
Striping Doesn't Scale: How to Achieve Scalability for ContinuousMedia Servers with Replication�ChengFu ChouDepartment of Computer ScienceUniversity of Maryland at College ParkLeana GolubchikUniversity of Maryland Institute for Advanced Computer Studiesand Department of Computer ScienceUniversity of Maryland at College ParkJohn C.S. LuiDepartment of Computer Science and EngineeringThe Chinese University of Hong KongAbstractMultimedia applications place high demands for QoS, performance, and reliability on storageservers and communication networks. These, often stringent, requirements make design of cost-e�ective and scalable continuous media (CM) servers di�cult. In particular, the choice of dataplacement techniques can have a signi�cant e�ect on the scalability of the CM server and itsability to utilize resources e�ciently. In the recent past, a great deal of work has focused on\wide" data striping as a technique which \implicitly" solves load balancing problems; although,it does su�er from multiple shortcomings. Another approach to dealing with load imbalanceproblems is replication. The main focus of this paper is a study of scalability characteristicsof CM servers as a function of tradeo�s between striping and replication. More speci�cally,striping is a good approach to load balancing while replication is a good approach to \isolating"nodes from being dependent on other system resources. The appropriate compromise betweenthe degree of striping and the degree of replication is key to the design of a scalable CM server.This is the topic of our work.Keywords: continuous media servers, distributed systems, performance evaluation, scalability,end-to-end design.Technical areas: Multimedia and Digital Libraries; Distributed Systems Architecture.�The work of ChengFu Chou and Leana Golubchik and was supported in part by the NSF CAREER grantCCR-98-96232. 1

1 IntroductionWith the rapid growth of multimedia applications, there is a growing need for large-scale continuousmedia (CM) servers that can meet the user demand. Multimedia applications (such as video streamdelivery, digital libraries, distance learning systems, and so on) place high demands for quality-of-service (QoS), performance, and reliability on storage servers and communication networks. These,often stringent, requirements make end-to-end design of cost-e�ective and scalable continuous mediaservers di�cult. The scalability of a CM server's architecture depends on its ability to:� expand as user demand and data sizes grow;� maintain performance characteristics under growth or re-con�guration;� maintain performance characteristics under degradation of system resources, which can becaused by losses in network and storage capacities.In particular, in a continuous media server, the choice of data placement techniques1 can havea signi�cant e�ect on the scalability of the system and its ability to utilize resources e�ciently.Existing data placement techniques in conjunction with scheduling algorithms address two majorine�ciencies in such systems: (1) various overheads in reading data from storage devices, e.g., dueto disk arm movement and (2) load imbalance, e.g., due to skews in data access patterns. In thiswork, we focus on the latter issue and speci�cally on its bearing on the scalability characteristicsof a distributed CM server.Due to the enormous storage and I/O bandwidth requirements of multimedia data, a CMserver is expected to have a very large disk farm. Thus, we must necessarily consider designs whichcontain multiple disk clusters and processing nodes, i.e., we must consider distributed designs. Animportant consideration then is the placement of objects on the nodes of the CM server. As intraditional database systems, data placement on a distributed storage sub-system directly a�ectsthe load balancing characteristics of that system.In the recent past, a great deal of research work, e.g., as in [2, 20, 3, 8, 10], has focused on \wide"data striping as a data placement technique for designing continuous media servers. By wide data1Here by data placement we mean decision of which object or fraction of an object to place on which disk or diskcluster, i.e., this does not refer to data placement issues within a single disk .2

striping we mean that each object is striped across all the disks of the system. Recall that thepotential load imbalance is largely due to the skews in data access patterns [4] which, without datastriping, could result in high loads on some disks containing the more popular objects, while thedisks containing less popular objects may be idling. Moreover, the problem is exacerbated by thefact that access patterns change over time, i.e., the popularity of a particular object is a functionof time.Thus, an advantage of wide data striping is that it \implicitly" achieves load balance by decou-pling an object's storage from its bandwidth requirements. However, wide data striping also su�ersfrom several shortcomings:1. It is not practical to assume that a system can be constructed from homogeneous disks, i.e.,as the system grows or experiences faults (and thus disk replacement) we are be forced to usedisks with di�erent transfer and storage capacity characteristics | having to stripe objectsacross heterogeneous disks would lead to further complications [1].2. An appropriate choice of a striping unit, the object size, and the communications networkinfrastructure dictate an upper bound on the number of disks over which that object can bestriped, beyond which replication of objects is needed to increase the number of simultaneoususers (as described in [8]), e.g., to the best of our knowledge, in implementations described in[8, 9] striping is performed over (at most) a few tens of homogeneous disks only2. Note that,delivery of relatively short continuous media objects is of use to many important applications,including digital libraries, news-on-demand systems, and so on.3. Due to the continuity constraints, some form of synchronization in delivery of a single objectfrom multiple nodes must be considered. The need for some form of \synchronization" arisesfrom the fact that di�erent fractions of an object are being delivered from di�erent nodesat di�erent times during the object's display, and hence some form of coordination betweenthese nodes (and perhaps the client) is required in order to present a \coherent" display ofthe object.4. As the user demand and data sizes grow and hence the system requires more storage and diskbandwidth capacities, the resulting expansion of the disk sub-system results in re-striping ofall the objects.2In fact, we are not aware of, in the current literature, any large-scale implementation that utilizes heterogeneousdisks. 3

5. Due to the need for communication of data between the nodes over which an object is striped,the capacity of the communication network limits the performance of the distributed CMserver. This limitation directly a�ects the scalability of the CM server and is one of the mainissues we investigate in this work.Another approach to dealing with the load imbalance problem arising from skews in data accesspatterns is replication, i.e., creating a su�cient number of copies of a (popular) object so as tomeet the demand for that object. Speci�cally, we consider a hybrid approach where instead ofstriping each objects across all the nodes of the system, we constrain the striping to a single nodeand replicate popular objects on several nodes in order to provide su�cient bandwidth capacity toservice the demand for these objects.Of course, a disadvantage of this approach is a need for additional storage space. Furthermore,techniques are needed for adjusting the number of replicas as the access patterns change. Some ofthese issues are addressed in [21], in the context of workloads with relatively infrequent changes inobject access patterns as well as in our previous work [13, 5], where we propose dynamic replicationtechniques in the context of more frequent changes in data access patterns. In this paper, weimprove on our previous work on dynamic replication techniques, as described in Section 4.However, the main focus of this paper is on the tradeo�s between striping and replication,which are as follows. In a small-scale CM server, where all disks are assumed to be connected to asingle node, data striping can provide better performance characteristics than replication becauseof its ability to deal with load imbalance problems without the need for additional storage spaceand without signi�cant networking constraints. However, in a large-scale CM server, data stripingresults in a need for signi�cant communication network capacities which can lead to poor scalabil-ity characteristics and high costs. Essentially, striping is a good approach to load balancing whilereplication is a good approach to \isolating" nodes from being dependent on other (\non-local")system resources. That is the wider we stripe in a distributed CM system, the more we are depen-dent on the availability of network capacity. Furthermore, replication has the bene�t of increasedreliability in terms of: (a) longer mean time to loss of data from the disk sub-system (see Section 5);and (b) dealing with lack of network resources (see Section 5), including network partitioning. Thedownside of replication is that it increases storage space requirements and hence cost. However,as storage costs decrease (fairly rapidly) and the need for scalability grows, replication becomes amore attractive technique. 4

