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Abstract. Many ill-posed problems are solved using a discretization that results in a least
squares problem or a linear system involving a Toeplitz matrix. The exact solution to such problems
is often hopelessly contaminated by noise, since the discretized problem is quite ill-conditioned,
and noise components in the approximate null-space dominate the solution vector. Therefore we
seek an approximate solution that does not have large components in these directions. We use a
preconditioned conjugate gradient algorithm to compute such a regularized solution. An orthogonal
change of coordinates transforms the Toeplitz matrix to a Cauchy-like matrix, and we choose our
preconditioner to be a low rank Cauchy-like matrix determined in the course of Gu’s fast modified
complete pivoting algorithm. We show that if the kernel of the ill-posed problem is smooth, then
this preconditioner has desirable properties: the largest singular values of the preconditioned matrix
are clustered around one, the smallest singular values, corresponding to the noise subspace, remain
small, and the signal and noise spaces are relatively unmixed. The preconditioned algorithm costs
only O(nlgn) operations per iteration for a problem with n variables. The effectiveness of the
preconditioner for filtering noise is demonstrated on three examples.
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1. Introduction. In fields such as seismography, tomography, and signal pro-
cessing, the process describing the acquisition of data can often be described by an
integral equation of the first kind

Bup R
| i) = i),

lo

where t denotes the kernel, f the unknown input function, and § the output. When
it 1s appropriately discretized, the equation becomes a system of n linear equations of
the form

Tf=j.

In applications, properties of the kernel and the discretization process often cause T’
to have a Toeplitz structure; that is, #;; = #;,_; for 1 <4¢,5 < n, and T is therefore
constant along diagonals.

The discrete inverse problem is to recover f, given ¢ and 7. However, the con-
tinuous problem is generally ill-posed: i.e. small changes in ¢ cause arbitrarily large
changes in f This is reflected in the discrete problem by ill-conditioning in the ma-
trix T'. The recovery of f then becomes a delicate matter since the recorded data will
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likely have been contaminated by noise e. In this case, we have measured ¢ rather
than ¢, where

(1) Tf+e=g+e=g.

Due to the ill-conditioning of 7" and the presence of noise, exact solution of the linear
system will not lead to a reasonable approximation of f Rather, regularization is
needed in order to compute an approximate solution f. Regularization can be thought
of as exchanging the original, ill-posed problem for a more well-posed problem whose
solution approximates the true solution. Many regularization methods, both direct
and iterative, have been discussed in the literature; see, for example, [12, 15, 9, 5]. In
this paper we will primarily be concerned with regularization via conjugate gradient
iterations [7, 22, 29], where the regularization parameter is the number of iterations.

Toeplitz matrices have several properties convenient for iterative methods like
conjugate gradients: multiplication of a Toeplitz matrix times a vector can be done in
O(nlgn) operations, and circulant preconditioners can be quite efficient [25, 3]. There
are some difficulties, though. The inverse of a Toeplitz matrix does not generally have
Toeplitz structure, and the fast factorization algorithms for Toeplitz matrices can
require as much as O(n?) flops if pivoting is used to improve stability; see [27, 11, 4],
for example.

To overcome these difficulties, we make use of the fact that Toeplitz matrices are
related to Cauchy-like matrices by fast orthogonal transformations [17, 8, 10]. Cauchy-
like matrices, discussed in detail in §2, permit fast matrix-vector multiplication. But,
in contrast to Toeplitz matrices, the inverse of a Cauchy-like matrix 1s Cauchy-like,
and complete pivoting can be incorporated in its L DU factorization at a total cost of
O(n?).

The focus of this paper is the development of a Cauchy-like preconditioner that
can be used to accelerate convergence of the conjugate gradient iteration to a filtered
approximate solution of a problem involving a Toeplitz matrix. The regularizing
properties of conjugate gradients and our choice of preconditioner are discussed in §3.
Fach iteration of our algorithm takes O(nlgn) operations, and computational issues
are discussed in §4. Section b contains numerical results and §6 presents conclusions
and future work.

