The Emergence of Semantic Meaning in the Ventral
Temporal Pathway

Thomas A. Carlson™?, Ryan A. Simmons?, Nikolaus Kriegeskorte>,
and L. Robert Slevc?

Abstract

W In the ventral visual pathway, early visual areas encode light
patterns on the retina in terms of image properties, for example,
edges and color, whereas higher areas encode visual information
in terms of objects and categories. At what point does semantic
knowledge, as instantiated in human language, emerge? We ex-
amined this question by studying whether semantic similarity in
language relates to the brain’s organization of object representa-
tions in inferior temporal cortex (ITC), an area of the brain at the
crux of several proposals describing how the brain might repre-
sent conceptual knowledge. Semantic relationships among words
can be viewed as a geometrical structure with some pairs of
words close in their meaning (e.g., man and boy) and other pairs
more distant (e.g., man and tomato). ITC’s representation of
objects similarly can be viewed as a complex structure with some
pairs of stimuli evoking similar patterns of activation (e.g., man

INTRODUCTION

The domains of language and vision have been, for the most
part, studied independently of one another, although there
has been increasing interest in exploring the connections
between these fields (Ferreira & Tanenhaus, 2007). An
issue central to both fields is the organizational principles
that underlie conceptual representations. In the domain of
vision, this pursuit aims to understand how light patterns
on the retina are transformed by the brain into meaningful
units for cognition, for example, recognizing one’s mother.
In the domain of language, this pursuit aims to understand
how communicative perceptual inputs are represented
and decoded into meaningful content and how this con-
tent is encoded into linguistic form. An apparent bridge
between these disparate domains is representation of con-
ceptual meaning and semantic content. For us to recognize
an object in the world and communicate this information
to other language must interface with the contents of vision;
To learn linguistic labels of visual forms, visual representa-
tions must be associated with semantic labels.
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and boy) and other pairs evoking very different patterns (e.g.,
man and tomato). In this study, we examined whether the geom-
etry of visual object representations in ITC bears a correspon-
dence to the geometry of semantic relationships between word
labels used to describe the objects. We compared ITC’s repre-
sentation to semantic structure, evaluated by explicit ratings of
semantic similarity and by five computational measures of se-
mantic similarity. We show that the representational geometry
of ITC—but not of earlier visual areas (V1)—is reflected both in
explicit behavioral ratings of semantic similarity and also in mea-
sures of semantic similarity derived from word usage patterns
in natural language. Our findings show that patterns of brain ac-
tivity in ITC not only reflect the organization of visual information
into objects but also represent objects in a format compatible
with conceptual thought and language. |l

Semantic knowledge describes our ability to understand
the meanings (i.e., semantic content) of these labels in
different contexts, as well as the meanings of relation-
ships between different labels. From these meanings and
relationships, we derive the broader associations that con-
stitute conceptual knowledge. In seeking to identify sub-
strates for the connection between vision and semantic
knowledge, inferior temporal cortex (ITC) is a well-suited
candidate region. ITC has traditionally been considered
to be the last exclusively visual area in the ventral visual
pathway; (Logothetis & Sheinberg, 1996; Gross, 1992)—
the so-called “what” pathway of vision (Ungerleider &
Mishkin, 1982). In contrast to early visual areas that repre-
sent visual information as primitive features (e.g., color,
orientation, and spatial frequency), which are unlikely to
be the units of conceptual thought, ITC represents infor-
mation at the “object” level of description, which often
can be designated by basic level descriptions (e.g., face
or chair). The organization of object representations in
ITC by semantic category (Connolly et al., 2012; Konkle
& Oliva, 2012; Reddy & Kanwisher, 2006; Downing, Jiang,
Shuman, & Kanwisher, 2001; Kanwisher, McDermott, &
Chun, 1997) also suggests that the way that we define
objects, either explicitly or implicitly through our actions,
relates to ITC organization (Mahon & Caramazza, 2011;
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Martin, 2007). Furthermore, recent neuroimaging studies
have identified ITC as part of network of brain areas that
encode semantic content (Huth, Nishimoto, Vu, & Gallant,
2012; Mitchell et al., 2008).

Although ITC was traditionally considered to be a visual
area (Logothetis & Sheinberg, 1996; Gross, 1992), neuro-
imaging studies have shown that ITC activity is modulated
by a wide range of tasks based on conceptual knowledge
(for a review, see Martin, 2007), including nonvisual lin-
guistic tasks such as auditory sentence comprehension
(Rodd, Davis, & Johnsrude, 2005; Giraud, 2004; Davis &
Johnsrude, 2003). Recent fMRI decoding studies have
also shown coarse amodal category information (animal
vs. tool) can be decoded from ITC activity (Simanova,
Hagoort, Oostenveld, & Van Gerven, 2012). These find-
ings suggest that the knowledge stored in ITC is not only
visual but also conceptual. If so, patients with damage to
ITC are predicted to show perceptual deficits in addition
to accompanying conceptual/associative deficits. Indeed,
whereas some patients with ITC damage exhibit deficits
only on perceptual tasks (Basso, Capitani, & Laiacona,
1988; Silveri & Gainottib, 1988), many show equivalent im-
pairments on both perceptual and conceptual/associative
tasks (for a review, see Capitani, Laiacona, Mahon, &
Caramazza, 2003). Caramazza and Shelton (1998), for
example, presented a case with ITC damage with a specific
deficit for animate objects, which was evident both in per-
ceptual naming tasks, that is, “identify the animal shown
in the image” and conceptual tasks, that is, “Is a cow a
farm animal?” This dissociation is perhaps unsurprising if
these tasks rely on knowledge represented in ITC be-
cause animacy is a predominant categorical boundary in
the organization of ITC (Kriegeskorte et al., 2008; Kiani
& Esteky, 2007). In fact, one might imagine that the role

of animacy in ITC might underlie the robust influence
of animacy distinctions in language, including its role
in grammar and in discourse (e.g., Dahl, 2008; Dahl &
Fraurud, 1996).

