Striping Doesn’t Scale: How to Achieve Scalability for Continuous
Media Servers with Replication®

Chenglu Chou
Department of Computer Science
University of Maryland at College Park

Leana Golubchik
University of Maryland Institute for Advanced Computer Studies
and Department of Computer Science
University of Maryland at College Park

John C.5. Lui
Department of Computer Science and Engineering
The Chinese University of Hong Kong

Abstract

Multimedia applications place high demands for QoS, performance, and reliability on storage
servers and communication networks. These, often stringent, requirements make design of cost-
effective and scalable continuous media (CM) servers difficult. In particular, the choice of data
placement techniques can have a significant effect on the scalability of the CM server and its
ability to utilize resources efficiently. In the recent past, a great deal of work has focused on
“wide” data striping as a technique which “implicitly” solves load balancing problems; although,
it does suffer from multiple shortcomings. Another approach to dealing with load imbalance
problems is replication. The main focus of this paper is a study of scalability characteristics
of CM servers as a function of tradeoffs between striping and replication. More specifically,
striping is a good approach to load balancing while replication is a good approach to “isolating”
nodes from being dependent on other system resources. The appropriate compromise between
the degree of striping and the degree of replication is key to the design of a scalable CM server.
This is the topic of our work.

Keywords: continuous media servers, distributed systems, performance evaluation, scalability,
end-to-end design.

Technical areas: Multimedia and Digital Libraries; Distributed Systems Architecture.

*The work of ChengFu Chou and Leana Golubchik and was supported in part by the NSF CAREER grant
CCR-98-96232.

1 Introduction

With the rapid growth of multimedia applications, there is a growing need for large-scale continuous
media (CM) servers that can meet the user demand. Multimedia applications (such as video stream
delivery, digital libraries, distance learning systems, and so on) place high demands for quality-of-
service (QoS), performance, and reliability on storage servers and communication networks. These,
often stringent, requirements make end-to-end design of cost-effective and scalable continuous media

servers difficult. The scalability of a CM server’s architecture depends on its ability to:

e expand as user demand and data sizes grow;
¢ maintain performance characteristics under growth or re-configuration;

¢ maintain performance characteristics under degradation of system resources, which can be

caused by losses in network and storage capacities.

In particular, in a continuous media server, the choice of data placement techniques' can have
a significant effect on the scalability of the system and its ability to utilize resources efficiently.
Existing data placement techniques in conjunction with scheduling algorithms address two major
inefficiencies in such systems: (1) various overheads in reading data from storage devices, e.g., due
to disk arm movement and (2) load imbalance, e.g., due to skews in data access patterns. In this
work, we focus on the latter issue and specifically on its bearing on the scalability characteristics

of a distributed CM server.

Due to the enormous storage and I/O bandwidth requirements of multimedia data, a CM
server is expected to have a very large disk farm. Thus, we must necessarily consider designs which
contain multiple disk clusters and processing nodes, i.e., we must consider distributed designs. An
important consideration then is the placement of objects on the nodes of the CM server. As in
traditional database systems, data placement on a distributed storage sub-system directly affects

the load balancing characteristics of that system.

In the recent past, a great deal of research work, e.g., as in [2, 20, 3, 8, 10], has focused on “wide”

data striping as a data placement technique for designing continuous media servers. By wide data

!Here by data placement we mean decision of which object or fraction of an object to place on which disk or disk

cluster, i.e., this does not refer to data placement issues within a single disk.

striping we mean that each object is striped across all the disks of the system. Recall that the

potential load imbalance is largely due to the skews in data access patterns [4] which, without data

striping, could result in high loads on some disks containing the more popular objects, while the

disks containing less popular objects may be idling. Moreover, the problem is exacerbated by the

fact that access patterns change over time, i.e., the popularity of a particular object is a function

of time.

Thus, an advantage of wide data striping is that it “implicitly” achieves load balance by decou-

pling an object’s storage from its bandwidth requirements. However, wide data striping also suffers

from several shortcomings:

It is not practical to assume that a system can be constructed from homogeneous disks, i.e.,
as the system grows or experiences faults (and thus disk replacement) we are be forced to use
disks with different transfer and storage capacity characteristics — having to stripe objects

across heterogeneous disks would lead to further complications [1].

An appropriate choice of a striping unit, the object size, and the communications network
infrastructure dictate an upper bound on the number of disks over which that object can be
striped, beyond which replication of objects is needed to increase the number of simultaneous
users (as described in [8]), e.g., to the best of our knowledge, in implementations described in
[8, 9] striping is performed over (at most) a few tens of homogeneous disks only?. Note that,
delivery of relatively short continuous media objects is of use to many important applications,

including digital libraries, news-on-demand systems, and so on.

Due to the continuity constraints, some form of synchronization in delivery of a single object
from multiple nodes must be considered. The need for some form of “synchronization” arises
from the fact that different fractions of an object are being delivered from different nodes
at different times during the object’s display, and hence some form of coordination between
these nodes (and perhaps the client) is required in order to present a “coherent” display of

the object.

As the user demand and data sizes grow and hence the system requires more storage and disk
bandwidth capacities, the resulting expansion of the disk sub-system results in re-striping of

all the objects.

2In fact, we are not aware of, in the current literature, any large-scale implementation that utilizes heterogeneous

disks.

5. Due to the need for communication of data between the nodes over which an object is striped,
the capacity of the communication network limits the performance of the distributed CM
server. This limitation directly affects the scalability of the CM server and is one of the main

issues we investigate in this work.

Another approach to dealing with the load imbalance problem arising from skews in data access
patterns is replication, i.e., creating a sufficient number of copies of a (popular) object so as to
meet the demand for that object. Specifically, we consider a hybrid approach where instead of
striping each objects across all the nodes of the system, we constrain the striping to a single node
and replicate popular objects on several nodes in order to provide sufficient bandwidth capacity to

service the demand for these objects.

Of course, a disadvantage of this approach is a need for additional storage space. Furthermore,
techniques are needed for adjusting the number of replicas as the access patterns change. Some of
these issues are addressed in [21], in the context of workloads with relatively infrequent changes in
object access patterns as well as in our previous work [13, 5], where we propose dynamic replication
techniques in the context of more frequent changes in data access patterns. In this paper, we

improve on our previous work on dynamic replication techniques, as described in Section 4.

However, the main focus of this paper is on the tradeoffs between striping and replication,
which are as follows. In a small-scale CM server, where all disks are assumed to be connected to a
single node, data striping can provide better performance characteristics than replication because
of its ability to deal with load imbalance problems without the need for additional storage space
and without significant networking constraints. However, in a large-scale CM server, data striping
results in a need for significant communication network capacities which can lead to poor scalabil-
ity characteristics and high costs. Essentially, striping is a good approach to load balancing while
replication is a good approach to “isolating” nodes from being dependent on other (“non-local”)
system resources. That is the wider we stripe in a distributed CM system, the more we are depen-
dent on the availability of network capacity. Furthermore, replication has the benefit of increased
reliability in terms of: (a) longer mean time to loss of data from the disk sub-system (see Section 5);
and (b) dealing with lack of network resources (see Section 5), including network partitioning. The
downside of replication is that it increases storage space requirements and hence cost. However,
as storage costs decrease (fairly rapidly) and the need for scalability grows, replication becomes a

more attractive technique.

In summary, the appropriate compromise between the degree of striping and the degree of

replication is key to the design of a scalable distributed CM server. This is the topic of our paper.

