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ABSTRACT

In this paper, a novel concept for the control of backlash in geared servo-mechanisms
is demonstrated with a prototype manipulator. The concept utilizes unidirectional
redundant drives to assure positive coupling of gear meshes at all times and, thereby,
eliminates backlash completely. To establish a proof of concept, a two-DOF prototype
manipulator with three unidirectional drives is designed and tested. Dynamic model
based on Lagrange’s formulation is established. A PID controller using computed
torque control technique is developed. Two experiments, one with redundant drives
and the other without redundant drives, are conducted. The experimental results
demonstrate that use of unidirectional redundant drives improves the repeatability of
a manipulator by an order of magnitude.

1 INTRODUCTION

Most mechanical systems and servomechanisms employ gear trains for power trans-
mission and torque amplification. Backlash is a persistent problem in such machines
due to natural clearances provided for prevention of jamming of gear teeth due to
manufacturing errors and/or thermal expansion. Gear backlash introduces disconti-
nuity and impact in mechanical systems which, in turn. make control of a machine
difficult. The positioning accuracy of a servomechanism is also compromised due to
backlash.

Various methods such as antibacklash gears (Michalec, 1966), adjustable tooth
thickness gears (Michalec, 1966), adjustable center distance (Dagalakis and Myers,
1985), and harmonic drives (Calson, 1985) have been proposed for elimination of gear
backlash. Using these methods, some improvement on problems caused by backlash
has been made. However, these techniques do not completely eliminate backlash and
can further increase the cost of manufacturing and assembling such machines.

In the past decade, advances in microelectronics and power electronics have trans-
formed analog servo systems into highly reliable all digital systems. These modern
servo systems are usually implemented with digital signal processing chips. All the
loop are closed with digital algorithms which make it possible to implement a broad
range of control algorithms based on recent advances in digital control theory. Special
functions can be built into these digital control algorithms to compensate for backlash
and to improve the accuracy of a machine (Veitschegger and Wu. 1986, Sweet. 1991).
This seems to be a promising approach. However. it still can not eliminate backlash
positively and completely.

In a previous paper, we introduced a new and innovative concept for the control
of backlash (Chang and Tsai, 1990b). The concept utilizes unidirectional redundant
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drives to assure positive coupling of gear meshes at all times and. thereby. elimi-



nates backlash completely. In this paper, we demonstrate the concept via a two-DOF
(Degree-Of-Freedom) prototype manipulator. First, the general principle of opera-
tion for RBR (Redundant-drive Backlash-free Robotic) mechanisms will be briefly
reviewed. Then the kinematics, dynamics, and control of the prototype manipulator
will be derived. Redundant motor torques based on minimum power consumption
will be resolved. Power consumption for such a RBR servomechanism with and with-
out redundant drives will be derived and compared. Finally, experimental results
confirming the improvement in repeatability will be presented.

2 PRINCIPLE OF OPERATION

Chang and Tsai (1990b) introduced the concept of RBR mechanisms and showed
that a minimum of (n + 1) properly arranged unidirectional drives are needed for
the control of backlash in an »-DOF manipulator. For an n-DOF mechanism with
(n + 1) unidirectional drives, they showed that the input angular displacements and
joint angles are related by the following linear transformation:

¢=B¢g, (1)

where § = [01,8;,---,60,]7 is the joint angles, ¢ = [¢1, $2, -, p(n+1)] is the actuator
displacements, and B = [b,,] is an (n + 1) X n matrix. Note that the word “joint”
refers to the joint in the equivalent open-loop chain of a geared robotic mechanism
defined by Tsai (1988).

They also showed that the resultant joint torques are related to input actuator
torques by:

r=A¢, (2)
where 7 = [ 71,79, -+, 7 | denotes the resultant joint torques, & = [ &, &, -+, &pal”
the input actuator torques, and A = BT the structure matriv (Chang and Tsai.

1990a).

The structure matrix is a function of mechanism structural topology and gear
ratios. The 1 — th row describes how the resultant torque about the ¢ — ¢4 joint axis
is affected by the input actuators, while the 3 — ¢k column describes how the 5 — A
actuator torque is transmitted to various joints. For this reason. each column vector
in the structure matrix and its corresponding gear train is called a transmission line.
The structure matrix for an n-DOF mechanism with » + 1 unidirectional drives obeys
the following rules.

