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application to the problem of predicting brownout dust clouds that develop when rotor-

craft land over surfaces covered with loose sediment. A significant impediment in per-

forming such particle modeling simulations is the extremely large number of particles

needed to obtain dust clouds of acceptable fidelity. Computing the motion of each and

every individual sediment particle in a dust cloud (which can reach into tens of billions per

cubic meter) is computationally prohibitive. The reported work involved the development

of computationally efficient clustering algorithms that can be applied to the simulation of
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brownout conditions. It is shown that although clustering algorithms can be problem

dependent and have bounds of applicability, they offer the potential to significantly re-



duce computational costs while retaining the overall accuracy of a brownout dust cloud

solution.



EVALUATION OF PARTICLE CLUSTERING ALGORITHMS IN THE
PREDICTION OF BROWNOUT DUST CLOUDS

by

Bharath Madapusi Govindarajan

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2011

Advisory Committee:
Professor J. Gordon Leishman, Chair/Advisor
Professor Roberto Celi
Associate Professor James Baeder



Acknowledgments

A Masters degree is conferred upon one in an instant but takes a good few years

to work towards it. In this regard I would like to thank my advisor, Professor J. Gordon

Leishman, for granting me the opportunity to work under his guidance and for making it a

fun experience. It has been an absolute joy working for Dr. Leishman and I look forward

to working under his tutelage towards my doctoral degree.

I would also like to thank my committee members, Dr. Roberto Celi and Dr. James

Baeder for their valuable insights towards this project. I would also like to thank Dr. Nail

Gumerov from the computer science department for making me look at this problem from

a different light.

I would specially like to thank Monica Syal for guiding me both academically and

for making my transition into the United States a comfortable one. The lab would just

not have been the same if it were not for the “Team Leishman!” camaraderie and spirit. I

want to thank Ajay Baharani, Anish Sydney, Joe Milluzzo, Ben Hance, Joe Ramsey, Jaime

Reel, Juergen Raulerder, John Tritscheler, David Mayo and Mark Glucksman-Glaser for

making everyday a memorable one. Warm thanks to everyone in the “big-office” or the

“cube-farm” for all the wonderful times.

None of this would ever have seen the light of day had it not been for the unrelenting

support of my loving parents and sister. Words cannot express the deepest gratitude and

love I feel for them, hence I will leave it at a simple ‘Thank you for always being there’.

ii



Table of Contents

List of Tables vi

List of Figures vi

Nomenclature xii

1 Introduction 1

1.1 The Problem of Brownout . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Physics of Brownout . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Flow Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Dust Particle Dynamics . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Computational Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Flow Field Modeling . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Particle Physics Modeling . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 Eulerian Particle Models . . . . . . . . . . . . . . . . . . . . . . 18

1.3.4 Lagrangian Particle Tracking Models . . . . . . . . . . . . . . . 20

1.3.5 Reducing Computational Costs . . . . . . . . . . . . . . . . . . 22

1.3.6 Particle Clustering Techniques . . . . . . . . . . . . . . . . . . . 23

1.4 Objectives of the Present Work . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Methodology 28

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



2.2 Gaussian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 k-means Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Osiptsov’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Error Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Prototypical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.1 Particle Convection . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.2 Particle Bombardment on Bed . . . . . . . . . . . . . . . . . . . 45

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Results and Discussion 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Gaussian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Effect of Number of Particles per Cluster . . . . . . . . . . . . . 52

3.2.2 Error Estimation in Two-Dimensions . . . . . . . . . . . . . . . 58

3.2.3 Gaussian Method: Application to Three-Dimensional Problem . . 61

3.3 k-means Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 Declustering and Reclustering . . . . . . . . . . . . . . . . . . . 71

3.3.3 Computational Time Gain and Accuracy . . . . . . . . . . . . . . 75

3.3.4 Effect of Velocity Gradients . . . . . . . . . . . . . . . . . . . . 77

3.4 Osiptsov’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.2 Results for a Potential Flow . . . . . . . . . . . . . . . . . . . . 90

iv



3.4.3 Results for the Prototypical Flow . . . . . . . . . . . . . . . . . 90

4 Conclusions 96

4.1 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1.1 Improvements in Estimating Accuracy . . . . . . . . . . . . . . . 99

4.1.2 Improvements in the Gaussian Method . . . . . . . . . . . . . . 99

4.1.3 Improvements in the k-means Method . . . . . . . . . . . . . . . 100

4.1.4 Improvements in Osiptsov’s Method . . . . . . . . . . . . . . . . 101

A Derivation of Radial Basis Function 103

Bibliography 105

v



List of Tables

3.1 Ratio of clustered time to exact time for the current problem as a fraction

of total number of clusters to the number of particles. . . . . . . . . . . . 80

List of Figures

1.1 A helicopter encountering brownout conditions during a landing maneu-

ver. (Courtesy of Optical Air Data Systems LLC.) . . . . . . . . . . . . . 2

1.2 Schematic showing the different modes of sediment particle motion and

the resulting dust field generated by the rotor wake from a helicopter hov-

ering over a surface covered with loose material. . . . . . . . . . . . . . . 4

1.3 Flow visualization image of a 2-bladed rotor operating near a ground

plane [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Schematic of the flow field below a rotor when it is operating near a

ground plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Concentration of particles of different diameters in a dust cloud [2, 3] . . . 9

1.6 Mass density of particles of different diameters in a dust cloud [2, 3] . . . 10

1.7 Forces acting on a particle while in suspension and on a mobile sediment

bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Schematic showing the different modes of sediment particle motion and

the fundamental uplift mechanisms seen in the near-wall region. . . . . . 13

1.9 Schematic showing the modeling of the Free-Vortex Method . . . . . . . 15

vi



1.10 VTM/PTM simulation of the dust cloud that is formed in the air surround-

ing a generic tandem helicopter during its approach to a desert landing [4]. 19

1.11 Contours of instantaneous streamwise particle velocities. Top: Initial

seeding both cases; Middle: Coherent vortex; Bottom: Turbulent bound-

ary layer. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.12 Dust cloud along with the associated velocity contours using a Lagrangian

particle tracking methodology [6]. . . . . . . . . . . . . . . . . . . . . . 21

2.1 Schematic showing the Gaussian method of particle clustering. . . . . . . 30

2.2 Schematic showing the k-means method of clustering and declustering. . 32

2.3 Schematic showing the change in shape of the particle fluid element. The

dotted lines represent particle pathlines, which would normally be curved

[7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Spherical coordinate system centered around the pilot. Grid size of each

“bin” increases when moving away from an observer. . . . . . . . . . . . 40

2.5 Schematic showing the passage of vortices over an initial saltation layer,

and uplifting the dust [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Exact solution. Initial layer = 15, particles per layer = 75. . . . . . . . . . 49

3.2 Exact solution. Initial layers = 15, particles per layer = 375. . . . . . . . . 51

3.3 Gaussian solution. Initial layers = 15, clusters per layer = 75, particles

per cluster = 5, k1 = 1 and the corresponding density contour plots. . . . . 53

3.4 Gaussian solution. Initial layers = 15, clusters per layer = 75, particles

per cluster = 5, k1 = 2 and the corresponding density contour plots. . . . . 54

vii



3.5 Gaussian solution. Initial layers = 15, clusters per layer = 15, particles

per cluster = 25, k1 = 1 and the corresponding density contour plots. . . . 55

3.6 Gaussian solution. Initial layers = 15, clusters per layer = 15, particles

per cluster = 25, k1 = 2 and the corresponding density contour plots. . . . 56

3.7 Error estimation using Pearson’s coefficient for Gaussian solution for both

k1 = 1 and k1 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 A solution obtained from brownout dust field computations when using

the Gaussian clustering distribution method. . . . . . . . . . . . . . . . . 64

3.9 Another example of a brownout dust field computation using the Gaussian

clustering distribution method. . . . . . . . . . . . . . . . . . . . . . . . 65

3.10 Actual and clustered solution during a landing maneuver using the Gaus-

sian clustering distribution method. . . . . . . . . . . . . . . . . . . . . 66

3.11 Development of the dust cloud during the landing approach at time t = 3

and 6 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.12 Comparison of the dust cloud between a brute-force calculation and Gaus-

sian clustered solution. Lateral view. . . . . . . . . . . . . . . . . . . . 68

3.13 Comparison of the dust cloud between a direct or brute-force calculation

and Gaussian clustered solution. Isometric view. . . . . . . . . . . . . . . 69

3.14 Comparison of the dust cloud between a direct or brute-force calculation

and Gaussian clustered solution. Isometric view. . . . . . . . . . . . . . . 70

3.15 Schematic showing the process of reclustering and formation of new clus-

ters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



3.16 Difference in the solution between a first-order (blue) and second-order

(red) accurate scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.17 Schematic showing the simplified vortical flow field chosen to better il-

lustrate the k-means clustering method. . . . . . . . . . . . . . . . . . . 75

3.18 Comparison of CPU time for clustered and actual simulations for different

number of particles using the k-means method. . . . . . . . . . . . . . . 76

3.19 Comparison of RMS error for clustered and actual simulations for differ-

ent number of particles using the k-means method. . . . . . . . . . . . . 77

3.20 Comparison of solution for actual and clustered solution using k-means

method. The different symbols in (b) represent different clusters and the

solid black square represents the position of the vortex. . . . . . . . . . . 79

3.21 Comparison of particle displacement for exact and clustered solution us-

ing k-means method. Red: Exact solution, Blue: Clustered solution.

Number of clusters = 10. (a) Number of time steps = 60; (b) Number

of time steps = 125; (c) Number of time steps = 200. . . . . . . . . . . . 81

3.22 Comparison of density plots for exact and clustered solution using k-

means method. Red: Exact solution, Blue: Clustered solution. Number

of clusters = 10. Number of clusters = 10. (a) Number of time steps = 60;

(b) Number of time steps = 125; (c) Number of time steps = 200. . . . . 82

3.23 Comparison of particle displacement for exact and clustered solution us-

ing k-means method. Red: Exact solution, Blue: Clustered solution.

Number of clusters = 200. (a) Number of time steps = 60; (b) Number of

time steps = 125; (c) Number of time steps = 200. . . . . . . . . . . . . 83

ix



3.24 Comparison of density plots for exact and clustered solution using k-

means method. Red: Exact solution, Blue: Clustered solution. Number

of clusters = 200. (a) Number of time steps = 60; (b) Number of time

steps = 125; (c) Number of time steps = 200. . . . . . . . . . . . . . . . 84

3.25 Comparison of particle displacement for exact and clustered solution us-

ing k-means method. Red: Exact solution, Blue: Clustered solution.

Number of clusters = 200. (a) Number of time steps = 60; (b) Number of

time steps = 125; (c) Number of time steps = 200. . . . . . . . . . . . . 85

3.26 Comparison of density plots for exact and clustered solution using k-

means method. Red: Exact solution, Blue: Clustered solution. Number

of clusters = 200. (a) Number of time steps = 60; (b) Number of time

steps = 125; (c) Number of time steps = 200. . . . . . . . . . . . . . . . 86

3.27 Comparison of particle displacement for exact and clustered solution us-

ing k-means method. Red: Exact solution, Blue: Clustered solution.

Number of clusters = 200. (a) Number of time steps = 60; (b) Number of

time steps = 125; (c) Number of time steps = 200. . . . . . . . . . . . . 87

3.28 Comparison of density plots for exact and clustered solution using k-

means method. Red: Exact solution, Blue: Clustered solution. Number

of clusters = 200. (a) Number of time steps = 60; (b) Number of time

steps = 125; (c) Number of time steps = 200. . . . . . . . . . . . . . . . 88

3.29 Density contour plot using Osiptsov’s method around a cylinder in poten-

tial flow. (a) Flow velocity of 1ms−1; (b) Flow velocity of 2ms−1. . . . . 91

x



3.30 Comparison of Osiptsov’s method with the exact solution. Number of

particles = 15 layers, 75 particles per layer. (a) Density field obtained

using Osiptsov’s method; (b) Density field obtained using direct counting. 93

3.31 Comparison of Osiptsov’s method with the exact solution. Number of

particles = 15 layers, 375 particles per layer. (a) Density field obtained

using Osiptsov’s method; (b) Density field obtained using direct counting. 94

xi



Nomenclature

Cd Drag coefficient

dp Particle diameter

e Coefficient of restitution

Ec Kinetic energy of a cluster

F Total force acting on a particle

Fd Drag force

g Acceleration under gravity

J Jacobian of the particle fluid element

m Particle mass

N Number of particles

Nc Number of clusters

S12 Inter-cluster separation

S1,S2 Intra-cluster separations

Rep Particle Reynolds number

U Carrier flow velocity

Ux,Uy,Uz Components of carrier fluid velocity

Vp Particle velocity

Vpx,Vpy,Vpz Components of particle velocity

V0 Velocity of impacting particle

xii



Greek Symbols

µB Mean vector for Gaussian distribution

µc Mean vector for clustering

ν Kinematic viscosity

ρ Carrier fluid density

ρp Mass of particles in mixture

ρ◦p Density of the particles

Σ Covariance matrix for Gaussian distribution

Σc Covariance matrix for clustering

k1 Principal spread coefficient

k2 Cross coupling coefficient

τp Particle velocity relaxation time

ω Derivative of the Jacobian

xiii



Chapter 1

Introduction

1.1 The Problem of Brownout

The occurrence of the phenomenon of “brownout” is an ongoing operational prob-

lem for most types of rotorcraft when they are operating in dry and arid climates. Brownout

occurs when rotorcraft land or take off over surfaces covered with loose material such as

sand or dust, where through a series of complex fluid dynamic uplift and mobilization

mechanisms, the action of the rotor wake rapidly stirs up a blinding dust cloud. The sus-

pended dust can continue build up in volume and intensity under the continuing influence

of rotor wake, and may quickly engulf the helicopter making it difficult for the pilot to

see out of the cockpit. An example the problem is shown in Fig. 1.1, which shows the

intense dust cloud produced when a helicopter is landing in the desert. In snowy con-

ditions, the uplift of loose snow can produced “whiteout” conditions, which can be an

equally concerning problem.

During brownout conditions, volume of dust produced and the resulting density

of the dust cloud means that the pilot can lose outward visibility (e.g., to the horizon,

peripherally, as well as downward) at a time when it is needed most. The pilot may also

experience spurious sensory cues and spatial disorientation from the moving dust cloud,

which if severe enough may lead to vertigo. The resulting situation (loss of visibility close

to the ground) can then become a serious safety of flight issue, and the pilot may drift into

1



Figure 1.1: A helicopter encountering brownout conditions during a landing maneuver.

(Courtesy of Optical Air Data Systems LLC.)

obstacles or lose control of the aircraft. In fact, encounters with brownout conditions

is currently the leading cause of human factor-related mishaps during military rotorcraft

operations [8], and civilian helicopters (e.g., those on MEDEVAC missions) have also

suffered from the problem [9]. Besides visibility issues, the suspended dust particles

uplifted during brownout conditions can also create a harsh working environment for

ground personnel, abrade the rotor blades and cause rapid engine wear, creating serious

and costly maintenance issues. In some cases, rotor blades can be abraded to the core in

tens of flying hours, and engines may need to be overhauled in just a few hundred hours

of operation.

A myriad of technical efforts have now begun to help to reduce the piloting risks

posed by brownout occurrences, mainly by focusing on the development of sensors and

advanced cockpit displays to “see” through the dust cloud [10]. Another method em-
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ployed by pilots to limit the severity of the dust cloud during take off and/or landing, is

through careful flight-path management. Although such tactics have helped to reduce the

rapidity and/or the severity of the dust cloud development, the resulting flight-paths often

involve higher flight speeds closer to the ground to outpace the development of the dust

cloud. Such tactics often involve “hard” landings and an attempt to get the aircraft on

the ground before it becomes enveloped in the dust, which over time can be injurious to

the pilots and crew. While the role of sensor/display technologies and effective piloting

strategies cannot be underestimated, there still remains a need to understand the brownout

phenomenon at a more fundamental scientific level, as well as to explain how brownout

might be affected by the particular design parameters and operational characteristics of a

given rotorcraft. A longer term goal must be to try to mitigate brownout more through ve-

hicle design (i.e., treating the problem at its source), which obviously requires a high level

of predictive capability for the flow field below the helicopter and for the development of

the brownout cloud.

Photographic and videographic observations of actual brownout occurrences for

landing rotorcraft suggest that there may be certain (and perhaps even unique) rotor and/or

other vehicle design features that can influence the severity, extent, and rapidity of the

developing dust clouds. For example, work conducted under the auspices of the DARPA

Sandblaster program [2,3] shows the intensity and spatial extent of a developing brownout

dust cloud can vary substantially between different types of rotorcraft. For example, some

helicopters are known to produce radially expanding toroidal-type dust clouds during

landing maneuvers with little in the way of vertical entrainment, leaving zones of good

visibility for the pilot within the dust cloud. For other helicopters, the dust seems to
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Fig. 1: Schematic showing the different modes of sediment particle motion and the resulting dust field generated
by the rotor wake from a helicopter hovering over a ground plane.

fluid dynamics problem of considerable three-dimensional
complexity. Because an impermeable surface must always
be a streamline to the flow, the changes to the flow around a
rotorcraft resulting from its proximity to the ground always
affects blade loads and rotor performance. The action of the
rotor wake on the ground is also important because it cre-
ates unsteady shear stresses, secondary vortical flows and
turbulence, which are responsible for sediment uplift and
the eventual development of brownout conditions. Specif-
ically, as the blade tip vortices approach the ground, they
create transient increases in the flow velocity at the surface
that, in turn, generate locally large values of shear stress on
the sediment bed. The tip vortices create regions of signifi-
cant upwash that can not only trap and uplift sediment par-
ticles to great heights, but also bombard the particles back
onto the ground, ejecting many smaller, dust-like particles.
Dust constitutes the preponderance of the particles found in
a brownout cloud (Ref. 4).