1.1 Related Work

Recently much research has been done on design of continuous media, and specifically video-on-
demand, storage servers, e.g., as in [2, 20, 3, 8, 10], to a name a few. Much of this work falls
into several broad categories®, which include: (1) small-scale servers, where in most cases all disks
are connected to a single node; (2) medium-scale LAN-based servers, and (3) medium-scale (either
distributed or not) servers, which employ high speed interconnects, such as ATM-based technology.
To the best of our knowledge, most of these designs employ wide data striping techniques and the
corresponding existing successful implementations employ only tens of disks. In contrast, the use
of replication for the purpose of addressing workload demand problems has been less explored. In
[19] the authors consider skews in data access patterns but in the context of a static environment.
In [21], the authors address various questions arising in the context of load imbalance problems due
to skews in data access patterns, but in a less dynamic environment (than we investigate here). We
believe that the policies used in this paper can be complementary to the techniques developed in
[21]. In [7, 6], the authors also consider dynamic replication as an approach to load imbalance, and
in our previous work [13, 5], we study a taxonomy of dynamic replication schemes. However, all of
these works (except our work in [5] either (a) assume some knowledge of frequencies of data access
to various objects in the system, and/or (b) do not provide users with full use of VCR functionality,
and/or (c) consider less dynamic environments than the one considered here. Our motivation in
doing away with such assumptions in our work is largely due to considerations of applicability of
dynamic replication techniques in more general settings and to a wider range of applications of

continuous media servers.

Lastly, to the best of our knowledge, previous works do not consider alternative design character-
istics that affect the scalability of CM servers in an end-to-end setting (i.e., taking into consideration
both the network and the storage resource constraints). The quantitative study of such issues and
the cost/performance and reliability characteristics that distributed designs exhibit under growth,
reconfiguration, degradation of resources, and changes in workloads are essential to assessing the

scalability of proposed architectures and to the development of large-scale CM servers, in general.

*We divide these into broad categories as it would be nearly impossible to list all papers on CM server designs.

1.2 Our Contributions

The main contributions of this work are as follows.

¢ Quantitative evaluation of performance and resource demand characteristics of data striping
vs. data replication techniques in large-scale distributed CM servers. Such evaluation is crucial

to achieving a scalable design of continuous media servers.

¢ Improved dynamic replication techniques for distributed hybrid CM servers, needed to achieve
better performance by adjusting the number of replicas in the system based on changed in

data access patterns and user demand.

¢ Quantitative evaluation of reliability characteristics of data striping- vs. data replication-based

systems.

o Illustration of ease of designing heterogeneous hybrid CM systems without loss in performance

characteristics.

Based on this end-to-end cost/performance and reliability study we argue that hybrid designs result

in large scalable continuous media systems.

2 Hybrid CM System Architectures

A hybrid system architecture is illustrated in Figure 1. It consists of a set of nodes connected by a
high speed switch, which we term a global switch. The global switch is a high bandwidth resource
which can, for instance, correspond to a high capacity WAN or an ATM-type infrastructure. Each
node ¢ contains one or more processing units (PUs) and one local switch which is used to connect
all local PUs as well as local clients. FEach client connects to the nearest local switch (depending
on their geographical location) which is also connected to some node i. Requests from this client
which are serviced by a PU from node ¢ are termed “local” clients or “local” requests. When a
request from a client cannot be serviced by its local node ¢, the request is forwarded to a remote
node j, which contains a replica of the object being requested. We term this request a “global”

client or a “global” request, as it requires some capacity of the global switch in order to receive

Ci=client i

Node i 44 Local Switch

global
Switch

& @

Hybrid VOD System Architecture

Figure 1: Multimedia System.

service. That is, when a remote node services a client, the continuous media data is delivered from

the remote node, through the global switch to the local node and subsequently to the client.

FEach PU has one or more CPUs, memory, and an I/O sub-system (e.g., a cluster /array of disks).
Furthermore, each PU (of each node) is also connected to the global switch. Each node € 5, where
S is the set of nodes in the system, has a finite storage capacity, D, (in units of CM objects), as
well as a finite service capacity, B, (in units of CM access streams). For instance, consider a server
that supports delivery of MPEG-2 video streams where each stream has a bandwidth requirement
of 4 Mbits/s and each corresponding video file is 100 mins long. If each node in such a server has
20 MBytes/s of bandwidth capacity and 36 GB of storage space, then each such node can support
B, = 40 simultaneous MPEG-2 video streams and store D, = 12 MPEG-2 video objects. Likewise,

we measure the global and local switch capacities in units of access streams. In general, different

nodes in such a hybrid system may differ in their storage, I/O bandwidth, and networking (i.e.,
local switch) service capacity. This flexibility of the hybrid architecture should result in a scalable

system which can grow on a node by node basis.

Each CM object resides on one or more nodes of the system depending on its current popularity.
An object is striped on the intra-node basis but not on the inter-node basis. That is, an object is
striped only across (local) disks which belong to the same node. Objects that require more than
a single node’s service capacity (to support the corresponding demand) are replicated on multiple
nodes. The number of replicas needed to support requests for a continuous object is a function of
demand, and therefore this number should change when the demand for that object changes. Let
R;(t) denote the set of nodes containing replicas of object ¢ at time ¢. Thus, R;(t) varies with time
as the popularity of object ¢ changes. (The precise details of how R;(t) changes over time are given

in Section 3.)

Upon a customer’s arrival at time ¢, there is a probability p;(¢) that the corresponding request
is for object 7 and a probability q;(t) that this request is generated by a client local to node j. The
admission of this customer into the system proceeds as follows. If at time ¢ object ¢ resides on node
7 and there is service capacity available at node j, then the system admits and serves this new
request at node j, i.e., locally. Let L,(¢) be the load on node z at time ¢. If at time ¢ object 7 does
not reside on node j or there is no service capacity available at node j, then the system examines
the load information on each node in R;(t), and if there is sufficient capacity (on at least one of
these node and in the interconnection network, i.e., the global switch), to service the newly arrived
request, the system assigns this request to the least-loaded node in R;(?). Otherwise, the customer

is rejected.

Note that, in the hybrid system we need to maintain load information on remote nodes as well
as other bookkeeping information (including recomputation of replication/dereplication thresholds,
as described in Section 4). This will require some communication capacity, although this required
capacity is significantly smaller than the capacity needed for transmitting CM object data from
a remote node to a local node. Furthermore, communication of such bookkeeping information is
needed in the wide striping case as well, since coordination between nodes is needed for scheduling
of each request in the system. Since the exact amount of bookkeeping information depends on a
particular implementation, we do not consider this any further here. However, we would like to
point out that in the case of the wide data striping architecture, the bookkeeping information must

be exchanged between nodes to schedule a newly arrived request. On the other hand, in the hybrid

architectures, we can tradeoff the frequency of collecting such information (or the “up-to-dateness”
of the information) for performance, i.e., we can tradeoff relying more on local information (rather

than remote information) for some loss in performance.

To assess the scalability characteristics of the potential designs in an environment where data

access patterns change over time, we consider the following cost /performance and reliability metrics:

1. the system’s acceptance rate, which is defined as the percentage of all arriving customer

requests that are accepted by the system (with zero waiting time);

2. the capacity (in units of access streams) of the global switch required to support a particular

architecture and corresponding acceptance rate;

3. the capacities (in units of access streams) as well as the number of local switches required to

support a particular architecture and corresponding acceptance rate;

4. the amount of disk storage (in units of continuous media objects) required to support a

particular architecture and corresponding acceptance rate;

5. the mean time to failure (MTTF) of a particular architecture.

Note that, in the performance evaluation done in this work, we do not consider queueing of cus-
tomers that can not be admitted immediately, since that would entail consideration of scheduling
policies for requests in the queue. The appropriateness of various queueing disciplines and the
customer’s willingness to wait for service are, in general, largely a function of the particular ap-
plication supported by the CM server. Thus, although in practice a CM server can have some
finite queueing capacity, here we do not consider queueing of customer requests that can not be
admitted at request time since the queueing disciplines appropriate for these requests are largely a
function of specific applications using the CM server and we do not limit this study to a particular

application.

