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Direct numerical simulation (DNS) is a productive research tool in 

combustion science used to provide high-fidelity computer-based observations of the 

micro-physics in turbulent reacting flows. It is also a unique tool for the development 

and validation of reduced model descriptions used in macro-scale simulations of 

engineering-level systems. Because of its high demand of computational power, 

current state-of-the-art DNS remains limited to small computational domains, small 

Reynolds numbers, and simplified problems corresponding to adiabatic, non-sooting, 

gaseous flames in simple geometries. This Ph.D. study is part of a multi-institution 

collaborative research project aimed at using terascale technology to overcome many 

of the current DNS limitations. 

Two different tracks are followed in the present work: a DNS development 

track, and a DNS production track corresponding to a study of flame-wall 

interactions. Due to project management issues, the two tracks remain separate in this 

work. In the first track, we develop numerical and physical models to enhance the 

capability of our fully compressible DNS solver for turbulent combustion. The 



Acoustic Speed Reduction (ASR) method is a new perturbation method designed to 

reduce the stiffness associated with acoustic waves found in slow flow simulations 

and to thereby enhance computational efficiency. The Navier-Stokes Characteristic 

Boundary Conditions (NSCBC) are modified to allow for successful simulations of 

turbulent counterflow flames. In addition, a semi-empirical soot model and a parallel 

thermal radiation model based on a ray-tracing method are developed and 

implemented into our DNS code. All the models are validated, showing that the 

capability of our DNS tool is greatly enhanced.  

 In the second track, we perform a DNS study of non-premixed flame-wall 

interactions. The structure of the simulated wall flames is studied in terms of a 

classical fuel-air-based mixture fraction and a new variable, called the excess 

enthalpy variable, which characterizes deviations from adiabatic behavior. Using the 

excess enthalpy variable, a modified flame extinction criterion is proposed and tested 

against DNS data. 

 While beyond the scope of this Ph.D. thesis, it is expected that follow-up 

studies of flame-wall interactions will take advantage of the new DNS software 

features developed in the first track of the present work.  
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Chapter 1: Introduction 

1.1. DNS of Reacting Flows 
 
With the fast development of modern computers and advanced computational 

methods, numerical simulations have acquired an important role in almost every 

scientific and engineering discipline. In particular, computational fluid dynamics 

(CFD) has been widely utilized as a supplement or even replacement of the 

traditional, oftentimes very expensive, experiments in both scientific study and 

engineering applications. Successful applications of CFD can be found in different 

fields including mechanical engineering, chemical engineering, aeronautics and 

astronautics, environmental sciences, bio-engineering, etc. 

Based on how we treat the turbulence, there are hierarchies of solution 

methods to the Navier-Stokes equations [1]: Reynolds-averaged Navier-Stokes 

simulation (RANS), large eddy simulation (LES) and direct numerical simulation 

(DNS).  RANS solves averaged N-S equations, and is usually limited to steady 

problems (or leads to difficulties when applied to unsteady problems). The effects of 

turbulent fluctuations that appear in Reynolds stresses are modeled, and the 

computational resource requested by RANS is relatively limited. LES is a higher-

level numerical approach to turbulent flows. It resolves turbulent eddies that are large 

on the computational grid, while it models the effect of eddies that are smaller than 

the grid size [2, 3]. The large-scale motions are usually greatly affected by the flow 

geometry and contain most of the kinetic energy of the turbulent flow, while the 

small-scale eddies tend to be more homogeneous and universal, therefore easier to 
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model. The computational cost for LES is considerably higher than in RANS, since it 

requires a fairly fine mesh and provides three-dimensional and time dependent 

solution. It is especially true for wall-bounded turbulent flows, where the 

computational cost of LES is highly dependent on the Reynolds number [4]. Recently 

LES/RANS have been applied to real full-scale engineering problems with complex 

geometries, for example: flow over an aircraft [5], combustion inside a gas turbine 

[6], large scale fires in a building [7], etc. Although some of the simulations are 

somewhat under-resolved and the models used still questionable, they do illustrate the 

state-of-the-art of CFD and reflect the urgent needs for engineering applications.  

DNS directly descretizes the Navier-Stokes (N-S) equations and solves them 

numerically [1]. All the turbulent length scales, from the integral scale down to the 

Kolmogrov scale, are resolved on the fine grid. DNS is considered as a numerical 

experiment and provides great amount of valuable data that are not fully available 

from experimental measurements: velocities, pressure, scalars, as well as their 

variations in space and time. However due to the expensive computational cost, DNS 

is restricted to low Reynolds numbers and simple geometries. The applications of 

DNS to the building-block turbulent flow configurations, like isotropic decaying 

turbulence [8], boundary layer [9], channel flow [10, 11] etc., have provided new 

insights into the turbulent flow physics and also the databases used to assess and 

develop models for LES and RANS.   

 CFD of reacting flows is an active research area for both combustion and fire 

science. Compared with non-reacting flows, numerical simulations of turbulent 

combustion are more difficult. First of all, the energy equation is inevitably coupled 
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with the momentum equations due to the large chemical heat release. In addition, a 

large number of scalar mass species equations are usually required to treat the gas-

phase chemical reaction with reasonable accuracy. (Pollutant predictions, like NOx 

and soot, require more complex descriptions of the chemistry.) Also, thermal 

radiation is not negligible at the typically high flame temperatures. Both chemical 

reaction and radiative heat transfer are highly non-linear processes, and impose extra 

difficulties in turbulence models for reacting flows. Most turbulent combustion 

models have some ad hoc nature, and are not adequate to treat turbulent flames with 

complex phenomena, like ignition, extinction, flame-wall interactions and so on. 

Therefore, DNS emerges as a useful research tool to provide high-fidelity computer-

based observations of the micro-physics in turbulent reacting flows, and help 

developing reduced model descriptions used in macro-scale simulations of 

engineering-level systems [12, 13].  

In DNS, we directly discretize Navier-Stokes equations and solve them 

numerically. However, even for non-reacting flows, the high computational cost 

dictates that DNS has to be limited to low Reynolds number cases. For reacting flows, 

it is just simply not feasible with current computational resources to include in a 

single simulation all the known physics, like thermal/acoustic dilatation, realistic 

three-dimensional turbulence, detailed chemical kinetics, thermal radiation, etc. 

Simplifications in certain aspects are usually adopted to make the simulations 

tractable. The simplifying assumptions used vary from one study to another, for 

example: constant density or variable density flow, two-dimensional or three-

dimensional configuration, single-step chemistry or detailed kinetics, neglecting 
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thermal radiation or not, and so on. The choice of the DNS formulation is a trade-off 

between the objectives of a specific study and the available computer resources. The 

DNS data therefore have limitations, but on the other hand, they do increase our 

understanding of the complicated micro-scale physics in turbulent combustion.  

Early attempts in DNS of reacting flows used a single-step global chemistry 

and a constant density assumption, so that available numerical codes developed for 

non-reacting incompressible turbulent flow could be directly used and the 

temperature and mass species equations are resolved in a post-processing stage. The 

feedback of chemical heat release to the turbulent field is neglected in these studies 

and the focus is on the effect of turbulence on the flame topology and structure. 

Rutland and Trouvé [14] used this assumption to study a premixed flame propagating 

through decaying three-dimensional isotropic turbulent flow. The constant density 

assumption was also adopted recently in studies of more complex problems like 

nonpremixed flames near extinction [15], premixed flame-wall interactions in a 

turbulent channel flow [16], and extinction/reignition in a diffusion flame [17].  

Most current DNS studies adopt a variable density formulation, however some 

use a two-dimensional configuration to reduce the computational overhead brought 

by other complexities, like variable density [18] or a detailed treatment of the 

chemical kinetics [19-21]. Two-dimensional configurations are not suitable for non-

reacting DNS, since the vortex stretching mechanism responsible for the turbulent 

kinetic energy cascade is intrinsically three-dimensional. However it remains quite 

valuable when studying flame responses to turbulence-like random fluctuations, 

because the local reaction zones retain a one-dimensional laminar structure in the 
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flamelet regime [22], and also because the probability of finding locally cylindrical 

(2D) flame sheets is much higher than that of 3D spherical flame surfaces [12]. In 

general, two-dimensional simulations are typically justified when three-dimensional 

simulations are out of the reach of available computational resources. Two-

dimensional configurations are also used for parametric studies as in reference [23] or 

as a first try in making observations of new physics, for instance: auto-ignition [20] 

and detailed chemistry effect of H2 enrichment on lean premixed methane-air flame 

[21], etc.  

DNS data for premixed combustion are usually analyzed in the framework of 

flamelet theory [24]. In the flamelet combustion regime, chemical reaction takes 

place in thin layers designated as flamelets which are convected and distorted by the 

turbulent flow field but retain their laminar flame structure. Therefore flame 

wrinkling is the major mechanism responsible for the increase in turbulent flame 

speed. Trouvé and Poinsot [25] examined the wrinkling effect of turbulence on the 

flame surface in a configuration of a premixed flame embedded in an isotropic 

decaying turbulence field. Using DNS data, they evaluated the different terms 

appearing in the flame surface density equation. Zhang and Rutland [26] focused on a 

different aspect of flame-turbulence interactions: the effect of the flame on the 

turbulent flow. In their study, turbulence was introduced from the inlet boundary, so 

that a stationary turbulent premixed flame can be maintained inside the computational 

domain (the equivalent of a numerical wind tunnel). The authors found that the heat 

release greatly increases turbulent kinetic energy. From the analysis of the turbulent 

kinetic energy budget, they concluded that pressure related terms are the major 



6

mechanism that represents the flame effect on turbulence. Veynante et al. [23] studied 

the turbulent flux of the mean reaction progress variable and the flame surface 

density. Their study revealed the existence of two different regimes for turbulent 

transport: counter-gradient diffusion occurs when the flow field new the flame is 

dominated by thermal dilatation, whereas gradient diffusion occurs when the flow 

field near the flame is dominated by the turbulent motions. The flamelet concept 

generally requires chemical reaction to occur at fast time-scales and short length-

scales relative to the turbulence. This regime was identified in a premixed turbulent 

combustion diagram by Poinsot et al. [18] from a series of DNS of premixed flame 

vortex interactions, where the flame is interacting with vortices with well defined 

length and velocity scales.  

Turbulent non-premixed flames in the flamelet regime were also studied with 

DNS. Chen and Kollmann [27] simulated an initially planar and unstrained laminar 

diffusion flame interacting with decaying homogeneous turbulence. They examined 

the shape and the wrinkling of the iso-mixture-fraction surfaces, and found that the 

wrinkling of mixture fraction surfaces is reduced by heat release effects. Bédat et al. 

[28] performed both two-dimensional and three-dimensional DNS of a similar 

configuration with reduced chemistry. They found that the flamelet viewpoint was 

adequate to describe the heat release process, but not as successful for NOx formation. 

Van Kalmthout and Veynante [29] analyzed the flame surface density models for 

nonpremixed flames in a two-dimensional spatially-developing turbulent reacting 

mixing layer. Various terms contributing to the transport equation of flame surface 

density were evaluated using DNS data. Similar to what was done earlier for 
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premixed flames, Cuenot and Poinsot [30] performed a DNS study of diffusion 

flame-vortex interactions and proposed a diagram delineating the laminar flamelet 

region, an unsteady effect region, a curvature effect region and a quenched region.  

Recently more complex combustion phenomena have been studied by DNS, 

including auto-ignition [20, 31], extinction and reignition [17], triple flame and 

partially premixed flame [32, 33], flame-wall interaction [16, 34], spray combustion 

[35, 36], etc.  

The growth and progress in DNS of turbulent reacting flows are very 

encouraging. However our ability to accurately simulate interesting combustion 

problems is now constrained by two aspects: first, the high demand for computational 

power; second, the lack of an adequate numerical description of some complex 

physics: for instance, an accurate mechanism for soot formation, a numerical 

treatment of radiative heat transfer and liquid fuel sprays, etc. Current (gigascale) 

state-of-the-art DNS remains limited to small computational domains and to 

simplified problems corresponding to adiabatic, non-sooting, gaseous flames in 

simple geometries. The objective of the current project is to enhance the current DNS 

capability with new numerical and physical modeling capabilities for tera-scale 

computing platforms. With the new developments, we hope to extend the domain of 

application of DNS to new problems with more complex physics, or to compute the 

same problems with more efficiency. The current study is part of a multi-institutional 

collaboration with University of Michigan, University of Wisconsin and Sandia 

National Laboratory [37]. Different groups share the same software platform, but 

have responsibilities of different developments. We will, in the following section, 
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introduce our DNS solver, followed with a description of the content of current Ph.D. 

study.  

1.2. DNS Solver S3D 
Our current DNS code, called S3D, is a fully compressible Navier-Stokes solver. It 

solves the governing equations for gaseous, multi-component, reacting flows as the 

following:  
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where t is time, xj the spatial coordinate in the j-direction, ρ the mass density, uj the j-

component of flow velocity, Yk the species k mass fraction, Vk,j the j–component of 

molecular diffusion velocity for species k, kω& the species k mass reaction rate, p the 

pressure, τij the ij-component of the viscous stress tensor, gi the i-component of 

gravity acceleration, E the total energy per unit mass (internal energy plus kinetic 

energy) and qj the heat flux vector. Equation (1.2) is written for 1 ≤ k ≤ NS, where NS

is the total number of species in the gaseous mixture; equation (1.3) is written for all 

3 components of momentum, 1 ≤ i ≤ 3. Assuming Newtonian fluid behavior, τij is 

linearly related to the velocity gradient tensor: 
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Furthermore, in equation (1.4), E and qj are defined as follows: 
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where kh is the total enthalpy per unit mass (chemical enthalpy plus thermal 

enthalpy), 0
kh the chemical enthalpy of formation (evaluated at reference temperature 

T0) and cp,k the specific heat at constant pressure, all 3 quantities referring to species 

k; and where λ is the mixture thermal conductivity, T the temperature, jrq , radiative 

heat flux. Finally, equations (1.1)-(1.4) also require the equation of state. We assume 

that the fluid is ideal gas: 

 TM
R

M
YRTp

sN

k k

k 


== ∑
=

ρρ
1

, (1.7) 

where R is the ideal gas constant, Mk the molecular weight of species k and M the 

molecular weight of the gaseous mixture. 

S3D solves the above equations in discretized form on a Cartesian rectangular 

grid. It uses an eighth order central finite difference scheme [38] for spatial 

discretization. The high order scheme is non-dissipative and ensures the high fidelity 

of the direct numerical simulation. The time advancement method is a fourth order, 

six stage, low storage, explicit Runge-Kutta scheme [39]. Because the time 
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advancement scheme is fully explicit, the time step is constrained by acoustic and 

convective Courant-Friedrichs-Lewy (CFL) stability condition, as well as diffusive 

Fourier stability condition and conditions associated with the resolved chemical time 

scale. The characteristic-based boundary conditions [40, 41] are satisfied. One-sided 

finite difference schemes with reduced order of accuracy are used near the boundary 

to represent spatial derivatives. At the boundary cells, the accuracy is reduced to third 

order. S3D has a CHEMKIN compatible description of chemical kinetics [42]. And it 

is a massively parallel code based on domain decomposition using Message Passage 

Interface (MPI) libraries.  

1.3. DNS Software Developments and DNS Studies 
The present Ph.D. work has two separate tracks. In the first track, numerical and 

physical models are developed to enhance the DNS capability of S3D. The new 

developments include a pseudo-compressibility method that alleviates the acoustic 

stiffness of the fully compressible formulation (chapter 2), a new boundary condition 

scheme that allows turbulent counterflow flame simulations (chapter 3), a two-

equation semi-empirical soot formation model (chapter 4), and a parallel thermal 

radiation solver based on a ray-tracing method (chapter 5).  In the second track, S3D 

is applied to study an interesting combustion phenomenon: turbulent non-premixed 

flame-wall interactions (chapter 6). The DNS study of flame-wall interactions does 

not take advantage of the new features developed in the first track. However, follow-

up studies will benefit from the new developments and thereby achieve more efficient 

and more realistic simulations.  
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Chapter 2: ASR Method 
 

2.1. Introduction 
Different mathematical formulations may be found in the literature for the DNS 

description of the flow and combustion processes. These formulations correspond to 

different degrees of complexity in the treatment of chemistry and molecular transport, 

as well as to different choices made in the handling of flow compressibility. The 

choice of an adequate formulation is a key step in many studies, aimed at optimizing, 

for a given particular problem, the trade-off between performance, accuracy and 

computational cost. 

We consider in this chapter the problem of how to handle flow 

compressibility. We consider this problem in the context of a DNS solver with an 

explicit time integrator, at least for the treatment of convective transport. In DNS, 

explicit or semi-explicit integration is the preferred approach for time advancement as 

the associated stability time step restriction serves to guarantee adequate resolution 

and high-levels of accuracy. In this context, while a fully compressible formulation 

has the capability of treating a large range of flow problems (from subsonic to 

supersonic), it is also severely constrained by the need to resolve fast acoustic wave 

motions and is therefore not well suited to treat low Mach number problems 

characterized by widely different flow and acoustic speeds. 

A number of methods have been proposed in the literature to remove or 

modify the acoustic time step restriction found in fully compressible, explicit 

formulations [43]. One class of methods is the zero Mach number approach where the 

mathematical formulation of the flow problem is modified in order to filter out 
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acoustic waves [44-48]. The zero Mach number approach is computationally efficient 

for slow flow problems but this efficiency is achieved at the cost of a reduced domain 

of application (the flow must remain in the incompressible regime, i.e. flow Mach 

numbers must remain below 0.3) and of an increased complexity in the numerical 

algorithms. The increased complexity results from: the decomposition of the pressure 

variable into a spatially-invariant thermodynamic component (often a constant) and 

an aerodynamic component; the subsequent handling of aerodynamic pressure 

variations via a Poisson equation; and the taxing demand of an elliptic solver to invert 

the Poisson problem.  

Other methods generally retain some form of compressibility and thereby 

preserve the original hyperbolic character of the governing equations. One approach 

seeks to exploit the flexibility found in operator splitting techniques and consists in 

applying an implicit time integration treatment to the “ill-conditioned” compressible 

part of the flow dynamics while maintaining an explicit treatment for convective 

transport. An example of this approach is the Barely Implicit Correction (BIC) 

method proposed in [49]. Acoustic motions are still present in the BIC method, but 

computational efficiency is increased by withdrawing the initial demand for a 

representation of acoustic signals within the explicit stability boundaries. 

An alternative approach is the artificial compressibility or pseudo-

compressibility approach [50, 51]. In this approach, the governing equations are 

manipulated prior to a numerical treatment in order to modify the acoustic wave 

physics. In [50], Choi & Merkle propose to differentiate between the following two 

sub-categories: (1) preconditioning methods where the time derivatives in the original 
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compressible system of equations are pre-multiplied by a matrix that provides 

artificial control of the system eigenvalues, i.e. artificial control of the travel speeds 

of acoustic modes; (2) perturbation methods where the right-hand-side of the 

governing equations are modified according to some suitable scaling arguments with 

the effect that acoustic waves are again replaced by slower-moving pseudo-acoustic 

modes. These two sub-categories share many similarities and achieve increased 

efficiency by decreasing the gap between flow and acoustic speeds. Preconditioning 

methods adopt an applied mathematics view point and start from a classical spectral 

analysis of the partial differential equations, while perturbation methods borrow more 

from a fluid mechanics view point and start from series expansions of the flow 

variables in terms of a characteristic Mach number. 

Our objective in the present study is to evaluate the potential of pseudo-

compressibility methods in the context of our DNS solver S3D. We consider in the 

following the pseudo-compressibility methods proposed in [52, 53]. These methods 

are perturbation methods in the terminology introduced by Choi & Merkle [50] and 

are particularly attractive since they may be implemented with relatively modest 

effort (i.e. limited software modification) in a flow solver where a fully compressible 

formulation is adopted. In [52], O'Rourke & Bracco propose to artificially increase 

the flow and flame Mach numbers using a scaling transformation applied to the 

problem variables. A related study by Ramshaw, O'Rourke & Stein [53] proposes a 

slightly different method, called Pressure Gradient Scaling (PGS). PGS is based on a 

straightforward modification of the pressure gradient in the momentum equation. This 

modification results in an artificial decrease of acoustic speeds and allows again for a 
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more efficient computation. Both methods in [52, 53] use a re-scaling of pressure 

perturbations and a side effect is that pressure variations are dramatically amplified: if 

the acoustic speed is decreased by a factor α, pressure variations are amplified by a 

factor α2. While insignificant for problems with nearly homogeneous pressure, this 

side-effect leads to difficulties in the case of problems with external pressure 

gradients, for instance ducted flow problems. 

We consider in the present study a variation of the PGS method with the 

objective of extending the method to the case of problems with external pressure 

gradients. The original and modified PGS methods are presented in section 2.2. Both 

methods are implemented into S3D and evaluated in a series of benchmark flow and 

flame problems in section 2.3. 

2.2. Theory 
Government equations for compressible reacting flow (equations (1.1)-(1.4)) contain 

a range of time scales associated with convective, diffusive, reactive as well as 

acoustic phenomena. Time accurate simulations of reacting flows call for adequate 

time resolution of convection, diffusion and chemical reaction but in many cases, do 

not require fine resolution of the acoustic physics. In S3D, however, time integration 

is based on a high-order explicit Runge-Kutta scheme that cannot discriminate 

between relevant and irrelevant dynamics. While fully explicit time integration has 

attractive features such as simplicity, ease-of-use and efficient parallel computing 

implementation, one well-known drawback is that fast acoustic motions contribute to, 

and often dominate the stability time step limitation. For instance, the time step ∆t is 

restricted in S3D by a classical Courant-Friedrichs-Lewy (CFL) condition: 
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where min(Q) designates the minimum value of a quantity Q over all 3 spatial 

directions and all computational nodes; and where ∆xj is the local spatial increment of 

the computational grid in the j-direction, c the local speed of sound, and CFL a 

number that depends on the stability properties of the numerical scheme and is of 

order 1. Equation (2.1) may be re-written as: 
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where Maj = (uj/c) is the local flow Mach number in the j-direction. In incompressible 

flow problems, Maj is a small quantity and equation (2.2) shows that ∆t is in that case 

approximately proportional to Maj. Hence, as Maj → 0, the acoustic stability 

constraint in equations (2.1)-(2.2) leads to a dramatic decrease in computational 

efficiency. 

The Pressure Gradient Scaling (PGS) Method 
 
The loss of computational efficiency is discussed in the following as a stiffness 

problem since it is a direct consequence of flow and acoustic speeds being widely 

different. The PGS method of [53] proposes to reduce the problem stiffness via a 

modification of the pressure gradient term in equation (1.3): 
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where α is an arbitrary coefficient taken greater than 1. 
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This modification of the momentum equation leads to a corresponding 

modification of the balance equation for kinetic energy and although the equation for 

internal energy is unmodified in PGS, the equation for total energy E must also 

include an extra term: 
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The effect of these modifications may be simply illustrated by considering a 

one-dimensional test problem TP1 corresponding to wave propagation in an inviscid, 

non-reacting, ideal gas, in the absence of gravity. The PGS system of equations for 

total mass, x1-momentum and energy may be written as: 

 

,0

,01

,0)(

1

1

1
1

1
2

1

1
1

1

1
1













=∂
∂+∂

∂+∂
∂

=∂
∂+∂

∂+∂
∂

=∂
∂+∂

∂

x
upx

put
p

x
p

x
uut

u

uxt

γ
ρα

ρρ

(2.5) 

where γ is the ratio of specific heats of the gaseous mixture; and where the energy 

equation has been cast as an equation for pressure. (In Appendix A, we present 

several alternative forms of energy equation.) This system of three scalar equations 

may be conveniently re-written as a matrix equation: 

0UAU =∂
∂⋅+∂

∂
1

1 xt x ,

where U is the vector of unknowns, ( )Tpu ,, 1ρ=U , and 1xA is a (3×3) matrix whose 

coefficients are readily obtained from the system (2.5) above. This matrix formulation 

facilitates a wave analysis since for instance, the eigenvalues of 1xA may be directly 
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interpreted as the propagation speeds of the different waves embedded in equations 

(2.5). One finds that perturbations may propagate at convective speed u1 or acoustic 

speeds (u1 ± c), where c is the PGS-modified speed of sound: 

 M
RTpc γ

αρ
γ

α
11 == . (2.6) 

This result shows that the effect of the PGS scaling in equations (2.3) and 

(2.4) is to reduce the speed of sound waves by a factor α. This reduction in the 

stiffness allows in turn for a faster time integration of the governing equations: as 

seen in equations (2.1) and (2.2), time increments may be increased by a factor of 

order α. Reference [53] argues that in problems with nearly homogeneous pressure, 

the PGS modifications will have little impact on the accuracy of the flow solution as 

long as the artificially increased flow Mach numbers Ma remain in the incompressible 

range (Ma < 0.3). 

