
THE INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and 
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the  
A. James Clark School of Engineering. It is a graduated National Science 

Foundation Engineering Research Center.

www.isr.umd.edu

A Regression-Based Entropy Distiller 
for RO PUFs

Chi-En Yin and Gang Qu

ISR TECHNICAL REPORT 2011-12



A Regression-Based Entropy Distiller for RO PUFs
Chi-En Yin and Gang Qu

Department of Electrical and Computer Engineering & Institute for Systems Research
University of Maryland, College Park, USA

{chienyin,gangqu}@umd.edu

Abstract—Silicon physical unclonable functions (PUF) utilize
the variation during silicon fabrication process to extract in-
formation that will be unique for each chip. There have been
many recent approaches to how PUF can be used to improve
security related applications. However, it is well-known that the
fabrication variation has very strong spatial correlation and this
has been pointed out as a security threat to silicon PUF. In
fact, when we apply NIST’s statistical test suite for randomness
[1] against the random sequences generated from a population
of 125 ring oscillator (RO) PUFs [2] using classic 1-out-of-8
Coding [3], [4] and Neighbor Coding [5], none of them can
pass all the test. In the paper, we propose to decouple the
unwanted systematic variation from the desired random variation
through a regression-based distiller, where the basic idea is to
build a model for the systematic variation so we can generate
the random sequences only from the true random variation.
Applying Neighbor Coding to the same benchmark data [2],
our experiment shows that 2nd and 3rd order polynomials distill
random sequences that pass all the NIST randomness test, so
does 4th order polynomial in the case of 1-out-of-8 Coding,
which demonstrates that our method can bolster the security
characteristics of existing PUF schemes.

Index Terms—ring oscillator (RO), physically unclonable func-
tions (PUFs), random number generator (RNG), linear regres-
sion, variation decomposition

I. INTRODUCTION

A. Overview

One of the most renowned principles for the design of a
cryptosystem is Kerckhoff’s law: “A cryptosystem should be
secure even if everything about the system, except the key,
is public knowledge. (1883)” In order to provide a secure
storage for cryptographic keys, contemporary tamper-resistant
devices such as smart cards arm themselves with a number
of countermeasures to defeat various kinds of invasive, semi-
invasive and non-invasive physical attacks. Nevertheless, it is
still possible for attackers to read, and possibly write, the
secret bits in the non-volatile memory through the electron
beam of a Scanning Electron Microscope (SEM) once the
surface of the chip is exposed by, for instance, Focused
Ion Beam (FIB). Physical unclonable functions (PUFs), in
contrast, are ‘inseparable’ because the underlying nano-scale
structural disorder will most likely be damaged during the
course of physical tampering of the device, so will the keys.
Since the first introduction of PUFs, many types of circuitry
have been proposed to realize the notion. Most notable are
Arbiter PUFs [6], RO PUFs [3] and SRAM PUFs [7], [8].
Many methodologies have been proposed to advance the art
in terms of reliability, security, and hardware efficiency. Some

Fig. 1. The typical workflow of a Weak RO PUF

researchers further classify PUFs as ‘Strong’, ‘Controlled’, and
‘Weak’ mainly according to the number of challenge-response
pairs (CRPs) a PUF can generate [9]1. Considering that a
large number of CRPs can be achieved through a keyed hash
function seeded by a Weak PUF, we chooses Weak PUFs as the
context of the discussion, though the proposed methodology is
expected to work well with Strong PUFs in a similar fashion.
Figure 1 outlines the typical workflow of a Weak RO PUF
that involves the following steps.

1) Fabrication Variation Extraction: The very first task of
PUFs is to measure the unique characteristics endowed from
the uncontrollable fabrication process. The analog-to-digital
transformation is part of the physical entropy source subject to
tests and in our case, this step corresponds to a full frequency
characterization of a RO array [2].

2) Secret Selection: This step selects secure and reliable
secrecy out of the variation profile measured in the previous
step. Existing approaches include the classic 1-out-of-8 Coding
[3] and its successor Index-Based Syndrome (IBS) Coding [4],
Chain-like Neighbor Coding [5], [2], [10], Temperature-Aware
Cooperative (TAC) Coding [11] and Group-Based Coding
[12].

3) Error Correction: To further enhance reliability, error
correcting code (ECC) may be applied. Codes have been used
for RO PUFs include Hamming Code and BCH Code [3].

4) Tests for Randomness and Reliability: The security as-
pects of a RNG can be judged by the statistical characteristics
of the random sequences it produces. The NIST test suite [1] is
regarded as an industrial standard to test cryptographic RNGs
and thus applicable to our cases. Reliability, on the other hand,
can be gauged by placing the device under extreme conditions
for secret regeneration and failure rate below 1 part per million

1The words weak and strong are irrelevant to the strength of PUF security
[9].



Fig. 2. The placement of 512 ROs as a 16 (columns) by 32 (rows) array;
for site ROx,y , its running frequency is labeled zx,y

(ppm) has been reported under severe fluctuation of ambient
temperature and supply voltage [4].

If we set aside the issue of reliability at a moment, one
may think that random sequences generated by well-known
secret selection strategies such as 1-out-of-8 Coding and
Neighbor Coding should pass the NIST randomness tests. To
our surprise, based on the frequency characterization collected
from 125 FPGA devices [2], no random sequence actually pass
all tests that are applicable to their length, see Table I. The
possible causes are discussed next.

II. SECURITY ANALYSIS

A. Failure Cause 1: Chain Dependency

The high failure rate of Chain-like Neighbor Coding can
be attributed to the non-independent comparison chain. Take
3 ROs ROA, ROB and ROC for example, two random bits
are generated by comparing ROA with ROB and ROB with
ROC . As we know, to pass NIST test for randomness, the
random sequence is expected to demonstrate no significant
deviation from the probability mass function (p.m.f) of tossing
a fair coin twice, i.e., the 4 possible outcomes ‘00’, ‘01’, ‘10’
and ‘11’ are expected to equally likely with probability 1/4.
In fact, it is not case for the two bits we generate from the 3
ROs, assuming that the 6 outcomes ROA < ROB < ROC ,
ROA < ROC < ROB , ROB < ROA < ROC ,. . . , ROC <
ROB < ROA are equally likely with probability exactly 1/6.
In turn, the probability of the outcome ‘00’, ‘01’, ‘10’ and
‘11’ of the 2-bit random sequence is 1/6, 1/3, 1/3 and 1/6
respectively, a clear deviation from the p.m.f of the ‘ideal’
random sequence; consequently, the min-entropy is actually
1.58 rather than 2, our first thought. One solution is to break
up the chain such that all ROs only pair up with its neighbor
once, i.e., (ROA, ROB), (ROC , ROD). . . . As Table I shows,
the decoupling improves the pass rate but still is not good
enough to pass all.

