execution sequence from S° to X and fp € F. If s, € fp, then we are done. Otherwise,
from fp, a finite extension in R exists — simply the remainder of the execution sequence from
fp to X. Hence, s, is locatable by finite extension from F. A similar argument can be used for
the reachability of (m,s,).

What are the problems with this argument? First, it only shows existence but no algorithm.
Secondly, it provides no upper bound on how far to extend when the execution sequence in R is
unknown (as is generally the case). Yet, the preceding argument can serve as a general guideline
in understanding the formality presented below.

As we have already seen, the need for finite extension in F results from the fact that some
of the reachable local states are not fair reachable. Therefore, the purpose of finite extension
is to uncover those local states. In what follows, we first identify a necessary condition for the
existence of such local states. Then we show how to minimize the size of the extension set, i.e.,
the set of states in F' that need to be extended. In Subsection 5.2, we present a finite extension
procedure based on partial states from the extension set. In the last subsection, we summarize
the discussions with the decidability results for P-I and P-II, and a characterization of F in
terms of logical error coverage.

5.1 Identifying the Extension Set

Suppose s, is reachable but not fair reachable. Then none of the reachable states containing
s, is in F. Let X be any reachable state with s, € X, and {e,e,,...,¢e,} be a local execution
sequence set for X. Let pfs and fp be the partial fair execution sequence and the fair precursor
for X w.r.t {e;,e,,...,e,}, respectively. Based on the preceding discussion, it is clear that
sy # s, and thus |e,| # 0. Furthermore, we can find a maximal interval [i..k] in fp such that
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Vj € [i.k] : |e;| # 0. Note that each 77 from e; at s? is executable. When ¢ # k, the execution
of remaining transitions in e, depends only on the execution of transitions in e;, j € [i..k & 1].

Starting from fp, we construct the set of states fair reachable from fp as follows: In each
such state 5, each fair progress vector v is computed as usual except that v; must take on the
transition from e; if (j € [i..k]) A (|e;| # 0). Note that during the construction, some of the
e,’s may become empty when (j € [i..k]) A (i # k). However, not in any of these states can
e, become empty since s, is not fair reachable. Without loss of generality, let’s assume that
none of the e;’s becomes empty during the construction. Let F{*'%t be the set of states from the
construction whose sum of the remaining transitions in {e,, €;41,. .., €;} is minimum. Obviously,
Fi's € F, and is closed by the above construction, i.e., if 5 € F{"}; and §’ is fair reachable
from S by the construction, then 5" € F[’:”Z] More importantly, S’ is fair reachable from
without progressin [i..k]. Let W ,; = (u, g, - u,) be the transition vector associated with
a state S € F'y, then 4, ,; is a proper incompatible transition vector (pitv) in . (U, ,; is a
pitvin S iff S does not have a concurrency vector, there is no send-receive pair in i, ,;, and
neither w; nor u, appears in any synchronization vector in 5.) In fact, U, ,, is the same for any
S’ in F[’Zfz], and thus is a persistent proper incompatible transition vector (ppitv) in S. (A pitv
U, ,, is persistent in S iff it is also a pitv in any state fair reachable from 5 without progress
in [i..k].) Denote Uy 5 (W j) as the set of pitv’s (ppitv’s) in §. Notice that although the
preceding discussion is based on reachability of s,, it also applies to the reachability of (m, s;).
To sum up, we have the following lemma:

Lemma 5.1 A local state s, ( (m,s,) ) is reachable but not fair reachable only if there is
a state S € F such that Wy ;; #0in S, k € [i..j], and s, ((m,s;) ) is reachable from 5.

As a result, the finite extension of F should be based on those states in F whose W, ;; # 0
for some interval [i..j]. However, there are two problems we need to consider. First, there could
be many states in F whose W}, ;; # 0. Finitely extending all such states can be costly and
might incur considerable redundant work. Secondly, testing whether Wy, ;; # 0 in S can also be
costly because it involves checking all the states fair reachable from S without progress in [i..J].
Thus, instead of computing all the states whose W, ;; # 0, we want to compute a extension
set Fr C F such that its membership can be easily decided and there is a state S € F whose
Wy # 0 only if Fr # 0.

