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Main tasks of our research include: (1) exploring optimum growth conditions for 

PLD deposition of self-assembled nanophase PbTiO3-CoFe2O4 films with different 

compositions and orientations; (2) analyzing morphologies and nanostructures of the 

two-phase films to clarify relative effects of elastic energy and interface energy on the 

self-assembled film formation; (3) investigating stress state and relaxation of stresses 

arising as a result of a paraelectric-ferroelectric transformation in PbTiO3;  (4) 

exploring ferroelectric state in the confined PbTiO3 nanophase in the films with {110} 

and {111} orientations. 

        Principal results of the research are: (1). Optimum PLD growth conditions to 

obtain high quality films with distinct separation of epitaxial PbTiO3 and CoFe2O4 

nanophases are found after systematic studies. (2). Nano-facets along {111} plane 

between PbTiO3 and CoFe2O4 phases are found to be generic in addition to 



  

orientation dependent macroscopic interfaces. We have concluded that accounting of 

interface and surface energies is important for description of nano-faceting of 

interfaces and the near substrate zone of the films while the two-phase morphologies 

are determined by the elastic interactions; (3). The investigation of the stress state of 

the {001} film arising due to paraelectric-ferroelectric transition of PbTiO3 have 

discovered the polydomain nanostructure of the ferroelectric phase with ~50-60% c-

domains. Piezoresponse of PbTiO3 should be reduced dramatically by combined 

effects of dissolution of Fe in PbTiO3, a domains and constraints. The relative large 

dzz from previous research must contain large extrinsic contribution due to movement 

of nano-domain walls. (4). Switching spectroscopy piezoresponse force microscopy 

(SS-PFM) is used to characterize local piezo- ferroelectric property of confined 

ferroelectrics in {110} and {111} films with composition of 1/3PbTiO3-2/3CoFe2O4. 

It is proved that PbTiO3 nano-inclusions exhibit ferroelectricity in both films. 180o 

domain switching is observed under measurement condition (<10V) for the {110} 

films but not for the {111} film. Quantitatively, both films yield a piezoresponse of 

about 15% compared to bulk single crystal PbTiO3. It is a reasonable value of 

intrinsic piezoeffect taking into account mechanical and electrical constraints 

(depolarizing field) as well as the effect of Fe dissolution and possible in-plane 

domains. 
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Chapter 1. Introduction 

Multiferroic materials which exhibit coupled ferromagnetic and ferroelectric 

properties have attracted tremendous interests since magnetoelectric effect was 

discovered in Cr2O3 [1]. Magnetoelectricity (ME) is defined as the induction of 

magnetization by an electrical field while electromagnetism (EH) refers to the 

induction of an electrical field due to changing of magnetic field. Bulk laminate 

magnetoelectric composites that consist of piezoelectric and magnetostrictive layers 

exhibit ME/EH effect that are orders of magnitude larger than those exhibited by the 

best single-phase multiferroic materials [2,3,4,5,6,7,8]. However, composite layered 

multiferroics have great deficiencies in a thin film configuration because the ME/EH 

response is effectively suppressed by the strong substrate clamping. The clamping 

effect in thin film heterostructures can be minimized if the interfaces between the two 

constituent phases are perpendicular to the film surface. In the recent few years, the 

advances in thin film deposition technique enable growth of artificial structures that 

are inaccessible by traditional methods [ 9 ]. Vertically separated two-phase 

multiferroic nanostructure were successfully fabricated using pulsed laser deposition 

(PLD) for BaTiO3-CoFe2O4 system in 2004 [10]. Other two-phase multiferroic 

systems (Fe2O3-BiFeO3, BiFeO3-CoFe2O4, PbTiO3-CoFe2O4) were grown most 

recently using PLD [11,12,13,14]. Other than grown by PLD, multiferroic films have 

been prepared using sol-gel technique [15]. Composition spreads along in-plane 

direction were used to fabricate structure with tunable multiferroic properties in [16]. 

This study is a continuation of the research on design, fabrication and 
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Main tasks of our research include: (1) exploring optimum growth conditions for 

PLD deposition of self-assembled nanophase PbTiO3-CoFe2O4 films with different 

compositions and orientations; (2) analyzing morphologies and nanostructures of the 

two-phase films to clarify relative effects of elastic energy and interface energy on the 

self-assembled film formation; (3) investigating stress state and relaxation of stresses 

arising as a result of a paraelectric-ferroelectric transformation in PbTiO3;  (4) 

exploring ferroelectric state in the confined PbTiO3 nanophase in the films with {110} 

and {111} orientations. 

        Principal results of the research are: (1). Optimum PLD growth conditions to 

obtain high quality films with distinct separation of epitaxial PbTiO3 and CoFe2O4 

nanophases are found after systematic studies. (2). Nano-facets along {111} plane 

between PbTiO3 and CoFe2O4 phases are found to be generic in addition to 



  

orientation dependent macroscopic interfaces. We have concluded that accounting of 

interface and surface energies is important for description of nano-faceting of 

interfaces and the near substrate zone of the films while the two-phase morphologies 

are determined by the elastic interactions; (3). The investigation of the stress state of 

the {001} film arising due to paraelectric-ferroelectric transition of PbTiO3 have 

discovered the polydomain nanostructure of the ferroelectric phase with ~50-60% c-

domains. Piezoresponse of PbTiO3 should be reduced dramatically by combined 

effects of dissolution of Fe in PbTiO3, a domains and constraints. The relative large 

dzz from previous research must contain large extrinsic contribution due to movement 

of nano-domain walls. (4). Switching spectroscopy piezoresponse force microscopy 

(SS-PFM) is used to characterize local piezo- ferroelectric property of confined 

ferroelectrics in {110} and {111} films with composition of 1/3PbTiO3-2/3CoFe2O4. 

It is proved that PbTiO3 nano-inclusions exhibit ferroelectricity in both films. 180o 

domain switching is observed under measurement condition (<10V) for the {110} 

films but not for the {111} film. Quantitatively, both films yield a piezoresponse of 

about 15% compared to bulk single crystal PbTiO3. It is a reasonable value of 

intrinsic piezoeffect taking into account mechanical and electrical constraints 

(depolarizing field) as well as the effect of Fe dissolution and possible in-plane 

domains. 
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characterization of structures and properties of self-assembled nanostructures in 

PbTiO3-CoFe2O4 films. PbTiO3-CoFe2O4 system has been chosen due to a large 

spontaneous polarization with a large spontaneous strain of PbTiO3 [17] and a 

significant magnetostriction of CoFe2O4 [18]. 

Growth of self-assembled two-phase films is attractive because it potentially 

capable to produce controlled patterned nanostructures which satisfy the demands of 

high density device units. Compared to self-assembling, the conventional lithography 

fabrication method of patterns is very expensive and complicated when the unit size 

scales down to nanometers [19]. Self-assembling growth technique using PLD is an 

experimentally simple one-step process. However, due to complexity of the PLD 

process, there is no theoretical model which realistically describes growth mechanism 

for a two-phase film. Therefore, a systematic experimental study should be conducted 

to find optimum conditions for a growth of self-assembled nanostructure with distinct 

separation of the phases using PLD. 

Despite the lack of theoretical model for mechanism of nanostructure formation, 

the thermodynamic approach appears to be effective to describe and predict the 

morphology of a final structure. The thermodynamic theory taking into account the 

long range elastic interaction between nanophases and the phase field modeling based 

on this theory could successfully predict the dependence of xPbTiO3-(1-x)CoFe2O4 

film morphologies on the substrate orientation[20,21]. However, this modeling which 

neglects the anisotropy of interfacial energy can not explain some observed features 

of the self-assembled nanostructure, particularly nano-faceting of interfaces. Other 
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study attempt to explain some peculiarities of the film structure taking into account 

only anisotropy of surface energies of the constituent phases and the substrate [22,12]. 

However, these studies can not explain entire spectrum of observed morphologies. 

Therefore, more detail studies of film structures are necessary to clarify effects of 

elastic energies and interface energies on the morphologies and interface 

nanostructures. It is important for the improvement of theoretical modeling for design 

multiferroic films with controlled structures. 

Internal stress in 3D epitaxial PbTiO3-CoFe2O4 films is important both for 

formation of its nanostructure as well as for the magnetoelectric properties. While due 

to the special nanostructure of interfaces included interface dislocations, the internal 

stress is effectively relaxed at relatively high temperatures between growth 

temperature and Curie temperature of PbTiO3. However, the large stresses should 

arise again at paraelectric-ferroelectric transformation of PbTiO3. Taking into account 

the large spontaneous strain of PbTiO3, its accommodation in the constrained phases 

is critical for mechanical and physical properties of the films. Therefore, the 

investigation of this stress state and its relaxation should be a necessary element of 

this study.  

    As individual piezoelectric and/or ferroelectric nanopillars have the potential 

applications towards high density electronic devices, strong interests are stirred 

examining local properties of individual ferroelectric/piezoelectric pillars/rods [23,24, 

25]. In {110}/{111} oriented films of 1/3PbTiO3-2/3CoFe2O4 composition, PbTiO3 

forms nanoplatelets/nanorods embedded in CoFe2O4 matrix. It makes it possible to 



 4 

obtain piezo-/ferroelectric properties of confined single PbTiO3 inclusions in 

self-assembled films. A newly developed technique, switching spectroscopy 

piezoresponse force microscopy (SS-PFM), should be used for local ferroelectric 

property characterization [26].  

    Thus, the main tasks of this research are: 

1. Exploring optimum growth conditions for PLD deposition of self-assembled 

nanophase PbTiO3-CoFe2O4 films with different compositions and 

orientations. 

2. Analyzing the morphology and nanostructure of the two-phase films to clarify 

relative effects of elastic energy and interface energy on the film formation of 

self-assembled film nanostructures. 

3. Investigating a stress state and the relaxation of stresses arising as a result of a 

paraelectric-ferroelectric transformation in PbTiO3. 

4. Exploring ferroelectric state in the confined PbTiO3 nanophases in the films 

with {110} and {111} orientations. 
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Chapter 2 Thermodynamic Aspects of Epitaxial 

Self-Assembled Nanostructures 

2.1 Introduction 

    Comprehensive theoretical modeling of self-assembled nanostructure should take 

into account details of mechanism and kinetics of several processes leading to the 

formation of a two-phase epitaxial film. There are many works devoted to modeling 

of spinodal decomposition in epitaxial films where the kinetics of structure formation 

is determined by surface and volume diffusion [27,28]. There are also theoretical 

works considering phase separation during co-deposition of different phases [29]. 

However, there are no theoretical modeling which enables to describe adequately the 

formation of a multiphase film during PLD deposition due to complexity of this 

process including laser-target interaction, materials transport to the substrate, its 

interaction with substrate, nucleation and growth. 

    At the same time, if the deposition is not very fast, final two-phase structure may 

be close to equilibrium and can be described using thermodynamic approach. This 

approach has been successfully applied to analysis of transversely modulated 

structures [10] and allows one to design film with controlled morphology by changing 

substrate orientations [20,21].  The fundamental principle of this approach is 

following: in nano-scale multiphase systems the trend to equilibrium results in 

establishing epitaxial relations between phases and consequently partial 

transformation of interface energy into energy of epitaxial stress. Thus, the individual 
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nanophases act as elastic domains, which self-assemble to minimize the long-range 

elastic fields in the film. The resulting phase architectures are similar to polydomain 

heterostructures arising at phase transitions in single-phase epitaxial films [30,31]. Then, 

the final equilibrium two-phase structures corresponding to the minimum of free 

energy including elastic energy and energy of interfaces can be modeled as a result of a 

virtual phase transformation that mimics evolution of an initially uniform state to a final 

equilibrium two-phase structure. The phase field modeling of this transformation 

serves as a computational tool for design of equilibrium two-phase nanostructure. The 

validity of this approach has been demonstrated through successful prediction of effect 

of film orientation on its morphology [20].  It has been shown that variation of 

substrate orientation is an effective way of controlling the phase-architectures in 

self-assembled composite nanostructures.  

    The different thermodynamic approach on self-assembled nanostructure 

formation has been proposed assuming that the formation of the nanostructure was 

attributed entirely to the distinct surface energy anisotropies of the composite phases 

[22,12]. It has presented explanation for some structure characteristics of 

perovskite-spinel films. 

    The existent thermodynamic approaches to interpret nanostructure formation in 

two-phase perovskite-spinel film emphasize two different thermodynamic 

contributions: elastic energy and surface/interface energy. They are rather 

complementary than competitive and should be combined to develop comprehensive 

thermodynamic theory of this phenomenon and to improve modeling for design of 
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multiferroic films with controlled structure. 

2.2 Elastic Energy vs. Surface Energy Anisotropy 

2.2.1 Elastic Energy Approach 

    The phase field modeling of PbTiO3-CoFe2O4 nanostructural films is based on 

the following physical arguments illustrated in fig.2.1. 

 

 

Figure 2.1 Schematic drawings of (a)–(b) a coherent two-phase structure on a substrate, (c)–(d) 

semicoherent structure with the interphase boundaries partially relaxed along the normal to 

the substrate, (e)–(f) semicoherent structure with a partially relaxed film/substrate interface. 

[21]. 

 

Elastic interactions arise in multiphase nanostructures due to epitaxy, resulting in 

formation of coherent or semicoherent interphase boundaries and film/substrate 

interfaces. The stress state in the coherent multiphase film/substrate system (fig.2.1a) 

can be described using the self-strains of the component phases, as determined from 
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the differences in the lattice parameters of the undistorted phases and a substrate, the 

latter being used as a reference state. A coherent two-phase nanostructure consisting 

of PbTiO3 (a1=3.96 Å) and CoFe2O4 (a2=8.38 Å/2=4.19 Å) on a SrTiO3 (as=3.95 Å) 

substrate can be described by a distorted cubic lattice (Figs. 1a and 1b). Since both 

phases are cubic at the growth temperature, the self-strains correspond to a pure 

dilatation, ε1=(a1-as)/as=0.0025 and ε2=(a2-as)/as=0.061. Equilibrium nanostructures 

may consist of coherent phases (fig.2.1a), however, the nanostructures grown 

experimentally are semicoherent and feature misfit dislocations (figs. 2.1c–2.1f). 

Therefore, the strain relaxation along the interfaces (both interphase boundaries and 

film/substrate interface) needs to be considered. The relaxation along the interphase 

boundaries occurs during deposition preferentially in a direction normal to the 

substrate (Figs. 2.1c and 2.1d), since the relaxation parallel to the substrate is limited 

by the small lateral scale of the component phases (typically <50 nm). In such 

partially-relaxed systems, the difference between the self-strains of the phases in a 

film acquires a tetragonal symmetry: 

0

1 0 0
0 1 0
0 0

ε ε
χ

 
 ∆ =  
 
 

 

where ε0= ε−ε2, χ<1 is a relaxation parameter. The final film thicknesses (>200 nm) 

typically exceed the critical values needed for formation of misfit dislocations so that 

the film/substrate interface becomes semicoherent (Figs. 2.1e and 2.1f) which results 

in the relaxation of the average stresses in the film. This relaxation can be described 

by an effective change in the substrate lattice parameter, )1( baa ms
eff
s ρ−= , where ρm 



 9 

is the misfit dislocation density and b is the dislocation Burgers vector [18,19].  

    Near equilibrium, the arrangement of phases, their morphologies, and the 

relaxation parameters of the interfaces ( eff
sa,χ ) can be found by minimizing the sum 

of the elastic and interfacial energies for a given phase fraction. 

    A 3D phase-field model described the nanostructures as a continuous field of the 

order parameter η(r). The equilibrium arrangements of phases were determined by 

minimizing the free energy, F, which included both interfacial (isotropic) and elastic 

(anisotropic) energy terms, with respect to η. The equation ∂F/∂η(r)=0 was solved 

using a relaxation procedure that considered a virtual phase transformation from the 

unstable initial phase (η=0) to a two-phase state corresponding to the two minima of 

the specific free energy f(η)= f0(η–η2)2, where η01=-1 and η02=1 and f0 is the specific 

free energy at η=0. The time evolution of the phase field of the order parameters, as 

described by the time dependent Landau–Ginzburg equation, was solved using the 

microelasticity approach [20,32 33]. 

    In fig.2.2, results of the phase field modeling are presented together with 

experimental data for {001}, {110} and {111} substrate orientations. The calculated 

morphologies correctly predict the effects of substrate orientations on the 

nanostructure architectures. In particular, even such nontrivial morphological changes 

as lamellar to labyrinth [Figs. 2.2b(left) and 2.2c(left)], with substrate orientation 

varying from (110) to (111), and labyrinth to rod [Fig. 2.2e(left),2.2f(left)], with the 

PbTiO3 fraction decreasing from 2/3 to 1/3, were reproduced. This strikingly 

consistent agreement between the experimental and calculated data, obtained despite 



 10

the assumption of thermodynamic equilibrium, provides strong support for the 

dominant role of elastic interphase interactions in defining the morphologies of the 

nanostructures. In particular, the modeling showed that the morphologies 

[figs.2.2a-2.2f (left)], are determined by the in-plane elastic anisotropy [fig.2.3] and as 

dictated by the substrate orientation.  