B. Failure Cause 2: Spatial Correlation

Generally RO PUFs places its ROs as a 2-D array. The
dataset we use lays out 512 ROs as a 16 (columns) by 32

Fig. 3. The across-die frequency topology of a RO array. The roughness
of the surface represents the random variation while the slope represents the
systematic [13]

Fig. 4. Illustration of the impact from systematic variation even after pairs
are decoupled.

(rows) grid on each of the 125 FPGA devices [2] as illustrated
in Figure 2, where zx,y denotes the running frequency of RO
at site ROx,y . One may conjecture that we can generate 1-
bit secrecy out of any RO pair; however, it is not secure if
we consider about the underlying spatial correlation. Figure
3 shows how the fabrication variation of the semiconduc-
tor process portrays: The roughness of the surface (random
variation) is superimposed upon a spatial trend (systematic
variation). The systematic component can significantly reduce
the min-entropy of the extracted secrecy; for instance, if one
generates bit A as ‘0’ if A1 < A2, else ‘1’ and similarly, bit
B ‘0’ if B1 < B2, else ‘1’, spatial correlation would render
p(A = B) >> p(A 6= B).

While spatial correlation may explain the reason why none
of the coding strategies in Table I passes all tests, it is
interesting to note that in fact the threat was acknowledged
by Chain-like Neighbor Coding [5]. This is exactly the reason
behind its design principles: 1) place ROs as close as possible
and 2) pair ROs located adjacent to each other. Their key
idea is to let the systematic effect cancel out with each
other, extracting secrecy out of the random effect. We see the
principles have been accepted by [10]. Nevertheless, to explain
those failure cases we postulate that the small remnant of the
systematic effect can still be captured by the test. To illustrate,
Figure 4 shows a hypothetical frequency characterization of 16
consecutive ROs. If, say, frequency relation zi < zi+1 gives



1-out-of-8 Chain-like Neighbor Decoupled Neighbor
P-VALUE PROPORTION P-VALUE PROPORTION P-VALUE PROPORTION STATISTICAL TEST
0.013689 122/125 0.000072 * 125/125 0.000003 * 115/125 * Frequency
0.166594 125/125 0.000000 * 125/125 0.050764 120/125 BlockFrequency
0.231636 121/125 0.000000 * 125/125 0.000000 * 119/125 * CumulativeSums (m-2)
0.059743 122/125 0.000000 * 125/125 0.000000 * 118/125 * CumulativeSums (m-3)
0.002320 117/125 * 0.000000 * 0/125 * 0.302788 120/125 Runs
0.000603 123/125 0.000000 * 62/125 * 0.000062 * 124/125 LongestRun
0.000001 * 117/125 * 0.000000 * 0/125 * 0.000001 * 119/125 * ApproximateEntropy
0.004904 124/125 0.000000 * 1/125 * 0.070160 116/125 * Serial (forward)
0.552185 125/125 0.000000 * 117/125 * 0.192277 123/125 Serial (backward)

TABLE I
NIST TEST RESULTS WITH RESPECT TO THE RANDOM SEQUENCES GENERATED BY 1-OUT-OF-8 CODING, CHAIN-LIKE NEIGHBOR CODING AND

CHAIN-LIKE NEIGHBOR CODING. FOR 1-OUT-OF-8 CODING: M = 32 FOR BLOCK FREQUENCY TEST, m = 1 FOR APPROXIMATE ENTROPY TEST
AND m = 4 FOR SERIAL TEST. FOR CHAIN-LIKE NEIGHBOR CODING AND DECOUPLED NEIGHBOR CODING: M = 32 FOR BLOCK FREQUENCY

TEST, m = 2 FOR APPROXIMATE ENTROPY TEST AND m = 5 FOR SERIAL TEST. ‘*’ MARKS A FAILURE.

us a ‘0’, else ‘1’, it is likely for the up slope to yield more
‘0’s than ‘1’s and vice versa for the down slope. The same
argument can also explain the failures we found in 1-out-of-8
coding strategy, or more generally, 1-out-of-k coding strategy;
when k = 2, it reduces to the proposed Decoupled Neighbor
Coding. Lastly, we stress that the systematic trend can stay
undiscovered when one tallies the total number of ‘0’s and
‘1’s or even when one calculates the inter-die uniqueness [3].

C. A Cautious Note on Spatial Correlation

As Figure 3 above, Figure 7 in [7] and the failures in Table
I argue, raw PUF measurements cannot be assumed as i.i.d.;
nevertheless, assuming PUF output i.i.d. is not uncommon
in literature and has been affirmed by statistical results [4].
The key difference appears to be our direct test on raw
output as opposed to those obfuscated by a linear feedback
shift register (LFSR) and/or an output hash function that
de-correlate the challenge and the response [14], [7], [4].
Secondly, the issue of spatial correlation may be more serious
than we thought because across-die spatial variation mostly
results from deterministic across-wafer variation [15], that
is, once process parameters surrounding chips under attack
get exposed, the opponent can gain unexpected advantage
to model the systematic trend and attack the min-entropy
we over-estimate. Next, we describe how to eliminate the
systematic variation upfront.

III. SYSTEMATIC VARIATION ELIMINATION

The goal is to model the unwanted systematic variation so
that we can decouple it from the desired random variation;
most importantly, this section shows how the distillation
process in Figure 1 can strengthen PUF output. Due to
its simplicity, we apply polynomial regression to model the
systematic trend. Indeed, the method can fix all the failures of
1-out-of-8 Coding and Decouple Coding in Table I.