2. Transformation from Toeplitz to Cauchy-like structure. A Cauchy-
like, or generalized Cauchy, matrix C has the form

az'Tbj X1
(2) C=|——— (ai,b]'EC jwi, 05 EC).
wi — 0; 1<4,j<n

It can also be defined as the unique solution of the displacement equation

(3) QC -0 = AB"

where
af by

Q= diag(wy, ...,wpn), @ =diag(ty,...,0,), A= , B =

al b

The pair (A, B) is the generator of C' with respect to ©Q and ©, and £ < n is called
the displacement rank. For the matrices and displacement equations of interest here,
{=1or2]8].

We exploit three important properties of Cauchy-like matrices.
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PrROPERTY 1. Row and column permutations of Cauchy-like matrices are Cauchy-
like, as are leading principal submatrices.
This property allows pivoting in fast algorithms for factoring Cauchy-like matrices

[17, 8].
PROPERTY 2. The inverse of a Cauchy-like matrix is Cauchy-like:
xlw;
(4) c~l=- (Zij) (xi,w]' ECZXl).
0; — wj 1<4,j<n

Heinig [17] gives an O(nlg” n) algorithm to compute X (with rows z]) and W
(with rows w!) given A, B, ©, and Q, and explains how, using the FFT, a system
involving a Cauchy-like matrix can be solved in O(nlg2 n). However, the algorithm
is very fragile. It can be unstable for large values of n and, even when used on a well
conditioned matrix, may require pivoting to maintain stability [18, 1]. Alternatively,
X and W can be determined from the relations

(5) CX =4, wWrc=n"

The third important property is that Toeplitz matrices also satisfy certain dis-
placement equations [21, 8] which allow them to be transformed via fast Fourier
transforms into Cauchy-like matrices [17, 8]:

PrROPERTY 3. Every Toeplitz matrix T satisfies an equation of the form

(6) RyT —TR_; = ABT
where A € ("%, B € C"**, and

0 0 0 ¢

1 0 0
Rs=1]1 0 1

o .- 0 1 0

The Toeplitz matrix T' is orthogonally related to a Cauchy-like matrix

C=FTSyF*
that satisfies the displacement equation
(7) S1C —CS_y = (FA)(BYS; F*y,
where
Sy = diag(1,e™n ... e =1y,

i (2r—1)ri

Sy = diag(1, en L, e%("_l)),

and F' is the normalized inverse discrete Fourier transform matrix defined by

F= % [exp (%U — Dk - 1))] 1<ikgn



Gohberg, Kailath, and Olshevsky [8] suggest a stable O(¢n?) partial pivoting
algorithm to factor C' = PLU. Sweet and Brent [26] show, however, that element
growth in this algorithm depends not only on the magnitude of L and U, but on the
generator for the Cauchy-like matrix. For our test matrices, partial pivoting alone
did not provide the rank revealing information that we need.

Gu [10] presents an algorithm that can perform a fast O(¢n?) variation of LU
decomposition with complete pivoting. Recall that in complete pivoting, at every
elimination step one chooses the largest element in the current submatrix as the
pivot in order to reduce element growth. Gu proposes instead that one find an entry
sufficiently large in magnitude by considering the largest 2-norm column of ABT
corresponding to the part that remains to be factored at each step. This algorithm
computes the factorization C' = PLUQ [10, Alg. 2] using only the readily determined
generators (see §4), and Gu shows that it is efficient and numerically stable, provided
that element growth in the computed factorization is not large. For our purposes it
was convenient to set D = diag(uyy, ..., unn) and U « D™1U to obtain the equivalent
factorization C'= PLDUQ.

3. Regularization and preconditioning. If we wanted to solve the linear sys-
tem T'f = ¢ exactly, we would be finished: using the transformation to Cauchy-like
form and the fast factorization algorithms described above, computing this solution
would be an easy task. But the solution we seek is an approximate one, having noise
filtering properties, so we choose to use an iterative method called CGLS which, in
conjunction with an appropriate preconditioner, produces suitably filtered solutions.

Three assumptions will guide our analysis:

1. The matrix 7" has been normalized so that its largest singular value is of order
1.

2. The uncontaminated data vector ¢ satisfies the discrete Picard condition;i.e.,
the spectral coefficients of ¢ decay in absolute value like the singular values
[30, 14].

3. The additive noise is zero-mean white Gaussian. In this case, the components
of the error e are independent random variables normally distributed with
mean zero and variance €.