The difficulties that arise in problems with non-homogeneous pressure are 

now examined in more detail. As discussed in [53], in addition to a modification of 

the speed of sound c, PGS also produces an amplification of pressure variations by a 

factor α2. This effect may be illustrated by considering a second one-dimensional test 

problem TP2 corresponding to steady flow in an inviscid, non-reacting, ideal gas, in 

the presence of gravity. The PGS system of equations for total mass, x1-momentum 

and energy may be written as: 
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Combining the last two equations of (2.7), one finds the following expression 

for the pressure gradient: 

( )22
1

1
1 Magx

p −=∂
∂ αρ ,

where Ma is a modified Mach number based on the speed of sound in equation (2.6). 

Assuming a low Mach number flow, this result shows that the effect of PGS in 

problem TP2 is to amplify the pressure gradient by a factor α2. It is worth 

emphasizing that a simple re-scaling of the gravity acceleration vector will not fix this 

problem since a re-scaling of g1 would correspond to an unacceptable change in the 

flow Froude number, i.e. a change in the balance between inertial and gravitational 

forces. 

Thus, the domain of validity of PGS is restricted to problems where the 

corresponding amplification of pressure variations remains acceptable. Problems 

where the flow dynamics are controlled by external pressure gradients, for instance 

ducted flow problems, are a priori outside the reach of a PGS treatment. We now 

propose a variation of the PGS method, called the Acoustic Speed Reduction (ASR) 

method, that achieves a decrease in speed of acoustic waves similar to PGS while 

preserving the pressure gradient. 
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The Acoustic Speed Reduction (ASR) Method 
 
In ASR, the momentum equation is unchanged while the energy equation is modified 

with the addition of an extra term. The exact form of this extra term is first postulated 

as a starting point and then justified based on both a detailed analysis of problems 

TP1 and TP2 and further insights on how to extrapolate the ASR treatment to flame 

problems. A more rigorous mathematical derivation of ASR based on asymptotic 

expansions of the governing equations (valid for weakly compressible flows) is 

presented in Appendix B.  

The ASR-modified equation for total energy takes the form: 
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(2.8) 

where α is an arbitrary coefficient taken greater than 1; and where { }acjj xu ∂∂ /

designates the acoustic component of flow dilatation (see below). 

In order to compare ASR to PGS, let us consider again the simplified 

problems TP1 and TP2 introduced above.  We consider for now that the acoustic 

component of flow dilatation is simply equal to the total flow dilatation, 

{ } { }jjacjj xuxu ∂∂=∂∂ // . The ASR system of equations for TP1 may be written as: 
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where the energy equation has been cast as an equation for pressure. An eigenmode 

analysis shows that the eigenvalues of the ASR system (2.9) are identical to that of 

the PGS system (2.5), and that the expression for the ASR-modified speed of sound is 

that given in equation (2.6). Thus, ASR shares with PGS the ability to reduce the 

speed of sound waves by an arbitrary factor α.

We now consider problem TP2. The corresponding ASR system of equations 

may be written as:  
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Combining the last two equations of (2.10), we get the new ASR expression for the 

pressure gradient: 

( )2
1

1
1 Magx

p −=∂
∂ ρ ,

where Ma is a modified Mach number based on the speed of sound in equation (2.6). 

Assuming a low Mach number flow, this result is independent of α and is a good 

approximation to the exact solution. TP2 shows that contrary to PGS, ASR does not 

amplify pressure gradients. 

 We now turn to the problem of providing a final expression for { }acjj xu ∂∂ / .

Like in PGS, the basic idea in ASR is to manipulate terms in the governing equations 

that are small (of order Ma2) and do not contribute much to the slow flow dynamics. 
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The manipulation achieves an artificial decrease in acoustic speeds without changing 

the order 1 physics. This argument suggests that the extra term introduced in equation 

(2.8) cannot be taken as proportional to the total flow dilatation: flow dilatation is not 

small in a combustion problem. To resolve this difficulty, we consider a general 

expression for flow dilatation: 
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where cp is the specific heat of the gaseous mixture at constant pressure. In the 

absence of an external pressure gradient, the first term on the right-hand-side of this 

expression corresponds to the acoustic contribution to the dilatational field and is of 

order Ma2; the second term corresponds to the contribution associated with viscous 

dissipation, heat conduction and heat release and is of order 1. This suggests the 

following decomposition of flow dilatation: 
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(2.11) 

where { }acjj xu ∂∂ / and { }thjj xu ∂∂ / designate the acoustic and heat transfer 

components of flow dilatation. Note that this decomposition is not unique since 

viscous dissipation is of order Ma2 and could have been incorporated into the acoustic 

component. In addition, in the presence of an external pressure gradient, the 

decomposition may have to be reformulated to properly account for non-acoustic 
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pressure variations. These variations, however, are typically small and numerical tests 

indicate that alternatives to the expressions proposed in equation (2.11) do not lead to 

significant changes in the results. 

The ASR pressure-dilatation term in equation (2.8) is based on the acoustic 

contribution to flow dilatation, and this contribution may be evaluated as the 

difference between total dilatation and its heat transfer component. The final ASR 

formulation may now be written as follows: 
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The PGS and ASR modifications described in equations (2.3)-(2.4) and (2.12) above 

have been implemented into S3D. The software changes are limited and 

straightforward: they include both a modification of the basic expressions for 

variations in momentum and energy applied to the interior of the computational 

domain as well as corresponding adaptations of the characteristic-based boundary 

condition treatment [40, 41] (the modifications to the boundary scheme are 

straightforward and are limited to the handling of the modified momentum or energy 

equations and the corresponding decrease in acoustic speeds). The next section will 

present numerical results obtained with S3D in a number of test problems, including 

non-reacting flow problems and laminar flame problems where chemical reaction is 

treated with single-step or detailed kinetics. 
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2.3. Results 
 

Non-Reacting Flow Tests 
 
We first consider the one-dimensional test problem TP1 discussed in section 2.2 

above. Figure 2-1 presents the simulation of an acoustic wave propagating in 

quiescent air. The numerical configuration corresponds to a uniform computational 

mesh, ∆x = 100 µm, while time integration is performed at a pace determined by the 

acoustic-based CFL stability condition, ∆t ≈ 0.288 µs (∆t is readily obtained from 

equation (2.1) using CFL = 1 and c ≈ 348 m/s). The initial profiles for mass density, 

flow velocity and energy are specified according to linear acoustics theory (see for 

instance [54]) and with the intent to generate a single right-traveling perturbation. The 

results presented in figure 2-1 provide a physical description of the propagating 

acoustic pulse as well as a numerical description of the performance of the right x-

boundary condition as the acoustic pulse exits the computational domain. Without 

PGS or ASR, the propagation speed of the acoustic pulse is the unmodified speed of 

sound: 

m/s 0.348 ≈= M
RTc γ ,

where γ = 1.4, R = 8.314 J/mol-K, T = 300 K, M ≈ 28.84×10-3 kg/mol. 
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(a)                                                                                (b) 
Figure 2-1. Right-traveling acoustic wave without PGS or ASR. The simulation correspond to air at 
standard temperature and pressure conditions, T = 300 K, p = 1 atm. Figures (a) and (b) show the 
acoustic pressure and x-velocity perturbations versus spatial distance at 3 successive times; solid line: t
= 0; dashed line: t = 7.2 µs; dash-dotted line: t = 14.4 µs. The perturbations travel across the (one-
dimensional) computational domain at the speed of sound, c ≈ 348.0 m/s. 

(a)                                                                                (b) 
Figure 2-2. Right-traveling acoustic wave with ASR (α = 10). The simulation conditions and plotting 
parameters are identical to those of Fig. 1. Solid line: t = 0; dashed line: t = 7.2 µs; dash-dotted line: t =
14.4 µs. The perturbations travel across the computational domain at an ASR-modified pseudo-speed 
of sound, c ≈ 34.8 m/s. 
 

Figure 2-2 presents an ASR-modified simulation of the same isothermal sound 

propagation problem. The ASR free parameter α is chosen equal to 10. The acoustic 

evolution is unchanged compared to that obtained without ASR (while not shown 
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here, this statement also applies to the right x-boundary response to the incoming 

perturbation), with the important difference that the acoustic pulse propagation takes 

place at a much reduced speed. Figure 2-2 shows that consistent with equation (2.6), 

the propagation velocity is reduced by a factor α = 10. Also, consistent with equation 

(2.1), the modified speed of sound allows in turn for a tenfold increase in the 

computational time step, ∆t ≈ 2.88 µs. Similar results were obtained with PGS. Thus, 

simulations of problem TP1 confirm the ability of PGS and ASR to artificially 

manipulate the speed of sound and allow for larger computational time steps. 

We now turn to the one-dimensional test problem TP2. Figure 2-3 presents 

results obtained in different S3D simulations and corresponding to slow and steady 

flow of air evolving in a normal gravity field. The simulations differ only due to the 

presence or absence of a PGS or ASR treatment. The numerical configuration in 

figure 2-3 corresponds to a uniform computational mesh, ∆x = 10 mm, and time 

integration is acoustic-CFL-limited; without PGS or ASR: ∆t ≈ 28.8 µs; with PGS or 

ASR and α = 10: ∆t ≈ 288 µs. Figure 2-3 compares the PGS and ASR pressure 

variations and shows that the PGS transformation produces an amplification of the 

pressure variations by a factor α2 = 100. In contrast, the ASR transformation 

successfully preserves the hydrostatic pressure gradient, dp/dx ≈ -(ρgx) ≈ -11.5 N/m3

≈ -1.135×10-4 atm/m. Thus, simulations of problem TP2 confirm the ability of ASR to 

correctly predict the pressure field. 
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(a)                                                                                (b) 
Figure 2-3. Hydrostatic pressure variations versus vertical distance. The simulations correspond to air 
at standard temperature, pressure and gravity conditions, T = 300 K, p = 1 atm, gx = -9.81 m/s2 (gravity 
is pointing into the negative x-direction). Figure (a) presents results obtained both without PGS or ASR 
(solid line) and with ASR (dashed line, α = 10). Figure (b) presents results obtained with PGS (solid 
line, α = 10). Compared to Fig. (a), pressure variations in Fig. (b) are amplified by a factor α2 = 100. 

 
Next, we provide an example of a pressure-driven ducted flow configuration 

where the pressure-preserving capability of ASR is critical to obtaining the correct 

flow solution. The configuration corresponds to a two-dimensional, plane, steady, 

laminar flow of air evolving between two (isothermal) solid plates located H = 1 cm 

apart (figure 2-4). The flow is driven by a prescribed (uniform) streamwise pressure 

gradient, dp/dx ≈ -2.2 N/m3, and corresponds to a classical one-dimensional Poiseuille 

flow solution with a parabolic cross-stream velocity distribution (top insert in figure 

2-4) and a y-averaged velocity ( ) m/s 1/)12/( 2 ≈−= dxdpHu µ , where µ is the 

dynamic viscosity of air, µ ≈ 1.84×10-5 (N.s)/m2. The numerical configuration in 

figure 2-4 corresponds to a uniform computational mesh, ∆x = 400 µm and ∆y = 100 

µm; and time integration is acoustic-CFL-limited; without PGS or ASR: ∆t ≈ 0.286 

µs. 
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Figure 2-4. Two-dimensional laminar Poiseuille flow configuration. The simulations correspond to air 
at standard temperature and pressure conditions, T = 300 K, p = 1 atm, moving steadily along the x-
direction between 2 solid plates (located at y = 0 and 1 cm) and driven by a prescribed pressure drop 
between the duct inlet (x = 0) and outlet (x = 10 cm), ∆px ≈ -0.22 Pa. The bottom plot presents iso-
contours of x-velocity and shows that the flow remains one-dimensional across the computational 
domain. The top insert presents a cross-stream x-velocity profile; this velocity profile features a 
classical parabolic shape and a y-averaged velocity m/s 1≈u .

It is important to emphasize that in the ducted flow configuration of figure 2-

4, the pressure variations are an input to the problem and the primary output of the 

numerical simulations is the resulting flow field. In figure 2-5, we use the mass flow 

rate m′& going through the duct as a global measure of the solution accuracy, and m′&
is evaluated in different simulations performed with PGS or ASR and different values 

of the free parameter α. The theoretical value for the mass flow rate per unit depth is 

( ) m)-kg/(s 1018.1 2−×≈=′ uHm ρ& ; and figure 2-5 shows that this value is correctly 

predicted in the simulation without PGS or ASR (i.e. when α = 1). Figure 2-5 also 

shows that while the ASR transformation leaves the flow solution unchanged, the 
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PGS transformation leads to an incorrect solution where the mass flow rates through 

the duct is decreased by a factor α2. This example demonstrates that for problems 

where pressure is an active part of the flow solution, the pressure-preserving 

capability of ASR is critical to maintaining solution accuracy. 

Figure 2-5. Mass flow rate per unit depth in PGS- and ASR-modified simulations of a two-
dimensional laminar Poiseuille flow (see figure 2-4). Top curve (circle symbols): ASR; bottom curve 
(square symbols): PGS. The figure shows that while the ASR-solution is insensitive to the value of α,
the PGS-solution strongly depends on it. In PGS, the pressure-driven mass flow rate through the duct is 
incorrectly reduced by a factor α2.

Reacting Flow Tests 
 
We now consider the application of ASR to chemically reacting flow problems and 

present below two examples of ASR-modified numerical simulations of laminar 

premixed flames. The first example in figure 2-6 corresponds to a two-dimensional, 

plane flame propagating steadily into a lean methane-air mixture at standard 

temperature and pressure conditions. The equivalence ratio is φ = 0.7; the flame is 



29 
 

stabilized inside the computational domain by blowing the methane-air mixture 

across the left boundary (x = 0) at a velocity equal to the laminar flame speed, u = sL

≈ 0.20 m/s. At initial time, t = 0, the methane-air feeding stream is perturbed by the 

introduction of a small round-shaped fuel-enriched pocket of diameter D ≈ 0.2 cm 

and centered near (x,y) ≈ (0.4 cm, 1 cm). The equivalence ratio in the pocket is φ = 1. 

Methane-air combustion is described using a single-step chemistry model proposed in 

[54] (p. 52) and near-unity Lewis numbers (LeCH4 = 0.99; LeO2 = 1.08). The numerical 

configuration in figure 2-6 corresponds to a uniform computational mesh, ∆x ≈ 31.3 

µm and ∆y ≈ 78.4 µm; and time integration is acoustic-CFL-limited; without PGS or 

ASR: ∆t ≈ 0.056 µs (∆t is readily obtained from equation (2.1) using CFL = 1.7 and c

≈ 942 m/s. Note that the value of the stability parameter CFL has been increased from 

1 to 1.7 in order to speed up the calculations. Note also that c designates the 

maximum value of the speed of sound over the computational domain; the value of c

is higher in combustion problems than in inert flow problems due to the higher fluid 

temperatures). 

Figures 2-7, 2-8 and 2-9 provide a physical description of the flame response 

to the incoming stoichiometric pocket as well as a snapshot comparison between two 

simulations performed with and without ASR treatment (ASR is used with α = 10 and 

∆t ≈ 0.56 µs). As it passes through the flame, the stoichiometric pocket changes the 

local burning conditions and thereby leads to: a local increase in flame speed and the 

subsequent wrinkling of the flame surface (figure 2-7a); a local increase in flame 

temperature and the post-flame development of a hot spot (figure 2-8a); and a local 

increase in flow acceleration and the post-flame development of a high-velocity 
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region (figure 2-9a). Figures 2-7b, 2-8b, and 2-9b show that the ASR-modified 

simulation correctly reproduces the details that are observed in the fully compressible 

flame-flow structure. A more global perspective is adopted in figure 2-10 where we 

use the total methane mass reaction rate (space-averaged over the computational 

domain) as a measure of the ASR solution accuracy. The agreement between the 

ASR-modified and fully compressible results is again excellent. And this example 

shows that the ASR transformation may be successfully applied to combustion 

problems. 

Figure 2-6. Two-dimensional laminar premixed flame configuration. The simulations correspond to an 
initially plane, steady, lean, methane-air flame perturbed by an incoming stoichiometric pocket. 
Methane-air combustion is described using single-step chemistry. The figure presents iso-contours of 
the initial methane mass fraction distribution: the gray region on the left (x < 0.7 cm) corresponds to 
lean reactants (φ = 0.7); the black round-shaped region near (x,y) ≈ (0.4 cm, 1 cm) corresponds to the 
stoichiometric perturbation (φ = 1); the white region on the right (x > 0.7 cm) corresponds to 
combustion products (YCH4 = 0). 
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(a)                                                                                (b) 
Figure 2-7. Unsteady response of a lean, methane-air, laminar premixed flame to an incoming 
stoichiometric pocket (see figure 2-6). Iso-contours of the fuel mass reaction rate 4CHω& obtained at 
time t ≈ 0.014 s. 4CHω& is expressed in cgs units (g/s-cm3). Figure (a) presents results obtained without 
PGS or ASR; figure (b) presents results obtained with ASR (α = 10). 

 

(a)                                                                                (b) 
Figure 2-8. Unsteady response of a lean, methane-air, laminar premixed flame to an incoming 
stoichiometric pocket (see figure 2-6). Iso-contours of the fluid temperature T obtained at time t ≈
0.014 s. T is expressed in Kelvin units (K). Figure (a) presents results obtained without PGS or ASR; 
figure (b) presents results obtained with ASR (α = 10). 

 



32 
 

(a)                                                                                (b) 
Figure 2-9. Unsteady response of a lean, methane-air, laminar premixed flame to an incoming 
stoichiometric pocket (see figure 2-6). Iso-contours of the x-velocity component u obtained at time t ≈
0.014 s. u is expressed in cgs units (cm/s). Figure (a) presents results obtained without PGS or ASR; 
figure (b) presents results obtained with ASR (α = 10). 

 

Figure 2-10. Unsteady response of a lean, methane-air, laminar premixed flame to an incoming 
stoichiometric pocket (see figure 2-6). The plot shows the time history of the total fuel mass reaction 
rate ( 4CHω& is space-averaged over the computational domain); solid line: without PGS or ASR; dashed 
line: with ASR (α = 10). The total reaction rate is normalized by its initial value. 

 
We now turn to a second laminar premixed flame problem where chemical 

reaction is treated with detailed chemical kinetics. The configuration corresponds to a 

one-dimensional, plane flame propagating steadily into a lean hydrogen-air mixture at 
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standard temperature and pressure conditions. The equivalence ratio is φ = 0.4; and 

the flame is stabilized inside the computational domain by blowing the hydrogen-air 

mixture across the left boundary (x = 0) at a velocity equal to the laminar flame 

speed, u = sL ≈ 0.21 m/s. Hydrogen-air combustion is described using a detailed 

chemistry model proposed in [55] (the chemical scheme uses 9 species and 19 

reversible reactions); mass diffusion is described using constant Lewis numbers (LeH2 

= 0.32; LeH = 0.19; all other Lewis numbers are close to unity). The numerical 

configuration corresponds to a uniform computational mesh, ∆x ≈ 13.3 µm; and time 

integration is acoustic-CFL-limited; without PGS or ASR: ∆t ≈ 0.04 µs (∆t is readily 

obtained from equation (2.1) using CFL = 2.26 and c ≈ 751 m/s, where the value of 

the stability parameter CFL has been increased to its maximum theoretical value 

[39]). 

Figures 2-11 and 2-12 present a detailed comparison between two simulations 

performed with and without ASR treatment (ASR is used with α = 4 and ∆t ≈ 0.16 

µs). Note that the exact flame location in those simulations is arbitrary and in the 

plots, the ASR data have been shifted to the right to facilitate the comparison with the 

fully compressible results. The agreement between the two solutions is found to be 

excellent. This statement applies both to the major flow and mixture variables (see the 

temperature variations displayed in figure 2-11a) as well as to the details of the 

chemical structure of the flame (see the variations of the hydroxyl radical reaction 

rate OHω& as displayed in figure 2-11b). For instance, differences in the burnt gas 

temperature distribution between the fully compressible and ASR solutions are 

quantified to be less than 0.5 % (figure 2-11a). Similarly, differences in the spatial 
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variations of OHω& are less than 4 % (figure 2-11b). Figure 2-12 presents another 

sensitive diagnostic and describes the pressure variations within the flame, from 

reactants to products. While slight differences in the shape of the two profiles are 

clearly visible (these differences may indicate that the solutions are still influenced by 

transients and not perfectly converged), it is also seen that the magnitude of the weak 

pressure drop across the flame is correctly predicted in the ASR-modified simulation, 

( )2
Lsp ρτ ×=∆ ≈ 0.16 Pa ≈ 1.6×10-6 atm, where τ is the flame heat release factor and 

is a function of both the temperature increase across the flame ∆T and the unburnt gas 

temperature Tu, τ = ∆T/Tu ≈ 3.7. Note that a PGS treatment would amplify the 

pressure drop ∆p by a factor α2.

(a)                                                                                (b) 
Figure 2-11. One-dimensional laminar premixed flame configuration. The simulations correspond to a 
plane, steady, lean (φ = 0.4), hydrogen-air flame. Hydrogen-air combustion is described using detailed 
chemical kinetics. solid line: without PGS or ASR; dashed line: with ASR (α = 4). The ASR curve has 
been arbitrarily shifted to the right to facilitate the comparison with the fully compressible curve. (a) 
The figure presents the temperature variations across the flame; (b) spatial variations of the OH mass 
reaction rate OHω& across the flame. OHω& is expressed in cgs units (g/s-cm3). 
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Figure 2-12. Structure of a lean, hydrogen-air, laminar premixed flame (see figure 2-11). The figure 
presents the pressure variations across the flame; solid line: without PGS or ASR; dashed line: with 
ASR (α = 4). The ASR curve has been arbitrarily shifted to the right to facilitate the comparison with 
the fully compressible curve. 

 
While this last example indicates that the ASR transformation may be 

successfully applied to flame problems with detailed chemical kinetics, it is also 

important to recognize that the gain in computational efficiency allowed by pseudo-

compressibility methods may be limited in those problems. The reason for this is that 

detailed flame modeling features many fast evolving dynamical processes including 

fast chemical reactions and fast mass diffusion of light radical species. Therefore, in a 

fully explicit time integration approach like that used in S3D, the time step ∆t is as 

much constrained by chemistry and diffusion as it is constrained by acoustics. In this 

situation, the removal of the acoustic limitation does not necessarily allow for larger 

values of ∆t. For instance, in the previous lean hydrogen-air flame example, the time 

step was increased with ASR by a factor α = 4, but could not be increased further 

when using larger values of α. The ASR-based control of ∆t was even more limited 

as richer flames were considered. In the case of a stoichiometric hydrogen-air flame, 
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the time step was found to be controlled by fast mass diffusion of hydrogen atoms 

and the ASR modifications remained without significant impact on computational 

efficiency. 

2.4. Conclusion 
 

A pseudo-compressibility method, called the Acoustic Speed Reduction (ASR) 

method, has been developed to allow for more efficient computations of slow flow 

problems using an explicit compressible flow solver. The method is similar to the 

pressure gradient scaling (PGS) method proposed in [53] to the extent that it 

manipulates terms in the governing equations of order Ma2, where Ma is a 

characteristic flow Mach number. ASR is different from PGS in that it achieves a 

decrease in speed of acoustic waves while preserving the pressure field, and the 

method can therefore be applied to problems with external pressure gradients. 