R1. The transmission lines form an = x {n + 1) structure matrix and each row must
contain at least two non-zero elements.



R2. The sub-matrix obtained by deleting any column from the structure matrix is
non-singular.

R3. Since actuator torques are transmitted to various joints via gear trains, non-zero
elements in a column of the structure matrix must be consecutive.

R4. Switching any two columns of a structure matrix results in a renumbering of
the two corresponding input actuators. Two kinematic structures are said to
be isomorphic if their structure matrices become identical after one or repeated
operations of column exchanges.

Rules 1 and 2 ensure the unidirectional controllability of a mechanism. A special
characteristic for this type of mechanisms is that, given a set of desired joint torques,
the solution for actuator torques is an indeterminate problem. Specifically, Eq. (2)
consists of » linear equations in » + 1 unknowns. Hence, the solution for the required
actuator torques can be written as (Klein and Huang, 1983):

E=ATr+ (3)

where g = [u1, pi2, -+ -, in41]” denotes the null vector of A, A* = AT(A AT)"! denotes
the pseudo inverse of A, and A is an arbitrary real number.

The first term on the right-hand-side of Eq. (3) is called the particular solution
and the second term, which results in no net joint torques, is called the homogeneous
solution. Hence, regardless of the value of z, the sense of input torques, §, can be
kept in the same direction of the null vector, u. by selecting a proper positive value
of X. Similarly, it can also be kept in the opposite direction of the null vector by
selecting a proper negative value of A. Since each actuator torque can be maintained
in a predetermined direction at all times, gear backlash will never occur.

3 PROTOTYPE RBR ARM

To establish a proof of the concept, a two-DOF prototype arm with three unidirec-
tional drives is designed. There are four admissible structure matrices for two-DOF
RBR mechanisms as shown in Table 1, where a *“# ™ sign denotes the existence of
a non-zero element. The last structure matrix listed in Table 1 is selected tor the
design because of its simplicity in coupling.

Figure 1 shows the schematic diagram of the arm. To simplify the formulation of
dynamical equations, two or more components keved together with a common shaft
are considered as one rigid link. In the prototype design. both joint axes are parallel
to the direction of gravity to reduce the gravitational effect and the link lengths are
equal to one another to maximize the workspace. There are three transmission lines
driven by three motors as shown in Fig. 1. The first two motors (actuators) are



# # # # # # # # 0 # # 0
# # # # # 0 # # # # 0 #

@ -1 g3 -2 g?s —1 g%s —2

Table 1: Admissible 2-DOF Structure Matrices

connected to the ground and the third is installed on the rear-end of the first moving
link. Motor 1 drives both joints 1 and 2 simultaneously, while motor 2 drives joint 1
and motor 3 drives joint 2, independently. A two-stage gear reduction is used between
each motor and the first joint it drives. Motors 1 and 2 are Electro-Craft 0588-33-501
DC motors and motor 3 is a Pittman 14203 DC motor.

Two sensors are sufficient for feedback control of the manipulator. Since motors
2 and 3 drive joints 1 and 2, respectively, one sensor is placed on each shaft of the
two motors for sensing the joint angles and joint angular velocities of the robot arm.

The gear ratios used in the design are as follows: Ngg = Nyjg = Ng7 = Nig =
96/15, Ny5 = 120/24, N34 = 48/20, N2y = 16/64, Ng, = 12/24. and Ngz = 20/10,
where N, ; = N,/N; denotes the ratio of the numbers of teeth on the gear pair attached
to links : and ;.

4 KINEMATIC EQUATIONS

Figure 2 shows the equivalent open-loop chain for the manipulator shown in Fig. 1.
All links contained in the equivalent open-loop chain are called the major links or
the carriers, and those not contained in the equivalent open-loop chain are called the
carried links. As shown in Fig. 1, links A and B are two moving carriers and link 0
is a fixed carrier. Link O carries links 1. 6, 7, 8. and 9; link A carries links 2, 3. 4 and
5; while link B does not carry any link.

Relative motions of the carried links with respect to their corresponding carriers
can be derived by the theory of fundamental circuits and the coaziality condition
(Tsai, 1988). For example, link A serves as the carrier for the gear pair attached
to links 2 and B shown in Fig. 1. Hence. the pair of gears attached to links 2 and
B, and link A form a fundamental circuit. The fundamental circuit equation can be
written as:

92,.4 = NB,QéB,A (4)

where 8, ; denotes the relative rotation of link ¢ with respect to link 7, and the “dot”
denotes its time derivative.