Let’s see how F; can be computed. Given a state S € F whose Wy, ;; # 0. We construct
a graph FRGy; ; such that the set of the nodes in the graph corresponds to the set of states
fair reachable from S without progress in [i..j] and S is the initial node of the graph. Then we
construct the quotient graph QFRGy,  such that each node is a strongly connected component
(5CC) in FRGy; j;. From graph theory, this graph is a directed acyclic graph (DAG). Each
node in QFRG,, ), is denoted as [5'], where §' is a state in that SCC. The initial node is
denoted as [5]. Let TN be the set of terminal nodes in QFRG, ;. Observe that W, ;(.5") C
Wi (S7) it S” is fair reachable from " without progress in [i..5]. Thus, Wy ;1(5") = Wy, ;;(57)
if §" and 5" are in the same SCC of QFRG, ;. Hence, we can use the notation Wy ,([5'])
to represent the set of ppitv’s in any state in [9’]. In addition, it is not difficult to show that
Wi 1(9) = Nisy e 2 Wi ([57]). Since we assume Wy, 1(5) # 0, it follows that V[S'] € T'N :
Wi a([9]) # 0. As a result, we only need to focus on those nodes in TN. Given a node
[5] € TN, there are two cases to consider: (1) [9’] contains only one state S’ but no outgoing
edges. (2) There is a fair execution cycle (i.e., a cycle in the corresponding SCC in FRGy, ;)
among states in [9]. In either case, the following lemma shows that [9’] contains some error
state. Note that Wy ; C Uy j;; for any S and [i..7].
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Lemma 5.2 Given S € F and an interval [i..j]. If U}, ; # 0 in S and S does not have any
fair progress vector without progress in [i..j], then S is a fair unspecified reception state. If S
is in a fair execution cycle without progress in [i..j], then S is a fair unbounded state.

Let ¥, = F,. UF,,, where F,, and F,, are the set of unspecified reception states and
unbounded states in F, respectively. Clearly, the extension set F, for F can be easily computed
during the construction of F. Furthermore, based on the preceding discussion, we have the
following lemma:

Lemma 5.3 There is a state S € F whose W}, ; # 0 only if there is a state S’ € F; whose
Uiy 2 0 and Wy, ;3(5) € Upn(57).

Therefore, to solve both P-I and P-1I for P, we only need to extend those states in F.
Now the question becomes how states in F, can be extended in a finite way.

5.2 Partial State Exploration

From the previous subsection, we know that in order to solve both P-I and P-II, we only need
to extend parts of a state S indexed by an interval [i..j] whenever Uy ;; # 0, for each 5 € F.
Such an interval [i..j] is called a proper incompatible interval in 5. Denote I.J as the set of
proper incompatible intervals in 5. Clearly, (1.J,C) is a partial order set. Let Im.J be the set
of maximal elements in (/.J,C). Each element in I'm.J is called a mazimal proper incompatible
interval in 5. As will be clear shortly, for finite extension on 5, we only need to consider those
intervals in I'mJ.

Our finite extension procedure is based on the finite extension of part of a state S indexed
by each [i..j] € ImJ of S for each S € F;. Given a state S and an interval [i..j]. A partial
state in S indexed by [i..f] is the set of local states and input channel contents of the processes
indexed by [i..5] in 9, denoted as PS|;, ; = (€51, S5+ C g1,05;) PS[/iH]] C PS, ,iff ([¢..57] C
[i.. gD A (VE €[5 (85 = 8,) A (Chgr = Chgy ). We also use PS;; ; C 5 to denote PS, , is a
partial state of 5.

The reachability relation among partial states is defined as follows. PS[i..J]H[i..J]PS[/i..J] ift
Jk € [i..j] such that one of the following three conditions holds: (1) k = j and 7(s;,—m) is
defined. Then s, = 7(s,;,—m). (2) k # j and 7(s,, —m) is defined. Then ¢;, 5, = Cxpp1 - M
and s, = (s, —m). (3) chorx = M - Cpoyp and T(sy, +m) is defined. Then ¢, = cyory
and s, = 7(sy, +m). Except for the changes made above, all other elements of PS[/i..J] remain
the same as PS5, ;. The reflexive, transitive closure of ~—, , is denoted as [, . PS[/i..J] is
reachable from PS5}, , iff PSUHJ]H[*M]PS[;HJ]. We can also define the reachability from P9
for s,, (m, sx), and sending cycle C,, respectively.

The following lemma justifies that we only need to perform finite extension on those partial
states indexed by maximal proper incompatible intervals for each state in F,. When we set
[i..7] = [1..n], it also explains why we can base our finite extension of F on reachability among
partial states.

[i..]

Lemma 5.4 Given two partial states PS[i’..J’] and PS[;,H]/ Suppose PS[./

. . C PS
1 iyl =
Then PS, oy —=p iy POy iy only if 3PS, o (PSy oy © PSG ) ANPS, =1 1Py p)-

[i..5]1°

It should be noted that the set of partial states reachable from PS5 , can be infinite.
Thus, care must be taken in order to obtain a finite extension of PS5, ,. Denote PS, , =

(CigrirSive v Cin1,05,)- Let Ky = |eponl, k € [2..]]. PS[/i..J] satisfies the channel constraint w.r.t
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PS;, it VE € [ig] t |chon] € MAX (K1), PS, i PSGy iff PS, i 1 PS;; and
PS[/i..J] satisfies the channel constraint w.r.t PS;, ,. Denote —7 . . as the transitive, reflexive
closure of . .. PS[/i..J] is m-reachable from PS5 . iff PSUHJ]H%M]PS[;HJ]. We can also
define the m-reachability from PS; , for s, (m,s,), and sending cycle C,, respectively. By
induction on the number of transitions executed from PS5}, ; to PS[/iHJ], it can be shown that
PS[i..]]Hrn[i..]]PS[/i..]] only if PS[/i..J] satisfies the channel constraint w.r.t PS5, .