We need to define the signal and noise subspaces. Using (1), let 7' = USVT be
the singular value decomposition of 7', and expand the data and the noise in the basis
created by the columns of V:

n n
g= g Yivi, €= E V5,
=1 i=1

with % = V7§ and 5 = VTe. Under the white noise assumption, the coefficients n;
are roughly constant in size, while the discrete Picard condition tells us that the 4;
go to zero at least as fast as the singular values ¢;. Thus, components for which 4;
is of the same order as 7; are obscured by noise. Let m be such that |3;]| > |n;| for
i=1...mand || & |m| or || < || for i = m+ 1...n. Then we say that the
last n — /m columns of V span the noise subspace, while the other columns span the
signal subspace. The basis for the signal subspace is further partitioned into the first
m columns and the remaining m — m, which correspond to a transition subspace that
is generally difficult to resolve unless there is a gap in the singular value spectrum.

3.1. Regularization by preconditioned conjugate gradients. The stan-
dard conjugate gradient (CG) method [19] is an iterative method for solving systems
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of linear equations for which the matrix is symmetric positive definite. If the ma-
trix i1s not symmetric positive definite, one can use a variant of standard CG which
solves the normal equations in factored form. We refer to the resulting algorithm as
CGLS [19]. If the discrete Picard condition holds, then CGLS acts as an iterative
regularization method with the iteration index taking the role of the regularization
parameter [7, 13, 15]. Convergence is governed by the spread and clustering of the
singular values [28]. Therefore, preconditioning is often applied in an effort to cluster
the singular values, thus speeding convergence.

In the context of an ill-conditioned matrix 7', we require a preconditioner for
CGLS which clusters the largest m singular values while leaving the small singular
values, and with them, the noise subspace, relatively unchanged. In this case, the first
few 1terations of CGLS will quickly capture the solution lying within the subspace
spanned by the first m columns of V. A modest number of subsequent iterations will
provide improvement over the transition subspace, without significant contamination
from the noise subspace.

3.2. The preconditioner. Given the Toeplitz matrix 7', let C' = FTS;F* be
its corresponding Cauchy-like matrix. Solving T'f = g is then equivalent to solving

CFSof = Fy.
Note that since F' and Sy are unitary matrices, then
C=(FU)SVT(SyF*);
that is, 7 = UXV7T and C have the same singular values, and there is no mixing of
signal and noise subspaces.

A factorization of C' using a modified complete pivoting strategy may lead to an
interchange of rows (specified by a permutation matrix P) and columns (specified by
a permutation matrix ). Setting C = PTCQ7T, y = QFSof, and z = PTFy, the
problem we wish to solve is
(8) Cy=z.

We choose a preconditioner M for the left so that
M 'Cy=M""z
and apply CGLS to the corresponding normal equations
(9) (M~*Oy (M~ Oy = (M~ Oy M~z

Our choice of preconditioner M is derived from the leading m x m submatrix of
Gu’s modified complete pivoting L DU factorization of the matrix C' as follows. Let
C = LDU and write this equation in block form, where the upper left blocks are
m X m:

(10) ¢y, Cy | [ Ly O D 0 Uy U,

Cs Cy | | Ly Ls 0 Dy 0 Us |~
Here Lq, L3 are lower triangular, Uy, Us are upper triangular, and Dy and D, are
diagonal. We choose as our preconditioner the matrix

=[5 9]0 000 0)[6

5
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3.3. Properties of the preconditioner. We begin with some theorems about
the clustering of the singular values of M~1C" It is useful to decompose the matrix
(M~1C)*(M~1C) into the matrix sum

I crio, ] N [ C3Cs C3Cy

(11) (01_102)* (01_102)*(01—102) CZCS CZC4 :| = El =+ E2

using the block partitioning of the previous section.

Let ¢; be the sum of the absolute values of the entries in row i of C’l_lCz, let €as
be the largest of these quantities, and let s be the largest such row sum for £5. The
case of interest to us is when these quantities are reasonably small.

We denote the k-th largest singular value of a matrix 7 by ¢1(7), and the k-th
largest eigenvalue by A; (7).

THEOREM 3.1. If||C71Cy|s < 1 then the m largest singular values of M~'C' lie
in the interval [1, V14 €mar + §] .

