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Abstract

Active control of the onset of stall instabilities in axial flow compressors is pursued us-
ing bifurcation analysis of a dynamical model proposed by Moore and Greitzer (1986). This
model consists of three ordinary differential equations with state variables being the mass
flow rate, pressure rise, and the amplitude of the first harmonic mode of the asymmetric
component of the flow. The model is found to exhibit a stationary (pitchfork) bifurcation
at the inception of stall, resulting in hysteresis. Using the throttle opening as a control,
analysis of the linearized system at stall shows that the critical mode (zero eigenvalue) is
unaffected by linear feedback. Hence, nonlinear tools must be used to achieve stabilization.
A quadratic feedback control law using measurement of asymmetric dynamics is proposed
which stabilizes the bifurcation and eliminates the undesirable hysteretic behavior.
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1. Introduction

Recent years have witnessed an increasing interest in axial flow compressor dynamics,
both in terms of analysis of stall phenomena and their control [1]-[6], [11], [12]. This interest
i1s due to the desire for increased performance which is potentially achievable in modern
gas turbine jet engines by operation near the maximum pressure rise. This increased
performance is at the price of a significantly reduced stability margin. Two basic types of
instability are known to occur in compression systems. One, surge, is a low frequency, large
amplitude oscillation of the mean mass flow rate. The second, rotating stall, corresponds
to a traveling wave of gas around the annulus of the compressor. This results in very
inefficient operation at constant mean mass flow rate and pressure rise. These descriptions

are for the fully developed (i.e., post-transient) instabilities.

Greitzer [1] employed a nondimensional fourth-order compression system model and
introduced a nondimensional parameter, B, which he found to be a determinant of the
nature of post-instability behavior. A global bifurcation of periodic solutions and other
bifurcations were found for this model, and were used to explain the observed dependence

of the dynamical behavior on the parameter B [3], [4].

Moore and Greitzer [5] extended the previous model to describe the surge and rotat-
ing stall phenomena in axial flow compression systems. This model incorporates nonax-
isymmetric dynamics, whereas the model of Greitzer [1] reflected only axisymmetric flow
dynamics, while employing a nonaxisymmetric (i.e., measured) steady-state compressor
characteristic. Also in [5], the general model was specialized to a system of three nonlinear
ordinary differential equations. The state variables of this dynamic model are the mass
flow rate, pressure rise, and the amplitude of the first harmonic mode of the asymmetric
component of the flow. For the case of a cubic axisymmetric compressor characteristic,
Moore and Greitzer found it convenient to use the square of the amplitude of the first har-
monic mode rather than the amplitude itself as a state variable. McCaughan [6] performed
a bifurcation analysis of this model, observing a stationary bifurcation at stall inception.
This bifurcation entails the local emergence of a new equilibrium point from the nominal

one. This bifurcated equilibrium point is not stable, and results in a jump effect and thus
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hysteresis. We note that McCaughan [6] also observed a bifurcation to a large amplitude
periodic solution for the model of [5]. (Although bifurcations of equilibria are discussed
briefly in Section 2 and the Appendix, we refer the reader to texts such as Iooss and Joseph
[10] for a detailed treatment.)

Several techniques have been proposed for active control of stall instabilities in axial
flow compressors (e.g., [2], [11], [12]). From an analytical point of view, these methods
employ linear control to delay the occurrence of stall or to achieve stall avoidance. Of
course the physical mechanisms for controller implementation differ among the proposed
active control schemes.

The present paper begins with the recognition of the importance of local bifurcations
as determinants of the nature of post-instability behavior of axial flow compression systems.
The philosophy of the control component of this work is similar to that of Abed and Fu
[7]. This entails determining feedback control laws which ensure the stationary bifurcation
results in only stable bifurcated solutions. Thus, even though the nominal equilibrium is
not stabilizable within the framework of linear theory, it may be possible to stabilize a
neighborhood of the nominal solution for a range of parameter values including the stall
value of the disturbance parameter. It will be seen that an additional outcome of the control
laws proposed here is the elimination of a hysteresis loop which occurs in the open-loop
system model. The results of this paper apply to models more general than that studied
by McCaughan [6], in the sense that the axisymmetric part of the steady state compressor
characteristic is not required to be a cubic function, but rather an arbitrary smooth single-
valued function of mass flow rate. We do employ a cubic model in demonstrating the
results for a particular compression system.