 

 

Fig.2.2 (a),(b) and (c) are phase field modeling predictions (left) and experimental TEM plan 

view images (right) for 2/3PbTiO3-1/3CoFe2O4 films; (d),(e) and (f) are phase field modeling 

predictions (left) and experimental TEM plan view images (right) for 1/3PbTiO3-2/3CoFe2O4 

films.  

 

 

Figure 2.3 Schematic drawing of differently oriented cubic substrates indicating their distinct 

in-plane anisotropy 
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    According to the simulations, the principal morphological differences for 

differently oriented substrates originate from the positive elastic anisotropy of 

spinel–perovskite films, which modifies the symmetry of the stress state as a function 

of orientation. For relatively large film thicknesses (>200 nm), the strain along the 

film–substrate interface was relaxed completely so that the substrate had no effect on 

the phase morphologies other than providing the epitaxial orientation of the phases.  

    The significant discrepancy between this phase-field modeling and the 

experiment is a rod–matrix reversal with varying phase fractions in the films grown 

on (001) substrates, which was predicted by simulations but could not be observed 

experimentally (Figs. 2.2a and 2.2d). This discrepancy can be attributed, at least in 

part, to the inadequacy of the assumption of identical elastic moduli for the spinel and 

perovskite phases because, at equilibrium, a more rigid phase forms inclusions, 

whereas a softer phase becomes a matrix [34]. In particular, for the (100) substrate 

orientation, CoFe2O4 exhibits a substantially larger in-plane stiffness than PbTiO3 [34, 

35,36] and, therefore, is expected to form isolated pillars, regardless of phase fractions. 

However, this discrepancy can be addressed to peculiarity of structure formation at 

first stage of film growth which will be discussed later. 

    The phase field modeling neglecting anisotropy of interface energy can not 

reveal also nano-faceting structure. It should be mention that there are two special 

plane orientations of epitaxial films. One of them corresponds to the best atomic 

fitting between film and substrate. It usually lies along close-packed crystallographic 

plane and has minimum interface energy. The other epitaxial interface corresponds to 
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minimum elastic energy and may lies along even irrational plane. The orientation of 

this plane is determined by minimum misfit between lattices. These interfaces have 

complex nanostructure and nonuniform stress distribution near the interface. The 

distorted near interface layer determines the effective thickness of this macroscopic 

interface [37].  

2.2.2 Surface Energy Anisotropy Approach 

    The thermodynamic approach based on surface energy anisotropy [22] suggested 

that the different structures on different orientation substrates were merely a result of 

the different surface energies between phases and the substrate. To the nucleation and 

growth on a substrate, the equilibrium shape of a crystalline nucleus can be 

determined by the substrate surface energy, γ1, interface energy, γ12 and surface 

energy of the crystalline phase, γ2, based on the Winterbottom construction [22,38]. 

Applied the Winterbottom construction to perovskite-spinel nanostructure (fig.2.4) 

results in different morphologies as the surface energy relationships varies. 

    For perovskite-spinel system, the surface energy approach proposed nanopillars 

of spinel phase distributed in perovskite matrix on (001) substrate (fig.2.4c) and 

nanopillars of perovskite phase distributed in spinel matrix on (111) substrate 

(fig.2.4d). Both cases did not depend on the percentage of the phases. For (110) 

oriented substrate, both spinel and perovskite phases could have comparable wetting 

conditions with similar nucleation barriers, thus lead to a maze pattern in which 

neither phase formed matrix or pillars [12,22]. 
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Figure.2.4 Schematics of perovskite-spinel nanostructures on (001) and (111) substrate. (a) 

Demonstration of different surface energy relationships for different oriented substrates based on 

Winterbottom constructions. Blue blocks represent spinel component and grey blocks are 

perovskite component. (b) Shapes of equilibrium crystalline nucleus of a perovskite and a spinel. 

(c) spinel phase forms nanopillars embedded in a perovskite matrix on (001) substrate (d) 

Nanopillars of perovskite phase embedded in a spinel matrix on a (111) substrate [22]. 

 

    The (001) oriented xPbTiO3-(1-x)CoFe2O4 film morphologies (figs.2.2a and 2.2c) 

were predicted well by the surface energy approach. According to the Winterbottom 

construction, regardless of the phase fractions, the spinel phase forms pillars 

embedded in perovskite matrix (fig.2.4c). However, for CoFe2O4-BiFeO3 

nanostructures grown on a buffer CoFe2O4 layer on (001) MgO substrate, a lack of 

wetting for the CoFe2O4 phase on CoFe2O4 buffer layer was observed [22]. The lack 

of wetting for CoFe2O4 was contradicted to the surface energy approach as the energy 

of the homoepitaxial CoFe2O4/CoFe2O4 interface should be close to zero as opposed 

to the energy of the BiFeO3/CoFe2O4 interface. The surface energy approach also fails 
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to explain the morphological difference as observed for the xPbTiO3-(1-x)CoFe2O4 

nanostructures on (110) SrTiO3 substrate [figs.2.2b and 2.2e]. Clearly, CoFe2O4 does 

not “wet” the (110) substrate. From fig.2.2e, the non-wetting CoFe2O4 forms a 

continuous matrix and PbTiO3 grows as isolated pillars while it wets the (110) 

substrate.  

    Nevertheless, distinct interfacial configurations that produce an impression of the 

wetting/non-wetting behavior for the spinel and perovskite phases in the 

nanostructures grown on differently oriented substrates could influence the resulting 

phase architectures. However, proper analyses of these configurations necessitate 

consideration of all interfacial energies involved as well as the epitaxial strain energy.  

2.3 Conclusion 

    In spite of the lack of theoretical model of mechanism of nanostructure formation, 

the thermodynamic approach appears to be effective to describe and predict the 

morphology of final structure. The thermodynamic theory taking into account the long 

range elastic interaction between nanophases and the phase field modeling based on 

this theory could successfully predict the dependence of xPbTiO3-(1-x)CoFe2O4 film 

morphologies on substrate orientation. However, this modeling neglecting anisotropy 

of interface energy can not explain some experimental observed features of film 

nanostructure, particularly nano-faceting of interfaces. On the other side, there is a 

successful attempt to explain some peculiarities of the film structure taking into 

account only anisotropy of surface energies of constituent phases and substrate 

[12,22]. Therefore, more detail studies of film structure is necessary to clarify effects 
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of elastic energy and interface energy on morphology and interface nanostructures. It 

is important for the improvement of theoretical modeling for design multiferroic films 

with controlled structures. The existent thermodynamic approaches to interpret 

nanostructure formation in two-phase perovskite-spinel film emphasize two different 

thermodynamic contributions: elastic energy and surface/interface energy. They are 

rather complementary than competitive and should be combined to develop 

comprehensive thermodynamic theory of this phenomenon and to improve modeling 

for design of multiferroic films with controlled structure. 
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Chapter 3 Growth of Epitaxial Self-Assembled 

Nanostructures of xPbTiO3-(1-x)CoFe2O4 Using Pulsed 

Laser Deposition 

3.1. Introduction 

Pulsed laser deposition (PLD) is a very powerful technique for making thin films. 

It has drawn intense interests in the past 30 years [39,40]. Theoretically, PLD can be 

used to deposit films of any material due to high output power of the laser beam (can 

be larger than 108 W/cm2). Material processing using laser beams is always based on 

reactions taking place in the surface layer of the target material due to the interaction 

between the electromagnetic waves and the atoms and electrons. Typically, these 

reactions involve extensive heating and evaporation of the surface leading to 

consequent chemical or physical reactions in the surface, thus altering the structure of 

the material in some desired way, perhaps by initiating a chemical reaction between 

the target material and surrounding gas or liquid phase, or simply by removing and 

ablating the target material away.  

Though the theories of dynamics of laser-target interactions were studied before 

the PLD was employed in experiments [41,42,43] and many researches have been 

done discussing the effects of growth parameters, it is hard to give a complete and 

self-consistent model for PLD process because of its complexity. In addition, the 

studies have been done so far are mostly limited to single phase growth, condition for 

PLD deposition of two-phase film from a mixed compound target is left unknown. 

Thereby, it is worthwhile to experimentally study optimum conditions for PLD 
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growth of two-phase self-assembled nanostructures from a PbTiO3/CoFe2O4 mixed 

target. 

3.2. Experiment Setup 

 

 (a)   (b)  

Figure 3.1 (a) PLD system employed in our study. (b). schematic drawing of the laser and 

chamber system.  

 

CoFe2O4-PbTiO3 self-assembled films are fabricated from 

xPbTiO3–(1-x)CoFe2O4 (x=1/3,2/3) mixed targets using a KrF excimer laser system 

with a wavelength of 248nm, pulse duration of 20ns, adjustable repetition rate from 

1Hz to 20Hz and controllable system output laser energy from 160mj to 400mj. 

Figure 3.1a is a picture of the employed Neocera PLD system. Fig.3.1b schematically 

illustrates the geometrical arrangements of laser beam, target and substrates inside the 

vacuum chamber. 

Single crystal SrTiO3 is used as substrate because of small lattice mismatch and 

similar crystal structure with PbTiO3. Before loaded into the chamber, substrates are 

cleaned by orderly soaking them in chloroform, acetone and isopropanol under 
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ultrasonic agitation. Substrate is heated by thermal radiator after the PLD chamber has 

been vacuumed to below 10-5 Torr. Substrate temperature can be raised up to 8000C, 

which is the limit of our thermal radiator. Oxygen is introduced into the chamber after 

the substrate temperature has been stabilized to minimize the effects of outgas from 

the chamber. 

3.3. Effects of Growth Parameters 

3.3.1. Substrate Temperature 

    Based on experimental data from other researchers, Grovenor and Hentzell [44] 

found that for metallic film growth, when the substrate temperature (Ts) is less than 

0.3Tm (Tm is the melting point of the target material), it usually has a structure 

consisting of textured and fibrous grains and the macroscopic texture may contains 

many individual small grains as illustrated in figure 3.2. When 0.3Tm<Ts<0.5Tm, a 

uniform columnar grain structure is usually observed with an aspect ratio less than 1. 

When Ts>0.5Tm, the film structure changes to a uniform film with grains having an 

aspect ratio larger than 1 [44]. 

 

 

Figure 3.2 Schematic illustration of substrate temperature impact on metallic film structures. The 

longitudinal axis is Ts/Tm [44].  
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Table 3.1 is a list of temperatures used for epitaxial oxide film growth. It is found 

that the growth temperature is about 0.5Tm, which is similar to what Grovenor [44] 

observed for metallic uniform film growth temperatures.Usually, the ideal grow 

temperature has a range rather than a particular temperature, but it is found that the 

temperature range is centered at 0.5Tm.  

 

Table 3.1 Oxide film growth temperatures 

Materials Sub Ts/Tm 

CoFe2O4 MgO  873-1073k/1843k[50,51] 

LiNbO3 Al2O3  773k/1528k [45] 

SrTiO3 SrTiO3  1023k/2353k [46] 

 BaTiO3 MgO  1053k/1923k [47] 

 

For our film growth, because Pb is easy to lose at elevated temperatures, it is 

hard to keep the stoichiometric Pb/Ti ratio for temperatures around 721K 

[Tm(PbTiO3)=1443K]. Above 823K, PbO tends to decompose during the film 

formation; as a result, the ratio of Pb/Ti decreases rapidly as TiO2 is much more stable 

than PbO[48]. However, high growth temperature is desired for better crystallinity and 

self-assembly since the film pattern formation heavily relies on the diffusion during 

the growth. Essentially, it is a self-contradicting phenomenon to grow epitaxial 

self-assembled nanostructures with Pb involved. In order to compensate Pb loss 

during growth at temperatures higher than 823K, extra 10-15% mole fraction of PbO 
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was added to our PLD targets. 

In addition to the Pb loss problem, two-phase deposition itself has its own 

problem on growth temperature compared to single-phase growth. During single 

phase growth, there is usually a growth temperature range which does not cause 

distinct difference on film quality. For example, for pure single crystal PbTiO3 film 

prepared by PLD, growth temperature can be varied from 653K to 823K [48,49] 

without destroying film quality; for pure single crystal CoFe2O4 film growth by PLD, 

it was found that the film quality was kept almost the same from 873K to 1073K 

leaving all other conditions unaltered [50 ,51 ].From the others’ experiences on 

individual single crystal PbTiO3 film and CoFe2O4 film growth, there is no 

temperature which suits both PbTiO3 and CoFe2O4 simultaneously. However, as the 

extra amount of PbO can compensate Pb loss at high temperature, it is possible to find 

a temperature which suits both phases. According to the empirical 0.5Tm rule, Ts 

should be around 921K [52]. We chose 903K as a starting test temperature after taking 

into account the volatilization of Pb under high temperatures.  

Films of composition 1/3PbTiO3-1/3CoFe2O4 grown under various temperatures 

ranging from 863K to 923K with 20 degrees step size are listed in table 3.2 (for 

growth conditions used for film of composition 2/3PbTiO3-1/3CoFe2O4, please refer 

to appendix 1).   Fig.3.3a and 3.3b are SEM images from films with composition 

2/3PbTiO3-1/3CoFe2O4 grown at 883K and 903K respectively. Growth conditions 

other than temperature were kept same. Film quality (fig.3.3a and fig3.3b) is distinctly 

different though there is only 20 degrees difference in growth temperatures. 
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Table 3.2 Growth parameters and qualities of 2/3CoFe2O4-1/3PbTiO3 films 

Substrate Temp (K) 
Distance 

(cm) 

Laser fluence 

(J/cm2) 

Repetition 

rate(Hz) 

O2 

(mTorr) 
Pulses 

Film 

quality 

STO(100) 903 6.5 1.1 10 100 72000 No film 
STO(100) 863 6.5 1.1 10 100 48000 No film 
STO(110) 863 6.5 1.1 20 100 48000 No film 
STO(111) 903 6.5 1.1 20 100 48000 No film 
STO(111) 903 6.5 1.1 20 65 48000 Bad 
STO(111) 883 4.5 0.7 5 100 12000 Bad 
STO(111) 903 4.5 0.8 5 100 20000 Bad 
STO(100) 903 4.8 0.8 3 160 24000 Bad 
STO(111) 903 4.8 1.0 5 80 24000 Bad 
STO(111) 888 4.8 1.1 5 100 24000 Fair 
STO(111) 903 4.6 1.1 10 100 24000 Fair 
STO(111) 923 4.5 1.1 10 100 24000 Bad 
STO(111) 903 4.5 1.1 5 100 24000 Fair 
STO(111) 903 4.6 1 5 84 48000 Bad 
STO(110) 903 3.8 0.9 5 100 24000 Good 
STO(110) 903 3.7 1 5 100 24000 Good 
STO(111) 903 3.7 1 5 100 24000 Good 
STO(110) 903 3.7 1 5 100 24000 Good 
STO(111) 883 3.7 1 5 100 24000 Fair 
STO(111) 923 3.7 1 5 100 24000 Fair 
STO(111) 903 3.7 1 5 100 12000 Fair 
STO(111) 903 3.7 0.9 5 100 900 Good 
STO(111) 903 3.7 1 5 100 48000 Fair 
STO(111) 903 3.7 1.4 5 200 12000 Fair 

No film: no film on substrate is observed. 

Bad: Well organized self-assembled nanostructures is not observed (refer to fig.3.4a for films with 

structures fall in this category). 

Fair: Self-assembled nanostructure is observed together with defective features. For example, film 

shown in fig.3.4c. It has a self-assembled nanostructure, but the coarse matrix surface degrades 

film quality. 

Good: Clear self-assembled nanostructure with no distinct deficiencies (refer to fig.3.4b for films 

with structures fall in this category). 
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 (a)         (b)   

Fig.3.3. Films deposited on SrTiO3(001) substrates from a 2/3PbTiO3-1/3CoFe2O4 target with 

150mtorr oxygen pressure and 1.0J/cm2 laser fluence. Only growth temperatures are different. (a) 

883K. (b) 903K.  

 

(a)  (b)  (c)  

Fig.3.4 Films deposited on SrTiO3(111) from a 2/3CoFe2O4-1/3PbTiO3 target with 100mtorr 

oxygen pressure and 1J/cm2 power density. Only growth temperature is different. (a) 883K. (b) 

903K. (c) 923K 

 

    In fig.3.3a, very dense intertwined features are observed, while in fig 3.3b, there 

are clear features of two-phase separation. Fig.3.4a to 3.4c are SEM topography 

images for films with the other composition (2/3CoFe2O4-1/3PbTiO3). Film shown in 

fig 3.4a was grown at 883K, very dense PbTiO3 triangles are observed. As the growth 

temperature is increased by 20 degrees to 903K, the density of PbTiO3 triangles is 

decreased as demonstrated in fig 3.4b. Fig 3.4c shows clear isolated PbTiO3 triangles 
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from film grown at temperatures of 923K. Fig.3.4c demonstrates a PbTiO3 pattern 

with the best self-organization among all three samples (fig.3.4a to 3.4c); however, 

the CoFe2O4 matrix surface becomes rough under this growth condition. Despite the 

different fraction of phases in films shown in fig.3.3 and fig.3.4, same trend is 

observed: higher temperature helps in terms of self-organization. Quality of all films 

is very sensitive to variation of temperature. The optional growth temperature for our 

self-assembled structure is near the lower limit of CoFe2O4 range and higher limit of 

PbTiO3 range. That explains why the quality of the two-phase film is so much more 

sensitive than single phase growth to the temperature variations.  