Table 1 summarizes the main notation used in this paper. We will define this notation through-

out the paper, as it is needed.

S set of all nodes in the system

N number of nodes in the system; N = |S|

Ny total number of disks in both wide data striping and hybrid systems

K number of distinct objects in the system

B, maximum service capacity of node # (in streams)

B average service capacity of nodes in the system (in streams)

D average storage capacity of nodes in the hybrid system

Dv average storage space capacity of nodes in the wide data striping system
D, total storage capacity on node z (in units of objects) in the hybrid system
D.(1) available storage space on node x at time ¢ in the hybrid system

DY total storage capacity on node z in the wide data striping system

Dv total storage space in the wide data striping system

Ly (1) load on node z at time ¢ (in streams)

Ai(?) available service capacity for object ¢ at time ¢; A;(z) = erR,(t)(Bx — L;(1))

ReTh; | replication threshold, i.e., the threshold for adding another copy of object ¢

DeTh; | dereplication threshold, i.e., the threshold for removing a copy of object ¢

H; difference between the replication and the dereplication thresholds, i.e., H; = ReTh; — DeTh;
Tfength length of object ¢ (in units of normal playback time)

T, early acceptance time for object ¢ (in units of normal playback time)
A average arrival rate to the system

at; the latest access time for object 7 in the system

Ri(t) set of nodes containing a replica of object ¢ at time ¢

pi(t) probability of an arriving request being for object ¢ at time ¢
) probability of an arriving request for object ¢ being for node j at time ¢
Dg storage space threshold for activating the dereplication process

Table 1: Summary of notation.

3 Dynamic Replication

In a hybrid CM server, we use a dynamic approach to reacting to changes in user data access
patterns. Since the number of copies of object 7 partly determines the amount of resources available
for servicing requests for that object, we adjust the number of replicas maintained by the system
dynamically. Of course, the system’s performance depends on its ability to make such adjustments
rapidly (which can require a non-negligible amount of resources) and accurately. Thus, when
adjusting the number of replicas in the system, we essentially have conflicting goals of (a) using as
few resources as possible to performance the replication (in order not to interfere with “normal”

system operation) while (b) trying to complete the replication process as soon as possible.

In an attempt to reach a compromise between these conflicting goals, we use “early acceptance”
of customers, as proposed in our previous work [5], where admitted customers are allowed to use

incomplete replicas (while the replication process continues). That is, once the system completes

10

replication of the first 77, time units * of a new replica of a CM object i, it will treat it as a

“virtually” complete copy and begin using it in serving customer requests for object ¢.

The issue that we need to consider is that a user might attempt to access a portion of an
incomplete copy which has not been replicated yet, e.g., by fast-forwarding past the replication
point. To allow customers to have full use of VCR functionality when viewing CM objects, we need
to determine a “safe” value for T?,. Clearly, one safe value is T}, = Tfength (full length of the CM
object). However, the intuition is that a smaller value of 77, should result in a higher (at least in

the “short term”) acceptance rate of customer requests.

In order to lower T?, (and improve system performance) in [5], we employ a stochastic model
of user behavior, at the cost of lowering the probability that a user will not access data beyond the
replication point (of course, this probability still has to be high, but less than 1). Specially, we model
the combination of the behavior of: (1) a user watching a display of a partially replicated object
(including his/her possible use of VCR-type functionality), where that user is allowed to begin the
display after the first 7!, time units of the object have been replicated; and (2) the corresponding
replication process, using a Discrete Time Markov Chain (DTMC) [18]. We then perform transient
analysis [18] on this Markov chain to compute the probability that the user attempts to access a
part of the object that has not been replicated yet. If this probability results in a reasonable quality
of service (QoS), then the corresponding value of T! is acceptable. Otherwise, we recompute with
a new value. Although the general approach is applicable to a variety of multimedia applications,
the particular values of parameters for the DTMC model as well as what constitutes acceptable

QoS depend on the application(s) using the CM server.

Results given in [5] indicate that relatively small values of T?, result in good QoS. For instance,
in [5] we show that for a system with 90 minute continuous media objects and 7!, = 12 minutes
Vi, the corresponding probability, as computed from the DTMC model, that a user will attempt
to access an unfinished portion of a replica is below 0.05. Simulation results of the same system,
indicate that this probability is nearly 0. (This is due to the conservative nature of our model,

which is a good characteristic when QoS is of importance.)

In [5], we also show that this model is not very sensitive to the accuracy of its parameters

(e.g., such as the exact probability of a user requesting VCR-type functionality) and thus is of

*For ease of presentation, we measure the amount of replication completed in time units of normal playback time

of that object, from the beginning of the object, rather than, e.g., in bytes.

11

reasonably practical use. Based on these results, in this work we use the following policies (as
described below) for: (a) replication, i.e., the process of adding another copy of an object to our
system, (b) dereplication, i.e., the process of removing a copy of an object from our system, and
(¢) triggering of addition or removal of a copy of an object (i.e., determining when a copy should

be added or removed).

Replication policy:

We use the SREA (sequential replication + early acceptance) policy, where the replication is per-
formed “sequentially”. That is, a single stream is injected into both, the source node (from which
the replication is performed), and the target node (fo which the replication is performed). Then,
given the value of T?, which is determined through the use of the mathematical model of user
behavior (as described above), newly arrived users are admitted to the new (incomplete) replica as

soon as T, time units of that object have been replicated on the target node.

De-replication policy:

We use the DM (delay migration) policy, which removes a replica of object 7 only when there is no
customer currently viewing object 7. This is motivated by the (possible) implementation complexity
of migrating customers from one node (where the removal occurs) to another node (which contains

a copy of the object being removed).

Replication/dereplication triggering:

We use a threshold-based approach to triggering continuous media object replication and derepli-
cation in order to react to an environment where data access patterns change over time. That
is, when a request for object 7 arrives, the system checks if the available service capacity for that
object is above the replication threshold. If not, the system triggers a replication process for object
i (using the SREA policy described above). On the other hand, if at the time of finishing service
of a request for object i: (1) the total available storage space capacity has fallen below the space
threshold and (2) the excess remaining capacity for serving requests for that object goes above
the dereplication threshold, the system triggers the dereplication process (using the DM policy

described above). The computation of all threshold values is described below.

Threshold-based techniques for reacting to changes in workload are employed often for improving
the cost/performance characteristics of systems, e.g., in communication protocols [11]. Here, as in
other systems, the main motivation for using a threshold-based scheme is that there is a non-

negligible cost for creating or removing a replica. That is, it takes a non-negligible amount of time

12

and resources to replicate an object or remove a copy, and thus it should be done “sparingly”.

Now, we state more formally how the hybrid CM server triggers replication and de-replication
processes. When a customer request for object ¢ arrives to the system at time ¢, replication of

object 7 is initiated if and only if all of the following criteria are satisfied:

1. Ai(t) < ReTh;, where ReTh; is the replication threshold and A;(¢) is the available service
capacity for object 7 at time ¢, i.e., A;(2) = 3 cp,)(Be — La(1))

2. Object 7 in not currently under replication.
3. There is sufficient available service capacity on the source node.
4. There is sufficient available storage space capacity and sufficient available service capacity

on the target node.

5. There is sufficient available service capacity in the global switch. (i.e., interconnection net-

work).

Once the replication is triggered, we must select a source and a target node for the replication
process. The choice of a source node for replication of object 7 is simple: we select the least-loaded
node in the set R;(¢). For the target node, we choose the node which has the highest estimated
residual capacity and has available storage capacity. More formally, we choose the node & such that

By — Ly(t)
1+ ’Vy(t) ’

and the remaining storage capacity on z is sufficient for the new replica, where 7,(¢) corresponds

z & Ri(t), La(t) = ye(gigi(t)){ (1)

to the number of replication processes already in progress on node y at time ¢. Intuitively, such
a choice should avoid replication of multiple relatively popular objects on the same target node

(which may later compete for that node’s capacity).