The paper proceeds as follows. In Section 2, bifurcation theory is applied to study the
stability of axial flow compression systems in the vicinity of the stall point. A pitchfork
bifurcation is observed in the model at the stall point. The dynamical behavior of the
compression system near this bifurcation point is found to be strongly dependent on the
axisymmetric compressor characteristic. This dependence is exhibited through a formula
showing that the stability of bifurcated solutions is influenced by the derivatives of the

axisymmetric compressor characteristic at the bifurcation point. In Section 3, a throttle
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opening control law is given. This control law circumvents the uncontrollability of the
zero eigenvalue of the linearized model at stall. A purely quadratic state feedback using
measurement of the asymmetric component of the flow is given, and is shown to result
in local stabilization of the bifurcation leading to stall. Section 4 contains bifurcation
diagrams for the controlled and uncontrolled cases. Concluding remarks are given in
Section 5.

Notation

6 - angle along circumference

C,s - nondimensional axisymmetric compressor characteristic

A - amplitude of the first harmonic of asymmetric flow

m¢ - nondimensional compressor mass flow rate

AP - nondimensional plenum pressure rise

F - inverse function of nondimensional throttle pressure rise

D,,...h - partial derivative of function h with respect to the variables z,y,...

(-)' - denotes differentiation

2. Bifurcation Analysis of Stall Inception

A third-order lumped parameter model, in terms of nondimensional variables, for an
axial flow compression system has been introduced by Moore and Greitzer [5]. Using the

notation of [3], the model is

dA o [P
= as(71 Asin6)sin 0d6 2.
i Css(te + W Asin ) sin (2.1a)
. 27

dinc __Apy X [ C,i(he + W ASsin6)d6 (2.10)
dt 27 J,

dAP 1 .

DBL L e - FG,AP), (2.1¢)

where W, a > 0 are two constants, + is the control input, and is associated with the throttle
opening, and B is the nondimensional parameter of the same name introduced by Greitzer
[1], which is proportional to rotor speed. In the sequel, B > 0 and F is a strictly increasing

function with respect to each of the variables v and AP.
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Taking the compressor characteristic Cys to be a cubic function of m¢, and using
the squared amplitude A? (instead of A, say) as a state variable, Moore and Greitzer [5]
were able to explicitly evaluate the integrals appearing in (2.1), giving a more convenient
dynamic model. McCaughan [6] performed a bifurcation analysis of this model. One
conclusion of [6] is that a stationary bifurcation from the nominal equilibrium point occurs
as the throttle opening parameter v is varied. However, a similar analysis for the more
general case in which the axisymmetric compressor characteristic is not necessarily a cubic
function of ¢ has not been reported. In this section, we extend the study of [6] to the
case in which the axisymmetric compressor characteristic is taken to be a general smooth
function of mass flow rate. Note that in Section 4 we also employ a cubic axisymmetric
compressor characteristic, by way of illustration.

Suppose C,, is a smooth function of ¢, and solve for the equilibrium points of (2.1).
By Eq. (2.1a), it is easy to see that A = 0 always results in dA/dt = 0. However, there
may be equilibrium points of (2.1) for which A # 0. First let us consider equilibrium
points in the case A = 0. Denote such an equilibrium point, the location of which depends
on the parameter v, as °(y) = (0,m%(7), AP%(y))T. The values m%(y) and AP%(y)
should then satisfy the relationships m%, = F(y, AP%) and AP® = C,,(m.). Under the
assumption A = 0, one such equilibrium point z°(y) is referred to as the unstalled or
nominal equilibrium point for axial flow compression model (2.1). Note that this is the
normal operating point of the system, the location of which depends on the throttle control
parameter 7. In the following, we consider the stability of the unstalled equilibrium ()
as it depends on v. Viewing v as a bifurcation parameter, we study possible bifurcations
from z°(y) at parameter values for which stability is lost. These bifurcations result in new
equilibrium points of the model. At these new equilibria, A # 0, corresponding to stall
inception.