If the growth temperature range of each individual phase has a wide overlap, 

such as BaTiO3-CoFe2O4 system, then the growth temperature for two-phase 

self-assembled structures can be expected to have a wide range. As it was reported for 

BaTiO3-CoFe2O4 system, the growth temperature can be varied from 1123K to 1223K 

without destroying self assembling features. However, the wide overlap does not 

mean that the film structures will be the same for films grown within this temperature 

range. Rather, the growth temperature within the overlap range still has clear effects 

on film structures. As observed, the size of isolated nanopillars and spacing between 

pillars changes along with the temperature though self-assembled structures are 

preserved. The size of pillars and spacing between pillars are controlled by kinetics 

factors. As it was suggested that self-assembled decomposition is controlled 

kinetically by surface diffusion according to equation [53]: 

          )(~ 2 ccvcD
t
c
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                                     (3.1) 
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where c is film composition and sD~  is surface interdiffusivity of the two phases. It is clear 

that the surface diffusivity has dramatic effects on the nanostructure. Because of the 

intrinsic difference on surface diffusivity for the two components, the structure is 

expected to be sensitive to the temperature change as the temperature influence on 

surface diffusivity of each component is different. The size and spacing dependence 

on temperature is unambiguously different from one-phase growth [54]. 

    Based on results from films grown at various growth temperatures, 903K is 

determined to be the most suitable PLD growth temperature for CoFe2O4-PbTiO3 

film. 

3.3.2. Laser Fluence, O2 Pressure and Target-Substrate Distance 

Laser fluence, oxygen pressure and target-substrate distance are connected to 

each other. Target-substrate distance is determined by the plasma plume size and the 

plume size changes along with change of laser fluence or oxygen pressure. After laser 

fluence or oxygen pressure has been adjusted, the target-substrate distance needs to be 

adjusted as well to accommodate the change of plume size. 

When a laser beam hits the target, if the laser fluence is higher than the threshold 

value, a Knudsen layer on the target surface will be generated due to high collision 

volume within nanoseconds. A luminous plume expansion will occur after the 

generation of Knudsen layer. The threshold energy density depends on material 

properties, such as mass density, heat capacity and reflectivity R to excimer laser 

irradiation. The actual energy on the target which causes the evaporation equals to the 

absorbed incident energy minus the losses by plasma absorption Ep and the 
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conduction losses Ec: 

(1-R)(E- Ep )-Ec=ΔXt[ρCpΔT+ΔH]                                     (3.2) 

where E is the incident laser energy, ρ is the mass density, ΔT is the change of target 

temperature, ΔH is the volume latent heat, ΔXt is the thickness of the target material 

evaporated per pulse, Cp is the heat capacity of target material. For most of the oxides, 

the energy threshold falls within a range from 0.1J/cm2 to 0.5J/cm2. For PNZT, the 

threshold is 0.5J/cm2 for incident laser beam with a 308nm wavelength, however, for 

high quality film growth, a higher power density is required [40,55,57,59,60]. Usually, 

a power density about 1.0J/cm2 or higher is desirable for stoichiometric growth 

because it helps overcome the target surface composition segregation during 

deposition. The increase of the surface area after formation of target surface structures 

lowers the power density. Higher power density at the initial stage can ensure the 

power density is enough for epitaxial growth during the whole growth process. 

However, too much power will bring more particulates to the film surface, which 

seriously jeopardizes film qualities. The power density for our experiments is around 

1J/cm2 in order to satisfy the needs for material transport process and at the same time 

keep the density of particulates on film surface within an acceptable level. 

If it is in vacuum, the plume generated by the laser will expand without changing 

its angular distribution and the intensity will reduce as it propagates. If ambient gas 

exists, in general, the ambient gas will confine the plume and slow down the 

propagation process, thus a stronger fluorescence and sharper boundary can be 

observed at the same time [56,57]. For our experiments, since it is an oxide target and 
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in order to avoid oxygen deficit and help maintain stoichiometric Pb/Ti ratio, all the 

depositions are run under oxygen environment instead of in vacuum. All the species 

generated by the laser in the plume are confined with a fluorescence edge and 

interacted with the oxygen before they reach the substrate. Since Pb is unreactive to 

oxygen, higher oxygen pressure helps keep the Pb/Ti ratio better in the film. However, 

the deposition rate will decease after the oxygen pressure is raised as a result of 

interaction between species and the oxygen molecules during plume expansion which 

will bring changes to film structures. If the deposition rate is too low, it can even 

suppress the self-assembling features. 

For single phase growth, there is a range of oxygen pressure which will not cause 

distinct changes to film qualities. PDn=Const is an empirical rule for the relationship 

between oxygen pressure and the target-substrate distance. P is oxygen pressure and 

D represents the target-substrate distance. n is a power to the distance, which depends 

on the particular system. Kim et al. [58] took n=2 and Castro-rodriguez et. al took n=3 

[59,60]. This relationship was drawn based on an optimal growth rate for the best 

quality film from single phase growth. For our experiments, films are grown from 

two-phase mixed targets and each of the two phases has quite different optimum 

growth conditions individually. Several oxygen pressures and target-substrate distance 

combinations are tested for both compositions as listed in table 3.1 and appendix.1. 

Each time, the target-substrate distance was adjusted to accommodate the plume size 

change after oxygen pressure was changed.  

Figure 3.5a and 3.5b are XRD spectrums for films with a composition of  
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 (a)            (b)  

Fig.3.5. XRD spectrums for 2/3PbTiO3-1/3CoFe2O4 films deposited on SrTiO3(100) substrate at 

temperature of 883K, 0.83 J/cm2 power density, 5Hz repetition rate. (a) Deposited under 134mtorr. 

(b) Deposited under 165mtorr. 

 

 

(a)    (b)   (c)  

(d)   (e)  (f)  

Figure 3.6 films deposited on SrTiO3(111) substrate with a composition of 1/3PbTiO3-2/3CoFe2O4 

under temperature of 903K, 1.0J/cm2 power density, 5Hz repetition rate. (a) (d) are XRD spectrum 

and SEM image from film deposited under 80mTorr oxygen pressure. (b) (e) are XRD spectrum 

and SEM image from film grown under 100mtorr oxygen pressure. (c) (f) are XRD spectrum and 

SEM image from film grown under 200mtorr oxygen pressure. 
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1/3CoFe2O4-2/3PbTiO3 on SrTiO3(001) substrates. One was grown under 134mTorr 

oxygen pressure (fig 3.5a), the other one was grown under 165mTorr oxygen pressure 

(fig.3.5b). Other growth parameters were kept the same for these two films. Two 

PbTiO3 peaks are observed in fig 3.5a and the peak at higher 2θ angle is strengthened 

as the oxygen pressure is raised from 134mTorr to 165mTorr. The two PbTiO3 peaks 

in fig 3.5a are PTO(002) and (200) respectively. Changing oxygen pressure results in 

volume fraction changes between these two types of domains. It can be seen from the 

XRD spectrum, 165mTorr oxygen pressure promotes growth of PbTiO3(200) which is 

undesired because it will degrade the polarization response in normal direction. 

Reduction of perovskite phase fraction was also observed in PLZST film after oxygen 

pressure was raised to over 125mTorr [61]. Stabilization of PbTiO3(200) under high 

oxygen pressure is possibly because high valence lead oxides (Pb3O4 and PbO2) are 

stable forms under high oxygen pressure and results in a distortion of the crystal 

structure [62].  

    The oxygen effect on structures is observed as well for films of the other 

composition (x=1/3) (fig.3.6)., PbTiO3(111) peaks are observed for x=1/3 films grown 

on SrTiO3(111) substrates (fig 3.6a,3.6b and 3.6c) under three different oxygen 

pressures. The relative ratio of PbTiO3(111) diffraction intensity against CoFe2O4(222) 

diffraction intensity increases as oxygen pressure  is increased from 80mTorr 

(fig.3.6a) to 100mTorr (fig.3.6b) and then further increased to 200mTorr (fig.3.6c). At 

the same time, film structures (fig.3.6d, 3.6e, 3.6f) are observed to change along with 

changes of oxygen pressure. Fig.3.6d shows dense PbTiO3 triangles with equal side 
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length of about 230nm for film grown under 80mTorr (fig.3.6d). After oxygen 

pressure was raised to 100mTorr, density of PbTiO3 triangles is decreased and the side 

length of the PbTiO3 triangles (~200nm) is slightly decreased as well (fig.3.6e). Film 

surface becomes rough and no self-assembled structures are observed after oxygen 

pressure was further increased to 200mTorr (fig.3.6f). It was also reported that crystal 

structures were deteriorated and surface became coarse due to excessive oxygen 

pressure [63,61].  

From what we have observed, the deposition of two-phase self-assembling films 

has a much more stringent requirement on oxygen pressure than one component 

growth and the PDn=Const law is not valid anymore. Considering quality of 

self-assembled structure and crystallinity, oxygen pressure of 100mTorr gives the best 

result out of films (listed in table3.1 and appendix.1) grown under various oxygen 

pressures and is used for all further growths for CoFe2O4-PbTiO3 films. 

It is desirable to have a wide adjustable range for target-substrate distance. 

However, the adjustable distance depends on other growth parameters as well as the 

design of the PLD system. For the commercial Neocera PLD system employed in our 

experiment, the designed adjustable target-substrate distance is from ~6cm to ~10cm. 

The lower limit of the distance is shortened to ~3.7cm after a home-made substrate 

holder is added to the system. The self-assembled nanostructure of best quality is 

found to form at a target-substrate distance of ~3.7cm. As 3.7cm is the lower end limit 

of the adjustable range, distance shorter than 3.7cm is not able to explore. 
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3.4 Intrinsic and Extrinsic Shortcomings of PLD System 

Target modification during deposition is a drawback associated with PLD growth. 

Target surface keeps being modified during growth and the plume shape changes as a 

result, thereby brings effects to film qualities. Nowadays, the only solution is to take 

out the target after deposition and reshape the surface on sandpapers. When the target 

is under irradiation, nothing can be done to the surface though the surface changes 

constantly along with the laser shots. 

Figure 3.7a, 3.7b and 3.7d are SEM images from the same target but different 

locations after irradiated by 12000 laser pulses with power density of 1.0 J/cm2. 

Fig.3.7a shows the target surface remains intact at the center as schematically 

demonstrated in fig.3.7c. Ripple surface structure is observed at adjacent areas to the 

intact center as a result of weak power densities. Figure 3.7b is a surface structure 

image from a place around r=ro/2, where ro is the radius of the target. Both cone and 

ripple surface structures are observed at this area. Areas having cone structure are 

circled in fig.3.7b and a higher magnification image of cone structure is demonstrated 

in fig.3.8d. Fig.3.8e is a zoom in image from a place in fig.3.8b showing the ripple 

surface structure. Usually, cone surface structure indicates an energy density higher 

than 1J/cm2, which is desirable for epitaxial oxide film growth [40]. As the target is 

rastering and rotating during deposition as illustrated in fig 3.7c by the double side 

arrow and the arc arrow respectively, the area close to the target center area is 

expected to expose to the edge of the beam. As the laser beam has inhomogeneous 

power distribution with long tales (about 1mm on one side) of weak power density 
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(fig 3.7f), it is understandable to have a ripple area of about 1mm width (fig.3.7a). 

Even within the center of the rastering target surface, occupation of areas with ripple 

structure is more than 1/3 as shown in fig 3.7b and 3.7e. As can be seen from fig.3.7e, 

those ripples are connected to each other and winding through the surface. As a 

counterpart of cone structure, ripple structure indicates a relatively low power density 

with a range roughly from 0.1 J/cm2 to 0.9J/cm2 [40]. Based on the SEM images, 

slightly less than half of the area exposed to laser irradiation has ripple structure 

because of not enough power density. As a result of inhomogeneous power 

distribution within the beam, for incident laser irradiation with 1J/cm2 power density 

in average, only a small area within the center of the laser beam has a power density 

higher than 1J/cm2 while the surrounding area has a power density lower than 1J/cm2. 

Thus generates energetic species with a broad range of momentum from the very 

beginning. Due to the complexity of plume interaction with the oxygen environment, 

the effects of the broad range of specie momentum to the film quality are hard to 

predict. A predictable effect from the inhomogeneous power distribution is a slower 

growth rate on average. Though raise the power of incident beam can escalate the 

power density at the beam edge area, higher average power density is not desirable 

because the power density at beam center area will be too high and leads to dense 

particulates on the film surface. 

With the formation of cone or ripple structures on the surface, the surface area 

increases and the power density decreases as a result. The decrease of the power 

density leads to a weaker plume because of the decrease of the density of species 
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within the plume (fig.3.8, slightly out of focus for both images). 

 

(a)  (b)  (c)  

(d)  (e)  (f)  

Fig 3.7.SEM images of 2/3CoFe2O4-1/3PbTiO3 target surface after 40 minutes exposure to 1.0 

J/cm2 laser irradiation. (a) Target surface under low magnification. Upper right corner is an 

unexposed area on the target after deposition. (b) Target surface under higher magnification. 

Circled areas have cone structure and ripple structure is observed on the rest area (c) Schematic 

drawing of target after deposition. The grey area is the laser scanning area; the white area is the 

unexposed area. (d) Zoom in image of one of the circled areas in fig.3.7b shows cone structure. (e) 

Zoom in image of an area from fig.3.7b shows ripple structure. (f) Image of laser beam on the 

target.  

 

Compared to plume in fig.3.8b, it is clear that we have higher density of species 

within the plume in fig.3.8a and the plume in fig 3.8b skewed to the left with respect 

to the target normal direction and towards the laser beam incident direction. The 
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(a)  (b)  

(c)  

Figure 3.8, plume image (a) at the very beginning of 80 minutes deposition, power density is 1.2 

J/cm2, (b) at the end of the same deposition process. (c) Schematic curve of deposition rate as 

function of time. The inset is experimental data from Foltyn [66]. 

 

reduction of specie density is due to composition segregation on target surface and the 

increase of the target surface area. For our CoFe2O4-PbTiO3 target, after deposition, 

Pb is not able to detect on the cone crown area (figure 3.9 cross line position) using 

EDAX. Based on the data in table 3.3, Co and Fe on the target surface have an atomic 

ratio of 1/2, which is the stoichiometric ratio of the original target. However, Pb 

disappears from the surface and atomic percentage of Ti is much higher than its 

percentage in the original target. In the original target, the Co/Ti atomic ratio is 2/1. 

On the target surface after deposition, Co/Ti only has an atomic ratio of less than ¼. 

Figure 3.11 is an EDAX spectrum from an area unexposed to the laser irradiation. 

Target composition segregation on the cone crown area after deposition is manifested 

if we compared results shown in fig 3.9 to results shown in figure 3.11. 
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Table 3.3 Result of EDAX scanning on the 2/3CoFe2O4+1/3PbTiO3 target surface after deposition. 

(Refer to figure 3.9 for scanning area and the scanning spectrum).  

Elements Wt % At % 
Ti 41.5 29.6 
O  23.2 49.3 
Fe 23.0 14.0 
Co 12.3 7.1 

 

 

Figure 3.9 Spectrum of EDAX scanning on cone crown area. The cross-line position is where the 

EDAX scanning performed. 

 

Table 3.4 List of vapor pressure for target chemical elements [64] 

Vapor pressure of the chemical elements 
Pressure, atm 10-10 10-8 10-6 10-4 10-2 1 
elements Temperature, C 
Cobalt Co 995 1161 1379 1686 2152 2928 
Iron Fe 948 1109 1321 1617 2075 2862 
Lead Pb 404 478 616 817 1140 1750 
Titanium Ti 1124 1310 1554 1900 2421 3289 

 

When we analyze the well area marked by the red-cross line in figure 3.10, Pb 

peak is clearly observed in the EDAX spectrum. Compared to figure 3.11, there is still 

composition segregation at the well area; however, the segregation here is not as 

severe as the cone crown area. 
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Table 3.5 Result of EDAX scanning on the well area on the 2/3CoFe2O4+1/3PbTiO3 target surface 

after deposition. (Refer to figure 3.10 for scanning area and the scanning spectrum). 