A prerequisite to understanding brownout is to under-
stand the detailed fluid dynamics of the vortical rotor wake
as it interacts with an impermeable surface. The problem
of “ground effect” aerodynamics in hovering or low speed
forward flight has been studied extensively (Refs. 5–18),
although mainly from the perspective of rotor performance.
Besides the proximity of the rotor plane to the ground, fac-
tors influencing the aerodynamics of the rotor in ground ef-
fect and potentially the brownout cloud developments too
(Ref. 19) include but are not limited to: forward speed, ro-
tor disk loading, blade loading, number and placement of
rotors, number of blades, blade twist, blade tip shape, and
perhaps fuselage shape. However, the detailed fluid dynam-
ics at the ground are still not fully understood nor are they
easily predictable (Refs. 20–26).

A better understanding of the fluid dynamics govern-
ing the processes of sediment uplift, including the effect
that different rotor parameters have on these processes,
may provide for a more efficacious mitigation solution for
brownout. Assessing the potential for mitigation, however,
requires an ability to understand and predict the detailed
fluid dynamics of the rotor flow as it approaches and im-
pinges on the ground, even in the absence of sediment.
To this end, ongoing research into the brownout problem

has been focused on both computational and experimental
fronts. Computational work on the simulation of brownout
(Refs. 27–32) is still very much in its preliminary stages.
The primary difficulty besides resolving the viscous flow
near the ground, is with the efficacy of the models used to
represent the movement and uplift of particles from the sed-
iment bed. Because this problem involves short time scales
where unsteady, three-dimensional, vortical flows develop
over irregular surfaces, semi-empirical models based on ae-
olian or riverine sedimentology (Refs. 33–35) are not ad-
equate. However, new experiments (Refs. 36, 37) are be-
ginning to better expose the problem dependencies and the
two-phase nature of the fluid dynamics near the ground, in-
cluding the details of particle/particle interactions.

One idea being considered to help mitigate brownout is
the judicious use of blade shape to effect changes to the
wake structure and, therefore, to the downstream velocity
field near the ground. In particular, the blade tip shape is
known to affect the characteristics of the trailed vortices
to a lesser or greater degree (Refs. 38–40). However, the
fundamental question is whether tip shape also has any ef-
fects on the resulting flow near the ground, bearing in mind
that by the time the wake reaches the ground it is several
revolutions old and has encountered a complex flow field
during its convection. To help answer this question, the
present study has examined the fluid dynamics of four rotor
blades with different tip shapes, namely a standard rectan-
gular tip, a simple swept tip, a BERP-like tip (Ref. 41), and
a slotted-tip. Another objective of the work was to assess
the efficacy of experimental capabilities and techniques for
unsteady, near-wall flow measurements.

The present work has confirmed that the flow near the
ground plane contains a turbulent wall jet, the discrete tip
vortices trailed from the rotor blades, as well as eddies and
turbulence from the vortical sheet in the wake behind the
blade. Interactions between these flow structures appear
to create secondary flows such as vortex pairing, which
dominate the unsteady aerodynamic environment near the
ground. The measurements showed that there were some
common flow features between the four blade tips, but also
certain differences that may ultimately affect the problem
of brownout.

Figure 1.2: Schematic showing the different modes of sediment particle motion and the

resulting dust field generated by the rotor wake from a helicopter hovering over a surface

covered with loose material.

quickly form into a large, dome-shaped cloud that can engulf the entire vehicle, often

with significant recirculation of dust back through the rotor disk. The tendency to form

recirculating flows can be accompanied by vertical bombardment of the dust particles

back onto the ground, which can stir up more dust through a cascading mechanism. In

such cases, the consequences are greatly reduced visibility for the pilot and onset of other

visual anomalies. Milluzzo et al. [11] performed an analysis that showed that the intensity

of the dust cloud and the rate of its development can be correlated to parameters such as

disk loading and blade loading. Furthermore, it was shown that the rotational speed of the

rotor and the number of blades combined to produce a characteristic frequency at which

the rotor wake vorticity impinges onto the ground. This frequency appeared to correlate

with the rapidity of the development of the dust clouds.

4



1.2 The Physics of Brownout

A schematic of the general problem of brownout is shown in Fig. 1.2, which identi-

fies some of the fluid mechanics and sedimentology processes involved in brownout. Fun-

damentally, brownout is an unsteady, two-phase, fluid dynamics problem of considerable

three-dimensional complexity. Owing to the complex two-phase nature of the problem,

i.e., the fluid (or carrier) phase and the particle (or dispersed) phase, it is obviously imper-

ative to understand the mechanisms and factors that drive each phase to gain an overall

understanding of the brownout problem, how it occurs from a fundamental physics per-

spective, and what could be done (practically) to mitigate its effects.

Clearly, different brownout conditions can also be expected based on the character-

istics of the surface sediment, such as the type and size of the particles, their compactness

and moisture content, etc. Such an outcome is not unexpected, given that the ultimate

reason for the entrainment of loose sediment is from the shear and pressure forces pro-

duced by the action of the three-dimensional, unsteady, turbulent flow in the rotor wake

as it develops over the ground. Understanding the fluid dynamics of these effects may

ultimately lead to means of brownout amelioration at its source, thereby improving visi-

bility through the cloud, as well as reducing abrasion and mechanical wear problems. To

this end, the flow and particle physics of brownout must be studied both experimentally

and computationally to better understand the phenomenon. In the present work, a more

efficient computational approach toward the simulation of brownout dust clouds has been

studied using methods of particle clustering.
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1.2.1 Flow Physics

The flow around a rotorcraft changes significantly when the vehicle operates in

close proximity to the ground. Hence, a prerequisite for understanding brownout is to un-

derstand the detailed fluid dynamics of the vortical rotor wake(s) generated by the rotor(s)

operating in proximity to an impermeable surface. The problem of “ground effect” aero-

dynamics in hovering or low speed forward flight has been studied extensively [12–18],

but mainly from the perspective of rotor performance. Because an impermeable surface

must always be a streamline to the flow, the changes to the flow field by the ground are

profound and can drastically affect the blade loads and vehicle performance. Until re-

cently, however, and since brownout has become an operationally acute problem, there

have been fews reasons to study the flow below the rotor near the ground. To this end,

there have been some detailed fluid dynamic studies of the flow at the ground below a ro-

tor [1, 19, 20]. It has been shown in this work that action of the rotor wake on the ground

is very complicated because it creates unsteady shear stresses, secondary vortical flows

and turbulence, and such effects are ultimately responsible for the uplift of sediment and

the eventual development of brownout conditions [1].

In general, he flow structure below the rotor changes considerably for operations

in-ground-effect (IGE) versus out-of-ground-effect (OGE). The presence of the ground

plane for IGE conditions, requires the streamlines below the rotor to rapidly change their

direction and become parallel at the surface, the essence of the problem being shown in

flow visualization image in Fig. 1.3. The rotor wake initially contracts below the rotor in

a predominantly downward direction, turns ninety degrees to to an outward direction, and
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boundary. These vortices have primarily laminar cores, de-
void of the small eddies and turbulence that are present in the
surrounding flow. Figure 8 shows that after only 2–3 rotor
revolutions, the tip vortices have begun to spin-down under
the action of viscosity and turbulence. The older vortices in
the far wake were also more susceptible to the development
of instabilities and the pairing of adjacent turns of the helical
wake.

The FV image in Fig. 9 shows that when the rotor is op-
erated in proximity to a ground plane i.e., in-ground-effect
(IGE), the flow under the rotor contains coherent vortical
structures that persist to older wake ages as compared to that
obtained for OGE conditions. In this case, the rotor wake
initially contracts below the rotor but then rapidly turns and
expands outward in a direction that is nearly parallel to the
ground plane (which is synonymously referred to as the wall).

The rapid expansion of the rotor wake when it encounters
the ground causes the vortex filaments to stretch as they con-
vect radially outward along the wall, a process that reintensi-
fies their vorticity and increases their swirl velocities, caus-
ing the vortices to persist in the flow to much older wake
ages. Stretching occurs because of volume conservation of
the fluid elements; lengthening implies a thinning of the fluid
elements in the directions perpendicular to the stretching di-
rection, thereby reducing the radial length scales over which
the associated vorticity is distributed. As will be further de-
scribed, this is an important fluid mechanics behavior that par-
ticipates in the uplift of the sediment. Finally, the vortices
are sheared by the velocity gradients in the flow and begin
to diffuse, the flow further downstream consisting of residua
elements of vorticity and turbulent eddies.

With the passing of each blade, a wake sheet (created by
the merging of the upper and lower blade surface boundary
layers) is also trailed off each blade. These turbulent sheets
(which are actually comprised of counter rotating Taylor-
Görtler vortex pairs) convect under the influence of a range
of downwash velocities because they span the length of the
blades. In fact, it was clear from both the OGE and IGE flow
visualization that each wake sheet convected downward rel-
atively faster than the tip vortex to which it was originally
connected. As each sheet approaches the ground plane, the
outboard portion is ingested by an older tip vortex and at least
part of the turbulence becomes relaminarized inside the vortex
core; see also Ref. 29 for a detailed description of this behav-
ior. The remnants of the wake sheets then proceed to mix with
the developing flow at the ground, as shown in Fig. 10.

As the wake sheets approach the ground, they also have
a propensity to become unstable and roll over on themselves.
Some of the associated turbulence contained in the sheets con-
tinues to be relaminarized by the surrounding vortices, while
other turbulent flow structures continue to persist in the wake
and contribute to defining the flow conditions at the wall. The
flow there begins to take on the characteristics of an expand-

Fig. 8: Flow visualization of the 2-bladed rotor operating
OGE at z/R = ∞. ψb = 0◦.

Fig. 9: Flow visualization of the 2-bladed rotor operating
IGE at z/R = 1.0 above a ground plane. ψb = 0◦.

ing wall-jet with a boundary layer below; see the later dis-
cussion and also Ref. 29. As the wake expands radially, the
wall-jet thins and its average velocity increases to conserve
momentum and mass. Eventually, the viscous and fluid shear-
ing forces become dominant, and the energy in the flow is dif-
fused and dissipated, causing the wall-jet to expand and slow,
as shown on the right-hand side of Fig. 9.

Of significant interest in the present work were the effects

Figure 1.3: Flow visualization image of a 2-bladed rotor operating near a ground plane

[1].

Fig. 4: The flow near the ground below the rotor com-
prises a developing wall jet with embedded vorticity.

Fig. 5: Representative measurements of the flow on the
ground below a hovering rotor at several downstream
distances from a point below the rotational axis of the
rotor.

Representative flow velocity measurements on the
ground below the rotor at several downstream distances are
shown in Fig. 5, where the developing wall-jet and bound-
ary layer region are clearly evident. These results have been
measured from a point below the rotational axis of the rotor.
The visualization shows that the region above the boundary
layer contains significant residual vorticity, eddies of vari-
ous scales, and smaller scale turbulence, which all results in
a highly unsteady flow environment on the ground.

Sediment Entrainment from the Ground

A fundamental aspect of modeling the brownout problem
is to model sediment transport under the action of this

(a) Particle count

(b) Mass density

Fig. 6: Concentration and mass density of particles of
different diameters in a dust cloud (Refs. 4, 5): (a) Par-
ticle count; (b) Approximate mass density.

unsteady, turbulent, vortical-laden flow field. A typical
brownout dust cloud consists of billions of sediment par-
ticles per cubic volume that span a wide range of diame-
ters ranging from 1 µm to as much as 100 µm, as shown in
Fig. 6(a). Obviously, the direct simulation of the uplift and
convection of this large number of particles is prohibitive. It
is significant to note the typically high concentration of par-
ticles of very small sizes of the order of 1–10 µm, which if
uplifted are those that tend to remain in suspension and are
responsible for much of the obscuration effects seen by the
pilot. Also of significance is the equivalent mass density of
the resulting dust clouds (Fig. 6(b)), which for the smaller
and more prominent dust particles, confirm the validity of
making one-way fluid coupling assumptions (i.e., a ratio of
density of dispersed phase to the carrier phase of <10%) in
the simulations away from the ground.

The modeling of sediment motion, in general, is a com-
plex problem because of particle-particle, particle-surface,
and particle-fluid interactions. Nathan and Green (Ref. 18)
and Johnson et. al (Ref. 20) have performed laboratory ex-
periments that show the overall complexity of the sediment
uplift processes that occur below a rotor; see also Fig. 2. Of
specific interest is determining the mass flux and concentra-

Figure 1.4: Schematic of the flow field below a rotor when it is operating near a ground

plane.
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then expands outward over the ground plane. The physics of the rotor in ground effect

problem are explained in detail by Lee et al. [19], and can be summarized by the schematic

shown in Fig. 1.4. Notice that tip vortex filaments, which are of helicoidal form, convect

along the slipstream boundary that separates the relatively high velocities inside the rotor

wake boundary from the quiescent flow outside this boundary. The vortices in Fig. 1.3

can be identified from the dark voids, which are caused by small Coriolis and centrifugal

forces that act on the seed particles that comprise the visualization media. These vortices

have primarily laminar cores, devoid of the small eddies and turbulence that are present in

the surrounding flow. As they stretch in the flow under the action of the ground they can

persist to relatively old wake ages, perhaps up to six to eight rotor revolutions [19, 20].

The flow at the ground also has significant turbulence and aperiodicity, as was observed

by both Lee et al. [19] and Sydney et al. [1]. It is clear, therefore, that understanding

the details rotor wake structure, and the changes that take place near the ground, is a

prerequisite for understanding the problem of brownout.

1.2.2 Dust Particle Dynamics

This dynamic, multi-parameter nature of brownout dust clouds highlights the need

for a good predictive capability of the problem, which can be achieved through numeri-

cal simulations if they can be suitably validated, both from a numerical perspective and

against measurements. It is the dispersed phase, which is induced by the action of the

rotor wake, that is responsible for the brownout signature of any given rotorcraft. Hence,

before seeking a possible means of mitigation, it is important that the physical phenomena
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Fig. 4: The flow near the ground below the rotor com-
prises a developing wall jet with embedded vorticity.

Fig. 5: Representative measurements of the flow on the
ground below a hovering rotor at several downstream
distances from a point below the rotational axis of the
rotor.

Representative flow velocity measurements on the
ground below the rotor at several downstream distances are
shown in Fig. 5, where the developing wall-jet and bound-
ary layer region are clearly evident. These results have been
measured from a point below the rotational axis of the rotor.
The visualization shows that the region above the boundary
layer contains significant residual vorticity, eddies of vari-
ous scales, and smaller scale turbulence, which all results in
a highly unsteady flow environment on the ground.

Sediment Entrainment from the Ground

A fundamental aspect of modeling the brownout problem
is to model sediment transport under the action of this

(a) Particle count

(b) Mass density

Fig. 6: Concentration and mass density of particles of
different diameters in a dust cloud (Refs. 4, 5): (a) Par-
ticle count; (b) Approximate mass density.

unsteady, turbulent, vortical-laden flow field. A typical
brownout dust cloud consists of billions of sediment par-
ticles per cubic volume that span a wide range of diame-
ters ranging from 1 µm to as much as 100 µm, as shown in
Fig. 6(a). Obviously, the direct simulation of the uplift and
convection of this large number of particles is prohibitive. It
is significant to note the typically high concentration of par-
ticles of very small sizes of the order of 1–10 µm, which if
uplifted are those that tend to remain in suspension and are
responsible for much of the obscuration effects seen by the
pilot. Also of significance is the equivalent mass density of
the resulting dust clouds (Fig. 6(b)), which for the smaller
and more prominent dust particles, confirm the validity of
making one-way fluid coupling assumptions (i.e., a ratio of
density of dispersed phase to the carrier phase of <10%) in
the simulations away from the ground.

The modeling of sediment motion, in general, is a com-
plex problem because of particle-particle, particle-surface,
and particle-fluid interactions. Nathan and Green (Ref. 18)
and Johnson et. al (Ref. 20) have performed laboratory ex-
periments that show the overall complexity of the sediment
uplift processes that occur below a rotor; see also Fig. 2. Of
specific interest is determining the mass flux and concentra-

Figure 1.5: Concentration of particles of different diameters in a dust cloud [2, 3]

that cause these particles to be mobilized and uplifted are understood. A typical brownout

cloud can consist of billions of sediment particles per unit volume with sizes ranging from

1 µm to as much as 1,000 µm in diameter, as shown in Fig. 1.2.2. It is significant that these

measurements show high concentrations of small dust particles (diameters of the order of

1–10 µm), which if uplifted are those that tend to remain in suspension for extended peri-

ods and are responsible for much of the obscuration effects produced inside the brownout

cloud.

The identification of the conditions under which sediment particles become mobi-

lized obviously plays a critical role in correctly predicting the onset of any flow driven

particle entrainment process, as well as in the understanding of the specific mechanisms

involved in the formation of brownout condtions. Stationary sediment particles on the

ground can experience forces from several sources, including shearing from the action
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Fig. 4: The flow near the ground below the rotor com-
prises a developing wall jet with embedded vorticity.

Fig. 5: Representative measurements of the flow on the
ground below a hovering rotor at several downstream
distances from a point below the rotational axis of the
rotor.

Representative flow velocity measurements on the
ground below the rotor at several downstream distances are
shown in Fig. 5, where the developing wall-jet and bound-
ary layer region are clearly evident. These results have been
measured from a point below the rotational axis of the rotor.
The visualization shows that the region above the boundary
layer contains significant residual vorticity, eddies of vari-
ous scales, and smaller scale turbulence, which all results in
a highly unsteady flow environment on the ground.

Sediment Entrainment from the Ground

A fundamental aspect of modeling the brownout problem
is to model sediment transport under the action of this

(a) Particle count

(b) Mass density

Fig. 6: Concentration and mass density of particles of
different diameters in a dust cloud (Refs. 4, 5): (a) Par-
ticle count; (b) Approximate mass density.

unsteady, turbulent, vortical-laden flow field. A typical
brownout dust cloud consists of billions of sediment par-
ticles per cubic volume that span a wide range of diame-
ters ranging from 1 µm to as much as 100 µm, as shown in
Fig. 6(a). Obviously, the direct simulation of the uplift and
convection of this large number of particles is prohibitive. It
is significant to note the typically high concentration of par-
ticles of very small sizes of the order of 1–10 µm, which if
uplifted are those that tend to remain in suspension and are
responsible for much of the obscuration effects seen by the
pilot. Also of significance is the equivalent mass density of
the resulting dust clouds (Fig. 6(b)), which for the smaller
and more prominent dust particles, confirm the validity of
making one-way fluid coupling assumptions (i.e., a ratio of
density of dispersed phase to the carrier phase of <10%) in
the simulations away from the ground.