In summary, the appropriate compromise between the degree of striping and the degree ofreplication is key to the design of a scalable distributed CM server. This is the topic of our paper.1.1 Related WorkRecently much research has been done on design of continuous media, and speci�cally video-on-demand, storage servers, e.g., as in [2, 20, 3, 8, 10], to a name a few. Much of this work fallsinto several broad categories3, which include: (1) small-scale servers, where in most cases all disksare connected to a single node; (2) medium-scale LAN-based servers, and (3) medium-scale (eitherdistributed or not) servers, which employ high speed interconnects, such as ATM-based technology.To the best of our knowledge, most of these designs employ wide data striping techniques and thecorresponding existing successful implementations employ only tens of disks. In contrast, the useof replication for the purpose of addressing workload demand problems has been less explored. In[19] the authors consider skews in data access patterns but in the context of a static environment.In [21], the authors address various questions arising in the context of load imbalance problems dueto skews in data access patterns, but in a less dynamic environment (than we investigate here). Webelieve that the policies used in this paper can be complementary to the techniques developed in[21]. In [7, 6], the authors also consider dynamic replication as an approach to load imbalance, andin our previous work [13, 5], we study a taxonomy of dynamic replication schemes. However, all ofthese works (except our work in [5] either (a) assume some knowledge of frequencies of data accessto various objects in the system, and/or (b) do not provide users with full use of VCR functionality,and/or (c) consider less dynamic environments than the one considered here. Our motivation indoing away with such assumptions in our work is largely due to considerations of applicability ofdynamic replication techniques in more general settings and to a wider range of applications ofcontinuous media servers.Lastly, to the best of our knowledge, previous works do not consider alternative design character-istics that a�ect the scalability of CM servers in an end-to-end setting (i.e., taking into considerationboth the network and the storage resource constraints). The quantitative study of such issues andthe cost/performance and reliability characteristics that distributed designs exhibit under growth,recon�guration, degradation of resources, and changes in workloads are essential to assessing thescalability of proposed architectures and to the development of large-scale CM servers, in general.3We divide these into broad categories as it would be nearly impossible to list all papers on CM server designs.5

1.2 Our ContributionsThe main contributions of this work are as follows.� Quantitative evaluation of performance and resource demand characteristics of data stripingvs. data replication techniques in large-scale distributed CM servers. Such evaluation is crucialto achieving a scalable design of continuous media servers.� Improved dynamic replication techniques for distributed hybrid CM servers, needed to achievebetter performance by adjusting the number of replicas in the system based on changed indata access patterns and user demand.� Quantitative evaluation of reliability characteristics of data striping- vs. data replication-basedsystems.� Illustration of ease of designing heterogeneous hybrid CM systems without loss in performancecharacteristics.Based on this end-to-end cost/performance and reliability study we argue that hybrid designs resultin large scalable continuous media systems.2 Hybrid CM System ArchitecturesA hybrid system architecture is illustrated in Figure 1. It consists of a set of nodes connected by ahigh speed switch, which we term a global switch. The global switch is a high bandwidth resourcewhich can, for instance, correspond to a high capacity WAN or an ATM-type infrastructure. Eachnode i contains one or more processing units (PUs) and one local switch which is used to connectall local PUs as well as local clients. Each client connects to the nearest local switch (dependingon their geographical location) which is also connected to some node i. Requests from this clientwhich are serviced by a PU from node i are termed \local" clients or \local" requests. When arequest from a client cannot be serviced by its local node i, the request is forwarded to a remotenode j, which contains a replica of the object being requested. We term this request a \global"client or a \global" request, as it requires some capacity of the global switch in order to receive6

processing unit

d1

d2

dn

Local Switch

global
 Switch

C1 C2 C3 Cj
Ci=client i

PU1 PU2 PUk

Node i

.......

.......

(node i has k processing units)

PU (processing unit)

global
 Switch

...........

...........

Node 1 Node 2 Node i

Node
m

Node
i+2

Node
i+1

Hybrid VOD System ArchitectureFigure 1: Multimedia System.service. That is, when a remote node services a client, the continuous media data is delivered fromthe remote node, through the global switch to the local node and subsequently to the client.Each PU has one or more CPUs, memory, and an I/O sub-system (e.g., a cluster/array of disks).Furthermore, each PU (of each node) is also connected to the global switch. Each node x 2 S, whereS is the set of nodes in the system, has a �nite storage capacity, Dx (in units of CM objects), aswell as a �nite service capacity, Bx (in units of CM access streams). For instance, consider a serverthat supports delivery of MPEG-2 video streams where each stream has a bandwidth requirementof 4 Mbits/s and each corresponding video �le is 100 mins long. If each node in such a server has20 MBytes/s of bandwidth capacity and 36 GB of storage space, then each such node can supportBx = 40 simultaneous MPEG-2 video streams and store Dx = 12 MPEG-2 video objects. Likewise,we measure the global and local switch capacities in units of access streams. In general, di�erent7

nodes in such a hybrid system may di�er in their storage, I/O bandwidth, and networking (i.e.,local switch) service capacity. This
exibility of the hybrid architecture should result in a scalablesystem which can grow on a node by node basis.Each CM object resides on one or more nodes of the system depending on its current popularity.An object is striped on the intra-node basis but not on the inter-node basis. That is, an object isstriped only across (local) disks which belong to the same node. Objects that require more thana single node's service capacity (to support the corresponding demand) are replicated on multiplenodes. The number of replicas needed to support requests for a continuous object is a function ofdemand, and therefore this number should change when the demand for that object changes. LetRi(t) denote the set of nodes containing replicas of object i at time t. Thus, Ri(t) varies with timeas the popularity of object i changes. (The precise details of how Ri(t) changes over time are givenin Section 3.)Upon a customer's arrival at time t, there is a probability pi(t) that the corresponding requestis for object i and a probability qij(t) that this request is generated by a client local to node j. Theadmission of this customer into the system proceeds as follows. If at time t object i resides on nodej and there is service capacity available at node j, then the system admits and serves this newrequest at node j, i.e., locally. Let Lx(t) be the load on node x at time t. If at time t object i doesnot reside on node j or there is no service capacity available at node j, then the system examinesthe load information on each node in Ri(t), and if there is su�cient capacity (on at least one ofthese node and in the interconnection network, i.e., the global switch), to service the newly arrivedrequest, the system assigns this request to the least-loaded node in Ri(t). Otherwise, the customeris rejected.Note that, in the hybrid system we need to maintain load information on remote nodes as wellas other bookkeeping information (including recomputation of replication/dereplication thresholds,as described in Section 4). This will require some communication capacity, although this requiredcapacity is signi�cantly smaller than the capacity needed for transmitting CM object data froma remote node to a local node. Furthermore, communication of such bookkeeping information isneeded in the wide striping case as well, since coordination between nodes is needed for schedulingof each request in the system. Since the exact amount of bookkeeping information depends on aparticular implementation, we do not consider this any further here. However, we would like topoint out that in the case of the wide data striping architecture, the bookkeeping information mustbe exchanged between nodes to schedule a newly arrived request. On the other hand, in the hybrid8

architectures, we can tradeo� the frequency of collecting such information (or the \up-to-dateness"of the information) for performance, i.e., we can tradeo� relying more on local information (ratherthan remote information) for some loss in performance.To assess the scalability characteristics of the potential designs in an environment where dataaccess patterns change over time, we consider the following cost/performance and reliability metrics:1. the system's acceptance rate, which is de�ned as the percentage of all arriving customerrequests that are accepted by the system (with zero waiting time);2. the capacity (in units of access streams) of the global switch required to support a particulararchitecture and corresponding acceptance rate;3. the capacities (in units of access streams) as well as the number of local switches required tosupport a particular architecture and corresponding acceptance rate;4. the amount of disk storage (in units of continuous media objects) required to support aparticular architecture and corresponding acceptance rate;5. the mean time to failure (MTTF) of a particular architecture.Note that, in the performance evaluation done in this work, we do not consider queueing of cus-tomers that can not be admitted immediately, since that would entail consideration of schedulingpolicies for requests in the queue. The appropriateness of various queueing disciplines and thecustomer's willingness to wait for service are, in general, largely a function of the particular ap-plication supported by the CM server. Thus, although in practice a CM server can have some�nite queueing capacity, here we do not consider queueing of customer requests that can not beadmitted at request time since the queueing disciplines appropriate for these requests are largely afunction of speci�c applications using the CM server and we do not limit this study to a particularapplication.Table 1 summarizes the main notation used in this paper. We will de�ne this notation through-out the paper, as it is needed. 9