Proof: The upper bound can be obtained by applying Gershgorin’s theorem
[24][1V.2.1] to bound the eigenvalues of the matrix (M ~1C)*(M ~1('), and then taking
square roots. The lower bound is somewhat more interesting.

The matrices £y and F5 are Hermitian positive semidefinite, and from the repre-
sentations

_ I 011 (Crles) (¢ 0][Cs Cu
El_[(c;lcz)* oHo 0 and B2=1cx o]l 0 o |

it is clear that they have rank at most m and n — m, respectively.
By Corollary TV.4.9 [24], we know that

(12) Ai(Er) < X((MH0) (MT1H0))

We need to show that A (E1) > 1. If Y7 and Y3 are two nxn matrices and the rank
of Y3 is n—m then a theorem of Weyl [20, Thm. 3.3.16] implies ¢, (Y1 +Y2) < 0 (Y7).

Now set
1 ¢t [0 —c7tes
Y= [ 0 0 =1 I ’

and notice that the eigenvalues of F; are the squares of the singular values of 7. But
Y1 + Y5 is the n x n identity matrix, so by Weyl’s result we obtain ¢,,(Y1) > 1. Thus,
Ai(F1) > 1fori=1,...,m and our conclusion follows from (12). O

We now study the extent to which preconditioning by M mixes the signal and
noise subspaces.

THEOREM 3.2. Let k be the dimension of the noise subspace and let

S0 0 vy
C = [1Q2Q3]| 0 X2 0 Vo |,

0 0 x| | v

- 0 0 vy

M~'C = [QleQs] 0 X 0 vy

0 0 S|z

be singular value decompositions with Vs, Vs € C"** and Vi, Vi € C"*™. Then
X 6
V5 Vsll2 < == max{1, [|Cl2 )
Om
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Proof: Using the decompositions we have

ViVs = (VO HM(M™ICVs)
= YTIQIMQsYs.

Since @, and Q3 have orthonormal columns, it follows that

ViVall < =My = 225 (maa {1, [|Call). O
Om Om

Next we show that 6; ~ o; for o; corresponding to the noise subspace, and thus
Tn—k+1 1s small. Thus, if C7 is well-conditioned, then we are guaranteed that the
signal and noise subspaces remain unmixed.

THEOREM 3.3. The (m+1)th singular value of each of the matrices C' and M~1C
lies in the interval [0, o3(E2)], fori=1,...,n —m.

Proof: Two theorems due to Weyl for Hermitian matrices 7, Y7, and Ys with
Z =Y, 4+Y, say

/\k_|_]'_1(Z) < /\k(Yl) + /\]'(Yz) [24, p210] and

An(Y2) 4+ Ap (Y1) < Ap(Z) [24, Cor. 1V.4.9] .

Now from the decomposition in Equation (11), we see A, (F2) = 0 and Apy1(E1) =
0, and thus

0 < A (MTIOY(MTIC)) < A1 (Br) 4 Xi(E2) = Ai( Es)

fori=1,...,(n—m).
Also,
| CT 0 Cy Cy
ce=1 |

We therefore likewise obtain
0 < An4i(C7C) < Ai(Eo).

The proof i1s completed by taking square roots. O

These theorems show that the preconditioner will be effective if Cy is well-
conditioned and if the row sums of C’l_lCz and E, are small. We now discuss to
what extent these conditions hold for integral equation discretizations.

PROPERTY 4. Let C' be a Cauchy-like matrix corresponding to a real Toeplitz
matrix T' that results from discretization of a smooth kernel t, normalized so that
the maximum element of T' is one. Then for n sufficiently large, there exists ¢ < 1
and m < n such that all elements of C' are less than € in magnitude except for those
located in four corner blocks of total dimension m x m.

To understand why this is true, recall that if A and B are the generators of C,

where G = AB”T | the magnitude of the (k, j)-entry of C'is |C~'k]| | 051 Thus the

T Jwr—6,]"

largest entries in C' appear where the numerator is large or the denominator is small.
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The denominator of Cy; is Jwy, — ;| = |1 — e U8+ which is bounded above
by 2. TIts smallest entries are attained for |k — j| & 0 or n, but there are very few
small values. In fact, direct computation shows that for n > 100, at least 95% of the
entries in the first row have denominators in the range [1071, 2], and the other rows

have even more in this range. Figure 1 plots values of the matrix m]
Ik i=1,..,n

for n = 100 above given tolerance levels. As expected, there are very few large values,
and these occur only near the diagonal and the corners of the matrix.