The original and modified PGS methods have been implemented into a 

parallel direct numerical simulation (DNS) solver developed for applications to 

turbulent reacting flows with detailed chemical kinetics. The performance of both 

pseudo-compressibility methods was studied in a series of benchmark problems. 

While the benchmark configurations were intentionally kept simple (one- or two-

dimensional space domains, laminar flows), they nevertheless included many of the 

important dynamical features found in combustion problems: sound propagation, 

gravity, pressure-driven flow, premixed flame propagation. In all tested cases, the 

ASR method proved successful at improving the computational efficiency while 

maintaining solution accuracy. For DNS applications, the gain in computational 

efficiency is large (typically at least an order of magnitude) in non-reacting flow 
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problems and reacting flow problems with single-step chemistry. The gain may be 

more limited, however, in reacting flow problems using detailed chemistry. For 

instance, in a fully explicit time integration approach, the computational time step is 

often as much constrained by chemistry and diffusion as it is constrained by 

acoustics, and the ASR-based efficiency gain is in that case moderate to low. 

Finally, it is worth mentioning that while the focus of the present discussion is 

with DNS, the ASR method can also be easily adapted to the large eddy simulation 

(LES) approach.  
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Chapter 3: Improved Characteristic Boundary Conditions 
 

3.1. Introduction 
The objective of this boundary condition study is to adapt our DNS code S3D to 

simulate turbulent counterflow flames. The counterflow configuration has served as a 

canonical geometry to study fundamental characteristics of steady and unsteady 

laminar flame problems [56, 57].  The one-dimensional flame structure provides a 

suitable framework for detailed analysis of flame structures, ignition/extinction 

phenomena, and pollutant formation characteristics. The one-dimensional numerical 

models can easily incorporate detailed chemistry and molecular transport model [58], 

thereby allowing comprehensive validation of reaction mechanisms against 

experimental measurements. A notable recent development is the application of the 

counterflow systems to the study of turbulent flame problems, both in premixed and 

non-premixed configurations [59-61]. Like the laminar counterpart, turbulent 

counterflow flames provide an attractive alternative for the statistical analysis of key 

variables relevant to turbulent combustion modeling. Despite the simplicity in the 

experimental setup, however, high-fidelity DNS of turbulent counterflow flames is 

not a trivial task.  The difficulties stems not only from the sheer computational cost 

required to resolve a range of physical scales, but also from other numerical aspects 

such as stability and boundary condition treatment.   

We consider herein a DNS framework based on high-order numerical methods 

and a compressible flow formulation. High-order methods allow minimal numerical 

dissipation and thus high levels of accuracy, but they can also exhibit significant 

sensitivity to the boundary condition treatment. In the compressible flow formulation, 
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boundary conditions are handled using suitable extensions of a classical gas dynamics 

characteristic wave analysis. The objective of the boundary condition scheme is then 

to specify desired physical constraints (such as prescribed inflow velocities, pressure, 

or other scalar variables), while suppressing spurious acoustic wave reflections at 

open boundaries. These two objectives are often mutually exclusive, so that a proper 

balance between the two has been found to be problem-dependent. In particular, the 

counterflow configuration has posed an additional challenge due to the presence of 

two opposing inflow boundaries at which the solution variables need to be specified.  

The objective of the present study is to overcome these difficulties and extend the 

domain of application of DNS to counterflow configurations. 

The characteristic boundary conditions adopted in S3D was initially 

developed for the hyperbolic system of Euler equations [62-67]. In this framework, 

the flow dynamics at any given surface boundary of the computational domain is 

decomposed into a set of characteristic waves, which allows the identification of 

incoming and outgoing waves as well as a physically-based treatment of the 

communication between the interior and exterior of the domain. The characteristic 

wave decomposition has been adapted by Poinsot and Lele [40] to the Navier-Stokes 

equations, known as Navier-Stokes characteristic boundary conditions (NSCBC).  

Further recent developments of NSCBC include an adaptation to multi-component 

chemically reacting flows [68, 69], a modified treatment of the chemical reaction 

source terms at the domain boundaries[70], and a low Mach number asymptotic 

expansion to decouple acoustics from other flow variables for subsonic flow 

applications [71]. Readers are referred to the paper of Poinsot and Lele [40] for a 
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detailed presentation of NSCBC, and to the review paper of Colonius [72] for a more 

general discussion of boundary conditions for compressible flow solvers. 

In NSCBC, the locally one-dimensional inviscid (LODI) assumption is 

implicitly used such that variations are only retained in the direction normal to the 

computational domain boundary. This assumption has proven relatively robust in 

previous DNS studies. Note, however, that most previous studies considered 

unidirectional mean flow (shear layers, jets or boundary layer flows). We will show 

in this study that a direct application of NSCBC is inadequate when multi-

directionality of the flow at the boundaries becomes important, as is the case in the 

counterflow configuration. An improved NSCBC formulation is then proposed and 

applied to various test problems to demonstrate the robustness and accuracy of the 

proposed method. 

This chapter is organized as follows. We first briefly review the NSCBC 

method in the next section. Different variations of NSCBC are then considered in 

section 3.3 and evaluated in test simulations of non-reacting/reacting laminar 

counterflow configurations. Based on these tests, a modified NSCBC treatment for 

inflow and outflow boundaries is finally selected and successfully applied to DNS 

simulations of turbulent counterflow flames in section 3.4. 

3.2. Review of Navier-Stokes Characteristic Boundary Conditions 
NSCBC is based on a one-dimensional characteristic analysis of the different waves 

crossing a given boundary of the computational domain. In the following, we 

consider a numerical boundary in the x direction. Following Poinsot and Lele [40] 
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and Sutherland and Kennedy [70], we write the non-conservative form of the Navier-

Stokes equations as: 
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where v is the velocity vector, ( ) 2/1RTc γ= the speed of sound, and the subscript t

represents tangential (y and z) directions. The viscous and source terms at the right 

hand side are given by:  
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where jq is the heat flux in direction j , N the total number of species, ijV the 

diffusion velocity of species i in direction j, iM the molecular weight of species i ,

M the mean molecular weight, ih the specific enthalpy of species i , pc the mixture 

isobaric heat capacity, ijf the body force per unit mass on species i in direction j ,
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and iω& the molar reaction rate of species i per unit volume. Convective and pressure 

gradient terms in x-direction are written in the form of )( x
kL ( )Nk +≤≤ 51 , which are 

the wave-based quantities obtained from a characteristic analysis of the governing 

equations along the x-direction. These quantities give the temporal rate of change of 

the amplitudes of the different waves that cross the x-boundary, and are defined as 

follows: 

 



























∂
∂





∂
∂+∂

∂⋅
∂
∂
∂
∂





∂
∂−∂

∂




∂
∂−∂

∂⋅

=

























=

++ x
Y

x
ucx

p
x
w
x
v

x
p

cx

x
ucx

p

L

L

L

L

L

L

ix
i

x

x

x

x

x

x
i

x

x

x

x

x

)(
5

)(
5

)(
4

)(
3

2
)(

2

)(
1

)(
5

)(
5

)(
4

)(
3

)(
2

)(
1

2
1

1
2
1

λ
ρλ

λ
λ

ρλ
ρλ

(x)L , (3.4) 

where )( x
kλ are the characteristic velocities:  
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By doing the above transformation based on a characteristic analysis, the problem of 

specifying inflow/outflow conditions is now changed to the problem of determining 

the wave amplitude variations )( x
kL . For outgoing waves, these variations are 

computed using information from inside the computational domain and one-sided 

finite difference expressions. For incoming waves, however, they cannot be computed 

from outside the computational domain so that additional physical considerations 

must be made. Poinsot and Lele [40] used the local one-dimensional inviscid (LODI) 
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assumption in order to provide approximate expressions for the amplitude variations 

of incoming waves: 
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For example, consider first a subsonic inflow )0( cu ≤≤ at the left boundary. 

All waves are incoming at this boundary, except for one upstream-traveling acoustic 

wave corresponding to )(
1
xL )0( )(

1 ≤xλ . Thus, )(
1
xL is computed according to its 

definition in equation (3.4) and one-sided finite difference estimates of the spatial 

derivatives, whereas )( x
kL )52( Nk +≤≤ are determined from the LODI relations. 

The LODI relations correspond to simplified expressions of the physical boundary 

conditions that are required for well-posedness [40]. For instance, if we choose to 

prescribe the inlet flow variables according to known upstream values of the flow 

velocity vector ( )000 ,, wvu , temperature 0T , and species mass fractions 0,iY , we may 

get the expressions of incoming waves by invoking vanishing derivatives with respect 

to time in equation (3.6): 
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This set of boundary relations is called “hard-inflow boundary conditions”, and 

provides a maximum control of the inlet flow variables (all variables are fixed except 
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for mass density and pressure), while simultaneously leading to a perfect reflection 

(without damping) of the upstream-traveling acoustic wave energy back into the 

computational domain [68].  

As an alternative, the nonreflecting-inflow conditions maintain a good control 

of the inlet flow variables while reducing spurious wave reflections at the inflow 

boundaries [54]. In the nonreflecting-inflow treatment, the inlet values of the flow 

velocity vector, temperature and species mass fractions are imposed using a set of 

relaxation terms. The modified LODI relations correspond to a set of linear relaxation 

constraints between the inflow variables and their prescribed upstream values. A 

possible choice is: 
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where kβ are model relaxation coefficients. These coefficients allow a soft control of 

the boundary variables and can be conveniently tuned in order to minimize spurious 

perturbations. These nonreflecting-inflow boundary conditions have been used in a 

large-eddy simulation study of turbulent premixed combustion instability phenomena 

[73]. Note that, in equation (3.8), a choice of large values for the coefficients kβ
corresponds to a formulation with nearly fixed values of the inlet flow velocity, 

temperature and species mass fractions, and provides similar results to those obtained 

with the hard-inflow boundary conditions. In contrast, a choice of small values for 

kβ corresponds to a non-reflecting formulation with good wave transmission 



45 
 

properties but poor control of the inlet flow variables. Yoo et al. [74] applied the 

analysis of Rudy and Strikwerda [66] and showed, under simplified conditions, how 

the choice of the coefficients kβ may be optimized a priori in order to provide the 

best trade-off between control of the leading order solution and control of the wave 

perturbations. This choice corresponds to moderate values of the coefficients kβ , and 

is parameterized by a non-dimensional relaxation coefficient ηk (see [74], appendix 

A). 

Let us now consider a subsonic outflow )0( cu ≤≤ at the right boundary. All 

waves are outgoing at this boundary, except for one upstream-traveling acoustic wave 

corresponding to )(
1
xL )0( )(

1 ≤xλ . Thus, in the NSCBC method, )(
1
xL is determined 

from LODI relations, whereas )( x
kL )52( Nk +≤≤ are computed according to 

equation (3.4) and one-sided finite difference estimates of the spatial derivatives. The 

recommended LODI relation for )(
1
xL corresponds to a simple relaxation condition for 

pressure [40, 66]: 

 ( ) )(2
1)(

2

1
)(

1 ∞∞ −−=−= ppl
MacppL

x

x σα , (3.9) 

where Ma is the maximum Mach number at the boundary, ∞p the imposed pressure 

(typically the ambient pressure), and xl the x-length of the computational domain. σ
is the relaxation factor for pressure and is set to 0.25 in this study as in Poinsot and 

Lele [40]. This outflow condition serves to maintain pressure (albeit in a soft way) 

inside the computational domain around a prescribed ambient value. 

In summary, the NSCBC/LODI method provides a valuable approach to 

formulate boundary conditions in a compressible flow framework. The approach is 
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based on solving balance equations at the boundaries (as opposed to prescribing 

directly values of the principal variables) and on using a locally one-dimensional 

assumption. This one-dimensional assumption works well in flows that are essentially 

unidirectional and quasi-parallel (shear layers, jets or boundary layer flows); 

however, it becomes problematic in flow geometries that are strongly multi-

directional, as will be found in the next section.  

3.3. Application to Laminar Counterflow  
The nonreflecting inflow boundary conditions have been discussed in the context of a 

unidirectional flow configuration. However it is actually not so critical in 

unidirectional configurations; in fact, the use of hard inflow conditions, which specify 

the solution variables directly, can produce reasonably good results since the acoustic 

waves reflected at the hard inflow boundary are allowed to leave the computational 

domain through the downstream nonreflecting outflow boundary. A true challenge 

occurs in a counterflow configuration where velocity needs to be imposed at the two 

opposing inflow boundaries. Application of hard inflow conditions at the two 

boundaries results in repeated reflections of the initial acoustic waves at both 

boundaries, only to disappear due to viscous dissipation. In this section, we will show 

that a direct application of hard inflow conditions is inadequate and a solution will be 

sought using the nonreflecting inflow conditions.  

Another important feature of counterflow configurations is that it has 

inherently large transverse terms so that the one-dimensional assumption used in 

LODI is no longer valid. We will show in the following that the NSCBC treatment of 

the incoming-waves )( x
kL -variables must account for the transverse terms (the y- and 
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z-gradient terms in equation (3.1)) that characterize variations in planes parallel to the 

boundary surface. 

The Original LODI Method  
For an illustrative purpose, we consider a two-dimensional nonreacting counterflow 

in which the potential flow enters from the two boundaries in the x-direction and 

leaves the domain through both sides in the y-direction as shown in Figure 3-1. The 

initial field is prescribed by the hypothetical potential flow field: 

 ( ) ( )2xp lxxu −−= κ and ( ) ( )2yp lyyv −= κ , (3.10) 

where κ [1/s] is the strain rate of the flow, and xl and yl are respectively the x- and 

y-directional domain lengths. The goal is now to reproduce this steady potential flow 

field numerically using various characteristic boundary conditions. 

We first consider applying the hard inflow conditions which specify the 

solution variables directly at the x-boundaries, along with the standard nonreflecting 

outflow conditions at the y-boundaries. The domain size for test simulations is 1.0 cm 

× 1.0 cm in which 100 × 100 grid points are used. The initial flow field is a potential 

flow with the imposed reference pressure equal to 1.0 atm and inlet velocity at x = 0

equal to 10.0 m/s ( =κ 2000 s-1). 
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Figure 3-1. The configuration and initial condition for nonreacting counterflow tests. The solid lines 
represent streamlines and the arrows indicate the flow direction. 
 

Figure 3-2. Temporal variations of the maximum and minimum pressure with the hard inflow 
boundary conditions. 
 

Figure 3-2 shows the temporal variations of maximum and minimum pressure. 

It is clear that no steady solution can be obtained and an instability is amplified in the 

late phase of the simulation. The results confirm that the perfectly reflecting, hard 
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inflow condition imposed at two opposing boundaries is inadequate even for steady 

laminar counterflow. 

Next, we consider applying the nonreflecting inflow conditions, as given by 

equation (3.8); the non-dimensional model relaxation coefficients are 10=kη . Figure 

3-3 shows the pressure and x-velocity isocontours for the steady solution obtained in 

this test case. The qualitative counterflow pattern is correctly reproduced by the 

numerical solution. However, there are two major flaws in the results: (a) the mean u-

velocity at the x-boundaries is 8 m/s, instead of the intended value of 10 m/s; and (b) 

the mean background pressure increases from 1.0 atm to 1.36 atm. So, both strain rate 

and the thermodynamic pressure are changed in the simulation with direct application 

of the original LODI method. 
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Figure 3-3. Pressure and the x-directional velocity fields with nonreflecting inflow conditions at t = 10 
msec. 
 

Recall that the nonreflecting boundary conditions in equation (3.8) have been 

successfully used in the past for unidirectional flow configurations without any drift 

of imposed velocity and pressure. The new feature in the present counterflow 
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problem is that there are strong transverse velocity gradients at the boundaries, 

namely yv ∂∂ at x-boundaries and xu ∂∂ at y-boundaries. These terms are believed to 

be responsible for the inaccuracies in the DNS solution presented in figure 3-3. In the 

next section, we evaluate the contribution of transverse terms and propose a modified 

formulation for nonreflecting inflow and outflow boundary conditions.  

The LODI Method Enhanced by Multi-dimensional Effects 
Recognizing that the transverse derivatives can no longer be neglected in the 

counterflow configuration, the LODI relations (equation (3.6)) should be modified to 

add transverse terms: 
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In NSCBC, it is often more convenient to define the incoming waves variations from 

the equations written in characteristic form [64, 70]. At the x-direction boundaries, we 

may rewrite equations (3.11) as follows: 



51 
 

( )

( )

( )

( )

( )

( ) 























=

























ℑ

ℑ

ℑ

ℑ

ℑ

ℑ

−

























+



























∂
∂





∂
∂+∂

∂
∂
∂
∂
∂

∂
∂−∂

∂




∂
∂−∂

∂

++
0

0

0

0

0

0

2
1

1
2
1

5

5

4

3

2

1

)(
5

)(
5

)(
4

)(
3

)(
2

)(
1

2

x
i

x

x

x

x

x

x
i

x

x

x

x

x

i
L

L

L

L

L

L

t
Y

t
uct

p
t
w
t
v

t
p

ct

t
uct

p

ρ

ρ
ρ

, (3.12) 

where ( )x
kℑ designate the transverse terms in the x-direction characteristic equations. 

In a two-dimensional configuration, the transverse terms are given by: 

 

( )

( )

( )

( )

( )













∂
∂−=ℑ







∂
∂+∂

∂+∂
∂−=ℑ







∂
∂+∂

∂−=ℑ






∂
∂−∂

∂−=ℑ







∂
∂−∂

∂+∂
∂−=ℑ

+ .

,2
1

,1
,1

,2
1

5

5

3

22

1

y
Yv

y
ucvy

vpy
pv

y
p

y
vv

y
p

cyv

y
ucvy

vpy
pv

ix
i

x

x

x

x

ργ
ρ

ρ
ργ

(3.13) 

 Including the transverse terms in the nonreflecting inflow conditions applied 

at x = 0, equation (3.8) becomes: 
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Similar boundary conditions are applied at xlx = , with )(
5
xL now computed from 

equation (3.4) and )(
1
xL calculated as: 

 ( ) ( ) ( ).111
x

l
x

x
uuL ℑ+−= β (3.15) 

Similarly we also include transverse terms in the nonreflecting outflow 

boundary conditions at the y-direction: 
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where ( )y
5ℑ and ( )y

1ℑ are given by: 
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Using equation (3.14), the actual equations that are effectively solved for at 

the inflow boundaries at x = 0 are: 
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Similarly, equation (3.16) leads to the following effective outflow boundary 

condition at y = 0: 

 ( )target52
1 ppt

vct
p −−=




∂
∂+∂

∂ αρ . (3.19) 
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The reason for the inclusion of the transverse terms in the expressions for the 

wave amplitude variations )( x
kL and )( y

kL is now apparent from equations (3.18) and 

(3.19): it ensures that the solution variables at the boundaries approach the correct 

prescribed values.  In the absence of these terms, the solution variables will drift and 

will not be properly controlled. To prove this statement, three test cases are 

compared:  

� Case (a) is as shown in figure 3-3, using the conventional LODI approach 

without including any of the transverse terms in the kL expressions,  

� Case (b) includes the  ( )x
kℑ terms in the inflow conditions only,  

� Case (c) includes both the ( )x
kℑ and ( )y

kℑ terms in the corresponding inflow 

and outflow conditions.  
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Case (b) 
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Figure 3-4. Pressure and x-directional velocity fields for the three test cases at t = 10 msec. 
 

Figure 3-4 shows the pressure and x-directional velocity fields for the three 

test cases after the calculations were run for 10 msec. It is clearly seen that besides 

the two major flaws mentioned above, case (a) is affected by significant errors near 

the boundaries. Case (b) improves the velocity field, but the mean pressure field is 

still highly overpredicted. Only case (c) can reproduce the correct solution for both 

pressure and velocity. 

To elaborate on these findings, figure 3-5 shows the temporal variations of the 

maximum pressure and the mean inlet velocity for the three test cases. For case (a), it 

is seen that the maximum pressure increases above the prescribed atmospheric value 

while the mean inlet velocity decreases from the prescribed 10 m/s to 8 m/s. The 
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reason may be explained as follows: if the conventional LODI method is used, the 

following equation is effectively solved at the left inflow boundary: 

 ( ) ( )xuut
uct

p
5052

1 ℑ+−−=



∂
∂+∂

∂ βρ at  x = 0. (3.20) 

where the ( )x
5ℑ term is large in the presence of a strong straining motion. A similar 

expression can be derived for the right inflow boundary at xlx = . Therefore, at steady 

state, the boundary velocity takes an incorrect value equal to ( )
550 βxuu ℑ+= . Case 

(b) corrects this problem of a velocity drift by effectively eliminating ( )x
5ℑ in equation 

(3.20). It does not address, however, the separate problem of a pressure drift. The 

reason for the pressure drift could be explained using similar arguments: in the 

conventional LODI method, the following equation is effectively solved at the bottom 

outflow boundary: 

 ( ) ( )yppt
vct

p
5target52

1 ℑ+−−=



∂
∂+∂

∂ αρ at  y = 0. (3.21) 

Therefore, at steady state, the boundary pressure takes an incorrect value equal to 
( )

55target αypp ℑ+= . Case (c) corrects this problem of a pressure drift by effectively 

eliminating ( )y
5ℑ in equation (3.21). 
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(a) Maximum pressure                                         (b) Mean inlet velocity at x = 0

Figure 3-5. Temporal variations of the maximum pressure and the mean inlet velocity at x = 0 for 
Cases (a)−(c). 
 

These results confirm that in counterflow configurations, a proper accounting 
of the transverse gradient terms in the expressions for the wave amplitude variations 

)( x
kL and )( y

kL at both inflow and outflow boundaries is critical in achieving the correct 
solution. One remaining problem with case (c), however, is that the solution suffers 
from a numerical instability and is observed to fail after a long calculation time (see 
figure 3-5). This problem is addressed in the next section.   

 

A Modified Nonreflecting Outflow Boundary Condition 
We now consider the numerical instability encountered in case (c). A comparison 

between cases (b) and (c) suggests that the instability arises from the outflow rather 

than the inflow boundaries. In other words, including transverse terms in the 

formulation of incoming waves at the outflow boundary can prevent the deviation of 

background pressure, however, simply doing this causes instability. Actually this 
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outflow boundary condition (equation (3.19)) has been discussed in the literature. 

Giles [67] showed, from the linearized Euler equations, that equation (3.19) would 

produce reflections for waves with a non-normal angle of incidence to the boundary. 

This boundary condition corresponds to the first order approximation to the ideal non-

reflecting boundary conditions for multidimensional flows. Higher order 

approximations require some transverse terms. Nicoud [75] also suggested, from 

numerical tests, that some forms of transverse terms are necessary in multi-

dimensional problems in order to reach the correct steady state solution.  

It is very difficult, if not impossible, to propose general non-reflecting 

boundary conditions for multidimensional non-linear systems with a rigorous 

mathematical derivation. Nevertheless, to empirically solve the above-mentioned 

instability problem, we understand that we must retain some transverse terms in the 

final effective equations solved at the boundary, and in the mean time, make them 

small to avoid the drift of the background pressure. Thus, the outflow boundary 

condition is modified to accommodate both pressure and transverse term relaxation 

effects simultaneously by introducing a transverse damping parameter a )10( ≤≤ a

and a reference value ( )y
k exact,ℑ for ( )y

kℑ (to be determined below). Equation (3.19) 

becomes: 
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(3.22) 

It implies that the modified expressions for ( )y
kL are: 
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Equation (3.22) is now the new effective boundary condition, which includes 

additional transverse damping terms on the RHS. In contrast to the original LODI 

approach for non-reflecting outflow (equation (3.9)) where all the transverse terms 

are kept in the effective equation solved at the boundary, here we only retain spatial 

variations of the transverse terms. In the counterflow configuration, the reference 

values ( )y
exact,1ℑ and ( )y

exact,5ℑ at the outflow boundaries can be calculated based on the 

potential flow solution (or simply the averaged value of the transverse terms along the 

boundary) as: 
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The transverse damping parameter a in equation (3.22) is a free parameter that we can 

adjust in the boundary condition. It needs to be kept small in order to suppress any 

unphysical effects of the transverse terms on the pressure field, yet must be large 

enough to provide a sufficient damping effect. Our numerical tests shows that, with 

01.0=a , we can obtain accurate and stable solutions for laminar counterflows with a 

wide range of stain rates and also for turbulent counterflow flames with different 

level of fluctuations (shown in the next section).  