S set of all nodes in the systemN number of nodes in the system; N = jSjNd total number of disks in both wide data striping and hybrid systemsK number of distinct objects in the systemBx maximum service capacity of node x (in streams)�B average service capacity of nodes in the system (in streams)�D average storage capacity of nodes in the hybrid system�Dw average storage space capacity of nodes in the wide data striping systemDx total storage capacity on node x (in units of objects) in the hybrid systemDx(t) available storage space on node x at time t in the hybrid systemDwx total storage capacity on node x in the wide data striping systemDw total storage space in the wide data striping systemLx(t) load on node x at time t (in streams)Ai(t) available service capacity for object i at time t; Ai(x) =Px2Ri(t)(Bx � Lx(t))ReThi replication threshold, i.e., the threshold for adding another copy of object iDeThi dereplication threshold, i.e., the threshold for removing a copy of object iHi di�erence between the replication and the dereplication thresholds, i.e., Hi = ReThi �DeThiT ilength length of object i (in units of normal playback time)T iea early acceptance time for object i (in units of normal playback time)� average arrival rate to the systemati the latest access time for object i in the systemRi(t) set of nodes containing a replica of object i at time tpi(t) probability of an arriving request being for object i at time tqij(t) probability of an arriving request for object i being for node j at time tDS storage space threshold for activating the dereplication processTable 1: Summary of notation.3 Dynamic ReplicationIn a hybrid CM server, we use a dynamic approach to reacting to changes in user data accesspatterns. Since the number of copies of object i partly determines the amount of resources availablefor servicing requests for that object, we adjust the number of replicas maintained by the systemdynamically . Of course, the system's performance depends on its ability to make such adjustmentsrapidly (which can require a non-negligible amount of resources) and accurately. Thus, whenadjusting the number of replicas in the system, we essentially have con
icting goals of (a) using asfew resources as possible to performance the replication (in order not to interfere with \normal"system operation) while (b) trying to complete the replication process as soon as possible.In an attempt to reach a compromise between these con
icting goals, we use \early acceptance"of customers, as proposed in our previous work [5], where admitted customers are allowed to useincomplete replicas (while the replication process continues). That is, once the system completes10

replication of the �rst T iea time units 4 of a new replica of a CM object i, it will treat it as a\virtually" complete copy and begin using it in serving customer requests for object i.The issue that we need to consider is that a user might attempt to access a portion of anincomplete copy which has not been replicated yet, e.g., by fast-forwarding past the replicationpoint. To allow customers to have full use of VCR functionality when viewing CM objects, we needto determine a \safe" value for T iea. Clearly, one safe value is T iea = T ilength (full length of the CMobject). However, the intuition is that a smaller value of T iea should result in a higher (at least inthe \short term") acceptance rate of customer requests.In order to lower T iea (and improve system performance) in [5], we employ a stochastic modelof user behavior, at the cost of lowering the probability that a user will not access data beyond thereplication point (of course, this probability still has to be high, but less than 1). Specially, we modelthe combination of the behavior of: (1) a user watching a display of a partially replicated object(including his/her possible use of VCR-type functionality), where that user is allowed to begin thedisplay after the �rst T iea time units of the object have been replicated; and (2) the correspondingreplication process, using a Discrete Time Markov Chain (DTMC) [18]. We then perform transientanalysis [18] on this Markov chain to compute the probability that the user attempts to access apart of the object that has not been replicated yet. If this probability results in a reasonable qualityof service (QoS), then the corresponding value of T iea is acceptable. Otherwise, we recompute witha new value. Although the general approach is applicable to a variety of multimedia applications,the particular values of parameters for the DTMC model as well as what constitutes acceptableQoS depend on the application(s) using the CM server.Results given in [5] indicate that relatively small values of T iea result in good QoS. For instance,in [5] we show that for a system with 90 minute continuous media objects and T iea = 12 minutes8i, the corresponding probability, as computed from the DTMC model, that a user will attemptto access an un�nished portion of a replica is below 0:05. Simulation results of the same system,indicate that this probability is nearly 0. (This is due to the conservative nature of our model,which is a good characteristic when QoS is of importance.)In [5], we also show that this model is not very sensitive to the accuracy of its parameters(e.g., such as the exact probability of a user requesting VCR-type functionality) and thus is of4For ease of presentation, we measure the amount of replication completed in time units of normal playback timeof that object, from the beginning of the object, rather than, e.g., in bytes.11

reasonably practical use. Based on these results, in this work we use the following policies (asdescribed below) for: (a) replication, i.e., the process of adding another copy of an object to oursystem, (b) dereplication, i.e., the process of removing a copy of an object from our system, and(c) triggering of addition or removal of a copy of an object (i.e., determining when a copy shouldbe added or removed).Replication policy:We use the SREA (sequential replication + early acceptance) policy, where the replication is per-formed \sequentially". That is, a single stream is injected into both, the source node (from whichthe replication is performed), and the target node (to which the replication is performed). Then,given the value of T iea which is determined through the use of the mathematical model of userbehavior (as described above), newly arrived users are admitted to the new (incomplete) replica assoon as T iea time units of that object have been replicated on the target node.De-replication policy:We use the DM (delay migration) policy, which removes a replica of object i only when there is nocustomer currently viewing object i. This is motivated by the (possible) implementation complexityof migrating customers from one node (where the removal occurs) to another node (which containsa copy of the object being removed).Replication/dereplication triggering:We use a threshold-based approach to triggering continuous media object replication and derepli-cation in order to react to an environment where data access patterns change over time. Thatis, when a request for object i arrives, the system checks if the available service capacity for thatobject is above the replication threshold. If not, the system triggers a replication process for objecti (using the SREA policy described above). On the other hand, if at the time of �nishing serviceof a request for object i: (1) the total available storage space capacity has fallen below the spacethreshold and (2) the excess remaining capacity for serving requests for that object goes abovethe dereplication threshold, the system triggers the dereplication process (using the DM policydescribed above). The computation of all threshold values is described below.Threshold-based techniques for reacting to changes in workload are employed often for improvingthe cost/performance characteristics of systems, e.g., in communication protocols [11]. Here, as inother systems, the main motivation for using a threshold-based scheme is that there is a non-negligible cost for creating or removing a replica. That is, it takes a non-negligible amount of time12