To obtain a finite extension of PS5, ,, we construct a m-reachability graph MRG, for each
PS4,k € [i..j], where the set of nodes corresponds to the set of m-reachable partial states
from PS5, ,, and PS5 ,, is the initial node of the graph. By the channel constraint of PS5, ,;,
it follows that each MRG,, is finite, and so is MRGy; ;; = U, ¢ i ;1 MRG,. Keep in mind that
we are to solve the local reachability problems P-I and P-II. With the finite extension graph
MRG,;, for PS5, ,;, it should be clear that if s, ( (m,s;) ) is m-reachable from PS5, ,;, then it
is reachable from PS5 ,,. The question is whether the converse is also true.

To answer this question, we adopt a technique called maximal progress partial state explo-
ration similar to the ones proposed in [6, 11]. Suppose PS5, i PS¢ ; via local execution
sequence set {e;,€;41,...,€,}. Forany s; € PS ,,k € [i..5], we want to construct a partial state
PSl g = (a1, 8% o Choney Sy ) such that (s§ = sp) A (PSy, =i s P50 4) by rearranging the
execution order of the transitions in {e,, €,41,. .., €, }. Specifically, we let P, maximally progress
along e, to reach s?. In the following procedure, 7/,1 € [i..k], is the transition at s] from e, in
PS[/M]. Denote 7 ,; = (7/,7/qy, .-, 7). For brevity, we define max(7, ;) = { if [ is the first
executable transition in the order from & to ¢ from 7, ,, in PS[/M]; max(7, ,) = 0 if no such
transition can be found in PS[/M].

Algorithm 1 Maximal-Progress
begin

1 PS[i..k]::PS[i..k]

2 while s, # s¢ do

5 G=max(7, )

4 let PSii 4= apply 7/ in PS[/M]
5 PS[i..k]::PS[i..k]

6 end while

7 PS[bi..k]::PS[i..k]

8 return PSj 4

end Maximal-Progress

The correctness of the algorithm can be argued informally as follows. At each iteration from
Line 2 to Line 6, if s, # s{, then 7, ,, has at least one executable transition in PS[/M]. After
the execution of one iteration, the total number of transitions remained in {e,,€;g1,...,€,} is
reduced by one. Therefore, the algorithm must terminate within finite number of iterations,
and when it terminates, s; = s in PS5, ,;. By induction on the number of iterations from line 2
to line 6, it is not difficult to show that PS[i..k]H;Kn[i..k]PS[/i..k]‘ Thus at the end of the algorithm,
PSy =i PSp -

As for (m,s;), we first use the above algorithm to get to PS[ ,,. If (m,s}) € PS} ,,
then we are done. Otherwise, since there is no transition left in e, in PS5}, ,;, we must have
i # k, ¢}, = € and the first sending transition in the remaining transitions in e,5, must be
7(84o1, —m) for some local state s) ., in Pyo,. Let s/, = 7(s},,,—m). Then we apply the
above algorithm from PS5, , ., based on the remaining transitions in {e;, €41, €xe1} to get

to PS[, 4oy such that PSY = 01 PSE Loy and spo, = 8o, Let ¢po,, = m and s; = s).
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Figure 3: Finite Extension of Paritial State

Then PS}, g g PS4 and (m,s¢) € PS[, . Thus PSS, =75 o PSh - To summarize, we
have the following result:

Theorem 5.1 Given a partial state PS;; ;. Let k € [i..5]. si is reachable from PS, , iff it
is m-reachable from PS, .. (m,s}) is reachable from PS, . iff it is m-reachable from PS5, ;.
Therefore, both P-T and P-II are decidable for any partial state via finite extension on PS5, ;.

Fzample (Cont’d): In Figure 2, we have F; = F,, = F. It should be clear that there
is only one ppitv in the protocol, namely tj 4 = (—c¢,—d). Hence, only one partial state
PS4 = (€6,1,¢,1) needs to be extended. The partial state m-reachability graph is shown in
Figure 3, in which the “hidden local states” 2 in P, and (¢, 2) in P, are uncovered.

End of Fxample.