Similarly, link A also serves as the carrier for the gear pair attached to links 1, 2.
The fundamental circuit equation is:



él,A = NQ,léz,A (3)

It can be seen from Fig. 1 that links 0, 1, and A share a common joint axis. Z;.
The coaxiality condition among these three links can be written as:

él,A = 91,0 - éA,o (6)
Substituting Eqgs. (4) and (6) into (5) and after simplification, yields

91,0 = éA,O + N2,1NE,293,A (7)

Equations (4) and (7) express angular velocities of links 2 and 1, with respect to
their carriers, in terms of the joint angular velocities. Similarly, angular velocities of
links 3 to 9 can be derived. After substituting numerical values of the gear ratios.
the resulting equations are:

B0 =04 +0.12505 (3)
B2.4 = 0.5 65 (9)

B34 = —2.005 (10)

614 = 4.865 (11)

B5.4 = —2465 (12)

feo = —6.46 4 (13)

B70 = 40.966 5 (14)

fs0 = —6.464 — 0.863 (15)
Bop = 40.9664 + 5.1265 (16)

where 04 = 640 and 05 = fp 4 are the joint angles of the equivalent open-loop chain.
Note that 890, 670, and 85 4 are the input actuator displacements. Combining Eqs.
(12), (14), and (16), we obtain the structure matrix as:

4 :[ NsoNis  NosNig 0
NgoNigN2 1 Np o 0 ~NysN3  Ngs

| 40.96 4096 0 (17)
N 5.12 0 —24
It can be shown that the null vector for the above structure matrix is given by
[75, —=75,16]7. Hence, the sense of input actuator torques can be maintained either
in the direction of [+, —, +]% or [~ +, —]7.



5 DYNAMICAL EQUATIONS

The dynamical equations of motion can be derived by several methods ( Craig, 1989,
Paul, 1981, Thomas and Tesar, 1982). In what follows, we shall use a systematic
approach developed recently by Chen et al (1990) for the analysis.

The kinetic energy of the system can be divided into two parts: K, contributed
from the motion of major liiks A and B, assuming all the gears and shafts are rigidly
attached to their corresponding carriers, and K contributed by the relative motion
of the carried links. That is

K=K,+K (18)
The first part of Eq. (18), K, can be written as

1., 1 : 1. -
Km = 5]149]24—{——mA.TJiQZA-I-;JE(QA-FQE)Z

2
+émﬁ [126% + 215 504(84 + 85) cos 8 + 1564 + 65)] (19)
where { denotes the link length, 6 the joint angle, m the combined mass of a major
link and its carried links, z the distance from the combined center of mass to its
proximal joint axis, J' the combined moment of inertia of an equivalent link about
an axis passing through the center of mass and parallel to its proximal joint axis, and
where the subscripts A and B refer to major links 4 and B, respectively .
Rearranging Eq. (19), yields

Lo 1.
K, = 3JA934+3JE(9A+93)‘+

:)‘77&3(329% + 2.’&‘39/24 COs 93 + 2;’:1:39‘495 COS 95) (20)

&

where J denotes the combined moment of inertia of an equivalent link about its
proximal joint axis.

It has been shown that additional kinetic energy, K
simple rotation with respect to an axis fixed to its carrier j is given by (Chen. 1939):

/

for a link : performing

2,21

!

K., = %Jz(ém)z + L6y, - e)) (21)
where J, is the moment of inertia of a carried link : about its axis of rotation on
link 7, e, is a positive unit vector defined along the axis of relative rotation. w, is the
angular velocity of link 7 with respect to the inertia frame. )

For the prototype manipulator shown in Fig. 1, either the rotation axis of a carried
link is perpendicular to the rotation axis of its carrier or the carrier itself is stationary

(ground link). Hence, Eq. (21) reduces to

T
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K"laj = §Jz (9‘21]‘)2 (

Substituting Eq. (8)-(16) into (22) and summing them, yields

o
[SV]

, 1 . . . .
K = -2-[I1(9A +0.12505)2 + 1,(0.5 65)°
+]3 ) + J4(4 8913)

(—2
+T5(—2485) + Jo(—6.48,)?