As already stated, dereplication is invoked at the customer departure instances when an object
is determined to have excess service capacity and when the total available storage space capacity in
the entire system falls below Dg (which is measured in units of CM objects). Since the replication
(and in general the dereplication) processes are not instantaneous, “pro-active” dereplication is
needed to reduce the probability of the system going into a “bad” state (i.e., a state where we have
to reject requests over a long period of time). More formally, a replica of object ¢ at node z will be

removed at time ¢ if and only if the following conditions are satisfied:

13

1. Ai(t) = max;es{A;(t) > ReTh;}. The motivation for this condition is that the number of
replicas for object ¢ at time ¢ is more than its current workload demand and at this time it

has the greatest excess of replicas among all relatively “cold” objects.

2. ¢ has “crossed” the dereplication threshold, i.e.,
Ai(t) — (By — Ly(t)) — Cin(t) > DeTh; (2)

where C;.(t) denotes the number of customers viewing object ¢ at node 2 at time ¢. With
the deletion of object i at node z, A;(t) would be decreased by (B, — L;(t)). In general (i.e.,
for a general dereplication policy), since a customer viewing object 7 at node z will have to
be migrated to other replica nodes in R;(t), A;(t) would be further decreased by Ci.(¢). In
the case of the dereplication policy we use in this paper, i.e., the Delayed Migration (DM)

dereplication policy, there is an additional constraint, namely that C;,(¢) must be equal to 0.

3. ZxES Dl’(t) < DS

Lastly, to prevent the system from oscillating between replication and dereplication, a difference
of H; is introduced between ReTh; and DeTh;, i.e., DeTh; = ReTh; + H;. That is, we introduce

hysteresis into the system.

One of the more important issues in designing threshold-based resource activation schemes is
the choice of replication and dereplication threshold values. In the following section, we give the
details of how we use “dynamic threshold value adjustment” to improve the system’s performance.

Note that, we do this without collecting and maintaining statistics of user data access patterns.

4 Dynamic Threshold Adjustment

Intuitively, we would like the amount of service capacity available to each object ¢ to be proportional
to its demand, which is changing with time. Thus, we could attempt to maintain a number of copies
of each object proportional to p;(t). However, in practice, p;(t) is unknown and varies over time.
Although we could try to collect statistics on access demands for the various objects, many questions
would remain open: over which period to collect the statistics, when to make the decision that the
probabilities have changed sufficiently to reflect this change in the system’s configuration (likely,

we do not want to do this “continuously”), how much confidence to have in the collected statistics

14

and thus how aggressively or cautiously to “evolve” the system from an old state (i.e., with old

access probabilities) to a new state (i.e., with new access probabilities).

Furthermore, in such an environment, having the amount of service capacity proportional to
the access probabilities (even if we knew them) would not necessarily insure acceptance of newly
arrived customers. An important factor in the performance of the system is the mixture of requests
that arrives and is ultimately serviced by the nodes of the CM server. That is, we may reject
requests for object ¢ on node j due to an influx of requests for other objects residing on node j,

i.e., other than object 7.

Thus, in our work we use dynamic data replication techniques which do not assume knowledge
of access probabilities. More specifically, we use the last interarrival time for object ¢ to (very

coarsely) “approximate” p;(t) and compute threshold values as follows:

1. For each object 7, we keep its last request access time at;. At the time of arrival, ¢, of a request
for object ¢, we compute the latest interarrival time, i.e., (f — at;), for that object. We use
this latest interarrival time as a very coarse approximation of popularity of object ¢ at time
t. Whenever a new request for object ¢ arrives, we update the replication and dereplication
threshold values® for all objects in the system accordingly, as described next, as well as record

the last access time at; at time ¢.

2. Then the replication threshold for object ¢ is ReTh; = [DA* tfi‘;ﬂ, where D is the average

storage capacity of nodes in a hybrid system and D™ is the average storage capacity of nodes

in the wide data striping system. That is, the replication threshold, ReTh;, represents the
amount of workload, corresponding to requests for object ¢, that we expect to receive in the
next T?_ time units, which is the amount of time needed to create a new (virtual®) replica of
object ¢ (should we deem it necessary). Thus, the motivation for this setting of the replication

threshold value is that tfi‘;

corresponds to the expected number of requests for object ¢ that
can arrive in the next 77, time units. Note that, depending on the amount of “excess” storage
space (i.e., in excess of minimum needed to hold at least one copy of each object) we can

afford to be more or less aggressive about triggering replication of objects. Thus, we also

normalize ge;‘;l by the factor of excess storage capacity at the target node z, i.e., by D%‘

®We discussed the issue of overheads related to recomputation of thresholds in Section 2.
SRecall that we only need to replicate a fraction of the object before allowing users to view it, as described in

Section 3.

15

That is, the more excess storage capacity we have, the more aggressive we can afford to be

in triggering the replication process.

3. The constraint relating the replication and the dereplication threshold values is as follows:

DeTh; = ReTh; + H;, where H; represents the introduction of hysteresis into the system.

- p T}
4. The hysteresis for object i is computed as follows: H; = [+ —leneth]

Hot Toar |- The motivation for

this setting of the hysteresis value is similar to the motivation given above for ReTh;, except
that le"gth corresponds to the expected number of requests for object ¢ that can arrive in the
next Tlength time units, i.e., during the entire duration (in normal playback) of the display of
object . That is, T}, ,, corresponds to an estimate of the amount of time that will elapse
before some of the currently allocated resource, which can be used to service requests for

object ¢, are released.

5 Performance/Scalability /Reliability Evaluation

In this section we present results of our study of scalable designs for continuous media servers,

using the following cost/performance and reliability metrics (as given in Section 2):

1. the system’s acceptance rate, which is defined as the percentage of all arriving customer

requests that are accepted by the system (with zero waiting time);

2. the capacity (in units of access streams) of the global switch required to support a particular

architecture and corresponding acceptance rate;

3. the capacities (in units of access streams) as well as the number of local switches required to

support a particular architecture and corresponding acceptance rate;

4. the amount of disk storage (in units of continuous media objects) required to support a

particular architecture and corresponding acceptance rate;

5. the mean time to failure (MTTF) of a particular architecture.

This study is performed via simulation, with the following simulation parameters. The arrival

process (of requests for objects) is Poisson with a mean arrival rate of A = T“BN where 0 < a <1
length

is the “relative arrival rate”. For ease of presentation, in the remainder of this section we discuss

16

the results in terms of the relative arrival rate, a, i.e., relative to the total service capacity of the

system (e.g., a = 1.0 corresponds to the maximum service capacity of the system).

Parameter Default Value
Arrival rate a=1.0
ReTh; [f?—w* tfe;“tl]
1 [o =g
DeTh; ReTh; + H;
L engtn 90 mins
K 400
System capacity 1600 streams
Replication policy SREA
De-replication policy DM
Access Probability change (1)“gradual” and (2)“abrupt”
Skewness distribution Zipf, 8 = 0.0
q;»(t) uniformly distributed between 1 and N, for each object i, ¥t > 0
Architecture (Darch 1 (2)arch 2 group (3)arch 3 group (4)arch 4 group
(5) arch 5 group (for details see Table3)

Table 2: Parameters for our simulation study.

In the results presented in this section, we consider the design of a CM server with the following
capacity requirements (also given in Table 2): (1) a total service capacity of N x B = 1600 streams;
(2) a total storage capacity of ' = 400 distinct objects; with (3) each object’s length Tliength =90

minutes. Several of the entries in Table 2 require a few words of clarification, which are as follows.