Let X = (z1,z2,23)7 denote the state variation of (2.1) near the unstalled equilibrium
point z°(y), where 21 = A, 23 = m¢ — m&(y) and z3 = AP — AP%y). The linearization
of (2.1) at z%(y) gives

dX

—d‘i— =L0X, ( .

V)
SV



V with

aCy(me(y)) 0 0
Ly = 0 C!.(m%) -1 i (2.3)
0 r  —152DapF(y, AP°)

From (2.2) and the Routh-Hurwitz stability criterion, we have the following stability
result.

Lemma 1. The equilibrium point 2°(y) is asymptotically stable for system (2.1) if
C!,(m% (7)) < 0, while it is unstable if C. (m&%(y)) > 0.

The foregoing result is useful in that it classifies the nominal equilibrium as being
stable or unstable depending on the value of the parameter . Since we are interested in the
bahavior of the compression system (2.1) for values of 4 for which the nominal equilibrium
is unstable, we are led to study the behavior of (2.1) for values of v near the critical value
at which stability is first lost. An equilibrium point depending on a single parameter can
lose stability in one of several ways. One possibility is the actual disappearance of the
equilibrium in what is known as a saddle node bifurcation. This entails the merging of
the nominal equilibrium with another equilibrium as the parameter approaches a value
for which the system linearization becomes singular. Although this is the most typical
of the so-called statiiionary bifurcations, it is not the type encountered in this paper. In
this paper the nominal equilibrium is known to exist both prior to and subsequent to its
loss of stability, Two bifurcation mechanisms can occur under this circumstance. One
mechanism arises when a real eigenvalue goes from being negative to being positive as
the parameter is changed. In this case, the loss of stability coincides with an eigenvalue
passing through 0, i.e., crossing the imaginary axis at the origin. The second mechanism
occurs when a complex conjugate pair of simple eigenvalues crosses the imaginary axis.
Although both scenarios result in loss of stability of the nominal equilibrium, they have
very different implications as to system behavior once local stability is lost. In the former
case, a stationary bifurcation generally occurs, resulting in the appearance of at least one
new equilibrium point from the nominal one at criticality. In the latter case, an Andronov-
Hopf bifurcation occurs, giving rise to small-amplitude periodic solutions near the nominal

equilibrium.



The Jacobian matrix of (2.1) at the nominal equilibrium point is given by Lg as in
(2.3). For this matrix to have a pair of pure imaginary eigenvalues, it is not difficult to
see that C! (% (y)) must be positive. (This is seen by examining the trace of the lower
right 2 x 2 submatrix of (2.3).) However, if this were the case then the matrix Ly would
have aC!, (% (7)) as a positive real eigenvalue, and the equilibrium would therefore be
unstable. This means that a stationary bifurcation must occur before an Andronov-Hopf
bifurcation for the nominal equilibrium z° of the model (2.1). In the remainder of this
paper, therefore, we focus on stationary bifurcations from z° and their stabilization.

From (2.3), the linearization of (2.1) has one zero eigenvalue and two stable eigen-
values when C!,(m%(v)) = 0. This implies a stationary bifurcation may occur from the
equilibrium point z° for some value of 4°. To analyze the bifurcation behavior of the
model, we employ a result from bifurcation analysis recalled in Appendix A. This result
allows us to derive conditions for existence and stability of a bifurcation from the nominal
equilibrium.