+77(40 969A + Jo(—6.46,4 — 0.865)

+75(40.968 4 + 5.1265)) (23)

where J, denotes the moment of inertia of a carried link « with respect to its rotation
axis.
The Lagrange’s equations of motion for the prototype arm can be written as:

d (0K JdK
— | =) - = = =12 2
d"ff ((392) 692 TZ) 4 1) ( 4)

where the 6’s denote the generalized coordinates, and 7's the generalized active forces.
Substituting Eqs. (20) and (23) into (18) and then the resulting equation into
(24), yields the dynamical equations as:

n o= (r+2k cosQE)éA+(s+k COSQB)éB
—2k (sinf5) 6405 — & (sinfp) 62 (25)
Ty =(s+k cos5)f,+16g+k sinfp 62 (26)

where

ro= Ja+Jg+ T +40.967; + 40.96% J-
+40.96 Js + 40.96* Ty + mpi’ (:

o
=1

s=Jg +0.125J; +5.12J5 +5.12 x 40.96 J4 (

o
V2]

t = Jp+0.125%0 +0257, + 47,
+23.04 74 + 57675 + 0.64Js + 5.12% T, (29)
;C = mgf:cg (30)

Note that the dynamical equations contain only four independent parameters.
7,5, and k. If the J's and m’s are known, then 7. s. ¢ and % can be calculated. If

o



the J’s and m’s are not known, then r, s, ¢ and £ must be estimated experimentally.
In general, J4 and Jg are a few order of magnitude greater than that of the rotors.
gears, and shafts. However, the inertia effect of rotors can be as large as that of the
major links, since they are multiplied by the square of the gear ratios as shown in the
above equations.

6 COMPUTED TORQUE CONTROL LAW

The dynamical equations can be written in matrix form as shown below:

Ge+/f(8,8)=r (31)
where

| 742k cosfp s+ k cosfp (32)
| s+ k cosfg 1 o

is the mass matrix,

o .
[ = —k sinfg {“eﬁgjgﬂ} (33)
A

is the matrix representing Coriolis and centrifugal forces, § = [#4,65]7 are the gen-
eralized coordinates, and 7 = [r;, 73]7 are the generalized active forces.

Since joint angles, 84 and fp, are used as the generalized coordinates, the gener-
alized active forces are, in effect, the resultant joint torques about joint axes Z; and
Z,, respectively. In the design of a computed torque controller. Eq. (3) can be used
to convert these joint torques into actuator torques.

Using the computed torque technique, generalized active forces are computed in
every sampling period by using the following equation:

T =G+ Ghé + Ghpe + f (6,6) (34)

where

i

£s—8 (35)

4

is the error signal, 9, is the desired joint angle. and £, and &, are the positional and
velocity feedback gain matrices.
Substituting Eq. (34) into (31) and after simplification. vields

ethkyeth, =0 (36)



J1 44195 gm-cm? || J; 205 gm-cm”
Js 189 gm-cm? || Jy 111 gm-cm?
Js 470 gm-cm? || Jg 10102 gm-cm?
Jr 1223 gm-cm?® || Jg 10102 gm-cm?
Jo 1223 gm-cm?® || J4 | 1195685 gm-cm?
Jg | 124005 gm—cm2 m 4 a7T70 g1}
mp 515 gm || : 30.48 cm
zg 11.04 cm

Table 2: Inertia properties of the links.

The position and velocity feedback gain matrices. k, and k,, must be chosen
properly such that the system is stable and the manipulator will follow a desired
path. To correct steady-state error, the integration of position error is also added to
the controller. The computed torque control flow chart for the RBR arm is shown in
Fig. 3, where k, is the integration feedback gain.

For the 2-DOF prototype arm, inertia properties of the rotors, gears. shafts.
and the two major links are estimated from their sizes and materials used and
are listed in Table 2. From the inertia properties given in Table 2, we obtain r =
6773598 gm-cm?, s = 437732 gm-cm?,¢ = 437307 gm-cm?, and & = 173297 gm-cm?.

In the experiment, the following values,

084 0 i,
&P‘[ 0 0.84} (37)
and
1.833 0 e
By = { 0 183 ] 58

are chosen such that the system is critically damped.