5.3 Fault Coverage of F Revisited

Let’s recapitulate the discussion so far on finite extension of F. We began by observing that F
itself is not sufficient for detection of logical errors, and then reduced the logical error detection
problems to two local reachability problems P-1 and P-1I. We found that the major obstacle
to solving these two problems is the existence of ppitv’s in some states in F since these ppitv’s
prevent the fair progress state exploration procedure from reaching some reachable local states.
However, we noticed that it suffices to do finite extension in those states in F;, in order to
uncover all the “hidden” reachable local states. We further observed that only those partial
states in each S € F; indexed by some interval in I'mJ of 5 are needed for extension in order
to solve both P-I and P-II for P. Finally, we showed that both problems are solvable for
any partial state via finite extension. Hence, we are able to establish the following decidability
result:

Theorem 5.2 Both P-I and P-II are decidable for 7. Therefore, detection of unspecified
reception, unboundedness and nonexecutable transition are all decidable for P.

During the process, we have also discovered the following important characterization of F
in terms of fault coverage.
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Theorem 5.3 Given a cyclic protocol P € P. P has an unspecified reception but F,, = (
only if F,, # (. P is unbounded but F,, = () only if F,, # (. P has a nonexecutable transition
that is not detectable via F only if F,, UF,, # (. Therefore, P is logically correct iff F does
not contain any logical errors.

Combined with the result that deadlock detection is decidable via F in Subsection 4.4, we
can see that F is very competitive in fault coverage, quite to the contrary of the pessimistic
suspicion from the surface at the beginning of this section. For iterative validation, we may stop
state exploration whenever an error state is found in F, fix that error, and repeat the process
until no more errors are found in F. In this way, finite extension of F is not necessary. If we
want to detect all the errors in one—phase generation of F, then F might need to be finitely
extended if F # (. In this case, the finite extension procedure can be optimized for efficiency.
We have already seen how time complexity can be reduced by limiting finite extension to only
those states in F;, and for each such state, to only those partial states indexed by intervals
from I'mJ of that state. In fact, we can do better by fine-tuning the decision procedures.
For example, if we are to detect unspecified reception, finite extension is necessary only when
F, =0 and F,, # 0, and is only performed on those states in F,,. Detection of other errors
can be fine-tuned in a similar way. As for space complexity, F itself already offers substantial
reduction of R. When finite extension is needed, the additional space for an extension graph
MRG, is usually small compared to the size of F due to the channel constraint. Moreover,
after MRG,, is generated, we can check logical errors in MRG,, mark the corresponding state
accordingly if there is an error, and then discard it for good. Using this strategy, considerable
space can be saved, especially when n gets larger. This is in contrast to the approach taken in [5]
for n = 2, which keeps all the extension graphs during unboundedness detection. In summary,
for the class of cyclic protocols P, generalized fair reachability analysis has very competitive
error-detection capability, and can be carried out both effectively and efficiently.

6 Conclusion

In this paper, we generalized the fair reachability analysis technique to cyclic protocols with
n > 2 communicating finite state machines. Given a cyclic protocol P, we showed that its fair
reachable state space F is exactly the set of reachable states with equal channel length, and
established the lack of simultaneous unboundedness in P as a necessary and sufficient condition
for P € P, the class of cyclic protocols whose F’s are finite. The effectiveness of generalized fair
reachability analysis was demonstrated by showing for class P, deadlock is detectable within
F while all other logical errors are detectable via finite extension of F. More importantly, we
discovered a characterization of F in terms of fault coverage, namely P is logically correct iff F
is free of logical errors.

Fair reachability analysis was originally proposed as a technique to tackle state explosion
during reachability analysis [16]. The same argument also applies to our work reported in this
paper. By forcing the system to progress through a fair execution sequence, we have cut down
the redundancy of state exploration due to equivalent execution sequences. We also showed how
finite extension can be carried out efficiently in terms of both time and space by minimizing
the extension set and the number of partial states needed to be extended for each state in the
extension set.

The strength of our approach lies in the natural generalization of the existing fair reachability
technique and its simple, straightforward, and efficient decision procedures, which were missing
in both [14, 15] and [11, 12]. This study shows that generalized fair reachability analysis not
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only achieves substantial state reduction, but also maintains very competitive logical error
detection capability. Therefore, it is a very useful technique to prove logical correctness for a
wide variety of cyclic protocols.

During the write-up of this paper, we were informed of the independent work by Peng on
extending fair reachability to a model called “single-link communicating finite state machines”
[13]. In this model, each process can have multiple output channels but has only one common
input channel to store messages from other processes. Although cyclic protocols are included
in this model, the notion of fair reachability in this model is quite different from ours in that
only two machines are allowed to make progress at one time restricted by the so-called “weight-
balance” constraint in [13]. It is not clear, however, what class of protocols in his model is
amendable for his analysis technique. For cyclic protocols, our fair reachability formulation has
the following advantages: First, our fair reachability state space maintains the same nice equal
channel length property as for n = 2 [16, 5]. Second, both concurrency and synchronization
vectors in our fair reachability notion allow more than two machines to progress at the same
time. As a result, for most cyclic protocols, our analysis achieves greater state reduction than
the one in [13]. Third, aside from deadlock, our approach can also detect other logical errors
such as unspecified reception, nonexecutable transition, and unboundedness, which are not
covered in [13].