and resources to replicate an object or remove a copy, and thus it should be done \sparingly".Now, we state more formally how the hybrid CM server triggers replication and de-replicationprocesses. When a customer request for object i arrives to the system at time t, replication ofobject i is initiated if and only if all of the following criteria are satis�ed:1. Ai(t) < ReThi, where ReThi is the replication threshold and Ai(t) is the available servicecapacity for object i at time t, i.e., Ai(x) =Px2Ri(t)(Bx � Lx(t))2. Object i in not currently under replication.3. There is su�cient available service capacity on the source node.4. There is su�cient available storage space capacity and su�cient available service capacityon the target node.5. There is su�cient available service capacity in the global switch. (i.e., interconnection net-work).Once the replication is triggered, we must select a source and a target node for the replicationprocess. The choice of a source node for replication of object i is simple: we select the least-loadednode in the set Ri(t). For the target node, we choose the node which has the highest estimatedresidual capacity and has available storage capacity. More formally, we choose the node x such thatx 62 Ri(t); Lx(t) = miny2(S�Ri(t))(By � Ly(t)1 +
y(t)) ; (1)and the remaining storage capacity on x is su�cient for the new replica, where
y(t) correspondsto the number of replication processes already in progress on node y at time t. Intuitively, sucha choice should avoid replication of multiple relatively popular objects on the same target node(which may later compete for that node's capacity).As already stated, dereplication is invoked at the customer departure instances when an objectis determined to have excess service capacity and when the total available storage space capacity inthe entire system falls below DS (which is measured in units of CM objects). Since the replication(and in general the dereplication) processes are not instantaneous, \pro-active" dereplication isneeded to reduce the probability of the system going into a \bad" state (i.e., a state where we haveto reject requests over a long period of time). More formally, a replica of object i at node x will beremoved at time t if and only if the following conditions are satis�ed:13

1. Ai(t) = maxj2SfAj(t) > ReThig. The motivation for this condition is that the number ofreplicas for object i at time t is more than its current workload demand and at this time ithas the greatest excess of replicas among all relatively \cold" objects.2. i has \crossed" the dereplication threshold, i.e.,Ai(t)� (Bx � Lx(t))� Cix(t) > DeThi (2)where Cix(t) denotes the number of customers viewing object i at node x at time t. Withthe deletion of object i at node x, Ai(t) would be decreased by (Bx�Lx(t)). In general (i.e.,for a general dereplication policy), since a customer viewing object i at node x will have tobe migrated to other replica nodes in Ri(t), Ai(t) would be further decreased by Cix(t). Inthe case of the dereplication policy we use in this paper, i.e., the Delayed Migration (DM)dereplication policy, there is an additional constraint, namely that Cix(t) must be equal to 0.3. Px2S Dx(t) < DSLastly, to prevent the system from oscillating between replication and dereplication, a di�erenceof Hi is introduced between ReThi and DeThi, i.e., DeThi = ReThi +Hi. That is, we introducehysteresis into the system.One of the more important issues in designing threshold-based resource activation schemes isthe choice of replication and dereplication threshold values. In the following section, we give thedetails of how we use \dynamic threshold value adjustment" to improve the system's performance.Note that, we do this without collecting and maintaining statistics of user data access patterns.4 Dynamic Threshold AdjustmentIntuitively, we would like the amount of service capacity available to each object i to be proportionalto its demand, which is changing with time. Thus, we could attempt to maintain a number of copiesof each object proportional to pi(t). However, in practice, pi(t) is unknown and varies over time.Although we could try to collect statistics on access demands for the various objects, many questionswould remain open: over which period to collect the statistics, when to make the decision that theprobabilities have changed su�ciently to re
ect this change in the system's con�guration (likely,we do not want to do this \continuously"), how much con�dence to have in the collected statistics14

and thus how aggressively or cautiously to \evolve" the system from an old state (i.e., with oldaccess probabilities) to a new state (i.e., with new access probabilities).Furthermore, in such an environment, having the amount of service capacity proportional tothe access probabilities (even if we knew them) would not necessarily insure acceptance of newlyarrived customers. An important factor in the performance of the system is the mixture of requeststhat arrives and is ultimately serviced by the nodes of the CM server. That is, we may rejectrequests for object i on node j due to an in
ux of requests for other objects residing on node j,i.e., other than object i.Thus, in our work we use dynamic data replication techniques which do not assume knowledgeof access probabilities. More speci�cally, we use the last interarrival time for object i to (verycoarsely) \approximate" pi(t) and compute threshold values as follows:1. For each object i, we keep its last request access time ati. At the time of arrival, t, of a requestfor object i, we compute the latest interarrival time, i.e., (t � ati), for that object. We usethis latest interarrival time as a very coarse approximation of popularity of object i at timet. Whenever a new request for object i arrives, we update the replication and dereplicationthreshold values5 for all objects in the system accordingly, as described next, as well as recordthe last access time ati at time t.2. Then the replication threshold for object i is ReThi = d �D�Dw � T ieat�ati e, where �D is the averagestorage capacity of nodes in a hybrid system and �Dw is the average storage capacity of nodesin the wide data striping system. That is, the replication threshold, ReThi, represents theamount of workload, corresponding to requests for object i, that we expect to receive in thenext T iea time units, which is the amount of time needed to create a new (virtual6) replica ofobject i (should we deem it necessary). Thus, the motivation for this setting of the replicationthreshold value is that T ieat�ati corresponds to the expected number of requests for object i thatcan arrive in the next T iea time units. Note that, depending on the amount of \excess" storagespace (i.e., in excess of minimum needed to hold at least one copy of each object) we cana�ord to be more or less aggressive about triggering replication of objects. Thus, we alsonormalize T ieat�ati by the factor of excess storage capacity at the target node x, i.e., by �D�Dw .5We discussed the issue of overheads related to recomputation of thresholds in Section 2.6Recall that we only need to replicate a fraction of the object before allowing users to view it, as described inSection 3. 15

That is, the more excess storage capacity we have, the more aggressive we can a�ord to bein triggering the replication process.3. The constraint relating the replication and the dereplication threshold values is as follows:DeThi = ReThi +Hi, where Hi represents the introduction of hysteresis into the system.4. The hysteresis for object i is computed as follows: Hi = d �D�Dw � T ilengtht�ati e. The motivation forthis setting of the hysteresis value is similar to the motivation given above for ReThi, exceptthat T ilengtht�ati corresponds to the expected number of requests for object i that can arrive in thenext T ilength time units, i.e., during the entire duration (in normal playback) of the display ofobject i. That is, T ilength corresponds to an estimate of the amount of time that will elapsebefore some of the currently allocated resource, which can be used to service requests forobject i, are released.5 Performance/Scalability/Reliability EvaluationIn this section we present results of our study of scalable designs for continuous media servers,using the following cost/performance and reliability metrics (as given in Section 2):1. the system's acceptance rate, which is de�ned as the percentage of all arriving customerrequests that are accepted by the system (with zero waiting time);2. the capacity (in units of access streams) of the global switch required to support a particulararchitecture and corresponding acceptance rate;3. the capacities (in units of access streams) as well as the number of local switches required tosupport a particular architecture and corresponding acceptance rate;4. the amount of disk storage (in units of continuous media objects) required to support aparticular architecture and corresponding acceptance rate;5. the mean time to failure (MTTF) of a particular architecture.This study is performed via simulation, with the following simulation parameters. The arrivalprocess (of requests for objects) is Poisson with a mean arrival rate of � = a �BNT ilength , where 0 � a � 1is the \relative arrival rate". For ease of presentation, in the remainder of this section we discuss16