A. The Causes of Process Variation

The main causes of the systematic variation can be attributed
to equipment and process nonuniformity such as the focus
shift of photolithography, the gradient of thermal annealing,
dissimilar interactions between circuit layout and the chemical
mechanical polishing (CMP) process. On the other hand,

the random component accounts for the difference between
those estimates and the observed data; the constituents include
unidentified patterns, measurement errors and most impor-
tantly, atomic-level stochastic phenomena such as random
dopant profiles.

B. Polynomial Regression

Polynomial regression is a form of linear regression in
which the relationship between independent variables and a
dependent variable is modeled by a polynomial of order k,
where k is a non-negative integer. For a RO PUF with its m
ROs arranged as r rows by c columns, the Cartesian coordinate
(x, y) of ROs is regarded as two independent variables and
the oscillating frequency z is the single dependent variable. In
such a 2D setting, our polynomial regression model of order
k, i.e., xpyq, p + q ≤ k, 0 ≤ p, q ≤ k, takes the general form
of

zx,y =

k∑
i=0

i∑
j=0

βk,i,jx
i−jyj + εk,x,y (1)

where 1 ≤ x ≤ c, 1 ≤ y ≤ r; z, β, ε ∈ R. On the right
hand side of the equation, the summation term models the
systematic variation and the residual term εk,x,y models the
random variation. Equivalently, they can be written in matrix
form

Z = Ωkβk + εk (2)

where

Ωk =


ωk,1,1 ωk,1,2 · · · ωk,1,n

ωk,2,1 ωk,2,2 · · · ωk,2,n

...
...

. . .
...

ωk,m,1 ωk,m,2 · · · ωk,m,n

 ,



Z =



z1,1
...
zc,1
z1,2

...
zc,2

...
z1,r

...
zc,r



,βk =



βk,0,0
βk,1,0
βk,1,1
βk,2,0
βk,2,1
βk,2,2

...
βk,k,0

...
βk,k,k


, εk =



εk,1,1
...

εk,c,1
εk,1,2

...
εk,c,2

...
εk,1,r

...
εk,c,r



,

m = r×c, n = (k+1)(k+2)
2 and ωk,p,q = xi−jyj in which x =

((p− 1) mod r) + 1, y = bp−1r c+ 1, i = b−1+
√

1+8(q−1)
2 c,

j = (q−1)− i2+i
2 , 1 ≤ p ≤ m and 1 ≤ q ≤ n. For each model

of order k, it is an overdetermined system, i.e., m > n, and can
be solved by the ordinary least squares (OLS) method, which
produces the ‘best’ estimates β̂ in the sense of minimum sum
of squared errors as (3) indicates. By taking partial directives
of (4) with respect to each βk,i,j and letting each gradient to
zero, the solution of OLS can be expressed as (5) in matrix
form.

β̂k = argmin
βk

{
c,r∑

x=1,y=1

ε2k,x,y

}
(3)

= argmin
βk

{
c,r∑

x=1,y=1

(zx,y −
k∑

i=0

i∑
j=0

βk,i,jx
i−jyj)2

}
(4)

= (ΩTkΩk)
−1ΩTkZ (5)

C. Model Selection

The higher the order we use, the less the error in the least
squares sense results. Therefore, a model in high order is
expected to yield less residual terms, that is, increase the
difficulties in error control and eventually reduce the efficiency
of RO PUFs. A model in low order, on the other hand, may not
be able to capture all deterministic variation in the systematic
term and in turn weaken the security. Due to these concerns,
the goal of our model selection is to find out the minimal (op-
timal) order of the polynomial-based entropy distiller through
which the output bitstrings demonstrate strong randomness.
Two tasks remain: i) construct random sequences highlighting
underlying spatial correlation, and ii) apply effective tests for
randomness on the sequences. For simplicity, we pick an order
and find a solution against that model for each PUF device
before considering another order.

1) Random Sequence Generation: There are numerous
ways to generate a random sequence from the frequency pro-
file of a RO array. As shown earlier, secret selection schemes
are design specific. Instead of exhausting all possibilities, we
try to devise general-purpose random sequences and use them
to gauge the existence of spatial correlation in the distilled
random component. For this reason, we purposely pair up
ROs at locations far apart, simply opposite to the design

principle of Neighbor Coding whose goal is to avoid spatial
correlation. Also wanted is the length of sequence to be
greater than certain minimum values so that certain tests can
bear statistical significance. As a result, two indicator random
sequences S and T are formulated according to rules (6) and
(7) respectively. Simply put, we cut the array into two subsets
in the middle along the axis and form pairs with two elements,
one subset each, in distance half the corresponding side length
of the given rectangle RO array.

S = X1, . . . , XlX , . . . , XLX
where XlX

=

{
0 if zuX ,vX ≤ zuX+b c2 c,vX

1 otherwise
(6)

T = Y1, . . . , YlY , . . . , YLY
where YlY

=

{
0 if zuY ,vY ≤ zuY ,vY +b r2 c
1 otherwise

(7)

where in (6), uX = ((lX − 1) mod b c2c) + 1, vX = b(lX −
1)/b c2cc + 1, 1 ≤ lX ≤ LX = r × b c2c; similarly in (7),
uY = b(lY − 1)/b r2cc+1, vY = ((lY − 1) mod b r2c)+ 1, 1 ≤
lY ≤ LY = c× b r2c.

2) Tests for Randomness: An ‘ideal’ random sequence is
regarded as the result of consecutive flips of a fair coin: when a
head turns out, denote the outcome as, say, ‘1’ and if it is a tail,
then ‘0’, while both events have probability exactly 1/2 and
each toss is independent of one another [1]. According to the
NIST hypothesis testing, a RNG under test is deemed ‘bad’
if the statistical properties of its random sequences indicate
a clear deviation from the ‘ideal’, otherwise it is deemed
‘good’. In our case, given a polynomial order and a secrecy
selection scheme, the random sequence subject to the NIST
test comprises N × L bits, where N is the total number of
PUFs and L is the output length for each PUF.

IV. EXPERIMENTAL RESULTS

Our test bench is the frequency characterization of a popula-
tion of RO PUFs implemented on 125 Xilinx Spartan-3 FPGA
devices. For each device, 512 ROs were placed as a 16 × 32
array and for each RO, 100 frequency readings were measured
at room temperature [2]. Readers are referred to Appendix for
graphical demonstration of the modeled systematic variations,
distilled random variations, and the histograms of the random
parts.