Let 2° be the equilibrium point at which C!,(m(y)) = 0 for some v = ~°. The

Taylor series expansion of (2.1) at the point (2%, 4°) is given by

dX
dt ——LOX’+QO(X)‘X)+C'( a*YaX)+(7—7O)L14Y+"' (24)

Here Ly is as in (2.3) and

aCéZ(m%)wlw
Qu(X,X) = | dCm (s (Weat + 23) (25)
SB2D(AP)2F(7 APO)-’L"S
%C"'(Thc)(wﬂ + 43"112)
Co(X, X, X) = C'“(mc)( VVlea,g + ¢a3) (2.6)
24B2D(AP)3F('Y APO)Q’?g
a¢IC;’3(moc) 0 0
L, = 0 $1CY () 0 , (2.7)
0 0 i
where
¢1 =DyF(7°,AP°) and ¢, = Dap,F(7°,AP°). (2.8)
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Set [ = (1,0,0) and r = [T the left and right eigenvectors, respectively, corresponding
to the zero eigenvalue of Ly. The dynamical behavior of (2.1) with respect to the variation
of ¥ near the unstalled point 20 is analyzed next.

To check the transversality condition [Lir # 0 (see Appendix A), we compute

lLlr :a¢1C;ls(m%). (29)

The bifurcation stability coefficients are calculated, using Eqs. (A.3)-(A.4), as
ﬂl = lQo(T, T') =0 (210)

and

B2 = 21{2Qo(r, ) + Co(r,r,7)}

_on2
T4

{2DapF(7°, AP®)(CY(rg))” + Cislrie)}. (2.11)

The next result follows readily from Lemma A.1 and the discussions above. The term
“pitchfork bifurcation” used in the theorem statement refers to a situation in which two
new equilibrium points emerge from a given one, and both occur locally on the same side
of criticality (i.e., either for 4 > 7o or for v < 79). It is important to note that the stability
characteristics of the bifurcated equilibria determine whether or not hysteresis and jump

phenomena result from the bifurcation.

Theorem 1. Suppose CY,(1h%) # 0 and that F is strictly increasing in each of its variables.
Suppose also that the stability coefficient G2 given in (2.11) is nonzero. Then the system
(2.1) exhibits a pitchfork bifurcation with respect to small variations of v at the point
(2%,4%) where C!,(m%) = 0. Moreover, if 8 < 0 (resp. 2 > 0) the local bifurcated
solutions near z° will be asymptotically stable (resp. unstable).

Note that the formula (2.11) shows that the stability of bifurcated solutions is influ-
enced by the derivatives of the axisymmetric compressor characteristic at the bifurcation
point. Theorem 1 quantifies the local dependence of post-stall behavior of the compression
system on the axisymmetric compressor characteristic (i.e., on the function C,). Bifurca-
tion diagrams for an axial flow compression system with a particular form for C; 1s given

in Section 4.



3. Control of Stall Inception

From Lemma 1, the unstalled equilibrium point becomes unstable after the parameter
7 passes through the critical value v°. The point (2°,4Y) is therefore called the stall point.
Moreover, according to Theorem 1 the local bifurcated solutions near the stall point might
not be stable. In this case the bifurcation is said to be subcritical. If such a condition
occurs, the compression system may exhibit a jump from the stable nominal equilibrium
when the parameter v crosses the critical value v°. This results in a hysteresis loop in the
dynamics of the system with respect to the parameter v near the stall point. An example

of such behavior will be given in Section 4.

In this section, we seek feedback control laws governing the throttle setting near the
stall point which prevent the occurrence of this hysteresis or jump behavior. The control
design begins by observing that jump behavior occurs because there is no nearby stable
equilibrium after the nominal equilibrium loses stability. A small-energy throttle control
is applied to the system, which is equivalent to replacing the throttle parameter v in
(2.1) by v + u where u is a control signal which is of small-amplitude near the nominal
equilibrium. By examining the Jacobian matrix Ly of the system as given in Eq. (2.3), we
find that throttle control cannot affect the system eigenvalue that passes through zero as
~ varies through the critical value 4°. (This is simply the (1,1)-element of Ly, due to the
block triangular structure of Ly.) Given these circumstances, we seek nonlinear feedbacks
which transform the subcritical bifurcation at v° into a supercritical bifurcation, i.e., to
give rise to stable equilibrium points locally. These equilibrium points serve as alternative

steady-states, so that a jump to a distant equilibrium will no longer occur.