7 MOTOR TORQUES AND POWER CONSUMP-
TION

7.1 Power Consumption with Redundant Drives.

As discussed previously. the value of A must be selected properly so that each actuator
torque can be maintained in a pre-determined direction. In the experimental arm. A
is determined by the principle of minimum power consumption.

10



The output torque of a DC motor is given by
£ =k,s (39)

where %, is the torque constant and : the applied current. Hence, power loss due to
motor impedance can be written as

p=+"R=RE[E:=(£/2), (40)

where R is the motor impedance and Z = k,/R°®.
For the prototype two-DOF arm, the structure matrix is given by

A:{gl g5 0 } (41)
2 0 —g4

where g; = g3 = 40.96, go = 5.12, and g4 = 24.00 are all positive numbers. Applving
Eq. (3), we obtain motor torques in terms of joint torques as follows:

! 9193 9293 9394

2 2
¢ = K| 9298 9395 —919203 T4+ A —g194
919294 —9394 — 9394 9293

where X is the particular solution of ¢ and,
A =gigi + 9595 + 9395 (43)

Note that the second component of the homogeneous solution, us, is negative. Hence.
the direction of torque applied by the second motor should be maintained in the
negative sense at all times.

The power consumption of the system can be written as

-5z u

J=1

Substituting Eq. (42) into (44), yields

Note that power consumption, P, is a parabolic function of A. Its optimal value can
be obtained by minimizing P subject to the following constraints:

11



o= X4+ Au >0,
& Xy + Apz <0, (46)
& X3+ Ausz > 0.

Substituting u from Eq. (42) into Eq. (46), yields

i

X
o> 2L =
g394
X5
Ao> ‘:/\2 (4()
9194
X
o> 2=
G293

Let the minimum value of P occur at A = A*. Then A* can be found by solving

Y e i UL e S R, 48
R [r=x Z 7 ( 2 0, (43)

=1 4
which yields
_ _Z?‘:l (“JXJ/ZJZ> (49)
S /5 |

It can be shown that Min(A;, A2, Az) <A™ < Max(Aq, Ag, A3). But A7 > Max(Aq, Ay, A3)
must also be satisfied. Hence, minimum power consumption occurs at A* = Max (A1, Az, Az).
There are three operating regions:

*

1. Region [:
AT = A = Max( A, Ay, Az) (50)

which implies

B!

IA A

72

0 (51)

Substituting Eqs. (42) and (50) into (45). yields

2 2 2 5
71 79 (51 72 =
( ggzz) ( 9423) 10962, 212,




2. Region II:

3= = Max(Ay, o, Aa) (53)
which implies
71 Z 0
gaT1 2 172 (54)

Substituting Eqs. (42) and (53) into (45), yields

2 2 2 N\ 2
71 3271 — G172 71 71— 87y -
P — S = mm————— 55
(9121> +( 91912 ) (40.9621> +< 1922, ) (53)

3. Region III:

AT :AgzMaX(Al,Ag,)\g) (56)
which implies
Ta Z O
9271 < 9172 (57)

Substituting Eqs. (42) and (56) into (45), yields
2 2 2 o 2
T2 G271 — 9172 T2 1 — 872 -
p= LIS 1 R ( ) (—-— 58

7.2 Power Consumption without Redundant Drives

Although the prototype arm is designed with redundant drives. it can also function
as a conventional robot arm. This is accomplished by disconnecting motor 1 from the
first transmission line. It is obvious that power consumption for such a conventional
two-DOF manipulator is given by

al ? T : 2l 2 s \?
P: ) :< > ( > rg
<g3zg> * (9423) 0962,) T \21z, (59)

Note that power consumption due to motor impedance depends on the gear ratios.
Also note that when the RBR arm is operating in “Region 1.” its power consumption
is identical with that of a conventional manipulator. However. when the RBR arm is
operating in “Regions II and III,” its power consumption can be much higher than

that of a conventional manipulator. The motor constants for the experimental arm
are Zy = Z, = 83.26mNm/V/W and Zs = 55.6mNm/JVW.

13



8 EXPERIMENTAL VERIFICATION

To establish a proof of the concept, two experiments were conducted, one with and
the other without backlash control.