The modeling of sediment motion, in general, is a com-
plex problem because of particle-particle, particle-surface,
and particle-fluid interactions. Nathan and Green (Ref. 18)
and Johnson et. al (Ref. 20) have performed laboratory ex-
periments that show the overall complexity of the sediment
uplift processes that occur below a rotor; see also Fig. 2. Of
specific interest is determining the mass flux and concentra-

Figure 1.6: Mass density of particles of different diameters in a dust cloud [2, 3]

of the boundary layer, unsteady pressure effects, gravitational effects, and inter-particle

cohesiveness (which bonds them to each other and to the surface). Schematics of the

forces acting on a particle while on the sediment bed and in suspension are shown in

Figs. 1.7(a) and 1.7(b), respectively. Much of the knowledge about sediment mobility in

response to fluid motion comes from research into the action of turbulent winds on desert

sands (i.e., Aeolian transport), the classic works being from Bagnold [21] and Greenly

and Iversen [22]. An important result is that below a certain threshold (expressed in terms

of a friction velocity) particle entrainment from the sediment bed will not occur unless

there are secondary forces acting. The average friction velocities below a helicopter rotor

are generally too low to mobilize and entrain the smaller dust particles (≤ 10 µm) because

they are too cohesive, so in the case of a brownout cloud (which as shown in Fig. 1.2.2

contains predominantly smaller particles), other particle uplift mechanisms must be in-
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Methodology

Modeling of the Rotor Flow in Ground Effect

The aerodynamic flow field below the rotor was modeled us-
ing a time-accurate Free-Vortex Method (FVM) configured
for maneuvering flight conditions. Details of the FVM have
been published elsewhere (Refs. 24–29). An image system
(Fig. 2) was used to model the flow tangency condition at the
ground plane (Ref. 30). In the FVM, the blades are repre-
sented using a Weissinger-L type model with a full span near
wake. The near wake from each blade was coupled by means
of a circulation preserving boundary condition to a far wake
consisting of a rolled-up tip vortex. The far wake consisted
of vortex trailers, usually up to 10 or 12 rotor revolutions in
length, which were discretized into continuous straight-line
elements connected by discrete wake markers.

Fig. 2: Free-vortex wake solution and matching interface
for the sediment mobility calculations.

The convection of the wake markers is governed by the
three-dimensional, incompressible Navier–Stokes equations,
which under the assumptions of irrotational and incompress-
ible flow can be written in the form of a vorticity transport
equation (Ref. 31). The governing equation for the wake
displacements is further reduced to an advection equation,
which is then discretized in space and time with the veloc-
ity source terms (i.e., free-stream, induced, maneuvering, in-
fluence of the ground, etc.) appearing on the right-hand
side. The solution algorithm for the wake displacements is
based on five-point central differencing in space and two-point
backward differencing in time (Refs. 26, 29). These numeri-
cal approximations are second-order accurate, and are con-
sistent with the accuracy obtained for velocity field recon-
struction using straight-line vortex filament segmentation with
the Biot–Savart law (Ref. 27). The vortex model incorpo-
rated into the FVM is Reynolds number dependent and ac-
counts for diffusion of vorticity (Ref. 28) and filament stretch-
ing (Refs. 32, 33).

From the wake solutions, the resulting distributions of the
airloads on each blade are computed by resolving the three-
component velocity field at each blade element using the con-
ventional approach. Linear and nonlinear aerodynamic char-
acteristics are represented using the Beddoes (Ref. 34) model.

The rotor thrust etc. are then obtained by integrating the air-
loads over the blade span and around the rotor azimuth. Be-
cause the blade response determines the wake/blade attach-
ment boundary condition, this process necessitates a tight cou-
pling of blade motion to the rotor wake solution and blade
loads. During the solution process, the rotor is continuously
trimmed using collective and cyclic blade pitch inputs at the
specified flight conditions with the needed rotor thrust. While
the aerodynamic analysis has the capability of representing
the airframe and the tail rotor, the present results consider the
effects only of the main rotor.

Computation of Sediment Mobility

Stationary particles on the ground (sediment bed) below the
rotor can experience several forces such as shear, pressure,
inter-particle, and gravitational; see Fig. 3. Shear stresses are
created on the sediment bed by the turbulent boundary layer,
which forms an unsteady jet-like flow. Unsteady pressures
are produced in the vorticity-laden flow field below the rotor.
In particular, the low pressures produced by the convecting
vortices can affect both the onset of sediment particle motion
and the subsequent trajectories of the particles (Ref. 20). The
particles will then mobilize when shear and pressure forces
overcome the gravitational and inter-particle forces (e.g., co-
hesion).

The flow field close to the ground is a more viscous-
dominated boundary layer region. Therefore, in the present
work an inviscid-viscous matching method has been used for
predicting particle mobility from a combination of a rotor flow
field model (an inviscid potential flow) and the flow environ-
ment at the ground; see Fig. 2. The rotor wake solution pro-
vides the induced velocity and unsteady pressure fields at a
computational interface a small distance above the ground.
The induced velocity field at the edge of the interface comes
from the application of the Biot–Savart law (Ref. 27), and

Fig. 3: The forces acting on sediment particles on a mobile
bed under the action of an external flow.(a) Particle on mobile sediment bed

Particle Convection

Once the particles are entrained into the flow field near the
ground, the resulting forces acting upon the particles gov-
ern their convective motion. It is assumed hereafter that the
resulting two-phase flow is lightly loaded by the particles
in that the particle motion is driven by the air but not vice-
versa (i.e., one-way coupling), which is reasonably well jus-
tified based on the results in Fig. 6(b). This means that the
particles are considered as a discrete phase and the path-
way of each individual particle is tracked in time. From the
statistics of the particle trajectories, this approach is also
able to calculate particle density concentrations and other
useful data (such as optical metrics).

The forces on the particles are shown in Fig. 11 and
include a drag force Fd , a lift force FL, gravity force Fg,
buoyant force Fb, apparent mass forces Fm, Basset forces
FBasset , etc. The Basset-Boussinesq-Oseen (BBO) equation
governs the resulting dynamic behavior of the particles. The
Bassett force, which depends on the time-history of the par-
ticle motion, manifests as an apparent drag force but it can
be neglected because it is important only in flows with light
particles and steep velocity gradients. Furthermore, apart
from drag and gravitational forces, all other forces vary pro-
portionally to the ratio of the gas to particle density, which
is of the order of 10−3 in air (Ref. 35). Therefore, perhaps
with some exceptions, the other forces can be justifiably ne-
glected for brownout problems.

Fig. 11: Forces acting on an airborne particle.

The equations of motion describing the particles (i.e.,
the BBO equation) can then be simplified to

m
dVp

dt
= ∑F (5)

= Fd +Fg +FL +Fm +Fb +FBasset +FI (6)
� Fd +Fg (7)

= −1
2

ρ CdA |Vp −U|(Vp −U)+mg (8)

where Vp and U are the particle and flow velocities, respec-
tively, at any instant in time.

In the present model, monodisperse spherical particles
with an equivalent diameter of dp were assumed, so A =

πd2
p/4. The drag coefficient, Cd is a function of particle

Reynolds number Rep, i.e.,

Cd(Rep) =
24

Rep

�
1+0.15Re0.687

p

�
(9)

where

Rep =
|Vp −U|dp

ν
(10)

For the size of particles prominent in brownout clouds then
Rep << 1, i.e., the particles behave as in Stokes’ flow. For
such flows, Cd is given by

Cd =
24

Rep
(11)

The equations of motion for the particles then become

dVp

dt
= − (Vp −U)

τp
+g (12)

where τp is the particle response time as given by

τp =
m

1
2 ρCd (Rep)A |Vp −U|

(13)

For spherical particles in Stokes-type flows then

τp =
ρpd2

p

18ν
(14)

Notice that the particle response time is a function the den-
sity of the particle and its size.

Equation 12 describes the three-dimensional equation of
motion of dust particles moving in the flow field. Assuming
dilute flows (i.e., assuming no inter-particle interactions and
coupling to the carrier flow), the equations of motion can be
decoupled in the three spatial dimensions and written as

dVpx

dt
= − (Vpx −Ux)

τp
(15)

dVpy

dt
= − (Vpy −Uy)

τp
(16)

dVpz

dt
= − (Vpz −Uz)

τp
−g (17)

These equations can also be written in the form

d
dt

�
Vpxet/τp

�
= Fx(t)et/τp (18)

d
dt

�
Vpyet/τp

�
= Fy(t)et/τp (19)

d
dt

�
Vpzet/τp

�
= Fz(t)et/τp (20)

where the terms

Fx =
Ux

τp
(21)

Fy =
Uy

τp
(22)

Fz =
Uz −gτp

τp
(23)

(b) Airborne particle

Figure 1.7: Forces acting on a particle while in suspension and on a mobile sediment bed

11



volved.

When sediment particles lie on the ground below a rotor, the action of the rotor wake

can be expected to mobilize and entrain the sediment in regions of high shear and pressure

forces and uplift (vertical) velocities. An important entrainment mechanism arises from

the effects of the blade tip vortices, whose physics have been described in Section ??.

These vortices create regions of significant upwash that can potentially uplift sediment

particles to great heights. In this case, high surface shear stresses combined with low

pressures and the upward flow velocities induced by the tip vortices, lead to “trapping” of

the sediment particles, uplifting them away from the ground [1, 6]. Suspended particles

are then rapidly convected away from the bed by the highly three-dimensional, turbulent,

unsteady flow. The smaller and lighter particles (i.e., what is usually referred to as dust)

that are trapped in the stronger vortical flow regions can be recirculated and bombarded

back onto the bed with relatively high velocity and momentum, which were observed

experimentally by Sydney et al. [1]. The creation of more dust then follows from bom-

bardment ejection, rapidly intensifying the quantity of suspended particles in the flow.

The interplay between these various mechanisms are shown in Fig. 1.8. If sufficient

particle concentrations build up, thereby changing the mass density of the flow (especially

near the ground), then the carrier itself may be modified (i.e., the problem is now two-way

coupled). Factors compounding the transport characteristics of the dust include particle-

particle interactions (i.e., four-way coupling) and the morphology of the sediment bed

itself (i.e., through the dynamic process of deflation, deposition, and dune formation).
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Figure 1.8: Schematic showing the different modes of sediment particle motion and the

fundamental uplift mechanisms seen in the near-wall region.

1.3 Computational Modeling

It is clear from the laboratory experiments that have been conducted thus far, as well

as from the evidence shown in the field with actual rotorcraft, that there are many interde-

pendent factors involved in the brownout problem. This difficulty suggests that modeling

approaches can offer one way of gaining good physical insight into the fundamental pa-

rameters that influence the formation of such brownout dust clouds. Such models have

value for the brownout problem in terms of their potential predictive capability, but they

can also help to understand the individual contributing mechanisms that affect sediment

mobility and their overall significance to the brownout problem.

Referring back to Fig. 1.2.2 shown previously, it is clear that most of the particles

in suspension are the very small particles, i.e., dust particles with diameters of 1 µm –

10 µm [2, 3]. Also of significance is the equivalent mass density of the clouds shown in

Fig. 1.2.2, which suggests that simplified “dilute” or one-way fluid coupling assumptions
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(i.e., a ratio of density of dispersed phase to the carrier phase of <10%) may be a good

modeling assumption, at least for the smaller (and more prominent) dust particles and

away from the immediate region at the ground. This observation justifies the develop-

ment of computational tools for brownout that are based on simpler dilute and one-way

coupling assumptions.

1.3.1 Flow Field Modeling

Several types of brownout modeling approaches have already been developed, in-

cluding Lagrangian-Lagrangian, Eulerian-Lagrangian, and Eulerian-Eulerian methods.

These approaches range from simplified models based on inviscid assumptions and semi-

empirical models representing sediment mobility, to the use of CFD including RANS

(Reynolds Averaged Navier-Stokes) and DNS (Direct Numerical Simulation) coupled

with sediment transport methods. Approaches using RANS methods have been used to

study the aerodynamics of the rotor flow in ground effect operations [23]. A RANS-based

CFD approach can better resolve velocities near the ground without the use of a sublayer

model. However, these methods are computationally very expensive. By taking advantage

of the advances in computing technologies, combined with effective use of parallelization

techniques, Kalra et al. [23] have shown good success with these high fidelity methods to

model the flow at the ground. They used a RANS solver called OVERTURNS [24] and

a refined mesh system near the ground to resolve the vortices to longer wake ages, which

were validated against the experimental measurements of Lee et al. [19].

Free-Vortex Methods (FVM) have also been developed to model the rotor flow near
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(a) Straight line approximation of tip vortices

(b) Free-vortex wake solution at a ground plane using the method of images.

Figure 1.9: Schematic showing the modeling of the Free-Vortex Method

15



the ground, although the FMV is an inviscid model and so cannot model the boundary

layer at the ground. However, using certain approximations the method can be matched

to a viscous zone (i.e., a sublayer model) at the ground and the friction velocity estimated

there to help calculate sediment mobility and brownout conditions.

The development and validation of FVM has been extensively published [25–29].

Because the FVM has been used in the current study to model the flow field, a brief

explanation of the method will be given. The FVM uses Lagrangian markers to track the

vortices as they evolve through the rotor flow. In the FVM, the rotor blades are represented

using a Weissinger-L type model with a full span near wake. The near wake from each

blade is coupled by means of a circulation preserving boundary condition to a far wake

consisting of a rolled-up tip vortex. The far wake consists of vortex trailers, usually up

to between 10 and 12 rotor revolutions in length, which are discretized into continuous

straight-line elements identified by the wake markers. The presence of the ground in the

FVM can be modeled using an image rotor system, or with a panel method to account for

irregular surfaces.

The governing equation for the wake displacements (written in the form of vorticity

transport equation) is further reduced to an advection (wave) equation [30]. This equation

is then discretized in space and time, with the velocity source terms appearing on the

right-hand side. The solution algorithm used is based on five-point central differencing in

space and two-point backward differencing in time [26]. These numerical approximations

are second-order accurate, and are consistent with the accuracy obtained with the velocity

field reconstruction when using straight-line vortex filament segmentation with the Biot-

Savart law [27].
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From the wake solutions, the resulting distributions of airloads on each blade are

then computed. The individual blade moments, rotor thrust, and torque are obtained by

integrating the airloads over the blade span and around the rotor azimuth and are tightly

coupled with the blade flapping motion of the rotor wake solution. During the solution

process, the rotor is continuously trimmed using collective and cyclic blade pitch inputs

to obtain a converged solution at the specified flight condition(s) with the needed rotor

thrust.

1.3.2 Particle Physics Modeling

Understanding the phenomenon of brownout, as well as seeking possible means

of its mitigation, requires the use the efficient and accurate particle tracking algorithms.

These algorithms need to possess the capability to capture the different fundamental fluid-

particle and perhaps even particle-particle interactions, which will all be contributors to

the overall brownout footprint. The algorithms developed should also be able to model the

sheer number of particles present in a brownout dust cloud. A simple calculation from the

measured data presented in Fig. 1.2.2 shows that the number of particles per unit volume

in a brownout cloud is of O(109). If the total volume of dust entrained into the cloud to

be twice the rotor radius in area and one rotor radius in height, then the total number of

particles is O(1011)–O(1013). This is an enormous number of particles to model, which

poses many numerical challenges.
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1.3.3 Eulerian Particle Models

Different brownout models have emerged over the past years which can be classified

into Eulerian and Lagrangian particle techniques. Brown et al. [31] have used an Eulerian-

based Vorticity Transport Model (VTM) coupled with a Particle Tracking Model (PTM)

to study the evolution of a dust cloud around a rotorcraft. VTM is a class of methods that

has been used to model accurate, high-resolution predictions of the dynamics of the wake

of a helicopter rotor in ground effect. Like the FVM, the VTM is also an inviscid model,

and requires approximate sublayer models to capture the boundary layer on the ground.

The VTM was coupled to an Eulerian model for the transport of suspended dust through

the flow [4], which aided in the further understanding the fundamental processes at work

during the formation of the brownout cloud. A snapshot of a cloud simulated using the

Eulerian-Eulerian VTM/PTM model of Brown et al. is shown in Fig. 1.10.

One advantage of the Eulerian, or grid-based approach over the Lagrangian, or

particle-based approach to modeling the dust cloud, is that it provides a representation of

the dust density distribution that remains linked to the spacing of the underlying computa-

tional grid. Brown et al. [31] were able to capture the flow near the ground and also model

at least some of the particle entrainment mechanisms that have been observed in experi-

ments. They were able to model and explain the entrainment of particles from vortex-bed

interactions, which were associated with “saddle-type” singularities in the velocity field.

The Eulerian modeling of the particle cloud, however, prevents visualizing the individ-

ual particles in the flow, and only gives a particle density distribution in the brownout

cloud. Another disadvantage of this method is its inability to model particle-particle in-
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Figure 1: Chinook helicopter landing in dusty conditions.
Note the cloud of dust that is being produced below the air-
craft; brownout is a distinct possibility should the aircraft
decelerate or descend. Image courtesy UK MoD.

conditions, might have distinctly different brownout
characteristics. The implication is that the actual dy-
namics of the brownout cloud is sensitive to properties
of the rotor wake that are very much more subtle than
the broad characteristics of the flow such as mean out-
wash velocity, and so on. There may thus be a lower
bound on the simplicity of the models of brownout
that will ultimately be useful in an engineering con-
text. Indeed, experimental and numerical evidence is
mounting to suggest that the brownout characteristics
of any particular helicopter are, in fact, extremely sen-
sitive to the fine-scale structure of the wake, so that
the geometry and dynamics of the individual vortical
structures within the flow, when coupled to the mech-
anisms of sediment uplift and entrainment from the
ground plane, influences very strongly the resultant
structure of the dust cloud that surrounds the heli-
copter under brownout conditions (Refs. 1, 2).