Now consider the numerators. The formulas for A and B are determined from
direct computation in (6). The first column of A is the first unit vector, and the
second column is given by

(13)  [0,tn—1,tn—a, - tp1, - 1]+ [to,tor,t o, ot gyt (non)]”

The first column of B is
(14) [t_(n_l),t_(n_z), ceto(g=1)s - Sloqto] = [t ta, - Slp_1, .o tn, 0]

and the second column is the last unit vector. The generators for C are then A= FA
and B = conj(FSy)B, where conj(-) denotes complex conjugation, with F' and Sy as
described in Property 3. Therefore, the numerators are

1 L mn 1oy

|k b;| = |ﬁ60nJ(C)j VA Vil,

where vy, is the k' entry in the second column of A and ¢; 1s the 4t entry in the

first column of F'SyB. Thus it is the normalized inverse Fourier coefficients of the

second column of A and first column of SoB which determine the magnitude of the

numerators, and if ¢ 1s smooth, these will be large only for small indices j and %.
Therefore,

|ag b;| 1
PR 2 : 1
|wk—9j|_\/ﬁ(|yk|+|C]|)<<
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away from the corners. Thus C' can be permuted to contain the large elements in
the upper left block, and any pivoting strategy that produces such a permutation will
give a suitable preconditioner for our scheme.

We have observed that if Gu’s algorithm is applied to a matrix with this structure,
then Cy will contain the four corner blocks. The interested reader is referred to [10]
for details on the complete pivoting strategy, but the key fact is that Gu makes his
pivoting decisions based on the size of elements in the generator ABT corresponding
to the block that remains to be factored. The resulting Cauchy-like preconditioner
C for the matrix C' then has the properties that the first m singular values of the
preconditioned matrix are clustered, and that the invariant subspace corresponding
to small singular values of C' is not much perturbed. Thus we expect that the initial
iterations of CGLS will produce a solution that i1s a good approximation to the noise-
free solution.

4. Algorithmic issues. Our algorithm is as follows:

Algorithm 1: Solving T'f = ¢
1. Compute the generators for the matrix C' = FTS;F* using (13)
and (14).
2.  Determine an index m to define the size of the partial factorization
of C' and factor C' = PLDUQ.
3. Set C=PTCQT and z = PTFy.
4.  Determine the m x m leading principal submatrix, C, of C' and

let M = [ G ] - (See (10).)

5. Compute an approximate solution § to M~ 'Cy = M~
few steps of CGLS.

6. The approximate solution in the original coordinate system is

f=8rQ"y.

1z using a

When to stop the CGLS iteration in order to get the best approximate solution
is a well-studied but open question (for instance, see [16] and the references therein).
We do not solve this problem, but we consider the other algorithmic issues in the
following subsections.

4.1. Determining the size of C;. The choice of the parameter m determines
the number of clustered singular values in the preconditioned system. It influences
the amount of work per iteration, but perhaps more importantly, the mixing of signal
and noise subspaces. We use a simple heuristic in our numerical experiments. We
compute the Fourier Transform of the data vector ¢ and determine the index m for
which the Fourier coefficients start to level off. This is presumed to be the noise level,
and the factorization is truncated here.

4.2. Computing the preconditioner. Since C satisfies the displacement equa-

tion (3), with Q = 57 and © = S_4, it follows that Cy satisfies
00y — €101 = Ay BY

where {2; and ©; are the leading principal submatrices of PTQP~ and QOQT respec-
tively, and A; and B contain the first m rows of PT A and Q7 B respectively.
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Thus the matrix 01_1 has entries

T,
(15) crt=- ( = ) ,
0 —wj 1<ij<n

where 6; and @; are the elements of © and 2 that appear in ©; and £2; respectively
and, from (5), the vectors I and w]»T are rows of X7 and W; defined as

(16) C1 X, = Ay, Wwlc, =BT,

Computing X; and W; costs O(m?) operations, given the factorization of Cy and the
matrices A; and Bj.