the results in terms of the relative arrival rate, a, i.e., relative to the total service capacity of thesystem (e.g., a = 1.0 corresponds to the maximum service capacity of the system).Parameter Default ValueArrival rate a = 1:0ReThi d �D�Dw � T ieat�ati eHi d �D�Dw � T ilengtht�ati eDeThi ReThi +HiT ilength 90 minsK 400System capacity 1600 streamsReplication policy SREADe-replication policy DMAccess Probability change (1)\gradual" and (2)\abrupt"Skewness distribution Zipf, � = 0:0qij(t) uniformly distributed between 1 and N , for each object i, 8t � 0Architecture (1)arch 1 (2)arch 2 group (3)arch 3 group (4)arch 4 group(5) arch 5 group (for details see Table3)Table 2: Parameters for our simulation study.In the results presented in this section, we consider the design of a CM server with the followingcapacity requirements (also given in Table 2): (1) a total service capacity of N � �B = 1600 streams;(2) a total storage capacity of K = 400 distinct objects; with (3) each object's length T ilength = 90minutes. Several of the entries in Table 2 require a few words of clari�cation, which are as follows.Since the main motivation for using dynamic replication policies is the need to react to changesin data access patterns, we consider the performance of the system as a function of such changes.That is, the workload will have the characteristic that every \rotation time period" of X minspi(t)'s change. The change in access probabilities is described by Equation (3), which is intendedto emulate a relatively \gradual" increase/decrease in popularities7 .pi(t0) = 8>>>>><>>>>>: pi+2(t) if i is odd and 1 � i < K � 1pK(t) if i is odd and i = K � 1pi�2(t) if i is even and 2 < i � Kp1(t) if i is even and i = 2 (3)where t and t0 refer to two consecutive rotation time periods and for ease of presentation weassume that K is even. To test our policies further, we also consider a more abrupt change in7This is to illustrate that even under a relatively gradual change, dynamic policies are still useful. Furthermore,we believe this is a reasonable \emulation" of changes in access patterns for many CM applications.17

access probabilities, as described by Equation (4), which is used to emulate an \abrupt" increasein popularity of currently unpopular objects as well as a \gradual" decrease in popularity of thecurrently more popular objects.pi(t0) = 8<: p1(t) if i = Kpi+1(t) if 1 � i � K � 1 (4)Furthermore (at any �xed value of t), we use the Zipf distributions [12] to describe the skewnessof the access probabilities, where Prob[request for object i] = ci(1��) 8i = 1; : : : ; K and 0 � � � 1where c = 1M (1��)K and M (1��)K =PKj=1 1j(1��) . In our experiments we set � = 0:0, which correspondsto the measurements performed in [4] (for a movies-on-demand application). Lastly, we use thefollowing interactivity settings: NP:FF:RW:PAUSE =19 : 1 : 1 : 1 | this is the ratio between themean amount of time spent in various user playback modes, where NP refers to normal playback,FF refers to fast-forward (with preview), RW refers to reward (with preview), and PAUSE refersto pause. Based to these setting and our mathematical model of user behavior (as summarized inSection 3), we obtain T iea = 12 mins, given that T ilength = 90 mins.The architectural settings considered in this study are summarized in Table 3, where the possiblearchitectures di�er in the number of nodes, service capacity of each node, and available storagecapacity of each node8. (Recall that we need to meet the overall capacity requirements given atthe beginning of this section.) Architecture 1 corresponds to wide data striping. Architecturegroups 2{5 correspond to various con�gurations of a hybrid CM server (where the groups di�erin the size of the node capacities and subsequently the total number of nodes). For each hybridCM group architecture below we experiment with di�erent amounts of per node storage spacecapacity, in order to illustrate the tradeo� between storage space capacity local to a node and thecorresponding required capacity of the global switch.Moreover, in the experiments that follow, we consider the a�ect on the overall system perfor-mance of limitations of communication network resources. Let nc represent the ratio of the globalswitch (or interconnection network) capacity to storage system service capacity, i.e., nc = 1:0 rep-resents equal service capacities in the storage and communication sub-systems. Then we vary theservice capacity of the global switch, i.e., 0:1 � nc � 1, and compute the subsequent degredation inperformance experienced by the various architectures. The motivation for doing these experiments8Note that, for a hybrid architecture that requires more storage space than the corresponding wide data stripingarchitecture we only increase the storage space per disk of that architecture, i.e., not the number of disks, as thatwould also increase the service capacity of the system and hence would not make for a fair comparison.18

Arch. type No. of nodes Serv. capacity/node Stor. space/nodeLocal switch capacity(in streams) (in objects)arch 1 20 80 20arch 2 group 20 80 22 or 24 or 26 or 28 or 30arch 3 group 10 160 44 or 48 or 52 or 56 or 60arch 4 group 5 320 88 or 92 or 96 or 100 or 104arch 5 group 2 800 205 or 210 or 215 or 220 or 225Table 3: Parameters for di�erent architecture groups.is two fold: (1) to observe the performance degredation characteristics of the possible CM serverdesigns (as this is an indication of their scalability characteristics) and (2) to assess whether reduc-tions in overall required global switch capacity are possible without signi�cant loss in the overallsystem performance, i.e., whether we can operate the system with a smaller network which shouldlead to lower a cost system.Lastly, in the experiments that follow, \upper bound" on the acceptance rate refers to theacceptance rate that a wide data striping system can achieve without considering network capacityconstraints; thus this is the only curve in the following �gures that is not a function of nc.5.1 Wide Data Striping System vs. Hybrid System
upper bound

data stripping

space 22 per node

space 24 per node

space 26 per node

space 28 per node

space 30 per node

acceptance rate

network constraint

0.00

0.20

0.40

0.60

0.80

1.00

0.20 0.40 0.60 0.80 1.00Figure 2: Architecture 2 group under di�erent network constraints.19

upper bound

data stripping

space 44 per node

space 48 per node

space 52 per node

space 56 per node

space 60 per node

acceptance rate

network constraint

0.00

0.20

0.40

0.60

0.80

1.00

0.20 0.40 0.60 0.80 1.00Figure 3: Architecture 3 group under di�erent network constraints.Figures 2 through 5 and Figure 6(b) illustrate that a hybrid system has better overall performanceas well as performance degradation characteristics than the wide data striping system under lowernetwork capacities, i.e., with nc < 1:0. More importantly, the hybrid architecture allows us totradeo� capacities of the various system resources in order to achieve a more cost-e�ective systemoverall. Speci�cally, we can tradeo� local storage space capacity and local switch capacity withglobal switch capacity and achieve nearly the same performance characteristics. For instance, for aparticular architectural setting (i.e., with a �xed number of nodes and corresponding node serviceand local switch capacities) the larger the local storage space capacity is, the smaller the globalswitch capacity need be, in order to achieve the same overall system performance. As an example,consider the \arch 2 group", in Figure 2 | in the case of the architecture with a storage spacecapacity of 24 objects per node, the corresponding required service capacity of the global switch9is 1280 streams, whereas in the case of the architecture with a storage space capacity of 30 objectsper node, the corresponding required service capacity of the global switch is only 960 streams.Conversely, the larger the local switch is, the more we can reduce the storage space and globalswitch capacities. As an example consider the \arch 2 group" in Figure 2 | in this case with a9The needed global switch capacity is determined from Figure 2 by �rst �xing the acceptance rate thatwe would like to achieve. In this example, we �x the required acceptance rate to be at least 0:95 �acceptance rate of \upper bound result". Given the acceptance rate, we can determine, using Figure 2, the smallestnetwork constraint that satis�es that acceptance rate for the appropriate architecture curve. Let that constraint bec; then, the required global switch capacity is c � 1600 streams where 1600 streams corresponds to maximum requiredsystem capacity in our experiments, as described before.20