Any useful engineering model should thus be sensi-
tive to these fine-scale effects. The Vorticity Transport
Model (VTM) is one of a class of methods that has
been shown to provide very accurate, high-resolution
predictions of the dynamics of the wake of a helicopter
rotor in strong ground effect. When coupled to an
Eulerian model for the transport of suspended dust
through the flow (Ref. 2), the VTM provides a pow-
erful tool for resolving the fundamental processes at
work during the formation of the brownout cloud sur-
rounding the helicopter (see Fig. 2).

The advantage of the Eulerian, or grid-based ap-
proach of the VTM over the more commonly-used
Lagrangian, or particle-based approach to modelling
the dust cloud is that it provides a representation
of the dust density distribution that remains linked
to the spacing of the underlying computational grid
throughout the simulation, whereas the resolution of
Lagrangian models tends to deteriorate with time as
the particles disperse within the flow. The VTM thus

allows a very highly-resolved representation of the link
between the rotor-induced flow and the dynamics of
the dust cloud to be obtained, and for this connec-
tion to be monitored throughout the process whereby
the dust is entrained from the ground and eventually
swept up into the flow surrounding the helicopter.

The purpose of this paper will be thus to ex-
ploit the advantageous properties of a coupled Vortic-
ity/Particle Transport Model (VTM/PTM) in order
to examine the dynamics of the wake that is induced
by the rotor in ground effect, and in particular to ex-
plore in detail the process whereby the wake interacts
with a dusty surface in order to generate the cloud of
particulate material that can, under certain circum-
stances, lead to the onset of brownout. The principal
contribution of this work will be to resolve this process
at the level of the fine-scale, individual vortical struc-
tures within the flow and thus to provide insight into
the detailed physical mechanisms that are responsible
for the generation of the brownout cloud.

Figure 2: VTM/PTM simulation of the dust cloud that is
formed in the air surrounding a generic tandem helicopter
during its approach to a desert landing (Ref. 2).

An important qualification is in order, however. The
Achilles heel of all current computational models for
the onset of brownout is the formalism that is used to
represent the entrainment of particulate matter from
the surface into the flow. The ultimate goal is pos-
sibly to model the dynamics of the entire field of in-
dividual particles within the flow, accounting for the
effect of the flow on the particles and vice versa, and
incorporating all the micro-scale physical effects that
are known to bear on the problem. Such models are
some way from practicality at present, however, and,
arguably, are likely to be of limited engineering util-
ity even once developed. For present purposes, thus,
an empirical representation of this process is adopted
within the VTM/PTM, based on those approaches
that are currently used within the sedimentology com-

Figure 1.10: VTM/PTM simulation of the dust cloud that is formed in the air surrounding

a generic tandem helicopter during its approach to a desert landing [4].

teractions, such as bombardment ejections and collisions, which have been shown to be

primary contributors to the development and growth of the dust cloud [1, 6].

In another model, Squires et al. [5, 32] performed DNS simulations of a turbulent

boundary layer containing coherent vortices (to mimic a rotor wake flow) over a sedi-

ment bed. This work uses Lagrangian tracking to modeling of the near-surface dynamics

of particle transport near a sediment bed. This Eulerian-Lagrangian model was able to

represent the coupling of the dispersed phase to the carrier phase, showing that the car-

rier phase is modified when high particle density distributions occur. The top frame of

Fig. 1.11 shows a snapshot of the predicted particle concentration at the initial instant
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Figure 29: Contours of instantaneous streamwise particle velocity. (Top: Initial seeding both cases; Middle:
Coherent vortex; Bottom: Turbulent boundary layer. (Courtesy of Kyle Squires.)

Figure 30: Streamwise evolution of RMS wall-normal
velocity: Top frames include coherent vortex; lower
frames are without vortex. Key: − Fluid flow, ◦ with-
out collisions, + with inter-particle collisions. (Cour-
tesy of Kyle Squires.)

sions to the velocity fluctuations is large and dominate
the resulting flow. The quantitative differences are signif-
icant because an increase in wall-normal fluctuations di-
rectly corresponds to substantially enhanced cross-stream
transport of the particles within and outside the boundary
layer.

In other CFD work being led by James Baeder, RANS
methods are being used to study the aerodynamics of ro-
tors in ground effect and various aspects of the brownout
problem (Refs. 28, 29). Accurate modeling of the dust
cloud obviously requires a coupling method where data
is exchanged between the flow solver and the particle-
tracking solver at every time step.

For solving the rotor flow, a version of the TURNS
(Transonic Unsteady Rotor Navier–Stokes) code is used,
with fuselage shapes being modeled using the immersed
boundary technique. TURNS is an unsteady RANS
solver that uses a second-order backward difference
method for time integration. Newton sub-iterations are
used to remove factorization errors and recover time ac-
curacy for unsteady computations. Inviscid fluxes are

computed using an upwind scheme that uses Roe’s flux
differencing with MUSCL-type limiting. The viscous
fluxes are computed using second-order central differenc-
ing. The Spalart–Allmaras turbulence model is used for
closure of the RANS equations.

The particle tracking algorithm consists of a La-
grangian method (previously described) with semi-
empirical models for the various phenomena involved in
sediment uplift (e.g., shear stress, pressure, cohesiveness)
and bombardment. At every time step, the CFD solution
is interfaced with the particle tracking algorithm and the
velocity of each particle is computed by interpolating the
velocities around the CFD grid points that contain it. This
model is also one-way coupled (for now) in that the fluid
is assumed to be unaffected by the presence of the parti-
cles and particle collisions are neglected.

Various results have been computed to model the
small rotor experiments, as previously described. For ex-
ample, Fig. 31 shows the phase-averaged vorticity con-
tours compared to the experimental data of Lee et al.
(Ref. 10). The individual tip vortices are well preserved
for several revolutions, but this capability requires judi-
cious selection of the grid. The ability to preserve vortic-
ity to older wake ages where it interacts with the ground
is a primary challenge in this type of CFD research. The
thickening boundary layer and incipient flow separation
at the ground plane induced by the passage of the vor-
tices is evident, which has also been observed in the ex-
periments previously described (see Fig. 17) as well as in
other simulations.

A simulation of a brownout cloud made using this
Euler–Lagrange approach is shown in Fig. 32. The cloud
contains several million dust particles. Inspection of this
cloud reveals pronounced helical striations, which cor-
respond to the effects of the discrete tip vortices in the
flow, confirming again that the blade tip vortices are pri-
mary participants in the brownout problem. While much
further work is needed before such simulations can be
used for reliable quantitative predictions of brownout, the
simulations made thus far are certainly very encouraging.
Again, validation of this CFD approach is very important,
and to this end much further work is needed.

T211-1-21

Figure 1.11: Contours of instantaneous streamwise particle velocities. Top: Initial seed-

ing both cases; Middle: Coherent vortex; Bottom: Turbulent boundary layer. [5].

of one such simulation with coherent vortices around a downstream location of 20. The

middle and lower frames of Fig. 1.11 show the instantaneous particle concentrations,

which include the coherent vortices interacting with the boundary layer and the turbulent

boundary layer without the coherent vortices, respectively.

1.3.4 Lagrangian Particle Tracking Models

A Lagrangian particle tracking algorithm was coupled with a FVM by Syal et al. [6];

this method would be classified a a Lagrangian-Lagrangian approach. Various sediment

entrainment mechanisms were successfully modeled, including direct entrainment and

bombardment entrainment (i.e., saltation and reingestion bombardment). Bombardment

entrainment models were based on a Gaussian probabilistic approach. Similar models

were used to obtain the volume of the crater after bombardment and the velocity of the

ejected particles. The uplift of particles by the unsteady suction pressure on the bed

produced by convecting vortices was also modeled. These models were all shown to

function very effectively within the context of the entire brownout simulation, and showed
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Fig. 27: Development of the dust cloud during the takeoff maneuver at times t = 1 and 3 seconds.

Figure 1.12: Dust cloud along with the associated velocity contours using a Lagrangian

particle tracking methodology [6].

physical correlation with the velocity field, a snapshot of which is shown in Fig. 1.12. The

method was also used to predict the brownout cloud for a simulated landing maneuver,

the results being validated with photogrametry measurements made by Wong and Tanner

[33, 34].

Thomas et al. [35] used the previously described OVERTURNS code along with

a Lagrangian sediment tracking algorithm to predict the development of brownout dust

clouds. At every time step, the CFD solution was interfaced with the particle tracking

algorithm and the velocity of each particle is computed by interpolating the velocities

around the CFD grid points that contain it. The advantage of such an Eulerian-Lagrangian
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approach is the better prediction of turbulent events, which is known to be important when

it comes to the movement and uplift of sediment from an underlying bed [35].

1.3.5 Reducing Computational Costs

A significant advantage that Lagrangian methods offer over Eulerian methods is the

ability to accommodate particle level interactions. However, for a high-fidelity realistic

brownout simulation, the number of particles required in the simulation are in the order

of O(1011)–O(1013), as previously described, which makes the use of these methods

computationally challenging. It is because of the sheer number of particles in the flow that

computational costs must be contained if practical simulations of brownout dust clouds

are to be performed. For example, for a given Lagrangian-Lagrangian two-phase flow

simulation (i.e., using the method of Syal et al. [6]), the total computational cost per time

step will be of the order of O(N2) for the Biot-Savart law computation, and O(NM) for

the particle tracking, where N is the number of vortices in the rotor wake and M is the

number of particles being tracked.

One approach previously used to contain the cost for each set of calculations has

been by using parallel processes and/or multithreaded or multicore CPUs. Recent ad-

vancements in computer hardware technology has also enabled the use of Graphics Pro-

cessing Units (GPU). A GPU is a highly parallel, multi-threaded, many-core processor

with significant computational power and high memory bandwidth. GPUs are designed

for efficient single instruction multiple data computations [36] and can accelerate the so-

lutions by up to two orders of magnitude.
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Apart from the use of hardware implementation to reduce the computational costs,

careful code development leading to algorithmic speed-ups can help to tackle the problem

at its source. Furthermore, when coupled with a multithreaded CPU or GPU, further

reductions in computational time can be achieved. For the N-body interactions problems,

Fast Multipole Methods (FMM) can also reduce the order of computation from O(N2) to

O(N logN). For example, Hu et al. [36] used the FMM on GPU and coupled it with the

sediment tracking algorithm of Syal [6]. In a CPU-only environment, a typical brownout

simulation can take days of wall-clock time, whereas if implemented on GPUs the same

result can be obtained in only a few hours, and without compromising on the accuracy of

the solution.

1.3.6 Particle Clustering Techniques

There exists other avenues to contain the computational costs incurred with the La-

grangian tracking of many particles, aside from parallel processing and use of algorithms

such as the FMM. These techniques include particle clustering, where groups of particles

are treated as one saving on the computational cost of tracking every individual particle.

Although there exists the potential to save on the cost of tracking the particles through the

use of such particle clustering methods, very limited work has been done in the past in

the development of the most suitable algorithms in terms of their effectiveness and sav-

ings in computational cost, e.g., relative to a direct or “brute-force” approach where the

trajectories of all particles are computed directly.

Wachpress et al. [37] have claimed that it is possible to perform certain brownout
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simulations with the help of a particle clustering method. They assumed that each “clus-

ter” represented a larger number of particles and the particles within a cluster are spread

using a Gaussian distribution. The equations of motion were solved by considering the

velocity and displacement of the cluster at any given time to be comprised of a mean and

a fluctuating component. The final results for the cluster velocities and displacements is

based on the mean scale turbulence level and integral scale of mean square turbulence.

The fluctuating displacement of the cluster, which was used to compute the position vari-

ance, corresponds to the growth of the cluster over time around the mean cluster location.

The algorithm used in this approach is detailed by Teske et al. [38]. This model, how-

ever, requires the prior knowledge of the mean turbulence and level and the integral scale

of the mean turbulence level for specific problems. These parameters were determined

by Teske et al. for spray drift for aerial applications such as the dispersion of pesticides

from aircraft. However, such parameters are fundamentally more difficult to determine

for rotorcraft brownout applications. Although Wachpress et al. [?] showed some results

of brownout simulations, the details of the approach were not given and the results were

not validated against direct particle solutions.

Other clustering approaches are obviously possible. The k-means algorithm [39] is

one of the simplest unsupervised learning algorithms that can be used to divide a given

data set into groups or clusters. This algorithm is used in various fields, ranging from

market segmentation, computer vision, astronomy, and agriculture. Traditionally, the k-

means method is used to help classify data into organized structures, which aids in the

further analysis of the problem at hand. Although the method has not been previously

applied to the problem of rotorcraft brownout, there is potential for using the algorithm
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to divide all the particles to be tracked into clusters, thereby saving on the computational

cost of tracking each and every particle. Therefore, the characteristics of the k-means

algorithm for brownout problems was explored in the present research.

For the purposes of evaluating the optical characteristics of the dust cloud (i.e., vis-

ibility through the cloud from the pilot’s perspective), it may be sufficient that the density

distribution be computed throughout the spatial region of interest. To this end, Osiptsov’s

method [7] helps obtain the density distribution using a few Lagrangian particles used as

tracer particles. This method has been applied in predicting the dust density distribution

in two-dimensional internal flows through turbine cascades, with promising results. De-

tails of this method are presented in Chapter 2 of this thesis. Healy et al. [7] dealt with

mostly internal flows that are much less vortical in nature compared to those seen with

rotorcraft wakes.

1.4 Objectives of the Present Work

The present work contributes to a class of algorithms that can help in expedit-

ing brownout calculations through smart particle tracking algorithms rather than through

hardware implementations. In general, prior work in the field of particle clustering tech-

niques has been limited, and the algorithms used have not been published in detail in the

open literature. The advantages and limitations of these methods are not known, espe-

cially in regard to the brownout problem, as a consequence of which their applicability to

the problem is not fully understood. To this end, the Gaussian, k-means and Osiptsov’s

method are studied in the present work with an emphasis on the numerical characteristics
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of each algorithm. The algorithms are also studied with an attempt to understand their

relative advantages and their applicability to the brownout problem.

In summary, the present research involved the development of generally computa-

tionally efficient algorithms that can be applied to the simulation of dilute gas-particle

suspensions at low Reynolds numbers of the relative particle motion. The goal was to

reduce the computational cost of the dust cloud simulation, while also preserving the

accuracy of the solution within acceptable tolerance limits. To this end, the Gaussian dis-

tribution, k-means and Osiptsov’s clustering methods were studied in detail for a proto-

typical flow field that mimics the highly unsteady, two-phase vortical particle flow found

during brownout conditions. The regions of applicability of these methods along with

their relative advantages were studied in detail and their bounds explored. In the case of

the Gaussian method, the algorithm was applied to the full three-dimensional brownout

problem. It is shown that although clustering algorithms can be problem dependent and

have bounds of applicability, they offer the potential to significantly reduce computational

costs while retaining the overall accuracy of a brownout dust cloud solution.

1.5 Organization of Thesis

The present work explores three different particle clustering algorithms to reduce

the computational time incurred for brownout dust cloud calculations. The problem of

brownout in terms of the flow and particle physics have been discussed in the present

chapter. A review of previous work on the brownout problem from a computational

standpoint has also been discussed. Chapter 2 gives a comprehensive description of the
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algorithms that were implemented and tested. These descriptions include the motivation

behind exploring each algorithm and the mathematics behind them. A description of the

prototypical flow and the governing flow and particle equations are also discussed. Chap-

ter 3 documents the results in terms of regions of applicability for each of the algorithms,

their relative advantages, gains in computational time, and the resulting accuracy of the

solutions. The effectiveness of each of the clustering methods is explored for potential

use in complete brownout simulations. Finally, Chapter 4 concludes the thesis by dis-

cussing the significance of the findings, and suggesting future studies that will help to

better understand these algorithms and how they might be applied to modeling rotorcraft

brownout problems.
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Chapter 2

Methodology

2.1 Introduction

To perform Lagrangian tracking of particles for a full-scale three-dimensional brownout

problem, it is clear that with the large number of particles that are involved a direct of

“brute force” computation would result in an unreasonable, perhaps prohibitive, compu-

tational time. To help overcome this problem, smart particle tracking algorithms have

been studied to preserve the total number of particles in the simulation but limiting the

computational time. Several different particle-clustering approaches are possible, which

may also include the adoption of declustering and reclustering strategies. A disadvantage

of a clustering method can be with accumulating inaccuracies in the particle trajectories,

which depends on the method used to perform the clustering. However, if it can be shown

that a given method incurs only small losses in accuracy of the particle positions for sig-

nificant gains in computational time in finding a solution, then clustering methods can

become very powerful tools in the simulation of brownout dust clouds.

The specific methods developed and implemented in the present work were: (a)

the Gaussian Method, (b) the k-means Method, and (c) Osiptsov’s Method. These al-

gorithms were evaluated with an emphasis on: (a) improvements in computational time

as compared to a direct calculation where each the trajectories of individual particles are

computed and tracked in time and space, and (b) the accuracy of the solution relative to
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the direct method.

2.2 Gaussian Method

The Gaussian method treats all of the particles in the cloud simulation as clusters,

each cluster representing a certain set of particles that are spatially distributed around the

cluster center. A schematic of the method is shown in Fig. 2.1. If there are n1 particles

assumed in the dust cloud simulation, then each of these particles can be treated as a clus-

ter representing n2 particles, giving n1(n2 +1) total particles, i.e., n1n2 cluster-generated

particles and n1 original clusters.

