
PIVOTED CAUCHY-LIKE PRECONDITIONERS FORREGULARIZED SOLUTION OF ILL-POSED PROBLEMS�MISHA E. KILMERy AND DIANNE P. O'LEARYzAbstract. Many ill-posed problems are solved using a discretization that results in a leastsquares problem or a linear system involving a Toeplitz matrix. The exact solution to such problemsis often hopelessly contaminated by noise, since the discretized problem is quite ill-conditioned,and noise components in the approximate null-space dominate the solution vector. Therefore weseek an approximate solution that does not have large components in these directions. We use apreconditioned conjugate gradient algorithm to compute such a regularized solution. An orthogonalchange of coordinates transforms the Toeplitz matrix to a Cauchy-like matrix, and we choose ourpreconditioner to be a low rank Cauchy-like matrix determined in the course of Gu's fast modi�edcomplete pivoting algorithm. We show that if the kernel of the ill-posed problem is smooth, thenthis preconditioner has desirable properties: the largest singular values of the preconditioned matrixare clustered around one, the smallest singular values, corresponding to the noise subspace, remainsmall, and the signal and noise spaces are relatively unmixed. The preconditioned algorithm costsonly O(n lgn) operations per iteration for a problem with n variables. The e�ectiveness of thepreconditioner for �ltering noise is demonstrated on three examples.Key words. Regularization, ill-posed problems, Toeplitz, Cauchy-like, preconditioner, conju-gate gradient, least squaresAMS(MOS) subject classi�cations. 65R20, 45L10, 94A12September 3, 19961. Introduction. In �elds such as seismography, tomography, and signal pro-cessing, the process describing the acquisition of data can often be described by anintegral equation of the �rst kindZ �up�lo t(�; �)f̂ (�)d� = ĝ(�);where t denotes the kernel, f̂ the unknown input function, and ĝ the output. Whenit is appropriately discretized, the equation becomes a system of n linear equations ofthe form T f̂ = ĝ:In applications, properties of the kernel and the discretization process often cause Tto have a Toeplitz structure; that is, tij = ti�j for 1 � i; j � n, and T is thereforeconstant along diagonals.The discrete inverse problem is to recover f̂ , given ĝ and T . However, the con-tinuous problem is generally ill-posed: i.e. small changes in ĝ cause arbitrarily largechanges in f̂ . This is reected in the discrete problem by ill-conditioning in the ma-trix T . The recovery of f̂ then becomes a delicate matter since the recorded data will� This work was supported by the National Science Foundation under Grant CCR 95-03126.y Applied Mathematics Program, University of Maryland, College Park, MD 20742(mek@math.umd.edu)z Department of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742 (oleary@cs.umd.edu).1



likely have been contaminated by noise e. In this case, we have measured g ratherthan ĝ, where T f̂ + e = ĝ + e = g:(1)Due to the ill-conditioning of T and the presence of noise, exact solution of the linearsystem will not lead to a reasonable approximation of f̂ . Rather, regularization isneeded in order to compute an approximate solution f . Regularization can be thoughtof as exchanging the original, ill-posed problem for a more well-posed problem whosesolution approximates the true solution. Many regularization methods, both directand iterative, have been discussed in the literature; see, for example, [12, 15, 9, 5]. Inthis paper we will primarily be concerned with regularization via conjugate gradientiterations [7, 22, 29], where the regularization parameter is the number of iterations.Toeplitz matrices have several properties convenient for iterative methods likeconjugate gradients: multiplication of a Toeplitz matrix times a vector can be done inO(n lgn) operations, and circulant preconditioners can be quite e�cient [25, 3]. Thereare some di�culties, though. The inverse of a Toeplitz matrix does not generally haveToeplitz structure, and the fast factorization algorithms for Toeplitz matrices canrequire as much as O(n3) ops if pivoting is used to improve stability; see [27, 11, 4],for example.To overcome these di�culties, we make use of the fact that Toeplitz matrices arerelated to Cauchy-likematrices by fast orthogonal transformations [17, 8, 10]. Cauchy-like matrices, discussed in detail in x2, permit fast matrix-vector multiplication. But,in contrast to Toeplitz matrices, the inverse of a Cauchy-like matrix is Cauchy-like,and complete pivoting can be incorporated in its LDU factorization at a total cost ofO(n2).The focus of this paper is the development of a Cauchy-like preconditioner thatcan be used to accelerate convergence of the conjugate gradient iteration to a �lteredapproximate solution of a problem involving a Toeplitz matrix. The regularizingproperties of conjugate gradients and our choice of preconditioner are discussed in x3.Each iteration of our algorithm takes O(n lgn) operations, and computational issuesare discussed in x4. Section 5 contains numerical results and x6 presents conclusionsand future work.2. Transformation from Toeplitz to Cauchy-like structure. A Cauchy-like, or generalized Cauchy, matrix C has the formC = � aTi bj!i � �j�1�i;j�n (ai; bj 2 C`�1;!i; �j 2 C):(2)It can also be de�ned as the unique solution of the displacement equation
C � C� = ABT(3)where
 = diag(!1; : : : ; !n);� = diag(�1; : : : ; �n); A = 0B@ aT1...aTn 1CA ; B = 0B@ bT1...bTn 1CA :The pair (A;B) is the generator of C with respect to 
 and �, and ` � n is calledthe displacement rank. For the matrices and displacement equations of interest here,` = 1 or 2 [8].We exploit three important properties of Cauchy-like matrices.2