A. Model Selection by NIST’s Test Suite for Randomness

1) Random Sequences S and T : For each RNG, the input
file fed to the test suite contains 32000 bits, a concatenation
of the 256-bit bitstrings generated from Chip No. 1–125. Tests
applicable to this length include Frequency Test, Block Fre-
quency Test, Cumulative Sums Test, Runs Test, Longest Run
Test, Serial Test and Approximate Entropy Test. Parameters
are chosen according to NIST recommendations, in particular,
block length M = 32 for Block Frequency Test, block length
m = 2 for Approximate Entropy Test and block length m = 5
for Serial Test. According to [1], empirical results have to



be interpreted in two forms of analysis: First, the proportion
of sequences passing a test shall be above a the minimum
rate, 0.96 in our case, i.e., to pass 120 sequences out of a
sample size of 125 sequences at significance level α = 0.01.
Secondly, the P-values of all the random sequences shall be
uniformly distributed. Based on χ2 Goodness-of-Fit Test, the
underlying distribution is deemed uniform if the P-value of
the P-values is equal or greater than 0.0001 given a population
of 125 sequences. Whenever either of these two approaches
fails, further analysis drawn from a different sample space
is necessary to conclude the failure either as a statistical
anomaly or a clear non-randomness. The left four columns
of Table II summarizes the test results of random sequences
S and T ; see Appendix Table III and IV for complete C1–C10
distribution of ‘P-VALUE OF P-VALUES’. As the 0th-order
section shows, random sequences generated without entropy
distillation fail miserably for both forms of analysis ‘PROP.
(PROPORTION)’ and ‘P-VAL. (P-VALUE OF P-VALUES)’,
where ‘*’ marks a failure. This strongly suggests the existence
of systematic variation in the raw data. The failure rate
decrease sharply when applied with 1st-, 2nd- or 3rd-order
distiller in the case of S and with 2nd- or 3rd-order distiller
in the case of T . Unfortunately, there is at least one failure
with respect to S, though the failure is only slightly below the
cutting value. In such a boarder case where a weak existence
of systematic variation is inferred, further investigation with
different dataset is necessary to conclude the RNGs and the
corresponding distillers ‘good’ or ‘bad’. If simply taking the
sum of failure rates with respect to S and T , either 2nd- or
3rd-order distillers can be considered optimal. Moreover, the
pass rate of the ’P-VALUE OF P-VALUES’ analysis drops
when applied with a model in 4th order or beyond, whereas the
pass rate of the ‘PROPORTION’ analysis remains unchanged.
The rate drop is due to the clustering phenomenon of P-
values towards the C10 side, as opposed to the clustering
phenomenon towards the C1 side in the low order cases. These
can be used as indicators for model over-fitting and model
under-fitting respectively.

2) 1-out-of-8 Coding: For 1-out-of-8 Coding, a 3-bit index
‘000’, ‘001’,. . . ,‘110’, or ‘111’ is generated by pointing to
the fastest RO out of 8 consecutive ROs in the same row,
resulting a random sequence of length 192 bits per device.
Table II shows that distillers of 4th order and beyond are
deemed ‘good’ but it is not clear to us why the failure rate
increases until 3rd order and drops suddenly. The performance
of 1-out-of-8 Coding is generally worse when applied column-
wise for both forms of analysis; failures persist throughout the
models we consider in this work.

3) Neighbor Coding: In the case of Chain-like Neighbor
Coding, 15 bits are generated per row by pairing up row
neighbors and a total 480-bit random sequence results per
device. As shown in the fourth column of Table II, none of our
distillers can make meaningful improvement. The phenomenon
aligns with our expectation for the failures are caused by
the intrinsic chain dependencies of the pairing strategy rather
than spatial correlation. The argument also draws support from

the pass rate of Decoupled Neighbor Coding enhanced by a
distiller in 1st order or beyond. Overfitting is mild compared
with other coding strategies. Like 1-out-of-8 Coding, pairing
column-wise yields worse pass rate regardless chained or not;
results are omitted for brevity.

V. CONCLUSION

The systematic component of fabrication variation has long
posted a security threat to RO PUFs. This work provides
experimental data to demonstrate that none of the current
coding schemes can pass all the NIST randomness tests. To
address the issue, we propose a family of entropy distillers
based on polynomial regression. We affirm their effectiveness
in improving the randomness of the PUF output. Indeed, with
our enhancements, the discussed coding strategies can pass all
the NIST tests.

REFERENCES

[1] J. N. M. S. E. B. S. L. M. L. M. V. D. B. A. H. J. D. S. V.
Andrew Rukhin, Juan Soto and L. E. B. III, “A statistical test suite
for random and pseudorandom number generators for cryptographic
applications,” NIST Special Publication 800-22 Revision 1a, Apr. 2010.

[2] A. Maiti and P. Schaumont, “A large scale characterization of ro-puf,”
Proceedings of 3rd IEEE International Workshop on Hardware Oriented
Security and Trust (HOST), Jun. 2010.

[3] G. E. Suh and S. Devadas, “Physical unclonable functions for device au-
thentication and secret key generation,” Proceedings of 44th ACM/IEEE
Design Automation Conference (DAC) pp. 9–14, Jun. 2007.

[4] M.-D. Yu and S. Devadas, “Secure and robust error correction for phys-
ical unclonable functions,” IEEE Journal of Design & Test Computers,
Vol. 27, Issue 1, Jan. 2010.

[5] A. Maiti and P. Schaumont, “Improving the quality of a physical
unclonable function using configurable ring oscillators,” Proceedings of
19th IEEE International Conference on Field Programmable Logic and
Applications (FPLA), Sep. 2009.

[6] M. v. D. B. Gassend, D. Clarke and S. Devadas, “Silicon physical
random functions,” Proceedings of 9th ACM Computer and Commu-
nications Security Conference (CCS), Nov. 2002.

[7] W. B. D. Holcomb and K. Fu, “Initial sram state as a fingerprint
and source of true random numbers for rfid tags,” Proceedings of the
Conference on RFID Security 07, Jul. 2007.