Elements Wt % At % 
Ti 58.4 68.8 
Fe 18.8 19.0 
Co 8.9 8.4 
Pb 13.9 3.8 

 

 

Figure 3.10 Spectrum of EDAX scanning on well area. The cross line position is where we 

performed the EDAX scanning 

 

Figure 3.11 Spectrum of EDAX scanning on unexposed area on the target 

 

    Compare the vapor pressures listed in table 3.4 for all the elements in the target, 

Ti has the smallest vapor pressure, vapor pressures for Co and Fe are close and Pb has 

the highest vapor pressure. The smallest Ti vapor pressure and highest Pb vapor 

pressure support the EDAX findings very well. It is because of the different vapor 

pressure that causes a Ti-rich and Pb deficit thin layer on top of the cone and the 
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composition gradually changes from the top to the well. This layer forms an obstacle 

for deposition and certainly affects the growth rate and film stoichiometry. 

Usually, cones with a diameter of tens of microns are formed as surrounding 

material is removed by successive laser pulses, and as a result of this erosional 

formation process, they grow in length as laser exposure increases, and they point in 

the direction of the incident beam [65,66]. During the deposition, the plume shape 

changes as the surface composition segregation continues as can be seen in fig.3.9. 

The decrease of plume specie density as a function of the deposition time results in a 

time dependent decrease of deposition rate (fig.3.8c). 

There are several approaches to relieve or avoid the surface composition 

segregation effect based on how it develops. Increase the power density is one of the 

possible solutions. Higher power density can increase the penetration depth within the 

target and remove more material including the top composition segregated surface. 

The drawback of high power density is particulates generated by high energy laser 

beam. Smaller spot size helps delay the formation of surface structure by reducing the 

number of shots per site and thus help maintain the plume status during deposition. 

However, smaller spot size generates smaller plume and the target-substrate distance 

has to be shorter to adopt the change. Improve the homogeneity of laser beam is 

another method as it helps generate plume with homogeneous distributions of species, 

thus provides wider range for power density adjustment. A better homogeneous beam 

status also helps delay the decay of growth rate which affects the structure anisotropy 

in normal direction. 
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3.5 Conclusion 

Our PLD studies allow us to make some suggestions on optimum growth 

conditions for two-phase self-assembled films.  

1. Optimum temperature range for growth of high quality epitaxial two-phase 

self-assembled structure is narrow. The optimum temperature for CoFe2O4-PbTiO3 

films independently on compositions and orientations is found to be 903K. Even 20 

degrees changes of temperature result in severe structure degradations. This optimum 

temperature is located in the temperature range where the range of temperatures for 

optimum growth of epitaxial films for CoFe2O4 and PbTiO3 are overlapped. For 

CoFe2O4, optimum temperatures locate in the interval of 200 degrees around 0.5Tm 

(Tm=1843k) and for PbTiO3, optimum temperatures locate in the interval of ~80 

degrees around 0.5Tm (Tm=1420k). 10%-15% of extra PbO was added to the 

compound target in order to achieve overlapping of optimum temperature ranges, 

though in a very narrow interval.  

2. Laser fluence is an important factor as well because it affects plume size and 

the specie densities within plume, thus leads to different growth rates which results in 

different sizes and/or shapes of inclusions. Our experiments show that only when the 

growth rate is above a certain value, the three-dimensional self-assembled 

PbTiO3-CoFe2O4 nanostructure can be formed. Laser fluence around 1J/cm2 is 

necessary for our PbTiO3-CoFe2O4 film growth to overcome irradiation resulted 

composition segregation on target surface and results in somewhat desired growth rate. 

However, if the incident power density is too high, particulate density will be 
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increased thus deteriorates film qualities. Choosing materials with close vapor 

pressures can help relieve composition segregation on target surface during irradiation 

and thereby alleviate problem of nonstoichiometry. 

3. It is found that using high oxygen pressure does not improve film quality. For 

example, film coarsening is observed in film grown at oxygen pressure of about 

150mTorr. However, maintaining sufficient oxygen pressure is essential to keep 

stoichiometric Pb/Ti ratio. Because of the contradiction, there is a narrow range of 

oxygen pressure centered at 100mTorr for optimum PbTiO3-CoFe2O4 self-assembled 

film growth.  

4. It is shown that PDn=const (P is oxygen pressure, D is the distance between 

the substrate and the target) rule for single-phase growth is not valid for two-phase 

self-assembling growth anymore. 

Overall, growth conditions for self-assembled PbTiO3-CoFe2O4 film are found to 

be ~903K growth temperature, ~1.0J/cm2 laser fluence, 100mTorr oxygen pressure, 

5Hz repetition rate and 3.7cm target-substrate distance as listed in table3.2. 
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Chapter 4 Morphology and Nanostructure of 

PbTiO3-CoFe2O4 Films 

4.1 Introduction 

The examples of xPbTiO3-(1-x)CoFe2O4 thin films of different compositions 

fabricated on differently oriented SrTiO3 substrates using PLD under optimum 

conditions (Ch. 3) are shown in fig.4.1. All these films demonstrate columnar 

morphology in the arrangement of constituent phases with distinct interfaces between 

them. This two phase morphology of the film, i.e. shape and size of the phases and 

  

     

Figure 4.1 SEM topography of xPbTiO3-(1-x)CoFe2O4 film morphology on SrTiO3 of various 

orientations. White area denotes PbTiO3 and black area denotes CoFe2O4. 
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their mutual arrangement, can be described by configuration of interphase interfaces. 

Depending on the film orientation and/or phase fraction, PbTiO3 can be either 

inclusions or matrix. For example, CoFe2O4 phase is observed to form inclusions 

embedded in PbTiO3 matrix in x=2/3 film on (110) SrTiO3 substrate (fig.4.2b). The 

interfaces determine crystallographical habitus of inclusion of one phase in the matrix 

of the other. However, despite an epitaxial (cube-on-cube) relation between the phases, 

the interfaces have no simple atomic structure even if they go along the close-packed 

crystallographic planes, for example, {110} or {112}. Usually, they have complex 

nanostructure formed by the nanosize facets and interface dislocations. Therefore, it is 

convenient to discuss the interfaces in two scales: nano-interfaces with atomically 

smooth plane structures and macro-interfaces formed by facets of nano-interface. The 

configuration of macro-interfaces determines the morphology of the films.  

Nanostructure of macro-interfaces depends on many factors including growth 

phenomena and stress relaxation mechanisms in the phases. However, the formation 

of faceted interfaces can be explained thermodynamically as a combination of (1) an 

interface of best macroscopic fitting (corresponding to minimum of elastic energy due 

to misfit between phases) and (2) an interface of best nanoscopic fitting corresponding 

to the minimum of the interface energy. This approach is applied to the analysis of 

interfaces in this chapter. 

Although all films have columnar morphology, the macroscopic interfaces can 

deviate from film normal direction near film surface and near the film/substrate 

interfaces. Therefore, it is useful to consider separately three different zones of the 
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film: the main zone with interface normal to the film, the top (near surface) zone 

where the effect of free surface is important and bottom zone where the film growth 

begin and the structure is strongly determined on the formation of first few layers at 

the beginning of the growth. The study of nanostructure morphology in the bottom 

and the top zone as well as comprehensive analysis of experimental data obtained in 

ours and previous research for main zone allows us to draw an undoubtful conclusion 

about morphology and interface nanostructure in CoFe2O4/PbTiO3 films. 

 

(a)   (b)  

Figure 4.2 (a) Cross-sectional TEM image shows a CoFe2O4 inclusion embedded in PbTiO3 

matrix in x=2/3 film on (110) SrTiO3 substrate. (b) Three different zones of a simplified single 

inclusion embedded in matrix. 

 

Characterization Techniques. Structures of CoFe2O4-PbTiO3 films on SrTiO3 

substrate are analyzed using scanning electron microscope (SEM) and transmission 

electron microscope (TEM). Film surface is examined using Hitachi S-4700-II field 

emission SEM. TEM facility employed in our structure characterization is Philips FEI 

CM30. TEM sample are prepared using conventional process begin with cutting 

sample into slices with a low speed precision diamond wafering saw. After sectioning, 
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the specimen slice is gone through mechanical thinning on diamond paper using 

Gatan apparatus until the sample is thinned down to about 90um. A Gatan dimpler is 

introduced to further thinning the specimen reducing ion milling times. The dimpling 

is performed by dripping an etchant onto a relatively soft wheel and grinding a 

spherical dimple into and partially through the sample so as to form very thin portions 

around the sample perforation. Gatan ion milling system equipped with a real-time 

camera is used to produce high quality TEM specimens. Double side, one side ion 

milling are selected for making cross-sectional TEM samples and plan-view TEM 

samples respectively. 

4.2 Bottom Zone Morphology and Interfaces 

    For films on (001) SrTiO3, PbTiO3 is found to wet (Terms “wet, wetting, 

non-wetting” are used to describe our film/substrate interface configurations 

illustrated in fig.4.3b, 4.4c and do not imply the same meaning as the droplet on 

surface originality) the SrTiO3 substrate surface while the CoFe2O4 forms an invert 

cone shape structure as shown in fig.4.3a. The high resolution cross-sectional image 

(fig.4.3a) shows sharp interface between PbTiO3 and CoFe2O4 phases along {111} 

plane. Two-dimensional schematics of initial stage of PbTiO3/CoFe2O4 film on (001) 

SrTiO3 is illustrated in fig.4.3b. 

    The wetting/non-wetting situation of PbTiO3/CoFe2O4 on (111) SrTiO3 is 

different from films on (001) SrTiO3 substrate. Even though PbTiO3 has the same 
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(a)  

(b)  

Figure 4.3 (a) Cross-sectional TEM images of CoFe2O4 embedded in PbTiO3 matrix of x=2/3 

film on (001) SrTiO3. Image on the right is the higher resolution TEM image on area around a 

single CoFe2O4 inclusion circled by dash line on the left side image. (b) Schematic illustration 

of wetting/non-wetting scenarios on (001) and (110) SrTiO3 substrates. 

 

crystal structure as SrTiO3 and better lattice fitting on SrTiO3 than CoFe2O4, it is 

found experimentally that {111} spinel wets {111} SrTiO3 surface and forms the 

matrix (fig.4.4a). Fig.4.4a is recorded along <110> zone axis. The angle between the 

two long green dash lines is about 71o (fig.4.4a, 4.4b), which suggests that the 

interface between PbTiO3 and CoFe2O4 is along {111} plane as well. 

    The possible explanation why PbTiO3 forms matrix in (001) oriented films while 

CoFe2O4 forms matrix in (111) oriented films can be obtained on the basis of 

thermodynamic arguments. The available data suggest that significantly better lattice 

fitting of PbTiO3 to SrTiO3 [a(PbTiO3)=3.97Å, a(CoFe2O4)/2=4.23Å, a(SrTiO3)=3.93Å at 

903K] and less surface energy [γ001(PbTiO3)=0.97J/m2 [67,68], γ001(CoFe2O4)=1.486J/m2 

[22] highly promote the formation of PbTiO3 matrix on (001) SrTiO3.  However, for 
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film of (111) orientation, CoFe2O4 has much less surface energy than PbTiO3 

[γ111(PbTiO3)~2.0J/m2 [67,68], γ111(CoFe2O4)=0.208 J/m2 [22]] which helps CoFe2O4 to 

form matrix. In addition, since plane {111} is observed experimentally to be the best 

contact plane for spinel (CoFe2O4)/perovskite (PbTiO3, SrTiO3) structure in all three 

orientations (fig.4.3a, 4.4a, 4.5a), it is natural to suggest that the {111} interface 

between spinel and perovskite has low interface energy. Thus, the combined effect of 

lowest surface energy and low interface energy makes preferable growth of first layer 

of CoFe2O4 on SrTiO3 although PbTiO3 has better lattice fitting on SrTiO3. With 

increase of film thickness and increase of elastic energy due to film/substrate misfit, 

film morphology might have minor changes; however, CoFe2O4 remains to be the 

matrix phase through the whole growth process. 

(a)   (b)  

(c)  

Figure 4.4 (a) Cross-sectional TEM image of x=1/3 film on (111) SrTiO3. (b) Schematics of 

PbTiO3 with side {111} interfaces. (c) Schematics of wetting/non-wetting of spinel (CoFe2O4) 

and perovskite (PbTiO3) on (111) SrTiO3 substrate. 
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    The invert cone shape structure illustrated in fig.4.3a is valid only at the initial 

stage. At this stage, surface energy effects are very likely larger than the elastic energy 

effects. While the film grows thicker, effect from surface energy is fading out and 

elastic energy contribution becomes stronger and eventually results in a microscopical 

average interface perpendicular to the substrate. For example, for x=2/3 film of (110) 

orientation with 30 nm thickness, isolated CoFe2O4 with invert cone shape at the 

bottom is observed in cross-sectional and plan-view TEM images (fig.4.5a). For film  

 

(a)  

(b)  

Figure 4.5 (a) Cross-sectional and plan-view TEM images for x=2/3 film of ~30nm thickness 

on (110) SrTiO3. (b) Cross-sectional TEM image for x=2/3 film of ~100nm thickness on (110) 

SrTiO3. 
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of the same composition and orientation, when thickness is increased to about 100nm, 

the average interface between the PbTiO3/CoFe2O4 changes from inclined at an angle 

to perpendicular (fig.4.5b).  

4.3 Main Zone: Morphology and Interface Nanostructure 

4.3.1 Interface Nanostructure for (001) Oriented Films 

For film of composition 2/3PbTiO3-1/3CoFe2O4, cross-sectional TEM images 

(fig.4.6a,b) show columnar structure with CoFe2O4 inclusion embedded in PbTiO3 

matrix. The average orientation of the CoFe2O4 pillars is along [001] normal to the 

substrate. The plan-view TEM image (fig.4.6c) shows that those CoFe2O4 pillars have 

rectangular shape and intersect film surface along <110> traces. The cross-sectional 

and plan-view TEM images (fig.4.6a,c) allow us to conclude that the pillars are 

formed by four macroscopic interfaces along {110} planes perpendicular to the 

substrate(fig.4.6d). These interfaces are corrugated and further investigation using 

high resolution TEM image (fig.4.6b) shows that these macroscopic interface are 

faceted along {111} planes (arrows indicates {111} facets) while maintaining average 

interfaces along {110} planes. In other words, the {110} interfaces are actually 

average (macroscopic) interface consisting of large number of small {111} facets 

(fig.4.6e). Crystallographically, {111} facets alternate about the vertical {110} plane 

normal to the substrate (fig 4.7a). In fig.4.7a and 4.7b, CoFe2O4 is presented by a 

simplified cubic structure. Yellow balls denote Co and Fe atoms; red balls denote 

oxygen atoms. Four yellow balls at the bottom plane outlines a (001) plane in fig.4.7a. 
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(a)     (b)  

(c)  

(d)       (e)  

Figure4.6 (a),(b),(c) Cross-sectional and plan-view TEM images of the CoFe2O4 rods in the x 

= 2/3 film grown on (001) SrTiO3. (d),(e) Macro- and nanoscale schematics of single 

CoFe2O4 rod embedded in PbTiO3 matrix. 

 

The light blue shadows are {111} planes; Planes marked as A and B are {111} planes 

of different orientations. As can be seen that the {111} facets can be constructed by 

zigzagging {111} planes about (011) plane under a sequence of ABAB or BABA as 
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shown in fig.4.7a while maintained the average (011) plane at the same time. Note 

that the appearance of [110] traces at the film surface gives a {110} interface 

impression, it is just due to projection of {111} planes on (001) plane as shown in 

fig.4.7b. After projected {111} planes onto (001) plane, the projected structure 

(fig.4.7b) consists of two types of configurations: one is elongated along [1 10]  

direction marked by dash orange frame and the other is elongated along [110] 

direction marked by blue frame, which is found to be analogous to what observed in 

plan-view TEM (fig.4.6c).  

 

 (a)  (b)  

Figure 4.7 (a) Crystallographic illustration of out-of-plane zigzagging {111} plane (A,B) with 

average (011) plane normal to the substrate. Those dash blue lines are guide to eye showing 

an example of zigzagging. (b) Crystallographic top view illustration. Solid blue and dash 

orange lines are projected {111} planes on (001) film surface. 

 

Due to complex nanostructure of interface, it is difficult to observe interface 

dislocations which are integrated in this nanostructure. However, it can be suggested 
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that intersections of nano-facets form dislocation net which help reduce misfit 

between the phases. If {111} facets on interface correspond to stacking fault along 

{111} in CoFe2O4, the intersections of these planes along <110> on interface can 

produce interface edge dislocations with Burger’s vector along <001> which belongs 

to interface plane {110} (fig.4.8). This is only one of possible mechanisms of 

formation of interface dislocations to relax internal stresses due to phase interaction. 

More future study is needed to address this problem.  

 

Figure 4.8 Schematics of dislocations at the PbTiO3 and CoFe2O4 interface. 