Property 1. Row and column permutations of Cauchy-likematrices are Cauchy-like, as are leading principal submatrices.This property allows pivoting in fast algorithms for factoring Cauchy-like matrices[17, 8].Property 2. The inverse of a Cauchy-like matrix is Cauchy-like:C�1 = �� xTi wj�i � !j�1�i;j�n (xi; wj 2 C`�1):(4) Heinig [17] gives an O(n lg2 n) algorithm to compute X (with rows xTi ) and W(with rows wTi ) given A, B, �, and 
, and explains how, using the FFT, a systeminvolving a Cauchy-like matrix can be solved in O(n lg2 n). However, the algorithmis very fragile. It can be unstable for large values of n and, even when used on a wellconditioned matrix, may require pivoting to maintain stability [18, 1]. Alternatively,X and W can be determined from the relationsCX = A; WTC = BT :(5) The third important property is that Toeplitz matrices also satisfy certain dis-placement equations [21, 8] which allow them to be transformed via fast Fouriertransforms into Cauchy-like matrices [17, 8]:Property 3. Every Toeplitz matrix T satis�es an equation of the formR1T � TR�1 = ABT(6)where A 2 Cn�`, B 2 Cn�`, andR� = 0BBBBBB@ 0 0 : : : 0 �1 0 � � � � � � 00 1 . . . ...... . . . . . . ...0 � � � 0 1 0 1CCCCCCA :The Toeplitz matrix T is orthogonally related to a Cauchy-like matrixC = FTS�0F �that satis�es the displacement equationS1C � CS�1 = (FA)(BTS�0F �) ;(7)where S1 = diag(1; e 2�in ; : : : ; e 2�in (n�1));S�1 = diag(e�in ; : : : ; e (2n�1)�in );S0 = diag(1; e�in ; : : : ; e�in (n�1));and F is the normalized inverse discrete Fourier transform matrix de�ned byF = 1pn �exp�2�in (j � 1)(k � 1)��1�j;k�n :3