[8] G.-J. S. Jorge Guajardo, Sandeep S. Kumar and P. Tuyls, “Fpga intrinsic
pufs and their use for ip protection,” Proceedings of 9th IACR Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems
(CHES), LNCS 4727, Springer, Sep. 2007.

[9] J. S.-G. D. S. D. U. Ruhrmair, F. Sehnke and J. Schmidhuber, “Modeling
attacks on physical unclonable functions,” Proceedings of 17th ACM
Computer and Communication Security Conference (CCS), Oct. 2010.

[10] F. S. Dominik Merli and C. Eckert, “Improving the quality of ring
oscillator pufs on fpgas,” Proceedings of the 5th Workshop on Embedded
Systems Security, Oct. 2010.

[11] C.-E. Yin and G. Qu, “Temperature-aware cooperative ring oscillator
puf,” Proceedings of 2nd IEEE International Workshop on Hardware
Oriented Security and Trust (HOST), Jul. 2009.

[12] C.-E. D. Yin and G. Qu, “Lisa: Maximizing ro puf’s secret extraction,”
Proceedings of 3rd IEEE International Workshop on Hardware Oriented
Security and Trust (HOST), Jun. 2010.

[13] P. Sedcole and P. Y. K. Cheung, “Within-die delay variability in 90nm
fpgas and beyond,” Proceedings of 16th IEEE International Conference
on Field Programmable Technology (FPT) pp. 97–104, Dec. 2006.

[14] M. v. D. B. Gassend, D. Clarke and S. Devadas, “Controlled physical
random functions,” Proceedings of the 18th Annual Computer Security
Applications Conference, Dec. 2002.

[15] C. S. K. Q. Lerong Cheng, Puneet Gupta and L. He, “Physically
justifiable die-level modeling of spatial variation in view of systematic
across wafer variability,” Proceedings of 46th ACM/IEEE International
Annual Design Automation Conference (DAC), Jul. 2009.

VI. APPENDIX



S T 1-out-of-8 Chain-like Neighbor Decoupled Neighbor
P-VAL. PROP. P-VAL. PROP. P-VAL. PROP. P-VAL. PROP. P-VAL. PROP. STATISTICAL TEST

0
t
h

-o
rd

er

0.000000 * 45 * 0.000000 * 38 * 0.013689 122 0.000072 * 125 0.000003 * 115 * Frequency
0.000000 * 59 * 0.000000 * 49 * 0.166594 125 0.000000 * 125 0.050764 120 BlockFrequency
0.000000 * 46 * 0.000000 * 39 * 0.231636 121 0.000000 * 125 0.000000 * 119 * CumulativeSums (m-2)
0.000000 * 46 * 0.000000 * 38 * 0.059743 122 0.000000 * 125 0.000000 * 118 * CumulativeSums (m-3)
0.000000 * 65 * 0.000000 * 31 * 0.002320 117 * 0.000000 * 0 * 0.302788 120 Runs
0.000000 * 66 * 0.000000 * 44 * 0.000603 123 0.000000 * 62 * 0.000062 * 124 LongestRun
0.000000 * 53 * 0.000000 * 23 * 0.000001 * 117 * 0.000000 * 0 * 0.000001 * 119 * ApproximateEntropy
0.000000 * 65 * 0.000000 * 25 * 0.004904 124 0.000000 * 1 * 0.070160 116 * Serial (forward)
0.000000 * 103 * 0.000000 * 74 * 0.552185 125 0.000000 * 117 * 0.192277 123 Serial (backward)

1
s
t
-o

rd
er

0.166594 124 0.003598 122 0.000949 120 0.000072 * 125 0.130323 124 Frequency
0.000002 * 120 0.889414 121 0.529142 125 0.000000 * 125 0.056599 122 BlockFrequency
0.000100 120 0.136969 122 0.063046 120 0.000000 * 125 0.082208 124 CumulativeSums (m-2)
0.405918 122 0.020616 119 * 0.043046 120 0.000000 * 125 0.034444 123 CumulativeSums (m-3)
0.082208 124 0.000000 * 68 * 0.192277 124 0.000000 * 0 * 0.096097 122 Runs
0.048059 120 0.000000 * 90 * 0.000067 * 123 0.000000 * 62 * 0.000274 124 LongestRun
0.025948 120 0.000000 * 75 * 0.002471 120 0.000000 * 0 * 0.130323 122 ApproximateEntropy
0.112055 122 0.000000 * 80 * 0.262219 124 0.000000 * 1 * 0.956806 122 Serial (forward)
0.474938 121 0.000000 * 117 * 0.551044 125 0.000000 * 117 * 0.620686 123 Serial (backward)

2
n
d

-o
rd

er

0.369588 122 0.012159 121 0.000000 * 115 * 0.001228 125 0.086622 121 Frequency
0.000782 122 0.422488 122 0.059743 124 0.000000 * 125 0.262219 123 BlockFrequency
0.020616 120 0.086622 120 0.000000 * 118 * 0.000000 * 125 0.073984 123 CumulativeSums (m-2)
0.575157 122 0.066516 122 0.000000 * 116 * 0.000000 * 125 0.389809 120 CumulativeSums (m-3)
0.316158 125 0.915772 122 0.552185 123 0.000000 * 0 * 0.493319 124 Runs
0.000062 * 122 0.000782 120 0.000000 * 123 0.000000 * 58 * 0.000115 124 LongestRun
0.750075 124 0.474938 120 0.000000 * 120 0.000000 * 0 * 0.316158 122 ApproximateEntropy
0.874833 124 0.077998 122 0.000123 123 0.000000 * 0 * 0.643139 121 Serial (forward)
0.231636 123 0.302788 125 0.457002 124 0.000000 * 110 * 0.262219 123 Serial (backward)