 

4.3.2 Interface Nanostructures for (110) Oriented Films 

Since it is found for the (001) oriented films that macro-interface along {110} 

consist of nano-facets along {111}, it is possible to suggest that {111} plane is the 

best microscopic plane with the lowest interface energy between PbTiO3 and CoFe2O4 

phases. It should be the same in films of all orientations regardless changes of film 

compositions (fig.4.9a, 4.10a). Unlike zigzagging facets along normal direction for 

films of (001) orientation with different macroscale and nanoscale morphologies, for 

films on (110) SrTiO3 substrate, the interfaces between PbTiO3/CoFe2O4 phases are 



 50

plane {111} perpendicular to the (110) substrate. It means that the {111} plane satisfy 

both the lowest interface energy condition and the minimum elastic energy condition 

simultaneously for film of {110} orientation. This coincidence results in smooth 

interfaces along {111} planes perpendicular to the substrate without corrugation, 

which is in good agreement with TEM observation (fig.4.9a, 4.9c). From the 

plan-view TEM image (fig.4.9b), the lamellae in the {101}-oriented films intersect 

film surface along two nonequivalent <112> directions maintained an angle of ~±35° 

against in-plane [100] direction. For film of the other composition, similar 

phenomenon is observed (fig.4.10a) though the structure changes from CoFe2O4 

lamellas embedded in PbTiO3 matrix to PbTiO3 platelets embedded in CoFe2O4 

matrix. Irrespective of different inclusion phases for films of different compositions, 

the inclusions should have similar crystallographic relations based on the 

crystallography analysis (fig.4.9e,f). In fig.4.9e, orange and blue shadows are {111} 

planes perpendicular to (101) surface. Two in-plane intersected segments can be 

found in fig.4.9e: either AB1 or AB2. It is clear in fig.4.9f which shows projected {111} 

planes on (101) surface. The projected planes give facets along <112> traces aligned 

at ~ ± 35° with respect to in-plane [010] direction. That is what observed 

experimentally (fig.4.9b, 4.10a, 4.10b). Based on the macro- and nanoscale interface 

analysis, a single CoFe2O4 inclusion embedded in PbTiO3 matrix for film of {101} 

orientation can be schematically constructed as shown in fig.4.9d. Similarly, isolated 

PbTiO3 platelets embedded in CoFe2O4 matrix can be schematically illustrated as in 

fig.4.10c with {111} interfaces perpendicular to the substrate and intersect the film 
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surface along <112> traces. 

 

(a)     (b)   

(c)      (d)  

(e)     (f)  

Figure 4.9 (a),(b),(c) Cross-sectional, plan-view TEM images of CoFe2O4 lamellas in x=2/3 

film grown on (110) SrTiO3. (d) Schematic of single CoFe2O4 lamellae embedded in PbTiO3 

matrix. (e) Crystallographic illustration of in-plane zigzag {111} planes (A, B1, B2) along 

<112> direction. (f). Crystallographic top view of {111} planes projected on (101) plane. 

Blue and orange line are different {111} planes. 
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(a)    (b)  

(c)  

Figure 4.10 (a)Plan-view TEM image of PbTiO3 platelets in x=2/3 film grown on (110) 

SrTiO3. (b) SEM image of x=1/3 film on (110) SrTiO3. PbTiO3 appears as platelets embedded 

in CoFe2O4 matrix (c) Schematic of PbTiO3 platelets embedded in CoFe2O4 matrix. 

4.3.3 Interface Nanostructures for (111) Oriented Films 

Regardless of different compositions (x=1/3, 2/3), PbTiO3 forms inclusions 

embedded in CoFe2O4 matrix in films on (111) SrTiO3 substrate (fig.4.1 fig.4.11a-c). 

Even though high resolution TEM image shows <112> traces in the plan view image 

(fig4.11c) and gives a false appearance of interface along{112} plane, {112} planes 

are not favorable crystallographic planes from point of interface energy. As observed 

in (001) oriented thick film (fig.4.6b) and thin films of all orientations (fig.4.3a, 4.4a  
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(a)   (b)  (c)  

(d)     (e)  

(f)  (g)  

Figure 4.11 (a),(b) Cross-sectional and plan-view images of the x = 1/3 films on the (111) 

SrTiO3 showing the PbTiO3 rods (bright) in the CoFe2O4 matrix (dark). c) Low-magnification 

high-resolution TEM image showing faceting of the PbTiO3 nanorods. (d),(e) Schematics of 

micro- and nanoscale single PbTiO3 pillar embedded in CoFe2O4 matrix on (111) SrTiO3 

substrate. (f) Crystallographic illustration of {111} planes on (111) surface. (g) 

Crystallographic top view illustration of {111} planes projected on ( 111 ) plane. The dash 

blue lines denote the intersection of projected {111} planes on film surface along <112> 

traces. 
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and 4.5a) , it can be concluded that {111} plane has the lowest interface energy 

between PbTiO3 and CoFe2O4. Thick film of {111} orientation should have the same 

{111} interface between film constituent phases as well. After projected {111} planes 

on (111) surface plane (fig.4.11g), it is easily perceived that the projected structure in 

fig.4.11g marked by dash blue lines mimics what is observed in SEM images 

(fig.4.1f). The projected {111} planes form a triangle with edges along <112> traces 

on film surface, which is in good agreement with the plan-view observations (fig.4.9c) 

except small interceptions along <112> at places close to the vertex angles. It is likely 

that the small interceptions are formed to reduce the elastic energy at the sharp vertex 

angles. A single faceting PbTiO3 pillar in CoFe2O4 matrix is constructed and 

illustrated in fig.4.11d and 4.11e. Fig.4.11d shows a single pillar with macroscopical 

interface along {112} plane and fig.4.11e shows a single pillar with nano-facets along 

{111} planes while maintaining the {112} average interface orientation.  

4.4 Top Zone Structures  

 

(a)   (b)   (c)   

Figure 4.12 Nanostructure of x=1/3 film on (111) SrTiO3 substrate. (a) SEM topography.  

(b) Cross-sectional TEM image showing PbTiO3 top side facets marked by dash blue circle.  

(c) Schematics of PbTiO3 top region side facets circled in (b) by dash blue line.  
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Figure 4.12a is a SEM image of x=1/3 film on (111) SrTiO3 substrate showing 

PbTiO3 triangles distributed in CoFe2O4 matrix. The cross-sectional TEM image 

(fig.4.12b) show that those triangles are not at the same horizontal level as CoFe2O4 

matrix. The PbTiO3 triangles are protruded out of the film surface for about 40nm. As 

the protruded portion has free surface instead of forming an interface with CoFe2O4 

phase or substrate, the protruded faceting surface should prefer planes of the lowest 

surface energy, which is {100} for perovskite PbTiO3 [22]. TEM image (fig.4.12b) 

with <110> viewing direction shows the side facet forms an angle of ~55o against the 

film surface, which lead to a conclusion that the protruded island are side faceting 

along {100} planes. Both the SEM and TEM images indicate flat top of the protruded 

island. Observations in the SEM and TEM images lead to a structure of protruded 

island consisting of three {100} side facets in addition to a flat {111} top surface 

(fig.4.12c). It is obvious from the SEM analysis (fig.4.1) that film topographies are 

orientation dependent, however, our experimental observation allow us to suggest that 

the side facets of protruded top zone are determined by surface energy and it is highly 

possible that the xPbTiO3-(1-x)CoFe2O4 films with different topographies should have 

the same {100} side facets for PbTiO3 inclusions and {111} side facets for CoFe2O4 

inclusions at the protruded top zone because of lowest surface energy at these planes. 

This conclusion is supported by other reported experimental results as well [12]. 

4.5 Discussion and Conclusion 

As it has been shown in our studies of self-assembled PbTiO3-CoFe2O4 films on 

SrTiO3 substrates, their two-phase morphologies can be controlled by change of 
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orientation of substrates.  

In case of (001) orientation, films are formed by CoFe2O4 pillars with 

rectangular shape. On macroscopic scale, the pillar faces correspond to {110} plane 

normal to substrate. However, these pillars consist of nano-facets along the {111} 

plane. PbTiO3 forms matrix independently of film compositions.  

In case of (111) orientation, films are formed by PbTiO3 pillars with truncated 

triangle or round shape. On macroscopic scale, the plane section of interface between 

PbTiO3 pillars and CoFe2O4 matrix is oriented along {112} plane normal to the 

substrate. These interfaces are formed by nano-facets along {111} plane. CoFe2O4 

forms matrix independently of film compositions. 

In case of (110) orientation, interface between film phases are {111} plane and 

do not reveal nanoscale facets. This observation allows us to conclude that plane {111} 

is the plane of best atomic fitting with minimum interface energy between crystalline 

lattices of perovskite PbTiO3 and spinel CoFe2O4. However, this plane can not satisfy 

the condition dictated by film growth to be normal to the substrates with (100) and 

(111) orientation. Therefore, microscopical interface between the phases for these 

orientations are {110} and {112} planes which should correspond to the minimum 

elastic energy of misfit between these phases. This conclusion is supported by 

thermodynamics based phase field modeling [20,37]. The trend to minimize interface 

energy results in formation of interface faceting structure with {111} nano-facets. 

The study of initial stage of film growth has strongly supported the conclusion 

that {111} interface is the preferable contact plane between CoFe2O4 and PbTiO3. 
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The faceting interfaces is an important factor that can affect multiferroic 

properties of self-assembled nanostructures. Faceting nanostructure of interfaces 

together with the interface dislocations enable minimize internal stresses due to misfit 

between the phases at temperature higher than Curie point of ferroelectric phase. We 

believe the {111} nano-faceting interface observation is a generic result that can be 

applied to other perovskite-spinel systems. For example, {111} nano-facets can be 

expected in self-assembled nanostructure in BaTiO3-CoFe2O4 film on (001) SrTiO3. 

Indeed, it can be seen in presented cross-sectional TEM images of (001) oriented film 

published in ref.69.  

In film-substrate system under investigation, PbTiO3 and SrTiO3 are perovskite 

with very close lattice parameters. Therefore, PbTiO3 is expected to form matrix if it 

is major fraction of the films. However, it is not true in case of (111) orientation. Due 

to very low energy for {111} surface of CoFe2O4 and low CoFe2O4/SrTiO3 interface 

energy [22], the first few layers of CoFe2O4 on (111) SrTiO3 substrate can have less 

energy than PbTiO3 on (111) SrTiO3. In this case, the initial stage of growth 

determines morphology of nanostructures: PbTiO3 rods embedded in CoFe2O4 matrix 

while the shape of the rods can be determined by elastic interactions between the 

phases. That is an explanation of fundamental change of nanostructure morphologies 

from CoFe2O4 pillars in PbTiO3 matrix for (001) film orientation to PbTiO3 rods in 

CoFe2O4 matrix for (111) oriented film. 
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Chapter 5 Accommodation of Transformation Strains 

in Self-Assembled CoFe2O4-PbTiO3 Nanostructures 

Chapter 5.1 Introduction 

Multiferroic composite films that consist of magnetostrictive and piezoelectric 

phases arranged in transverse architectures exhibit significant magnetoelectric effects 

due to a reduced clamping by the substrate. The strain mediated magnetoelectric (ME) 

response of transverse multiferroic nanostructures depends strongly on the efficiency 

of elastic interactions across the interphase boundaries as well as on the sign and level 

of residual stresses in the component phases. The transformation between paraelectric 

and ferroelectric state of perovskite component during cooling or heating generates 

residual stresses accompanied by strong lattice distortion, especially for PbTiO3. 

Unlike single-phase thin layers on a substrate, the individual phases in the transverse 

nanostructures are confined three dimensionally. In this chapter, we present the result 

of variable-temperature X-Ray study which is used to analyze the strain evolution and 

the effect of constraints on the ferroelectric phase transition in epitaxial 

self-assembled CoFe2O4-PbTiO3 films on SrTiO3 substrates. 

5.2 Experiments 

        The xPbTiO3-(1-x)CoFe2O4 films (x=1/3, 2/3) were grown on SrTiO3(100) 

substrates from composite targets with fixed compositions using pulsed laser 

deposition. Thickness of the films is ~230nm for both compositions. The observation 

of strain relaxation was conducted in a Bruker D8 Discover X-ray diffractometer 

equipped with a high-temperature stage. Room-temperature values of the out-of-plane 
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(a⊥) and in-plane (a||) were determined for each phase using four non-equivalent 

reflections (e.g. 002, 202, -202 and 222 for PbTiO3). For these measurements, the 

incident beam was conditioned using a Gobel mirror and a 4-bounce Ge (220) 

monochromator. Lattice parameters were monitored along with temperature changes 

using 004PTO/008CFO and 220PTO/440CFO reflections and Cu Kα radiation. X-ray 

diffraction patterns for the CoFe2O4–PbTiO3 films were collected at 25K intervals 

between the ambient temperature and 903K. The temperatures were confirmed to be 

accurate within 5 degrees. Heating-cooling cycling in the 298–903K range 

demonstrated that the changes in the lattice parameters were fully reversible. Room 

temperature lattice parameters for PbTiO3 and CoFe2O4 are summarized in Table 5.1. 

 

Table 5.1 Room temperature values of lattice parameters of PbTiO3 and CoFe2O4 in the 

composite xPbTiO3-(1-x)CoFe2O4 films. The numbers in parentheses represent combined 

statistical uncertainties (1σ) from the x-ray profile fitting and squares refinements using four 

nonequivalent reflections. 

  PbTiO3 CoFe2O4 

x a⊥ a// a⊥ a// 

2/3 4.035(1) 3.945(1) 8.420(1) 8.383(1) 
1/3 4.008(1) 3.959(1) 8.396(1) 8.368(1) 

     

    At room temperature, the distribution of d-spacing values in PbTiO3 was 

significantly broader than that in CoFe2O4, as inferred from the relative widths of the 

002PTO (full width at half maximum (FWHM) is 0.49°, x=1/3, fig.5.1) and 004CFO 
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(FWHM=0.29°, x=1/3, fig.5.1), peaks, respectively. The 002PTO rocking curve 

(FWHM=0.79°, x=1/3, fig.5.2a) was also broader than the 004CFO rocking curve 

(FWHM=0.73°, x=1/3, fig5.2b) 

 

 

Figure 5.1 X-Ray spectrum for 2/3CoFe2O4-1/3PbTiO3 film on SrTiO3(001) substrate. Full 

width at half maximum (FWHM) are 0.49o, 0.29o for 004CFO and 004CFO peaks respectively. 
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Figure.5.2 Rocking curves for 002PTO and 004CFO peaks in fig.5.1. (a) 002PTO rocking curve 

with FWHM of 0.79o (b) 004CFO rocking curve with FWHM of 0.73o. 
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Figure. 5.3 Out-of-plane (a⊥) and in-plane (a||) lattice parameters of CoFe2O4 (black squares 

and red dots) divided by 2, PbTiO3,(green and blue triangles) and SrTiO3 (purple and light 

blue triangles) in the xPbTiO3-(1-x)CoFe2O4 films on  SrTiO3(100) substrate measured as a 

function of temperature. Lattice parameters of bulk PbTiO3 [70] are shown in (a) using 

asterisks. (a) x=2/3 and (b) x=1/3. 
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Figure 5.3 demonstrates results of the variable-temperature lattice parameters 

measurements in the films with x=1/3 (Fig. 5.3a) and x=1/3 (Fig. 5.3b); the data for 

bulk PbTiO3 [70] are superimposed in Fig. 5.3a using asterisks. Structure 

transformation from cubic to tetragonal phase in PbTiO3 is clearly observed at 

Tc~723K as a divergence of the a⊥(T) and a//(T) lattice parameters. Similar transition 

temperature is observed on figure 5.3b for film with the other composition. Though it 

was reported that epitaxial stresses that arise during growth are largely relaxed by 

misfit dislocations [13], a small tetragonal distortion of PbTiO3 and CoFe2O4 above Tc 

(fig 5.3a) due to the nonrelaxed epitaxial stresses still can not be ruled out. Above 

Tc(~723K), the width of the 002PTO reflection in the θ-2θ scans decreases dramatically 

and become comparable to that of the 004CFO; concurrently, the integrated intensities 

of the 002PTO reflections in the x=2/3 and x=1/3 films increase by the factors of ~2.25 

and ~3 respectively. In contrast, the 004CFO integrated intensity of reflection remains 

unchanged, regardless of phase fractions. The width of the 002PTO rocking curve 

decreases by nearly a factor of 2 above the transition while some, though much 

smaller, narrowing of the 004CFO rocking curve is observed as well. These results 

indicate that a broad distribution of the d-spacing values along with the broad mosaics, 

as encountered at room temperature in PbTiO3, is associated with a phase transition 

rather than a growth process. 

The transition temperature for PbTiO3 in the composite films is about 45K lower 

than that in the bulk crystals (768K). The tetragonal distortion in PbTiO3 is strongly 

suppressed yielding the c/a ratio (room temperature) of only ~1.023 for x=2/3 and 
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~1.013 for x=1/3 as opposed to c/a~1.064 for bulk PbTiO3 crystals. The distortion of 

PbTiO3 due to phase transition is suppressed by constrains from CoFe2O4 and thereby 

modifying the character of this transition from the strongly first order towards second 

order. The effect becomes stronger with increasing volume fraction of CoFe2O4. At 

the same time, a tetragonal distortion a⊥/a|| >1 in CoFe2O4 is observed as a result of the 

expansion of PbTiO3. Values of the CoFe2O4 distortion varies from 1.004 for x=2/3 to 

1.003 for x=1/3 at room temperature. As expected from the stress equilibrium 

conditions, the out-of-plane strains in CoFe2O4 decrease as the volume fraction of this 

phase increases, while an inverted trend is observed for PbTiO3 strains. The 

spontaneous polarization of PbTiO3 in composite films is expected to be smaller 

compared to its strain-free bulk value as a result of the suppressed c/a ratio. 