upper bound

data stripping

space 88 per node

space 92 per node

space 96 per node

space 100 per node

space 104 per node

acceptance rate

network constraint

0.00

0.20

0.40

0.60

0.80

1.00

0.20 0.40 0.60 0.80 1.00Figure 4: Architecture 4 group under di�erent network constraints.local switch capacity of 80 streams10, the corresponding required total storage space capacity is600 objects (i.e., 30 objects per node) and the corresponding required service capacity of the globalswitch11 is 960 streams. Consider now the \arch 4 group" in Figure 4 | although in this casethe local switch capacity increases to 320 streams, the corresponding required service capacity ofthe global switch drops down to 640 streams and the corresponding required total storage spacecapacity drops down to 460 objects (i.e., 92 objects per node). These results are due to the factthat with larger local switch capacities, we can service more customer requests locally (hence thereason for the corresponding smaller required global switch capacity). Furthermore, larger localswitches and corresponding larger node service capacities also provide more opportunities to takeadvantage of the load balancing characteristics data striping within a node (hence the reason forthe smaller required storage space capacity per node).5.2 System Sizing IssuesQuantitatively evaluating the tradeo�s between local switch capacity, node storage space capacity,and global switch capacity is no easy task, as it is not immediately clear how to tradeo� oneresource for another. Ideally, one would like to evaluate these tradeo�s based on cost, i.e., onewould like to size the system resources so as to achieve the best performance possible for the lowest10These values can be determined from Tables 3 and 4.11The determination of the required global switch capacity is done as in the previous example.21

upper bound

data stripping

space 205 per node

space 210 per node

space 215 per node

space 220 per node

space 225 per node

acceptance rate

network constraint

0.00

0.20

0.40

0.60

0.80

1.00

0.20 0.40 0.60 0.80 1.00Figure 5: Architecture 5 group under di�erent network constraints.cost possible. However, cost considerations are a complex issue, given that costs depend on manyfactors, including the particular technology used for the various components of the system. Thus,next we instead evaluate the di�erent hybrid designs based on the amount/capacity of each resourcethey require relative to the wide data striping system. Such an evaluation quantitatively illustratesto the designer the relative merits of the di�erent architectures, without the need for picking aspeci�c technology to use for each part of the system12. The purpose of these experiments is toillustrate how a CM server designer can deal with these (fairly complex) system sizing issues.In order to investigate system sizing issues, we further re�ne our set of architectural settingsas described in Table 4. As before, these settings di�er in the number of nodes, per node ser-vice capacity, per node storage space capacity, local switch capacity, and global switch capac-ity. We choose the per node storage space capacity and the corresponding global switch ca-pacity of each architectural setting based on the results obtained in the previous section. Morespeci�cally, we choose those architectures that can achieve an acceptance rate of at least 0:95 �acceptance rate of the \upper bound result" with reasonably small per node storage space andglobal switch capacities13. Recall, that the upper bound is computed without considering any12Characterizing a resource using only its capacity may result in a simpli�cation for certain types of resources;however, this is still a good abstraction for evaluating cost-e�ectiveness of designs, without having to choose aspeci�c technology for each system component.13If costs of speci�c system components are known, then one would choose to investigate those architectural settingswith lowest costs. Since we do not wish to make technology/cost-related assumptions, we use a heuristic, i.e., wechoose architectures that have reasonably small storage and global switch capacities.22

data striping

arch2

arch3

arch4

arch5

acceptance rate

3rotatio time period x 10

0.00

0.20

0.40

0.60

0.80

1.00

0.20 0.40 0.60 0.80 1.00 1.20

upper bound

data stripping

space 22 per node

space 24 per node

space 26 per node

space 28 per node

space 30 per node

acceptance rate

network constraint

0.00

0.20

0.40

0.60

0.80

1.00

0.20 0.40 0.60 0.80 1.00

(a) arch2, arch3, arch4 and arch5 (b) arch 2 groupFigure 6: Abrupt increase and gradual decrease in access probabilities.network capacity constraints. Since the \upper bound results" are not always achievable by archi-tectures we are studying here, we choose a performance goal (i.e., acceptance rate) that is reasonablyclose to the \upper bound result".Arch. type No. of nodes Serv. capacity/node Stor. space/node Global switch capacityLocal switch capacity(in streams) (in objects) (in streams)arch 1 20 80 20 1600arch 2 20 80 26 1120arch 2.1 20 80 30 960arch 3 10 160 52 800arch 4 5 320 92 640arch 5 2 800 215 320arch 5.1 2 800 225 160Table 4: Parameters for di�erent testing architectures.Figure 7 depicts the comparison in resource requirements between the various hybrid architec-tures and the wide data striping architecture. We report each resource requirement as the ratiobetween the resource requirement of a particular hybrid architecture and the wide data stripingarchitecture (\arch 1" in in Table 4), i.e., each graph in Figure 7 representsresource requirement of arch iresource requirement of arch 1 8i 6= 1:Hence, the straight line at the value of 1:0 in each of the graphs of Figure 7 corresponds to the(\scaled") resource requirement of the wide data striping architecture (i.e., \arch 1" in Table 4).23

As already stated, these results illustrate to the designer the relative merits of the di�erentarchitectures by quantifying the tradeo�s between the various resources of the CM server, i.e., localnode storage space capacity, local node service capacity and local switch capacity, as well as globalswitch capacity. Based on these results and current costs, the designer of a large-scale CM servercan make system sizing decisions in conjunction with decisions of choice of technologies to use foreach of the system's components.
global switch size ratio

arch type

0.00

0.20

0.40

0.60

0.80

1.00

arch 2 arch 2.1 arch 3 arch 4 arch 5 arch 5.1

local switch size ratio

arch type

0.00

2.00

4.00

6.00

8.00

10.00

arch 2 arch 2.1 arch 3 arch 4 arch 5 arch 5.1

total storage space ratio

arch type

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

arch 2 arch 2.1 arch 3 arch 4 arch 5 arch 5.1

number of local switches ratio

arch type

0.00

0.25

0.5

0.75

1.00

arch 2 arch 3 arch 5arch 2.1 arch 4 arch 5.1Figure 7: System sizing.24

5.3 Heterogeneous SystemsNext, we illustrate the ease of dealing with heterogeneous systems when using hybrid CM serverdesigns without loss of performance as compared to an equivalent (i.e., same overall capacity)homogeneous case. For this purpose, we consider a hybrid CM architecture with 5 nodes and atotal service capacity of 1600 streams. We use two test cases in the following experiments, bothbased on the homogeneous version of \arch 4" with the storage space capacity of 104 objectsper node (refer to Table 3). Speci�cally, we introduce 5% and 10% di�erences in storage spaceand service capacities between the nodes of the system (as well as corresponding di�erences inlocal switch capacities), e.g., to emulate a system that gradually grows (as well as experiencesreplacements due to failures) and thus is forced to use heterogeneous resources. Hence, we haveone test case of a 5 node system, with each node having storage space capacity of 84, 94, 104,114, and 124 objects, respectively and service capacity of 256, 288, 320, 352, and 384 streams,respectively. And, we have another test case of a 5 node system, with each node having storagespace capacity of 94, 99, 104, 109, and 114 objects, respectively and service capacity of 288, 304,320, 336, and 352 streams, respectively.The rusults, depicted in Figure 8, show that, using a hybrid CM server design, we can achieveheterogeneous system performance that is comparable to homogeneous system performance. We donot show results for heterogeneous wide data striping systems for the following reasons. Although,some research on adaptation of wide data striping over heterogeneous disks does exist, e.g., as in[17], to the best of our knowledge such schemes either give up some amount of disk storage spaceor some amount of disk bandwidth capacity in order to achieve this adapatation and consequently(usually) at best performance as well as the comparable homogeneous counterparts. Thus, in thecase of heterogeneous systems, our evaluation of the goodness of hybrid designs (as compared towide data striping) is conservative.5.4 Dynamic Threshold AdjustmentNext, we would like to illustrate that our choice of dynamic threshold adjustment policy, in con-junction with replication and dereplication policies, results in a hybrid CM server that can react tochanges in data access patterns accurately and rapidly. This results in the system's performancethat appears to be insensitive to the changes in data access patterns, i.e., the system maintainsnearly the same performance regardless of how frequently the access patterns change. Moreover,25