In this study, we sought to examine whether the struc-
ture of semantic relationships among words is reflected
in the representation of objects in ITC. If this is the case,
then the organization of information in ITC will be re-
flected in our use of words. Our study made use of exist-
ing fMRI data from a study that used multivariate pattern
analysis methods to measure the geometry of object rep-
resentations in ITC (Kriegeskorte et al., 2008). We com-
pared ITC’s geometry to the geometrical structure of
semantic relationships derived from multiple measures:
(1) explicit behavioral ratings of semantic similarity,
(2) lexicographically motivated measures of semantic
relatedness based on definitions (word senses) and hier-
archical word relations (i.e., “is 2”), and (3) emergent relat-
edness measures computed from distributional patterns of
words in large text corpora. (Note that, for the purposes
of this study, we use the terms “semantic similarity” and
“semantic relatedness” synonymously.)

METHODS

Measurement of Visual Object Representations in
Human Primary Visual Cortex and ITC

Our study made use of data from a previously published
study (Kriegeskorte et al., 2008). Below we describe the rel-
evant aspects of the study. For detailed methods, we refer
the reader to the original article (Kriegeskorte et al., 2008).

The study by Kriegeskorte et al. (2008) characterized
the geometry of object exemplar representations in the
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Figure 1. (A) Pairwise dissimilarity of stimulus exemplars’ neuronal activation patterns in ITC when viewing pictures of the stimuli. (B) Semantic
dissimilarity of word labels associated with the stimuli evaluated using LSA. Cell color indicates dissimilarity value. High dissimilarity values indicate
very distinct neuronal activation patterns/low contextual substitutability of words. Low dissimilarity values indicate similar neuronal activation

patterns/high contextual substitutability of words.
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human ITC and early visual cortex. Participants were
shown 92 images of objects while their brain activity was
recorded using fMRI. The interrelatedness of the repre-
sentation of these stimuli within a brain area (e.g., ITC)
can be construed as a geometrical structure in a high
dimensional space, which quantitatively can be described
as a dissimilarity matrix (DSM; see Figure 1A). Each entry
of the DSM is a numeric value quantifying the “dissimilar-
ity” between the brain activities for two object exemplars
(e.g., an image of a man and a image of a tomato), where
dissimilarity is computed as 1 minus the correlation
between the two exemplars’ pattern of activation across
voxels within the ROIL The complete DSM is all possible
pairwise combinations of object exemplars.

Kriegeskorte et al. (2008) focused on two ROIs: ITC
and early visual cortex. These ROIs were defined both
anatomically and based on selectivity to the images used
in the study. An ITC mask was defined manually in the
functional slices, including all cortical voxels in the infe-
rior occipito-temporal lobe including LO and extending
anteriorly, but excluding early visual areas. Left and right
ITC were defined similarly but constrained to the left
and right hemisphere, respectively. An early visual cortex
mask was manually defined in the slices as voxels in the
calcarine sulcus in occipital cortex. To equate areas, our
analyses were conducted on ROIs with equivalent num-
bers of voxels (316 voxels). The ROI used in the analysis
was defined by selecting the voxels within each ROI that
responded most strongly to object images, determined
using an independent localizer. The number of voxels
in each area was matched by adjusting the threshold.

Name Associations for Visual Object Stimuli

To study the relationship between the representational
geometry of stimuli in the brain and the geometry of se-
mantic relationships between labels associated with the
stimuli, we first generated a set of object labels for the stim-
uli used in the study by Kriegeskorte et al. (2008). Twenty-
five University of Maryland undergraduates participated
in exchange for course credit. All participants reported
speaking English as their native language. Before conduct-
ing the experiment, we removed nine of the images from
the set of 92 images, as we a priori assumed these images
would be given identical names in labeling. For example,
the data set included multiple pictures of adult faces that
would presumably all be labeled “face” or “human face.” Par-
ticipants were shown the remaining 83 images in random
order on a computer screen. For each image, the partici-
pants were asked to type the word that first comes to mind
as a name for the picture. The most frequent name asso-
ciated with each picture was chosen as that item’s semantic
label. From this data, we identified additional images that
were given the same label, for example, several of the pic-
tures depicted different species of monkeys and were all
labeled “monkey.” The images with overlapping labels were
also excluded from the analysis. After removing the images
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with identical labels, there were 67 exemplars with unique
labels. Within this set, subject name agreement varied. There
was 100% name agreement for 29 of the images, greater
than 80% agreement for 47 of the images, greater than
60% agreement for 57 of the images, and greater than 50%
for 63 of the images (all but four images). In the reported
findings, we used all of the stimuli/labels regardless of the
level of name agreement. We also examined the data using
different cutoffs (e.g., using only images with greater than
60% name agreement), and the results were compatible with
the findings using the entire stimulus set (data not shown).