3
r
d

-o
rd

er

0.011457 125 0.136969 124 0.000000 * 111 * 0.000000 * 125 0.389809 123 Frequency
0.262219 124 0.551044 125 0.003829 123 0.000000 * 125 0.457002 122 BlockFrequency
0.002320 125 0.000131 125 0.000000 * 112 * 0.000000 * 125 0.551044 124 CumulativeSums (m-2)
0.002984 125 0.017315 125 0.000000 * 111 * 0.000000 * 125 0.192277 123 CumulativeSums (m-3)
0.643139 124 0.529142 121 0.889414 124 0.000000 * 0 * 0.529142 124 Runs
0.000058 * 123 0.012903 124 0.000000 * 120 0.000000 * 48 * 0.000000 * 123 LongestRun
0.020616 125 0.422488 123 0.000000 * 114 * 0.000000 * 0 * 0.889414 125 ApproximateEntropy
0.369588 124 0.915772 123 0.000017 * 121 0.000000 * 0 * 0.493319 123 Serial (forward)
0.439517 124 0.506075 122 0.575157 124 0.000000 * 114 * 0.439517 125 Serial (backward)

4
t
h

-o
rd

er

0.000001 * 125 0.000000 * 125 0.000407 121 0.000000 * 125 0.192277 124 Frequency
0.166594 125 0.000051 * 125 0.344248 123 0.000000 * 125 0.807956 124 BlockFrequency
0.000000 * 125 0.000000 * 125 0.143910 121 0.000000 * 125 0.070160 124 CumulativeSums (m-2)
0.000011 * 125 0.000000 * 124 0.130323 120 0.000000 * 125 0.117876 124 CumulativeSums (m-3)
0.316158 125 0.903069 122 0.437182 125 0.000000 * 0 * 0.414457 125 Runs
0.004904 123 0.045489 125 0.007522 120 0.000000 * 54 * 0.000000 * 123 LongestRun
0.289860 125 0.265309 122 0.708591 122 0.000000 * 0 * 0.143910 122 ApproximateEntropy
0.571108 125 0.665311 123 0.571108 125 0.000000 * 1 * 0.457002 123 Serial (forward)
0.405918 123 0.283039 124 0.551044 125 0.000000 * 110 * 0.825875 124 Serial (backward)

5
t
h

-o
rd

er

0.000029 * 125 0.211194 125 0.316158 124 0.000000 * 125 0.096097 125 Frequency
0.004074 125 0.000000 * 125 0.493319 124 0.000000 * 125 0.552185 124 BlockFrequency
0.000000 * 125 0.000000 * 125 0.665311 124 0.000000 * 125 0.043046 124 CumulativeSums (m-2)
0.000000 * 125 0.000000 * 125 0.166594 123 0.000000 * 125 0.036430 125 CumulativeSums (m-3)
0.493319 124 0.687147 124 0.036430 125 0.000000 * 0 * 0.192277 123 Runs
0.006661 124 0.001801 125 0.036430 124 0.000000 * 42 * 0.000000 * 124 LongestRun
0.059743 125 0.302788 124 0.729586 125 0.000000 * 0 * 0.665311 122 ApproximateEntropy
0.687147 125 0.304210 121 0.096097 125 0.000000 * 0 * 0.512137 124 Serial (forward)
0.262219 123 0.789315 123 0.457002 125 0.000000 * 114 * 0.474938 125 Serial (backward)

6
t
h

-o
rd

er

0.000009 * 125 0.001586 125 0.001080 125 0.000000 * 125 0.231636 122 Frequency
0.000000 * 125 0.000000 * 125 0.086622 125 0.000000 * 125 0.437182 123 BlockFrequency
0.000000 * 125 0.000000 * 125 0.231636 125 0.000000 * 125 0.091249 123 CumulativeSums (m-2)
0.000000 * 125 0.000000 * 125 0.050764 124 0.000000 * 125 0.211194 123 CumulativeSums (m-3)
0.101175 125 0.130323 123 0.422488 124 0.000000 * 0 * 0.529142 122 Runs
0.000643 124 0.007992 124 0.211194 125 0.000000 * 44 * 0.000017 * 122 LongestRun
0.000006 * 125 0.643139 124 0.130323 124 0.000000 * 0 * 0.598008 124 ApproximateEntropy
0.552185 124 0.289860 123 0.329976 124 0.000000 * 0 * 0.277369 123 Serial (forward)
0.874833 124 0.529142 124 0.405918 124 0.000000 * 113 * 0.843024 121 Serial (backward)

TABLE II
THE RESULTS OF NIST ‘P-VAL. (P-VALUE OF P-VALUES)’ AND ‘PROP. (PROPORTION)’ ANALYSES WITH RESPECT TO RANDOM SEQUENCES

GENERATED BY S , T , 1-OUT-OF-8 CODING, CHAIN-LIKE NEIGHBOR CODING AND DECOUPLED NEIGHBOR CODING ACCOMPANIED BY 0th- TO
6th-ORDER DISTILLERS, WHERE ‘*’ MARKS A FAILURE.



C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

0
t
h

-o
rd

er

93 7 3 4 2 6 1 2 4 3 0.000000 * 45/125 * Frequency
95 8 8 3 3 1 1 4 0 2 0.000000 * 59/125 * BlockFrequency
95 6 3 5 4 2 3 0 3 4 0.000000 * 46/125 * CumulativeSums (m-2)
96 7 3 3 7 1 4 1 0 3 0.000000 * 46/125 * CumulativeSums (m-3)
67 5 5 13 9 6 6 4 7 3 0.000000 * 65/125 * Runs
82 6 7 11 6 3 1 3 3 3 0.000000 * 66/125 * LongestRun
88 10 4 7 3 6 1 2 2 2 0.000000 * 53/125 * ApproximateEntropy
81 8 7 5 10 3 1 6 1 3 0.000000 * 65/125 * Serial (forward)
41 12 16 6 16 10 8 5 5 6 0.000000 * 103/125 * Serial (backward)

1
s
t
-o

rd
er

13 19 12 12 13 7 11 7 11 20 0.166594 124/125 Frequency
29 20 16 16 8 9 8 6 5 8 0.000002 * 120/125 BlockFrequency
18 26 15 16 4 8 9 9 15 5 0.000100 120/125 CumulativeSums (m-2)
18 14 17 14 16 10 10 8 9 9 0.405918 122/125 CumulativeSums (m-3)
12 15 19 14 11 20 9 5 9 11 0.082208 124/125 Runs
16 17 15 21 13 7 8 13 7 8 0.048059 120/125 LongestRun
24 14 10 15 9 10 10 15 13 5 0.025948 120/125 ApproximateEntropy
18 16 13 15 6 11 16 4 14 12 0.112055 122/125 Serial (forward)
15 15 17 11 10 11 7 12 9 18 0.474938 121/125 Serial (backward)