Many open problems remain concerning our approach. First, although we have found a
necessary and sufficient condition for the class of cyclic protocols whose logical correctness
is decidable, we are not sure how general it is in terms of tightening the boundary of cyclic
protocols whose logical correctness is decidable. Further investigation of this aspect is necessary
in order to fully evaluate its role in the decidability hierarchy. Second, a cyclic protocol is still
simple in topology. It would be beneficial to look into the possibility of generalizing our work
to protocols with more complicated and yet regular network topologies. Third, it is possible to
incorporate internal transitions into the fair progress vector formulation to allow our technique
to handle cyclic protocols with internal transitions and still achieve good state reduction. We are
currently working on this issue. Fourth, fair reachability analysis is only one type of improved
reachability analysis techniques studied in the two machine case. In this paper, the collective
power of both fair progress and maximal progress state exploration is illustrated in the finite
extension process, and has produced encouraging results. The results reported here should
encourage more research on extending other existing techniques to the analysis of protocols
with more than two machines. Finally, it would be interesting to investigate the possibility of
carrying the fair reachability analysis technique over to other specification models, such as the
extended finite state machine model.
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Appendix: Proofs of Lemmas and Theorems

Lemma 4.2 Let fp be the fair precursor for a reachable state S w.r.t {e;,e,,...,e,}. If
S ¢ F, then fp # 5 and the following statements are true in fp: (1) 3k € [1..n] : |e,] # 0. (2)
dk € [1..n] : |ex] = 0. (3) If |ex] # 0, then 77, the transition from e, at s}, is executable. (4)
fp—* S via the remaining transitions from {e,, e,,...,e,} in fp.

Proof: Obviously, fp # 5, otherwise S will be fair reachable. Since {e;,e,,..., ¢e,} is
a local execution sequence set for 5, there is no deadlock or unspecified reception during the
execution of transitions in {e;,e,,...,e,} from S° to 5. Since fp # 5, there must be some
transitions in {ej, e,,.. ., €,} remained to be executed in fp, i.e., Ik € [1..n] : |e,| # 0. Thus,
(1) holds. Suppose |e,| # 0. If 77 is a sending transition, then it is executable. Hence, 77
is not executable only if it is a receiving transition and ¢, = € since otherwise there will
be an unspecified reception along {e,,e,,...,e,}. In this case, there must be at least one such
77, |e;] # 0, that is a sending transition; otherwise the protocol cannot precede beyond fp to
reach 5. As a result, a send-receive pair can be derived from the transitions in fp, which
contradicts the assumption that no fair progress vector can be derived from fp based on the
remaining transitions in {e,, e,,..., e,}. Therefore, if |e,| # 0, then 77 must be executable, i.e.,
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(3) holds. Suppose now Vi € [1..n] : |e;] # 0, then each 77 is executable. As a result, either a
concurrency vector or a synchronization vector can be derived from t = (tF,7F,...,7TF), which
also contradicts the assumption that no fair progress vector can be derived from fp based on
the remaining transitions in {e,, e,,...,e,}. Thus, 3k € [1..n] : |e,| = 0, i.e., (2) holds. Finally,
by induction on the number of remaining transitions in {e,, e,,...,e,} from fpto 9, it is obvious
that ' is reachable from fp via those remaining transitions, i.e., (5) holds. ll

Theorem 4.1 F is exactly the set of reachable state with equal channel length.

Proof: We need to show that 5 is fair reachable iff it is a reachable state with equal
channel length.
(Only If:) Suppose S is fair reachable. Then S is reachable. Let fs be a fair execution

sequence for 5. Denote fs = X° Boxr % X'k >0, where X° = S§° Vj € [l..k] :
X?~' ¢ XV via fair progress vector v,, and X* = 5. We claim that 5 is of equal channel
length by induction on k.

Basis: k = 0. In this case, S = 5°. The claim holds trivially.

Induction: Suppose S is of equal channel length for & = &’ > 0. We want to show for
k = k' + 1. Note that X*~' is fair reachable via a fair execution sequence of length &’. By
induction hypothesis, X*~" is of equal channel length. Now, X*~' — 5 via fair progress vector
V,. If ¥, is a concurrency vector, then it will either increase each channel length by one or
decrease each channel length by one when applied to X*~. If ¥, is a synchronization vector,
then it will not change the length of any channel when applied to X?~'. Hence, § is also of
equal channel length. The claim holds for k = & + 1.