In the first experiment, conventional control was used. Although the prototype
arm was designed with unidirectional redundant drives, it can also function as a
conventional robot arm with no positive control on backlash. This is accomplished
by disconnecting one of the three drive lines. Since motors 2 and 3 drive joints 1 and
2 independent of each other, these two motors were selected as the drivers for the
experiment while the third motor was physically disconnected. In this case, actuator
torques were related to the resultant joint torques by: [&, &)7 = [r1/40.96, —7, /24]7.

In the second experiment, backlash was controlled by redundant drives. Using
computed torque control technique, all three motors were driven simultaneously to
manipulate the robot arm. The value of A was computed by using the principle of
minimal power consumption described in the previous section, and actuator torques
were computed by using the pseudo inverse transformation. We note that the pseudo
inverse and the null vector of the structure matrix A are constant terms and need
not be computed on line. A simple PID controller was designed. An IBM Model 55,
80386S5X, Personal Computer was used for all the necessary computations and control
commands. A Hewlett-Packard Bipolar Power Supply/Amplifier was used to supply
required currents to the motors.

A laser tracking system developed by NIST (National Institute of Standard and
Technology) was used to measure the Cartesian coordinates of a reference point at
the end of link B. The experiments were performed at four different postures (i.e.
end-effector positions) of the manipulator to ensure a good coverage of its workspace.
For each posture, a target point was selected by bringing the end-effector to a pre-
determined position. Then the robot arm was commanded to approach the target
point from four orthogonal directions in the joint space, i.e. from four different com-
binations of plus and minus directions of rotation about the two joint axes. This
yilelded maximal backlash effects on repeatability. For each direction of approach.
fifteen measurements were made to ensure statistically meaningful results.

Repeatability is a measure of the ability of a manipulator to repeatedly bring its
end-effector back to a previously taught position. Since the prototype is a planar ma-
nipulator, all data points should theoretically fall on one plane. In practice. however.
a small deviation from the plane may occur due to mechanical clearances in the joints
and due to flexibility of the links. In this paper. we define the radius of the smallest
ball containing the sixty data points taken from four directions of approach as the
repeatability of the manipulator. We note that bringing the manipulator to a taught
point from four orthogonal directions in the joint space does not necessarily result in
four orthogonal paths in the task space.

Appendix A shows some typical repeatability data taken for one posture of the

14



manipulator. Because of space limitation, we have included only the data for the first
and second directions of approach in the Appendix. More detailed repeatability data
can be found in Chang’s dissertation (1991).

We noted that when the manipulator was repeatedly brought back to a target
point from the same direction of approach, the end-effector had a tendency to settle
on the vicinity of a point, which may or may not necessarily be the target point, to
within a fraction of a miliimeter .

The experimental data indicates that the end-effector was always capable of com-
ing back to the target point to within a fraction of a millimeter when it was controlled
by three redundant motors. However, when the manipulator was controlled without
redundant drives, the repeated positions were not necessarily be the target point.
Specifically, under conventional control, the repeated position was often close to the
target point when it was brought back from the first direction of approach, while 1t
was always a few millimeters away from the target point when it was brought back
from the second, third, or the fourth direction. This is due to the fact that the
target point was chosen by servoing the manipulator into the position from the first
direction of approach. When external disturbances and noises were small, free play
tended to fall on the same side of gear meshes and, consequently, the end-etfector
was capable of coming back to the vicinity of a position repeatedly. However. when
external disturbances were large, free play could occur randomly which resulted in
poor repeatability even when the manipulator was commanded to approach the target
point from the first direction. Commanding the manipulator to approach the target
point from four different directions ensures that backlash will occur on both sides of
gear meshes and, therefore results maximal effect on repeatability.

Table 3 shows the differences in repeatability calculated from the measurements
made at NIST. We conclude that the repeatability of the prototype arm with redun-
dant drives is one order-of-magnitude smaller than that without redundant drives.
Specifically, the average repeatability is 0.4004 mm with redundant drives as com-
pared to 4.6971 mm without redundant drives.