2
n
d

-o
rd

er

17 12 16 13 8 11 12 9 10 17 0.369588 122/125 Frequency
27 14 12 19 7 11 7 10 9 9 0.000782 122/125 BlockFrequency
13 22 12 12 5 13 14 4 13 17 0.020616 120/125 CumulativeSums (m-2)
15 16 14 10 9 11 17 9 11 13 0.575157 122/125 CumulativeSums (m-3)
15 6 10 18 11 16 16 14 8 11 0.316158 125/125 Runs
9 13 13 30 14 14 9 7 5 11 0.000062 * 122/125 LongestRun

18 9 12 9 13 13 13 14 13 11 0.750075 124/125 ApproximateEntropy
13 14 11 15 10 14 16 9 11 12 0.874833 124/125 Serial (forward)
12 9 22 13 14 11 12 10 15 7 0.231636 123/125 Serial (backward)

3
r
d

-o
rd

er

4 9 11 15 8 16 22 8 15 17 0.011457 125/125 Frequency
8 14 14 14 6 16 11 12 17 13 0.262219 124/125 BlockFrequency
6 5 11 10 11 14 18 8 23 19 0.002320 125/125 CumulativeSums (m-2)
4 10 10 8 6 18 20 12 18 19 0.002984 125/125 CumulativeSums (m-3)
9 10 14 14 11 18 11 15 13 10 0.643139 124/125 Runs
9 5 14 24 24 14 7 5 11 12 0.000058 * 123/125 LongestRun
5 12 12 7 15 14 20 10 9 21 0.020616 125/125 ApproximateEntropy
7 17 15 12 9 12 16 12 15 10 0.369588 124/125 Serial (forward)

12 19 17 12 13 12 14 10 6 10 0.439517 124/125 Serial (backward)

4
t
h

-o
rd

er

2 2 8 26 13 16 21 10 17 10 0.000001 * 125/125 Frequency
11 7 8 7 11 15 16 16 19 15 0.166594 125/125 BlockFrequency
2 3 5 11 10 24 19 8 20 23 0.000000 * 125/125 CumulativeSums (m-2)
2 4 5 15 13 16 16 17 11 26 0.000011 * 125/125 CumulativeSums (m-3)

11 11 13 5 16 13 10 19 16 11 0.316158 125/125 Runs
9 6 14 22 20 10 17 5 11 11 0.004904 123/125 LongestRun
4 11 9 15 13 12 12 17 15 17 0.289860 125/125 ApproximateEntropy

14 11 6 13 10 15 11 12 14 19 0.571108 125/125 Serial (forward)
8 16 11 21 11 11 9 13 13 12 0.405918 123/125 Serial (backward)

5
t
h

-o
rd

er

0 5 12 20 13 10 11 20 11 23 0.000029 * 125/125 Frequency
6 10 8 8 11 16 15 14 11 26 0.004074 125/125 BlockFrequency
0 4 8 9 14 14 16 10 16 34 0.000000 * 125/125 CumulativeSums (m-2)
0 8 4 13 10 16 10 12 24 28 0.000000 * 125/125 CumulativeSums (m-3)
9 13 16 10 10 8 13 11 19 16 0.493319 124/125 Runs
9 11 18 23 17 7 13 4 12 11 0.006661 124/125 LongestRun
5 9 11 11 14 15 22 15 15 8 0.059743 125/125 ApproximateEntropy

15 12 15 13 10 11 11 10 18 10 0.687147 125/125 Serial (forward)
19 11 17 13 8 11 14 12 11 9 0.262219 123/125 Serial (backward)

6
t
h

-o
rd

er

4 8 2 19 10 8 14 15 22 23 0.000009 * 125/125 Frequency
2 8 12 9 6 9 10 18 20 31 0.000000 * 125/125 BlockFrequency
2 5 4 11 7 11 20 7 19 39 0.000000 * 125/125 CumulativeSums (m-2)
3 9 5 5 5 14 13 9 18 44 0.000000 * 125/125 CumulativeSums (m-3)
8 18 8 6 19 14 12 17 13 10 0.101175 125/125 Runs
7 6 16 22 23 9 7 12 8 15 0.000643 124/125 LongestRun
1 5 16 14 13 14 9 11 13 29 0.000006 * 125/125 ApproximateEntropy
9 6 12 14 14 13 13 13 16 15 0.552185 124/125 Serial (forward)
8 14 11 13 10 16 13 13 14 13 0.874833 124/125 Serial (backward)

TABLE III
NIST TEST RESULTS WITH RESPECT TO RANDOM SEQUENCE S , WHERE M = 32 FOR BLOCK FREQUENCY TEST, m = 2 FOR APPROXIMATE ENTROPY

TEST AND m = 5 FOR SERIAL TEST AND ‘*’ MARKS A FAILURE.



C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

0
t
h

-o
rd

er

100 6 3 4 2 1 2 2 0 5 0.000000 * 38/125 * Frequency
88 9 3 5 4 4 5 1 6 0 0.000000 * 49/125 * BlockFrequency

100 5 4 5 1 3 2 2 0 3 0.000000 * 39/125 * CumulativeSums (m-2)
100 10 0 6 1 3 0 2 1 2 0.000000 * 38/125 * CumulativeSums (m-3)
108 7 4 1 2 0 1 1 1 0 0.000000 * 31/125 * Runs
100 4 7 7 3 2 0 1 1 0 0.000000 * 44/125 * LongestRun
114 3 2 1 1 1 1 2 0 0 0.000000 * 23/125 * ApproximateEntropy
112 5 4 1 1 0 1 1 0 0 0.000000 * 25/125 * Serial (forward)
73 11 8 7 10 3 4 2 1 6 0.000000 * 74/125 * Serial (backward)