4.3. Applying the preconditioner. Let r be a vector of length m and assume
that no pivoting was done when C was factored. Heinig [17] states that C7'r may
be written as

Crlr=>" —=(X1); - (Co(W); - 7)

j=1

where (X1); is the jth column of X1, (W7); is the jth column of W1, and C is the

Cauchy matrix Cy = ( . The notation - denotes the componentwise

bimw; ) 1< j<m
product of two vectors.

Fast multiplication by the matrix Cy requires finding the coefficients of a polyno-
mial whose roots are the elements of ©; and @ [6], and this process can be unstable.
To avoid this difficulty, realizing that the elements of S_; and S; are roots of unity,
we extend Cy to a matrix of size n x n satisfying the displacement equation (2) with
Q = S5_; and © = 57, and we develop a mathematically equivalent algorithm for

computing s = C’l_lr:

Algorithm 2: Forming s = C] 'r

Set s = 0.

For j=1,...,¢ do

. Compute # = W; - r.

. Extend 7 by zeros so that 7 is of length n.
. Set 7 — C’()?2

. Truncate 7 to length m.

.Set s=s54 X; - 7.

QU W N —

The product C7*r can be computed similarly.

If pivoting was done during factorization, the vector # should be multiplied by @
after Step 2 and by P after Step 4.

This formulation allows C'l_lr to be computed in O(nlgn) operations in a stable
manner, using an observation of Finck, Heinig, and Rost [6] that any Cauchy-like
matrix can be factored as

(17) Co = diag(h(61),...,h(0,)) ' V(O)HV (w)7,
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F1G. 2. Uncontaminated data vector (left) and exact solution vector (right) for Example 1.

minimum achieved
m | rel. error at iter.
0 213 %1071 76

27 | 2.13 x 1071 3
39 | 2.17 x 1071
42 1 212 x 1071
43 |1 2.02 x 1071
44 | 277 x 1071
45 | 2.76 x 1071

TaBLE 1
Minimum relative errors achieved for various values of m, Ezample 1.

Y 0| ~I| O O =

where V(w) and V(@) are the Vandermonde matrices whose second columns contain
the diagonal elements of €2 and O, respectively. The matrix H is a Hankel matrix,
i.e., one in which elements on the antidiagonals are constant. The first row is equal
to the coefficients of the polynomial h(u) = [];_, (u — w;) except for the leading one.
Since, from Property 3, € and © contain roots of unity, products of the matrix Cy
with a vector are very simple to compute:
e h(u) = u”™ — 1, so H has a single non-zero diagonal extending south-west to
north-east.
e V(w)T is F, the normalized, discrete, inverse Fourier Transform matrix.
e V() is the matrix product F' Sy, where the diagonal matrix Sy is defined in
Property 3.
Thus products Cp# can be computed stably in O(nlgn) operations. Since £ = 2 at
most, the preconditioner can be applied to a vector in O(nlgn) operations, provided
one knows X and W. This is the same order as the number of operations to apply
C to a vector, since C' = PFTS;F*Q and the product of a Toeplitz matrix with a
vector can be computed in O(n lgn) operations by embedding the matrix in a circulant
matrix [2]. Thus, each iteration of CGLS costs O(nlgn) operations.
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F1G. 4. Relative error in computed solution for m = 0, m = 27, and m = 43, Ezample 1.
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F1a. 5. Singular values of C (solid line) and M—1C (x’s) for Ezample 1, m = 43.
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5. Numerical results. In this section we summarize results of our algorithm
on three test problems using Matlab and TEEE floating point double precision arith-
metic. Our measure of success in filtering noise is the relative error, the 2-norm of
the difference between the computed estimate f and the vector f corresponding to
zero noise, divided by the 2-norm of f In each case, we apply the CGLS itera-
tion with Cauchy-like preconditioner of size m. The value m = 0 corresponds to no
preconditioning.

5.1. Signal processing example. As mentioned in the introduction, Toeplitz
matrices often arise in the signal processing (1-dimensional image reconstruction prob-
lems). As an example, we consider the 100 x 100 Toeplitz matrix 7" whose entries are

defined by

o[ Eelai—py) ifli-jl<s,
I 0 otherwise,
where
41
(€7} BZ 5_1a ? 1a2a 100a
and

1 72
60 = gomgespl— ). =015

This matrix is the one used in Example 4 of [2]. The authors note that such matrices
may occur in image restoration contexts as “prototype problems” and are used to
model certain degradations in the recorded image.