Explicit Measures of Semantic Relatedness

The first measure of semantic similarity we used in our
study was based on explicit ratings. We recruited a new
group of twelve University of Maryland undergraduates
to rate the semantic similarity of the labels. To complete
the explicit semantic relatedness DSM, each participant in
the study evaluated all 2211 word pairs (every pairwise
comparison of the 67 words in our set) over three sepa-
rate testing sessions. Participants were not asked to evaluate
identities (i.e., the relatedness of a word with itself). Indi-
vidual participants were shown a pair of words (labels) on
each trial and asked to rate the semantic relatedness of the
two words. Participants selected the degree of relatedness
by positioning a bar on a GUI slider that returned a value
between 0 and 100 (participants saw only the location of
the bar on the slider and not the numerical value). Data were
collected using custom software programmed in MATLAB
(Natick, MD) using a Griffin PowerMate USB control knob.

The reliability of these explicit judgments was assessed
using intraclass correlation (two-way, consistency, aver-
age-measures ICC; Hallgren, 2012), yielding an ICC co-
efficient of 0.946 (95% CI = *0.003). Relatedness was
thus rated similarly across participants, suggesting a mini-
mal amount of measurement error and reasonable statisti-
cal power for subsequent analyses.

Measures of Linguistic (Dis)similarity

Our study also examined several computational measures
of semantic relatedness. For each measure, all pairwise
combinations of word labels were compared and used to
construct a2 DSM. Figure 1B shows the DSM for latent
semantic analysis (LSA; Landauer & Dumais, 1997), one
of the measures in our study. Our study used several mea-
sures from two general methods: one based on explicit
hierarchical category structure (WordNet based measures)
and one based on statistical patterns of occurrence in
large corpora of text (LSA and Correlated Occurrence
Analogue to Lexical Semantic [COALS)).

WordNet Measures

WordNet (Fellbaum, 1998; Miller, 1995) is a hierarchical
lexical database that represents words by their dictionary
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definitions (glosses), their part of speech (nouns, verbs,
adjectives), and by membership in “synsets,” defined as
sets of synonyms that are interchangeable in some con-
text. Note that words of different parts of speech occupy
their own hierarchical spaces without connecting nodes,
and so most WordNet measures are unable to compare
across different parts of speech. All items used in this
study were nouns, so this limitation is not relevant to
our evaluations. In WordNet, individual word senses
are connected to each other in the hierarchy through
hyper/hyponymic relationships (i.e., “X is a Y”), and
synsets are connected to each other via a variety of rela-
tions (e.g., metronymy, holonymy, etc.). The top level
of the hierarchy consists of abstract root nodes, which
may be subdivided into additional nodes (e.g., the
primary root node for nouns is “entity,” which is divided
into “animate,” “inanimate,” “composition,” and “roles.”).
Similarity between items in the WordNet database
was calculated using three different methods imple-
mented in the WordNet::Similarity Perl module (Pedersen,
Patwardhan, & Michelizzi, 2004). For our calculations,
the first sense of each word type was consistently chosen
as the representative token. Although relatedness values
vary by relative word sense, WordNet senses are ranked
by frequency, so the first sense is more likely to be the
“correct” token. Previous studies have indicated this to
be a reasonably precise heuristic (Hawker & Honnibal,
2006; Moldovan & Novischi, 2004).

” o«

The WordNet PATH Measure

The most straightforward of the WordNet similarity rubrics
is the PATH measure, defined as the multiplicative in-
verse of the shortest distance between two word senses
in the hierarchy. The distance is calculated as the number
of “steps” or “nodes” it takes to get from one sense to
another in the hierarchy, using hyper/hyponymic relation-
ships. Thus identical senses have a path distance of 1,
and as distance between senses increases, the value of
the path measure decreases toward 0.

The WordNet LESK Measure

The PATH measure uses the explicit synset links delin-
eated by the WordNet hierarchy to calculate relatedness.
Other WordNet measures use glosses of words encoded
in WordNet under the assumption that related words
or concepts will use similar words in their glosses. For ex-
ample, “bar” and “drink” are not closely connected through
“is-a” steps and relationships (PATH relatedness = 0.1111).
However, the concepts share an obvious conceptual asso-
ciation, which is at least in part reflected in the similarity of
their respective glosses: “a room or establishment where
alcoholic drinks are served over a counter” and “a single
serving of a beverage.” When comparing synsets using
the extended gloss overlap measure (or LESK), WordNet

will search the glosses of the immediate “neighbors” of
the target words (that is, other concepts connected to
the target through a single hierarchical “step”). Overlaps
scores are additive, and consecutive words or phrases are
scored exponentially; if two glosses share the word “paper”
the LESK score is 1, but if they share “prepared paper”
the LESK score is 4, “specially prepared paper” is 9,
etc. The relatedness between two concepts is calculated
by summing the LESK scores for all glosses and normal-
izing by the size of the glosses (Banerjee & Pedersen,
2002, 2003).

The WordNet VECTOR Measure

The final WordNet measure we implemented was gloss
vectors, which, like LESK, is calculated by the content
of the glosses encoded in WordNet. A context vector is
constructed for a particular word as the resultant of the
co-occurrence vectors for each word in its gloss. The val-
ues of a co-occurrence vector are determined by the
frequency with which a given word occurs with another
throughout the WordNet corpus. The vector for “bar” is
the centroid (or sum) of the vectors for room, establish-
ment, alcoholic, drink, serve, and counter (conjunctions
and articles are excluded), whereas the vector for “drink”
is the centroid of single, serving, beverage. The related-
ness between concepts is calculated as the cosine of
the difference between their context vectors, measuring
the relative divergence of the vectors in a hypothetical
semantic space (Patwardhan & Pedersen, 20006).