Therefore, S is a reachable state with equal channel length.

(If:) Suppose S is a reachable state with equal channel length K > 0. We want to show that
S is fair reachable. Let {e, e,,...,e,} be a local execution sequence set for S and fp be the fair
precursor of S w.r.t {e;,€,,...,€,}. Then fp is fair reachable. From the preceding argument,
fpis of equal channel length. Let K’ be the channel length in fp. Let [i..j] be an interval in fp
such that VK € [i..j] : |ex] # 0 and |e,51| = |€;41] = 0. By Lemma 4.2, such an interval exists
and Yk € [i..j] : 77 is executable. Note that in this case, either 77 is a receiving transition or
77 is a sending transition. Otherwise, a send-receive pair can be derived from (77, 7/%:,..., 7)),
which contradicts the assumption that no fair progress vector can be derived from fp. There
are three cases to consider:

(1) K’ < K. Note that the length of channel C,s,; cannot be increased. By the time the
protocol gets to 5, the length of channel C,5,; will be less than K.

(2) K’ > K. Note that the length of channel C};4, cannot be decreased. By the time the
protocol gets to .5, the length of channel C},,, will be greater than K.

(3) K’ = K. There are two subcases to consider:

(a) 77 is a receiving transition. Then after the execution of 77, the length of channel
Cio1; Will be K — 1. Note that the length of channel C;5,; cannot be increased. By
the time the protocol gets to 5, the length of channel C,;g,; will be no greater than
K —1.

(b) 77 is a sending transition. Then after the execution of 77, the length of channel
Ci;e1 will be K 4+ 1. Note that the length of channel C;;4, cannot be decreased.
By the time the protocol gets to 5, the length of channel C;,4, will be no less than
K+ 1.
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In all cases, there will be a channel whose length is not K when the protocol gets to .5, which
contradicts the assumption that S is of equal channel length K. Hence, S is fair reachable. Wl

Lemma 4.3 Given a cyclic protocol P without reachable sending cycles. If P is un-
bounded, then P is simultaneously unbounded.

Proof:  Since P is unbounded, P has at least one unbounded channel. Without loss of
generality, suppose channel (', is unbounded.

Since (', is unbounded, there must exist an infinite execution sequence e 2 {e1,€65,..,€,}
such that for any k& > 0, there is a state reachable via a prefix of e such that |¢,,| > K. Moreover,
since each process P; has no reachable sending cycles, each e; is composed of infinitely many
sends and receives, and there can only be at most |S;| — 1 consecutive receives before a send
in e;, where |S,| is the number of states in P,. As a result, there must be at least one such
execution sequence along which P can proceed indefinitely, i.e., no unspecified reception can

. . . . A
occur along this sequence, otherwise (', will be bounded. Fix e = {e,,e,,...,€,} as such an
execution sequence.
Define a function f :[0..n — 1] — N, N being the set of natural numbers, as follows:

fin={1 ifi=0

Based on the preceding argument, for any K > 0, there is a state S = (s, 55, ..., 8, Co1, C12,
.+ Cn_1,) reachable via a prefix of e such that |c,,| = f(n & 1) X K, where K’ > K. If all
other channels have more than K messages, we are done. Suppose not, starting from 5, in
the order from P, to P,, each process P;,7 € [2..n], can receive |S,| x f(n © 1) X K’ messages
from channel C,g,,, and as a result, send at least f(n & j) messages to channel Cjq,. In the
end, the protocol must arrive at a reachable state such that each channel should have at least
K’ messages. Therefore, there is a reachable global state in which the length of each channel
greater than K, i.e., P is simultaneously unbounded. l

Lemma 4.4 Given a cyclic protocol P. If there is a reachable state 5 = (s, 5,,..., 8., Co1,
€129y Cn_1,) such that Vi € [1..n] @ |¢iig1| > K for some constant K > 0, then there exists a
fair reachable state §7 = (8}, 80, ...y 80y Copy Crm -+ Co_y,) Such that Vi € [1.n]: |, > K.

0 n Y nl Y n—1n 1Pl

Proof: Tirst,if § € F, then let $ = 5, we are done. Second, if K = 0, then let 5/ = §°,

and we are done. Now suppose S ¢ F and K > 0. Let e 2 {€1,€,,...,¢,} be an execution
sequence for S. Based on {e,e,,...,e,}, we construct the partial fair execution sequence for
S to get to fp, the fair precursor of 5. Clearly, fp € F and is of equal channel length by
Theorem 4.1. Suppose fp is of channel length K'. If K/ > K, then let S’ = fp, and we are
done. Suppose not, by Lemma 4.2, 3k € [l..n] : |e,| = 0. Note that from state fp and on,
the length of channel (4, cannot be increased with the execution of remaining transitions in
e by other processes. Therefore, at the end of the execution of e, i.e., in state 5, the length
of channel g, Will be less than K, which contradicts the fact that every channel in S has
length no less than K. Hence, fp must have channel length no less than K.
In all cases, we can find a fair reachable state whose channel length is no less than K. il
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Theorem 4.3 Given a cyclic protocol P without reachable sending cycles. F is finite iff
R is finite.