Gohberg, Kailath, and Olshevsky [8] suggest a stable O(`n2) partial pivotingalgorithm to factor C = PLU . Sweet and Brent [26] show, however, that elementgrowth in this algorithm depends not only on the magnitude of L and U , but on thegenerator for the Cauchy-like matrix. For our test matrices, partial pivoting alonedid not provide the rank revealing information that we need.Gu [10] presents an algorithm that can perform a fast O(`n2) variation of LUdecomposition with complete pivoting. Recall that in complete pivoting, at everyelimination step one chooses the largest element in the current submatrix as thepivot in order to reduce element growth. Gu proposes instead that one �nd an entrysu�ciently large in magnitude by considering the largest 2-norm column of �A �BTcorresponding to the part that remains to be factored at each step. This algorithmcomputes the factorization C = PLUQ [10, Alg. 2] using only the readily determinedgenerators (see x4), and Gu shows that it is e�cient and numerically stable, providedthat element growth in the computed factorization is not large. For our purposes itwas convenient to set D = diag(u11; : : : ; unn) and U  D�1U to obtain the equivalentfactorization C = PLDUQ.3. Regularization and preconditioning. If we wanted to solve the linear sys-tem Tf = g exactly, we would be �nished: using the transformation to Cauchy-likeform and the fast factorization algorithms described above, computing this solutionwould be an easy task. But the solution we seek is an approximate one, having noise�ltering properties, so we choose to use an iterative method called CGLS which, inconjunction with an appropriate preconditioner, produces suitably �ltered solutions.Three assumptions will guide our analysis:1. The matrix T has been normalized so that its largest singular value is of order1.2. The uncontaminated data vector ĝ satis�es the discrete Picard condition; i.e.,the spectral coe�cients of ĝ decay in absolute value like the singular values[30, 14].3. The additive noise is zero-mean white Gaussian. In this case, the componentsof the error e are independent random variables normally distributed withmean zero and variance �2.We need to de�ne the signal and noise subspaces. Using (1), let T = �U��V T bethe singular value decomposition of T , and expand the data and the noise in the basiscreated by the columns of �V :̂g = nXi=1 ̂ivi; e = nXi=1 �ivi;with ̂ = �V T ĝ and � = �V T e. Under the white noise assumption, the coe�cients �iare roughly constant in size, while the discrete Picard condition tells us that the ̂igo to zero at least as fast as the singular values �i. Thus, components for which ̂iis of the same order as �i are obscured by noise. Let m be such that ĵij � j�ij fori = 1 : : :m and ĵij � j�ij or ĵij < j�ij for i = �m + 1 : : :n. Then we say that thelast n � �m columns of �V span the noise subspace, while the other columns span thesignal subspace. The basis for the signal subspace is further partitioned into the �rstm columns and the remaining �m�m, which correspond to a transition subspace thatis generally di�cult to resolve unless there is a gap in the singular value spectrum.3.1. Regularization by preconditioned conjugate gradients. The stan-dard conjugate gradient (CG) method [19] is an iterative method for solving systems4



of linear equations for which the matrix is symmetric positive de�nite. If the ma-trix is not symmetric positive de�nite, one can use a variant of standard CG whichsolves the normal equations in factored form. We refer to the resulting algorithm asCGLS [19]. If the discrete Picard condition holds, then CGLS acts as an iterativeregularization method with the iteration index taking the role of the regularizationparameter [7, 13, 15]. Convergence is governed by the spread and clustering of thesingular values [28]. Therefore, preconditioning is often applied in an e�ort to clusterthe singular values, thus speeding convergence.In the context of an ill-conditioned matrix T , we require a preconditioner forCGLS which clusters the largest m singular values while leaving the small singularvalues, and with them, the noise subspace, relatively unchanged. In this case, the �rstfew iterations of CGLS will quickly capture the solution lying within the subspacespanned by the �rst m columns of V . A modest number of subsequent iterations willprovide improvement over the transition subspace, without signi�cant contaminationfrom the noise subspace.3.2. The preconditioner. Given the Toeplitz matrix T , let ~C = FTS�0F � beits corresponding Cauchy-like matrix. Solving Tf = g is then equivalent to solving~CFS0f = Fg:Note that since F and S0 are unitary matrices, then~C = (F �U)��V T (S�0F �);that is, T = �U��V T and ~C have the same singular values, and there is no mixing ofsignal and noise subspaces.A factorization of ~C using a modi�ed complete pivoting strategy may lead to aninterchange of rows (speci�ed by a permutation matrix P ) and columns (speci�ed bya permutation matrix Q). Setting C = PT ~CQT , y = QFS0f , and z = PTFg, theproblem we wish to solve is Cy = z:(8)We choose a preconditioner M for the left so thatM�1Cy = M�1zand apply CGLS to the corresponding normal equations(M�1C)�(M�1C)y = (M�1C)�M�1z:(9) Our choice of preconditioner M is derived from the leading m �m submatrix ofGu's modi�ed complete pivoting LDU factorization of the matrix C as follows. LetC = LDU and write this equation in block form, where the upper left blocks arem �m: � C1 C2C3 C4 � = � L1 0L2 L3 �� D1 00 D2 � � U1 U20 U3 � :(10)Here L1; L3 are lower triangular, U1; U3 are upper triangular, and D1 and D2 arediagonal. We choose as our preconditioner the matrixM = � L1 00 I � � D1 00 I � � U1 00 I � = � C1 00 I � :5