Distributional Measures

Semantic relatedness can also be computed based on
emergent patterns of co-occurrences in text. These distri-
butional measures have generally been found to correlate
well with explicit human judgments of semantic related-
ness (Boyd-Graber & Fellbaum, 2006; Rohde, Gonnerman,
& Plaut, 2005). However, it is important to note that these
patterns do not directly measure word meaning and
may not encode certain important aspects of meaning
(Glenberg & Mehta, 2008). Rather, they use the patterns
in which we use words in regular linguistic context as a
model for implicit semantic structures and relationships
(see Discussion). In our study, we examine two distribu-
tional measures of semantic relatedness: LSA and COALS.

LSA (Landauer & Dumais, 1997) is based on the as-
sumption that words that mean similar things will tend to
occur in similar contexts. Similarity is measured through
second-order co-occurrence. First-order co-occurrence
describes words that appear together in a particular
context, whereas second-order co-occurrence describes
the relationship between words with shared first-order
co-occurrences. For example, “tire” and “windshield” may
not appear together in a sentence, but both will appear
in texts with words such as “car,” “drive,” “highway,” etc.
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As with the VECTOR measure, each word is represented by
a vector of co-occurrence values; instead of gloss defini-
tions, LSA calculates co-occurrence over a large corpus of
text. We used the TASA (Touchstone Applied Science
Associates) college reading level corpus of 92,409 word
tokens across 37,651 documents, calculated through an
on-line interface (Isa.colorado.edu). Because of the high
dimensionality of the corpus, vectors are factored using
singular value decomposition (employing 419 factors).
Relatedness between words is represented by the cosine
of the difference between co-occurrence vectors. The
relative divergence of the vectors is taken as a measure
of the degree of contextual substitutability of the words
in natural language.

COALS (Rohde et al., 2005) is another measure based
on co-occurrence patterns. As with LSA, vectors of first-
order co-occurrences are constructed for each target
word; however, instead of calculating co-occurrences
across an entire document, COALS uses a ramped “win-
dow” size of 4. Only the four most proximal words on
either side of the target word are used to create the
vector, with the closest receiving the highest scores.
Scores were calculated using an on-line interface (dlt4.
mit.edu/~dr/COALS), using a corpus of 1.2 billion word
tokens across 9 million distinct documents gathered from
Usenet postings. As with LSA, dimensionality reduction is
employed via singular value decomposition (in this case,
using 800 factors). COALS calculates the conditional rate
of co-occurrence (that is, does word X occur more or less
often in the vicinity of word Y than its average across docu-
ments) by computing Pearson’s correlation coefficients be-

tween constructed word vectors. These coefficients are
normalized by setting all negative values equal to 0 and
taking the square root of the positive values.

Statistical Comparisons

Comparisons between DSMs were conducted in the repre-
sentational similarity analysis framework (Kriegeskorte
et al., 2008). For each comparison (e.g., explicit rat-
ings and human IT), we computed a nonparametric
Spearman’s rank correlation between entries of the
two DSMs. In the analysis of the complete DSMs (shown
in Figure 2), the entries in the upper right triangle of
two DSMs are correlated with one another. Note DSMs
are symmetrical so the lower left triangle is identical to
the upper right. In the fine-grained analysis (shown in
Figure 3), only the relevant entries (e.g., comparisons
“within” category) are correlated.

To evaluate statistical significance, we compared the
actual correlation to a null distribution of correlation
values. To generate the null distribution, we randomly
shuffled the labels in the DSMs and computed the corre-
lation between the (shuffled) DSMs. This was repeated
10,000 times to generate the null distribution. The
reported p values are percentage rank of the actual
correlation value within the null distribution.

RESULTS

The broad aim of our study was to test whether the
semantic structure of linguistic labels is reflected in the

Figure 2. Comparisons
between DSMs constructed
using explicit human judgments
of word label similarity (left),
computational measures of
semantic similarity (middle
column), and neuronal
activation patterns in primary
visual cortex and ITC (right
column). Lines connecting
the DSMs indicate the
comparisons. Numbers above
each line are the Spearman’s
rank order correlation for the
comparison. Dotted lines
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Figure 3. Analysis of

within- and between-category
substructure. Shown is the
human ITC data divided
diagrammatically into the
four-category substructure
observed in the analysis

of semantic relatedness

(H = humans, A = animals;
NO = natural objects;

MM = man-made objects).
In the substructure analysis,
the relevant DSM entries
(within-category comparisons
shown in green and between- NO
category comparisons shown in
blue) are analyzed separately.
Next to the figures are tables
showing the Spearman’s rank
order correlations for each

of the measures. Asterisks
denote significance p < .01
(bootstrap test).

Human IT

Within category (all)
Measure P
H E.Judge 0.2222*
A LSA 0.1587
COALS 0.2208*
NO PATH —-0.0132
VECTOR 0.1278
GLOSS 0.0077
Between category (all)
Measure P
E.Judge -0.0309
LSA 0.0164
COALS 0.0371
PATH -0.0637
VECTOR -0.116
GLOSS -0.0686

brain’s representation of objects and specifically the rep-
resentation of objects in ITC. We did this using repre-
sentational similarity analysis (Kriegeskorte et al., 2008)
to compare representations (quantified as DSMs) derived
from multiple lexographically based and distributionally
based measures of semantic relatedness to brain activity
in human primary visual cortex and human ITC (see
Methods). Figure 2 summarizes our findings for primary
visual cortex and human ITC. We additionally analyzed
left and right ITC separately. The results for the two
hemispheres did not depart substantially from the find-
ings of bilateral ITC. Below, we only present the data
for bilateral ITC. The data for left and right ITC are given
in Supplementary Figure 1.