Manipulator Repeatability (mm)
Posture Conventional Control | Redundant Control
1 6.333480 0.3985681
2 6.611162 0.4786238
3 3.195182 0.4188084
4 2.593668 0.3054367

Table 3: Comparison of Repeatability



9 SUMMARY

The concept of RBR mechanisms is demonstrated with a prototype manipulator. In
general, it is shown that gear backlash in an »-DOF manipulator can be eliminated
by using a minimum of (» + 1) unidirectional drives. In this study, we have designed
and constructed a two-DOF manipulator with three unidirectional drives. Then dy-
namical equations of motion for the manipulator, including inertix effect of gears and
rotors, are derived. It is shown that inertia effect of the rotors can be as large as that
of the major links and they should not be neglected in the dynamic model. A PID
controller using computed torque technique has been designed and implemented. A
method for computing redundant motor torques with minimal power consumption
has been developed. And finally, two experiments were conducted to verify the con-
cept. The experimental results demonstrate that the repeatability of a manipulator
with redundant drives is one order-of-magnitude better than that without redundant
drives. This concept is equally applicable to other geared servomechanisms including
NC machines.
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APPENDIX A: EXPERIMENTAL DATA

1. Conventional Control

Target point: (486.980653, 1593.003201, -24.167939) (mm)

x (mm) y (mm) z (mm)
First Direction of Approach:
486.738812 1592.854887 -24.181058
485.838051 1592.397990 -24.195490
486.044833 1592.500472 -24.185105
485.146270 1592.036758 -24.195382
487.198320 1593.045755 -24.184305
487.295308 1593.047007 -24.197293
487.199899 1592.979187 -24.189253
487.223137 1592.994359 -24.182124
487.348397 1593.075724 -24.178663
487.471829 1593.079152 -24.168273
487.524474 1593.082279 -24.165431
487.443514 1593.059934 -24.162336
487.388828 1593.022979 -24.167933
487.295605 1592.949973 -24.174437
487.121221 1592.949643 -24.173204
Second Direction of Approach:

482.394973 1590.692488 -24.231379
481.365708 1590.565643 -24.213858
483.728381 1591.302381 -24.212662
482.598364 1590.732747 -24.214337
482.020435 1590.644426 -24.214918
483.086993 1590.989286 -24.209940
482.074189 1590.590342 -24.210432
481.796526  1590.605994 -24.212614
481.716057 1590.540913 -24.213590
482.272578 1590.647182 -24.204713
483.690968 1591.277406 -24.199527
483.695307 1591.281220 -24.199106
481.360564 1590.538643 -24.221945
482.119978 1590.586930 -24.218017
482.250586 1590.663333 -24.211607



2. Backlash Control using Redundant Drives

Target point: (309.167663, 1857.337207, -18.949429) (mm)

x (mm) y (mm) z (mm)
First Direction of Approach:
308.939450 1857.237822 -18.956039
308.854455 1857.220513 -18.972659
308.894433 1857.223181 -18.955600
309.366945 1857.374914 -18.949773
308.885230 1857.224213 -18.941603
309.321275 1857.394571 -18.947685
309.329459 1857.405601 -18.943533
309.204785 1857.354006 -18.945216
309.376551 1857.426493 -18.941085
308.926891 1857.259355 -18.952369
309.161527 1857.364255 -18.945169
308.888587 1857.202343 -18.971058
308.883715 1857.237595 -18.959370
308.959667 1857.261740 -18.954539
309.200073 1857.354639 -18.944316
Second Direction of Approach:
309.370723 1857.420249 -18.940705
309.412143 1857.429364 -18.943211
309.354632 1857.392413 -18.944870
309.422384 1857.419854 -18.922082
309.326861 1857.366102 -18.942879
309.164434 1857.349884 -18.938623
309.213349 1857.331150 -18.954877
1 309.309834 1857.367852 -18.939250
309.376247 1857.370224 -18.958897
309.343227 1857.410008 -18.947078
309.432581 1857.401629 -18.938312
309.293248 1857.384313 -18.948524
309.286263 1857.391899 -18.947806
309.311359 1857.381330 -18.929589
309.432830 1857.454309 -18.943020
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FIGURE CAPTIONS

Figure 1. A Two-DOF RBR prototype arm.
Figure 2. Equivalent open-loop chain of the mechanism shown in Fig. 1.
Figure 3. Computed torque control flowchart.



f Link B
J. I _L j‘ll
Motor #3  taf2—% 5, ] ’:;
D?_’_:'—]:E ) ~
Link A
)
[ in el Ll [
9 8**———7—4 6 17‘]
Yo" '
Base link (0)

Fig. 1 A two-DOF RBR prototype arm



Figure 2: Equivalent open-loop chain of the mechanism shown in Fig.1.
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