Since the main motivation for using dynamic replication policies is the need to react to changes
in data access patterns, we consider the performance of the system as a function of such changes.
That is, the workload will have the characteristic that every “rotation time period” of X mins
pi(t)’s change. The change in access probabilities is described by Equation (3), which is intended

to emulate a relatively “gradual” increase/decrease in popularities”.

Pita(t) ifiisoddand 1 <i< K -1
pr(t if 7isodd and i = K — 1
pty= {0 3)

Pi—a(t) ifiiseven and 2 < ¢ < K

pi(t) if 7 is even and 7 = 2

where ¢ and t' refer to two consecutive rotation time periods and for ease of presentation we

assume that K is even. To test our policies further, we also consider a more abrupt change in

"This is to illustrate that even under a relatively gradual change, dynamic policies are still useful. Furthermore,

we believe this is a reasonable “emulation” of changes in access patterns for many CM applications.

17

access probabilities, as described by Equation (4), which is used to emulate an “abrupt” increase
in popularity of currently unpopular objects as well as a “gradual” decrease in popularity of the

currently more popular objects.

pi(t) ifi = K
Pit1(t) if1<i<K-1

(4)

pi(t') =

Furthermore (at any fixed value of t), we use the Zipf distributions [12] to describe the skewness
of the access probabilities, where Prob[request for object ¢] = Z(1+9) Vi=1,....Kand 0 <8 <1
where ¢ = W and M}‘}_e) = 2?:1](1%9) In our experiments we set # = 0.0, which corresponds
to the measurements performed in [4] (for a movies-on-demand application). Lastly, we use the
following interactivity settings: NP:FF:RW:PAUSE =19:1:1:1 — this is the ratio between the
mean amount of time spent in various user playback modes, where NP refers to normal playback,
FF refers to fast-forward (with preview), RW refers to reward (with preview), and PAUSE refers

to pause. Based to these setting and our mathematical model of user behavior (as summarized in

Section 3), we obtain T7, = 12 mins, given that Tfength = 90 mins.

The architectural settings considered in this study are summarized in Table 3, where the possible
architectures differ in the number of nodes, service capacity of each node, and available storage
capacity of each node®. (Recall that we need to meet the overall capacity requirements given at
the beginning of this section.) Architecture 1 corresponds to wide data striping. Architecture
groups 2-5 correspond to various configurations of a hybrid CM server (where the groups differ
in the size of the node capacities and subsequently the total number of nodes). For each hybrid
CM group architecture below we experiment with different amounts of per node storage space
capacity, in order to illustrate the tradeoff between storage space capacity local to a node and the

corresponding required capacity of the global switch.

Moreover, in the experiments that follow, we consider the affect on the overall system perfor-
mance of limitations of communication network resources. Let nc represent the ratio of the global
switch (or interconnection network) capacity to storage system service capacity, i.e., nc = 1.0 rep-
resents equal service capacities in the storage and communication sub-systems. Then we vary the
service capacity of the global switch, i.e., 0.1 < ne < 1, and compute the subsequent degredation in

performance experienced by the various architectures. The motivation for doing these experiments

#Note that, for a hybrid architecture that requires more storage space than the corresponding wide data striping
architecture we only increase the storage space per disk of that architecture, i.e.; not the number of disks, as that

would also increase the service capacity of the system and hence would not make for a fair comparison.

18

Arch. type | No. of nodes | Serv. capacity/node Stor. space/node
Local switch capacity
(in streams) (in objects)
arch 1 20 80 20
arch 2 group 20 80 22 or 24 or 26 or 28 or 30
arch 3 group 10 160 44 or 48 or 52 or 56 or 60
arch 4 group 5 320 88 or 92 or 96 or 100 or 104
arch b group 2 800 205 or 210 or 215 or 220 or 225

Table 3: Parameters for different architecture groups.

is two fold: (1) to observe the performance degredation characteristics of the possible CM server
designs (as this is an indication of their scalability characteristics) and (2) to assess whether reduc-
tions in overall required global switch capacity are possible without significant loss in the overall
system performance, i.e., whether we can operate the system with a smaller network which should

lead to lower a cost system.

Lastly, in the experiments that follow, “upper bound” on the acceptance rate refers to the
acceptance rate that a wide data striping system can achieve without considering network capacity

constraints; thus this is the only curve in the following figures that is not a function of nc.

5.1 Wide Data Striping System vs. Hybrid System

acceptance rate
1.00

0.80

0.60

0.40

X .
<d /A upper bound space 26 per node
- '

L Amceeeeeeee e — — — =~ _
0.20 # data stripping space 28 per node
n o—-—-— = — —

space 22 per node space 30 per node

0.00[| | | |]

0.20 0.40 0.60 0.80 1.00
network constraint

Figure 2: Architecture 2 group under different network constraints.

19

acceptance rate

o -
= = o= - = =
iy b
0.80 ’/, z '//X/) ﬂ/ //3
/,// /X ,ﬁ/ ,/&’
060 % o 2 N
e &
0.40” A" ——]
R upper bound
P spgcg 5} per node @dita stripping
0.20 ,/A Space 56 per node space 44 per node |
N T AT
space e 60 per node Space 48 per node
0.00[C \ \ \ \ L]
0.20 0.40 0.60 0.80 1.00

network constraint
Figure 3: Architecture 3 group under different network constraints.

Figures 2 through 5 and Figure 6(b) illustrate that a hybrid system has better overall performance
as well as performance degradation characteristics than the wide data striping system under lower
network capacities, i.e., with nc < 1.0. More importantly, the hybrid architecture allows us to
tradeoff capacities of the various system resources in order to achieve a more cost-effective system
overall. Specifically, we can tradeofl local storage space capacity and local switch capacity with
global switch capacity and achieve nearly the same performance characteristics. For instance, for a
particular architectural setting (i.e., with a fixed number of nodes and corresponding node service
and local switch capacities) the larger the local storage space capacity is, the smaller the global
switch capacity need be, in order to achieve the same overall system performance. As an example,
consider the “arch 2 group”, in Figure 2 — in the case of the architecture with a storage space
capacity of 24 objects per node, the corresponding required service capacity of the global switch®
is 1280 streams, whereas in the case of the architecture with a storage space capacity of 30 objects

per node, the corresponding required service capacity of the global switch is only 960 streams.

Conversely, the larger the local switch is, the more we can reduce the storage space and global

switch capacities. As an example consider the “arch 2 group” in Figure 2 — in this case with a

°The needed global switch capacity is determined from Figure 2 by first fixing the acceptance rate that
we would like to achieve. In this example, we fix the required acceptance rate to be at least 0.95 %
acceptance rate of “upper bound result”. Given the acceptance rate, we can determine, using Figure 2, the smallest
network constraint that satisfies that acceptance rate for the appropriate architecture curve. Let that constraint be
¢; then, the required global switch capacity is ¢ * 1600 streams where 1600 streams corresponds to maximum required

system capacity in our experiments, as described before.

20

acceptance rate
\ \ \ \ \

1.00(]
i a
0.80[~ ’/&//@/ a7 7
g/// e
060 a7 7
,A/’
0.40[~ i o -
space 92 per node
L O
il upper bound space 96 per node
0.20[A Lo Vo]
data stripping space 100 per node
& O —
space 88 per node space 104 per node
0.00[C \ \ \ \ L]
0.20 0.40 0.60 0.80 1.00

network constraint
Figure 4: Architecture 4 group under different network constraints.

local switch capacity of 80 streams'®, the corresponding required total storage space capacity is
600 objects (i.e., 30 objects per node) and the corresponding required service capacity of the global
switch!! is 960 streams. Consider now the “arch 4 group” in Figure 4 — although in this case
the local switch capacity increases to 320 streams, the corresponding required service capacity of
the global switch drops down to 640 streams and the corresponding required total storage space
capacity drops down to 460 objects (i.e., 92 objects per node). These results are due to the fact
that with larger local switch capacities, we can service more customer requests locally (hence the
reason for the corresponding smaller required global switch capacity). Furthermore, larger local
switches and corresponding larger node service capacities also provide more opportunities to take
advantage of the load balancing characteristics data striping within a node (hence the reason for

the smaller required storage space capacity per node).