Explicit Behavioral Ratings of Word Similarity
Correlate with Distributional and WordNet
Measures of Semantic Similarity AND with
Activity Patterns in ITC

WordNet measures of semantic relatedness are explicitly
implemented in the database, whereas distributional
measures determine relatedness based on statistical reg-
ularities of word usage in text corpora. To validate these
two types of measures, we first examined their relation-
ship to explicit ratings of semantic similarity. For each
measure, we constructed a DSM and evaluated whether
participants’ explicit ratings (leftmost DSM in Figure 2)
corresponded with the WordNet and distributional mea-
sures (DSMs shown in the middle column of Figure 2). In
each of the comparisons, we found a significant correla-

tion (p < .01), thus showing that both the WordNet and
distributional measures correspond well with explicit
evaluations of semantic relatedness.

Our hypothesis predicts that the ratings of semantic
similarity will also be reflected in the brain’s representa-
tion in ITC. We further predicted there would be no
relationship between primary visual cortex and semantic
similarity, as early visual cortex represents visual stimuli
in terms of primitive image features (color, contrast, edge
orientations, etc). The DSMs for primary visual cortex
and ITC are shown in the rightmost column of Figure 2.
Concordant with our predictions, we found a significant
correspondence between the participant ratings and the
ITC representation (p < .01), but not the representation
in visual cortex (p > .05).

Our initial analysis validates each of the measures of
semantic relatedness used in the study, both those theo-
retically motivated and those emergent from word usage,
by showing these measures correlate with explicit rat-
ings. Notably, we also found support for our hypothesis
by showing a correspondence between explicit ratings
and the brain’s representation of objects in ITC.

The Structure of Object Representations in IT
Does NOT Correlate with WordNet Measures

WordNet describes the semantic relationship between
words within a hierarchical framework. WordNet’s struc-
ture emphasizes two relational principles: hierarchical
super-subordinate relations and synonymy (similarity in
meaning). Kriegeskorte et al. (2008) observed hierarchical
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structure in ITC object representations. WordNet thus
is a natural starting point to examine the relationship
between the structure of semantic knowledge and the
structure of object representations in ITC.

We examined whether each WordNet measure cor-
responded with the representation of objects in visual
cortex and ITC (see Figure 2). Not surprisingly, none
these measures correlated with the brain’s representation
of objects in visual cortex (p > .5 for all comparisons).
Somewhat surprisingly, we also found no correspondence
between any of the WordNet measures on the brain’s
representation in ITC (p > .05 for all comparisons). The
lack of relationship could be attributed to two related
explanations. First, WordNet’s hierarchy may be mis-
matched with ITC’s hierarchical organization, especially
with respect to the PATH measure, which explicitly
encodes WordNet’s semantic hierarchy. It is notable,
however, that WordNet’s glosses, as utilized by the
VECTOR and LESK measures, also tend to encode a hier-
archal structure, for example, the gloss for “cat” is “a feline
mammal.” The hierarchical mismatch explanation was
supported by qualitative comparisons of the ITC and the
WordNet DSMs. The WordNet DSMs organize into three
or four clusters: human, animal, natural objects, and pos-
sibly a fourth category of man-made or artifactual objects
(highlighted on the DSM for explicit judgments). In ITC,
the DSM has two bright square regions corresponding
to the locations of animate and inanimate exemplars (see
Figure 1A). These two distinct regions indicate that a
fundamental organizational principle of ITC is animacy
(Kriegeskorte et al., 2008), although it should be noted
that Kriegeskorte et al. (2008) also found that ITC exhib-
ited a less apparent human/animal distinction. This hier-
archal mismatch might explain the weak link between
the WordNet measures and ITC. This explanation, how-
ever, is unsupported by the explicit ratings. The explicit
ratings DSM also shows the three/four-way clustering ob-
served in the WordNet DSMs, yet the structure of explicit
ratings did match with ITC. Alternatively, it is possible that
WordNet’s glosses and forced hierarchal structure, which
are based on an explicit hypothesis of what semantic
knowledge is and how it is organized, might ineffectively
capture “natural” semantic relations. If so, it may be more
appropriate to consider measures of semantic relatedness
that emerge from distributional patterns of word usage in
natural language.

The Structure of Object Representations in
ITC Matches with Distributional Measures of
Semantic Structure in Language

We next examined whether the structure of object repre-
sentations in ITC correspond to the emergent structure of
word meaning arising from statistical occurrence patterns
of words in large text corpora. The most well known mea-
sure of this type is LSA (Landauer & Dumais, 1997), which
evaluates semantic relatedness based on the similarity of
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text environments in which words tend to occur. In addi-
tion to LSA, we also examined COALS (Rohde et al., 2005),
which evaluates semantic relatedness based on the (con-
ditional) co-occurrence of words with each other (rather
than the extent to which words occur in similar environ-
ments, as in LSA).