1
s
t
-o

rd
er

25 8 10 13 6 11 7 13 13 19 0.003598 122/125 Frequency
14 8 13 16 12 14 10 13 12 13 0.889414 121/125 BlockFrequency
22 11 13 7 13 13 15 12 6 13 0.136969 122/125 CumulativeSums (m-2)
25 14 11 13 12 9 8 6 15 12 0.020616 119/125 * CumulativeSums (m-3)
86 14 4 6 4 4 1 2 2 2 0.000000 * 68/125 * Runs
66 15 13 16 5 3 3 3 0 1 0.000000 * 90/125 * LongestRun
78 15 7 9 2 5 2 2 2 3 0.000000 * 75/125 * ApproximateEntropy
80 6 9 6 4 6 6 0 5 3 0.000000 * 80/125 * Serial (forward)
40 15 13 14 6 8 6 6 7 10 0.000000 * 117/125 * Serial (backward)

2
n
d

-o
rd

er

20 15 14 22 6 9 8 12 7 12 0.012159 121/125 Frequency
13 11 15 14 10 18 9 9 8 18 0.422488 122/125 BlockFrequency
20 12 6 18 13 10 11 7 11 17 0.086622 120/125 CumulativeSums (m-2)
18 15 9 15 9 17 13 2 13 14 0.066516 122/125 CumulativeSums (m-3)
16 14 14 11 9 10 12 14 13 12 0.915772 122/125 Runs
18 8 15 18 24 11 6 13 6 6 0.000782 120/125 LongestRun
19 14 17 12 13 7 9 10 11 13 0.474938 120/125 ApproximateEntropy
19 6 11 13 11 18 16 8 16 7 0.077998 122/125 Serial (forward)
16 16 9 10 11 9 11 21 12 10 0.302788 125/125 Serial (backward)

3
r
d

-o
rd

er

10 7 10 18 10 14 15 10 10 21 0.136969 124/125 Frequency
10 10 12 16 9 8 13 12 17 18 0.551044 125/125 BlockFrequency
8 9 8 15 9 10 27 5 14 20 0.000131 125/125 CumulativeSums (m-2)
8 8 9 10 14 8 17 11 16 24 0.017315 125/125 CumulativeSums (m-3)

14 13 13 19 11 7 12 12 11 13 0.529142 121/125 Runs
9 11 11 24 20 10 11 11 12 6 0.012903 124/125 LongestRun

15 10 11 6 14 11 9 18 15 16 0.422488 123/125 ApproximateEntropy
11 9 11 15 12 12 15 11 14 15 0.915772 123/125 Serial (forward)
11 18 15 9 13 12 9 10 12 16 0.506075 122/125 Serial (backward)

4
t
h

-o
rd

er

3 6 18 26 12 10 4 9 12 25 0.000000 * 125/125 Frequency
6 10 5 5 12 15 8 19 22 23 0.000051 * 125/125 BlockFrequency
2 5 8 18 15 9 18 8 11 31 0.000000 * 125/125 CumulativeSums (m-2)
2 6 11 15 12 20 14 4 12 29 0.000000 * 124/125 CumulativeSums (m-3)

14 13 12 13 8 11 11 13 14 16 0.903069 122/125 Runs
12 6 23 15 16 8 13 8 13 11 0.045489 125/125 LongestRun
18 7 11 7 13 19 12 11 12 15 0.265309 122/125 ApproximateEntropy
13 16 8 13 13 15 13 15 8 11 0.665311 123/125 Serial (forward)
14 13 13 12 12 13 18 15 10 5 0.283039 124/125 Serial (backward)

5
t
h

-o
rd

er

6 10 11 17 9 14 10 20 15 13 0.211194 125/125 Frequency
6 5 4 6 7 13 18 13 22 31 0.000000 * 125/125 BlockFrequency
2 8 8 19 5 9 16 10 19 29 0.000000 * 125/125 CumulativeSums (m-2)
3 9 5 12 8 14 18 6 14 36 0.000000 * 125/125 CumulativeSums (m-3)

13 17 9 17 11 10 13 11 11 13 0.687147 124/125 Runs
11 9 17 25 18 9 13 5 7 11 0.001801 125/125 LongestRun
9 15 15 7 14 14 15 18 12 6 0.302788 124/125 ApproximateEntropy

13 11 11 10 10 11 17 11 20 11 0.304210 121/125 Serial (forward)
12 13 13 16 10 16 11 12 14 8 0.789315 123/125 Serial (backward)

6
t
h

-o
rd

er

2 13 10 14 11 11 20 9 11 24 0.001586 125/125 Frequency
5 2 4 8 8 8 16 22 19 33 0.000000 * 125/125 BlockFrequency
1 4 11 10 10 12 12 15 19 31 0.000000 * 125/125 CumulativeSums (m-2)
2 6 7 10 6 13 17 7 20 37 0.000000 * 125/125 CumulativeSums (m-3)

23 14 12 14 7 10 13 8 13 11 0.130323 123/125 Runs
9 12 13 24 19 6 15 8 9 10 0.007992 124/125 LongestRun

13 17 11 18 12 10 11 12 11 10 0.643139 124/125 ApproximateEntropy
11 14 11 18 11 13 11 4 17 15 0.289860 123/125 Serial (forward)
15 9 14 13 11 13 15 14 6 15 0.529142 124/125 Serial (backward)

TABLE IV
NIST TEST RESULTS WITH RESPECT TO RANDOM SEQUENCE T , WHERE M = 32 FOR BLOCK FREQUENCY TEST, m = 2 FOR APPROXIMATE ENTROPY

TEST AND m = 5 FOR SERIAL TEST AND ‘*’ MARKS A FAILURE.



Fig. 5. The modeled systematic variation after applying 0th through 6th-order polynomial regression to the dataset of Chip No. 1.

Fig. 6. The distilled random variation after applying 0th through 6th-order polynomial regression to the dataset of Chip No. 1. Notably, we see the ‘bull’s
eye’, i.e., the radial pattern close to the center, vanishing in the cases of 2nd order model and beyond.

Fig. 7. The histogram of the distilled random variation after applying 0th through 6th-order polynomial regression to the dataset of Chip No. 1. It is difficult
to judge simply from the chart which model is the best fit without running NIST tests for all appears normal but with a diminishing variance as the order
increases


	TR_2011-12_Cover_Page
	sve