5.2 System Sizing Issues

Quantitatively evaluating the tradeoffs between local switch capacity, node storage space capacity,
and global switch capacity is no easy task, as it is not immediately clear how to tradeoff one
resource for another. Ideally, one would like to evaluate these tradeoffs based on cost, i.e., one

would like to size the system resources so as to achieve the best performance possible for the lowest

10T hese values can be determined from Tables 3 and 4.

"The determination of the required global switch capacity is done as in the previous example.

21

acceptance rate

g’:z’/,e—--e—--e—--e—--e—--e—/-’g,—’--@

0.80[¢~ 2 —
/ﬁ’/,
0.60 a7]
,A/’
0.40[/A’ X— ——— -
space 210 per node
L —————— O -
il upper bound space 215 per node
0.20[A Lroooomoooo- Vo s]
data stripping space 220 per node
& O A =

space 205 per node space 225 per node
0.00[C \ \ \ \ L]
0.20 0.40 0.60 0.80 1.00

network constraint
Figure 5: Architecture 5 group under different network constraints.

cost possible. However, cost considerations are a complex issue, given that costs depend on many
factors, including the particular technology used for the various components of the system. Thus,
next we instead evaluate the different hybrid designs based on the amount/capacity of each resource
they require relative to the wide data striping system. Such an evaluation quantitatively illustrates
to the designer the relative merits of the different architectures, without the need for picking a

12

specific technology to use for each part of the system'*. The purpose of these experiments is to

illustrate how a CM server designer can deal with these (fairly complex) system sizing issues.

In order to investigate system sizing issues, we further refine our set of architectural settings
as described in Table 4. As before, these settings differ in the number of nodes, per node ser-
vice capacity, per node storage space capacity, local switch capacity, and global switch capac-
ity. We choose the per node storage space capacity and the corresponding global switch ca-
pacity of each architectural setting based on the results obtained in the previous section. More
specifically, we choose those architectures that can achieve an acceptance rate of at least 0.95 x
acceptance rate of the “upper bound result” with reasonably small per node storage space and

3

global switch capacities!®>. Recall, that the upper bound is computed without considering any

12Characterizing a resource using only its capacity may result in a simplification for certain types of resources;
however, this is still a good abstraction for evaluating cost-effectiveness of designs, without having to choose a

specific technology for each system component.
131f costs of specific system components are known, then one would choose to investigate those architectural settings

with lowest costs. Since we do not wish to make technology/cost-related assumptions, we use a heuristic, i.e., we

choose architectures that have reasonably small storage and global switch capacities.

22

acceptance rate acceptance rate
1.00(| | | | B 1.00
e e T e ==
0.80 ~| 0.80
0.60 ~| 0.60
57
Adata striping .
0.40[~ ach2 4 o40[<
h3 - G——
EC—M— —- e A Aupper bound space 26 per node
P it v - - == -
0.201 aent -] 020 A data stripping space 28 per node
arch5 R o—-—— — = —
space 22 per node space 30 per node
0.00[C \ \ \ \ |1 0.00[C \ \ \ \ 1]
0.20 0.40 0.60 0.80 1.00 1.20 0.20 0.40 0.60 0.80 1.00

rotatio time period x 10
(a) arch2, arch3, arch4 and arch5

network constraint
(b) arch 2 group

Figure 6: Abrupt increase and gradual decrease in access probabilities.

network capacity constraints. Since the “upper bound results” are not always achievable by archi-

tectures we are studying here, we choose a performance goal (i.e., acceptance rate) that is reasonably

close to the “upper bound result”.

Arch. type | No. of nodes | Serv. capacity/node | Stor. space/node | Global switch capacity
Local switch capacity
(in streams) (in objects) (in streams)
arch 1 20 80 20 1600
arch 2 20 80 26 1120
arch 2.1 20 80 30 960
arch 3 10 160 52 800
arch 4 5 320 92 640
arch b 2 800 215 320
arch 5.1 2 800 225 160

Table 4: Parameters for different testing architectures.

Figure 7 depicts the comparison in resource requirements between the various hybrid architec-
tures and the wide data striping architecture. We report each resource requirement as the ratio
between the resource requirement of a particular hybrid architecture and the wide data striping

architecture (“arch 1”7 in in Table 4), i.e., each graph in Figure 7 represents

resource requirement of arch ¢

Vi # 1.

resource requirement of arch 1

Hence, the straight line at the value of 1.0 in each of the graphs of Figure 7 corresponds to the

(“scaled”) resource requirement of the wide data striping architecture (i.e., “arch 1”7 in Table 4).

23

As already stated, these results illustrate to the designer the relative merits of the different

architectures by quantifying the tradeofls between the various resources of the CM server, i.e., local

node storage space capacity, local node service capacity and local switch capacity, as well as global

switch capacity. Based on these results and current costs, the designer of a large-scale CM server

can make system sizing decisions in conjunction with decisions of choice of technologies to use for

each of the system’s components.

global switch sizeratio

local switch sizeratio

arch2 arch21 ach3 ach4 ach5 ach5.1

arch type

number of local switchesratio

1.00 ‘ ‘ 10.00(|
0.80] 8.00~
0.60] 6.00—
040] 4.00[
0.20[I I n 2.00[
000 | \ \ \ \ | 1 000 |
ach2 ach2l1 ach3 ach4 ach5 archb5.1
arch type
total storage spaceratio
\ [
1407 . 1001~
120 N
1.00F . 0.
0.80[N
05
0.60[N
0.40[]
0.25[
0.20[]
0.00 \ \ \ \ \ \ 0,00

arch2 ach2l1 ach3 ach4 ach5 archb.1
arch type

arch 2

Figure 7: System sizing.

24

arch2.larch3 ach4 arch5 archb5.1
arch type

5.3 Heterogeneous Systems

Next, we illustrate the ease of dealing with heterogeneous systems when using hybrid CM server
designs without loss of performance as compared to an equivalent (i.e., same overall capacity)
homogeneous case. For this purpose, we consider a hybrid CM architecture with 5 nodes and a
total service capacity of 1600 streams. We use two test cases in the following experiments, both
based on the homogeneous version of “arch 4”7 with the storage space capacity of 104 objects
per node (refer to Table 3). Specifically, we introduce 5% and 10% differences in storage space
and service capacities between the nodes of the system (as well as corresponding differences in
local switch capacities), e.g., to emulate a system that gradually grows (as well as experiences
replacements due to failures) and thus is forced to use heterogeneous resources. Hence, we have
one test case of a 5 node system, with each node having storage space capacity of 84, 94, 104,
114, and 124 objects, respectively and service capacity of 256, 288, 320, 352, and 384 streams,
respectively. And, we have another test case of a 5 node system, with each node having storage
space capacity of 94, 99, 104, 109, and 114 objects, respectively and service capacity of 288, 304,
320, 336, and 352 streams, respectively.

The rusults, depicted in Figure 8, show that, using a hybrid CM server design, we can achieve
heterogeneous system performance that is comparable to homogeneous system performance. We do
not show results for heterogeneous wide data striping systems for the following reasons. Although,
some research on adaptation of wide data striping over heterogeneous disks does exist, e.g., as in
[17], to the best of our knowledge such schemes either give up some amount of disk storage space
or some amount of disk bandwidth capacity in order to achieve this adapatation and consequently
(usually) at best performance as well as the comparable homogeneous counterparts. Thus, in the
case of heterogeneous systems, our evaluation of the goodness of hybrid designs (as compared to

wide data striping) is conservative.