We compared the brain’s representation in primary
visual cortex and ITC to LSA and COALS (see Figure 2).
For both measures, we found no evidence of a correspon-
dence with visual cortex (p > .05 for both comparisons),
as expected, and a match with ITC (p < .01 for both com-
parisons). These findings indicate that the geometry of
the brain’s representation in ITC matches with our pat-
terns of word use in written language. In the context of
the WordNet data (described above) these findings sup-
port the idea that distributional measures of semantic
similarity like LSA and COALS may capture different as-
pects of semantic organization than WordNet measures
(cf. Maki & Buchanan, 2008). Broadly, these results show
that emergent structure from text corpora better reflect
both behavioral judgments of semantic relatedness and
also the neural organization of ITC.

Correspondences between Fine Grain Structure
in Semantic Similarity and ITC

Each of our measures of semantic similarity exhibited
a qualitative three/four category structure to varying
degrees, whereas ITC exhibited a two-category structure
based on animacy. This global mismatch might explain
the relatively poor performance of the WordNet mea-
sures. To study the fine gain structure of the representa-
tions, we examined the correspondence between ITC’s
representation and our semantic measures for “within”
and “between” category comparisons separately (see
Methods). By parceling the data in this way, we can
examine correspondences between ITC and semantic
measures in terms of (a) fine-grained substructure within
categories (e.g., within the category human are “woman”
and “chef”) and (b) associations between objects in dif-
ferent categories (e.g., across the categories human and
man-made objects are “woman” and “umbrella”). Note
the mismatches associated with different category struc-
ture in ITC and in the semantic measures will be reflected
in relatively low correspondence for the between category
comparisons.

The results of the analysis are shown in Figure 3. For the
analysis of within category structure, we found a corre-
spondence between ITC’s representation and explicit
ratings and COALS, showing that ITC represents fine-
grained relationships between exemplars within a category
in a way comparable to these measures. Notably, LSA per-
formed marginally well (as did WordNet VECTOR) but
did not reach statistical significance (p > .05). In light of
LSA’s good performance overall (see above), the failure
to reach significance for the within-category comparisons
might simply result from a smaller parceled data set. The
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PATH and GLOSS WordNet measures, in contrast, had
virtually no relationship with ITC’s within category struc-
ture. Consistent with the observed global mismatch, we
find no correspondence between ITC’s representation
and any of the semantic measures for the analysis of
between category structure, indicating that associations
between categories might be encoded elsewhere in the
brain, possibly in conjunction with ITC.

DISCUSSION

In this study, we examined whether the organization of
semantic knowledge is reflected in the brain’s represen-
tation of information in ITC, an area traditionally thought
of as a visual area (Logothetis & Sheinberg, 1996; Gross,
1992). We studied the relationship between six measures
of semantic relatedness (explicit ratings, three lexico-
graphic measures from WordNet, and two emergent
measures from distributional analyses) and neural repre-
sentations in both visual cortex and ITC. We found that
the semantic relationships between the labels ascribed
to visual objects are reflected in the brain’s representa-
tions of these objects in ITC. More specifically, we found
a correspondence between the geometry of ITC repre-
sentations and semantic relationships, as expressed in
explicit behavioral ratings and in distributional measures
of semantic similarity, and that this connection largely
could be ascribed to correspondences in the encoding
of within category relationships.

In our study, we found a coupling between the semantic
relationships and the brain’s representation of information
in ITC. This coupling is not perfect: We observed a coarse
mismatch in the broad categorical boundaries of the repre-
sentations in ITC (animate/inanimate) and the measures
of semantic similarity (human, animal, natural, and man-
made objects), which was reflected in a poor correspon-
dence for between-category structure. One possibility is
that this broad categorical structure draws primarily on
nonperceptual relationships. For example, humans are
relatively highly related to all objects in the explicit judg-
ments data (note relatively high similarities in the leftmost
and topmost columns of the explicit similarity judgments
DSM), perhaps reflecting associative knowledge that is
distinct from conceptual similarity per se (e.g., humans
use tools, eat food, etc.). In any case, this mismatch sug-
gests that the brain’s underling neural representation of
semantic relationships involves more than ITC. Mitchell
etal. (2008) have argued that semantic meaning is encoded
in a network of brain activity, consisting of frontal areas
and sensory motor areas in addition to ITC. Our findings,
in the context of their proposal, suggest that ITC is an
important node in this network, as activity in ITC (studied
in isolation from the network) reflects the topology of
semantic relationships within categories.

In contrast to our finding that semantic structure, as
expressed in word use and explicit judgments, is repre-
sented to some extent at the level of ITC, we found no

correspondence between any measure of semantic simi-
larity and activity in primary visual cortex. This pattern
indicates that semantic relationships may be an organiza-
tional principle in ITC and that the refinement of visual
inputs into linguistically and conceptually relevant organi-
zation begins in the ventral visual pathway. Although this
suggests that semantic knowledge could be represented
in ITC, our findings do not necessarily mean that ITC is
playing an explicit role in linguistic semantics. Develop-
mental studies have suggested a moderated relationship
between perceptual categories, conceptual categories,
and language. Early theories of development pointed out
these capacities have different developmental trajectories,
implying separate interrelated systems (Piaget, 1952).
Contemporary theories view the development of percep-
tual categories as the building blocks of conceptual cate-
gories and language (Mandler, 2004; Karmiloff-Smith,
1992), explicating the dependencies between perception,
concepts, and language. The observed correspondence
between semantic relationships and ITC’s representa-
tion of information may therefore reflect the perceptual
origins of conceptual categories and language.