Proof: R being finite implies that F is finite since F C R. Suppose F is finite but R is
infinite, then P is unbounded. By Lemma 4.3, P is simultaneously unbounded. By Lemma 4.4,
for any K > 0, we can find a fair reachable state whose channel length is greater than K. On
the other hand, F being finite implies that the channel length of any fair reachable state is
bounded by some constant K’ > 0. Choosing any K > K’ will result in a contradiction. Wl

Theorem 4.4 Given a cyclic protocol P with a finite F. P is unbounded iff it has a
reachable sending cycle.

Proof: Obviously, if P has a reachable sending cycle, then P is unbounded. Suppose
P is unbounded but does not have a reachable sending cycle. Then By Lemma 4.3, P is
simultaneously unbounded. By Lemma 4.4, there is a fair reachable state S whose channel
length is greater than K for any K > 0. Hence, F is infinite for P. A contradiction. Bl

Theorem 4.5 Given a cyclic protocol P. F is finite iff P is not simultaneously unbounded.

Proof:  If Part. Suppose F is infinite, then |J;2  F, is infinite. Thus, VK > 03K’ > K :
F+ # (. Since any state in F is of equal channel length, P is simultaneously unbounded.

Only If Part. If P is simultaneously unbounded, then for any K > 0, there is a reachable
state S such that the length of each channel in 5 is greater than K. By Lemma 4.4, there is a

fair reachable state S’ such that each channel length in S is greater than K. In other words,
VK > 03K’ > K : Fyr # 0. As aresult, F = |J32 F, is infinite. B

Theorem 4.6 It is undecidable whether a cyclic protocol P has a finite F.

Proof: = We claim that for n = 2, it is undecidable whether a (cyclic) protocol P has a
finite F. We prove this claim by contradiction. In the proof, we make use of the decidability of
boundedness detection for protocols with finite F’s for n = 2, a result established in [5].

Suppose for n = 2, it is decidable whether a protocol has a finite F. Then the following
algorithm will decide whether P is bounded:

Step 1: Check if F is finite for P.

Step 2: If F is infinite, output “P is unbounded”.

Step 3. If F is finite, determine if P is bounded and output the result.
Step 4: End of procedure.

On the other hand, we know that boundedness detection is undecidable for protocols with n = 2
machines [1]. A contradiction.

Now that it is undecidable, for n = 2, whether a cyclic protocol has a finite F, it is straight-
forward that the theorem holds for n > 2. i

Theorem 4.7 Given a cyclic protocol P with a finite F. Let K be the longest channel
length among all the states in F'. Then each reachable state of P has at least one channel whose
length is bounded by K.
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Proof:  Suppose there is a reachable state S in which each of its channel length is greater
than K. Then by Lemma 4.4, there is a fair reachable state whose channel length is greater
than K, which contradicts the selection of K. i

Lemma 5.2 Given S € F and an interval [i..j]. If Uy, ;; # 0 in S and S does not have any
fair progress vector without progress in [i..j], then S is a fair unspecified reception state. If S
is in a fair execution cycle without progress in [i..j], then S is a fair unbounded state.

Proof: By definition, U}, ;; # 0 in S implies that V& € [i..j] : E, # 0 in S. Thus S is
not a deadlock state. Denote [i..j] as the complement interval of [i..j] w.r.t [1..n]. Suppose S
is not a fair unspecified reception state. Then V& € [i..j]: F, U Ef*T # (0. As a result, a fair
progress vector can be derived from each t € TV. Let U, ; bea pitvin 5. Let t be a pseudo
transition vector in 7'V such that V& € [i..j] : u, = ¢,. Then a fair progress vector v can be
derived from t and V& € [i..7] : v, = A. Hence V is a fair progress vector in S without progress
in [i..7]. A contradiction. Therefore, $ is a fair unspecified reception state.