5.4 Dynamic Threshold Adjustment

Next, we would like to illustrate that our choice of dynamic threshold adjustment policy, in con-
junction with replication and dereplication policies, results in a hybrid CM server that can react to
changes in data access patterns accurately and rapidly. This results in the system’s performance
that appears to be insensitive to the changes in data access patterns, i.e., the system maintains

nearly the same performance regardless of how frequently the access patterns change. Moreover,

25

acceptance rate

1.00(—

0.80

0.60/— —
h

0.40[~ Lromogeneous

Ghiterogeneous (10%)

heterogeneous (5%)

0.20[~

0.00[" \ \ \ \]

0.20 0.40 0.60 0.80 1.00

network constraint
Figure 8: Heterogeneous system.

this performance is comparable to the performance of the wide data striping system, which is

“naturally” insensitive to changes in data access patterns.

To illustrate this, we depict the system’s performance (i.e., acceptance rate) in Figures 9 and
6(a) as a function of the “rotation time period”, i.e., the amount of time that passes before the
access probabilities of the various objects change. Recall, that the precise definition of changes in
access probabilities for both gradual changes (as in Figure 9) and the more abrupt changes (as in

Figure 6(a)) are given earlier in this section.

5.5 Reliability

Lastly, we discuss the fault tolerance characteristics of the wide data striping architecture as well
as our hybrid system. We use the mean time to failure (MTTF') as our reliability metric, where the
mean time to failure is defined as the mean time until some combination of disk failures results in
loss of some data from the storage sub-system (i.e., losses that can no longer be recovered through
the use of redundant information, such as parity computation or access of replicas, which in turn
is due to losses of too many disks). The details of the derivations of MTTF equations used below

are given in the Appedix.

If we employ the use of parity-based redundant information (as in disk arrays) and assume that

26

acceptance rate

1_007\ \ \ \]
e S i e e e e S
0.80 7
O
0.60[~ Data Striping —
arch2
Jeche
0401 achs
arch4
o5
0.201
0.00[| | | | |]

0.20 0.40 0.60 080 . 100 = 120 4
rotation time period x 10

Figure 9: Dynamic threshold adjustment.

disks fail independently with exponential failure rates, as in [15], then the MTTF of an N, disk

wide data striping system with cluster (or disk array) sizes'* of C' disks each is approximately:

(MTT Fyisp)? (5)
Na(C — D)MTT Rusoy

where MTTFy;s; is the mean time to failure of a single disk and MTT Ry, is the mean time to

MTTF =~

repair of a single disk. Note that the MTT Fy;s;. depends on the architectural characteristics of the
disk and the MTT Ry;s, depends on the reconstruction algorithms used (e.g., as in [14]). Also note
that the value of ' determines the amount of redundant information stored in the system. For the
sake of fairness (in computing MTTF’s), we configure all architectures with the same amount of

redundant information.

Likewise, the MTTF of a hybrid system with N nodes, % disks per node, and cluster sizes of
(' disks each is approximately:

N(MTTFyg)* (6)
Ng(C' = V)MTTR g5,
Note that the above MTTF for hybrid systems is conservative, in the sense that it computed based

MTTF =~

on the assumption of only a single copy per object in the entire system. For an object ¢ that has
k copies in a hybrid system, the mean time until its data is lost is approximately:

2k
W P (D g (7)
MTTRY¥1 " Ny(C —1)

MTTF(k copy object) ~

M“Here cluster size refers to the number of data disks plus a parity disk in a disk array, i.e., in a cluster of C disks,

there are C' — 1 data disks and 1 parity disk [15].

27

Given these equations, we now show a MTTF comparison between the seven architectures given
in Table 4, using the conservative estimate for the hybrid system of the MTTF equation based on a
single copy per object only (i.e., using Equations (5) and (6)). These results are depicted in Figure
10, again as a ratio between MTTF of a particular hybrid architecture and the wide data striping
architecture, i.e., the results in Figure 10 represent

MTTF of arch ¢
MTTF of arch 1

Hence, the straight line at the value of 1.0 in Figure 10 corresponds to the (“scaled”) MTTF of the

Vi # 1.

wide data striping architecture.

These results clearly show that we can achieve higher reliability in a hybrid system, even for
objects that only have a single copy, as compared to the wide data striping system. The increase in
reliability, even for the single copy objects, is due to the “isolation” of fault affects, i.e., the wider
we stripe an object, the more disk failures can affect the loss of data corresponding to that object.

A quantitative expression of this intuition is given in the derivations of the Appendix.

Of course, the reliability is even higher for objects with multiple copies, as is natural in a
system which employs data replication. An important point though, is that in a hybrid system, we
can provide significantly higher reliability for the popular objects, as there will always be multiple
replicas of such objects in a hybrid system. Lastly, this brings us to another interesting point.
Another reliability-related advantage of hybrid systems is that under network failures (or network
partitioning) and/or high workload conditions at remote nodes, local nodes (given that they still
have some capacity remaining) can at least deliver some objects, e.g., given a movies-on-demand
application, even if a movie being requested by the user is not available (due to above specified
conditions), the user has the option to choose another movie that may be available. This is not
the case for wide data striping architectures, as all nodes (and hence network capacity) must be

available in order to service a request for any object.

6 Conclusions

In this work we studied the scalability of large continuous media end-to-end server designs as a
function of their cost/performance and reliability characteristics under various workload and system
constraints. We focused on data placement issues and compared the scalability characteristics of

hybrid vs. wide data striping architectures. We have showed that hybrid designs, in conjunction

28

MTTF ratio -
20.00[— |

|||-r

000 |
ach2 ach21 ach3 ach4 ach5 arch5.1l

15.00[

10.001

5.00[

arch type

Figure 10: MTTF comparison for single copy objects.

with dynamic replication techniques, are less dependent on interconnection network constraints,

provide higher reliability, and can be properly sized so as to result in cost-effective end-to-end

systems. Thus, we believe that hybrid designs result in scalable large distributed continuous media

servers.
References

[1] Personal communication with miscrosoft research. 1999.

[2] S. Berson, S. Ghandeharizadeh, R. R. Muntz, and X. Ju. Staggered Striping in Multimedia
Information Systems. SIGMOD, 1994.

[3] M.M. Buddhikot, G.M. Parulkar, and J.R. Cox. Design of a Large Scale Multimedia Stoarge
Server. Journal on Computer Networks and ISDN Systems, 1995.

[4] A. L. Chervenak. Tertiary Storage: An Evaluation of New Applications. Ph.D. Thesis, UC
Berkeley, 1994.

[5] C.F.Chou, L. Golubchik, and J. C.S. Lui. A performance study of dynamic replication tech-
niques in continuous media servers. Technical Report CS-TR-3948, University of Maryland,
October 1998.

[6] A. Dan, M. Kienzle, and D. Sitaram. A Dynamic Policy of Segment Replication for Load-

Balancing in Video-on-Demand Servers. ACM Multimedia Systems, 3:93-103, 1995.

29

A. Dan and D. Sitaram. An Online Video Placement Policy Based on Bandwidth to Space
Ratio (BSR). In Proceedings of ACM SIGMOD’95, 1995.

Bolosky et al. The Tiger Video Fileserver. Technical Report MSR-TR-96-09, Michrosoft
Research, 1996.

R. Haskin and F. Schmuck. The Tiger Shark File System. In COMPCON, 1996.

R.L. Haskin. Tiger Shark : A Scalable File System for Multimedia. Technical report, IBM
Research, 1996.