Note that such a control law, although obtained through local analysis, mitigates an
undesirable global effect, namely hysteresis. As in Section 2, denote by 4° the critical
value of the throttle control parameter at which stability of is first lost. the design a
control law ensuring that the local bifurcated solutions near the stall point are stable.
An important consequence of this is that the controlled system will not exhibit jump or

hysteresis phenomena near the nominal equilibrium.

Denote the stall point by (z%,+°), and let v := ¥ + u, where u is the control input.
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Then we can rewrite system (2.1) as the nonlinear control system

dA o [*7
—_— = Clss(r W Asin 0) sin 6d6 3.1
— WW/O (me + sin ) sin (3.1a)
. 27

d:l”_tc — _ AP+ -2}; Cyo(iine + W Asin 6)d6 (3.18)

0
dAP 1 .
— =Z§—2—{mC—F(7°+u,AP)}. (3.1c)

In this section these equations and their control are considered without specifying param-
eter values or the form of the steady-state axisymmetric compressor and throttle charac-
teristics. In Section 4 an example is given where these are specified.

It is observed from (3.1a) that A = 0 is an invariant submanifold of (3.1) regardless
of the choice of control input u, implying that (3.1) is uncontrollable. Moreover, it is not
difficult to check that system (3.1) possesses an uncontrollable zero eigenvalue at the stall
point. This means that we cannot extend the stable region of of the nominal equilibrium
point for a broader range of values of the parameter v by using a linear state feedback.

Next, we design a control law ensuring that the local bifurcated solutions near the stall
point are stable. An important consequence of this is that the controlled system will not
exhibit jump or hysteresis phenomena near the nominal equilibrium. To make the selection
of a control law tractable and systematic, we begin by restricting the control to belong to
a parametrized family of smooth feedback control laws. Formulas (A.3) and (A.4) show
that, in general, only terms up to cubic order in the state affect the values of the stability
coeflicients 3; and f3; at a stationary bifurcation point. This leads us to limit the search
to control laws containing only linear and quadratic terms in the state. Next, we notice
that linear terms in the feedback control might affect eigenvalues and eigenvectors of the
system linearization at the bifurcation point. (However, recall the zero eigenvalue, being
uncontrollable, would be unaffected by linear feedback terms.) The analysis would become
cumbersome, however, if eigenvalues and eigenvectors were not fixed, as can be seen from
an examination of formulas (A.3) and (A.4). Thus, we are led to seek a feedback control

law of the following form:
u=q A’ + pA(mc —mE) + g AAP — AP%) + ¢4(1hc — m)?
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+ gs(mc — mS)(AP — AP%) 4 ¢s(AP — AP%)% (3.2)

where the ¢; are constants. We seek values of the control gains ¢; such that, for system

(3.1) with u given by (3.2), B2 at the equilibrium z° for v = 7° will be rendered negative.

Denote by f7 and (5 the two stability coefficients of the controlled model (3.1) at

z° for for v = 4.

Formulas (A.3) and (A.4) are also valid for the controlled system.
Using these formulas, it is straightforward to express 3 and 5 in terms of ;1 and f3;, the
stability coefficients of the uncontrolled version of (3.1). Indeed, we find that 8} = 8; =0
and 85 = B2 + 2aq1 D, F(v°, AP®)C},(m%). Note that 8f = 0 regardless of the choice of
control gains. By Lemma A.1 in the Appendix, this implies that if 85 # 0, then a pitchfork
bifurcation must also occur in the controlled system. From the expression above for j;,
it is apparent that only the quadratic component of the feedback, ¢; A%, contributes to

the determination of the sign of 8;. Because of this, we obtain a very simple quadratic

feedback controller for the system (3.1), as summarized in the next theorem.