5.3 Effect of Constraint on Tc and Nanostructure of PbTiO3  

        The effect of elastic constraints on the Curie temperature of a ferroelectric 

in the composite film can be predicted by considering a free energy expansion for a 

constrained ferroelectric film on a substrate:  

F=A(T−T0)P2+BP4+CP6+Fel                                          (5.1) 

where A, B, and C are the Landau coefficients and Fel is the elastic energy of the film. 

The Fel of a film consisting of cylindrical magnetic rods embedded into a ferroelectric 

matrix was calculated previously [21,14]. Neglecting self-strain of the magnetic phase, 

this energy can be expressed as: 

2 2 2 4
11 11[(1 ) (1 )(1 2 ) 2 (1 )]elF x GQ GQ Pδ δ νδ δ ν= − − + − + +%                     (5.2) 

where x%  is a volume fraction of the PbTiO3 phase, G is the in-plane elastic modulus 
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of the film, υ is a Poisson ratio, Q11 and Q12 are electrostrictive coefficients of a 

ferroelectric phase, and δ =Q12/Q11. Evidently, the energy associated with the 

interphase elastic interactions modifies just the P4 term in the free energy expansion 

and thus should have no effect on the Curie temperature of a ferroelectric. However, 

this elastic energy affects the sign of the P4 term thereby changing the character of a 

ferroelectric phase transition from the first to second order, consistent with the 

experimental observations (Fig. 5.3). The change in the Tc associated with this change 

in the order of the transition is expected to be ~13K [71], which is essentially less than 

the experimentally observed data. 

Reduced values of a ferroelectric transition temperature in the composite films 

can be readily attributed to a limited but detectable dissolution of Fe in PbTiO3 and 

dissolution of Ti in CoFe2O4 [13]. Concurrently, the transformation strain and the 

resulting strain-free c/a ratio for the Pb(Ti,Fe)O3−δ solid solutions in the 

CoFe2O4–PbTiO3 nanostructures should be reduced substantially compared to the 

pure PbTiO3. Reportedly, the Tc value decreases from 768K from pure PbTiO3 

(a=3.899A, c=4.15A, c/a=1.064) to 420oC for Pb(Ti0.5Fe0.5)O3-δ (a=3.928A, 

c=4.036A, c/a=1.028) [72]. Assuming a linear dependence of Tc and c/a ratio on 

composition, the Tc~723K observed for PbTiO3 in the present films suggests up to 25 

at.% of Fe substitution and c/a~1.042. The uncertainties in the strain-free states of the 

component phases caused by formation of the solid solutions preclude accurate 

determination of residual strains in the composite nanostructures. However, variable 

temperature measurements provide an insight into the strain accommodation 
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mechanism as discussed below. 

        Strain compatibility conditions along the CoFe2O4/PbTiO3 interfaces imply 

equal changes of the out-of-plane lattice parameters of CoFe2O4 and PbTiO3 from 

their respective values in the cubic state just prior to a ferroelectric phase transition. 

However, the expansion of a⊥ in PbTiO3 observed in Fig.5.3 exceeds significantly the 

 

 

Figure 5.4 Plan-view (a) and cross-sectional (b) TEM images of the x=1/3 film. Twin domains in 

PbTiO3 are observed as circled. 

 

out-of-plane strain in CoFe2O4. Considering a reversibility of the lattice parameters 

upon the heating/cooling cycles, this discrepancy can be accounted for by formation 

of the 90
o
 twin domains in PbTiO3. Indeed, PbTiO3 90

o
 twin domains are identified in 

both TEM diffraction-contrast image (fig.5.4) and XRD reciprocal space maps 

(fig.5.5). The PbTiO3 was confirmed to possess two a-domain variants in addition to 

the c-domains. As a result, the average out-of-plane deformation in PbTiO3 is 

significantly smaller than that observed just for the c-domains. 
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    Experimentally, the volume fraction  of the PbTiO3 c-domain (β) can be 

estimated from the relation of the integrated intensities of the 001 and 100(×4) peaks 

in the x-ray diffraction rocking curves is approximately 0.5; however, the accuracy of 

these measurements is limited by the relatively poor separation of the broad a-domain 

peaks.  

 

 

Figure 5.5 Low-resolution reciprocal space maps encompassing 200 SrTiO3, 002/200 PbTiO3, 

and 004 CoFe2O4 reflections for films with x=2/3 [(a) and (b)] and x=1/3 [(c) and (d)] 

acquired at 298K ((a) and (c)) and 823K ((b) and (d)). Appearance of a-domains in PbTiO3 

below a ferroelectric transition can be observed. 
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    After cooling down to room temperature, PbTiO3 can have three different 

domain states (c, a1 and a2 domains) as illustrated in fig.5.6. It is demonstrated in the 

x-ray analysis that both PbTiO3 and CoFe2O4 as deposited have cubic structure and 

internal stress can be negligible (fig.5.7a,b). After cooled down to room temperature, 

if all cubic PbTiO3 transform into c domains, PbTiO3 will be elongated along 

out-of-plane direction and shrinked in-plane as illustrated in fig.5.7c. However, it 

should lead to large elastic energy of internal stresses and thermodynamically 

unfavorable. In reality, this deformation is reduced due to formation of polydomain 

state consisting of c, a1 and a2 domains (fig.5.7e,f). A volume fraction of the 

c-domains in PbTiO3 can be calculated from the experimental data in fig.5.3 by 

considering the strain compatibility conditions for a composite film: 

 

PTOCFO
3333 εε =                                                        (5.3) 

11 11(1 )PTO CFO
sx xε ε ε+ − =% %                                               (5.4) 

 

where CFOCFO
1133 / εε  and PTOPTO

1133 / εε  are the out-of-plane/in-plane total strains in the 

CoFe2O4 and PbTiO3 phases respectively, sε  describes a thermal contraction of the 

substrate, and x%  is a volume fraction of PbTiO3. The total strains in the a- and 

c-domains in PbTiO3 (fig.5.6) can be calculated from the experimental values of ⊥a  

and ||a .   
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Figure 5.6 Schematics of PbTiO3 domains. Cubic is the phase above transition temperature. 

After cooled down, it can be transformed into three types of stressed tetragonal domains 

denoted by grey (c domain), white (a1 domain) and yellow (a2 domain) bars. 

 

 

Figure 5.7 Schematic illustration of phase transformation of PbTiO3 in self-assembled film on 

SrTiO3 substrate. (1).constrained but stress-free state at high temperature (a),(b); 

(2).constrained state of pure c domain film at room temperature (c),(d); (3).constrained 

relaxed states of polydomain (a1,a2 and c domains) film at room temperature (e),(f). 
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        Assume that in equilibrium all domains are distorted equally [73], their total 

strains are: 
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where ooc aaa /)( −= ⊥ε , ooa aaa /)( || −=ε  (a⊥ and a|| are experimental room 

temperature values of the PbTiO3 lattice parameters; ao is the lattice parameter of the 

cubic PbTiO3 just above the transition).  Taking into account that non-equivalent 

a-domains should have equal fractions, the total out-of-plane ( 33
PTOε ) and in-plane 

( 11
PTOε ) strain components in polydomain PbTiO3 are as follows: 

33 (1 )PTO
c aε βε β ε= + −                                                (5.6) 

)(
2

)1(
2211 caa
PTOPTO εεββεεε +

−
+==                                    (5.7) 

The volume fraction of the c-domains (β)  is equal to: 

)/()( 33 aca
CFO εεεεβ −−=                                             (5.8) 

The c-domain fractions calculated using experimental values of the lattice parameters 

(fig.5.3) are 0.61 and 0.51 for x=2/3 and x=1/3 respectively, which is in well 

agreement with the values estimated based on rocking curves. Substituting these 

values of β into the in-plane strain condition (equ.5.4) yields values of -0.002 (x=2/3) 

and -0.004 (x=1/3) which reflect a combination of the substrate contraction (εs~-0.006) 

and stress heterogeneities not accounted in β calculation using equ.5.8. 

Comparing measured c/a results for x=1/3 and x=2/3, it is possible to find the 

stress-free strains: (stress-free here means without constraint, fig.5.7f) 0
aε  and 0

cε . 

The stress-free strains are connected to actual strains aε and cε in constrained film 
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by the following mechanical relations: 

σεε ˆˆ0
aaa S+=                                                  (5.9) 

σεε ˆˆ0
ccc S+=                                                  (5.10) 

σ̂  is the elastic stress tensor in the ferroelectric phase; aŜ  and cŜ are compliances 

in this phase corresponding to in-plane and out-of-plane strains. 

With an assumption that 0
aε  and 0

cε  are the same for both film (i.e. solubility 

of Fe does not change with fraction of the phases), it can be suggested that stress in 

Pb(Ti,Fe)O3 phase doubles when its volume fraction decreases by half. From 

condition of mechanical equilibrium in the two-phase film with internal stresses, 

follows that: 

0( 2 / 3)a a ax Sε ε σ= = +
) ) ; 0( 2 / 3)c c cx Sε ε σ= = +

)
                     (5.11) 

0( 1/ 3) 2a a ax Sε ε σ= = +
) ) ; 0( 1/ 3) 2c c cx Sε ε σ= = +

)
                   (5.12) 

Then: 

    0 2 ( 2 / 3) ( 1/ 3)a a ax xε ε ε= = − =                                   (5.13) 

0 2 ( 2 / 3) ( 1/ 3)c c cx xε ε ε= = − =                                    (5.14) 

        As cε and aε are known from experimental data in fig.5.3, we can calculate 

ao and co lattices ( ao and co are lattice parameters of stress-free c-domain) and find the 

stress-free c/a=1.03~1.035. Taking into account the difference of elastic properties of 

the phases, it is possible to show that this ratio approaches 1.04 in good agreement 

with the estimates of c/a value based on composition dependence of Tc. Compared to 

the bulk c/a=1.064 value, the dissolution of Fe in PbTiO3 results in about 40% 

reduction of PbTiO3 tetragonal distortion. 
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5.4 Conclusion 

Overall, the estimates based on the strain compatibility conditions along with the 

integrated intensity measurements using 002PTO/200PTO rocking curves support 

presence of significant fractions of both c- and a-domains in PbTiO3, despite a 

nonoscale of the composite heterstructures. Small domain size contributes to a 

broadening of the PbTiO3 reflections. A significant fraction of a-domains which dilute 

the net out-of-plane polarization in PbTiO3 is expected to reduce the strength of 

electromagnetic (EH) coupling compared to the theoretical estimates made for a 

single-domain PbTiO3. 

The observation of Fe dissolution is expected to further decrease the tetragonal 

distortion in addition to effects from existence of a-domains. Thus, the intrinsic 

piezoresponse of the ferroelectric component of the film should dramatically decrease 

(more than twice in our case) even without any constraints. The relatively large value 

of d33 measured on the film with electrodes (~50 while bulk value 79pm/V [52]) 

allows us to speculate that this is an extrinsic effect due to domain wall movements. 

However, the effect of these domains on the magnitude of magnetoelectric (ME) 

coupling will depend on the mobility of domain walls which requires further 

investigation. In principle, the effect of magnetic field on polarization can be 

enhanced while the effect of electrical field on magnetization can be reduced 

providing the domain walls are sufficiently mobile. Clearly, the optimal choice of a 

ferroelectric component for a given nanostructure architecture should take into 

account a relief mechanism for the transformation stresses. 
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Chapter 6 Piezoelectric Properties of Nano-PbTiO3 

Ferroelectrics Embedded in Ferromagnetic Film  

6.1 Introduction 

    Fundamental understanding of a ferroelectric response in nanostructured 

materials is critical for their implementation in practical devices. Recently, numerous 

theoretical studies of polarization behavior in ferroelectric nanoparticles have been 

reported [74,75,76]; however, experimental verification of the proposed models and 

hypotheses is hindered by the lack of suitable samples and difficulties with nanoscale 

ferroelectric measurements. Epitaxial self-assembly of lattice-matched phases on 

matching single crystal substrates provides a viable approach for generating nanoscale 

ferroelectric features embedded into a non-ferroelectric matrix. This approach has 

been successfully applied to the growth of transversely modulated multiferroic 

nanostructures consisting of ferroelectric perovskite and ferromagnetic spinel phases 

on single crystal substrates [10,77,78,79]. The morphology of constituent phases in 

these self-assembled nanostructures can be effectively controlled using substrate 

orientation and phase fractions. For perovskite-spinel systems, nanorods of perovskite 

phase in a spinel matrix were obtained for the PbTiO3-CoFe2O4 on (110) and (111) 

SrTiO3 substrate and for BiFeO3-CoFe2O4 on (111) SrTiO3.   

    Several studies examined a ferroelectric response of the (111)-oriented 

BiFeO3-CoFe2O4 films containing BiFeO3 nanorods in a CoFe2O4 matrix. 

Ferroelectric nature of individual BiFeO3 columns has been confirmed using 
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piezoelectric force microscopy (PFM) [22]. The direction of spontaneous polarization 

in rhombohedral BiFeO3 coincides with the nanorods axes thereby facilitating both 

piezoelectric and ferroelectric responses. The situation is significantly different for 

tetragonal perovskite-like phase, such as BaTiO3 and PbTiO3, because, in the (110)- 

and (111)- oriented composite films, the (001) direction of spontaneous polarization is 

strongly inclined to perovskite/spinel interfaces. No analyses of a ferroelectric 

behavior in this kind of nanostructures have yet been reported. In the present study, 

we used both conventional piezoelectric force microscopy (PFM) and switching 

spectroscopy PFM (SS-PFM) to analyze a piezoelectric response of the PbTiO3 

nanocolumns in 1/3PbTiO3-2/3CoFe2O4 self-assembled nanostructures on both (110)- 

and (111)-oriented SrTiO3 substrates [14,26]. SS-PFM enables local piezoelectric 

measurements without electrodes thereby alleviating electrical leakage problems 

associated with the CoFe2O4 matrix; this leakage complicates direct measurements of 

a ferroelectric response in nanostructures having CoFe2O4 as a majority phase [52,80].  

6.2 Measurement techniques 

6.2.1 Conventional PFM Qualitative Measurement 

Piezoresponse force microscopy (PFM) is based on the detection of local 

piezoelectric response of a piezo- or ferroelectric material induced by an external 

electric field. Taking advantage of the electromechanical coupling at the tip-surface 

junction for imaging polarized regions was originally introduced by Guthner et al. in 

1992 [81]. With the rapid development of electronic devices based on ferroelectric 
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thin films during the most recent decade, PFM nowadays is the most popular 

technique among the scanning probe microscopy (SPM) techniques for 

characterization of nanoscale ferroelectrics [82,83,84,85]. 

 

 

Figure 6.1 Standard PFM setup for vertical and lateral piezoresponse acquisition. 

 

    The standard experimental PFM setup is based on a commercial SPM equipped 

with a conductive probe, a four-quadrant photo detector, a function generator and two 

lock-in amplifiers as illustrated in figure 6.1. Sample is placed between the bottom 

electrode and the conductive tip (sometimes with top electrode on the film as well). 

An ac voltage between the tip and the bottom electrode is applied by the function 

generator. During PFM measurement, the tip is brought into contact with the surface. 

The voltage-induced cantilever deflection is detected by a reflected laser beam on a 

four quadrant photodiode. Tip deflection A and the periodic external bias Vtip to the tip 

are described as [83,84,85]: 

A=A0+ A1ω cos(ωt+φ),                                           (6.1) 

Vtip=Vdc+Vaccos(ωt)                                             (6.2) 

The first harmonic component in equation 6.1, A1ω, is the piezoelectric response of the 
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surface under bias Vtip. The phase of the electromechanical response of the surface, φ, 

with respect to the phase of the ac voltage, yields information on the domain 

directions. 

 

  
Figure 6.2 (1) Schematics of a structure consisting of two piezoelectric domains with opposite 

orientations separated by a non-piezoelectric stripe. (2) Schematics of expected PFM 

amplitude and phase images. 

 

    As schematically illustrated in fig.6.2, piezoelectric domains (fig.6.2(1)) can be 

distinguished from non-piezoelectric materials by different values of piezoresponse. 

Strong piezoresponse is expected from piezoelectric stripes (colored as white in 

fig.6.2(2)) and no piezoresponse from the non-piezoelectric materials (orange stripe in 

fig.6.2(2)). Piezoelectric domains with different orientations can be identified by PFM 

phase images. For example, ideally, two piezoelectric stripes with opposite 

orientations (fig.6.2(1)) should have same numerical piezoresponse as schematically 

demonstrated in the PFM amplitude image (fig.6.2(2), left side), however, their 

opposite domain orientations can be identified for having 180o difference in the phase 

image (fig.6.2(2)). 
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6.2.2 Quantitative Hysteresis Loop Acquisition 

    Formation of domains is very common in ferroelectric materials as it helps 

minimize system energy. These domains can be identified qualitatively using PFM. 