The condition number of T is approximately 2.4 x 10°. We wish to solve the
equation T'f = ¢ where g denotes the noisy data vector for which [|el|2/[|g||2, the
noise level, is about 1073, The uncorrupted data, §, and exact numerical solution, f,
are displayed in Figure 2'. The Fourier coefficients of g are shown in Figure 3. Using
these coefficients, an appropriate cutoff value m was determined as explained in §4.1.

The solid line in Figure 4 shows the convergence of CGLS on the unpreconditioned
Toeplitz system, where the ring on the line indicates the iteration at which the minimal
value of the relative error, 2.13 x 10!, was achieved. Convergence of CGLS on the
preconditioned system involving the Cauchy-like matrix is also shown in Figure 4 for
two different values of m. Table 1 gives an idea of the sensitivity of the algorithm
to the choice of m, with m = 43 being optimal in the sense of achieving minimal
relative error among all choices of preconditioner. The number of iterations for the
preconditioned system is substantially less than for the unpreconditioned.

The singular values of T" and of the preconditioned matrix M ~1C for m = 43 are
shown in Figure 5. As predicted by the theory in Section 3.3, the first 43 singular
values of M ~1C are clustered very tightly around one and the smallest singular values
have been left virtually untouched.

5.2. Phillips test problem. Next we consider the discretized version of the
well-known first-kind Fredholm integral equation studied by D.L. Phillips [23]. The

1 We first determined f using Matlab’s square function, f = square(2mv x.3) with v = [0:.1:9.9],
then computed § = T'f.
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value

0.18

0.16

0.14

0.12

0.08

0.06

solution

T 60 T T

FiG. 7. Fourier coefficients of the noisy data for Example

minimum achieved
m | rel. error at iter.

0 | 5.71 x 1072 293

34 | 5.64 x 10~2 53

48 | 4.68 x 1072 26

52 | 4.21 x 1072 16

56 | 3.01 x 10~2 11

Minimum relative

58 | 3.05 x 10~2 9
68 | 5.53 x 1072 10
TABLE 2

errors achieved for various values of m, Frample 2.
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relative error

- -
|
= -
I unpreconditioned
[ -
L —~ N MmM=17
. m=58 — 7\
J o
I~ ~ <
;7
N
L L L L L
o 50 100 150 200 250 300

iteration

Fi1Gc. 8. Relative error in computed solution for m = 0, m = 17, and m = 58, Ezample 2.

. . . . . .
(o] 50 100 150 200 250 300 350 400
index

F1a. 9. Singular values of C (solid line) and M~1C (x’s) for Example 2, m = 58
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value

rhs solution
T

value
(o]
T

index index

F1G. 10. Uncontaminated data vector (left) and exact solution vector (right) for Example 3.

kernel of the integral equation is given by #(«, 3) = ¢(av — 3) where ¢ is defined by

[ T4cos(E) |vl<3
¢()_{0 ’ Iy >3

and the limits of integration are -6 and 6. We used Hansen’s Matlab Regularization
Toolbox, described in [15],to generate the corresponding 400 x 400 symmetric Toeplitz
matrix whose condition number was approximately 1 x 10%. In this code, the integral
equation is discretized by the Galerkin method with orthonormal box functions. The
uncorrupted data vector is shown in Figure 62. The noise level was 1 x 1072 for this
problem.

It was difficult to determine the appropriate cutoff value m, as Figure 7 indi-
cates, but Table 2 and Figure 8 show that the savings in the number of iterations to
convergence can be substantial. In addition, for several values of m, the minimum
relative error is somewhat lower than the minimum obtained for the unpreconditioned
problem. For example, after 293 iterations, CGLS on the unpreconditioned problem
achieved a minimum relative error of 5.71 x 1072, For m = 58, however, a minimum
relative error of 3.05 x 102 was reached in only 9 iterations.

Figure 9 illustrates that, as in Example 1, the first m singular values of the
preconditioned matrix are clustered around one and the singular values corresponding
to the noise subspace remain almost unchanged.