homogeneous

heterogeneous (10%)

heterogeneous (5%)

acceptance rate

network constraint

0.00

0.20

0.40

0.60

0.80

1.00

0.20 0.40 0.60 0.80 1.00Figure 8: Heterogeneous system.this performance is comparable to the performance of the wide data striping system, which is\naturally" insensitive to changes in data access patterns.To illustrate this, we depict the system's performance (i.e., acceptance rate) in Figures 9 and6(a) as a function of the \rotation time period", i.e., the amount of time that passes before theaccess probabilities of the various objects change. Recall, that the precise de�nition of changes inaccess probabilities for both gradual changes (as in Figure 9) and the more abrupt changes (as inFigure 6(a)) are given earlier in this section.5.5 ReliabilityLastly, we discuss the fault tolerance characteristics of the wide data striping architecture as wellas our hybrid system. We use the mean time to failure (MTTF) as our reliability metric, where themean time to failure is de�ned as the mean time until some combination of disk failures results inloss of some data from the storage sub-system (i.e., losses that can no longer be recovered throughthe use of redundant information, such as parity computation or access of replicas, which in turnis due to losses of too many disks). The details of the derivations of MTTF equations used beloware given in the Appedix.If we employ the use of parity-based redundant information (as in disk arrays) and assume that26

Data Striping

arch2

arch3

arch4

arch5

acceptance rate

3rotation time period x 10

0.00

0.20

0.40

0.60

0.80

1.00

0.20 0.40 0.60 0.80 1.00 1.20Figure 9: Dynamic threshold adjustment.disks fail independently with exponential failure rates, as in [15], then the MTTF of an Nd diskwide data striping system with cluster (or disk array) sizes14 of C disks each is approximately:MTTF � (MTTFdisk)2Nd(C � 1)MTTRdisk (5)where MTTFdisk is the mean time to failure of a single disk and MTTRdisk is the mean time torepair of a single disk. Note that the MTTFdisk depends on the architectural characteristics of thedisk and the MTTRdisk depends on the reconstruction algorithms used (e.g., as in [14]). Also notethat the value of C determines the amount of redundant information stored in the system. For thesake of fairness (in computing MTTF's), we con�gure all architectures with the same amount ofredundant information.Likewise, the MTTF of a hybrid system with N nodes, NdN disks per node, and cluster sizes ofC disks each is approximately:MTTF � N(MTTFdisk)2Nd(C � 1)MTTRdisk (6)Note that the above MTTF for hybrid systems is conservative, in the sense that it computed basedon the assumption of only a single copy per object in the entire system. For an object i that hask copies in a hybrid system, the mean time until its data is lost is approximately:MTTF (k copy object) � MTTF 2kdiskMTTR2k�1disk � (NNd(C � 1))k (7)14Here cluster size refers to the number of data disks plus a parity disk in a disk array, i.e., in a cluster of C disks,there are C � 1 data disks and 1 parity disk [15]. 27

Given these equations, we now show a MTTF comparison between the seven architectures givenin Table 4, using the conservative estimate for the hybrid system of the MTTF equation based on asingle copy per object only (i.e., using Equations (5) and (6)). These results are depicted in Figure10, again as a ratio between MTTF of a particular hybrid architecture and the wide data stripingarchitecture, i.e., the results in Figure 10 representMTTF of arch iMTTF of arch 1 8i 6= 1:Hence, the straight line at the value of 1:0 in Figure 10 corresponds to the (\scaled") MTTF of thewide data striping architecture.These results clearly show that we can achieve higher reliability in a hybrid system, even forobjects that only have a single copy, as compared to the wide data striping system. The increase inreliability, even for the single copy objects, is due to the \isolation" of fault a�ects, i.e., the widerwe stripe an object, the more disk failures can a�ect the loss of data corresponding to that object.A quantitative expression of this intuition is given in the derivations of the Appendix.Of course, the reliability is even higher for objects with multiple copies, as is natural in asystem which employs data replication. An important point though, is that in a hybrid system, wecan provide signi�cantly higher reliability for the popular objects, as there will always be multiplereplicas of such objects in a hybrid system. Lastly, this brings us to another interesting point.Another reliability-related advantage of hybrid systems is that under network failures (or networkpartitioning) and/or high workload conditions at remote nodes, local nodes (given that they stillhave some capacity remaining) can at least deliver some objects, e.g., given a movies-on-demandapplication, even if a movie being requested by the user is not available (due to above speci�edconditions), the user has the option to choose another movie that may be available. This is notthe case for wide data striping architectures, as all nodes (and hence network capacity) must beavailable in order to service a request for any object.6 ConclusionsIn this work we studied the scalability of large continuous media end-to-end server designs as afunction of their cost/performance and reliability characteristics under various workload and systemconstraints. We focused on data placement issues and compared the scalability characteristics ofhybrid vs. wide data striping architectures. We have showed that hybrid designs, in conjunction28

MTTF ratio

arch type
0.00

5.00

10.00

15.00

20.00

arch 2 arch 2.1 arch 3 arch 4 arch 5 arch 5.1Figure 10: MTTF comparison for single copy objects.with dynamic replication techniques, are less dependent on interconnection network constraints,provide higher reliability, and can be properly sized so as to result in cost-e�ective end-to-endsystems. Thus, we believe that hybrid designs result in scalable large distributed continuous mediaservers.References[1] Personal communication with miscrosoft research. 1999.[2] S. Berson, S. Ghandeharizadeh, R. R. Muntz, and X. Ju. Staggered Striping in MultimediaInformation Systems. SIGMOD, 1994.[3] M.M. Buddhikot, G.M. Parulkar, and J.R. Cox. Design of a Large Scale Multimedia StoargeServer. Journal on Computer Networks and ISDN Systems, 1995.[4] A. L. Chervenak. Tertiary Storage: An Evaluation of New Applications. Ph.D. Thesis, UCBerkeley, 1994.[5] C. F. Chou, L. Golubchik, and J. C.S. Lui. A performance study of dynamic replication tech-niques in continuous media servers. Technical Report CS-TR-3948, University of Maryland,October 1998.[6] A. Dan, M. Kienzle, and D. Sitaram. A Dynamic Policy of Segment Replication for Load-Balancing in Video-on-Demand Servers. ACM Multimedia Systems, 3:93{103, 1995.29