Figure 3-6 shows the converged pressure and x-velocity fields for a test 

simulation with an inlet velocity equal to 30 m/s (κ = 6000 s-1) and using 01.0=a .
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Both the pressure and x-velocity fields are correctly reproduced and the solution 

remains stable over time.  
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Figure 3-6. The steady pressure and x-directional velocity fields using modified non-reflecting outflow 
boundary conditions equation (3.23) with a = 0.01.  The inflow velocity is 30 m/s.  

 

Laminar Counterflow Flames 
When applying the nonreflecting boundary conditions to a reacting flow 

configuration, we need to be cautious because of the presence of chemical reaction at 

the outflow boundaries. Sutherland and Kennedy [70] demonstrated that flames might 

generate large pressure perturbations into the computational domain while passing 

through a nonreflecting outflow boundary. They proposed a specific treatment of the 

reaction source terms in order to mitigate this problem. The pressure variation may be 

reduced by explicitly accounting for the reactions source terms in the expressions for 

kL , in a way that is similar to that we treat the transverse terms for multidimensional 

flows.  
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To incorporate this modification, the wave amplitude expressions in equation 

(3.23) are now taking the following form:  

 ( ) ( ) ( ) ( ) ( ) ( ) ,1 11exact,1target11
yyyy SaappL +ℑ−+ℑ+−=α (3.25) 

where ( ) ( ) 21 vp
y cssS ρ−= , and sp, sv are defined in equation (3.3).  

A test simulation was performed for a steady hydrogen-air nonpremixed flame 

in a two-dimensional counterflow field with a domain size of 0.5 cm × 1.0 cm for 

which a 500 × 500 grid resolution is used, as shown in figure 3-7. A detailed chemical 

reaction mechanism proposed by Mueller et al. [76] was used. The nonreflecting 

inflow conditions, equation (3.14), are imposed at the boundaries in the x-direction, 

and the nonreflecting outflow conditions, equation (3.25) with 01.0=a , are used at 

the boundaries in the y-direction. The inflow velocity is 10 m/s at x = 0, 

corresponding to a stain rate κ of about 4250 s-1. The inlet temperature and the 

reference pressure are, respectively, 300 K and 1.0 atm. To locate the flame near the 

center of the domain, 50 % nitrogen by volume is added to the fuel side stream and 

the inlet velocities are chosen to  achieve the same momentum flux at both inlets, 

( ) ( )
xluu 2

0
2 ρρ = . The initial solution field was obtained from a steady solution 

calculated by the OPPDIF code [58], which was mapped into the uniform grid used in 

the two-dimensional domain. 

Figures 3-7a and 3-7b show the streamlines and the isocontours of 

temperature and pressure of the simulated steady-state hydrogen-air nonpremixed 

flame. Despite the relatively small domain size compared to the flame thickness, no 

numerical artifact is visible at any of the domain boundaries. Figure 3-8 further shows 

the temperature and velocity profiles along the centerline (y = 0.5), compared with 
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those of the initial conditions generated from the OPPDIF code. Even if the initial 

conditions are obtained with a plug flow which has zero y-directional velocity at 

inlets, the steady solution demonstrates that the velocity fields are maintained exactly 

as desired and the flow field converges to a potential flow. 
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Figure 3-7. The steady H2-air nonpremixed counterflow: (a) streamlines (solid) and temperature 
(dotted) and (b) pressure isocontours. 
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nonpremixed counterflow flame. 
 

3.4. Application to Turbulent Counterflow 
 
Encouraged by the successful simulations of laminar counterflows, the nonreflecting 

boundary conditions are now applied to more challenging problems corresponding to 

turbulent flows. There are two additional difficulties in simulating a turbulent 

counterflow. One is the introduction of unsteady turbulent-like perturbations through 

the inlet boundaries. The other is the stability of the solution in highly turbulent 

situations. We will evaluate the performance of the enhanced boundary conditions 

related to these two issues in a non-reacting turbulent counterflow test and finally 

demonstrate the capability to simulate a turbulent counterflow flame using our fully 

compressible code. 
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Nonreacting Turbulent Counterflow  
 
We evaluate here the overall S3D ability to simulate a statistically stationary turbulent 

counterflow configuration. The configuration and steady solution shown in figure 3-6 

are used as initial conditions. The inflow conditions correspond to equation (3.14) 

with the relaxation coefficients, 105321 ===−=− ηηηη (see appendix A in [74] to 

find the relationship between the non-dimensional coefficients ηk and the dimensional 

coefficients βk used in equation (3.14)). The imposed inlet velocities at x = 0 are given 

by ( ) ( )tyuutyu ,, 000 ′+= and ( ) ( )tyvvtyv ,, 000 ′+= , where ( )tyu ,0′ and ( )tyv ,0′ are the 

turbulent fluctuation velocities. They are taken from an auxiliary homogenous 

isotropic turbulent flow field based on a prescribed energy spectrum [77]. ( )tyu ,0′ and 

( )tyv ,0′ correspond to a one-dimensional slice of the two-dimensional auxiliary field 

[78]. The slice location is determined using Taylor’s hypothesis and the mean inflow 

velocity 0u . The turbulent perturbations are characterized by a RMS velocity u′ and 

an integral length scale 11L . We use here:  u′ = 2 m/s and  11L = 0.34 mm. The 

turbulent Reynolds number is approximately equal to 43. 

Figures 3-9a and 3-9b show the temporal variations of local x-velocity at 

)2/,0(),( ylyx = and global minimum pressure (over the computational domain) for 

different values of the parameter a. For 0.0=a , the solution fails at t = 1.75 msec 

due to a numerical instability, similar to what was observed in the steady test (see 

case (c) in figure 3-5) although the calculated velocity follows the imposed value very 

closely. For 0.1=a , the temporal pressure variations become unacceptably large. 

These large pressure variations are attributed to an over-relaxation effect associated 
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with the treatment of the transverse term in equation (3.23). In contrast, for 01.0=a ,

the pressure variations are reasonably small, the calculation does not suffer from 

instability, and the temporal variations of inflow velocity follow the prescribed 

values. These results confirm that the weight factor a may be calibrated to ensure 

both stability and small pressure variations in DNS of turbulent counterflow 

configurations. 
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Figure 3-9. The temporal variations of (a) the imposed and calculated velocities and (b) the minimum 
pressure at 2and 0 ylyx ==  for a nonreacting counterflow for various choices of a.
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Turbulent Counterflow Flames 
 
The modified turbulent inflow/outflow boundary conditions are applied by Yoo et al. 

[74] to simulate a reacting counterflow system. The results are presented here to show 

the new capability allowed by current boundary conditions. The steady hydrogen-air 

strained laminar flame described in section 3.3 is used as initial condition and 

turbulent-like perturbations are injected at both inflow boundaries as described above.   

Figure 3-10 shows the vorticity and temperature isocontours at various times 

during the simulation. The injected turbulent eddies are convected toward the interior 

of the domain, thereby interacting with the nonpremixed flame. The initial plane 

flame is distorted and wrinkled in response to the turbulent fluctuations in the 

velocity field. Throughout the entire period of intense interaction between the 

turbulence and the flame, the velocity at the inflow boundary are maintained as the 

prescribed value.   

Figure 3-11 plots the temporal variations of the global maximum and 

minimum pressures during the simulation. Despite the strong flame-turbulence 

interaction, the pressure variations show that the initial spurious acoustic waves are 

damped out smoothly during the early period of the simulation and the solution 

remains stable during the entire simulation.  

Finally, figure 3-12 presents a scatter plot of temperature versus the scalar 

dissipation rate, χ, both quantities being evaluated on the stoichiometric surface at t =

0, 0.1, 0,3, and 0.8 msec. As turbulent eddies are convected towards the flame, the 

flame undergoes variations in scalar dissipation rate. At t = 0.8 msec, the range of 
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scalar dissipation rate at the flame locations is very large, varying from 500 s-1 to 

1700 s-1. Overall, the nonreflecting boundary conditions developed in the present 

study are found to work effectively in the simulation of turbulent counterflow 

diffusion flames. Interesting physics related to turbulent combustion theory and 

modeling can be studied in the counterflow configuration with our DNS tool. 

 

Figure 3-10. The temporal evolution of vorticity (top) and temperature (bottom) fields in hydrogen-air 
nonpremixed counterflow. From left to right, t = 0.1, 0.3, and 0.8 msec. 
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Figure 3-11. The temporal variations of the maximum and minimum pressures for turbulent 
nonpremixed counterflow flame. 
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Figure 3-12. Scatter plot of temperature versus scalar dissipation rate χ along the stoichiometric line at 
t = 0, 0.1, 0.3, and 0.8 msec. 
 

3.5. Concluding Remarks 
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Turbulent counterflow flame configurations have emerged as one of the basic flame-

flow geometry used in studies of turbulent combustion. We adapt our high-fidelity 

direct numerical simulation (DNS) solver using a fully compressible flow formulation 

and characteristic-based boundary conditions to the simulation of turbulent 

counterflow flames. The boundary conditions formulation is improved to better 

balance the conflicting requirements of maintaining the mean flow field, while 

suppressing spurious acoustic wave reflections. The formulation is modified in order 

to properly account for multi-dimensional effects and solution variations in planes 

parallel to the computational domain boundaries. The enhanced boundary scheme is 

tested in a series of benchmark simulations corresponding to laminar or turbulent, 

nonreacting or reacting counterflow configurations. The results are encouraging and 

are viewed as a step towards an extension of the domain of application of DNS tools 

to laboratory-scale flame configurations.  
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Chapter 4: Soot Model 

4.1. Introduction 
Soot is one of the major pollutants from gas phase combustion. It corresponds to solid 

particles generated in flames of many industrial combustors and open fires. Soot is 

mainly composed of carbon atoms together with small amounts of hydrogen and 

oxygen. Soot particles are generally small ranging in size between 5nm to 80nm. For 

environmental reasons, we want to minimize the amount of soot yield from engines 

and furnaces because it causes severe diseases in the human respiratory system [79]. 

In terms of efficiency, carbon atoms contained in soot are an indication of incomplete 

combustion and reduced efficiency. In addition, soot is responsible for large fractions 

of radiative heat loss in a luminous flame, especially in large-scale fires. At the flame 

temperature, soot strongly radiates in a continuous spectrum and changes 

significantly the emissive and absorptive properties of the participating medium. 

Besides its influence on flame temperature, soot also changes the profile of other 

species, like NOx and CO, through both thermal and chemical interactions [80]. In 

short, it is of great interest to accurately predict soot formation, because of its 

importance as a pollutant and also its influence on flame structure through thermal 

radiation and chemical kinetics.  

The amount of soot yield from a flame is the result of a competition between 

soot formation and oxidation. Soot particles are produced on the fuel rich side of a 

flame. As sooty parent fuels pyrolyze, they produce smaller hydrocarbons, in 

particular C2H2, which leads to the formation of aromatic species (like benzene) and 

larger polyaromatic hydrocarbons (PAH). C2H2 and PAH are major gas phase 
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precursors of soot particles. The initial transformation from gaseous molecules to 

solid particles is called particle inception or nucleation. Once soot particles are 

formed, they can grow by two mechanisms: surface growth and coagulation. Surface 

growth is a heterogeneous process in which gas phase molecules react with soot 

molecules on the soot surface. Coagulation is a mostly physical process of the 

agglomeration of soot particles. Coagulation changes the number of soot particles, but 

not the soot mass. The three phases of soot formation, namely nucleation, surface 

growth and coagulation, are quite different chemical and physical processes, and are 

normally modeled separately. As the soot particles move towards the air side of the 

flame zones, soot oxidation starts to compete with soot growth processes. Soot mass 

is reduced through oxidation of particles primarily by OH and O2. For more detailed 

descriptions of soot formation and modeling, see Kennedy’s review paper [81]. 

Many attempts have been made over the last two decades to model the soot 

formation and burnout in combustion systems [81, 82]. There is a wide range of soot 

models with different level of complexity and accuracy available in the literature. The 

empirical models use experimental correlations to estimate the soot loading. At the 

other end of the spectrum, there are models, like the method-of-moments model [83] 

and the sectional method [84], that try to describe the detailed kinetics of soot 

formation through elementary chemical reactions. Currently, these detailed chemical 

reaction models still possess some uncertainty and the overwhelming computational 

requirement prevents their wide use in multidimensional numerical simulations. We 

consider in the following an intermediate approach that corresponds to a class of 

semi-empirical models and is a good compromise between accuracy and cost for 
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DNS. In contrast to empirical models, these models solve transport equations for soot 

quantities; in contrast to detailed soot models, the rates of soot formation and 

oxidation in the transport equations are modeled with experimental correlations. We 

focus our discussion below on semi-empirical soot models. 

4.2. Semi-empirical Soot Models 
Moss and coworkers [85-87] proposed a semi-empirical soot model for 

diffusion flames. Transport equations of soot number density (n) and volume fraction 

(fv) are solved along with the Navier-Stokes equations. The equations are: 
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where N0 is the Avogadro number (6×1026 molecules/mole), ρs the density of soot, 

taken as that of solid carbons (1.8×103kg/m3). The mass diffusion coefficient for the 

particulates is assumed to be negligibly small, but the thermophoresis effect is 

included via a thermophoresis velocity Vt,i [88]: 

 TxV
i

it ln54.0, ∂
∂−= ν . (4.2) 

The source terms ω& in the equations for number density and volume fraction are 

modeled as: 

 ( ) ( ) ( )( )2
0/ /

0
NnNn ξβξαω −=& , (4.3) 

 ( ) ( ) ( )ξδξγω ρ += n
svf& . (4.4) 

α(ξ) and δ(ξ) are the contributions of particle inception to the increase in soot number 

and mass respectively. The second term on the right hand side of equation (4.3) 
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accounts for the reduction in number of particles as a result of coagulation. The first 

term on the right hand side of  equation (4.4) represents the increase in soot mass due 

to surface growth. The rates of the processes are functions of the local density ρ ,

temperature T, and fuel mole fraction cX :
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The model parameters ci and activation temperatures Ti have been calibrated against 

detailed measurements of several fuels, including ethylene [85], kerosene and 

methane [86]. Notice that in equation (4.4) the rate of surface growth is proportional 

to the number of soot particles. Moss et al. [87] argued that surface growth was only 

weakly dependent on the available soot surface. Moss and coworkers neglected the 

surface area dependence when describing surface growth in sooty ethylene flame[85, 

87], but chose to incorporate a surface area dependence in weakly sooty methane 

flames [86]. Kaplan and coworkers [89-91] implemented Moss’s soot model [86] in a 

series of studies on methane diffusion flames and demonstrated the robustness of the 

model. In a later work, Moss et al. [87] extended their original model [85] to include 

the oxidation of soot by OH radicals, recognizing that OH plays an important role in 

soot oxidation: 

 ( ) ( ) ( ) oxsv Snf ωξδξγρω && −+= , (4.6) 

 32312 )36( vfnndS ππ == , 2131027.1 −Γ×= TX OHoxω& , (4.7) 
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where S represents the total surface area of soot per unit volume and has the unit of 

[1/m]. Note that this model implicitly assumes a uniform spherical-shaped particle 

size distribution. S is related to n and fv through the expression of the diameter of soot 

particles 
3/16 


= n

fd v
π . Γ is an empirical collision efficiency coefficient, taken to be 

0.1.  

In addition to Moss’s model, there is another family of semi-implicit soot 

models developed by Lindstedt and coworkers [92-94], which are also widely used. 

Similar to the approach of Moss, these authors added two conservation equations 

describing soot formation and burnout into the fluid flow equations, namely equations 

for soot number density and soot mass fraction. The major difference with the model 

developed by Moss is the adoption of acetylene as the indicative species for soot 

nucleation and surface growth instead of the parent fuel. Lindstedt pointed out that 

soot formation depends upon the breakdown path of the fuel and hence pyrolysis 

products, such as acetylene, are of primary importance to the soot formation process. 

Although the approach where formation of soot is linked directly to the fuel 

concentration had been found to work well for conditions close to those where the 

models were calibrated, the application of such models to appreciably different 

conditions might yield significant errors. Leung and Lindstedt [92] used their soot 

model combined with detailed chemistry of the gas phase reaction to simulate counter 

flow ethylene and propane flames. Fairweather et al. [93, 95] applied this soot model 

to turbulent non-premixed flames. Lindstedt [94] extended the model by adding 

benzene as an indicative species in soot nucleation. Computations showed that the 

extra nucleation step based on benzene improved the soot volume fraction predictions 
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in propane flames, while it did not have much of an effect for small molecular weight 

fuels like ethylene. He also compared different models for soot mass growth and 

found that the model assuming that the growth rate was proportional to the number 

density produced the best agreement with experiments, while the one assuming linear 

dependence on particle surface area was not satisfactory. Ezekoye and Zhang [96] 

applied Fairweather et al.’s [95] model to a microgravity counter-flow diffusion 

flame. The OH oxidation step from Moss [87] was modified and added to this model. 

By using the rate constant of Moss, the authors found that the effect of OH oxidation 

was over-predicted. To match the experimental results, a factor of 10 was introduced 

to reduce the oxidation rate. It is worth noting that recent developments by Moss and 

coworkers [87, 97] also considered the effect of acetylene in the soot formation rates. 

In general, most semi-empirical soot models are based on solving additional 

conservation equations for soot number density and mass. The model chosen should 

be dependent on the fuel and chemical kinetics used for the simulation. The following 

features for the available soot formation models should be noted: 

1. The adoption of acetylene as an indicative species of nucleation and 

surface growth is broadly accepted, at least for small molecular weight 

fuels, where benzene is not an important intermediate product of the 

reactions.  

2. The oxidation of soot, especially that by OH radicals should be included in 

the model, since a lot of studies have shown that the effect of OH is larger 

than that of O2.
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3. Surface growth mechanisms are still under debate. Even in the same 

research group, different approaches have been used without clear 

justifications. The available choices are that surface growth is proportional 

to number density [85, 87, 94], proportional to surface area [86, 96, 97], or 

a non-linear function of surface area [92, 95].  

4. The model coefficients vary considerably according to the choices of 

models, fuels and configurations. The coefficients are calibrated to match 

experimental data. Ad hoc adjustments are frequently made in 

computations of a new configuration.  

5. The transport equations of soot quantities used by different authors are not 

the same. For example, Fairweather et al. [95] included diffusivity but did 

not incorporate the effect of thermophoresis; Moss and coworkers [85] 

included thermophoresis but neglected diffusivity; in Ezekoye and 

Zhang’s study [96], both mass diffusivity and thermophoresis were used. 

Our own tests show that in the context of a high-order numerical solver, 

the diffusion term is necessary to maintain stability of the soot equations. 

4.3. Implementation in S3D and Validation 
In S3D, two additional transport equations for the soot model are added as follows: 
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where Sc is a Schmidt number for soot, and is specified to be 1000 as suggested by 

Ezekoye [96]. Soot mass fraction and volume fraction are related by the following 

relation: vss fY ρρ = .

We consider different models for the soot production rates, depending on the 

fuel type. For methane combustion, we adopt the model of Syed et al. [86], plus the 

oxidation sub-model used by Brookes et al. [97]. For ethylene combustion, the 

expression of the soot formation rates are the same as for methane except that the 

surface growth rate is taken to be proportional to number density, as suggested by 

Moss et al. [87]. 

The semi-empirical soot models have been successfully applied in both 

coflow [89-91, 98] and counterflow [80, 92] diffusion flames. To validate the model 

and implementation, we use S3D to simulate a two-dimensional ethylene-air 

counterflow diffusion flame and compare the results against experimental data [99]. 

The simulated flame corresponds to a steady counterflow laminar diffusion flame 

with a strain rate equal to 63 s-1. The fuel stream is pure ethylene; the oxidizer stream 

is a mixture of 22% oxygen and 78% nitrogen. The soot quantities of this flame have 

been measured by Vandsburger et al. [99] using a Tsuji burner.  Westbrook and 

Dryer’s single step mechanism [100] is adopted in the current simulation to reduce 

the computational time. We use an OPPDIF solution [58] as initial conditions. 

Boundary conditions are those developed in the previous chapter. Radiative heat loss 

is included in the simulation using the optically thin model. We use a 24400× grid 

for a 3.048.2 × cm2 computational domain. The flow field in counterflow diffusion 

flames is two-dimensional, but the flame structure is essentially one-dimensional. To 
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reduce computational cost, we use a small domain size and relatively coarse 

resolution in the cross-stream direction. Tests show that the domain size and 

resolution in this direction have little effect on the steady one-dimensional flame 

structure.  

The expressions of the soot formation and oxidation rates are those proposed 

by Moss et al. [87]: 

 ( ) ( )2
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Model coefficients are listed in table 4-1. Note that, in [87], the total hydrocarbon 

concentration was employed as the fuel concentration in the computation of soot 

formation rate. Since we are using single step chemistry, only the concentration of  

the parent fuel (C2H4) is available, we use it in the current simulation. For the same 

reason we neglect the soot oxidation due to OH, and only incorporate the oxidation 

by O2. 

 
cα cβ cγ cδ Tα Tγ

Original 6.0×106 2.25×1015 6.3×10-14 144 4.61×104 1.26×104

Modified 6.0×106 2×1014 0.8×10-14 144 4.61×104 1.26×104

Table 4-1. Original [87] and modified rate coefficients for the ethylene soot formation model. 

We first look at the locations of the reaction and soot formation zones in the 

diffusion flame. Figure 4-1 presents the one-dimensional structure of the computed 

steady state solution. From the streamwise velocity profile, we can see that the 
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stagnation plane is located at 14.0−=x cm.  The peak temperature and reaction zone 

is on the oxidizer side of the stagnation plane ( 08.0=x cm). The profile of soot mass 

reaction rate shows that soot is generated on the fuel-rich side of the flame. After soot 

particles are generated, they are transported away from the flame (to the left) by 

convection. Finally soot gathers and forms a peak near the stagnation plane, as shown 

in the soot volume fraction profile. The same behavior is also found in the 

experimental work by Hwang and Chung [101]. Since the soot particles, after being 

formed, do not transport towards the reaction zone, the oxidation rate of soot is one 

order of magnitude smaller than the formation rate. This kind of flame is classified as 

soot formation (SF) flames in [101].  

Figure 4-1. Steady solution of the laminar counterflow diffusion flame. Red solid line: streamwise 
velocity; Green solid line: temperature; Blue dash-dotted line: soot volume fraction; Purple dashed 
line: source term in soot mass fraction equation. Last three quantities are non-dimensionalized for a 
better illustration.  

 

Next we compare the computed soot quantities against the experimental data 

by Vandsburger et al. [99] and computational results by Leung et al. [92]. The 
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computed peak flame temperature (2320K) is relatively high compared to the 

experiment data (1930K). One of the reasons is that we use a single step irreversible 

mechanism. The OPPDIF simulation with detailed C2H4 mechanism gives a peak 

temperature of 2171K (with only gas phase radiation). Another reason could be that 

in the experiment, heat losses to the Tsuji burner reduce the flame temperature. 

Figure 4-2 shows the profiles of soot number density and volume fraction. Compared 

with experimental measurements, the S3D simulation underpredicts the peak number 

density by about 60%, while it overpredicts the peak volume fraction by 170%. 

Reasons for the discrepancies could be the following: first, the soot model used has 

calibrated against co-flow diffusion flames [87], it may not work equally well for a 

counter-flow diffusion flame configuration; second, the single-step chemistry model 

we use to describe the combustion cannot provide all the information that the soot 

model requires, like the correct flame temperature, concentration of C2H2 and OH. 

To reduce the discrepancies, we propose to adjust the model coefficients.  