5.3. Non-symmetric example. Finally, since both previous examples involve
symmetric Toeplitz matrices, for our third example we chose to work with the 100x 100
matrix 7' whose first column is defined by

[6°,6%...,6%0,...,0"

and whose first row 1s

{50,51,522, 60, .,o}

2 We set § = [s,s,5,s] with s = (é(v, =1))? + (¢#(v,1))? where v = [=5: 0.1:4.9] and ¢(v,\) =

2 ~
\/12—Treacp(jv2—_>‘L). Then f was taken to be the exact numerical solution of the problem.
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value

relative ermor

120 T T T T T T T T T

50 60 70 80 Q0 100
index

Fi1G. 11. Fourter coefficients of the noisy data for Example 3.

minimum achieved
m | rel. error at iter.
0 | 2.81x 102 86
25 | 2.81 x 102 32
30 | 2.81x 1072 28
37 | 2.80 x 10~2 23
42 ] 2.80 x 1072 21
46 | 2.78 x 1072 22
50 | 2.83 x 1072 24
62 | 3.89 x 10~2 9

TABLE 3
Minimum relative errors achieved for various values of m, Ezample 3.

o

10 - T T T T T T T T .
| ]
3 I ]
t | 4
|
,\l‘l | 4
L | 4
| |
[ \\ unpreconditioned | b
\\ |
10 M I =
[ / ]
Fooon ]
[ m=25 7/ 4
Loy \ Vi 4
Loy N / 4
r - T T I T T e m L S T T === — B
m=46
102 . . . . . . . . .
o 10 20 30 40 50 60 70 80 Q0 100

iteration

Fi1c. 12. Relative error in computed solution for m =0, m = 25, and m = 46, Example 3.

17



valug
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io 20 30 40 50 60 70 80 90 100
index

F1a. 13. Singular values of C (solid line) and M~1C (X ’s) for Ezample 3, m = 43.

with 6 = .87

The condition number of T is approximately 5.31 x 10'' making it the worst
conditioned of the three matrices. We first defined the exact solution shown in Figure
103. The uncorrupted data was obtained by calculating § = Tf, and is also shown
in Figure 10. White noise was added to § to obtain the noisy data whose Fourier
coefficients are shown in Figure 11, where the noise level was determined to be 1x1073.

As Figure 12 indicates, the minimum relative error obtained with no precondi-
tioning was 2.13 x 107! in 76 iterations. For values of m close to 40, however, the
preconditioned system converges in fewer than 10 iterations to the same or better
minimum relative error. We also observe from Figure 13 that in addition to cluster-
ing the first m singular values around one, preconditioning has the benefit of reducing
the condition number.

6. Conclusions. We have developed an efficient algorithm for computing regu-
larized solutions to ill-posed problems with Toeplitz structure. This algorithm makes
use of an orthogonal transformation to a Cauchy-like system and iterates using the
CGLS algorithm preconditioned by a rank-m partial factorization with pivoting. By
exploiting properties of the transformation, we showed that each iteration of CGLS
costs only O(nlgn) operations for a system of n variables.

Our theory predicts that for banded Toeplitz matrices we can expect the precon-
ditioner determined in the course of Gu’s fast modified complete pivoting algorithm
to cluster the largest singular values of the preconditioned matrix around one, keep
the smallest singular values small, and not mix the signal and noise subspaces. Thus
CGLS produces a good approximate solution within a small number of iterations.
Our results illustrate the effectiveness of our preconditioner for an optimal value of
m, and for values in a neighborhood of the optimal one. Hence, our algorithm is both
efficient and practical.

Determining the optimal value of m can be difficult, and it appears better to
underestimate the value rather than to overestimate it. Advances in computing truly
rank-revealing factorizations of Cauchy-like matrices will yield corresponding advances
in our algorithm.

> f = sin([1:0.1:11]2 . 22,
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Similar ideas are valid for preconditioners of the form

Gy
Cs
I

where C and C are both Cauchy-like. In practice, C5 can be determined by com-
puting a partial factorization of the trailing submatrix of C', remaining after C7 is
removed. This method saves time in the precomputation of M but more iterations
may be required for convergence.

In future work, we plan to study the use of Cauchy-like preconditioners for two
dimensional problems, in which 7" is block Toeplitz with Toeplitz blocks, and for other
matrices related to Cauchy-like matrices.
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