The n2 particles around each of the n1 particle clusters are distributed in a specific

Gaussian form. For these clustered particles to mimic the physics of the flow at any given

time, the mean vector µc and covariance matrix Σc for each cluster can be defined as

µc =

[
Vpx Vpy Vpz

]
(2.1)

and

Σc =
1
Ec




k1|Vpx|2 k2|Vpx||Vpy| k2|Vpx||Vpz|

k2|Vpy||Vpx| k1|Vpy|2 k2|Vpy|Vpz|

k2|Vpz||Vpx| k2|Vpz||Vpy| k1|Vpz|2




(2.2)

where Vpx, Vpy, and Vpz are the instantaneous velocities of each cluster and Ec is a measure

of the kinetic energy of the group. Scaling of the covariance matrix by Ec
−1 is performed

where the local flow velocities become large. The generated clusters at worst case (i.e.

when the velocities are large) would collapse down to the original particle and will never

cause a blown-out solution because the value of Ec would increase. The conditions on the
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Figure 2.1: Schematic showing the Gaussian method of particle clustering.

above matrix to be positive definite are

k1 > 0, k2 > 0, (k1− k2)> 0 (2.3)

which is derived from Sylvester’s Condition to have a positive definite matrix [40], and

where

k2

k1
< min

[ |Vpx|
|Vpy|+ |Vpz|

,
|Vpy|

|Vpx|+ |Vpz|
,

|Vpz|
|Vpx|+ |Vpy|

]
(2.4)

which is required for the matrix to be diagonally dominant.

The parameter k1 is a scalar that dictates the spread in each of the principal direc-

tions, and k2 can be viewed as a cross-coupling coefficient. Higher the value of k1, higher
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will be the spread of the particles around the cluster centres in the principal directions.

The positions of the n2 particles distributed around each cluster are then calculated us-

ing the velocities obtained from the distribution matrix. The particles are distributed in a

normalized Gaussian fashion irrespective of the values of the coefficients k1 and k2.

2.3 k-means Method

The k-means clustering method is based on the principle that certain sets of indi-

vidual particles can be decomposed into smaller groups of clusters, and that the resulting

equations of motion are solved only for the clusters. The displacements of the cluster

centers are then applied to all of the individual particles comprising the cluster. There are

two aspects to this method. 1. Selecting the candidate particle groups to form a cluster; 2.

The effects produced by clustering, declustering, and reclustering of the particle groups.

The general idea of the k-means clustering approach is depicted in Fig. 2.2. The

k-means clustering algorithm is a category of cluster analysis that aims to partition n ob-

servations (i.e., particles) into k clusters in which each particle belongs to the cluster with

the nearest mean. The most common algorithm uses an iterative refinement technique.

Brief steps of the algorithms are as follows:

1. k initial “means” are randomly selected from the data set of particles.

2. k clusters are created by associating every particle with the nearest mean. The

computational time of this step is O(kN), where N is the total number of particles

in the data set.

3. The centroid of each of the k clusters are computed and they become the new means.
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Figure 2.2: Schematic showing the k-means method of clustering and declustering.

4. Steps 2 and 3 are repeated until convergence has been reached.

Mathematically, given an initial set of k means m(1)
1 , ...,m(1)

k , the algorithm proceeds

by alternating between the following two steps:

1. Assignment step: Each particle is assigned to the cluster with the closest mean,

i.e.,

S(t)i =
[
x j : |x j−m(t)

i | ≤ |x j−m(t)
i∗ |i∗ = 1, . . . ,k

]
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2. Update step: The new means are calculated and they are the centroid of the parti-

cles in the cluster, i.e.,

m(t+1)
i =

1

|S(t)i |
∑

x j∈S(t)i

x j

Any two given clusters can be reclustered, if required, based on the criteria

S12

S1 +S2
< k12 (2.5)

where S12 is the inter-cluster separation distance and S1 and S2 are the intra-cluster scatter,

the latter being the average distance of all particles in a cluster from the cluster center. The

threshold parameter, k12, is typically less than unity and reflects the threshold distance

under which two overlapping clusters become eligible for clustering. The foregoing is

basically a variation of the Davies-Bouldin index [41].

The computational benefits of such a clustering method proves to be relatively at-

tractive for brownout-type simulations, in some cases the method can be up to two-orders

of magnitude faster compared to a direct simulation using the same total number of par-

ticles. Because the movement of their respective clusters approximates the motion of all

of the individual particles in the cluster, the accuracy of the solution will obviously be

compromised as the number of clusters is decreased. Therefore, some reasonably large

number of clusters must always be chosen to avoid concerns about accuracy.

A significant disadvantage of this method is that the conditional clustering and

declustering incurs a significant computational overhead, and this cost can become signif-

icant in problems having high velocity gradients in the carrier flow field where the process

may need to be repeated frequently.
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2.4 Osiptsov’s Method

Osiptsov’s method has its roots in Lagrangian theory and involves integrating equa-

tions for particle density along individual pathlines. The particle densities are obtained

from the Lagrangian form of the conservation of mass by computing the change in vol-

ume of an element of “particle fluid” along its pathline. Although the exact origins of this

method are not clear, a set of relevant equations first appeared in a work by Fernandez

de la Mora and Rosner (FMR) [42]. A related line of development was carried out by

Osiptsov et al. [43].

Healy and Young [7] have compared the FMR and Osiptsov’s methods for simple

flow problems, and have used the Osiptsov’s method to predict particle densities for the

flow past a cylinder as well as for the more challenging problem of the particle-laden flow

through a turbine cascade. A significant reduction in the computational costs was shown

for the same accuracy.

Although both the FMR and Osiptsov’s method are based on the same principles,

Osiptsov’s method is more suitable for handling flows with crossing pathlines, whereas

the FMR method leads to a mathematical singularity [42]. Because crossing pathlines are

typical of flows that are more vortical in nature, Osiptsov’s method becomes a potential

candidate for helping to model brownout problems.

To illustrate Osiptsov’s method, a simplified two dimensional case can be consid-

ered. In this case, particles move only under the action of the Stokes drag and gravity

forces, i.e.,

dVp

dt
=−(Vp−U)

τp
+g (2.6)
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where Vp and U are the particle and flow velocities, respectively. The corresponding

equation for the conservation of mass is

ρp =
ρp0

|J| (2.7)

where ρp0 is the is the mass density of the particulate phase at t = 0. At this time, the

element is rectangular of area δxp0δyp0 (i.e., a two-dimensional volume), as shown in Fig.

2.3. At a later time t, it has become trapezoidal-shaped and has area |J|δxp0δyp0 where

J = JxxJyy− JxyJyx and

Jxx =

(
∂xp

∂xp0

)

y j,p0,t
, Jyy =

(
∂yp
∂yp0

)
x j,p0,t

,

Jxy =

(
∂xp

∂yp0

)

x j,p0,t
, Jyx =

(
∂yp
∂xp0

)
y j,p0,t

(2.8)

The reasoning behind using the absolute value of the Jacobian is that when particle path-

lines cross, the sign changes but the area enclosed remains positive.

For the purposes of concise presentation of the following derivation, the dimensions

in space x and y are denoted as x1 and x2 respectively. Four new variables are now defined

based on the relationship

ωi j =
∂Ji j

∂t
=

∂
∂t

(
∂xp,i

∂x j,p0

)
=

∂Vi

∂x j,p0
; ∀(i, j) ∈ 1,2 (2.9)

Further differentiating the set of Eq. 2.9 with respect to t, gives

∂ωi j

∂t
=

∂
∂t

(
∂Vi

∂x j,p0

)

=
∂

∂x j,p0

(
∂Vi

∂t

)

=
1
τp

∂
∂x j,p0

(Ui−Vi,p)
1
τp

∂
∂x j,p0

(Ui−Vi,p)

=
1
τp

(
∂Ui

∂x j,p0
−ωi j

)
; ∀(i, j) ∈ 1,2 (2.10)
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Four new variables wxx , wxy , wyx and wyy are now defined by the relationships

wxx Z
vJxx
vt

Z
v

vt

vxp
vxp0

! "
Z

vVx

vxp0
; (2.6a)

wxy Z
vJxy
vt

Z
v

vt

vxp
vyp0

! "
Z

vVx

vyp0
; (2.6b)

wyx Z
vJyx
vt

Z
v

vt

vyp
vxp0

! "
Z

vVy

vxp0
; (2.6c)

wyy Z
vJyy
vt

Z
v

vt

vyp
vyp0

! "
Z

vVy

vyp0
: (2.6d)

Differentiating equations (2.6a–d ) with respect to t and introducing equations
(2.4b) and (2.4c) then gives

vwxx

vt
Z

v

vt

vVx

vx p0

! "
Z

v

vxp0

vVx

vt

! "
Zb

v

vxp0
ðUxKVxÞZb

vUx

vxp0
Kwxx

! "
; (2.7a)

vwxy

vt
Z

v

vt

vVx

vyp0

! "
Z

v

vyp0

vVx

vt

! "
Zb

v

vyp0
ðUxKVxÞZb

vUx

vyp0
Kwxy

! "
; (2.7b)

vwyx

vt
Z

v

vt

vVy

vx p0

! "
Z

v

vx p0

vVy

vt

! "
Zb

v

vxp0
ðUyKVyÞZb

vUy

vxp0
Kwyx

! "
; (2.7c)

vwyy

vt
Z

v

vt

vVy

vyp0

! "
Z

v

vyp0

vVy

vt

! "
Zb

v

vyp0
ðUyKVyÞZb

vUy

vyp0
Kwyy

! "
: (2.7d)

Figure 1. Particle element occupying a rectangular area dxp0dyp0 at time zero and a lozenged-
shaped area jJ j dxp0dyp0 at a later time t. The dotted lines represent particle pathlines and would
normally be curved.

7Calculating particle concentration fields

Proc. R. Soc. A

Figure 2.3: Schematic showing the change in shape of the particle fluid element. The

dotted lines represent particle pathlines, which would normally be curved [7].
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Using the chain rule for differentiation then

∂ωi j

∂t
=

1
τp

(
2

∑
k=1

Jk j
∂Ui

∂xk
−ωi j

)
; ∀(i, j) ∈ 1,2 (2.11)

Equations 2.6, 2.7, 2.9 and 2.11 can be integrated numerically along the pathlines.

However, the derivative of the fluid velocity is also needed at the particle positions. These

derivatives can be obtained using a second-order central differencing scheme. The par-

ticle concentration ρp is then obtained purely as a post-processing step because it is the

Jacobian J that carries the information in the computations.

Equations 2.9 and 2.11 are numerically integrated using the same scheme used to

integrate the momentum equations, i.e.,

ωi j = (ωi j)0e−∆t/τp +(1− e−∆t/τp)

(
2

∑
k=1

Jk j
∂Ui

∂xk

)
; ∀(i, j) ∈ 1,2 (2.12)

A further integration gives an expression for the components of the Jacobian, i.e.,

Ji j = (Ji j)0 + τp(1− e−∆t/τp)(ωi j)0

+(∆t− τp(1− e−∆t/τp))

(
2

∑
k=1

Jk j
∂Ui

∂xk

)
;

∀(i, j) ∈ 1,2 (2.13)

Notice that when the pathlines cross, the value of the Jacobian goes to zero, which implies

that the value of ρp would go to infinity. This result is practically improbable as the effects

of finite particle size and inter-particle collisions become more likely at high particle

concentrations.
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2.5 Error Estimations

The solutions obatined through clustering methods might save on computational

time, but the accuracy obtained must also be considered. Ensuring that the errors stay

within prescribed limits is critical because the errors can become compounded through

the solution as it evolves. Computing the root-mean-square (rms) error to evaluate the

accuracy of the solution may be appropriate, and this is a reasonable metric if the flow

problems being considered are relatively simple (e.g., two-dimensional particle motion

induced by single vortex in a uniform flow). However using the rms error as a method for

error estimation was found to be less appropriate for more complex flow fields (e.g., a flow

field with multiple vortices or a three-dimensional flow). For example, a single particle

whose position maybe far away from the remainder of the cloud during the evolution

of the solution will result in a high rms error. However, this single particle by itself is

unimportant for all practical purposes, rendering the rms a less useful error metric.

A better metric of error estimation is to compare density plots between the clustered

solution and the actual computed solution. For example, quantitative metrics to quantify

how “good” or “bad” a brownout cloud have been developed by Tritschler et al. [44]

using the Modulation Transfer Function (MTF) to predict the optical characteristics of

the brownout cloud as seen by the pilot. In this case, the need for a high fidelity dust

cloud solution is critical if the MTF is to be predicted with good accuracy.

Consider the case where two different solutions are compared using density plots,

with the density being computed in terms of number of particles in each “bin.” If the

size of the bin was the size of the entire space, then the two densities would be the same
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(because the total number of particles are the same). As the bin size is reduced, the error

increases between the two solutions. When extended to three-dimensions, this idea can

be used to determine the applicability of clustering.

A solid angle of dθ is extended from the center of the sphere (e.g., the pilot’s eye) as

illustrated in Fig. 2.4. The distance Rdθ can be related to a mesh size in two-dimensions;

now the mesh sizes R2dθ > R1dθ as R2 > R1. This result implies that there will be

some distance away from an observer location beyond which accuracy is maintained by

clustering. It also follows from a physical reasoning that small errors in the position of

particles will not be noticed if the observer is sufficiently far away.

The two density distributions can be quantified as intensity maps if the Pearson

correlation coefficient is used. In this case, the correlation coefficient, r, between two

density matrices, X and Y , is given by

r =
∑i ∑ j[X(i, j)− X̄ ][Y (i, j)− Ȳ ]√

∑i ∑ j [X(i, j)− X̄ ]2 ∑i ∑ j [Y (i, j)− Ȳ ]2
(2.14)

where X(i, j) and Y (i, j) indicate the ith and jth components of the density value, while

X̄and Ȳ are mean values of the intensity matrices X and Y , respectively. As the value of

r approaches 1, the images are well correlated with r = 1 being an exact correlation. As

the value nears r = 0, the images become poorly correlated. It should be notes that the

Pearson coefficient indicates the overall correlation between two given density maps but

is invariant to local differences. However, the Pearson coefficient is still a good metric to

begin with for simple flow fields.
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Figure 2.4: Spherical coordinate system centered around the pilot. Grid size of each “bin”

increases when moving away from an observer.
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2.6 Prototypical Flow

Although the actual dust flow surrounding a rotorcraft is very unsteady and three-

dimensional, prototypical two-dimensional flows were chosen to evaluate the three clus-

tering algorithms. The advantage of using more simplified flows is that a good under-

standing of the respective nuances of the clustering methods can be established, and the

results can be used to expose quite easily the relative predictive advantages of each method

as they would apply to more complex problems.

One prototypical flow field chosen was a series of convecting two-dimensional vor-

tices that pass over a thin “saltation” region of randomly distributed dust particles in

several layers, as shown in Fig. 2.5. This problem is representative of what happens in

the two-phase flow generated below the rotor flow as observed in experiments [1].

The flow tangency condition at the ground plane was modeled using an image flow

system. Particles are uplifted when the external forces acting on the particle exceed the

gravitational and the drag force. Potential flow of the gas and small Reynolds numbers

of the relative particle motion were assumed in the present study. To keep the model

relatively simple, cohesive forces, electrostatic forces, etc. were neglected, and other

mechanisms of particle uplift such as pressure effects [34] were not modeled. This repre-

sentative flow was considered because the interest in this case lies more in the evaluation

of the clustering algorithms and not on the quantitative prediction of the two-phase flow

per se.

The saltation region consisted of particles that were treated as monodispersed spher-

ical entities that behave as a dilute gas. Therefore, it was assumed that the particles are
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Figure 2.5: Schematic showing the passage of vortices over an initial saltation layer, and

uplifting the dust [1].

driven by the carrier gas but not vice-versa, and that collisions between the particles can

be ignored. The particles in the upper most part of the saltation layer are considered

to be active and eligible for entrainment. As these particles are entrained into the flow,

subsequent layers become active and so become eligible for entrainment.

2.6.1 Particle Convection

The equation of motion of the particles can be written as

m
dVp

dt
= ∑F

' Fd +Fg

= −1
2

ρ CdA
∣∣Vp−U

∣∣(Vp−U)+mg (2.15)
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where the forces on the particles include a drag force, Fd , gravity force, Fg, as well as

buoyancy, apparent mass, and Basset forces. For this simplified model, only the drag and

gravitational forces were retained. The particle drag coefficient Cd is defined by

Cd(Rep) =
24

Rep

[
1+0.15Re0.687

p

]
(2.16)

where the particle Reynolds number, Rep, is

Rep =

∣∣Vp−U
∣∣dp

ν
(2.17)

For the size of particles prominent in the brownout problem, then Rep << 1, i.e., the

particle experiences a Stokes flow. For these flows, Cd = 24/Rep. The equation of motion

is given by Eq. 2.6 where τp is the particle velocity relaxation time as given by

τp =
m

1
2ρCd (Rep)A

∣∣Vp−U
∣∣ (2.18)

For the Stokes regime this turns into

τp =
ρpd2

p

18µ
(2.19)

Notice that the particle velocity relaxation time is a function of particle density and size.

For a dilute flow, the equation of motion can be decoupled in the two dimensions,

and written as

dVpx

dt
=−(Vpx−Ux)

τp
(2.20)

and

dVpy

dt
=−(Vpy−Uy)

τp
(2.21)

Equations 2.20 and 2.21 can then be integrated along the particle pathlines using any

algorithm for simultaneous Ordinary Differential Equations (ODEs). In the present study,
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a predictor-corrector scheme was used. If an explicit integration method is used, the

integration time-step must be less than the particle relaxation time τp to ensure numerical

stability. This problem is not an issue at high Stokes numbers because the time step is

limited for reasons of accuracy by the requirement that the carrier flow conditions do

not change significantly over a single time step. However, at lower Stokes numbers, the

equations become mathematically stiff and small time steps are required to ensure the

stability of the time marching scheme.

One method of overcoming this numerical barrier is to use an approximate analyt-

ical integration method of the momentum equations over a time-interval long compared

to the particle relaxation time τp, but are small compared to the time-scale changes of

the carrier flow. This approach is simpler than traditional backward different numerical

methods for stiff ODEs.