3.3. Properties of the preconditioner. We begin with some theorems aboutthe clustering of the singular values of M�1C. It is useful to decompose the matrix(M�1C)�(M�1C) into the matrix sum� I C�11 C2(C�11 C2)� (C�11 C2)�(C�11 C2) � + � C�3C3 C�3C4C�4C3 C�4C4 � � E1 +E2(11)using the block partitioning of the previous section.Let �i be the sum of the absolute values of the entries in row i of C�11 C2, let �maxbe the largest of these quantities, and let ŝ be the largest such row sum for E2. Thecase of interest to us is when these quantities are reasonably small.We denote the k-th largest singular value of a matrix Z by �k(Z), and the k-thlargest eigenvalue by �k(Z).Theorem 3.1. If kC�11 C2k2 < 1 then the m largest singular values of M�1C liein the interval �1;p1 + �max + ŝ� .Proof: The upper bound can be obtained by applying Gershgorin's theorem[24][IV.2.1] to bound the eigenvalues of the matrix (M�1C)�(M�1C), and then takingsquare roots. The lower bound is somewhat more interesting.The matrices E1 and E2 are Hermitian positive semide�nite, and from the repre-sentationsE1 = � I 0(C�11 C2)� 0 � � I (C�11 C2)0 0 � and E2 = � C�3 0C�4 0 � � C3 C40 0 � ;it is clear that they have rank at most m and n�m, respectively.By Corollary IV.4.9 [24], we know that�i(E1) � �i((M�1C)�(M�1C))(12)We need to show that �k(E1) � 1. If Y1 and Y2 are two n�nmatrices and the rankof Y2 is n�m then a theorem of Weyl [20, Thm. 3.3.16] implies �n(Y1+Y2) � �m(Y1).Now set Y1 = � I C�11 C20 0 � ; Y2 = � 0 �C�11 C20 I � ;and notice that the eigenvalues of E1 are the squares of the singular values of Y1. ButY1+Y2 is the n�n identity matrix, so by Weyl's result we obtain �m(Y1) � 1. Thus,�i(E1) � 1 for i = 1; : : : ;m and our conclusion follows from (12). 2We now study the extent to which preconditioning by M mixes the signal andnoise subspaces.Theorem 3.2. Let k be the dimension of the noise subspace and letC = [Q1Q2Q3]24 �1 0 00 �2 00 0 �3 3524 V �1V �2V �3 35 ;M�1C = hQ̂1 Q̂2 Q̂3i24 �̂1 0 00 �̂2 00 0 �̂3 3524 V̂ �1̂V �2̂V �3 35be singular value decompositions with V3; V̂3 2 Cn�k and V1; V̂1 2 Cn�m. ThenkV �1 V̂3k2 � �̂n�k+1�m maxf1; kC1k2g:6