 

(a)                                                                      (b) 

Figure 4-2. Comparison of S3D soot quantities with experimental and reference computational data. 
The S3D predictions use the original model coefficients. (a): soot number density. (b): soot volume 
fraction. 
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As Moss et al. [87] pointed out, the particle number density typically saturates 

rapidly and a local balance is established between nucleation and coagulation such 

that (from equation (4.3)): 

 ( ) )/exp(/ 22
0 TTXc

cNn c α
β
α ρ −= . (4.13) 

Since we under-predict the number density using the original parameters, we could 

reduce cβ to achieve the correct peak soot number density. According to the above 

relation, to increase the number density by a factor of 3, we should reduce cβ by a 

factor of 9. Now suppose we have the right number density prediction, we need to 

calibrate the soot mass fraction accordingly. The major contribution to the source 

term of soot mass fraction is the surface growth rate. In Moss’s model the surface 

growth rate is proportional to number density. The number density has been 

increased, so we reduce the surface growth rate (cγ) accordingly. Besides the 

coefficients for coagulation and surface growth, we keep other model parameter 

unchanged. The original and modified parameters are listed in table 4-1. The results 

from the modified soot model are presented in figure 4-3. The predicted peak soot 

number density is about 10% higher than the experimental data, while the peak 

volume fraction is about 40% higher. If we use a detailed mechanism, flame 

temperature will be reduced by about 200K, a better prediction of soot quantities 

would be expected. (Note that Leung et al. [92] introduced a heat loss factor in the 

temperature profile to match the experiment in their simulations of soot formation. ) 

 



81 
 

(a)                                                                      (b) 

Figure 4-3. Comparison of computed soot quantities with experimental and computational data. 
Modified model coefficients are used. (a): soot number density. (b): soot volume fraction. 

 

In conclusion, a two-equation semi-empirical soot model has been 

implemented into S3D. This model is proposed as a good compromise between 

computational cost and accuracy, and therefore is suitable for the current DNS 

capability. The model coefficients are calibrated against experiments with specific 

fuel type and flow conditions. If the computational conditions are different, the 

coefficients might need further adjustments. The soot model has been tested in a C2H4

counterflow diffusion flame. The qualitative behavior is correctly captured, and using 

the modified model coefficients, we can obtain better agreement with experimental 

data.  
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Chapter 5: Thermal Radiation 
 

5.1. Introduction 

Thermal radiation is an important, sometimes dominant, mode of heat transfer in 

combustion systems. In large-scale sooty fires, about 25-35% of the combustion 

energy is transported out of the flame by thermal radiation [102]. In flame spread 

problems, the radiative heat flux combined with the convective heat flux determines 

the pyrolysis rate of the solid flammable material and therefore the rate of flame 

spread [103]. In compartment fires, the radiation from the hot smoke layer 

accumulated in the upper part of the room accounts for most of the energy transfer in 

the late stage of a fire development and is directly responsible for the transition to 

flashover [104]. Concerning the flame zone structure, thermal radiation results in 

modifications of the flame temperature, thickness [105], pollutant profiles [105, 106], 

and the extinction limit [107] as well. Therefore accurate prediction of radiative heat 

transfer is crucial in a high-fidelity direct numerical simulation of a combustion 

system. Most previous DNS studies simply neglected thermal radiation or used an 

optically thin model (OTM). However this emission-only model is usually inadequate 

in the sense that it over-predicts the radiative heat loss from the gas mixture due to the 

neglect of self-absorption, and also that it is not applicable in the cases with the 

presence of a solid surface, like in a combustion chamber, because OTM does not 

provide the heat flux incident on a surface. For RANS and LES applications where 

real laboratory-scale flames and engineering problems are solved, radiation 

calculations cannot be avoided. However, little is known about flame turbulence-
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radiation interactions (TRI), therefore most RANS/LES simulations do not take TRI 

into account. A DNS capability enhanced with combustion and thermal radiation may 

provide the validation tool needed for RANS/LES modeling of this problem [108, 

109].  

The governing equation for thermal radiation transport with a participating 

medium is called the radiative transfer equation (RTE) (see equation (5.1)), which is 

an integro-differential equation with six independent variables: spatial coordinates (x, 

y, z), direction (polar angle θ, azimuthal angle φ) and wavelength (λ). The extra 

dependence on direction and wavelength makes RTE very difficult and expensive to 

solve. Many different solution methods have been developed, namely the zonal 

method, the spherical harmonics method, the discrete ordinate method, the discrete 

transfer method, the Monte Carlo method, and so on. Thorough discussions of these 

methods, including advantages and limitations, can be found in [110-112]. For 

coupled CFD-radiation simulations, the discrete ordinates method (DOM) [113] and 

discrete transfer method (DTM) [114] are more popular, due to their advantages in 

efficiency and simplicity. The discrete ordinates method discretizes the directional 

space into a finite number of ordinates, and each has a corresponding weight factor. 

The RTE is solved for each ordinate and the total contribution over the directional 

space is approximated by a quadrature summation from all the ordinates. This method 

is also referred to as an Sn approximation, where n represents the order related to the 

number of discrete ordinates. In contrast, the discrete transfer method is a ray tracing 

method where the RTE is integrated along a set of representative rays. It has a 

straightforward physical interpretation and is flexible in treating complex geometries. 
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The comparison between the two methods has been made in [112, 115], but not in the 

context of DNS. 

Our objective is to develop a parallel thermal radiation solver that is 

economical, accurate and compatible with our code S3D. Here, we adopt the discrete 

transfer method (DTM), and will compare the parallel DTM solver with the DOM 

solver developed by our collaborators at the University of Michigan. Most previous 

applications of discrete transfer method calculations were performed with a single 

processor. To the best of our knowledge, reference [116] is the only study that 

couples DTM with a flow field simulation in a parallel computing mode. However the 

algorithm used in [116] does not have good scalability and is limited to only a small 

number of processors. In the following, we will first describe the discrete transfer 

method, followed by the parallelization strategy that we have adopted. Then we 

validate the code by several test cases. And finally the DTM is applied to a transient 

flame vortex interaction simulation and compared with a DOM solver.    

5.2. Discrete Transfer Method 

The Discrete Transfer Method (DTM) was proposed by Lookwood and Shah [114] to 

compute radiative heat transfer in combustors. The advantages of DTM are: 

conceptual simplicity, easy application to complex geometries, and easy control of 

precision by changing the solid angle discretization. The main idea of this method is 

briefly described below.  

The radiative energy balance along any direction ŝ in an emitting-absorbing 

and scattering medium is described by the RTE [110]: 



85 
 

iii
s

b dIIIIds
dI ΩΦ+−=∇⋅= ∫ )ˆ(̂)ˆ(4ˆ

4
s,sss ππ

σβκ . (5.1) 

To simplify the problem, we assume that the medium is gray; hence the dependence 

on wavelength is dropped off and spectrally-averaged radiative properties are used. In 

equation (5.1), I represents the radiative intensity, Ib the black body radiative 

intensity, Ω the solid angle, κ the absorption coefficient, sσ the scattering 

coefficient, and sσκβ += the extinction coefficient. Φ is the scattering phase 

function and satisfies the following property: 
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For usual combustion gas mixtures with all but very large soot particles, the scattering 

effect is negligible: sσ = 0. 

 Considering radiative heat transfer, the fluid thermal energy equation takes the 

following form: 
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The last term on the right hand side of equation (5.3) is the divergence of the radiative 

heat flux and represents the net radiative energy loss from an infinitesimal control 

volume. The evaluation of this term is based on the solution of the RTE. The radiative 

heat flux at a surface with outward normal n̂ is:  

 ∫ Ω⋅=⋅ π4r ˆˆ)ˆ(ˆq dI snsn . (5.4) 

The divergence of the radiative heat flux can be expressed as follow: 

 ∫∫∫ Ω=Ω∇⋅=Ω⋅∇=⋅∇ πππ 444
)ˆ(ˆ)ˆ)ˆ(( dds

dIdIdI ssssqr . (5.5) 
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Substituting equation (5.1) into the above equation and using equation (5.2), we get:               

 )4()4(
4

GIIdI bb −=Ω−=⋅∇ ∫ πκπκ πrq . (5.6) 

Equation (5.6) states that physically the net loss of radiative energy from a control 

volume is equal to the emitted energy minus the absorbed energy.  

 
Figure 5-1. Illustration of the domain decomposition and the ray tracing technique in the Discrete 
Transfer Method. 

In the Discrete Transfer Method [114], the computational domain is 

decomposed into small control volumes as showed in figure 5-1. The temperature and 

radiative properties of the medium are assumed to be uniform in a control volume. 

The central point of each boundary cell (P) is selected as the place to perform 

directional discretization. The hemisphere that the boundary surface faces is divided 

into a given number of solid angles. The radiative intensity is assumed to have no 

directional variance within each solid angle. The central line of the solid angle PQ 

represents a radiative ray, along which the RTE will be integrated. We will take the 

radiative intensity at Q as the boundary condition of the RTE and trace the ray back 

through the passing control volumes until the destination P is reached.  

n
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For example, we consider a gray non-scattering medium. In that cases, the 

RTE takes the following simple form: 

 IIds
dI

b κκ −= . (5.7) 

Inside a control volume, since the absorption coefficient (κ) and temperature are taken 

as constant, we can analytically integrate RTE along a radiative ray: 

 )1(1
s

b
s

nn eIeII ∆−∆−
+ −+= κκ , (5.8) 

where nI and 1+nI are respectively the intensity entering and leaving the control 

volume, s∆ is the length of the beam that is intersected by the control volume. The 

first term on the right hand side describes the part of energy entering the control 

volume that is transmitted through; the second term is the radiative energy that is 

emited from the control volume. Using equation (5.8) recursively, the RTE can be 

easily integrated along a ray from Q to P.

The incident radiative heat flux (irradiation) at the boundary point P is 

calculated in DTM by a numerical quadrature: 

 ∑∫ =Ω⋅=
i

ijij DIdIG ,
2

0
ˆˆ)ˆ(π sns , (5.9) 

where the subscript j is the index of the boundary points P; the subscript i represents 

different rays that reach point P; Ii is the radiative intensity of the ith ray reaching 

point Pj; Dj,i is the integral of the cosine of the angle between the surface normal at 

point Pj and the direction of the ith ray QP over a solid angle element ∆Ω :

ijijijijijij ddD
ijij

,,,,,, )sin(sincoscos ˆˆ
,,

ϕθθθθ ∆∆=Ω=Ω⋅= ∫∫ ∆Ω∆Ω sn . (5.10) 
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Since the solid angles are defined from the discretization of a hemisphere centered at 

Pj, the following identity holds: ∑ =
i

ijD π, .

The integration of the RTE along a ray requires specification of the boundary 

condition at the point Q. If the boundary is a solid wall, like the wall of a combustion 

chamber, the boundary condition for a gray diffuse surface may be written as: 

 πεπσεπ /)1(// 4
jBBBjj GTJI −+== , (5.11) 

where the subscript B represents the values at the boundary. If the boundary is open, 

the boundary condition is: 

 inj II = . (5.12) 

Iin is the radiation intensity that transmits from outside of the computational domain. 

The calculation procedure is iterative if the boundary is a gray wall, since in equation 

(5.11) the irradiation Gj is not known a priori and requires the solution of I (see 

equation (5.9)). 

 The radiative source term is the net radiative energy deposited in a given 

control volume, and in DTM it is evaluated by accumulating the contributions from 

all the rays that pass the control volume: 

 ∑∑∫ +−==⋅∇−= jijnn
k

kcv
ADIISdvS ,1r )(q , (5.13) 

where Aj is the surface area of the boundary cell that the radiation beam impinges. 

The summation acts on all the solid angles (subscript k) whose central line pass the 

control volume. Equation (5.13) actually assumes that all the radiative energy is 

concentrated on the central line of the solid angle instead of uniformly spreading over 

it. If the solid angle is completely overlapped by the control volume (as in figure 5-
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2a), the source term Sk is accurate according to the definition of radiative intensity. 

However if the angular discretization is not fine enough, it is very likely that the 

control volume only partially overlaps the solid angle (as in figure 5-2b). In this case, 

errors will be introduced in the computed source term. This problem is caused by 

inadequate number of representative rays, and is called the “ray effect”. Note that the 

ray effect also exists in DOM, where directional space is approximated by a finite 

number of ordinates [117]. 

 

Figure 5-2. Illustration of computation of the radiative source term in the Discrete Transfer Method. 
 

Since the initial development of DTM, many improvements have been 

proposed over the years. Coelho and Carvalho [118] pointed out that the formulation 

of DTM is not conservative, that is, the net rate of radiative heat transfer leaving the 

enclosure through its boundaries is not equal to the difference between the radiative 

energy emitted and absorbed within the enclosure. This is a consequence of the fact 

that the angular discretization is performed only for the irradiation rays. The 

summation of elementary solid angles for all the irradiation rays at each boundary cell 

equals π2 by construction. However the number of radiative rays leaving one 

boundary cell is determined by ray tracing. As a result the total solid angle is not 

a b
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equal to π2 and the relation )/( πJI = does not hold. The authors propose a 

conservative formulation using a global correction factor. However the new 

formulation does not show much advantage in terms of accuracy. Cumber [119] 

examined the effect of the quadrature formula on the accuracy of the radiative heat 

flux. The original ray distribution used by Lookwood and Shah [114] is based on 

equally spaced angle intervals in both polar and azimuthal coordinates. Cumber 

proposed a Newton Cotes type of quadrature and showed the added benefits in terms 

of higher accuracy. He also shows that, instead of using uniform temperature 

assumption as in equation (5.7), a linear distribution of temperature along the 

radiation beam could be used to integrate RTE. Versteeg et al. [120-122] studied the 

truncation errors in the heat flux integral of DTM, both for transparent medium [120] 

and participating medium [121, 122]. The errors in heat flux due to the boundary 

surface discretization and hemisphere discretization were discussed based on Taylor 

series expansions. As pointed out by the authors, this error analysis would not be 

instructive unless a very large number of rays was used, typically more than 500, 

since otherwise the small solid angle approximation used in the analysis was invalid. 

Recently Cumber [123] and Versteeg [124] presented an adaptive angular quadrature 

strategy to mitigate ray effects on radiative heat flux. Although the number of rays 

necessary to achieve a given numerical error is decreased, the computational 

overheads and complexity associated with error estimation and adaptation treatment 

make the method a formidable task for a CFD simulation coupled with radiation. So 

far, most error analysis and improvement studies have focused on the calculation of 

the radiative heat flux. For a coupled CFD-radiation simulation, a more important 
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issue is the spatial distribution of the radiative power density. However, no error 

analysis is available for the DTM treatment of the source term distribution.  

5.3. Parallelization of DTM  

Novo et al. [125] have studied the parallelization of DTM in the context of a stand-

alone radiation simulation. The parallelization of DTM can be achieved by a 

wavelength decomposition, a ray decomposition or a spatial domain decomposition. 

In the case of a gray medium, as considered in the present work, only the last two 

options are available.  

 
Ray Decomposition Parallelization (RDP): The RDP splits up all the 

radiation rays into a number of subsets equal to the number of processors. Each 

processor only deals with one subset of rays. This approach may be implemented in 

different ways depending on how the subsets of radiation rays are selected. A better 

division of the rays can reduce the load imbalance, and achieve a better efficiency. 

Although the strategy of RDP fits well with the ray-tracing characteristic of DTM, it 

is not the best choice for a coupled CFD-radiation simulation because most parallel 

CFD codes use a spatial domain decomposition so that the information pertinent to 

the global domain is not available at the level of individual processors and significant 

data transfer is required in a distributed memory system. Yan [116] adopted the RDP 

strategy in a coupled CFD-DTM simulation. However in his study the code can only 

scale up to 8 processors.  

 
Domain Decomposition Parallelization (DDP): In DDP, the spatial 

computational domain is decomposed into subdomains, and each of them is assigned 
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to one processor. The boundaries of a subdomain may be part of the original 

boundaries of the computational domain, or the interfaces between neighboring 

processors, which we call virtual boundaries. Radiative rays are fired inside the 

subdomain, both on actual boundaries and virtual boundaries, and they are traced 

locally by the assigned processor. The radiative intensities at the virtual boundaries 

are exchanged between adjacent subdomains and provide the boundary conditions for 

the ray-tracing algorithm. At the beginning of the simulation, the intensity at the 

virtual boundary is guessed, and as a result the whole simulation has to be iterative 

for a DDP-based parallel calculation.  

 

Figure 5-3. Illustration of a domain decomposition parallelization scheme. 
 

Let us now use an example to illustrate the strategy of DDP. As shown in 

figure 5-4, the domain is divided into two subdomains. At each boundary point, two 

rays are fired ( 2=ϕN , 1=θN ). In subdomain 1, A1 and A2 are two rays fired from 

point A; the other end of ray A2 is point C, which is located on a virtual boundary. In 

subdomain 2, B1 and B2 are two rays fired from point B, which is the center of one 

virtual boundary cell. C and B belong to the same boundary cell, but C is not at the 

center of the boundary cell. At the (n-1)th iteration, processor 2 integrates the RTE 

Processor 1                                B2 
 Virtual Boundary 
 

B Processor 2 
 A1                               C 

A2                       
 B1 

A
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along rays B1 and B2 to the virtual boundary point B. The radiation intensities at 

virtual boundary are saved in an array, hereafter referred to as the RIVB array. This 

array is transferred to processor 1 at the end of this iteration. At the nth iteration, 

processor 1 integrates the RTE along ray A2 from point C to A. The boundary 

condition at C is retrieved from the RIVB array. An algorithm is needed to retrieve 

from the RIVB array the intensity corresponding to the same direction as ray A2.  

Although it seems that DDP does not fit the ray-tracing characteristics of 

DTM as well as the RDP, it is nevertheless a natural choice for massive parallel CFD-

radiation coupled simulations, since it involves much less data transfer between 

subdomains. The main drawback of DDP is the extra cost due to extra iteration 

operations. However, this extra computational request can be mitigated in a coupled 

CFD-radiation simulation, since a relatively good guess of initial radiative intensity 

on the virtual boundary is always available from the solution at the previous time step 

and therefore a smaller number of iterations is needed. In addition, in DDP, the 

directional discretization is actually finer than that in sequential DTM, because extra 

rays are fired at the subdomain interfaces (the virtual boundaries) besides the original 

rays from the computational domain boundaries. Therefore the previously mentioned 

“ray effect” can be reduced in DDP.  

 

5.4. Implementation of Parallel DTM 

A DDP-based parallel DTM radiation solver has been developed and 

implemented into S3D. The new subroutine is called DTM.f90 and is organized as 

follows:  
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1. Initialization: define the grid mesh, number of rays, parallelization topology, and 

convergence criterion etc. 

2. Construct rays geometry information: loop over all the boundary cells in the 

subdomain, for each boundary cell perform the following operations: 

a. Define the incident rays according to the number of discretization for 

polar angles θN and azimuthal angles ϕN

b. Loop over all the rays fired from this boundary point, for each ray perform 

the following operations: 

i. Compute ijD , using equation (5.10) 

ii. Find the location of the other end of the ray Q, calculate the 

number of control volumes the radiation ray passes, and allocate 

array for the geometry information accordingly 

iii. Trace the path of this ray, record the index of control volumes that 

the ray passes and beam length intersected by each control volume 

3. Exchange the radiative intensity at virtual boundary (RIVB) between adjacent 

subdomains 

4. Solve the RTE and compute the radiative source term and surface heat flux: Loop 

over all the boundary cells, for each boundary cell perform the following 

operations: 

a. Loop over all the rays fired from this boundary point, for each ray perform 

the following operations: 

i. Prepare the boundary condition at point Q using equation (5.11) or 

(5.12) 



95 
 

ii. Starting from Q, in each control volume integrate the RTE using 

equation (5.8) and compute the contribution to radiation source 

from this ray using equation (5.13), until the boundary point P is 

reached  

b. Compute the incident surface radiative heat flux G using equation (5.9) 

5. Check whether the convergence criterion is satisfied. If not, return to step 3. 

Otherwise stop the iteration, finish the radiation computation. 

 
If the DTM is coupled with a flow field simulation, steps 1 and 2 should be 

done in the initialization phase of the CFD code while steps 3 to 5 are called every 

time the radiative power density distribution needs to be updated. 

We treat here the participating medium as gray gas and use the concept of a 

Plank mean absorption coefficient. The emission and absorption of gas species CO2,

H2O, CO and CH4, as well as solid soot particles are considered in the radiation 

solver. The Planck mean absorption coefficient is written as: 

 sootCHCHCOCOOHOHCOCO KPKPKPKP κκ ++++= 442222 , (5.14) 

where Pi is the partial pressure of species i. The species Plank mean absorption 

coefficients (Ki) are expressed as polynomial functions of temperature [107]:  

 4,1,
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j
iji . (5.15) 

The coefficients Aij are tabulated in table 5-1. The contribution of soot is modeled by: 

 TfTfC
C

vvsoot 700.072.3
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where C0 is a constant depending only on the soot refractive index n and absorptive 

index k; and C2 = 1.4388 cmK is the second Plank function constant [110].   

 
Emitting Species Ai0 Ai1 Ai2 

CH4 10.17015 -7.947312e-3 4.342446e-7 
CO 1.565360 1.483914e-2 -2.656035e-5 
CO2 32.44420 7.537513e-2 -1.535140e-4 
H2O 68.69480 -1.523490e-1 1.417848e-4 

 
Emitting Species Ai3 Ai4 Ai5 

CH4 1.048611e-9 -2.287861e-13 0 
CO 1.687980e-8 -4.674473e-12 4.767887e-16 
CO2 9.487940e-8 -2.509259e-11 2.447995e-15 
H2O -6.620996e-8 1.524150e-11 1.373456e-15 

Table 5-1. Model coefficients for the temperature variations of Plank mean absorption coefficients of 
the emitting species in the temperature range 300-3000K [107]. 

 

5.5. Validation Tests for Parallel DTM Code 

Test case 1.  Radiative heat transfer in a duct with a Participating Medium:  

We first consider radiative heat transfer in an infinitely long duct with a square cross-

section (see figure 5-5). All four walls are cold and black. The duct contains a 

medium of constant absorption coefficient (κ) and constant temperature (Tg). We 

want to determine the radiative heat transfer flux received at the wall boundaries. The 

same problem has been used as a validation case in references [112, 114, 119]. 

 

Figure 5-4. Illustration of the geometry of test case 1. 

Tg=const 
κ=const T=0k 

ε=1.0 
L=1
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We use a two-dimensional mesh of 1010× . The angular discretization is 

Nφ=20 and Nθ=8. The nondimensional surface heat flux for three different optical 

thickness cases are plotted in figure 5-6. The results agree with the solution reported 

in [114]. And according to [112], the accuracy of DTM for this problem is better than 

that of DOM. 
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Figure 5-5. Test case 1: nondimensional wall radiative heat flux for three different optical thickness 
cases. (a) κL=0.1 (b) κL=1.0 (c) κL=10.0. 
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The results for multiple processors are presented below: Figure 5-7 shows the 

nondimensional heat flux received by the wall computed by DTM and using 1,2,4,9 

processors. The grid mesh is 30×30, and Nφ=20, Nθ=8. The corresponding spatial 

distribution of radiation power density computed using single processor and four 

processors is showed in figure 5-8. Both plots in figure 5-8 show that our DTM solver 

provides almost identical result in sequential or parallel mode. In figure 5-8b, the 

slightly distort of the isocontour near the interfaces between two subdomains is due to 

the fact that the boundary condition retrieved from the RIVB array is not exact since 

the starting point of a ray might not locate at the boundary cell center. (See figure 5-4, 

the point C is not at the exact same location as the point B.) This error will be reduced 

if we use a finer computational mesh.    
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Figure 5-6. Test case 1: Nondimensional wall radiative heat flux calculated using different number of 
processors (1,2,4,9): κL=1.0. 



99 
 

(a)                                                                         (b) 
Figure 5-7. Test case 1: Distribution of the radiative power density (w/m3) calculated using different 
number of processors: Tg=1000k, κL=1.0.    a) single processor   b) four processors. 
 