Consider the x-momentum equation (Eq. 2.20), which can be rewritten as

d(Vpx−Ux)

dt
+

(Vpx−Ux)

τp
=−dUx

dt
(2.22)

Multiplying by et/τp and integrating from t = 0 to t = ∆t and assuming a constant dUx/dt,

then

Vpx(t +∆t) = Ux(t +∆t)+(Vpx(t)−Ux(t))e−dt/τp

−τp

(
dUx

dt
+g
)
(1− e−dt/τp) (2.23)

where dUx/dt represents the average value over the time-step. Similarly the y-momentum
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equation can be written as

Vpy(t +∆t) = Uy(t +∆t)+(Vpy(t)−Uy(t))e−dt/τp

−τp
dUy

dt
(1− e−∆t/τp) (2.24)

The advantage of this particular formulation is that there is no restriction on the time

step from the consideration of numerical stability; the value of ∆t is only limited by the

accuracy of the assumption that dUx/dt is constant over the chosen time-step.

The convection of particles is then given by the differential equation

drp

dt
= Vp (2.25)

Different numerical schemes were examined to determine the accuracy and stability of

the integration, and it was concluded that the best choice is a three step backward Euler

explicit scheme, which is second-order accurate. Therefore, Eq. 2.25 can be written in

two dimensions as

xp(t +∆t) =
1

11
(18xp(t)−9xp(t−∆t)

+2xp(t−2∆t)+6Vpx(t)∆t) (2.26)

yp(t +∆t) =
1

11
(18yp(t)−9yp(t−∆t)

+2yp(t−2∆t)+6Vpx(t)∆t) (2.27)

2.6.2 Particle Bombardment on Bed

A relatively simple method has been used in the present case to represent bombard-

ment effects when a particle impinges on the particle bed. The inelastic collision of the

particle with the ground can be modeled using conservation of momentum applied along
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the in-plane and wall-normal direction, which provide the rebound velocity of the particle

after collision, i.e.,

Vp,par = epar ∗Vp,par (2.28)

Vp,norm = −enorm ∗Vp,norm (2.29)

where epar and enorm are the coefficients of restitution parallel and normal to the ground,

respectively.

2.7 Summary

This chapter has discussed the different particle clustering strategies that were em-

ployed in the present study. The Gaussian method, k-means and the Osiptsov’s method

have been described in detail. The mathematical framework behind each of the three algo-

rithms has also been explained with the differences between the methods. These particle

clustering algorithms were applied to a two-dimensional prototypical flows that mimic

brownout type flows and their relative advantages were studies. The prototypical flows

have been explained, with the equations for particle convection and the assumptions made

in the present study.
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Chapter 3

Results and Discussion

3.1 Introduction

In this chapter, the three previously described methods of clustering (i.e., Gaussian,

k-means and the Osiptsov’s method) were evaluated from a numerical perspective when

applied to the prototypical flows. The Gaussian distribution method retains the same

particles throughout the calculation, although their positions change dynamically with re-

spect to the cluster center, whereas the k-means method is based on repeated declustering

and reclustering of particle groups. Osiptsov’s method is based on integrating the particle

fluid-element concentration along pathlines. The regions of applicability of each method

have also been identified in detail. The relative advantages of the algorithms have been

analyzed and from the studies conducted, and the best use of these methods to the prob-

lem of brownout is proposed. The computational benefits and the errors incurred from

each of the methods has also been studied and quantified.

Metrics required to compare the “closeness” or accuracy between two brownout

clouds are still in its initial stages, as discussed in Chapter 1. Some work has been done

in this field by Tritschler et al. [44] through the use of the Modulation Transfer Function

(MTF). However, to assess the validity of the clustering algorithms, both in terms of

accuracy and computational time-gain, the solution obtained through the use of clustering

algorithms must be compared against a known exact solution. In the current study, the
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“exact solution” is referred to the solution that was obtained when all of the particles

were tracked directly without the use of any clustering algorithms (i.e., a “brute-force”

application of the particle tracking algorithm). The solutions obtained using the clustering

algorithms were compared against the exact solution to assess its accuracy.

For the prototypical flow problem, the equations of motion of the particle were

modified appropriately to include only the two relevant dimensions (i.e., parallel to the

ground and normal to the ground). Hence, in the Gaussian formulation the mean vector

µc is an array with two entries and the covariance matrix Σc being a 2×2 matrix written

as

µc =

[
Vpx Vpy

]
(3.1)

and

Σc =
1
Ec




k1|Vpx|2 k2|Vpx||Vpy|

k2|Vpy||Vpx| k1|Vpy|2


 (3.2)

Figure 3.1 shows the positions of the particles and the vortices in the flow as they

pass over the initial saltation layer at three different time steps. An initial saltation layer

of 15 layers each consisting of 75 particles was chosen, i.e., a total of 1,125 particles.

The particles in successive layers are made “active” as the particles directly above are

mobilized and entrained into the flow. Although a simple two-dimensional flow field was

chosen, it is important that this flow field has the same characteristic features of a rotor

flow and its associated sediment uplift mechanisms. The results show the characteristic

particle uplift mechanisms (discussed in the introductory chapter and seen in experiments)

such as entrainment by the vortical flow, secondary vortex trapping, and particle settling

under the action of gravity.
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(a) Number of time steps = 75

(b) Number of time steps = 150

(c) Number of time steps = 225

Figure 3.1: Exact solution. Initial layer = 15, particles per layer = 75.

49



3.2 Gaussian Method

The Gaussian method is the first of the three clustering algorithms studied in the

current work. This algorithm redistributes the clustered particles at every time-step based

on currently existing information. This method was tested using two different approaches.

First, this method was used to explore the capability of reconstruction a particle field. In

this case, the Gaussian method was used to increase the number of particles in a “de-

graded” simulation (a case with fewer particles in the simulation) so as to match the total

number of particles with a simulation performed using the exact method. The ability

to accurately reconstruct the solution with fewer particles would result in computational

time being gained using this method. Secondly, this method uses existing information

to further bring out finer details in the particle field by increasing the total number of

particles beyond the baseline solution.

Figure 3.2 shows an exact solution with 15 layers of particles, each layer now con-

sisting of 75× 5 = 375 particles, such that the total number of particles have increased

to 5,625. The particle trajectories can be seen to be very similar, except that the particle

field is now more densely populated. It can be seen that the particle count is changed by

altering the number of particles in each layer and not by altering the number of layers.

The latter is not a valid comparison because of the nature of the problem. The particles

in the layer below the active layer are made active when the active layer is depleted. By

changing the number of layers rather than particles per layer, the mass injection rate into

the flow is altered by sediment of the bed. However, by increasing the number of particles

per layer, the particle density is altered keeping the mass injection rate constant.
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(a) Number of time steps = 75

(b) Number of time steps = 150

(c) Number of time steps = 225

Figure 3.2: Exact solution. Initial layers = 15, particles per layer = 375.
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3.2.1 Effect of Number of Particles per Cluster

In this section, the effect of changing the number of particles per cluster are studied

along with their effect on accuracy of the solution. This study helps to determine the

optimum number of clusters that can be chosen for a given problem because a degraded

solution is used to reconstruct the exact solution by using the Gaussian method. Results

are presented for two cases: (a) 75 clusters per layer with each cluster representing 5

particles and, (b) 15 clusters per layer with each cluster representing 25 particles. The

number of layers are kept constant at 15, the total number of particles in the simulation

being kept constant at 15×75×5 = 15×15×25 = 5,625.

Figures 3.3(a) and 3.3(b) shows the particle positions for both the exact solution

(red) and the clustered solution using the Gaussian method (blue). In all the results pre-

sented by this method, only the active and suspended particles are shown so as to not

bias the information because a particle that is inactive will contribute nothing towards the

solution. Consequently, the sediment bed is not shown.

The exact solution, as was shown in Fig. 3.2, contains 15 layers of 375 particles,

whereas the Gaussian solution contains 15 layers of 75 particle clusters, with each cluster

in this case representing 5 individual particles, i.e., 5,625 particles. This approach keeps

the total number of particles between the exact solution and the Gaussian method the

same, resulting in a valid comparison between the two solutions.

Figures 3.3(c) and 3.3(d) show the density plots corresponding to Figs. 3.3(a) and

3.3(b), respectively. Each “bin” in this case is 0.5× 0.5 mesh units within which the

particles are counted. Figures 3.3(c) and 3.3(d) show the comparison of the solution where
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(a) Particle positions - Exact solution

(b) Particle positions - Clustered solution: Gaussian

(c) Density contour plot - Exact solution

(d) Density contour plot - Clustered solution: Gaussian

Figure 3.3: Gaussian solution. Initial layers = 15, clusters per layer = 75, particles per

cluster = 5, k1 = 1 and the corresponding density contour plots.
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(a) Particle positions - Exact solution

(b) Particle positions - Clustered solution: Gaussian

(c) Density contour plot - Exact solution

(d) Density contour plot - Clustered solution: Gaussian

Figure 3.4: Gaussian solution. Initial layers = 15, clusters per layer = 75, particles per

cluster = 5, k1 = 2 and the corresponding density contour plots.
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(a) Particle positions - Exact solution

(b) Particle positions - Clustered solution: Gaussian

(c) Density contour plot - Exact solution

(d) Density contour plot - Clustered solution: Gaussian

Figure 3.5: Gaussian solution. Initial layers = 15, clusters per layer = 15, particles per

cluster = 25, k1 = 1 and the corresponding density contour plots.
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(a) Particle positions - Exact solution

(b) Particle positions - Clustered solution: Gaussian

(c) Density contour plot - Exact solution

(d) Density contour plot - Clustered solution: Gaussian

Figure 3.6: Gaussian solution. Initial layers = 15, clusters per layer = 15, particles per

cluster = 25, k1 = 2 and the corresponding density contour plots.

56



each cluster in the Gaussian solution represents 5 particles. Although the exact position

of the particles may not match between the exact and the clustered solution, good overall

agreement is obtained with the two density plots, indicating that the clustering solution is

acceptable within a certain tolerance. The computational time gained with this method is

five times that of the exact solution, with only a minimal overhead cost being required by

the Gaussian distribution process.

Figures 3.4, 3.5 and 3.6 are arranged in the same manner as Fig. 3.3. Figure 3.4

differs from Fig. 3.3 in that the principal spread parameter k1 = 1 in the previous and

k1 = 2 in the latter. As defined previously, k1 controls the amount of spread from the mean

of the distribution, i.e., the higher the value of k1 the higher is the spread of the particles

from the cluster center. It should be noted that k2 is also dependent on k1 because of the

requirement that the matrix be positive semi-definite. The results are qualitatively similar

for the particle positions and the density plots are in good agreement with each other,

implying that the solution is within accepted tolerances.

Figures 3.5(a) and 3.5(b) show the exact solution and the Gaussian clustered solu-

tion as shown before, except that now the Gaussian clustered solution contains 15 layers

of 15 particle clusters, with each cluster representing 25 particles; the total number of par-

ticles was the same (5,625). The particle positions computed by the clustering algorithms

revealed concentrated areas of particle concentration with the density plot in this case

showing significant deviations from the exact solution, seen in the difference between

Figs. 3.5(c) and 3.5(d).

Figure 3.6 shows the result for 15 layers of 15 particle clusters, with each cluster

representing 25 particles with k1 = 2. Because the principal spread parameter is higher
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in this case and the number of particles being represented by each cluster is higher, the

resulting solution and the corresponding density plots show more deviations from the

exact solution. This qualitative observation is supported in the next section with a rigorous

mathematical study.

The efficiency of this method depends primarily upon the number of actual com-

puted clusters because there is no additional overhead from reclustering as the solution

proceeds. Clearly, if a sufficiently large enough number of clusters used, then the clus-

tered particles generally remain a good approximation to the full solution when using an

equivalent number of total particles.

3.2.2 Error Estimation in Two-Dimensions

The previous section dealt with assessing the accuracy of the obtained Gaussian

clustered solutions by qualitatively comparing the density plots with the exact solution.

In this section, Pearson’s coefficient (discussed in the methodology section) is used as a

metric to assess the accuracy of the Gaussian method applied to a two-dimensional pro-

totypical flow. The density plots to be compared (i.e., the exact solution and the clustered

solution) are treated as two matrices and Pearson’s coefficient helps assess the correlation

or “closeness” between the two matrices.

Because the Gaussian clustering algorithm is a statistical process, the results from

the Gaussian method have to be compared with the exact solution over multiple runs so

as to obtain a statistical average that is unbiased by the statistical nature of the algorithm.

To obtain satisfactory results, each simulation was run 25 times and the result of each run
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was used to obtain an averaged Pearson’s coefficient.

Figure 3.7(a) shows the variation of Pearson’s coefficient for different computa-

tional runs for three different cases: (a) 75 clusters with 5 particles per cluster, (green)

(b) 25 clusters with 15 particles per cluster (red) and, (c) 15 clusters with 25 particles

per cluster (blue). In Figs. 3.7(a) and 3.7(b) ‘C’ denotes clusters and ‘p.p.C’ denotes par-

ticles per cluster. Figure 3.7(a) shows the results when the principal spread parameter

k1 = 1 and Fig. 3.7(b) for k1 = 2. The scatter data points are the values of the Pearson’s

coefficient and the solid line represents the mean value.

Because Pearson’s coefficient is a global metric and not sensitive to local differ-

ences, care should be taken to limit the size of the density plots to the size of the solutions

as the sparseness of the matrices outside the solution limits can bias the metric. As defined

earlier, there is higher correlation between two density maps as the value of Pearson’s co-

efficient (r) approaches 1.

Figures 3.7(a) and 3.7(b) confirm mathematically what was visually observed ear-

lier. The case with 75 clusters representing 5 particles per cluster shows the highest

correlation to the exact solution, with a mean value of r above 0.9 when both k1 = 1 and

k1 = 2. These results correspond to Figs. 3.3(d) and 3.4(d), respectively. When 15 clus-

ters per layer with 25 particle per cluster was chosen, a poor correlation was observed

between the respective density plots (Figs. 3.5(d) and 3.6(d)) which correspond to low

values of r (0.75 approx.). Although the ability of the Gaussian method to reconstruct a

solution has been studied, the optimum number of clusters and the value of k1 that will

result in the lowest error is highly problem dependant and is tied both to the flow and to

the particle physics. From the studies conducted, it is recommended that the optimum
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(a) Variation in Pearson’s coefficient for k = 1

(b) Variation in Pearson’s coefficient for k = 2

Figure 3.7: Error estimation using Pearson’s coefficient for Gaussian solution for both

k1 = 1 and k1 = 2.
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number of clusters be around 40%–50% of the total number of particles. However, this

requirement results in an immediate reduction in computational time by about 60%.

3.2.3 Gaussian Method: Application to Three-Dimensional Problem

The Gaussian method was also applied to the three-dimensional helicopter brownout

problem. The methodology and formulation of the particle tracking algorithm has been

detailed in Ref. 6. The aerodynamic flow field below the rotor was modeled using a

Lagrangian free-vortex wake method.

The results in Fig. 3.8 show a comparison of the solution obtained with 106 cluster

centers (denoted by the black dots in Fig. 3.8(a) ) and one using the distributed particle

clusters in Fig. 3.8(b) with 100 particles per cluster, i.e., using a total of 100 million par-

ticles. The results clearly show that the clustered solution brings out the finer, structured

details of the dust cloud, which is exactly the purpose of clustering.

Figure 3.8(c) shows the density of the dust cloud that is derived from the clustered

solution. Figure 3.8(d) shows some details of the cloud near the ground, the concentra-

tions which can be correlated to the positions of the tip vortices. Overall, these results

show that the Gaussian clustering method can be used to improve the fidelity of the dust

cloud by bringing out its details without adding much to the overall computational cost.

Another example of the overall dust cloud computed using the Gaussian method is shown

in Fig. 3.11, where the Gaussian clustered is again seen to bring out the details of the

cloud.

Figure 3.10(a) shows the dust cloud during a landing maneuver. At this particular
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time-step the rotor wake impinges on the ground causing an uplift of particles from the

sediment bed. The black dots shown in Fig. 3.10(a) are the actual simulated solution. Fig-

ure 3.10(b) is a detailed view of the front end of the developing dust cloud in Fig. 3.10(a).

This sudden uplift of particle are characteristic of brownout cloud during landings and

it is important that the Gaussian method be able to capture this phenomena accurately.

Figure 3.10(c) shows the Gaussian clustered solution of Fig. 3.10(b), with each cluster

representing 100 particles. The clustered solution preserves the structure of the cloud and

brings out the details of the dust field.

Figures 3.11(a) and 3.11(b) show applications of the Gaussian clustering technique

to a landing simulation (shown is the rendered solution of the cloud), the details of which

are explained in [6]. The predicted dust cloud successfully predicts the behavior of the

particles in the flow, which indicates that the Gaussian method can be used to improve the

fidelity of the brownout dust cloud predictions.

Figures 3.12 and 3.13 show a further comparison of the Gaussian clustered solution

with an exact solution. The brownout cloud was obtained for simulated hovering flight

conditions. Figure 3.12(a) shows the 105 cluster centers obtained with the direct or brute-

force approach, which are then clustered using 100 particles per cluster to obtain the

solution shown in Fig. 3.12(b). This result is then compared with a direct calculation

using 107 particles, as shown in Fig. 3.12(c). Figure ?? presents an isometric view of the

dust cloud that was subsequently obtained; Fig. 3.13(a) shows the clustered solution and

Fig. 3.13(b) is the direct solution.

Notice that the solution obtained using the Gaussian clustering method matches the

exact solution very closely. This outcome further strengthens the claim that the Gaussian
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method can be used to improve a given lower resolution solution, but only if the initial

solution contains sufficient information or particles. For example, it is unrealistic to ex-

pect that a solution with only 102 cluster centers and 105 particles per cluster would ever

approach the fidelity of the direct solution made using 107 total particles. A snapshot of

the dust cloud obtained using only 102 cluster centers is shown in Fig. 3.14. To this end,

the use of clustering is not a panacea and requires good judgement as well as common

sense.

Bear in mind that the metric to assess the accuracy of the resulting clustered solu-

tion, such as the Pearson’s coefficient, are useful within the two-dimensional framework.