P.J.B. King. Computer and Communication Systems Performance Modeling. Prentice-Hall,

1990.
D. E. Knuth. The Art of Computer Programming, Volume 3. Addison-Wesley, 1973.

P. W. K. Lie, J. C.-S. Lui, and L. Golubchik. Threshold-Based Dynamic Replication in
Large-Scale Video-on-Demand Systems. RIDF 98, February 1998.

Richard R. Muntz and John C.S. Lui. Performance Analysis of Disk Arrays Under Failure.
VLDB Conference, pages 162-173, 1990.

David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). ACM SIGMOD Conference, pages 109-116, 1988.

S. Ross. A First Course in Probability. Prentice-Hall, Inc., Upper Saddle River, NJ, 1998.

J.R. Santos and R. Muntz. Performance Analysis of the Rio Multimedia Storage System
with Heterogeneous Disk Configurations. Proc. of The 6th ACM International Multimedia
Conference, September, 1998.

W. J. Stewart. Introduction to Numerical Solution of Markov Chains. Princeton University

Press, 1994.

N. Venkatasubramanian and S. Ramanathan. Load Management in Distributed Video

Servers. In Proceedings of ICDCS, pages 528-535, Baltimore, MD, May 1997.

M. Vernick, C. Venkatramani, and T. Chiueh. Adventures in Building the Stony Brook
Video Server. ACM Multimedia’96, pages 287-295, 1996.

J. Wolf, H. Shachnai, and P. Yu. DASD Dancing: A Disk Load Balancing Optimization
Scheme for Video-on-Demand Computer Systems. In ACM SIGMETRICS/Performance
Conf., 1995.

30

Appendix: Derivation of MTTF Equations

In this appendix we give the derivation of the mean time to failure equations used in Section 5. We

will use the following notation in this derivation:

MTT Fy;on mean time to failure of a disk
MTTR sk mean time to repair of a disk
MTTF.uster mean time to failure of a cluster or array of disks

Our goal is to compute the MTT Fj,sier under the following assumptions: (1) each disk has inde-
pendent and exponential failure rate equal to m; and (2) the total number of disks in the

cluster is C.

We first compute the mean time to failure of some disk in a cluster of C' disks. Let X; be the
random variable corresponding to the mean time to failure of disk ¢ with an exponential failure
rate p, where 1 < ¢ < C. Let Y = min(Xy, Xa,..., X¢), which corresponds to the mean time until
some disk in a cluster of C' disks fails (or the mean time between failures in a cluster of C' disks).

Then, given that the disk failures are independent, we have

ProblY <a]=1—-Prob[X; >aAXy>aA---A X > d]
= 1— Prob[X; > a] X Prob[X3 > a] x --- X Prob[X¢ > d]

=1- (6_““)0 =1— ¢ Cna

Since the failure rate of each disk in our case is p = m, we have that the mean time until
18
MTTFg.
ok,

some disk fails, or the mean time between failures in a cluster of C' disks, is

Now, a cluster of €' disks is considered failed when 2 disks in that cluster have failed. Recall
that a disk array is able to continue delivery of data under a single failure; once a second failure
in an array of C' disks occurs, some data is lost, and we term this failure of the array or cluster.
Thus, to compute MTTFj,s:er We need to determine the probability that, given that one failure
has already occured in that cluster, a second disk failure will occur within MTT R4, time units.
Hence, we have that

MMTRg; .

Probla disk fails within MTT Ryisx] =1 — e MTTFaisk

31

and

Probla disk does not fail within MTT R ;]
MMTRg,

= 1 — Prob[a disk fails within MTT Ry;sr] = € M7 Faisk
Then, given that one of the disks in a cluster of C' has already failed, we have that

Problat least one of the remaining disks fails within MTT R ;]
= 1 — Prob[none of the remaining disks fail within MTT R ;5]

MTTF, X
MMTR g o) ——%sk _MMT g (C1)
= 1 — € MTTFgsk

:1_6_[

MITFuss here

Given a well designed system, we can assume that MTT Ry, << % is the

mean time to failure of some disk in a cluster of C. It is also well known that (1 —e™) ~ 2 is a
reasonable approximation when 0 < z << 1. Then,

MMTR g5k

Problat least one of the remaining disks fails within MTT R ;5] = UTTE
disk

(C-1)

Now we are ready to compute MTT F 1 ser. Given that one disk in an array of ' disks has

failed, we can next observe an event which has one of two possible outcomes:

1. asecond disk fails before the first is repaired and thus the entire array/cluster fails

2. the first disk is repaired before the second failure and thus the array/cluster continues to

operate normally

we refer to the first outcome of this event as a “failure” and to the second outcome as a “success”,
i.e., this is a Bernoulli trial [16]. We also know that
Prob[“failure”] =
Probla second disk failure occurs before the first is repaired] =
Problat least one of the remaining disks fails within MTT R ;]
Prob[“success”] =

Prob[the first failure is repaired before a second failure occurs] =

1 — Prob[“failure”]

Thus, in determining the mean time to failure of a disk array we are interested in a sequence of

event outcomes or trials, where all outcomes but the last one correspond to “success” and the last

32

one corresponds to a “failure”. It is well known that on the average it takes m trials

before we obtain a “failure” [16]. Now we have that

MTT Fepuster
= Expected[time between failures in a cluster] * Expected[number of trials before obtain a “failure”]

= Expected[time between failures in a cluster] / Prob[“failure”]

. MTTFysr « 1 _ (MTTFdzsk)2
¢]\]\44]\1{11:]%61_:(0 - 1) C(C = 1)MMTRgisk

Given the above derivation of MTT F ,ster, we can now compute the MTTF equations used in
Section 5 as follows. Let Ny be the total number of disks in the wide data striping as well as the

hybrid architectures.

Wide data striping architecture:
Recall that this architecture only keeps a single copy of each object 7 in the entire system. Thus

(using reasoning similar to the one used above to derive MTT Fi.jyster), we have that

MTTFclusteT ~ (MTTFdzsk)2
number of clusters in the system Ng(C' = V)MTTR g5,

MTTF(wide data striping arch) =

Hybrid architecture:

Here each node has % disks, and as before we assume that the nodes are independent in terms of
their failures. First, we consider the mean time to data loss for those objects which only have a
single copy in the entire system, which is as follows (again, using reasoning similar to the one used

above to derive MTT Fiyster):

MTTFclusteT N(MTTFdzsk)2

MTT F(hybrid h/singl ~ ~
(hybrid arch/single copy) number of clusters in one node — Ng(C' — 1)MTT Rg;sp,

Next, we consider the mean time to data loss for object ¢+ which has k copies in the system, i.e.,
in k different nodes. Once the first disk failure occurs in (the first!®) node containing a copy of
object 7, let Event A correspond to the event where: “a second disk fails in the cluster of the first
node in R;(t) already operating under failure!® and at least one cluster fails in each of the other

nodes in R;(t). Then, as before, we are looking at a Bernoulli trial [16] where now Prob[“failure”]

!5This is a general derivation as the “numbering” of the nodes is logical.

1That is, this is the cluster where the first failure occured.

33

= Prob[Event A occurs within MTT Ry;s;]. Consequently, we have

MTTF(k copy object)
= Expected[time between failures in a cluster] * Expected[number of trials before obtain a “failure”]

= Expected[time between failures in a cluster] / Prob[“failure”]

MTTF.

e L 1 1 1 1 1
Ny MTTRgix(C—1) MITRg4 3 Ng MTT Ry (C—1) MTTRg;xNg MTTRg;1,(C—1)
CN MTTFy;.1 MTTFg N MTTFEy;.1 MTTFg N MTTFy;.1

o MTTEE, (N v
MTTRY¥1 Ny(C - 1)

34