Proof: Using the decompositions we haveV �1 V̂3 = (V �1 C�1)M (M�1CV̂3)= ��11 Q�1MQ̂3�̂3:Since Q1 and Q̂3 have orthonormal columns, it follows thatkV1V̂3k2 � �̂n�k+1�m kMk2 = �̂n�k+1�m (maxf1; kC1k2): 2Next we show that �̂j � �j for �j corresponding to the noise subspace, and thus�̂n�k+1 is small. Thus, if C1 is well-conditioned, then we are guaranteed that thesignal and noise subspaces remain unmixed.Theorem 3.3. The (m+i)th singular value of each of the matrices C andM�1Clies in the interval [0; �i(E2)], for i = 1; : : : ; n�m.Proof: Two theorems due to Weyl for Hermitian matrices Z, Y1, and Y2 withZ = Y1 + Y2 say �k+j�1(Z) � �k(Y1) + �j(Y2) [24, p.210] and�n(Y2) + �k(Y1) � �k(Z) [24, Cor. IV.4.9] :Now from the decomposition in Equation (11), we see �n(E2) = 0 and �m+1(E1) =0, and thus 0 � �m+i((M�1C)�(M�1C)) � �m+1(E1) + �i(E2) = �i(E2)for i = 1; : : : ; (n�m).Also, C�C = � C�1 0C�2 0 � � C1 C20 0 �+E2:We therefore likewise obtain 0 � �m+i(C�C) � �i(E2):The proof is completed by taking square roots. 2These theorems show that the preconditioner will be e�ective if C1 is well-conditioned and if the row sums of C�11 C2 and E2 are small. We now discuss towhat extent these conditions hold for integral equation discretizations.Property 4. Let ~C be a Cauchy-like matrix corresponding to a real Toeplitzmatrix T that results from discretization of a smooth kernel t, normalized so thatthe maximum element of T is one. Then for n su�ciently large, there exists � � 1and m� n such that all elements of ~C are less than � in magnitude except for thoselocated in four corner blocks of total dimension m �m.To understand why this is true, recall that if ~A and ~B are the generators of ~C,where ~G = ~A ~BT , the magnitude of the (k; j)-entry of ~C is j ~Ckjj = j~aTk~bjjj!k��jj . Thus thelargest entries in ~C appear where the numerator is large or the denominator is small.7
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away from the corners. Thus ~C can be permuted to contain the large elements inthe upper left block, and any pivoting strategy that produces such a permutation willgive a suitable preconditioner for our scheme.We have observed that if Gu's algorithm is applied to a matrix with this structure,then C1 will contain the four corner blocks. The interested reader is referred to [10]for details on the complete pivoting strategy, but the key fact is that Gu makes hispivoting decisions based on the size of elements in the generator �A �BT correspondingto the block that remains to be factored. The resulting Cauchy-like preconditionerC1 for the matrix C then has the properties that the �rst m singular values of thepreconditioned matrix are clustered, and that the invariant subspace correspondingto small singular values of C is not much perturbed. Thus we expect that the initialiterations of CGLS will produce a solution that is a good approximation to the noise-free solution.4. Algorithmic issues. Our algorithm is as follows:Algorithm 1: Solving Tf = g1. Compute the generators for the matrix ~C = FTS�0F � using (13)and (14).2. Determine an index m to de�ne the size of the partial factorizationof ~C and factor ~C = PLDUQ.3. Set C = PT ~CQT and z = P TFg:4. Determine the m � m leading principal submatrix, C1; of C andlet M = � C1 00 I � : (See (10).)5. Compute an approximate solution ~y to M�1Cy = M�1z using afew steps of CGLS.6. The approximate solution in the original coordinate system isf = S�0F �QT ~y.When to stop the CGLS iteration in order to get the best approximate solutionis a well-studied but open question (for instance, see [16] and the references therein).We do not solve this problem, but we consider the other algorithmic issues in thefollowing subsections.4.1. Determining the size of C1. The choice of the parameter m determinesthe number of clustered singular values in the preconditioned system. It inuencesthe amount of work per iteration, but perhaps more importantly, the mixing of signaland noise subspaces. We use a simple heuristic in our numerical experiments. Wecompute the Fourier Transform of the data vector ĝ and determine the index m forwhich the Fourier coe�cients start to level o�. This is presumed to be the noise level,and the factorization is truncated here.4.2. Computing the preconditioner. Since ~C satis�es the displacement equa-tion (3), with 
 = S1 and � = S�1, it follows that C1 satis�es
1C1 � C1�1 = A1BT1 ;where 
1 and �1 are the leading principal submatrices of PT
P and Q�QT respec-tively, and A1 and B1 contain the �rst m rows of P T ~A and QT ~B respectively.9