However, such metrics cannot be extrapolated to the three-dimensional problem with the

same fidelity. Further work will required to develop appropriate metrics that can be used

to gauge the error in the clustered solution of the dust clouds in three-dimensions, espe-

cially those that might be used to compute the optical characteristics of the cloud. To this

end, some specific approaches are recommended in Chapter 4.

63



(D) Zoomed in view to show 
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Fig. 19: Particle solution obtained from actual computations using Gaussian distribution.

20µm diameter were considered for the present study; on-
going work is using multidisperse particles but the results
are not shown here. The vortex wake from the rotor system
is also shown in many of the images to help understand the
relationship between the rotor wake dynamics during the
maneuver and the development of the resulting dust cloud.

The nominal landing profile used in the present pa-
per was developed from Moen et al. (Ref. 44), which is
shown in Figs. 20. The helicopter travels along the minus
x-direction according to the terminology being used here,
with a rate of descent of 100 ft/min. The helicopter then ex-
ecutes a flare maneuver and decelerates into a hover a height
of one rotor radius above the ground. The duration of the
entire approach is about 45 seconds although the simula-
tion was conduced for only 33 seconds, corresponding to
over 200 rotor revolutions. In the subsequent discussion,
time is referenced to the start of the brownout simulation,
as shown in Fig. 20.

The sediment bed consisted of 45 layers of particle clus-
ters that were evenly distributed from −7R to 9R longitudi-
nally and from −7.5R to 7R laterally. In each layer, 40000
particle clusters were eligible for pickup, giving a total of
1.8 million uplift-eligible particles. The clusters were as-
sumed to be associated with 100 particles each, giving up
to 180 million particles in the dust cloud simulation. This

number excludes the particles that were entrained as a re-
sult of sediment bombardment, which typically added 20 to
60 million additional particles into the overall simulation at
the later values of time.

Figures 21(a) and 21(b) show the development of the
cloud at t = 2 and 3 seconds, respectively, where the rotor
is decelerating and transitioning from descending to hov-
ering flight; it is descending with an initial descent rate of
1.7 ft/s (100 ft/min) with a backward shaft tilt angle of 6◦.
The nose-high flare of the helicopter when it approaches
the ground is reflected by the rapid changes in the wake
geometry. The velocity contour plots clearly show large
regions of high induced velocities cause by the formation
of the ground vortex (which is actually a horseshoe vor-
tex) ahead of the rotor disk. In these regions, the threshold
velocities are significantly exceeded and significant quanti-
ties of sediment are uplifted. This is also the region where
maximum sediment bombardment takes place (discussed
later). The subsequent convection moves the particles ra-
dially away from the rotor, and they start to form a toroidal
shaped cloud. Such clouds are characteristic of brownout,
especially during its onset before there is reingestion of the
dust through the rotor. During this stage of the approach,
the pilot would be able to safely use visual cues in a man-
ner similar to that of a standard approach to landing.

(a) Actual simulated solution  

(b) Clustered (brown) and actual 
solution (black) 

(c) Particle densities from the 
clustered solution 

(d) Zoomed in view to show 
details Details of 

computed dust 
cloud are always 
maintained 

Figure 3.8: A solution obtained from brownout dust field computations when using the

Gaussian clustering distribution method.
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(a) Actual simulated solution

(b) Gaussian clustered solution

Figure 3.9: Another example of a brownout dust field computation using the Gaussian

clustering distribution method.
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(a) Actual simulated solution

(b) Zoomed in view of the actual solution (c) Zoomed in view of the Gaussian clustered solution

Figure 3.10: Actual and clustered solution during a landing maneuver using the Gaussian

clustering distribution method.
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(b) t = 3 seconds

Fig. 21: Development of the dust cloud during the landing approach at time t = 2 and 3 seconds.
(a) t= 3 seconds
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(b) t = 6 seconds

Fig. 22: Development of the dust cloud during the landing approach at time t = 3.5 and 6 seconds.
(b) t = 6 seconds

Figure 3.11: Development of the dust cloud during the landing approach at time t = 3 and

6 seconds.
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(a) Actual simulated solution with 105 particles

(b) Clustered solution with 107 particles

(c) Actual simulated solution with 107 particles

Figure 3.12: Comparison of the dust cloud between a brute-force calculation and Gaus-

sian clustered solution. Lateral view.
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(a) Clustered solution with 107 particles - 105 cluster centers

(b) Actual simulated solution with 107 particles

Figure 3.13: Comparison of the dust cloud between a direct or brute-force calculation and

Gaussian clustered solution. Isometric view.
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(a) Clustered solution with 107 particles - 102 cluster centers

(b) Actual simulated solution with 107 particles

Figure 3.14: Comparison of the dust cloud between a direct or brute-force calculation and

Gaussian clustered solution. Isometric view.
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3.3 k-means Method

3.3.1 Introduction

The k-means method is the second algorithm studied in this work as a potential

candidate for the brownout particle tracking problem as a means of reducing computa-

tional costs. As was discussed in Chapter 2, the k-means method is based on grouping

a certain number of particles into a cluster and then convecting this cluster as a group,

thereby avoiding the computational cost of tracking each and every individual particle. In

this case, if two clusters are in proximity to each other, then there is an option to decluster

and recluster. In this section, results for the process of reclustering are shown and the

implications on the accuracy of the particle locations is discussed. Both theoretical and

computational arguments are used to support the various claims and ideas in this section.

Figure 2.2, shown previously, outlines the approach used for the k-means approach.

3.3.2 Declustering and Reclustering

Let there exist two particle clusters at some intermediate time t whose centers are C1

and C2, respectively. Assuming that the conditions for reclustering are satisfied, let three

new clusters be formed whose centers are C3, C4 and C5. Therefore, in the subsequent

time step the clusters are convected under the forces F ′1, F ′2, and F ′3 acting on cluster C3,

C4 and C5, respectively. A schematic of this process is shown in Fig. 3.15.

Although intuitively reclustering appears to be a logical step when two or more

clusters approach each other, the approach actually results in a degeneration of the so-
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Figure 3.15: Schematic showing the process of reclustering and formation of new clusters.

lution, especially if there are high velocity gradients. The newly formed cluster centers

do not posses any time-history from the previous time steps, which is an artifact of the

k-means method; information about the velocities and positions at the previous time steps

rest only with the original cluster centers C1 and C2. If reclustering were to be carried out

at every time-step, then the solution should use a self starting scheme such as Runge-Kutta

or TRBDF2 (Trapezoidal Backward Difference schemes) to maintain a near second-order

accurate solution. The use of a simple first-order Euler explicit scheme would result in a

poor first-order accurate solution.

Figure 3.16 shows the difference in the solution in the prototypical flow chosen

between a first-order and second-order accurate solution in time. The particles in blue

represent the solution obtained using a first-order Euler explicit scheme, while the parti-

cles in red represent the second-order solution using the three step backward difference

scheme. Repeated reclustering would also require the time step to be small to overcome
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both the accuracy issue of a first-order scheme and the stability issues of an explicit for-

mulation.

Reclustering poses another disadvantage from the accuracy point of view of the

solution. Refering back to Fig. 3.15, the cluster centers C1 and C2 have become C3, C4

and C5 after reclustering. The newly formed cluster centers are formed as an artifact of

the reclustering method and the clusters are tracked after reclustering based on the cluster

centers. This approach however, does not guarantee the accuracy of the newly formed

cluster centers. In other words, the scheme cannot always satisfy the condition that C3, C4

and C5 would possess the identical position and velocities of the particles if reclustering

was not performed.

In the case of the prototypical flow, the top layer of dust particles is initially active

and as a particular layer becomes depleted the subsequent layers become active. Because

of the non-uniformity of the flow, particles in the subsequent layer are not activated in an

orderly fashion. If declustering and reclustering were performed at each step, then all of

the active particles can be grouped into clusters and convected. It has been shown that

it is not particularly advantageous to perform the reclustering operation, which implies

that the clusters that are formed should not be declustered to maintain the accuracy of the

solution. Any new particles that become active from the depletion of the saltation layer

or otherwise must now be grouped into new clusters. To preserve accuracy every particle

must be its own cluster; in other words, to track them as if they were individual particles,

which obviously defeats the purpose of clustering.

Because of the questions about the efficacy of the k-means method and its applica-

tion to particles that become progressively active over time, a simpler flow field has been
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(a) Number of time steps = 75

(b) Number of time steps = 150

(c) Number of time steps = 225

Figure 3.16: Difference in the solution between a first-order (blue) and second-order (red)

accurate scheme.
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V o r t e x 2
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G r o u n d p l a n e

Figure 3.17: Schematic showing the simplified vortical flow field chosen to better illus-

trate the k-means clustering method.

chosen to understand the intricacies and the benefits of the k-means clustering algorithm.

To this end, a pair of vortices that pass through a packet of dust was chosen as an example

to further study the characteristics of k-means method, which is still a characteristic of the

vortial flow nature of the brownout phenomenon. A schematic of this problem is shown

in Fig. 3.17. Although the comparison of density plots has been chosen as the primary

metric for error estimation, the rms error proves to be adequate for this simpler problem.

3.3.3 Computational Time Gain and Accuracy

Figure 3.18 shows the comparison between the costs to compute the clustered and

exact dust cloud solution when using the k-means method. The abscissa shows the ratio

of number of clusters, Nc, used to simulate the total number particles, N. The ordinate
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from an actual calculation of the computed dust cloud.
When a particle strikes the ground at a certain velocity and
angle a crater is created and new particles are ejected, as
previously explained. These new particles then become part
of the developing dust cloud and are convected with the re-
minder of the particles. The results in Fig. 16 show the pro-
cess of saltation bombardment, which releases more par-
ticles into the carrier flow. Figure 17 shows the uplift of
particles through the mechanism of reingestion bombard-
ment, which in this case is a result of the rolling up and
bundling of the blade tip vortices near the ground. Notice
in this case the rapid increase in the volume of particles that
are produced.

Clustering Results

As previously explained, two methods of clustering were
examined: the k-means method and the Gaussian distri-
bution method. Whereas the so-called k-means method is
based on repeated constructing and reclustering of particle
groups, the Gaussian distribution retains the same particles
throughout the calculation, although their positions change
dynamically with respect to the cluster center.

Figure 18 shows the comparison between CPU times to
compute the clustered and actual dust cloud solution using
the k-means method. In this case, an idealized vortex flow
was considered for simplicity. The abscissa shows the ratio
of number of clusters, Nc, used to simulate the total num-
ber particles, N. The ordinate shows the CPU time of the
clustered solution, Tc, and the CPU time for the actual solu-
tion, Ta. Notice that the actual solution means modeling the
convection of all the particles individually. The four lines
show the benefits of clustering as a function of the number
of particles in the simulation.

In the k-means method, reclustering occurs when any
two clusters come within certain proximity to each other.
Therefore, the more the clusters that are used the less com-

Fig. 18: Comparison of CPU time for clustered and ac-
tual simulations for different number of particles using
the k-means method.

putation benefit because of the computational overhead in-
volved in clustering and declustering. The no-benefit region
is where Tc/Ta ≥ 1, i.e., the clustered solution takes more
time than the full particle solution, along with correspond-
ing losses in accuracy.

The results show that the major overhead in clustering
methods is the repeated nature of clustering and decluster-
ing, which is generally required in regions with high veloc-
ity gradients. However, in other regions this overhead can
be avoided, which is where the usefulness of this method
resides. Therefore, the study shows that it is beneficial
to adopt this method of clustering in the far-field regions
where the velocity gradients are generally more modest and
so reclustering overheads can be minimized there. Over-
all, the k-means method can be quite attractive for some
brownout simulations, but its use requires the careful con-
sideration of costs incurred to the improvements in fidelity
that are actually obtained.

When using the Gaussian distribution clustering method,
the centers of the particle clusters are convected along with
additional particles whose positions in space and time are
computed from the motion of the cluster center. The effi-
ciency of this method depends primarily upon the number
of actual computed clusters in that there is no additional
overhead from reclustering as the solution proceeds. In the
present work, the actual solutions were obtained by using
large enough number of particle centers so that the clustered
particles always remained a good approximation to the full
solution with the equivalent number of total particles.

For example, the results in Fig. 19 show a comparison
of the solution obtained with 106 cluster centers (denoted
by the black dots in subfigure A) and one using the dis-
tributed particle clusters (B) with 100 particles per cluster,
i.e., with 100 million particles. The results clearly show that
the clustered solution brings out the finer, structured details
of the dust cloud, which is exactly the purpose of cluster-
ing. Subfigure C shows the density of the dust cloud that
is derived from the clustered solution. Subfigure D shows
some details of the dust cloud near the ground, the con-
centrations which can be correlated to the positions of the
tip vortices. Overall, these results show that the Gaussian
clustering method can be used to improve the fidelity of the
dust cloud by bringing out its details without adding sub-
stantially to the computational cost.

Brownout Dust Cloud Simulations

Landing Maneuver Dust cloud developments were com-
puted for: 1. A normal landing maneuver; and 2. A high
performance takeoff maneuver. The dust clouds shown in
this section consist of entrained particles only, i.e., only
those particles that are in motion either on ground or in the
air; particles that are stationary on the ground are not shown
to preserve clarity in the images. Mondisperse particles of

Figure 3.18: Comparison of CPU time for clustered and actual simulations for different

number of particles using the k-means method.

shows the cost of the clustered solution, Tc, and the cost for the exact solution, Ta. The

four lines show the benefits of clustering as a function of the number of particles in the

simulation. The no cost benefit region is where Tc/Ta > 1, i.e., the clustered solution takes

more time than the full particle solution, along with corresponding losses in accuracy.

Figure 3.19 shows the comparison between rms error of the clustered and the actual

solution. For a given number of particles the computational time may be much smaller for

the clustered solution over the exact solution, but the rms error is high. As the number of

clusters are increased, the rms error decreases, which is to be expected. However, beyond

a certain number of clusters for a given number of particles, the computational time enters

the no cost benefit region, which happens when the overhead cost is comparable to the
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Figure 3.19: Comparison of RMS error for clustered and actual simulations for different

number of particles using the k-means method.

actual simulation time. The exact values of the time gain and the accuracy are problem

dependent, but the results shown in Figs. 3.18 and 3.19 reflect the general trend of the

computational time and rms error. It can be deduced from Figs. 3.18 and 3.19 that if the

method is applied to a region where fewer clusters would result in low error, the method

would be highly benefitial in reducing computational time while still keeping the error to

within tolerable limits.

3.3.4 Effect of Velocity Gradients

The previous section discussed the general trends of computational time and the

accuracy of the k-means method. It was observed that if fewer clusters would result
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in lower error, this method is benefitial. In this section, the effect of the flow velocity

gradients are discussed to identify potential regions in the flow where the k-means method

could be applied.

Figure 3.20 shows the comparison in results between the exact and clustered solu-

tion using the k-means algorithm. For the purposes of illustration, the 7 clusters chosen

were chosen to represent the 100 particles in this simulation. Clearly, the particle posi-

tions close to the vortex (i.e., inside the dotted circle) are grossly different from those of

the exact solution, which is depicted in Fig. 3.20(a). This outcome suggests that a large

number of particle clusters are required in regions of high velocity gradients (because of

the presence of the vortex) to resolve the effects of the gradients accurately. However, in

other regions this overhead can be avoided, which is where the usefulness of this method

resides. Therefore, it may be beneficial to adopt this method of clustering in the far-field

regions where the velocity gradients are generally more modest, and so the overheads

associated with reclustering can be minimized there.

Figures 3.21, 3.23, 3.25 and 3.27 show the comparison of particle displacement

between the exact and clustered solution for 10, 50, 100 and 200 clusters and corre-

sponding density plots are shown in Figs. 3.22, 3.24, 3.26 and 3.28. The initial packet

of dust particles contained 250 particles, and each figure shows the exact solution (red)

at three different time steps through the solution along with the k-means clustered solu-

tion (blue) at the same time steps. In these cases, reclustering of the solution was not

performed. Consequently, both the exact solution and the k-means clustered solution are

second-order accurate in time. As was found with the previous results, a large number

of clusters are required to resolve the velocity gradients present in the vicinity of a vor-
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Figure 3.20: Comparison of solution for actual and clustered solution using k-means

method. The different symbols in (b) represent different clusters and the solid black

square represents the position of the vortex.

79



Nc/N Tclus/Texact

0.04 0.056570

0.20 0.246134

0.40 0.509545

0.60 0.780580

0.80 1.024650

1.00 1.282777

Table 3.1: Ratio of clustered time to exact time for the current problem as a fraction of

total number of clusters to the number of particles.

tex flow, which can be seen in the difference between Fig. 3.21(c) and Fig. 3.27(c). In

regions of low velocity gradients, the solutions obtained by using only a few clusters are

sufficiently accurate compared to the exact solution.

Table 3.1 gives the ratio of clustered time to exact time for this as a fraction of total

number of clusters to number of particles. As the number of clusters is increased, the

clustered solution becomes more accurate but the solution takes longer than for the exact

solution. For Nc/N > 0.80 the solution becomes infeasible because of the overhead costs

while also sacrificing some amount of accuracy.