Although ITC certainly represents perceptual infor-
mation, our findings are also congruent with the idea that
representations in I'TC are not purely perceptual. Nonvisual
tasks based on conceptual knowledge modulate ITC ac-
tivity (for a review, see Martin, 2007), and Simanova et al.
(2012) recently showed that, irrespective of sensory modal-
ity, the categories of animals and tools could be de-
coded from ITC activity. These findings suggest that
ITC’s representations may be more conceptual than sen-
sory, fitting with our finding that ITC’s representation of
visual objects was associated with representations based
on the word labels associated with those objects, which
abstract away from sensory information. Furthermore, by
studying the relationships between a large number of
stimuli (summarized by the DSMs), we show a level of
correspondence between semantic relationships and
ITC’s representation that is far more sophisticated than
the coarse animal/tool categorical distinction demon-
strated by Simanova et al. (2012). The observation that
the complex geometry of semantic relationships among
words matches with the representational geometry of
ITC strengthens the argument that conceptual knowledge
is represented, at least to some extent, in ITC. Moreover,
our findings showing compatibility at a fine grain for within
category relationships further specify the role that ITC
might play in representing conceptual knowledge.

It is clear that the topology of ITC does not completely
capture amodal semantic organization given that the
overall correlations we observe with the language-based
measures are relatively low. The difference between
within-category and between-category relationships
suggests that this reflects, at least partially, a mismatch
between high-level categorical structure in ITC and the
sematic measures (as correlations between ITC and
semantic measures are higher within categories). An
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additional possibility is that ITC representations primarily
capture visually based aspects of conceptual knowledge
whereas the semantic relationships measured by LSA,
COALS, and the behavioral judgments incorporate both
visually based and nonvisual aspects of meaning. Although
this seemingly contrasts with the findings of Simanova
et al. (2012), discussed above, their data are also con-
sistent with sensory-based representations in ITC if the
relevant visual features are coactivated from activation
in other modalities (e.g., the auditory word “red” might
activate simulations in color areas). At the extreme, it
seems implausible that visual areas represent the semantics
of nonvisual abstract concepts like “love” or “morality,”
although visual areas might still represent visually based
associations related to these nonvisual concepts. By this
account, ITC plays an important role primarily in the
representation of visually based aspects of conceptual
knowledge as reflected in language use, contributing to
larger distributed multi-modal representations of semantic
meaning.

A related account is that both linguistic use and the
representation of information ITC cortex reflect a simi-
larity that exists “in the world”—that is, our environment
separately drives ITC organization and the organization
of sematic knowledge. Conceptual knowledge likely
draws on information from multiple modalities (cf. Mahon
& Caramazza, 2011), presumably requiring some degree
of commonality in the formatting of information across
systems. Common pressure from the organizational prin-
ciples of the environment may naturally lead to this “com-
mon code,” thereby allowing for efficient communication
and integration across sensory and cognitive neural sys-
tems (cf. Prinz, 1997). Indeed, some recent fMRI studies
on congenitally blind participants demonstrate innate
conceptual biases in the organization of object knowledge
independent of sensory input modality and experi-
ence (Striem-Amit, Cohen, Dehaene, & Amedi, 2012;
Reich, Szwed, Cohen, & Amedi, 2011; Mahon, Anzellotti,
Schwarzbach, Zampini, & Caramazza, 2009), indicating
that multimodal pressures are influencing the organiza-
tional principles of the ventral visual pathway.

One limitation with these data is that they are derived
from a single language (English). This is a potential limita-
tion (of this and of many other studies; cf. Henrich, Heine,
& Norenzayan, 2010) because languages differ in how they
categorize entities and so speakers of different languages
may show corresponding differences in how they map
representations in ITC onto semantic representations.
Such cross-linguistic differences can be quite substantial,
including different ways of grouping important conceptual
categories like body parts (Brown, 2011; Majid, 2010) and
natural objects (e.g., Levinson, 1996). It would be valuable
for future work to investigate the relationship between
the topology of ITC and of language-based measures in
speakers of other languages as this would inform the
extent of interaction between the representational struc-
tures of ITC and language. Some necessary ground-
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work for this goal comes from work building versions of
WordNet and language corpora in other languages and
in multilingual contexts (Vossen, 1998) and work demon-
strating the utility of relatedness measures in those con-
texts (Hassan, Banea, & Mihalcea, 2012; Mohammad,
Gurevych, Hirst, & Zesch, 2007; Katz & Goldsmith-
Pinkham, 1998). If these cross-linguistic differences are
in fact reflected in the topology of ITC, this would sup-
port a strong relationship between visual processing and
language-based semantic structure.