[7] A. Dan and D. Sitaram. An Online Video Placement Policy Based on Bandwidth to SpaceRatio (BSR). In Proceedings of ACM SIGMOD'95, 1995.[8] Bolosky et al. The Tiger Video Fileserver. Technical Report MSR-TR-96-09, MichrosoftResearch, 1996.[9] R. Haskin and F. Schmuck. The Tiger Shark File System. In COMPCON, 1996.[10] R.L. Haskin. Tiger Shark : A Scalable File System for Multimedia. Technical report, IBMResearch, 1996.[11] P.J.B. King. Computer and Communication Systems Performance Modeling. Prentice-Hall,1990.[12] D. E. Knuth. The Art of Computer Programming, Volume 3. Addison-Wesley, 1973.[13] P. W. K. Lie, J. C.-S. Lui, and L. Golubchik. Threshold-Based Dynamic Replication inLarge-Scale Video-on-Demand Systems. RIDE '98, February 1998.[14] Richard R. Muntz and John C.S. Lui. Performance Analysis of Disk Arrays Under Failure.VLDB Conference, pages 162{173, 1990.[15] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays ofInexpensive Disks (RAID). ACM SIGMOD Conference, pages 109{116, 1988.[16] S. Ross. A First Course in Probability. Prentice-Hall, Inc., Upper Saddle River, NJ, 1998.[17] J.R. Santos and R. Muntz. Performance Analysis of the Rio Multimedia Storage Systemwith Heterogeneous Disk Con�gurations. Proc. of The 6th ACM International MultimediaConference, September, 1998.[18] W. J. Stewart. Introduction to Numerical Solution of Markov Chains. Princeton UniversityPress, 1994.[19] N. Venkatasubramanian and S. Ramanathan. Load Management in Distributed VideoServers. In Proceedings of ICDCS, pages 528{535, Baltimore, MD, May 1997.[20] M. Vernick, C. Venkatramani, and T. Chiueh. Adventures in Building the Stony BrookVideo Server. ACM Multimedia'96, pages 287{295, 1996.[21] J. Wolf, H. Shachnai, and P. Yu. DASD Dancing: A Disk Load Balancing OptimizationScheme for Video-on-Demand Computer Systems. In ACM SIGMETRICS/PerformanceConf., 1995. 30

Appendix: Derivation of MTTF EquationsIn this appendix we give the derivation of the mean time to failure equations used in Section 5. Wewill use the following notation in this derivation:MTTFdisk mean time to failure of a diskMTTRdisk mean time to repair of a diskMTTFcluster mean time to failure of a cluster or array of disksOur goal is to compute the MTTFcluster under the following assumptions: (1) each disk has inde-pendent and exponential failure rate equal to 1MTTFdisk ; and (2) the total number of disks in thecluster is C.We �rst compute the mean time to failure of some disk in a cluster of C disks. Let Xi be therandom variable corresponding to the mean time to failure of disk i with an exponential failurerate �, where 1 � i � C. Let Y = min(X1; X2; : : : ; XC), which corresponds to the mean time untilsome disk in a cluster of C disks fails (or the mean time between failures in a cluster of C disks).Then, given that the disk failures are independent, we haveProb[Y � a] = 1� Prob[X1 � a ^X2 � a ^ � � � ^XC � a]= 1� Prob[X1 � a]� Prob[X2 � a]� � � � � Prob[XC � a]= 1� (e��a)C = 1� e�C�aSince the failure rate of each disk in our case is � = 1MTTFdisk , we have that the mean time untilsome disk fails, or the mean time between failures in a cluster of C disks, is MTTFdiskC .Now, a cluster of C disks is considered failed when 2 disks in that cluster have failed. Recallthat a disk array is able to continue delivery of data under a single failure; once a second failurein an array of C disks occurs, some data is lost, and we term this failure of the array or cluster.Thus, to compute MTTFcluster we need to determine the probability that, given that one failurehas already occured in that cluster, a second disk failure will occur within MTTRdisk time units.Hence, we have thatProb[a disk fails within MTTRdisk] = 1� e�MMTRdiskMTTFdisk31

and Prob[a disk does not fail within MTTRdisk]= 1� Prob[a disk fails within MTTRdisk] = e�MMTRdiskMTTFdiskThen, given that one of the disks in a cluster of C has already failed, we have thatProb[at least one of the remaining disks fails within MTTRdisk]= 1� Prob[none of the remaining disks fail within MTTRdisk]= 1� e�hMMTRdisk=MTTFdiskC�1 i = 1� e�MMTRdisk�(C�1)MTTFdiskGiven a well designed system, we can assume thatMTTRdisk << MTTFdiskC where MTTFdiskC is themean time to failure of some disk in a cluster of C. It is also well known that (1� e�x) � x is areasonable approximation when 0 < x << 1. Then,Prob[at least one of the remaining disks fails within MTTRdisk] � MMTRdiskMTTFdisk (C � 1)Now we are ready to compute MTTFcluster . Given that one disk in an array of C disks hasfailed, we can next observe an event which has one of two possible outcomes:1. a second disk fails before the �rst is repaired and thus the entire array/cluster fails2. the �rst disk is repaired before the second failure and thus the array/cluster continues tooperate normallywe refer to the �rst outcome of this event as a \failure" and to the second outcome as a \success",i.e., this is a Bernoulli trial [16]. We also know thatProb[\failure"] = Prob[a second disk failure occurs before the �rst is repaired] =Prob[at least one of the remaining disks fails within MTTRdisk]Prob[\success"] = Prob[the �rst failure is repaired before a second failure occurs] =1� Prob[\failure"]Thus, in determining the mean time to failure of a disk array we are interested in a sequence ofevent outcomes or trials, where all outcomes but the last one correspond to \success" and the last32

one corresponds to a \failure". It is well known that on the average it takes 1Prob[\failure"] trialsbefore we obtain a \failure" [16]. Now we have thatMTTFcluster= Expected[time between failures in a cluster] � Expected[number of trials before obtain a \failure"]= Expected[time between failures in a cluster] = Prob[\failure"]= MTTFdiskC � 1MMTRdiskMTTFdisk (C � 1) = (MTTFdisk)2C(C � 1)MMTRdiskGiven the above derivation of MTTFcluster , we can now compute the MTTF equations used inSection 5 as follows. Let Nd be the total number of disks in the wide data striping as well as thehybrid architectures.Wide data striping architecture:Recall that this architecture only keeps a single copy of each object i in the entire system. Thus(using reasoning similar to the one used above to derive MTTFcluster), we have thatMTTF (wide data striping arch) � MTTFclusternumber of clusters in the system � (MTTFdisk)2Nd(C � 1)MTTRdiskHybrid architecture:Here each node has NdN disks, and as before we assume that the nodes are independent in terms oftheir failures. First, we consider the mean time to data loss for those objects which only have asingle copy in the entire system, which is as follows (again, using reasoning similar to the one usedabove to derive MTTFcluster):MTTF (hybrid arch/single copy) � MTTFclusternumber of clusters in one node � N(MTTFdisk)2Nd(C � 1)MTTRdiskNext, we consider the mean time to data loss for object i which has k copies in the system, i.e.,in k di�erent nodes. Once the �rst disk failure occurs in (the �rst15) node containing a copy ofobject i, let Event A correspond to the event where: \a second disk fails in the cluster of the �rstnode in Ri(t) already operating under failure16 and at least one cluster fails in each of the othernodes in Ri(t). Then, as before, we are looking at a Bernoulli trial [16] where now Prob[\failure"]15This is a general derivation as the \numbering" of the nodes is logical.16That is, this is the cluster where the �rst failure occured.33

= Prob[Event A occurs within MTTRdisk]. Consequently, we haveMTTF (k copy object)= Expected[time between failures in a cluster] � Expected[number of trials before obtain a \failure"]= Expected[time between failures in a cluster] = Prob[\failure"]� MTTFdiskCNdCN 1MTTRdisk(C�1)MTTFdisk 1MTTRdiskNdMTTFdiskN 1MTTRdisk(C�1)MTTFdisk � � � 1MTTRdiskNdMTTFdiskN 1MTTRdisk(C�1)MTTFdisk� MTTF 2kdiskMTTR2k�1disk (NNd(C � 1))k

34