Test case 2.  Two-dimensional laminar counterflow diffusion flame with 

radiative heat transfer: 

The objective of this test is to integrate the new parallel DTM radiation solver into 

S3D, and evaluate the performance of the code. We consider a steady C2H4-O2/N2

counterflow diffusion flame. The configuration is similar to the test case in section 

4.3. We use the same boundary conditions, chemical mechanism, soot model and 

strain rate. The only difference is that a larger computational domain (2.48 cm × 2.48 

cm) and finer grid resolution (400 × 400) in the y-direction are adopted. We first 

compute a two-dimensional steady laminar flame without thermal radiation. Then we 

use the same code with the radiation solver turned on to describe radiative heat loss 

from the flame. In this test we take the DNS fields of temperature and species mass 

fraction, and use the radiation solver as a post-processor.  

 We first examine some numerical issues associated with the parallel DTM 

solver. As discussed in section 5.3, the parallel DTM solution needs an iterative 
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procedure. It is important to look at the convergence rate and determine a 

convergence criterion. Both the radiative heat flux measured at a boundary and the 

radiative power density distribution inside the computational domain can be used as 

indicators of convergence. Since the latter has a more direct influence on the CFD 

solution (through the energy equation), we consider the radiative power density in our 

convergence criterion. We measure the relative difference of the L2 norm of radiative 

power density between two consecutive iterations: 

 ∑
∑ −−

=
CPUs

CPUs

1

||||
||||

n

nn

S
SS

ε , (5.18) 

where S represents the array of radiative power density, superscript n the iteration 

number, and L2 norm is defined by ∑= 2|||| ijsS . When ε is smaller than a tolerance 

value, we consider that the radiation iterative algorithm has converged. In figure 5-9, 

we present the evolution of ε as a function of the number of iterations. The results for 

both the first and second time step in the CFD simulation are presented. At the first 

time step, we use zero as the initial radiative intensity at the interfaces of the 

computational sub-domains; while at the subsequent time steps, we use the value 

from the previous time step and therefore the number of iterations required is 

reduced. From figure 5-9 we can read that, if we use 10-10 as the threshold of 

convergence, 23 and 18 iterations are required for the first and second time steps 

respectively. The question of what is the appropriate value for the threshold is still an 

open question, since ε is not a true measure of the error and a small value of ε might 

not be an indication of a converged solution. (For example, it might only indicate a 

slow convergence in some cases.) Figure 5-10 presents a similar ε-evolution curve as 
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shown in figure 5-9, however also plotted is an evolution of the total radiative power 

with the iteration number, which can be viewed as a better measure of the 

convergence rate. We can see that in this particular case the solution does not change 

and can be considered as converged after ε < 10-6, or after about 17 iterations.  

We now look at the scalability of the parallel DTM solver. The scalability of a 

parallel code is usually determined by the amount of communication between 

adjacent processors required in the algorithm. However for the domain decomposition 

parallelization (DDP) of DTM, the scalability also depends on the total number of 

iterations needed. The number of iterations increases with the increase in the number 

of processors, as shown in figure 5-11. Figure 5-12 presents the speed-up when 

changing the number of processors. The speed-up for 64 processors is about 16, four 

times lower than the ideal value. Note that the scalability results are compared for the 

first time step. Since the number of iterations decreases in the following time step, the 

real scalability for a fully coupled CFD simulation is supposed to be improved. 
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Figure 5-8. Convergence test. Results are obtained using 256 rays for DTM and 64 processors for 
parallel computations. The dashed curve is for the DTM computation at the first time step of the CFD 
simulation, and the solid curve is for the second time step.  
 

Figure 5-9. Convergence test. Results are obtained using 256 rays for DTM and 64 processors for 
parallel computations. The dashed curve: convergence criterion. The solid curve: total radiative heat 
loss. 
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Figure 5-10. Number of iterations needed for DTM using different number of processors. Results 
shown are for the first time step. Number of rays per boundary cell: 256. 

Figure 5-11. Scalability test for the DTM solver. Wall-clock time recorded is the time used for DTM 
solver for the first time step in a DTM-CFD coupled simulation. 
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We now turn to a study of the accuracy of DTM by comparing DTM with the 

discrete ordinates method (DOM) and the optically thin model (OTM). (The DOM 

solver is provided by our collaborators from the University of Michigan: Chunsang 

Yoo and Hong Im.) In OTM, the self-absorption is simply neglected and the radiative 

source term is computed as follows: 

 )(4 44
∞−−=⋅∇− TTσκrq . (5.19) 

The counterflow diffusion flame under the study is in the optically thin regime. To 

assess the DTM performance for different optical thickness cases, we arbitrarily 

manipulate the absorption coefficient and compare the results. Figure 5-13 presents 

the radiative power density along the flame normal direction, computed from OTM, 

DTM using 256 rays, and DOM using the S8 approximation. The results by DTM and 

DOM are almost identical to the prediction of OTM and show that the flame is indeed 

optically thin. Plotted in figure 5-14 are the results obtained with an arbitrarily 

modified optically thickness. In figure 5-14a, the plank mean absorption coefficient κ
is arbitrarily multiplied by a factor of 10, whereas in figure 5-14b a factor of 100 is 

used. It is shown that for large optically thicknesses, the results from DTM and DOM 

are still comparable. Both methods predict a reduced radiative heat loss in the high 

temperature zone compared to the predictions by the emission-only model (OTM) 

and capture the preheating effect at both edges of the flame due to the radiation 

absorption. Figures 5-13 and 5-14 also indicate that DTM with 256 rays per boundary 

cell give similar results as DOM with a S8 approximation.  

Figure 5-15 presents the results of a ray refinement test for DTM. The DTM 

results are again compared with DOM and OTM for three different optical 
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thicknesses. We use the volume integrated radiative power as a representative output 

of the radiation solver. From figures 5-15(a) (c) and (e), we can see that the results 

show a trend of convergence when the number of rays is increased for all three 

optical thickness cases.  For the optically thin case (figure 5-15a) using a small 

number of rays (36 and 64), the DTM prediction of the total radiative loss is larger 

than that of OTM. It indicates that when absorption is not important, the error 

introduced by under-resolved DTM might overwhelm the absorption effect, and 

therefore using OTM for this case might be a better choice. In general DTM with 256 

rays provides comparable results with DOM-S8 approximation for different values f 

the optical thickness. The total radiative heat loss only provides a volume-integrated 

global measurement of the radiative power density. In figures 5-15(b) (d) and (f), we 

take an alternative approach to look at the local error of each computation. To 

evaluate the error, we need an “exact” value. Here we suppose that DTM with 900 

rays (per boundary cell) is accurate enough to serve as the reference “exact” value. 

The error is measured as follows:  

 ||||
||||

exact

exact
S

SS −=ε , (5.20) 

and is presented in Figures 5-15(b) (d) and (f). The figures show that with the 

increase in the optical thickness, the errors of OTM are dramatically increased as we 

expect. The error of DOM is sensitive to the optical thickness, especially for the S2 

approximation. The convergence rate for DTM with various rays is relatively 

insensitive to the optically thickness. It appears that for the optically thin case, DTM 

with 256 rays provide a similar level of accuracy as DOM with the S8 approximation, 

while for the optically thick case, DTM with 100 rays is comparable with the DOM-



106 
 

S8 method. It is worth noting that the accuracy of the DTM or DOM predictions also 

depends on the spatial resolution. Therefore the comparison presented for DTM and 

DOM are specific to this test problem and cannot be extended directly to a general 

configuration. However the above ray refinement tests are valuable for us to make a 

more informed decision on the number of rays we should use for a specific problem. 

 

Figure 5-12. Test case 2: Spatial variations of the radiative power density normal to the flame. 
Comparison between DTM, DOM, and the optically thin model. 
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(a)

(b)

Figure 5-13. See the caption of figure 5-9. The plank mean absorption coefficient κ is modified to 
achieve a different optical thickness. (a): κ is increased to 10 times the original value. (b): κ is 
increased to 100 times the original value. 
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(a) (b)

(c) (d)

(e) (f)

Figure 5-14. Ray refinement test for DTM. Data are also compared with OTM and DOM (S2-S8 
approximation). Numbers of rays used for DTM are 6×6, 8×8, 10×10, 12×12, 16×16, 20×20 and 
26×26. First row ((a) and (b)): using the true value of κ. Second row ((c) and (d)): κ is increased 10 
times. Third row ((e) and (f)): κ is increased 100 times. Figures in the left column ((a), (c) and (e)): 
volume integrated radiative power. Figures in the right column ((b), (d) and (f)): relative error 
compared with the results computed by DTM with 900 rays.   
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5.6. Coupled Radiation-CFD Simulations 

We now turn to a coupled radiation-CFD simulation. We consider an unsteady 

process corresponding to an initially steady C2H4-O2/N2 diffusion flame interacting 

with two pairs of vortices. The initial steady laminar flame has been described in the 

previous section. Two pairs of counter-rotating vortices are superimposed in the 

velocity field, one on the fuel side and the other on the oxidizer side. The vortex pairs 

are subsequently convected to the flame by the mean flow and their self-induced 

velocity, thereby penetrating through the flame with vigorous interaction until the 

vortices are convected away. We compare DTM with OTM in this unsteady optically 

thin flame. The simulations are performed with 64 processors on an IBM Power 3 

system operated by the National Energy Research Scientific Computing Center 

(NERSC). For the DTM simulation, we use 256 rays (per boundary cell) and the 

convergence threshold is 10-6. The time step is controlled by the CFL condition and 

set constant at ∆t = 10-7 sec. Since the time step is controlled now by acoustic motion, 

we need not update the thermal radiation field every time step. In this simulation, we 

choose to call the DTM solver once every 10 flow time steps. In the OTM simulation, 

since the CPU time used for thermal radiation is negligible, we call the radiation 

solver at every time step.  

Figure 5-16 shows the snapshots of temperature and vorticity iso-contour at t 

= 0, 3, 5, and 15 msec. The flame is initially a steady plane diffusion flame. The 

interactions with the vortices make the flame at the center highly stained. As vortices 

are convected away, the highly stretched flame relaxes to its original shape. Figures 

5-17a and 5-17b present the temporal variations of the total heat release rate and 
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radiative fraction respectively. The high stretch induced by the vortices increases heat 

release and reduces the radiative heat loss. In figure 5-18, we compare the total 

radiative heat loss computed by DTM and OTM. Both DTM and DOM produce 

similar results: the radiative heat loss decreases when the flame is stretched and 

increase when the steady diffusion flame is restored. The prediction of the total 

radiative heat loss by DTM is about 1.5% lower than that by DOM. Since the flame is 

optically thin and the radiative fraction is so small, this difference in the thermal 

radiation fields does not have a significant impact on the flame structure and 

dynamics.  

Both simulations are run for 150,000 time steps. The wall-clock time for OTM 

is approximately 24 hours, while DTM takes 37 hours. The overhead introduced by 

DTM is therefore about 54%. 

Figure 5-15. Snapshots of temperature (flood) and vorticity (black lines) isocontour for four 
consequent time instants. From left to right, t = 0, 3, 5, and 15 msec.  
 

AirFuel
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(a)                                                                                      (b) 
Figure 5-16. Temporal variations of (a) the total heat release rate, and (b) radiative fraction. 

Figure 5-17. Comparison of the time variation of the total heat release rate between DTM and OTM. 

5.7. Concluding remarks 

 We have developed a parallel thermal radiation model based on the discrete 

transfer method (DTM). The parallel strategy is chosen to be consistent with our CFD 

code S3D. The thermal radiation model has been validated using simple test cases as 

a stand-alone solver. Finally a fully coupled radiation-CFD simulation is performed 
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for a transient problem corresponding to a diffusion flame-vortex interaction. 

Compared with the optically thin model (OTM), the current thermal radiation model 

takes the gas absorption into account, and therefore is more accurate for optically 

thick cases. The penalty associated with the increased accuracy is the significant 

overhead in computational cost. It is also worth noting that the current model treats 

the combustion mixture as gray gases. It is possible to extend the current solver to a 

spectrally-resolved model, but the computational cost and complexity will be 

increased considerably.   
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Chapter 6: DNS of Non-Premixed Flame-Wall Interactions 
 
6.1. Introduction 

Flame-wall interactions (FWI) play an important role in many combustion systems. 

For instance in Internal Combustion (IC) engines, cooled walls combined with 

occurrences of short flame-wall distances result in flame quenching and FWI has a 

negative impact on engine performance, both in terms of thermal efficiency and 

pollution propensity. While the magnitude of the FWI impact on thermal efficiency 

remains small in IC engines, FWI has a more notable effect on pollutants emissions 

and provides one of the dominant mechanisms for unburnt hydrocarbon emissions. 

Similar effects are observed in aeronautical propulsion and power-generation 

applications, especially given the recent trends towards the design of more compact, 

smaller (meso- or micro-scale) combustion chambers; the associated higher surface-

to-volume ratios and shorter flame-wall distances result in a larger impact of flame-

wall interactions and heat transfer on the combustion system performance. Enclosure 

fires are another combustion topic in which FWI plays an important (albeit different) 

role. For instance, the burning of a vertical flammable wall is a generic configuration 

where the fuel is released and consumed within the buoyancy-driven wall boundary 

layer, and the entire combustion process may be considered as FWI. 

The subject of flame-wall interactions in IC engines has received significant 

interest in the past fifteen years. Previous studies have focused primarily on the 

quenching problem of laminar or turbulent premixed flames near cold wall 

boundaries[16, 126-135]. Results from laminar flame experiments [126, 127] indicate 
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that: (1) quenching events occur near cold wall surfaces; (2) these quenching events 

also correspond to maximum values of the gas-solid heat flux; (3) depending on wall 

temperature and fuel type, premixed flames may loose a significant fraction of their 

reference power when driven to quenching. The maximum heat flux may be as high 

as 0.5-1 MW/m2 for atmospheric hydrocarbon flames, or approximately 30% of the 

flame reference power; the reference power is defined as the heat release rate per unit 

flame surface area and is typically of the order of 1-3 MW/m2 for stoichiometric 

flames at atmospheric pressure. 

Detailed numerical modeling has been used in recent years both to reproduce 

the early experimental findings of [126, 127], and to bring further insights into the 

controlling factors that determine flame-wall heat transfer in IC engines. Numerical 

modeling has been used in particular to study the effects of turbulent flow conditions 

[16, 128, 132, 133], detailed gas-phase chemical kinetics [130, 131, 134-136] and 

heterogeneous gas-solid surface chemistry [130, 134, 135]. Note that in the treatment 

of this problem, the flames are always assumed to be optically-thin and thermal 

radiation is neglected. Consistent with the laminar flamelet viewpoint, the dynamics 

of quenching events in turbulent flames were found to be similar to those observed in 

laminar flame studies: for instance, the magnitude of the peak gas-solid heat flux was 

approximately the same in laminar or turbulent flame simulations [16, 128]. 

Furthermore, while numerical modeling based on simplified (single-step) chemistry 

was found to correctly describe FWI when the wall temperature is low, detailed 

descriptions of homogeneous/heterogeneous chemical reactions were required for 

accurate predictions of the gas-solid heat flux when the wall temperature is above 400 
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K [130, 131]. These results combine to draw a complex picture of FWI in which 

flame quenching is both thermally- and kinetically-driven. 

References [136, 137] also consider the case of a laminar diffusion flame 

impinging on a cold wall in a stagnation point flow configuration. Reference [137] 

considers the general case of hydrocarbon-air flames whereas reference [136] focuses 

on the more specific case of hydrogen-oxygen flames. In the impinging 

flow/diffusion flame configuration, FWI is a transient process that must result in 

flame quenching at the wall; however, details of the flame quenching process depend 

strongly on the flow strain rate, which is specified as a free parameter. It is found that 

at high strain rates, the diffusion flame comes remarkably close to the wall surface 

(prior to quenching) and the gas-solid heat flux takes very large values (for the 

hydrocarbon-air flames studied in [137], the peak value of the gas-solid heat flux may 

be higher than that obtained in the corresponding premixed stoichiometric 

configuration). In [137], the results are provided in non-dimensional units with 

laminar premixed flame parameters selected as reference values. In these units, the 

minimum flame-wall distance is of the order of (Dth/sL) where Dth is a reference 

thermal diffusivity and sL the stoichiometric laminar flame speed; the applied strain 

rate takes values up to (sL2/ Dth). It is worth noting that these flame conditions may 

appear somewhat unrealistic: using representative values of Dth = 2.2×10-5 m2/s and sL

= 0.5 m/s, one finds that flames are strained up to more than 10,000 s-1, and the 

flame-wall distance is decreased to less than 50 µm. The large values of the gas-solid 

heat flux that are obtained under those conditions may be an artifact of using 

excessive values of strain rate and of the specifics of the transient stagnation point 
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flow configuration. The question of whether these flame-flow conditions are 

representative of practical turbulent combustion configurations remains entirely open. 

We now turn to enclosure fire applications and consider three different 

configurations featuring substantial flame-wall interactions [138, 139]: a first 

configuration corresponding to a flammable vertical wall, in which the flame is fueled 

by the thermal decomposition of the wall material; a second configuration in which 

the flame is fueled by a separate burner and where it develops adjacent to an inert 

vertical wall; and a third configuration in which the flame is again fueled by a 

separate burner and impinges on an inert horizontal (ceiling) wall. These 

configurations are representative of the large variety of flame spread and heat transfer 

mechanisms found in fire problems and correspond to different flame-wall 

arrangements. In the first configuration, the flame size is determined by the details of 

the gas-solid heat transfer and in-wall fuel gasification processes, whereas in the 

second and third configurations, the flame size is arbitrary and simply prescribed by 

the power output of the pilot burner. Typical values for the wall heat flux are: up to 

50 kW/m2 in the case of vertical wall fires [138-141]; up to 120 kW/m2 in the case of 

vertical walls exposed to a separate adjacent flame [138, 139, 142, 143]; and up to 

150 kW/m2 in the case of horizontal (ceiling) walls exposed to an impinging, 

buoyancy-driven flame [138, 139, 144, 145]. It is worth emphasizing that those 

estimates correspond to time-averaged values and cannot be compared directly to the 

time-resolved, instantaneous peak values discussed above in the context of IC engine 

applications. The statistical variations of flame-wall distances and gas-solid heat 

fluxes remain unknown in fire problems; these statistical variations will depend on 
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the strength of the buoyancy-driven turbulent motions. The magnitude of the wall 

heat flux will also depend on the optical thickness of the flame gases: previous studies 

indicate for instance that while the gas-solid heat flux in small non-sooty flames is 

controlled by convective heat transfer, the contribution of radiation heat transfer 

becomes dominant in large flames with significant smoke production [138, 139]. 

The present study is a continuation of the laminar non-premixed FWI study in 

[137] and an extension to the case of turbulent flame-wall interactions. The questions 

of turbulent fuel-air-temperature mixing, flame extinction and wall surface heat 

transfer are studied using direct numerical simulation (DNS) in a configuration 

corresponding to an ethylene-air diffusion flame stabilized in the near-wall region of 

a chemically-inert solid surface. While viewed as a questionable simplification, 

thermal radiation is neglected in the present simulations (it will be considered in a 

follow-up study). Our objective here is to focus on turbulent flow effects, and to 

evaluate in particular the wall-induced modifications of the flame structure, the 

probability of flame extinction events and the statistical distribution of the wall 

surface heat flux. The numerical configurations are presented in the next section; 

results from simulations are discussed afterward.  

6.2. Numerical Configuration 

The selected flame configuration corresponds to ethylene burning in ambient air. 

While S3D features a detailed chemical kinetics capability as well as new soot 

formation and thermal radiation capabilities, the present study takes an intermediate 

step and focuses on flame-wall interactions without soot and radiation. In addition, 

combustion is here described using a single-step model proposed in reference [100]: 
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where 
42HCω& is the fuel mass reaction rate (in units of kg/m3/s); A a model coefficient, 

A = 2.0×10+12 (mol/m3) (1-p-q)s-1; p and q the model fuel and oxygen concentration 

exponents, p = 0.1, q = 1.65; ρ the mixture mass density (kg/m3); Yk the species k

mass fraction; Mk the species k molecular weight (kg/mol); Ta a model activation 

temperature, Ta = 15107 K; and T the fluid temperature (K). The corresponding heat 

release rate is: 

 cHCc ∆Hq )(
42

ω&& −= , (6.2) 

where cq& is the flame power density (in units of W/ m3); and ∆Hc the heat of 

combustion (J per kg of fuel consumed). Note that the present single-step chemistry 

version of S3D also assumes a constant heat capacity, cp ≈ 1006 J/kg-K, and that the 

value of ∆Hc has been accordingly adjusted so that the simulated adiabatic flame 

temperature is 2370 K: we use ∆Hc = 32.7 MJ/kg. 

Additional flame modeling choices include a temperature-dependent dynamic 

viscosity (µ varies with T to the power 0.7), a constant Prandtl number, Pr = 0.708, 

and unity Lewis numbers. 

We now turn to a brief discussion of the anticipated impact of our flame 

modeling choices. The accuracy of the simplified chemical kinetics and molecular 

transport sub-models adopted in S3D has been evaluated in a separate numerical 

study of strained laminar diffusion flames. This separate study considers the generic 

case of steady, one-dimensional, plane, counter-flow flames. To evaluate accuracy, 
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the S3D-based simulations are compared to more elaborate calculations performed 

with the OPPDIF software [58], using detailed descriptions of chemistry and 

molecular transport [146]. In a simple laminar counter-flow flame configuration, 

discrepancies between S3D and OPPDIF predictions are essentially due to differences 

in the mathematical formulation of the flame problem, and may therefore be used to 

evaluate the penalty associated with using simplified chemical and molecular 

transport models. 

Figure 6-1. Flame response to changes in the fuel-air mixing rate in a steady, one-dimensional, plane, 
laminar, diffusion counter-flow flame configuration. The top curve (squares) corresponds to numerical 
data obtained with OPPDIF using detailed chemistry [146] and molecular transport; the bottom curve 
(triangles) corresponds to numerical data obtained with S3D and using single-step chemistry 
(equations (6-1)-(6-2)) and unity Lewis numbers. 
 

Figure 6-1 presents typical results obtained from the S3D/OPPDIF 

comparative study. Each data point in figure 6-1 corresponds to a converged steady 
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flame solution. The plot corresponds to variations of centerline combustion intensity 

with fuel-air mixing rate; the combustion intensity is measured as the heat release rate 

per unit surface area; the fuel-air mixing rate is measured as the stoichiometric value 

χst of the scalar dissipation rate χ, 22 ZD∇=χ , with D the heat diffusivity and Z the 

fuel-air-based mixture fraction. The inverse of χst provides an estimate of the mixing 

time scale in the vicinity of the reaction zone [22, 54, 147]. The S3D and OPPDIF 

curves in figure 6-1 display the classical flame response to increasing mixing rates, 

including the intensification of combustion, observed for low-to-moderate values of 

χst, and the abrupt fall off, observed at high values of χst. This fall off corresponds to 

transition to the super-critical, flame extinction regime. Compared to OPPDIF results, 

it is seen that the S3D calculations underestimate the combustion intensity in the sub-

critical regime, and predict extinction for a critical value of the scalar dissipation rate 

that is about three times smaller than that obtained with OPPDIF, 1
, s45 −≈ad
extstχ

where ad
extst ,χ denotes the critical value of χst obtained at (adiabatic) extinction 

conditions. 

While the errors documented in figure 6-1 are clearly a concern, we choose to 

accept these errors in the present study and to work with the simplified flame model 

described in equations (6-1)-(6-2). It is worth emphasizing, however, that the present 

DNS results are to be interpreted in a qualitative, rather than a quantitative manner. 

The pre-computed database of strained laminar diffusion flames is used in the 

following to help specify inflow boundary conditions, as well as to provide a point of 

reference in the analysis of the more complex flame structures observed under 

turbulent flow and non-adiabatic combustion conditions. 
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Figure 6-2. Numerical configuration corresponding to a turbulent ethylene-air diffusion flame 
stabilized near a solid wall. The computational domain is two-dimensional and features a turbulent 
inflow boundary at x = 0 (flow is from left to right); a solid wall boundary at y = 0; and non-reflecting 
boundaries at x = 8 cm and y = 4 cm. The turbulent inflow boundary is used both for air and fuel 
injection. The plot shows a typical snapshot of temperature iso-contours and is taken from a simulation 
in which the wall is assumed adiabatic. 