However, qualitative characterization is not enough to understand ferroelectric 

materials properties. A hystereis loop is essential as it contains important information, 

such as spontaneous polarization, saturated polarization and coercive field. 

 

Hysteresis loop measurement using modified Sawyer-Tower circuit 

Hsteresis loop measurement was usually carried out using a modified 

Sawyer-Tower circuit as illustrated in Figure 6.3 (a) [86,87]. 

 

(1) (2)  (3)  
Figure 6.3 (1) Schematics of modified Sawyer-Tower circuit. (2) Schematic illustration of 

ferroelectric polarization hysteresis loop (P-E loop). (3) Experimental polarization hysteresis 

loops of 2/3PbTiO3-1/3CoFe2O4 thin film on (100) SrTiO3 substrate [52]. 

 

    The voltage lying across the crystal Cx is applied on the horizontal plates of the 

oscilloscope, thus plotting on the horizontal axis a quantity which is proportional to 

the field on the crystal. The linear capacitor Co is connected in series with the crystal 

Cx. Voltage across Co is therefore proportional to the polarization of the crystal Cx. 
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This voltage is laid across the vertical plates of the oscilloscope. 

    The voltage Vy, across the vertical deflection plates of the oscilloscope is given 

by [88]: 

1 1 x x
y

o o o

dQ QV Idt dt
C C dt C

= = =∫ ∫                                       (6.3) 

The charges Qx on the crystal electrodes is given in SI units by 

0 0 0 0( ) ( ) ( )x f fQ AD A E P A E E P A E Pε ε χε εε= = + = + + = +                (6.4) 

So, ( ) ( )x x
y o f o f

o o o

Q VA AV E P P
C C C d

εε εε= = + = +                          (6.5) 

Here A is the electrode area, D is the electric displacement; χ and ε are the 

electric susceptibility and dielectric constant respectively. Pf is the nonlinear part of 

the polarization associated with the ferroelectric behavior. d is the thickness of 

ferroelectric material. 

Hysteresis loop is thus obtained by measuring switch charge Qx and polarization 

in figure 6.3(2) is calculated based on equation 6.4. Under an external electric field, 

the polarization increases linearly with the field amplitude, according to P-E 

relation: EP oχε= . This corresponds to segment AB in figure 6.3(2). The field is not 

strong enough to switch domains with the unfavorable direction of polarization in this 

region. As the field is increased the polarization of domains with an unfavorable 

direction starts to switch in the direction of the field and the measured charge density 

is increased rapidly (segment BC). The polarization response in this region is strongly 

nonlinear and equation EP oχε=  is no longer valid. Once all the domains are 

aligned (point C) the ferroelectricity again behaves linearly (segment CD). Point C on 
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figure 6.3(2) represents time at which Pf has reached its maximum and its value (Ps) is 

determined by extrapolating line CD back to zero applied field as indicated on figure 

6.3(2). If the field strength starts to decrease, at zero field the polarization is nonzero 

(point E); only part of the domains will back-switch due to domain pinning effects. To 

reach a zero polarization state the field must be reversed (point F). Further increase of 

the field in the negative direction will cause a new alignment of dipoles and saturation 

(point G). The field strength is then reduced to zero and reversed to complete the 

cycle. The value of polarization at zero field (point E) is called the remnant 

polarization, PR. The field necessary to bring the polarization to zero is called the 

coercive field, EC.  

    Hysteresis loop obtained experimentally sometimes will have some deviation 

from the ideal loop demonstrated in fig.6.3(2). Curves in fig.6.3(3) are hysteresis 

loops of 2/3PbTiO3-1/3CoFe2O4 thin film on (100) SrTiO3 with top and bottom 

electrodes [52]. Because of leakage caused by CoFe2O4, those curves are not closed. 

 

Hysteresis loop measurement using PFM technique 

Hysteresis loop measurement using PFM is different from technique using 

modified Sawyer-Tower circuit. Fundamentally, PFM base technique detects surface 

displacement rather than charge. Displacement loop instead of P-E loop is obtained as 

a direct result from the measurement. However, P-E loop can be transformed from 

displacement loop as there is a linear relation between piezoelectric coefficient dzz and 

the polarization [89]: 
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( ) / 2zz zz zzd Q P Eε π=                                                (6.6) 

Here εzz is the dielectric constant in normal direction to the film and Qzz is the 

electrostrictive coefficient, P(E) is the polarization at field E. And displacement (S) is: 

S=dzz*E*d                                                       (6.7) 

d is the thickness of the film. 

During the hysteresis loop acquisition using PFM, a dc field plus an ac field are 

applied to the sample as expressed in equation 6.2 and usually measurement is carried 

out with both top and bottom electrodes. The dc bias with a waveform illustrated in 

figure 6.4 is supplied as polarizing voltage and is increased in steps from –V to +V 

and then decreased from +V to –V with the same step size. At each step, the dc 

voltage is set to zero prior to imaging. 

 

 

Figure 6.4 Schematics of dc bias waveform. t1 is the writing period and t4 is the reading 

period. t3 is a waiting interval. 

 

Sample is polarized by the external dc bias in t1 time period (fig.6.4). Both 

amplitude and phase data are collected during the reading time period t4 after dc bias 

has been turned off for t3 time period. The amplitude and phase data are described by 

equation 6.1. Usually, the amplitude as a function of dc bias has a butterfly shape for 
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ferroelectric material as illustrated in figure 6.5(1). Ideally, it is symmetric (the inset 

shows an ideal shape of the amplitude curve) with respect to the y axis because before 

and after switching, the ideal ferroelectric material should have the same magnitude 

of displacement under the same value of dc bias. In reality, the observed dzz loop is 

asymmetric due to defects, domain wall movement and non-180o domains 

involvement etc. [90]. The phase loop in figure 6.5(2) gives information on domain 

orientations. Both amplitude and phase information are integrated into a single 

piezoresponse hysteresis loop (PR-E) as shown in fig.6.5(3). The absolute value in 

fig.6.5(3) denotes the piezoresonse amplitude and the positive/negative sign of the 

piezoresponse denote domain orientations. For example, in fig.6.5(3), domains under 

-20V external bias have the same magnitude of piezorepsonse as domains under +20V 

external bias. However, domains under -20V external bias has the opposite orientation 

as domains under +20V external bias. 

 

(1)  (2)  (3)  (4)  

Figure 6.5 (1) Illustration of butterfly amplitude loop. (2) Illustration of phase loop. (3) 

Piezoresponse (piezoelectric) hysteresis loop generated based on amplitude and phase data in 

(1) and (2). (4) Schematics of transforming dzz piezoresponse hysteresis loop to polarization 

hysteresis loop. 
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Polarization hysteresis loop (P-E) can be obtained by transforming piezoresponse 

hysteresis loop (PR-E) into P-E loop accoding to equation 6.5 and 6.6. The relative 

relationship between the PR-E loop and P-E loop is illustrated in fig 6.5(4). Coercive 

field for both PR-E loop and P-E loop is the same and the field at saturated point for 

both loops is the same as well. 

6.2.3 Switching Spectroscopy piezoresponse force microscopy 

Switching spectroscopy piezoresponse force microscopy (SS-PFM) is a novel 

technique based on PFM and is developed to quantitatively address local properties of 

ferroelectrics [26]. 

A typical SS-PFM setup is illustrated in figure 6.6. A specific custom-built 

shielded sample holder is used to allow direct tip biasing and to avoid capacitive 

crosstalk. For conducting purpose, measurement is performed using metal coated tips. 

Two function generators and a summation amplifier are adopted to superimpose the 

PFM imaging voltage V1(ω1) to the triangle switching voltage V2. V2 with a 

waveform schematically illustrated in fig.6.4 is supplied as a polarizing bias and V1 is 

supplied as an imaging voltage. The oscillation of the sample under V1 ac voltage will 

be transferred to the cantilever and sensed by the sensor. The output is further sent to 

the lock-in amplifier and only signal with the same frequency as the ac driving 

voltage will be locked and amplified. Depending on whether vertical PFM signal or 

lateral PFM signal is interested, different ac driving frequencies are selected. Vertical 

PFM measurement is usually performed with frequency ranging from 20KHz to 
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2MHz and lateral PFM measurement is normally conducted with a frequency around 

10KHz. 

 

 

Figure 6.6 Typical SS-PFM setup including two function generators, a summation amplifier 

(Σ) two lock-in amplifiers and a photolithography scanner head. 

 

One of the major hardware differences between PFM and SS-PFM is the extra 

photolithography scanner head in SS-PFM. Customized Matlab/LabView software is 

used to generate a scanning pathway illustrated as a grid shown in fig.6.7(1). The grid 

covers the interested area on the sample. The photolithography scanner head allows 

tip to trace the grid point by point and acquire hysteresis loop at each intersected point 

on the grid. Thus an X by Y local data map with spacing f between two neighboring 

points is obtained. 
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(1) .   (2)  

Figure 6.7 (1) Illustration of a pathway grid used in SS-PFM measurement. Data will be 

collected at each of the intersection. (2) Illustration of a piezoelectric hysteresis loop from one 

single point at the intersection. 

 

A schematic local piezoelectric hysteresis loop is shown in fig.6.7(2). It contains 

two piezoresponse (PR) branches: forward piezoresponse (PR+(V)) and reverse 

piezoresponse (PR-(V)) respectively. Neglecting other contributions to the 

Piezoresponse loop, the corresponding voltages for zero PR+(V) and PR-(V) are 

coercive voltage +
cV  and −

cV  respectively. +
remPR  and −

remPR  in the figure are 

positive and negative remnant response. +
satPR  and −

satPR  defines the saturation 

response and −+ −= satsats PRPRPR  is the maximal switchable response. The bias at 

the crossover between constant and rapidly changing regions of the loop are defined 

as domain nucleation voltages shown in fig.6.7(2) as +
nV  and −

nV . The SS-PFM 

measurement finally yields a real-space 3D data array of imprint, coercive bias, 

nucleation bias, work of switching, electromechanical activity and other dynamics 

characteristics of switching [26]. 

Traditional ferroelectric hysteresis loop measurement usually requires top and 
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bottom electrodes. However, CoFe2O4 will cause devastating leakage to the 

piezoelectric measurement with electrodes [80]. As SS-PFM is capable of performing 

local piezoresponse measurement without electrodes, it is chosen for our study.  

6.3 Experimental Results obtained by SS-PFM 

1/3PbTiO3-2/3CoFe2O4 films were grown on differently oriented SrTiO3 

substrates using pulsed laser deposition and a composite ceramic target as described 

previously. In all cases, film thicknesses were about 50nm. PbTiO3 and CoFe2O4 

self-assembled during growth into epitaxial nanostructures having PbTiO3/CoFe2O4 

interface approximately perpendicular to the film/substrate interface. Films grown on 

(001) SrTiO3 contain CoFe2O4 pillars surrounded by a continuous PbTiO3 matrix. In 

contrast, nanostructures grown on (110) and (111) SrTiO3 contain nanocolumns of 

PbTiO3 distributed in CoFe2O4. X-ray diffraction, scanning (SEM) and transmission 

(TEM) electron microscopy were used to assess the crystalline quality and phase 

morphologies as discussed in previous chapters. 

The SS-PFM (Asylum MFP3D) was implemented using a commercial atomic 

force microscope equipped with additional function generator, lock-in amplifier (DS 

345 and SRS 830, Stanford Research Instruments), photolithography scanning head 

and data acquisition system. Measurements were performed using Micromasch Au-Cr 

coated Si tips having a spring constant of 3N/m. During the acquisition process, the 

tip was biased using electrical voltage Vtip and the electromechanical response of the 

surface was detected as the first harmonic component (A1ω) of bias-induced tip 

deflection described by equ.6.1. The measurements were conducted using a step 
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(pixel) size of 6 nm. At each point, a piezoelectric response was recorded as a 

function of the tip bias. 

6.3.1 SS-PFM Results for (110) Oriented Thin Film 

    Fig.6.8(2) is a real-space SS-PFM map of piezoresponse. Domains of different 

piezoresponse magnitude and orientations can be identified using the scale bar. 

PbTiO3 platelets distributed in CoFe2O4 is observed and schematically illustrated in 

fig.6.8(3). The morphology given by SS-PFM is similar to what observed by SEM 

(fig.6.8(1)). The observation from conventional PFM amplitude image (fig.6.8(4)) and 

phase image (fig.6.8(5)) is also in good agreement with results from SEM (fig.6.8(1)) 

and SS-PFM (fig.6.8(2)).  

Piezoelectric loops are collected at each small step pixel in the SS-PFM map 

(fig.6.8(2)). Individual piezoresponse and phase loops from points marked 1 to 4 in 

fig.6.8(2) are demonstrated in fig.6.9. Only generated piezoresponse hysteresis loops 

for points 1,2 and 4 are demonstrated. Separated piezoresponse amplitude and phase 

loops in addition to the generated piezoreposne hysteresis loop are demonstrated for 

point 3. 

 

 

 



 87

     

   

Figure 6.8 1/3PbTiO3-2/3CoFe2O4 (110) oriented film (1) SEM Topography image. The 

dark-grey platelets with width of ~15nm are PbTiO3 (PTO) and the rest is CoFe2O4 (CFO) 

matrix. (2) SS-PFM map of piezoresponse (3) schematics of the PbTiO3 platelets identified 

based on the SS-PFM image. (4) Conventional PFM amplitude image (5) Conventional PFM 

phase image coupled with (4). 

 

    

Figure 6.9 Piezoelectric hysteresis loops and calculated piezoresponse. (1),(2),(4) are piezoelectric 

hysteresis loops at point 1,2 and 4. (3a) Amplitude curve at point 3. (3b) Phase curve at point 3. 

(3c) Piezoelectric hysteresis loop at point 3. 
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6.3.2 SS-PFM Results for (111) Oriented Thin Film 

 

(1)     (2)    (3)  

(4)   (5)  

Figure 6.10 (111) oriented 1/3PbTiO3-2/3CoFe2O4 thin film on SrTiO3(111) substrate. (1) SEM 

topography image. (2) Amplitude image from PFM measurement. (3) Phase image from PFM 

measurement. (4) SS-PFM map (5) One typical piezoelectric loop with relatively strong 

piezoreponse from SS-PFM measurement.  

 

    Piezoelectric properties of (111) oriented 1/3PbTiO3-2/3CoFe2O4 film with a 

PbTiO3 nanorods embedded in CoFe2O4 matrix (fig.6.10(1)) is investigated using 

both PFM and SS-PFM. Bright spots in the conventional PFM amplitude image 

(fig.6.10(2)) shows clear piezoresponse and the PFM phase image (fig.6.10(3)) shows 

different phase of these bright spots from the surrounding material. The bright sports 

in fig.6.10(2) must be PbTiO3 phase as CoFe2O4 is non-piezoelectric materials, which 

is in agreement with SEM observation (fig.6.10(1)) regarding the size and density of 

PbTiO3 phase. Qualitatively, the conventional PFM images demonstrate that confined 

(111) PbTiO3 phase is piezoelectrics. However, isolated PbTiO3 structures can not be 
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identified in the SS-PFM map (fig.6.10(4)). Fig.6.10(5) is a typical piezoresponse 

loop from a cell among those having relatively strong piezoresponse in SS-PFM map. 

Quantitatively, the piezoresponse of (111) oriented PbTiO3 (fig.6.10(5)) is about half 

of the value from (110) oriented PbTiO3 (fig.6.9(3)).  

6.3.3 SS-PFM Results for (001) Oriented Thin Film 

For comparison and system calibration purpose, SS-PFM measurement on (001) 

1/3PbTiO3-2/3CoFe2O4 is carried out as well. 

 

(1)  (2)  

Figure 6.11. (100) oriented film of composition 1/3PbTiO3-2/3CoFe2O4. (1) SEM topography. 

(2) SS-PFM results including (a) amplitude curve, (b) phase curve and (c) generated 

piezoelectric hysteresis loop. 

6.3.4 Lateral Piezoresponse 

    10K Hz ac frequency is used for the lateral piezoresonse measurement in order to minimize 

the resonant effects and enable the transduction of the lateral surface vibrations to the tip. (110) 

oriented film does not give clear lateral piezoresponse (fig.6.12(1) and fig.6.12(2)) while for (111) 

oriented film, isolated piezoelectric domains are observed in the lateral piezoresponse 

measurement (fig.6.12(3) and fig.6.12(4)). Domain sizes in fig.6.12(3) and (4) is similar to what 
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observed in SEM image (fig.6.10(1)). 

 

 

(1)  (2)  

(3) (4) (5)  

Figure 6.12 PFM lateral piezoresponse. (1) and (2) are amplitude and phase image 

respectively for (110) oriented 1/3PbTiO3-2/3CoFe2O4 film. (3) and (4) are amplitude and 

phase image respectively for (111) 1/3PbTiO3-2/3CoFe2O4 oriented film. Both (111) and (110) 

oriented film are measured under the same experimental conditions. (5) Schematics of 

intruded PbTiO3 nanorods out of the CoFe2O4 matrix for the (111) oriented film. 