Now suppose S is in a fair execution cycle fe without progress in [i..j]. Let {e!,e},..., e’}
be the corresponding local execution sequence set from S to S. Then VEk € [i..j] : |e}| = 0.
Since |fe| # 0, there must be a nonempty interval [h.l] in S such that {i..j} N {h..l} = 0,
Vi € [h.d] 2 |e| # 0, and e} ,| = |ejz,] = 0. Note that Vi € [h.1] : €] is a cycle (not
necessarily elementary) in the state transition graph of P,. We claim that €] is a sending cycle
in P,. Suppose not. Then there is at least one receiving transition in e/. Assume 9 is of channel
length K. Then going through fc once will decrease the length of channel 5, by one. On
the other hand, P,o; is idle during the execution of fe. As a result, executing fc once will
not lead the system back to 5, contradicting the assumption that fe¢ is a fair execution cycle.
Therefore, €, must be a sending cycle in P,. As a result, S is a fair unbounded state. ll

Lemma 5.4 Given two partial states PS5, ., and PS[IH..J']- Suppose PS5

Then PS[i/..j/] HE;/~.j/] PS[i/..j/] Only lf ElPS[lJ] : (PS[l/]/] g PS[@]]) A (PS

oy CPS
i ..g'] ,

[i.g]"
[i..J]H[*i..J]

Proof:  The lemma is trivially true if [¢'..5/] = [i..j]. Suppose [¢'..5/] C [i..j]. Let
{es,€7g14 . €} be alocal execution sequence set from PSU,“J,] to PS[/l.,“],]. Let seq be the

sequence of messages sent by the (sending) transitions in e,. Construct PS[/i..J] such that (1)
PS[;,N],] C PS[/iH]], (2)VEke ({i.g3\{..j'}) s s, = s, and (3)VE € ({t..73\{¢..7'}) : chorr = seq
if k= j' @ 1; ¢yo1, = € otherwise. Then obviously, PSU..J]H[*M]PSI ||

[¢..9]°

Theorem 5.2 Both P-I and P-1I are decidable for P. Therefore, detection of unspecified
reception, unboundedness and nonexecutable transition are all decidable for P.

Proof:  We first show P-Iis decidable for P. Let P be any protocol in P and s, be a local
state of P,k € [1.n]. We want to decide if s, is reachable. Clearly, it is decidable whether s, is
fair reachable by inspecting F, the finite fair reachable state space of P. If s, is fair reachable,
then it is reachable.

Suppose s, is not fair reachable. Then, by Lemma 5.1 and Lemma 5.3, s, is reachable only
if there is an S € Fr such that k& € [i'..j'], Uy ;4 # 0, and s, is reachable from 5. More
specifically, from the discussion in Subsection 5.1, s, is reachable via partial state PS[i’..J’] CS.
By Lemma 5.4, s, is reachable from PS; ,, where [i..j] is a maximal proper incompatible
interval in 5 and [/'..5'] C [i..j]. By Theorem 5.1, s, is m-reachable from PS5 Hence, if

[¢..5]°
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s, is reachable but not fair reachable, then it can be decided as reachable by checking each
MRG; ;; for each maximal proper incompatible interval [i..j] in each S € F;. Since Fy is
finite and MRGy, ; is finite for any PS5, ;, this can be done within finite number of steps.

On the other hand, if s, is not reachable, then it is not fair reachable. Furthermore, it cannot
be m-reachable from any P9, , for any 5 € Fr, where [i..j] is a maximal proper incompatible
interval in 5. Otherwise, by Theorem 5.1, s is reachable from PS5, , for some 5 € F;. By
Lemma 5.4, s, is reachable from 5. Hence, s, becomes reachable. A contradiction. Therefore,
if s, is not reachable, it can also be decided as not reachable by first examining F and then
checking each MRGy, ; for each maximal proper incompatible interval [i..j] in each S € Fy.
This also can be done within finite number of steps.

To sum up, the reachability of a local state s, can be decided within finite number of steps.
As a result, P-1is decidable for P. The decidability of P-II for P can also be shown in a similar
way. Now that both P-T and P-II are decidable for P, it is straightforward that detection of
unspecified reception, nonexecutable transition, and unboundedness are all decidable for P. i

Theorem 5.3 Given a cyclic protocol P € P. P has an unspecified reception but F,, = ()
only if F,, # (. P is unbounded but F,, = () only if F,, # (. P has a nonexecutable transition
that is not detectable via F only if F,, UF,, # (. Therefore, P is logically correct iff F does
not contain any logical errors.

Proof:  Suppose P has an unspecified reception but F,, = 0. Then there is a reachable
state S such that (m,s,) € 5, s, is local receiving state, and 7(s,,+m) is not defined. Since
F.. =0, (m,s,) is reachable but not fair reachable. By Lemma 5.1 and Lemma 5.3, Fr # ().
Since F, = F,, UF,,, we must have F, # (.

The proofs for unboundedness and nonexecutable transition can be carried out in a similar
way. Now suppose P is logically correct, then there is no reachable error states in F. Conversely,
if F is free of logical errors, then F, = (). P cannot have a deadlock since all deadlock states
are included in F. P cannot have any other logical errors either since otherwise we will have
F; # 0 based on the discussion in the preceding paragraph. Hence, P is logically correct. B

23