Based on the outcomes of the present two-dimensional study, the k-means method

has the potential to significantly reduce the computational cost of the particle tracking

simulation. The primary factor governing the time savings and the fidelity of the clustered

solution is the number of clusters chosen for the k-means method. Studies conducted on

the prototypical examples elucidate the need for a larger number of clusters in regions of
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(a) Number of time steps = 60

(b) Number of time steps = 125

(c) Number of time steps = 200

Figure 3.21: Comparison of particle displacement for exact and clustered solution using

k-means method. Red: Exact solution, Blue: Clustered solution. Number of clusters =

10. (a) Number of time steps = 60; (b) Number of time steps = 125; (c) Number of time

steps = 200.
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(a) Number of time steps = 60

(b) Number of time steps = 125

(c) Number of time steps = 200

Figure 3.22: Comparison of density plots for exact and clustered solution using k-means

method. Red: Exact solution, Blue: Clustered solution. Number of clusters = 10. Number

of clusters = 10. (a) Number of time steps = 60; (b) Number of time steps = 125; (c)

Number of time steps = 200.
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(a) Number of time steps = 60

(b) Number of time steps = 125

(c) Number of time steps = 200

Figure 3.23: Comparison of particle displacement for exact and clustered solution using

k-means method. Red: Exact solution, Blue: Clustered solution. Number of clusters =

200. (a) Number of time steps = 60; (b) Number of time steps = 125; (c) Number of time

steps = 200.
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(a) Number of time steps = 60

(b) Number of time steps = 125

(c) Number of time steps = 200

Figure 3.24: Comparison of density plots for exact and clustered solution using k-means

method. Red: Exact solution, Blue: Clustered solution. Number of clusters = 200. (a)

Number of time steps = 60; (b) Number of time steps = 125; (c) Number of time steps =

200.
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(a) Number of time steps = 60

(b) Number of time steps = 125

(c) Number of time steps = 200

Figure 3.25: Comparison of particle displacement for exact and clustered solution using

k-means method. Red: Exact solution, Blue: Clustered solution. Number of clusters =

200. (a) Number of time steps = 60; (b) Number of time steps = 125; (c) Number of time

steps = 200.
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(a) Number of time steps = 60

(b) Number of time steps = 125

(c) Number of time steps = 200

Figure 3.26: Comparison of density plots for exact and clustered solution using k-means

method. Red: Exact solution, Blue: Clustered solution. Number of clusters = 200. (a)

Number of time steps = 60; (b) Number of time steps = 125; (c) Number of time steps =

200.
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(a) Number of time steps = 60

(b) Number of time steps = 125

(c) Number of time steps = 200

Figure 3.27: Comparison of particle displacement for exact and clustered solution using

k-means method. Red: Exact solution, Blue: Clustered solution. Number of clusters =

200. (a) Number of time steps = 60; (b) Number of time steps = 125; (c) Number of time

steps = 200.
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(a) Number of time steps = 60

(b) Number of time steps = 125

(c) Number of time steps = 200

Figure 3.28: Comparison of density plots for exact and clustered solution using k-means

method. Red: Exact solution, Blue: Clustered solution. Number of clusters = 200. (a)

Number of time steps = 60; (b) Number of time steps = 125; (c) Number of time steps =

200.
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high velocity gradients to resolve the flow-gradients accurately.

Implementation of the k-means method into the three-dimensional problem requires

understanding of how best to select the groups for clustering. As mentioned before, the

depletion of the saltation layer, resulting in the injection of new particles, will require

reclustering of the particles, which may lead to a loss in accuracy. A feasible solution

in such a scenario would be to cluster only the particles present in the far-field where

the velocity gradients are low, and track the particles in the near-field individually. This

strategy will preserve the fidelity of the solution, while avoiding declustering and reclus-

tering dilemmas. Other techniques may exist and could be explored as part of the future

work. The k-means method is highly problem dependant and if applied with finesse, can

result in significant computational benefits while maintaining the accuracy of the solution

within tolerable limits.

3.4 Osiptsov’s Method

3.4.1 Introduction

Osiptsov’s method is the third method that was implemented to try to alleviate the

computational costs on tracking particles in the brownout problem. In this method, par-

ticle concentrations along pathlines is computed using a Jacobian transform in the La-

grangian field. The calculation of these concentrations requires the computation of eight

extra equations (i.e., for ωi j and Ji j ∀i, j ∈ 1,2) in two-dimensional space, along with the

derivatives of the velocities at the particles current position. Although the execution of

these calculations can be an expensive investment, the method directly computes the par-
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ticle density field, which is the main benefit of the method. However, Osiptsov’s method

results in a non-uniform distribution of data points, which then needs to be interpolated

to obtain the overall density field.

3.4.2 Results for a Potential Flow

Before this method is applied to the prototypical flow used in this study, the algo-

rithm was tested on a simpler two-dimensional potential flow around a circular cylinder.

This test was performed to validate the algorithm with the work done by Healy et al. [7]

and to test the interpolating algorithm.

Shown in Fig. 3.29 is the density contour plot for the particle density over the cylin-

der. A steady flow of dust particles were simulated from left to right in this study. Fig-

ure 3.29(a) shows the result for a flow velocity of 1ms−1 and Fig. 3.29(b) for 2ms−1. The

results indicate that the density plots follow the physics of the flow accurately and the

method captures the stagnation region at the front of the cylinder and behind the cylinder,

indicated by ρ/ρ0 = 0. A simple linear interpolating algorithm was used to obtain the

density values at all points on the map.

3.4.3 Results for the Prototypical Flow

The potential flow around a cylinder follows a steady and uniform pattern, unlike

the vortical nature of the flow seen with rotorcraft wakes. In this section, Osiptsov’s

method is applied to the prototypical flow discussed previously. Figure 3.30(a) shows the

particle displacements at a given time step with the solution containing 15 layers × 75
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(b) Density contour flow for U∞ = 2ms−1

Figure 3.29: Density contour plot using Osiptsov’s method around a cylinder in potential

flow. (a) Flow velocity of 1ms−1; (b) Flow velocity of 2ms−1.
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particles per layer. Figure 3.30(b) shows the corresponding density field obtained when

using Osiptsov’s method, and Fig. 3.30(c) shows the density field obtained by counting

the number of particles in each “bin.”

The results in Fig. 3.31 are similar to those in Fig. 3.30, the solution in this case

initially containing 15 layers × 375 particles per layer. Unfortunately, the correlation

between the density fields is not very satisfactory, even though the remnants of the density

field are still seen when using Osiptsov’s method. This outcome does not mean that

the method does not work. However, further work will be needed to establish the full

capabilities of Osiptsov’s method for modeling the brownout problem.

Though Osiptsov’s method has a fundamentally strong mathematical background,

the reason it does not predict accurately the density contour is because of the interpolating

algorithm. Osiptsov’s method results in scattered density data that needs to be interpolated

onto a regular grid. In the previous case of the potential flow, because of the time-invariant

nature of the solution, a simple linear interpolating algorithm was sufficient. In the case

of a vortical flow with crossing pathlines, such an algorithm or any method that relies on

interpolating or extrapolating values between any two given scattered might not yield the

best solution.

The interpolation algorithm used for the current work was the Radial Basis Func-

tion (RBF) with a Gaussian kernel. The mathematics for the RBF method is outlined in

Appendix A. From the derivation, it is evident that the application of the RBF requires

solution of a N ×N linear system, where N is the number of particles. If performed

directly, this requires O(N3) operations and is obviously impractical for large N. The

use of iterative methods with efficient preconditioning, such as that studied in [45], ef-
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(a) Particle displacements of exact solution

(b) Density field obtained using Osiptsov’s method

(c) Density field obtained using direct counting

Figure 3.30: Comparison of Osiptsov’s method with the exact solution. Number of parti-

cles = 15 layers, 75 particles per layer. (a) Density field obtained using Osiptsov’s method;

(b) Density field obtained using direct counting.
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(a) Particle displacements of exact solution

(b) Density field obtained using Osiptsov’s method

(c) Density field obtained using direct counting

Figure 3.31: Comparison of Osiptsov’s method with the exact solution. Number of par-

ticles = 15 layers, 375 particles per layer. (a) Density field obtained using Osiptsov’s

method; (b) Density field obtained using direct counting.
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fectively reduces the cost to O(N2), which is the cost to build the preconditioner and

to perform matrix-vector products (the number of iterations in this case is substantially

smaller). However, these approaches have dealt with the biharmonic and multiquadric

kernels, and future work will be required to test or develop new preconditioners for the

Gaussian kernel as an efficient Fast Gauss Transform is now available [46].

Further steps toward the reduction of the cost of the RBF was explored in [47],

where both costs were reduced to O(N logN) by the use of special data structures and the

Fast Multipole Method [48] for matrix-vector multiplication. The main idea in the FMM

is to split the matrix-vector product into a near and a far field solution, and factored ap-

proximate representations of the functions in the far-field are utilized. This decomposition

of the matrix-vector kernel into a particular form of data structure is what expedites the

calculations to O(N logN). In the present study, a fast Krieging method [49] was used for

the interpolation, which has complexity O(N2). The development of a O(N logN) RBF

applicable to the present problem, should make Osiptsov’s method more attractive.

Based on outcomes from the present study, Osiptsov’s method may also prove to

be useful in other aspects of the rotorcraft brownout simulation, such as the dust-laden

flow through engines. Problems such as predictions of the effectiveness of air-particle

separators, as well as of the erosion of the turbine blades and degradations in engine

performance from the dust, could be modeled more computationally efficiently by using

Osiptsov’s method. To study the applicability of the method to these types of internal

flows, a RBF interpolating algorithm would not be necessary because a simpler inter-

polating algorithm lends itself more readily to these flows as they have fewer crossing

pathlines.
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Chapter 4

Conclusions

Three particle clustering algorithms, namely the Gaussian method, k-means method,

and Osiptsov’s method, were developed with the objective of reducing the computational

cost of the tracking of very large numbers of particles in brownout dust cloud simulations.

The details of the algorithms were studied using a simplified two-dimensional flow field

that was representative of the unsteady vortical flows found near the ground below a rotor

system. For each method, a detailed numerical study was carried out on a prototypical

flow to understand where the benefits of each method lies, where caution in its use has to

be exercised, and where it falls short or fails. Direct or “brute-force” solutions, where each

and every particle was tracked throughout the flow, were used as a reference. Although it

has been shown that clustering algorithms do not have universal applicability, the present

work has provided considerable insight into the potential use of such clustering methods

and their bounds of applicability for modeling brownout problems.

The following conclusions have been drawn from this study:

1. Each of the clustering methods discussed in this thesis potentially possess the ca-

pability to significantly reduce the computational effort in finding a solution for

a brownout dust cloud. These methods, however, must be applied carefully and

judiciously because there can be an inverse relationship between the time gained

to the accuracy lost. The present study has identified the limits of applicability of
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each method with respect to both accuracy and computational time, and how cer-

tain flow features such as steep velocity gradients in the carrier flow and crossing

particle pathlines can affect the solution for the dust field.

2. The Gaussian distribution method was explored to test its capability of reconstruct-

ing a given solution and also to increase the number of particles in the simula-

tion without compromising on computational cost. This method was designed to

preserve the actual computed solution, even in regions of high velocity gradients,

where the method shrinks the cluster to a single particle. It was shown that the

clustered solution could represent the actual solution if a sufficiently large num-

ber of particle clusters relative to the total number of particles is used. In the case

of the Gaussian method, the algorithm was extended to the full three-dimensional

problem of modeling brownout, with encouraging results.

3. The k-means clustering method was devised to convect multiple particles in a single

group or cluster through the flow, in which case the computational cost could be

limited by computing the solution only for the clusters. It has been shown that the

strength of the k-means method lies in its applicability to regions of low velocity

gradients, such as the far-field regions of the dust cloud around the rotor system. In

such regions, the computational savings in finding the positions of the particles in

the dust cloud can be over an order of magnitude over the use of a direct particle

tracking method. There also exists a ceiling on the number of clusters that can

be used, which is a consequence of the computational overheads incurred by the

process of declustering and reclustering, beyond which it is more advantageous both
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from the aspect of accuracy and cost to perform a direct or brute-force solution.

4. Osiptsov’s method contains the potential to greatly reduce computationally time,

and works well for particle simulations where the particle density fields are more

uniform. Simple linear interpolation algorithms are effective for such problems,

which expedites the computational process significantly. For a three-dimensional

problem, however, the interpolation process used to extract the density information

is O(N3), which can prove to be very expensive if the results are required at each

and every time step. The availability of fast O(N logN) interpolation algorithms on

multidimensional unstructured data sets would greatly improve the attractiveness

of this method.

4.1 Suggestions for Future Work

The results obtained during the present work have provided a new understand-

ing into the use of particle clustering algorithms and their application to the rotorcraft

brownout problem. The work has contributed to the understanding of different clustering

strategies and their relative advantages. From a computational perspective, however, there

are still several technical areas that could be addressed to better understand these algo-

rithms and their potential use for reducing the computational costs of modeling brownout

dust clouds.
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4.1.1 Improvements in Estimating Accuracy

There is a need for an exact solution for the dust cloud so as to gauge the accuracy

of the clustered solution, which is the only way to calculate proper metrics that can be

used to estimate the errors between the two solutions (i.e., between the clustered solution

and the brute-force approach). In the current study, comparisons of density contour maps

between the exact and clustered solutions were employed to estimate the accuracy of the

clustered solutions. The Pearson coefficient has also been used to augment the results that

were obtained using the density contour maps, which provide a better mathematical basis

for comparing accuracy.

Another possible technique for estimating the accuracy of the clustered solution is

to view the obtained solution as a problem in multi-body dynamics. The dust cloud ob-

tained, either through the exact or the clustered solution, can be treated as multiple bodies

relative to a reference coordinate system. All of the particles have to satisfy the primary

equations (Newton’s second law, linear and angular momentum conservation) and the val-

ues obtained using the clustered solution can be compared against those obtained in the

exact solution. The clustering schemes could then be modified or adapted based on the

accuracy of the solution that is obtained.

4.1.2 Improvements in the Gaussian Method

The Gaussian method was shown to be effective for both the prototypical two-

dimensional problem and the three-dimensional brownout problem. The solution to the

prototypical flow using the Gaussian method was compared against the exact solution
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using density plots to assess the accuracy of the solution. As previously mentioned, so-

phisticated methods to quantify the accuracy of the clouds in three dimensions through

optical means are required, and to this end some initial work has already been done by

Tritschler et al. [44]. Although such approaches are still in their early stages, they have

shown success in quantifying the characteristics of a brownout cloud from the pilot’s

perspective, i.e., for assessing the relative severity of brownout.

4.1.3 Improvements in the k-means Method

The relative advantages of the k-means algorithm has been studied and discussed

in the current work, which provides a basis for further studying its potential application

to Lagrangian particle tracking methods. However, there are still aspects of the k-means

algorithm that require further investigation. For example, the issues with reclustering

and declustering could be explored in regard to accuracy and practical application. How-

ever, more realistic scenarios would require an understanding of how particles that are

entrained into the flow are to be treated as clusters. The k-means algorithm is a heuristic

algorithm and works efficiently when the particles to be divided into clusters are well

specified in space as distinct groups. In other words, the k-means algorithm works best

when there is an understanding of the optimum number of clusters required. Because the

brownout problem results in an almost continuous distribution of particles throughout the

spatial field of interest, further research is required to study complimentary algorithms

that possess the ability to determine an optimal number of clusters.

Additional work may be able to adapt the algorithm to alter the total number of
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clusters to give a higher number of clusters in regions of high velocity gradients. The

disadvantage of an algorithm that can detect regions of high velocity gradients in the

flow is that they are inherently computationally expensive. Such overheads can poten-

tially degrade the practical applicability of the k-means method. However, a well devised

search algorithm, for instance, one that uses octree data structures, could prove to be

computationally less expensive. Finally the k-means algorithm could be applied to the

full three-dimensional brownout problem to study its performance both in terms of ac-

curacy of the solution and the reductions in computational time that could be gained. A

possible solution could be to apply the k-means algorithm just in the far-field regions of

the brownout cloud, where the velocity gradients are relatively low and losses in cloud

fidelity are minimized.

4.1.4 Improvements in Osiptsov’s Method

Osiptsov’s method has been shown to have benefits for simple two-dimensional

flow fields, and has the potential to be applied to more complex multi-dimensional flow

fields. The primary limiting factor of this method is the need for an interpolating al-

gorithm, which is of computational cost O(N2). Osiptsov’s method also requires the

velocity gradient information at each particle location every time step in each direction.

In the three-dimensional space, calculation of velocity gradients requires computing the

velocities in adjacent spatial locations, following which finite difference schemes can be

used to compute the gradients. In a vortex method, the repeated use of the Biot-Savart law

makes such a calculation expensive. Consequently, it is important that the interpolating
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algorithm used to obtain the density contour map from the scattered data points be highly

computationally efficient. The FMM can be implemented to reduce the time from cost

O(N2) to O(N logN). Further work to investigate different interpolating algorithms may

result in methods that are more efficient, which may make the Osiptsov’s method more

attractive for modeling the large scale dust clouds of brownout. Although Osiptsov’s

method may not be as of yet applicable to the external flow field, it can assist in predict-

ing the dust-laden internal flow, say through turbine cascades, to simulate phenomenon

such as flow choking from these dust particles and the abrasion on the turbine blades.
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Appendix A

Derivation of Radial Basis Function

The interpolating algorithm used for obtaining the contour density plot from the

scattered density data in Osiptsov’s method was the Radial Basis Function (RBF). Let

there be n sources and m receivers (treated here as the number of particles and grid points

respectively) such the density at any receiver point ρ j, is given by

ρ j =
n

∑
i=1

λiφ(|r|), j = 1, ..,m (A.1)

where r = ri− r j and the matrix λ = [λ1,λ2, ...,λn], are the weighting parameters to be

found. The values of λ are obtained by solving Eqn. A.1 such that the receivers are

replaced with the sources

ρ j =
n

∑
i=1

λiφ(|r|), j = 1, ..,n (A.2)

In the above equation, the values of ρ and φ matrices are all known. The quantity ρ is an

artifact of the Osiptsov’s method. The φ matrix, or more commonly known as the kernel,

can take many forms based on the problem, a few examples being the biharmonic (φ(r) =

r), polyharmonic (φ(r) = r2n+1) and the multiquadratic kernels (φ(r) = (r2 + c2)1/2) .

However, for the current problem, the kernel that worked best was the Gaussian kernel,

as given by

φ(r) = exp(−r2/h2) (A.3)

where h is a user defined parameter. It is useful to note that the function reduces to around

1% of its peak value at a radial distance of 2h from the center of the Gaussian. For the
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current work, the value of h chosen was 0.25.

Rewriting in the matrix form, then Eqn. A.2 can be written as

ρ = λφ (A.4)

The matrix λ can be obtained though matrix inversion, resulting in

λ = φ−1ρ (A.5)

The inversion of φ is computationally expensive and lends to the overall O(N3) cost. This

cost can be reduced to O(N2), the algorithm for which is outlined in [45, 47] which was

used in the present study.
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