    

6.4 Discussion 

Semi-quantitatively theoretical calculation of piezoresponse for (110) PbTiO3 is 

performed. Under circumstance of SS-PFM measurement, there is neither top nor 

bottom electrode and the tip serves as a moving top electrode while the sample holder 

serves as bottom electrode. The electrical field distribution under this geometry is 

inhomogeneous and needs to be considered in the semi-quantitative calculation.  
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For transversely isotropic material, the electrical field structure for spherical tip 

geometry can be solved using image charge method. In this method, the tip geometry 

is represented by an isopotential voltage contour expressed as [83,91,92] 

2 2
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1( , )
2 ( ) ( / )
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me m

QV z
z d

ρ
πε ε κ ρ γ
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=

=
+ + +

∑                            (6.8) 

Where 2 2
1 2x xρ = +  is radial coordinate and z are vertical coordinate (figure 6.13a). 

eε : dielectric constant of the ambient; 

33 11κ ε ε= : effective dielectric constant of the material; 

33 11/γ ε ε= : dielectric anisotropy factor; 

-dm: z coordinate of the point charge Qm. 

 

 

Figure 6.13(a) Tip coordinate system (x1,x2,z). (b) 2D projection from the top. r is the tip 

radius, a is the x coordinate of the tip center. 0 point of x axis is at the interface of 

CoFe2O4/PbTiO3. 

 

Qm named image charge can be expressed as 

1 ( ) /[( )( )]m m e e mQ Q r r R dκ ε κ ε+ = − + + ∆ +                                (6.9) 

and 2
1 /( )m md r R r r R d+ = + ∆ − + ∆ +  

where, 0 04 eQ rUπε ε= , 0d r R= + ∆ , U is the tip bias, r: tip radius 
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ΔR: distance between the tip and the sample surface 

The inhomogeneous electrical field distribution can thus be solved by replacing 

the tip geometry with a charge contour described by equation 6.7. However, the above 

method is quite complicated practically. There is an alternative simpler approach to 

solve the inhomogeneous electrical field distribution issue, which names effective 

point charge model [91]. In the effective point charge model, the tip is represented by 

a single charge described as 

02 ( ) /e eQ rUπε ε κ ε κ= +                                           (6.10) 

The single charge Q is located at: /ed rε κ=  

For simplicity reason, effective point charge model is adopted in the following 

calculation. For (110) PbTiO3 ferroelectric platelet with γ=0.6 embedded in a 

nonferroelectric media, the vertical piezoresponse PRv(a,r) under the bias can be 

calculated as [92]: 
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were C(110) is a coefficient which converse piezoreponse along (001) orientation into 

piezoresponse along (110) orientation [93]. Function g(a,r,υ) represents tip position 

with respect to the PbTiO3 platelet as illustrated in figure 6.12(b) and can be 

expressed as [92]: 
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where L (~15nm) is the average width of (110) PbTiO3 platelets. r (~30nm) is the tip 

radius. 

Normalized theoretical piezoresponse for (110) oriented sample as the tip scans 

along x axis (fig.6.13b) is demonstrated in fig.6.14(2). The blue round dots labeled 1 

to 4 are normalized experimental piezoresponse at points 1 to 4 marked in fig.6.8(2) 

and the tip positions at these 4 points are illustrated in fig.6.14(2). As shown in 

fig.6.14(1), the normalized experimental values fit the theoretical piezoresponse curve 

very well except point 1 because the electrostatic noise is not considered in the 

calculation. At point 1, tip locates mainly on CoFe2O4 with very weak contact on the 

edge of PbTiO3 as shown in fig.6.14(2). Electrostatic response is strong in this 

scenario which results a deviation of the experimental value from the theoretical  

 

(1)  (2)  

Figure 6.14 (1) Normalized calculated piezoresponse as a function of tip position and 

experimental results (points 1 to 4). (2) Illustration of tip position with respect to PbTiO3 

nanoplatelets. 

 

curve. At point 2, the experimental value fits the curve very well, however, there is a 
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shoulder in the hysteresis loop (circled area in fig.6.9(2)). Existence of the shoulder is 

believed due to unstable domain switching during the loop acquisition cycle. At this 

location, tip still touches the PbTiO3 platelet on the edge as shown in fig.6.14(2) 

which causes the unstable domain switching. Tip covers the PbTiO3 in full width 

when it moves to point 3. The most strong piezoresponse out of the four points is 

observed at this position (fig.6.9(3)). Though piezoresponse is the strongest at point 3, 

saturated piezoresponse is not observed. When tip moves to point 4, the piezoresponse 

behaves similar to that at point 2 as tip again only touches PbTiO3 platelet on edge at 

point 4. Unambiguous domain switching is observed at point 2,3 and 4, especially at 

point 3 as shown in fig.6.9(3). 

For (111) oriented sample, domain switching is not observed. The SS-PFM 

measurement shows the forward branch and reverse branch of the piezoresponse loop 

overlap with each other (fig.6.10(5)). As the PFM measurement (fig.6.10(2) and 

fig.6.10(3)) proves that the (111) PbTiO3 nanorods are piezoelecrics, the hysteresis 

loop in fig.6.10(5) must be a part of a hysteresis loop. Curve showing domain 

switching features is not observed only because 10V maximum applied bias is not 

enough to switch the (111) oriented confined PbTiO3 domains. 

The tip deflection recorded by SS-PFM equipment in unit of volt as shown in fig 

6.9 and fig.6.10(5) can be converted into real film surface displacement in unit of 

nanometer: 

γβvh =                                                         (6.13) 

where, v is the tip deflection voltage shown in the piezoresponse loops. β defines the 
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equipment sensitivity. The Asylum system for this measurement has a sensitivity of 

1.2x10-4. γ=47.03nm/V is the equipment calibration coefficient. 

Though accurate surface displacement can be calculated using equation 6.13., 

accurate calculation of dzz is difficult because of the inhomogeneous field distribution 

under the tip. Under this circumstance, dzz can be roughly estimated as 

/zzd displacement bias= under an assumption that the strain and electrical field have 

same dependence on locations inside the film. Compared to the dzz value obtained by 

others [52], dzz from SS-PFM measurement (dzz(100)~11pm/V, dzz(110)~4pm/V, 

dzz(111)~2pm/V) are about 1/5~1/6 of the value of their counterparts. (001) oriented 

PbTiO3 has the strongest piezoresponse, (111) oriented PbTiO3 has the weakest 

piezoresponse and piezoresponse from (110) oriented PbTiO3 falls in between, which 

is largely due to their projection angle to [100] easy polarization direction. 

Considering the existence of ~50% a PbTiO3 domains and the dissolution of Fe in 

PbTiO3, the polarization is expected to be reduced by about 80%, which explains the 

weak piezoresponse we observe using SS-PFM. In addition, the nano-faceting 

structure also affects the polarization especially for our structures with small lateral 

size. The depolarization field is likely increased because of the nano-facets in case of 

{111} oriented film. For film of {110} orientation, effects of nano-facets on 

polarization is minimized by the coincidence of macro- and nanoscale interface which 

gives smooth {111} oriented interface. 

6.5 Conclusion 

The SS-PFM measurement shows possession of piezoelectricity and 
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unambiguously domain switching under 10V bias for isolated PbTiO3 nanoplatelets in 

{110} oriented film. However, 10V is not enough to drive the polarization to a 

saturated value. For lateral piezoresponse of (110) oriented film, PFM measurement 

shows no piezoresponse which is reasonable as the nanoplatelets are confined by 

matrix. For film of {111} orientation, domain switching is not observed for isolated 

PbTiO3 nanorods under 10V bias using SS-PFM. However, piezoelectric response is 

proven by conventional PFM measurement. Weak lateral piezoresponse as shown in 

fig.6.12(3) and fig.6.12(4) is possibly due to the protruded PbTiO3 above the film 

surface as illustrated in fig.6.12(5). (111) PbTiO3 nanorods beneath the CoFe2O4 

surface are confined by CoFe2O4 matrix and no lateral piezoresponse is expected. As 

piezoelectricity is a direct evidence of ferroelectricity for PbTiO3, both (110) and (111) 

isolated PbTiO3 nanostructures under confinement are ferroelectric. However, it is 

very unlikely to have extrinsic piezoeffect in these confined nanoferroelectrics under 

local electrical field due to mechanical constraint and depolarizing field. It is worth to 

mention that for <111> direction of electrical field, there is no preferent 90o domains 

and extrinsic effect is impossible. Therefore, the SS-PFM measurement allows us to 

estimate intrinsic piezoeffect which is much weaker than the value measured with 

electrodes [52]. Roughly estimated value based on our SS-PFM measurement is about 

10 times less than the bulk value (~79pm/V). For quantitative measurement of 

piezoelectric constant of confined nanoferroelectrics, more theoretical and 

experimental work needs to be done due to the complicated inhomogeneous field 

distribution and the unknown depolarizing field. 
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Summary 

1. PbTiO3-CoFe2O4 films with various compositions, thicknesses and 

orientations have been fabricated on SrTiO3 substrates after a systematic study on 

PLD growth process of self-assembled biphasic films. It is found that growth 

temperature is sensitive and critical as Pb is volatile at elevated temperatures. 

Considerable impact on film quality can be seen for films grown at temperature 20K 

higher or lower than the optimum temperature. Each of the constituent phases has a 

growth temperature range for producing high quality single crystal film. Optimum 

growth temperature for two-phase self-assembled films is located in the overlap 

temperature range. This empirical finding could apply as well to other two-phase 

self-assembled epitaxial film growth using PLD. Oxygen environment is necessary to 

maintain stoichiometric Pb/Ti ratio, however, too much oxygen will create extra 

oxidized Pb phase (e.g., Pb3O4, PbO2) with different valence state especially when 

PbTiO3 is the majority phase. On the other hand, not enough oxygen pressure will 

result in nonstoichiometric Pb/Ti ratio. Therefore, the tolerant range for oxygen 

pressure is narrow. This leads to a rigid condition for target-substrate distance. Thus, 

the optimum growth conditions to obtain high quality films with distinct separation of 

epitaxial PbTiO3 and CoFe2O4 nanophases corresponds to a very narrow range of 

growth parameters centered at substrate temperature (903K), oxygen pressure 

(100mTorr), target-substrate distance (~3.7cm) and laser fluence (~1.0J/cm2). 

2.  Analysis of the two-phase morphologies and nanostructures of interfaces 
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between PbTiO3 and CoFe2O4 phases shows that all interfaces have nano-facets along 

{111} plane. For films of {001} and {111} orientations, these nano-facets form 

macroscopic (average) interfaces which are normal to the substrate and have 

preferable orientations along {110} for {001} films and along {112} for {111} films. 

For {101} film, the {111} planes are perpendicular to the film/substrate interface; 

therefore go through the entire film thickness. Since the two-phase morphologies are 

described well by modeling based on the dominant role of elastic interaction between 

the phases, it is possible to conclude that the morphologies which are determined by 

the configuration of macroscopic interfaces are dictated by the trend of minimizing 

the elastic energy of internal stress while the faceting nanostructures of these 

interfaces minimize the interface energy. It can be suggested that faceting 

nanostructures of interfaces are important for relaxation of the internal stresses and 

electromagnetic/magnetoelectric properties of the films through the depolarizing and 

demagnetizing effects.  

The study of small thickness films for all orientations shows that the 

PbTiO3/CoFe2O4 interfaces deviate from the vertical direction near the substrate but 

reside on {111} planes. Direction of deviations determines the phase that covers the 

substrate during the initial growth stage and is determined by the energy of interface 

with substrate and surface energy. The PbTiO3/SrTiO3 interface energy is the lowest 

for all film orientations compared to CoFe2O4/SrTiO3 interface energy because the 

crystal lattices of these phases are very close. However, the thermodynamics of the 

first few layers of deposited phases depends also on surface energy of these phases. 
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Therefore, for the {111} films, the substrate is covered by CoFe2O4 which has much 

lower surface energy than the surface energy of PbTiO3. It may explain why PbTiO3 

forms matrix in {001} film while CoFe2O4 forms matrix in {111} film. 

Thus we can conclude that accounting of interface and surface energies is 

important for description of nano-faceting of interfaces and the near substrate zone of 

the films while the two-phase morphology (shape, orientation and mutual 

arrangement of nanophases) is determined by the elastic interactions. Both 

contributions to thermodynamics should be included in theoretical model for design 

of controlled nanostructure.  

3. The investigation of the stress state of the {001} film arising due to 

paraelectric-ferroelectric transition of PbTiO3 have discovered the polydomain 

nanostructure of the ferroelectric phase. Relative fractions of the in-plane and 

out-of-plane domains are determined. It is found that only 50%-60% domains 

(c-domains) have polarization normal to the film. Together with the effect of 

dissolution of Fe in PbTiO3, which decreases PbTiO3 tetragonality (down to ~1.04 

according to our estimation), existence of the a domains and constraint should lead to 

essential decrease of intrinsic piezoresponse of the film. Since the measurement of the 

piezoelectricity with cover electrodes gives a value of piezoelectric constant normal to 

film/substrate interface around 50pm/V while for bulk crystal it is about 80pm/V, we 

can conclude that this relative large piezoelectric constant contains large extrinsic 

contribution due to movement of nano-domain walls. This large extrinsic piezoeffect 

of PbTiO3 phase is important for estimation of mechanical interaction between 
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PbTiO3 and CoFe2O4 and their electromagnetic coupling. In principle, movable 

PbTiO3 domains will diminish ME coupling while enhance EH coupling. Overall, 

formation of domains as a main mechanism of strain relaxation can exist in all 

self-assembled epitaxial films and needs to be considered carefully when dealing with 

composite multiferroic coupling. 

4. Switching spectroscopy piezoresponse force microscopy (SS-PFM) is used to 

characterize local piezo- ferroelectric property of confined ferroelectrics in {110} and 

{111} oriented films with composition of 1/3PbTiO3-2/3CoFe2O4. It is proved that 

PbTiO3 nano-inclusions exhibit ferroelectricity in both films. 180o domain switching 

is observed under measurement condition (<10V) for the {110} oriented films but not 

for the {111} film. Quantitatively, both films yield a piezoresponse of about 15% 

compared to bulk single crystal PbTiO3. It is a reasonable value of intrinsic 

piezoeffect taking into account mechanical and electrical constraints (depolarizing 

field) as well as the effect of Fe dissolution and possible in-plane domains. 
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Appendix.1 Growth parameters of 1/3CoFe2O4-2/3PbTiO3 films  
Temp Distance Laser Fluence Repetition  Oxygen Pulses 

Substrate 
(K) (cm) (J/cm2)  rate(Hz) (mTorr)   

STO(100) 903 6.5 0.7 10 100 54000 
STO(100) 903 6.5 1.1 10 100 54000 
STO(100) 903 6.5 1.1 10 100 72000 
STO(100) 863 6.5 1.1 20 100 24000 
STO(100) 863 6.5 1.1 20 65 48000 
STO(110) 863 6.5 1.1 20 65 48000 
STO(100) 903 4.5 1 20 65 48000 
STO(100) 863 4.5 1 20 65 48000 
STO(100) 863 4.5 1 20 100 48000 
STO(100) 863 4.5 1 10 65 48000 
STO(100) 608 4.5 1.1 10 65 48000 
STO(100) 863 4.5 1.1 5 65 48000 
STO(100) 863 4.5 1 10 100 48000 
STO(100) 878 6.5 0.8 10 100 48000 
STO(100) 878 6.5 0.7 5 100 24000 
STO(100) 873 6.5 0.7 5 100 24000 
STO(100) 883 6.5 0.7 5 100 24000 
STO(100) 883 6.5 0.8 5 134 15000 
STO(100) 883 6.5 0.8 5 165 15000 
STO(100) 883 6.5 0.8 10 165 15000 
STO(100) 883 6.5 0.8 3 165 15000 
STO(100) 903 4.5 0.8 5 160 24000 
STO(100) 881 4.5 0.8 5 160 24000 
STO(100) 903 4.5 0.8 5 160 24000 
STO(100) 888 4.5 0.8 5 160 24000 
STO(100) 903 4.5 0.8 5 160 36000 
STO(100) 898 4.5 0.8 5 160 24000 
STO(100) 898 4.8 0.8 5 160 24000 
STO(100) 898 4.5 1.7 5 100 24000 
STO(100) 898 4.5 1.7 5 130 24000 
STO(100) 898 4.5 1.6 5 100 24000 
STO(100) 883 5.2 1.7 3 100 36000 
STO(100) 898 5.5 1.7 5 100 24000 
STO(111) 903 4.5 1.3 5 100 24000 
STO(110) 903 3.6 0.9 5 100 24000 
STO(111) 903 3.6 0.9 5 100 24000 
STO(110) 903 3.6 0.9 5 100 24000 
STO(111) 903 3.6 0.9 5 100 24000 
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