The Mismatch of WordNet with ITC

The structure of semantic knowledge in WordNet was
not reflected in ITC’s representation. Our qualitative
analysis of the DSMs for WordNet and explicit behavioral
ratings found a three/four category structure in the se-
mantic relatedness data (human, animal, natural objects,
and man-made objects). LSA and COALS similarly exhib-
ited this structure (see DSMs in Figure 2). The presence
of this structure in LSA, COALS, and behavioral ratings,
all of which correlated with ITC structure, rules out the
possibility that our null results for the WordNet measures
were because of a coarse hierarchical mismatch. This is
supported by the outcome of our fine-grained analysis
for within and between category structure. Even after this
coarse mismatch was parceled out (by looking separately
at organizational similarity between and within cate-
gories), none of the WordNet measures captured the
fine grained within category structure. The lack of a cor-
respondence between WordNet and ITC thus is more
likely attributed to more subtle differences between
WordNet’s topology and ITC’s representation. These
subtle differences could be ascribed to WordNet’s (im-
posed) structure and word definitions (glosses), which
might fail to fully capture the structure of our mental
conceptual representations. Volumes of text have been
written to describe concepts that are captured by a single
word (e.g., a search for nonfiction books using the key-
word “monkey” in the University of Maryland’s library
produced nearly 1400 results), and short definitions from
different sources are often quite different. WordNet’s
simple structure and short definitions may just be too
simplistic to capture the full range of word meaning.
Relatedly, the WordNet hierarchy may be too sparsely
populated (i.e., too few links between word synsets) and
qualitative (e.g., the distance between “run” and “jog” is
assumed to be the same as between “run” and “move”) to
adequately predict cognitive representations of word
meaning (Boyd-Graber & Fellbaum, 2006). In contrast,
LSA and COALS, which incorporate volumes of text to
derive the relations among words, may unsurprisingly
better reflect both explicit similarity ratings and the orga-
nization of information in human ITC. An alternative expla-
nation for WordNet’s lack of correspondence with ITC is
that the structure of semantic meaning as represented in
WordNet might be reflected in other areas of the brain.
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Our study is limited in addressing this possibility as we
based our research on an existing data set that only in-
cludes data from the primary visual cortex and ITC. Future
research employing a similar approach could address this
possibility more directly.

Future Directions for Modeling of
Semantic Knowledge

The development of WordNet measures and distribu-
tional measures like LSA has been critical to the advance-
ment of our understanding of how the brain encodes
semantic knowledge. Some work takes these measures
(especially distributional measures like LSA and COALS)
as a veridical account of semantic representation in the
human brain, at least implicitly (e.g., Landauer & Dumais,
1997); however it is possible that these measures relate
well to semantic knowledge without corresponding
directly to the neural representation of semantic or con-
ceptual knowledge (Glenberg & Mehta, 2008). Never-
theless, such metrics can capture an important part of
the “material” available for learning semantic structure
(e.g., Andrews, Vigliocco, & Vinson, 2009), and our data
suggest that measures like LSA do, in fact, reflect im-
portant aspects of how the human brain represents con-
ceptual information.

The highly active and competitive field of constructing
models to describe semantic relations among words
most often uses behavioral measures as benchmark (e.g.,
Kievit-Kylar & Jones, 2012; Riordan & Jones, 2010). Many
studies rating semantic measures using human judgments
use pre-compiled data sets (see Finkelstein et al., 2002;
Miller & Charles, 1991; Rubenstein & Goodenough,
1965) and typically find that distributional measures like
COALS and LSA outperform WordNet-based measures
(Waltinger & Mehler, 2009; Boyd-Graber & Fellbaum,
2006; Rohde et al., 2005). However, some WordNet algo-
rithms that we did not implement in the current study
may correlate more strongly with the behavioral data
(e.g., Budanitsky & Hirst, 2005; Lapata & Barzilay, 2005;
Jarmasz & Szpakowicz, 2003). A more nuanced sense
disambiguation heuristic may also improve WordNet per-
formance (see Methods). In addition, there are likely
several other types of hierarchical and distributional mod-
els worth investigating (e.g., Panchenko, 2012; Mohammad
& Hirst, 2006), including models based on semantic fea-
ture norms (McRae, Cree, Seidenberg, & McNorgan, 2005;
Cree & McRae, 2003).

We would argue that this field of research could be
additionally served by employing “brain-based” bench-
marks, both those targeting specific areas, as in this study,
and those using whole-brain analysis approaches (e.g.,
Huth et al., 2012; Mitchell et al., 2008). It may be the
case that hierarchical and distributional measures of se-
mantic similarity are only measuring specific aspects of
linguistic knowledge (see Glenberg & Mehta, 2008; Maki
& Buchanan, 2008); brain-based measures potentially

could serve to reveal shortcomings of specific models
and provide guidance for their refinement. In addition,
there is the potential of improving these measures by
integrating feature sets and distributional data (cf. Andrews
et al., 2009), representing word meanings probabilistically
(see Griffiths, Steyvers, & Tenenbaum, 2007; Blei, Ng, &
Jordan, 2003) and using other types of text corpora such
as the Google Books corpus or Wikipedia (Ferrara &
Tasso, 2013; Michel et al., 2011; Gabrilovich & Markovitch,
2007). By making use of existing data sets, as in this study,
this research could be performed at a relatively low cost.

APPENDIX 1

Word Labels for the Stimuli

Human  Animal Natural Objects ~ Man-made Objects

hand armadillo carrots garlic city umbrella
ear camel grapes path bottle phone
chef snake potato pineapple lightbulb stove
hair wolf tree pear sign
dancer monkey pepper  waterfall cassette
woman ostrich  lettuce church
eye zebra kiwi flag
man elephant cucumber key
pointing sheep leaf pliers
fist frog apple arch
child Ccow radish door
goat eggplant hammer
dog lake chair
alligator  pine cone gun
giraffe banana house
lion tomato dome

Reprint requests should be sent to Thomas A. Carlson, Depart-
ment of Cognitive Sciences, Centre for Cognition and Its Dis-
orders, Macquarie University, Sydney, NSW 2109, Australia, or
via e-mail: thomas.carlson@mgq.edu.au.
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