 

Next, we turn to a presentation of the FWI numerical configuration. The FWI 

configuration corresponds to a two-dimensional, momentum-driven, chemically 

reacting, ethylene-air, mixing layer developing parallel to an inert solid wall surface 

(figure 6-2). The combustion region is well-ventilated with plenty of air supplied 

from the free stream while ethylene flow is confined to the near-wall region. As 

shown in figure 6-1, the computational domain features an inflow boundary at x = 0, a 

wall boundary at y = 0, and two non-reflecting boundaries, at x = 8 cm and y = 4 cm. 

The wall boundary conditions correspond to zero velocity, zero mass flux, and either 

zero heat flux (adiabatic wall case) or prescribed temperature (non-adiabatic wall 

case). The inflow boundary conditions at x = 0 correspond to prescribed velocity, 
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mixture composition and temperature. We now discuss those inflow conditions in 

more detail. 

The free stream region of the inflow boundary corresponds to a uniform flow 

of air at normal temperature and pressure conditions, and seeded with turbulent-like 

perturbations. The mean velocity is u∞ = 5 m/s; the perturbations use a variant of the 

random fluctuation method of reference [78], in which the velocity fluctuations are 

specified using an auxiliary synthetic field corresponding to homogeneous isotropic 

turbulence and a prescribed model kinetic energy spectrum. In the present study, the 

turbulent inflow perturbations are characterized by a moderate-to-high forcing 

intensity, 1 ≤ u’ ≤ 2.5 m/s, and a small integral length scale, lt = 0.17 cm; the 

corresponding turbulent flow Reynolds number, (Ret = (u’× lt/ν), where ν is the free 

stream kinematic viscosity,) ranges from 108 to 270. 

The near-wall region of the inflow boundary corresponds to a prescribed 

velocity profile that satisfies the no-slip wall condition and has a certain thickness δ:

we choose δ = 0.15 cm. δ is also the selected inlet flame-to-wall distance, with fuel 

being injected at y-locations below δ, i.e. within the velocity boundary layer. Flow 

temperature and species mass fractions are specified at x = 0 using a separate 

calculation corresponding to a low-strain laminar counter-flow flame solution (see the 

discussion of figure 6-1 above). 

The initial fields correspond to a one-dimensional laminar flame solution and 

are constructed from the inflow boundary profiles. The computational grid size is 

1216 × 244. The grid spacing is uniform in the x-direction, ∆x ≈ 66 µm, while 

variable in the y-direction: the y-grid is uniform in the near wall/flame region, ∆y ≈ 50 
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µm for 0 ≤ y ≤ 0.8 cm, and is stretched in the free-stream region. The grid resolution 

is chosen based on the above-mentioned laminar counterflow diffusion flame 

simulations, and in order to resolve the thin flame front of the highly strained laminar 

flame up to the extinction strain rate. Time integration is performed at a pace 

determined by the acoustic-based Courant-Friedrichs-Lewy stability condition, ∆t ≈
0.05 µs. The time step determined by the viscous Fourier condition is about one order 

of magnitude larger. However, the results obtained in the present study were 

produced without any special treatment for acoustic stiffness. Preliminary tests to use 

the newly developed ASR method in this flame configuration are in progress. 

Computations are performed for a total duration corresponding typically to 3 or 4 free 

stream transit times τ∞, where τ∞ = (Lx/ u∞) = 16 ms, with Lx the x-size of the 

computational domain, Lx = 8 cm. If we ignore the initial transient phase of duration 

equal to 1 or 2 free stream transit times, the useful part of the simulations lasts for 

approximately ts ≈ 2×τ∞ = 32 ms. This duration is sufficient to make observations of 

flame topology and structure near the wall boundary, however it is not long enough to 

obtain converged statistical information. Therefore we do not present time-averaged 

flow field information in the present study.  

S3D is run in a parallel mode, using MPI and one of the following two super-

computers: 256 processors on an IBM Power 3 system operated by the National 

Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley 

Laboratory; or 32 processors on an IBM Power 4 system operated by the National 

Center for Computational Sciences (CCS) at Oak Ridge National Laboratory. On 
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these platforms, the cost of performing a single simulation of total duration 64 ms is 

approximately 32,000 processor hours at NERSC and 7,100 processor hours at CCS. 

6.3. DNS Results 

Wall-Flame Structure 
We consider in the following a series of four simulations: the simulations differ by 

the choice of inflow turbulence intensity and/or thermal boundary condition applied 

at the solid wall surface (see table 6-1). The flame geometries observed in cases 1-4 

are found to correspond to different topologies and belong to one the following three 

categories: a continuous flame sheet without extinction; multiple flame sheets without 

extinction; or multiple flame sheets with extinction. Figures 6-3, 6-4, 6-5 provide 

examples of these three different categories. 

 

Case 1 2 3 4
Turbulence 

intensity u’ = 1 m/s u’ = 2.5 m/s u’ = 1 m/s u’ = 2.5 m/s 

Wall thermal 
boundary condition adiabatic adiabatic Isothermal 

(Tw = 300 K)(a) 
Isothermal 

(Tw = 300 K)(a) 
(a) Tw is the gas-solid wall temperature 

Table 6-1. Inflow turbulence intensity and wall thermal boundary condition used in cases 1-4 of the 
DNS database. 

 

Figures 6-3(a)-(b) present instantaneous snapshots of temperature and fuel 

mass reaction rate, as obtained in case 1 (adiabatic wall, lower turbulence intensity). 

The figures illustrate the flame response to incoming flow perturbations and confirm 

that significant turbulent mixing and flame wrinkling take place in the vicinity of the 
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wall. They also show that the x-domain size is smaller than the wall-flame length and 

burning is observed to continue beyond the outflow boundary at x = 8 cm. Figure 6-

3(c) presents the location of the stoichiometric fuel-air interface and a comparison 

between figures 6-3(b) and 6-3(c) indicates that the flame is active along the entire 

stoichiometric interface: the flame displays the classical downstream weakening of 

combustion intensity as the reactants get depleted and replaced by combustion 

products, but it remains free of any aerodynamic flame extinction event. In the 

absence of extinction, the temperature levels are particularly high in the near-wall 

region (see figure 6-3(a)): the wall boundary is almost everywhere in contact with hot 

gases at temperatures in excess of 2000 K. 
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(a)

(b)

(c)

Figure 6-3. Instantaneous spatial variations of: (a) fluid temperature (in units of K); (b) fuel mass 
reaction rate (in units of kg/m3/s). Figure (c) presents the location of the corresponding stoichiometric 
iso-contour of the fuel-air-based mixture fraction Z. Case 1 solution. 
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(a) 

(b) 

(c) 

Figure 6-4. see caption of figure 6-3. Case 2 solution. 
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(a) 

(b) 

(c) 

Figure 6-5. see caption of figure 6-3. Case 3 solution. Two wall-induced flame extinction events are 
observed in figure (b), near (x = 0.8 cm; y = 0.2 cm) and (x = 5.5 cm; y = 0.2 cm). Figure (c) also 
presents the spatial variations of the excess enthalpy variable H.
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Figure 6-4 presents similar results, as obtained in case 2 (adiabatic wall, 

higher turbulence intensity). In this case, the turbulence levels are high enough to 

break the flame sheet into several segments; these levels remain sub-critical, 

however, and a comparison between figures 6-4(b) and 6-4(c) indicates that the flame 

remains extinction free. The temperature levels in the near-wall region (see figure 6-

4(a)) exhibit larger fluctuations than that found in case 1 due to the intermittent 

penetration of cold free stream gases down to the wall surface. 

Figure 6-5 presents the results obtained in case 3 (cold wall temperature, 

lower turbulence intensity). A comparison between figures 6-5(b) and 6-5(c) indicates 

that case 3 features several flame extinction events (similar observations are made in 

case 4). As seen in figure 6-5(a), the structure of the thermal boundary layer is quite 

different from that observed in figures 6-3(a) and 6-4(a): a thin cold sub-region 

develops near the wall and the flame is now exposed to wall-induced heat losses. 

These heat losses occasionally become super-critical and lead to the extinction events 

seen in figure 6-5(b). 

We continue below our discussion of the flame structure, but choose to adopt 

hereafter a more theoretical perspective. We start from the classical Burke-Schumann 

description of non-premixed combustion, in which equilibrium chemistry (i.e. fast 

chemistry) is assumed and the flame is controlled by the fuel-air mixing process [22, 

54, 147]. In the Burke-Schumann solution, the full reactive mixture composition is 

uniquely mapped as a function of the fuel-air-based mixture fraction Z. (We present 

in Appendix C a detailed description of Burke-Schumann solution, as well as an 

extension of the theory to the case with the presence of a adiabatic or non-adiabatic 
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wall.) While useful as a starting point and a valuable reference, the Burke-Schumann 

theory is also often too simple and deviations from chemical equilibrium are 

frequently observed in practical applications; these deviations are particularly large in 

the presence of flame extinction. In the classical flamelet theory of turbulent non-

premixed combustion, deviations from fast chemistry behavior are monitored by the 

introduction of a second mixing variable χst: the deviations are insignificant for χst 

much smaller than ad
extst ,χ , and large otherwise. This point of view is similar to that 

adopted in figure 6-1. Thus, in the flamelet theory, the flame chemical structure is 

described in terms of the two variables Z and χst [22, 54, 147]. 

Figure 6-6. Scatter plot of temperature versus fuel-air-based mixture fraction. Case 2 solution. The 
DNS data correspond to an arbitrarily chosen time in the simulation, and are compared to two 
reference curves: the adiabatic Burke-Schumann solution (squares, equation (C4)), and one laminar 
flame profile (circles). The laminar profile corresponds to a steady, one-dimensional, plane, laminar 
counter-flow flame, with χst = 36.3 s-1.



131 
 

We now extend the previous discussion to the Burke-Schumann and flamelet 

descriptions of fluid temperature variations. We consider the adiabatic case first 

(cases 1-2 in table 6-1). The extension is in that case trivial. For instance, in the 

Burke-Schumann theory, T is simply described in terms of Z (Appendix C), while in 

the flamelet theory, T is a function of both Z and χst. Figure 6-6 presents a scatter plot 

of fluid temperature versus mixture fraction, as obtained in case 2. The adiabatic 

Burke-Schumann solution (equation (C4) in Appendix C) and one laminar flame 

profile are also plotted for reference; the flame profile is taken from the laminar 

diffusion flame database described in the previous section, and corresponds to a high 

(albeit sub-critical) value of the mixing rate χst. Figure 6-6 shows that the temperature 

variations in the present flame-wall configuration are laminar-like, well-correlated 

with Z, and essentially similar to those observed in traditional wall-free 

configurations [22, 54, 147]. 

A slightly different perspective is adopted in figure 6-7 where the variations of 

the flame temperature Tst are plotted as a function of the mixing rate χst. Flame 

temperatures are defined as the values of T conditioned on being on the 

stoichiometric iso-contour of mixture fraction, Z = Zst. Data points from our pre-

computed database of strained laminar diffusion flames are also plotted for reference. 

Figure 6-7 reveals that in case 2, the flame-wall configuration features occasional 

trans-critical flame-flow conditions, as characterized by large values of χst, up 

to 1
, s45 −≈ad
extstχ , and by significant reductions in flame temperature, down to less 

than 1200 K. However, as illustrated in figure 6-4, the trans-critical events are not 

strong enough and the turbulent flame remains extinction-free. These results are 
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consistent with observations made in previous studies of unsteady (oscillating) 

strained laminar diffusion flames, in which it is shown that the instantaneous 

occurrence of super-critical conditions is a necessary but not a sufficient condition to 

lead to flame extinction (see for instance reference [148]). It is shown in reference 

[148] that super-critical conditions have to be sustained over a sufficiently long 

period of time for extinction to occur. 

Figure 6-7. Scatter plot of flame temperature versus fuel-air mixing rate. Case 2 solution. The DNS 
data correspond to an arbitrarily chosen time period of 10 ms in the simulation, and are compared to 
reference data points (circles). The reference data points correspond to steady, one-dimensional, plane, 
laminar counter-flow flames. 

 

We now turn to the isothermal cold wall case (cases 3-4 in table 1). Cases 3 

and 4 exhibit two new features: flame extinction and non-adiabatic combustion 

conditions (figure 6-5). Both features contribute to make the description of fluid 

temperature variations significantly more complex: the occurrence of flame extinction 

results in large deviations from chemical equilibrium; and the basic analogy between 
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mass and heat mixing is lost under non-adiabatic conditions. As explained in 

Appendix C, the Burke-Schumann coupling relations between reactive species mass 

and thermal energy are no longer valid in non-adiabatic flames, and the several 

definitions of mixture fraction, as a fuel-air, fuel-temperature or oxygen-temperature 

mixing variable, are all different. The developments presented in Appendix C suggest 

that even in the framework of fast chemistry, more than one variable is now needed to 

describe the thermal flame structure. 

Figure 6-8 presents a scatter plot of fluid temperature versus the fuel-air-based 

mixture fraction. In contrast to figure 6-6 where T and Z exhibit a high-level of 

correlation, the same variables in figure 6-8 now appear uncorrelated. Low 

temperature levels on the fuel-side of the flame, Z ≥ 0.15, result from (direct) wall 

cooling effects, while low temperature levels in the vicinity of the flame zone, Z ≈ Zst,

or on the air-side of the flame, Z ≤ Zst, are associated with flame extinction events. 

The increased complexity in the description of temperature variations is also apparent 

in figure 6-9 where the flame temperatures are plotted versus the stoichiometric fuel-

air mixing rate. Figure 6-9 confirms that in case 4, the flame-wall configuration 

features a significant probability of flame extinction, as characterized by large 

reductions in flame temperature, down to less than 500 K. In figure 6-9, intermediate 

temperature levels, 600 K ≤ T ≤ 1600 K, may be interpreted as transient extinction or 

re-ignition events.  
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Figure 6-8. Scatter plot of temperature versus fuel-air-based mixture fraction. Case 4 solution. The 
DNS data correspond to an arbitrarily chosen time in the simulation, and are compared to the adiabatic 
Burke-Schumann solution (squares, equation (C4)). 

Figure 6-9. Scatter plot of flame temperature versus fuel-air mixing rate. Case 4 solution. The DNS 
data correspond to an arbitrarily chosen time period of 10 ms in the simulation, and are compared to 
reference data points (circles). The reference data points correspond to (adiabatic) steady, one-
dimensional, plane, laminar counter-flow flames. 
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To gain further insight into the wall-flame temperature variations, we now 

consider case 3, in which flame extinction is observed (figure 6-5) but is less frequent 

than in case 4. We also limit our discussion to an instantaneous snapshot from the 

case 3 solution, and select a time in the simulation that is extinction-free, t = tef.

Under flame-extinction-free conditions, we expect the temperature variations to be 

fairly well approximated by the extended Burke-Schumann solution discussed in 

Appendix C. In Appendix C, the flame response to wall cooling is described in terms 

of the mixture fraction Z and a normalized heat loss variable H called the excess 

enthalpy variable [149, 150]: 
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where ∞
kY designates the fuel or oxygen mass fraction in the supply stream; rs the 

stoichiometric oxygen-to-fuel mass ratio; and ∞T the free-stream temperature. H is a 

non-dimensional quantity that varies between (-1) and 0. Under adiabatic conditions, 

H = 0; under non-adiabatic conditions, H ≠ 0 and the deviations of H from 0 give a 

local measure of the amount of heat loss resulting from the wall cooling process. In 

Appendix C, the temperature variations are expressed as a function of Z and H

(equations (C4) and (C12)): 
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The validity of the extended Burke-Schumann solution given in equation (6-4) 

is tested in figure 6-10. Figure 6-10 presents three scatter plots of temperature versus 
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mixture fraction; the plots correspond to the pre-selected time t = tef and to three 

different x-locations. The adiabatic Burke-Schumann solution is also plotted for 

reference. Figure 6-10 shows the expected downstream decrease in values of Z as 

gases from the fuel supply stream mix with, and get diluted by the surrounding gases 

from the air stream. Figure 6-10 also shows the downstream increase in values of H

as the near-wall cold sub-layer grows in size and interacts with the flame more 

deeply. 

These results are consistent with the plot shown in figure 6-5(c) (with the 

difference that figure 6-5 features two flame-extinction events). Figure 6-5(c) 

compares the location of the wall-cooled region (i.e. the region that exhibits negative 

values of H) to that of the flame (i.e. the stoichiometric fuel-air interface) and thereby 

provides a helpful graphic representation of occurrences of thermal flame-wall 

interactions: flame elements that lie in the white or light gray regions in figure 6-5(c) 

are quasi-adiabatic, whereas flame elements that lie in the dark gray region are 

strongly non-adiabatic and susceptible to wall-induced extinction events. 

We now return to figure 6-10. Each plot in figure 6-10 also compares DNS 

raw data with processed data. Processed data correspond to estimates of fluid 

temperature using equation (6-4) and the local values of Z and H. Figures 6-10 

reveals some discrepancies between raw and processed data; these discrepancies may 

be explained by finite rate chemistry effects (i.e. effects of χst in a flamelet 

description), which are unaccounted for in equation (6-4). Despite these 

discrepancies, the overall agreement between raw and processed data is good, and the 

comparison lends support to the theoretical developments presented in Appendix A. 
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(a)

(b) 

(c) 

Figure 6-10. Scatter plots of flame temperature versus fuel-air-based mixture fraction. Case 3 solution. 
The DNS data correspond to a time in the simulation that is flame-extinction-free, and to three 
different x-locations: (a) x = 0; (b) x = 1.97 cm; (c) x = 7.9 cm. The DNS raw data (diamonds) are also 
compared to the adiabatic Burke-Schumann solution (solid line, equation (A4)), and to reference data 
(squares) processed according to the extended Burke-Schumann solution in equation (6-4). 
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Thus, we may conclude that in the absence of flame extinction, non-adiabatic 

temperature variations may be described as a function of mixture fraction Z and 

excess enthalpy H. In the next sub-section, we extend this discussion to cases with 

flame extinction. We suggest that the classical flamelet description may be readily 

adapted to treat this case, using Z, H and χst as controlling variables, with the 

difference that flame extinction is then predicted with a modified criterion. 

Wall-Flame Extinction 
As discussed above, the adiabatic cases 1-2 remain extinction free (figures 6-3, 6-4). 

Case 2 does feature occasional occurrences of trans-critical flame-flow conditions 

(figure 6-7) but these occurrences lack adequate strength and fail to fully overpower 

the flame. In contrast, the non-adiabatic cases 3-4 feature a number of local flame 

extinction events (figure 6-5, 6-9). Thus, a simple comparison between cases 1-2 and 

3-4 indicates that in our particular DNS configuration, flame extinction is the direct 

consequence of wall cooling effects. 

We focus our attention in this section on the conditions that lead to flame 

extinction. We start from the classical theory of (adiabatic) laminar diffusion flames 

in which flame extinction is described as a consequence of excessive values of the 

fuel-air mixing rate: ad
extstst ,χχ ≥ [22, 54, 147]. The critical value ad

extst ,χ may be 

evaluated from theoretical expressions [24], from detailed numerical calculations of 

one-dimensional strained laminar diffusion flames (figure 6-1), or from experiments. 

A useful prediction from large-activation-energy asymptotic theory is that the critical 

value ad
extst ,χ is an exponentially increasing function of the flame temperature, 
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)/exp(~,
ad

sta
ad

extst TT−χ , where Ta is a characteristic activation temperature and ad
stT

the adiabatic flame temperature [24]. We now use this prediction to establish a 

correspondence between the different flame responses to stretch, under adiabatic and 

non-adiabatic conditions. 

In the presence of wall-induced heat losses, the flame temperature Tst is 

decreased, ad
stst TT ≤ , and following the previous discussion, we expect the extinction 

value of the fuel-air mixing rate to be lowered accordingly: ad
extstextst ,, χχ ≤ . Assuming 

an exponential relationship between χst,ext and stT , we have the following relations: 

 )/)(1exp()/exp(
)/exp(

,,, ad
st

ad
stst

stad
extstad

sta

staad
extstextst TTTH

H
TT
TT

∞−+=−
−= βχχχ (6-5) 

or: 

 )exp(,, st
ad

extstextst Hβχχ ≈ , (6-6) 

where β is a characteristic Zeldovich number, 2)/()( ad
st

ad
sta TTTT ∞−=β (β ≈ 5.57 in 

the present S3D flame model, as described in equations (6-1)-(6-2)), and Hst is the 

value of excess enthalpy at the flame location, Hst = H(Zst) (keep in mind that wall 

cooling results in negative values of H). Using equation (6-6), flame extinction is 

predicted when: 

 )exp(,, st
ad

extstextstst Hβχχχ ≈≥ . (6-7) 

Equations (6-6)-(6-7) provide a simple correction to the adiabatic flame extinction 

criterion established in the classical diffusion flame theory. The correction takes the 

form of a multiplicative factor )exp( stHβ ; this factor depends on the magnitude of 

the flame heat losses, through Hst, as well as on the sensitivity of the flame chemistry 
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to temperature variations, through β. Equation (6-7) implies that flame extinction 

conditions are more readily achieved as the flame moves closer to the wall and 

experiences larger negative values of Hst.

We now turn to a DNS-based evaluation of the wall-modified flame extinction 

criterion proposed in equation (6-7). We consider case 4, in which frequent flame 

extinction events are observed, and case 2, in which occasional trans-critical events 

are observed, but without flame extinction. The evaluation of flame extinction 

conditions in case 4 is not straightforward since, as seen in figure 6-9, the simulated 

flame exhibits a range of combustion conditions that correspond to different states: a 

burning state; a non-burning state; and two transitional states, from burning to non-

burning (extinction) and from non-burning to burning (re-ignition). Therefore, in 

order to differentiate between all possible states and to achieve our objective of 

focusing on extinction conditions, we need first to develop a detection scheme that 

can extract the incipient flame extinction events from the DNS raw data. 

Figure 6-11 presents our flame extinction detection scheme. The scheme may 

be applied to any instantaneous snapshot of the DNS solutions; it is based on: (A) the 

identification of the instantaneous flame surface as the stoichiometric iso-contour of 

the fuel-air-based mixture fraction, Z = Zst; (B) the evaluation of the local fuel-air 

mixing rate χst and excess enthalpy Hst along the entire flame surface; (C) the 

subsequent evaluation of a flame weakness factor, defined as 

)exp()/()/( ,, st
ad

extststextstst HR βχχχχ −×≈= ; (D) and finally the identification of the 

flame weakest spots as local peak values of R.
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Once potential flame extinction events are identified as R-maxima, we can 

proceed to track their time evolution by simply repeating the detection scheme at 

different closely-spaced time intervals. Note that the proposed diagnostic remains 

Eulerian-based and is different from, and much simpler than a Lagrangian tracking 

technique that would accurately follow a particular flame element; the Eulerian 

treatment presents the advantage of tracking the flame locations that feature the most 

critical conditions, as measured by the weakness factor R, and it remains unclear 

whether a Lagrangian treatment would provide more valuable insight. The flame 

weakest spots are tracked as they are convected downstream and out of the 

computational domain; the data processing activated during tracking consists in 

recording the local value of temperature at the different marked flame locations. 