Theorem 2. Let C¥ () # 0 at the point (2°,7°). Then the stationary bifurcation of
(3.1) at (2°,4°) can be rendered a supercritical pitchfork bifurcation by a purely quadratic
feedback control of the form u = ¢; A%

4. Ilustrative Example

In the foregoing, we have considered the analysis and control of stationary bifurcation
and hysteresis for the third-order Moore-Greitzer model [5]. In this section we illustrate
the results for a particular compression system model employing, for simplicity, a cubic
axisymmetric compressor characteristic. As noted in Section 2, the results of this paper
are applicable to compression system models with non-cubic compressor characteristics as

well.

In this section we employ the numerical continuation and bifurcation analysis package
AUTO [8] to illustrate the compression system behavior for the chosen example. The
behavior of both the uncontrolled and controlled systems is considered. The compression
system example considered next involves the cubic axisymmetric compressor characteristic

given in (4.1) below, as well as the throttle characteristic given in (4.2).
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Let the axisymmetric compressor characteristic Cys(mmc) be

Cos(1c) =1.56 + 1.5(r¢ — 1) — 0.5(rn¢ — 1)°. (4.1)

Let F' (the inverse of the throttle pressure rise map) be given by

F(y,AP) =yVAP. (4.2)

Choose parameter values « = 0.4114, W = 1.0 and B = 0.5.

It is easy to check that there are two values of v for which the compression system
(2.1) has an equilibrium point (4, m¢, AP) with C!, (m¢) = 0. Either using the analytical
results of the preceding sections, or numerically, we can show that these are pitchfork
bifurcations. One pitchfork bifurcation occurs for a large value of pressure rise AP, while
the other occurs for small pressure rise. The former pitchfork bifurcation is found to be
subcritical (i.e., it gives rise to unstable equilibria) while the latter is supercritical (i.e., it
gives rise to stable equilibria). These observations are depicted in Figure 1. Solid lines in
this figure indicate stable equilibria, while dotted lines indicate unstable equilibria. From
this figure it is clear that the pitchfork bifurcation of most relevance in a practical setting,
i.e., the one occurring for a larger AP, is subcritical. Thus hysteresis is expected to occur
in the compression system, and a hysteresis loop is discernible in Figure 1.

Each of the graphs in Figure 1 shows the effects of the pitchfork bifurcations occurring
in the system on a system state yariable. Figure 1(c¢) is perhaps the most clear. From this
figure, we see that a subcritical pitchfork bifurcation occurs from the nominal equilibrium
as 7 is decreased. A second, supercritical pitchfork bifurcation occurs at v = 0. Note
that Figures 1(a, b, d) also reflect these pitchfork bifurcations, but symmetry in the other
state variables results in their being double-valued for the bifurcated solution. Hence these
figures seem to indicate only one bifurcated equilibrium, rather than two.

Now, following Theorem 2 of Section 3, we choose the control input u = 1.04%, which
is qﬁadratic in the asymmetric flow amplitude A. In Figure 2, bifurcation diagrams for the
system with this control law in effect are given. From this figure, it is clear that hysteresis
loop of the stable system equilibria of Figure 1 has been eliminated. The system will tend

to operate at the stabilized bifurcated equilibria after stall occurs.
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5. Conclusions

The control of axial flow compressors at the initiation of stall has been studied using
the Moore-Greitzer model. The state variables of this model are pressure rise, mass flow
rate, and the first harmonic of the asymmetric component of the flow. It was found that
control based solely on the system linearization could not ensure stable operation past the
stall point, due to uncontrollability of the system eigenvalue which causes instability as
the throttle parameter is varied. The bifurcation behavior of the model was studied and
used as a basis for nonlinear control design. A simple bifurcation analysis showed that
quadratic feedback of the first harmonic of the asymmetric component of the flow could

locally stabilize the bifurcation, and hence eliminate the global hysteresis loop.
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Appendix A. Bifurcation Stability Coefficients

In this appendix we recall a bifurcation-theoretic result on stability and bifurcation
of one-parameter families of nonlinear systems.