Thus the matrix C�11 has entriesC�11 = � xTi wj~�i � ~!j!1�i;j�n ;(15)where ~�i and ~!j are the elements of � and 
 that appear in �1 and 
1 respectivelyand, from (5), the vectors xTi and wTj are rows of X1 and W1 de�ned asC1X1 = A1; WT1 C1 = BT1 :(16)ComputingX1 and W1 costs O(m2) operations, given the factorization of C1 and thematrices A1 and B1.4.3. Applying the preconditioner. Let r be a vector of length m and assumethat no pivoting was done when ~C was factored. Heinig [17] states that C�11 r maybe written as C�11 r = X̀j=1�(X1)j � (C0(W1)j � r)where (X1)j is the jth column of X1, (W1)j is the jth column of W1, and C0 is theCauchy matrix C0 = � 1�i�!j �1�i;j�m. The notation � denotes the componentwiseproduct of two vectors.Fast multiplication by the matrix C0 requires �nding the coe�cients of a polyno-mial whose roots are the elements of �1 and 
1 [6], and this process can be unstable.To avoid this di�culty, realizing that the elements of S�1 and S1 are roots of unity,we extend C0 to a matrix of size n� n satisfying the displacement equation (2) with
 = S�1 and � = S1, and we develop a mathematically equivalent algorithm forcomputing s = C�11 r: Algorithm 2: Forming s = C�11 rSet s = 0.For j = 1; : : : ; `, do1. Compute r̂ = Wj � r.2. Extend r̂ by zeros so that r̂ is of length n.3. Set r̂ C0r̂.4. Truncate r̂ to length m.5. Set s = s+Xj � r̂.The product C��1 r can be computed similarly.If pivoting was done during factorization, the vector r̂ should be multiplied by Qafter Step 2 and by P after Step 4.This formulation allows C�11 r to be computed in O(n lgn) operations in a stablemanner, using an observation of Finck, Heinig, and Rost [6] that any Cauchy-likematrix can be factored asC0 = diag(h(�1); : : : ; h(�n))�1V (�)HV (!)T ;(17) 10