Figure 6-11. Flame extinction detection scheme. The scheme consists in monitoring the variations of 
the flame weakness factor, )exp()/()/( ,, st

ad
extststextstst HR βχχχχ −×≈= . The upper plot 

shows the flame location in physical space while the lower plot shows the corresponding variations of 
R as a function of arc length along the flame contour. The flame weakest spots are readily identified as 
peak values of R in the lower plot, and flame extinction is predicted to occur for R above a critical 
value (i.e. R ≥≥≥≥ 1 in equation (6-7)). 
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Consistent with the criterion proposed in equation (6-7), we find that in case 

4, observations of flame extinction events are well-correlated with occurrences of 

large peak values of the flame weakness factor R (similar observations are made in 

case 3). In equation (6-7), extinction is predicted to occur for a critical value of R

equal to 1. This prediction is now tested in figure 6-12. Figure 6-12 presents the time 

variations of temperature, as recorded at several flame weak spot locations, and using 

the detection algorithm of figure 6-11. To facilitate the comparison with equation (6-

7), the time variations of Tst are plotted as a function of R, instead of time. Figure 6-

12 includes one trans-critical event from case 2 and three super-critical events from 

case 4; data points from our pre-computed database of strained laminar diffusion 

flames are also plotted for reference. The plot displays the classical evolution of 

temperature as the flame experiences a change from sub- to super-critical conditions: 

the flame temperature exhibits a gradual decrease at first, for low-to-moderate values 

of R, followed by an abrupt fall off (down to ambient temperatures), as R is further 

increased beyond a critical value noted Rc and the flame undergoes sudden extinction. 

In agreement with equation (6-7), figure 6-12 shows that the trans- and super-

critical flame events from cases 2 and 4 are characterized by large values of R close to 

unity. In contrast to equation (6-7), however, flame extinction is observed for a range 

of values of Rc, rather than a unique distinct value: we find that 0.3 ≤ Rc ≤ 1.2. Also, 

there is some level of disagreement between results from case 2 and case 4: while in 

figure 6-12, the flame event from case 2 features large values of R, up to more than 1, 

and yet remains chemically active, one of the flame event in case 4 undergoes 
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complete extinction at a significantly lower value of the flame weakness factor, Rc ≈
0.3-0.5. 

Despite these discrepancies, we find that the DNS results lend support to the 

modified flame extinction criterion proposed in equation (6-7). In our view, this 

criterion provides a useful quantification of the magnitude of the flame weakening 

resulting from the wall cooling process. 

Figure 6-12. Variations of the flame temperature Tst with the flame weakness factor R, at selected 
flame locations. Case 2 (triangles) and case 4 (lines) solutions. The DNS data correspond to several 
flame weak spots, as identified using the detection algorithm presented in figure 6-11. The DNS data 
are compared to reference data points (circles). The reference data points correspond to (adiabatic) 
steady, one-dimensional, plane, laminar counter-flow flames. 
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Wall Surface Heat Flux 
We now turn to an evaluation of the wall surface heat flux, as obtained in cases 3-4 of 

the DNS database. As discussed in previous sections, thermal radiation transport is 

neglected in the present study and gas-to-solid heat exchanges are limited to 

convective heat transfer. Also, the DNS simulations are well-resolved and the wall 

heat flux is simply obtained from its classical Fourier-law expression and direct 

differentiation of the temperature field. 

Figure 6-13 presents the statistical distribution of the gas-solid heat flux, as 

obtained in cases 3 and 4. The probability density functions in figure 6-13 correspond 

to data collected on the entire wall surface, and over a time period of 20 ms. In both 

cases 3 and 4, the averaged and peak values of the wall heat flux are approximately 

40 kW/m2 and 90 kW/m2, respectively. These values are much smaller than those 

reported in reference [137]; the peak heat flux in reference [137] is as high as the 

flame reference power, i.e. up to 1-3 MW/m2 for typical hydrocarbon flames at 

atmospheric pressure.  

Discrepancies between the present results and those reported in reference 

[137] may be due to differences in the respective flame-flow configurations, as well 

as differences in the adopted combustion models. For instance, our present choice of 

a simplified flame model results in an underestimate of the flame resistance to stretch 

(figure 6-1) that may lead in turn to over-predictions in minimum flame-wall 

distances and under-predictions in the associated wall heat fluxes. We plan to address 

this issue in future work by performing DNS simulations with a more realistic flame 

chemistry model. 
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Figure 6-13. Probability density function (PDF) of the wall surface heat flux. Case 3  (solid line) and 
case 4 (dashed line) solutions. The PDF data are accumulated both in space, along the entire wall 
surface at y = 0, and in time, over a time period of 20 ms. 
 

6.4. Conclusion 
Direct numerical simulation is used in this study to bring basic information on the 

interactions of non-premixed flames with adiabatic or cold wall surfaces. The 

simulations correspond to momentum-driven, ethylene-air, turbulent wall-flames, and 

feature sub-critical flame dynamics, in the case of an adiabatic wall, and super-critical 

flame dynamics, in the case of a cold wall. 

The different simulated wall-flames are analyzed in the present study with a 

flamelet view point. In the adiabatic wall case, the flame chemical and thermal 

structure is described in terms of classical variables, i.e. mixture fraction and scalar 
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dissipation rate. In the cold wall case, the description of the flame thermal structure 

requires the introduction of an additional variable, called excess enthalpy. The excess 

enthalpy concept was apparently first applied to the description of non-adiabatic 

diffusion flames in references [149, 150]. In agreement with references [149, 150], 

we find that in our flame-wall configuration, the excess enthalpy variable provides a 

convenient description of the amount of heat loss resulting from the wall cooling 

process. Using mixture fraction and excess enthalpy as principal variables, an 

extended Burke-Schumann description of the flame structure, valid in the limit of 

equilibrium chemistry, is presented in Appendix C. 

A modified flame extinction criterion is then proposed that provides a 

correction factor to the classical scalar dissipation rate criterion obtained in adiabatic 

flame theory. This correction factor depends on the magnitude of the wall-induced 

flame heat losses, through the excess enthalpy, as well as on the sensitivity of the 

flame chemistry to temperature variations, through a Zeldovich number. The 

modified flame extinction criterion is tested against the DNS data using an innovative 

detection algorithm designed to identify the locations of the flame weakest spots. We 

find that the results are encouraging and lend support to an extended flamelet 

framework enhanced by the concept of excess enthalpy. 

Additional results include a quantification of the mean and peak values of the 

convective wall heat flux resulting from the short flame-wall distances. These values 

are in the range of a few tens of kW/m2 and are much smaller than the maximum heat 

flux reported in a similar study, but for a highly-strained laminar diffusion counter-

flow flame [137]. Discrepancies between our results and those of reference [137] 
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remain unexplained and will be the focus of follow-up studies. It is worth 

emphasizing again that the present numerical formulation includes a number of 

simplifications/limitations: a two-dimensional computational domain; a single-step 

flame chemistry model; no heterogeneous gas-solid surface chemistry; no soot 

formation; and no thermal radiation transport. Future work will be aimed at removing 

those limitations with the goal of achieving more quantitative simulations. 
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Chapter 7: Conclusion and Future Directions 

Direct numerical simulation is a mature research tool for studying turbulent reacting 

flows. In the present work, we are motivated by the fast development of the tera-scale 

computing facilities, and participate in developing a state-of-the-art DNS software 

with new numerical and physical modeling capabilities for tera-scale computing 

platforms.  

The new numerical developments include a new pseudo-compressibility 

method, the Acoustic Speed Reduction (ASR) method, designed to enhance 

computational efficiency for low speed compressible flow simulations, and an 

improved boundary condition scheme to solve known difficulties found in 

counterflow simulations, allowing for successful simulations of turbulent counterflow 

flames. The new physical developments include a semi-empirical soot model and a 

parallel thermal radiation model based on a ray-tracing method. With the new 

developments, we extend the domain of application of DNS to new problems with 

more complex physics, or increase the computational efficiency in the treatment of 

current problems.  

While the new DNS code has been equipped with the new capabilities of soot 

formation and thermal radiation, it still has limitations for general applications. The 

current semi-empirical soot model requires a calibration of model coefficient before 

application to new flame configurations. More detailed soot models using the method 

of moments or the sectional method are supposed to be more accurate and readily 

applicable to more general situations. The current radiation solver assumes that the 
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combustion gas mixture is a gray gas. It is a reasonable assumption for optically thin 

gases or when soot radiation is dominant. However gas phase absorption is strongly 

spectral dependent. Therefore a spectrally-resolved thermal radiation capability is 

desirable. On the other hand, it is still worth emphasizing that the computational cost 

for more sophisticated soot and radiation models is still prohibitive. In our view, the 

current flame modeling capability corresponds to a reasonable and solid step towards 

a better understanding and modeling of complicated physics in reacting flows.  

In addition to the new developments, the present work also applied the DNS 

solver to study the interaction of non-premixed flames with cold wall surfaces. The 

simulations addressed some new problems associated with the effects of the cold wall 

on the turbulent flame and brought basic information on turbulent fuel-air-

temperature mixing, flame extinction and wall surface heat transfer. New information 

on the wall-modified flame structure and wall-induced flame extinction events was 

obtained and new theoretical developments were made using the concept of excess 

enthalpy variable. Note that the current simulations did not make use of the new 

capabilities developed in this PhD work. However, the new developments are indeed 

applicable to the current DNS study. We choose to neglect soot and thermal radiation 

to avoid excessive complications for the initial study of turbulent flame-wall 

interactions. The ASR method together with non-reflecting inflow boundary 

conditions are currently under test in this flame-wall interactions configuration. We 

hope to achieve more computational efficiency for three-dimensional simulations of 

flame-wall interactions problems in the future.  
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The new observations made in the DNS of non-premixed flame-wall 

interactions are very encouraging. The interpretation of the observations in terms of 

the excess enthalpy variable has implications for turbulent combustion modeling. An 

extension of the DNS work should be to develop a boundary layer model that 

accounts for the presence of a flame and wall cooling effects. It is also highly 

desirable to perform three-dimensional DNS of the flame-wall interaction problem, 

where the wall induced modifications of turbulent mixing in diffusion flames can be 

studied with realistic turbulence. In addition it is also of interest to include detailed 

chemical kinetics, soot and thermal radiation in the simulation to achieve more 

quantitative predictions. There is also a need to validate the DNS simulations against 

experiments. With current computer resource, direct comparison between DNS and 

experiments is still a daunting task, but it is definitely desirable if we can overcome 

the prohibitive computational requirement in the future. 

This work has mad several contributions in computational physics and 

combustion science. The new pseudo-compressibility method presented in chapter 2 

has been published in Combustion Theory and Modelling [151]; the enhanced 

formulation for boundary conditions presented in chapter 3 has been accepted for 

publication in Combustion Theory and Modelling [74]; the study of flame-wall 

interaction presented in chapter 6 has been submitted for publication to Combustion 

and Flame [152]. The performance study of coupled flame-flow-radiation calculation 

presented in chapter 5 is still in progress and a journal article is in preparation.  
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Appendices 
 

A: Alternative Forms of the Energy Equation  

We start from the equation for total energy (internal energy plus kinetic energy) given 

in equation (1.4): 
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This equation may be recast as an enthalpy equation: 
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where H is the enthalpy per unit mass and is defined as: 
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Two alternative forms for the energy equation are given below. First, using 

the definition of H as a mass-weighted sum of the chemical species enthalpies hk, and 

considering the variations of hk with temperature, a new expression for the material 

derivative of H is obtained: 
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Using the mass conservation statements in equations (1.1)-(1.2), an equivalent 

expression is as follows: 
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and equation (A1) may now be re-formulated as a temperature equation: 
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or, after using the definition of the heat flux vector qj:
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The first term on the right-hand side of equation (A2) is the rate of viscous 

dissipation; the second term represents transport of heat due to conduction; the third 

term represents transport of heat due to multi-component mass diffusion effects; and 

the last term represents the rate of heat release associated with the chemical reaction 

process. 

We now proceed to yet another form of the energy equation. Using the ideal 

gas law in equation (1.5), we can express temperature variations in terms of variations 

of pressure, mass density and species mass fractions: 
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Combining this expression with equations (1.1)-(1.2), equation (A2) may then be 

recast as a pressure equation: 
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where γ is the ratio of specific heats of the gaseous mixture. 

Note that equations (A3)-(A4) may be simplified if one assumes that the 

molecular weights and specific heats of individual chemical species are all identical: 

Mk = M and cp,k = cp. We get under those conditions: 
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where q& is the heat release rate per unit volume: 
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B: A Mathematical Derivation of the ASR Transformation 

As described in section 2.2, the ASR method uses a modified pressure-dilatation term 

in the energy equation. This modification is introduced in section 2.2 based on 

physical insights into the respective scaling of the acoustic and convective motions 

and a detailed analysis of the simplified problems TP1 and TP2. A more rigorous 

mathematical derivation of ASR is here presented based on asymptotic expansions of 

the governing equations. The analysis follows the developments made in references 

[153-155]. While as will become clear below, the scope of the analysis is somewhat 

limited, it serves to strengthen the foundations of the ASR method and establishes a 

framework for future investigations. 

We start from the fully compressible, reactive flow system of equations: 
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where the energy equation is recast as equation (A5). A number of simplifications 

have been made in this system of equations: individual chemical species mass 

equations are ignored; gravity is neglected in equation (B2); multi-component mass 

diffusion effects are neglected in equation (B3). We also assume below that the 

specific heat cp and the ratio of specific heats γ are constant. 

Equations (B1-B3) are made non-dimensional using the following reduced 

variables: 
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where the subscript 0 refers to reference state quantities; and where Pr is the Prandtl 

number (assumed constant) and ∆T0 a reference temperature variation. We have the 

following expressions for the reference pressure and temperature: 
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where c0 is the speed of sound in the reference state. 

For convenience, we drop the superscript + in the following with the implicit 

understanding that quantities are non-dimensional. Equations (B1-B3) are now 

written as: 
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where ε is a measure of the flow Mach number and δ a measure of the relative 

amplitude of temperature fluctuations. ε and δ are defined as: 
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Next, we perform an analysis that is similar to that found in references [153-

155]. The scope of this analysis is limited by a number of simplifying assumptions. 

First, we assume “nearly incompressible” conditions and treat the flow variables as 

asymptotic expansions in ε and δ (both parameters ε and δ are considered small). In 

addition, we choose the scaling δ = ε and limit our discussion to the heat-fluctuation-

dominated hydrodynamics (HFDH) regime of reference [153]: in this regime, density 

and temperature fluctuations are dominant and pressure fluctuations are small in 

comparison. Finally, we consider that the fluid fluctuates close to a reference state 

assumed to be uniform: p0 = 1; ρ0 = 1; T0 = γ /(γ-1). These assumptions are consistent 

with the following leading order expansions: 
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and as shown in references [153-155], the corresponding leading order equations are: 
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As expected, the pressure term on the left-hand-side of the energy equation (B3) does 

not contribute to the leading order dynamics in equation (B9), an observation that is 

central to the ASR proposition that the pressure term in the energy equation may be 

freely manipulated. 

We now consider the ASR-modified, non-dimensional, compressible, reactive 

flow equations: 
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where β is a parameter to be determined. To obtain an expression for β, we must go 

beyond the previous analysis of the incompressible flow dynamics and include some 

representation of the acoustic physics. Following the approach proposed in [153], we 

consider the interaction of the incompressible flow solution described by equations 

(B7)-(B9) with superposed acoustic perturbations, and perform a multi-scale 

expansion in terms of long-time/short-wavelength convective scales, denoted τ and 

ηj, and fast-time/long-wavelength acoustic scales, denoted τ′ and ξj:
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where the ASR factor α has been introduced in order to account for the intended 

artificial increase in the flow Mach number. We have the relations: 
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We also represent the variables as: 
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where )0(
iu and )2(p are solutions of the incompressible equations (B7)-(B8) (and are 

independent of the fast-time/long-wavelength acoustic scales τ′ and ξj); where the 

ASR-modified scaling δ = (αε) has been assumed; and where p* is the acoustic 

perturbation. 

The expansion of equations (B10)-(B12) in terms of (B13) and (B14) gives (see 

reference [153] for more details): 
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Equations (B15) and (B18) show that the heat transfer variables ρ1 and T1 fluctuate on 

incompressible slow time scales; and it is worth noting that this basic result remains 

unchanged in presence of an ASR modification (α ≠ 1; β ≠ 1). Note also that equation 

(B19) suggests that the interaction between slow/convective and fast/acoustic motions 

in the energy equation is dependent on α and β and may be altered by ASR 

modifications; this point deserves more scrutiny and will be addressed in future work. 

We now proceed to establish the wave equation for the acoustic perturbations 

p*. We first use the (non-dimensional) ideal gas law: 

 Tp ργ
γ 1−= ,

which together with the expansions (B14) leads to the following relations: 
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Combining equations (B20)-(B21) with equation (B16), we obtain: 
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Finally, equations (B17) and (B22) lead to the following acoustic wave equations: 
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The non-dimensional speed of sound in equations (B23)-(B24) is: 
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Since ASR modifications are introduced in order to reduce the speed of sound 

by an arbitrary factor α, we find that the parameter β must be selected as follows: 
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The corresponding expression for the ASR-modified temperature equation is: 
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where equations are now written in dimensional form. With the full multi-component 

gas effects included, the equation becomes: 
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This equation is the ASR-modified version of equation (A2). The corresponding 

ASR-modified version of equation (A4) is: 
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and the corresponding equation for total energy is identical to equation (2.12): 
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or, after using Eq. (B27): 
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In conclusion, the analysis performed in this Appendix shows how the ASR 

modifications proposed in Section 2.2 may be derived from a mathematically rigorous 

expansion of the governing equations under weak compressibility conditions. The 

ASR modifications are shown to achieve the intended decrease in acoustic speeds 

while preserving the leading order slow flow dynamics. It is important to also 

recognize that the scope of the asymptotic analysis is limited (“nearly 

incompressible” flow conditions, homogeneous reference state, simplified description 

of combustion, no specific treatment of chemical time scales); it is performed in fact 

far from combustion conditions. Future work will be aimed at removing some of 

those limitations. 

 

C: An Extension of the Burke-Schumann Solution 

The diffusion flame structure near a solid wall surface may be significantly different 

from that found in traditional wall-free configurations. We discuss in this appendix 

some of the complications found in the description of diffusion flames evolving near 
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cold wall boundaries. We limit our discussion to the classical Burke-Schumann 

theoretical framework for non-premixed combustion, in which equilibrium chemistry 

is assumed and the flame is controlled by the fuel-air mixing process [22, 54, 147]. 

Furthermore, we limit our discussion to the flame-wall configuration of figure 6-2, in 

which deviations from adiabatic behavior is due to convective heat transfer at the 

wall, with the wall located at the y = 0 boundary. Equal molecular diffusion 

coefficients for mass and thermal energy are also assumed, and following standard 

practice, a non-dimensional fuel-air mixing variable, known as the mixture fraction 

and noted Z, is used as principal variable: 
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where ∞
42HCY is the fuel mass fraction in the fuel supply stream; ∞

2OY the oxygen mass 

fraction in the air free stream; and rs the stoichiometric oxygen-to-fuel mass ratio. Z is 

a passive scalar with well-defined boundary conditions: Z = 0 in the air stream; Z = 1

in the fuel stream; and 0/ =∂∂ yZ at the wall. In the Burke-Schumann framework, 

the full reactive mixture composition is uniquely described in terms of Z; for instance, 

the fuel and oxygen mass fractions are given by: 
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where Zst is the stoichiometric value of mixture fraction, )/(
2422
∞∞∞ += OHCsOst YYrYZ .

We now turn to the problem of describing the fluid temperature variations. 

Following the classical Burke-Schumann theory, we consider some alternative 
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definitions of mixture fraction using fuel-temperature or oxygen-temperature mixing 

variables: 
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where ∞T is the air free stream temperature (assumed equal to the fuel supply stream 

temperature); and cp the specific heat of the reactive mixture at constant pressure 

(assumed constant). Z2 and Z3 satisfy the same convection-diffusion equation that Z

does; these variables also satisfy the same well-defined boundary conditions in the 

reactants supply streams: Z2 = Z3 = 0 in the air stream; Z2 = Z3 = 1 in the fuel stream. 

The wall boundary conditions, however, may or may not be the same as that for Z.

Let us first consider the adiabatic wall case. In this case, the wall boundary 

conditions for Z2 and Z3 are identical to that for Z, 0// 32 =∂∂=∂∂ yZyZ , and we 

have the trivial result Z = Z2 = Z3. This result leads in turn to the classical Burke-

Schumann temperature solution in which T is a piecewise linear function of Z [22, 54, 

147]: 
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In equation (C4) and in what follows, we use the ad superscript to refer to this 

adiabatic Burke-Schumann solution, )(ZT ad . Equations (C2) and (C4) show that in 

the adiabatic case, the Z-structures of the wall-flame and wall-free flame are identical. 
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Next we consider the case of a cold wall surface with a prescribed 

temperature, T(x,0,t) = Tw. In that case, Z2 and Z3 are found to satisfy more complex 

wall boundary conditions: 

 





′′∆+=∂
∂

′′∆−=∂
∂

∞

∞

,)/(
)/(

,)/(

2

42

3

2

w
csO

p

w
cHC

p

qHrY
c

y
Z

qHY
c

y
Z

&

&

λ

λ
(C5) 

where λ is the mixture thermal conductivity, and wq& ′′ the solid-to-gas heat flux ( wq& ′′ is 

negative in the present problem). The boundary conditions in equation (C5) differ 

from the zero normal-gradient condition satisfied by Z. The implications are then 

two-fold: first, Z, Z2 and Z3 are not identical variables; and second, the temperature is 

not a function of Z only, as was the case in equation (C4). 

The deviations of Z2 and Z3 from Z may in fact be interpreted as a direct 

measure of the amount of heat loss resulting from the wall cooling process. Before we 

make that point, it is worth noting that Z, Z2 and Z3 are simply related by the 

following relationship: 

 )1(23 stst ZZZZZ −×+×= . (C6) 

In the following, we stop discussing Z2 and use Z and Z3 as principal variables. 

Combining the definition of Z3 in equation (C3) with the Z-variations of oxygen mass 

fraction in equation (C2), the temperature variations under non-adiabatic combustion 

conditions may be expressed as: 
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where T is now described as a function of Z and Z3. Equation (C7) may be re-cast in 

yet another form, in which temperature is expressed as the sum of the adiabatic 

Burke-Schumann solution plus a perturbation: 

 ))((-)( 3
2 ZZcr

HYZTT
ps

cOad −∆=
∞

. (C8) 

In this expression, temperature is now described as a function of both the fuel-air-

based mixture fraction Z and the difference (Z3-Z). The role of the latter quantity is 

now more readily understood: under adiabatic conditions, (Z3-Z) = 0 and )(ZTT ad= ,

whereas under non-adiabatic conditions, (Z3-Z) ≠ 0 and )(ZTT ad≤ .

An alternative form of equation (C8) is: 

 )1()()( 3 stad
st

ad
ZTT

-TZTZZ −×−=− ∞ (C9) 

where ad
stT is the adiabatic flame temperature, )( st

adad
st ZTT = . Equation (C8) shows 

that the maximum value of (Z3-Z) is (1-Zst), and therefore suggests using the 

following re-normalization: 

 ∞−=−
−= TT

-TZT
Z

ZZH ad
st

ad

st
m

)(
)1(
)( 3 (C10) 

where Hm is a non-dimensional heat loss variable that varies between 0 and 1, is equal 

to 0 under adiabatic conditions, and is positive otherwise. 

A similar quantity was previously introduced in reference [149, 150] in two 

different studies of non-adiabatic diffusion flames. The flame configuration studied in 

[149] includes radiative heat losses, while the configuration studied in [150] features 
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convective wall cooling. The quantity proposed in [149, 150] is called the excess 

enthalpy variable and is noted H. H is defined as: 
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Using equations (C2), (C4) and (C10), it is straightforward to show that H = -

Hm. H is therefore a non-dimensional quantity that varies between (-1) and 0, is equal 

to 0 under adiabatic conditions, and is negative otherwise.  In the main body of the 

text, we follow the choice made in [149, 150] and use H to describe the modifications 

in flame structure due to the presence of a cold wall surface. 

In conclusion, the Burke-Schumann temperature variations are given by the 

following two-parameter expression: 

 )()(),( ∞−×+= TTHZTHZT ad
st

ad  (C12) 

where (-1) ≤ H ≤ 0, and where )(ZT ad  is given by equation (C4) and 

)( st
adad

st ZTT = . Equations (C2) and (C12) provide a complete description of the 

flame structure under non-adiabatic conditions, in the limit of infinitely fast 

chemistry. 
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