Consider a one-parameter family of autonomous systems

T = f(z,p), (A.1)

where 2 € IR", u € IR and the vector field f is assumed to be sufficiently smooth in « and
(. Suppose that (A.1) possesses a nominal equilibrium point that depends smoothly on u
for all values of u in some interval of interest. (This means we are considering bifurcation
from known solutions [14].) For simplicity of notation, suppose f(0,p) = 0 for all pu.
Let the Jacobian matrix D, f(0,0) possess a simple zero eigenvalue with all remaining
eigenvalues in the open left half complex plane. The parameter u is referred to as the
bifurcation purameter.

The formulas and results given below remain valid if the nominal equilibrium is not
the origin and the critical parameter value is not ¢ = 0; simply evaluate all quantities
(including partial derivatives) at the adjusted equilibrium and parameter value.

The equilibrium points of system (A.1) are the solutions of f(z,u) = 0, and thus
depend on the value of the parameter p. With the assumption that D, f(0,0) is singular,
system (A.1) may possess several equilibrium paths z(u) emanating from the origin for
p near 0. Such a situation is known as a stationary {or static) bifurcation, and the point
z =0, p = 0 is a bifurcation point. The solutions z(p) # 0 of (A.1) emanating from the
origin for u near 0 are called bifurcated solutions.

Following the notation of {7], we write the Taylor series expansion of (A.1) at (0,0) as
¢ = f(z,pn)
= Loz + QQ(CC,CL‘) -+ Co(l‘,l',(l:) o+ e
+p(Liz 4+ Qi(zyz) + )+ pP (Lo + )+ - -, (4.2)
where Qi(z,z) := ’é'!‘]m‘D“kz,;f(ilf, 1), Cr(z, 2 2) = 55 Dyr oo f(, 1), etc., are the quadratic

terms, cubic terms, etc., of f(z, ). Here, the quadratic and high order terms in the ex-

pansion are written as symmetric forms. For instance, Qi(z,y) = Qi(y,x) for each £ > 0
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and any x,y € IR". Moreover, in (A.2) Ly := %D”kxf(o,()) for £ > 1 and the Jacobian
matrix Ly is assumed to have only a simple zero eigenvalue with the remaining eigenvalues
stable.

Denote by I and r the left (row) and right (column) eigenvectors, respectively, of the
matrix Ly corresponding to the simple zero eigenvalue. Set the first component of r to

1 (possibly after a reordering of state variables) and choose the left eigenvector [ so that

Ir = 1. Denote
Bu == 1Qo(r,7) (A.3)
and
B2 := 21{2Qq(r,6) + Co(r,7,7)} (A.4)
where 6 is the unique solution to
Lob = = Qo(r,r), (A.5)
16 =0. (A.6)

We are now in a position to recall the following stability criterion for system (A.2).
This criterion applies only in the case 1 = 0, and is useful for studying pitchfork bifurca-
tion. Thus this result is sufficient for the present paper. If it happens that 8, # 0 then
another type of stationary bifurcation, a transcritical bifurcation, would be expected to
occur. For details, see [7].

Lemma A.l. Let the assumptibns above hold, and assume the transversality condition
ILyr # 0. Then (A.2) undergoes a stationary bifurcation from 2z =0 at p=0. If g1 =0
and f2 < 0, the bifurcated equilibrium points of (A.2) for g near 0 are asymptotically
stable. If, on the other hand, #; = 0 and £, > 0, then the bifurcated solutions of (A.2)
for p near 0 are unstable. In either case, the bifurcation is a pitchfork bifurcation, and the

bifurcated equilibria locally occur only for u(ILyr)/B2 < 0.
Figure Captions
Figure 1. Compression system open-loop operating points

Figure 2. Compression system closed-loop operating points
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