20 40 60 80 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

index

va
lue

rhs

20 40 60 80 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

index

va
lue

solution

Fig. 2. Uncontaminated data vector (left) and exact solution vector (right) for Example 1.minimum achievedm rel. error at iter.0 2:13� 10�1 7627 2:13� 10�1 3139 2:17� 10�1 942 2:12� 10�1 643 2:02� 10�1 744 2:77� 10�1 845 2:76� 10�1 5Table 1Minimum relative errors achieved for various values of m, Example 1.where V (!) and V (�) are the Vandermonde matrices whose second columns containthe diagonal elements of 
 and �, respectively. The matrix H is a Hankel matrix,i.e., one in which elements on the antidiagonals are constant. The �rst row is equalto the coe�cients of the polynomial h(u) = Qni=1(u� !i) except for the leading one.Since, from Property 3, 
 and � contain roots of unity, products of the matrix C0with a vector are very simple to compute:� h(u) = un � 1, so H has a single non-zero diagonal extending south-west tonorth-east.� V (!)T is F , the normalized, discrete, inverse Fourier Transform matrix.� V (�) is the matrix product FS0, where the diagonal matrix S0 is de�ned inProperty 3.Thus products C0r̂ can be computed stably in O(n lgn) operations. Since ` = 2 atmost, the preconditioner can be applied to a vector in O(n lgn) operations, providedone knows X and W . This is the same order as the number of operations to applyC to a vector, since C = PFTS�0F �Q and the product of a Toeplitz matrix with avector can be computed inO(n lgn) operations by embedding the matrix in a circulantmatrix [2]. Thus, each iteration of CGLS costs O(n lgn) operations.11
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5. Numerical results. In this section we summarize results of our algorithmon three test problems using Matlab and IEEE oating point double precision arith-metic. Our measure of success in �ltering noise is the relative error, the 2-norm ofthe di�erence between the computed estimate f and the vector f̂ corresponding tozero noise, divided by the 2-norm of f̂ . In each case, we apply the CGLS itera-tion with Cauchy-like preconditioner of size m. The value m = 0 corresponds to nopreconditioning.5.1. Signal processing example. As mentioned in the introduction, Toeplitzmatrices often arise in the signal processing (1-dimensional image reconstruction prob-lems). As an example, we consider the 100� 100 Toeplitz matrix T whose entries arede�ned by ti;j = � 451�(�i � �j) if ji� jj � 8;0 otherwise,where �i = �i = 4i51 ; i = 1; 2; : : :; 100;and �() = 12p�� exp(� 24�2 ); � = 0:15 :This matrix is the one used in Example 4 of [2]. The authors note that such matricesmay occur in image restoration contexts as \prototype problems" and are used tomodel certain degradations in the recorded image.The condition number of T is approximately 2:4 � 106. We wish to solve theequation Tf = g where g denotes the noisy data vector for which kek2=kĝk2, thenoise level, is about 10�3. The uncorrupted data, ĝ, and exact numerical solution, f̂ ,are displayed in Figure 21. The Fourier coe�cients of g are shown in Figure 3. Usingthese coe�cients, an appropriate cuto� value m was determined as explained in x4.1.The solid line in Figure 4 shows the convergence of CGLS on the unpreconditionedToeplitz system, where the ring on the line indicates the iteration at which the minimalvalue of the relative error, 2:13� 10�1, was achieved. Convergence of CGLS on thepreconditioned system involving the Cauchy-like matrix is also shown in Figure 4 fortwo di�erent values of m. Table 1 gives an idea of the sensitivity of the algorithmto the choice of m, with m = 43 being optimal in the sense of achieving minimalrelative error among all choices of preconditioner. The number of iterations for thepreconditioned system is substantially less than for the unpreconditioned.The singular values of T and of the preconditioned matrixM�1C for m = 43 areshown in Figure 5. As predicted by the theory in Section 3.3, the �rst 43 singularvalues ofM�1C are clustered very tightly around one and the smallest singular valueshave been left virtually untouched.5.2. Phillips test problem. Next we consider the discretized version of thewell-known �rst-kind Fredholm integral equation studied by D.L. Phillips [23]. The1 We �rst determined f̂ using Matlab's square function, f̂ = square(2�v � :3) with v = [0: :1:9:9],then computed ĝ = T f̂. 13
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Fig. 10. Uncontaminated data vector (left) and exact solution vector (right) for Example 3.kernel of the integral equation is given by t(�; �) = �(�� �) where � is de�ned by�() = � 1 + cos(�3 ) jj < 30 jj � 3and the limits of integration are -6 and 6. We used Hansen's Matlab RegularizationToolbox, described in [15],to generate the corresponding 400�400 symmetric Toeplitzmatrix whose condition number was approximately 1� 108. In this code, the integralequation is discretized by the Galerkin method with orthonormal box functions. Theuncorrupted data vector is shown in Figure 62. The noise level was 1� 10�2 for thisproblem.It was di�cult to determine the appropriate cuto� value m, as Figure 7 indi-cates, but Table 2 and Figure 8 show that the savings in the number of iterations toconvergence can be substantial. In addition, for several values of m, the minimumrelative error is somewhat lower than the minimumobtained for the unpreconditionedproblem. For example, after 293 iterations, CGLS on the unpreconditioned problemachieved a minimum relative error of 5:71� 10�2. For m = 58, however, a minimumrelative error of 3:05� 10�2 was reached in only 9 iterations.Figure 9 illustrates that, as in Example 1, the �rst m singular values of thepreconditioned matrix are clustered around one and the singular values correspondingto the noise subspace remain almost unchanged.5.3. Non-symmetric example. Finally, since both previous examples involvesymmetric Toeplitz matrices, for our third example we chose to work with the 100�100matrix T whose �rst column is de�ned by��0; �1; : : : ; �9; 0; : : : ; 0�Tand whose �rst row is h�0; �1; �22; : : : ; �162; 0; : : : ; 0i2 We set ĝ = [s; s; s; s] with s = (�(v;�1))2 + (�(v; 1))2 where v = [�5 : 0:1 : 4:9] and �(v; �) =1p2� exp(�(v��)22 ). Then f̂ was taken to be the exact numerical solution of the problem.16
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