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Today, computer and information networks play a significant role in the suc-

cess of businesses, both large and small. Networks provide access to various services

and resources to end users and devices. There has been extensive research on de-

signing networks according to numerous criteria such as cost-efficiency, availability,

adaptivity, survivability, among others. In this dissertation, we revisit some of the

most fundamental network design problems in the presence of uncertainty.

In most realistic models, we are forced to make decisions in the presence of an

incomplete input, which is the source of uncertainty for an optimization algorithm.

There are different types of uncertainty. For example, in stochastic settings, we may

have some random variables derived from some known/unknown distributions. In

online settings, the complete input is not known in a-priori and pieces of the input

become available sequentially; leaving the algorithm to make decisions only with

partial data.

In this dissertation, we consider network design and network optimization

problems with uncertainty. In particular, we study online bounded-degree Steiner

network design, online survivable network design, and stochastic k-server. We ana-

lyze their complexity and design competitive algorithms for them.
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Chapter 1: Introduction

Computer and information networks have become essential in almost any op-

eration. As a result, network design and network optimization has become an active

and important line of research. The Steiner network design problem – which asks

for a subgraph that connects a given set of vertices – is perhaps one of the most

representative problems in this class. There has been many books written on this

topic (see e.g. [1–6]). We also study several variants of this problem such as the

degree-bounded variant and the survivable network design problem. We also study

a variant of the celebrated k-server problems, which is one of the most important

online network optimization problems.

In practice, one main challenge to many network processes is uncertainty.

Traditionally in computer science problems, an algorithm initially has complete

uncertainty about the input instance, and when the input is given, the algorithm

receives full information. However in real world, not only the algorithm may have

some prior information about the instance (e.g. the input may include random

variables drawn from distributions which are known to the algorithm in advance),

but also the algorithm may have incomplete information even after the input is

given (e.g. jobs can have stochastic running time, online algorithms can only access
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a fraction of the information at each time).

In this dissertation, we deal with online optimization problems in networks.

In an online setting an algorithm sequentially receives only a portion of the input

and has to make a decision. In this setting, the classical assumption is that the

input is chosen by some adversary and the outcome is compared to some optimal

offline algorithm. This evaluates an algorithm in the worst case scenario. In real

world, however, adversarial scenarios are sometimes very unlikely. Moreover having

no information about the future input is not always reasonable. Therefore, a new

line of research is necessary to study these onlint optimization problems in a more

realistic setting. An effective and fruitful model to rule out these issues is adding

stochastic assumptions. This has been applied to many problems in different areas.

Thus, in this dissertation, we revisit two classical online problems in a stochastic

setting, where the input is drawn from some known distribution at each online step.

In the following we describe each chapter of this dissertation independently.

In Chapter 2, we initiate the study of degree-bounded network design problems

in the online setting. The degree-bounded Steiner tree problem asks for a subgraph

with minimum degree that connects a given set of vertices. In this chapter, we

deal with its well-studied generalization called the degree-bounded Steiner forest

problem where the connectivity demands are represented by vertex pairs that need

to be individually connected. In the classical online model, the input graph is

given offline but the demand pairs arrive sequentially in online steps. The selected

subgraph starts off as the empty subgraph, but has to be augmented to satisfy

the new connectivity constraint in each online step. The goal is to be competitive
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against an adversary that knows the input in advance.

The standard techniques for solving degree-bounded problems often fall in

the category of iterative and dependent rounding techniques. Unfortunately, these

rounding methods are inherently difficult to adapt to an online settings since the

underlying fractional solution may change dramatically in between the rounding

steps. Indeed, this might be the very reason that despite many advances in the

online network design paradigm in the past two decades, the natural family of degree-

bounded problems has remained widely open.

In this chapter, we design an intuitive greedy-like algorithm that achieves a

competitive ratio of O(log n) where n is the number of vertices. We show that no

(randomized) algorithm can achieve a (multiplicative) competitive ratio o(log n);

thus our result is asymptotically tight. We further show strong hardness results for

the group Steiner tree and the edge-weighted variants of degree-bounded connectiv-

ity problems.

Fürer and Raghavachari resolved the offline variant of degree-bounded Steiner

forest in their paper in SODA’92. Since then, the family of degree-bounded network

design problems has been extensively studied in the literature resulting in the devel-

opment of many interesting tools and numerous papers on the topic. We hope that

our approach and its dual analysis, paves the way for solving the online variants of

the classical problems in this family of problems.

In Chapter 3, we design the first online algorithm with poly-logarithmic com-

petitive ratio for the edge-weighted degree-bounded Steiner forest (EW-DB-ST)

problem and its generalized variant. We obtain our result by demonstrating a new
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generic approach for solving mixed packing/covering integer programs in the online

paradigm. In EW-DB-ST, we are given an edge-weighted graph with a degree

bound for every vertex. Given a root vertex in advance, we receive a sequence of

terminal vertices in an online manner. Upon the arrival of a terminal, we need to

augment our solution subgraph to connect the new terminal to the root. The goal

is to minimize the total weight of the solution while respecting the degree bounds

on the vertices. In the offline setting, edge-weighted degree-bounded Steiner tree

(EW-DB-ST) and its many variations have been extensively studied since early

eighties. Unfortunately, the recent advancements in the online network design prob-

lems are inherently difficult to adapt for degree-bounded problems. In particular,

it is not known whether the fractional solution obtained by standard primal-dual

techniques for mixed packing/covering LPs can be rounded online. In contrast,

in this chapter we obtain our result by using structural properties of the optimal

solution, and reducing the EW-DB-ST problem to an exponential-size mixed pack-

ing/covering integer program in which every variable appears only once in covering

constraints. We then design a generic integral algorithm for solving this restricted

family of IPs.

As mentioned above, we demonstrate a new technique for solving mixed pack-

ing/covering integer programs. Define the covering frequency k of a program as the

maximum number of covering constraints in which a variable can participate. Let m

denote the number of packing constraints. We design an online deterministic inte-

gral algorithm with competitive ratio of O(k logm) for the mixed packing/covering

integer programs. We prove the tightness of our result by providing a matching
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lower bound for any randomized algorithm. We note that our solution solely de-

pends on m and k. Indeed, there can be exponentially many variables. Furthermore,

our algorithm directly provides an integral solution, even if the integrality gap of

the program is unbounded. We believe this technique can be used as an interesting

alternative for the standard primal-dual techniques in solving online problems.

In Chapter 4 we study online survivable network design. In an instance of the

network design problem, we are given a graph G = (V,E), an edge-cost function

c : E → R≥0, and a connectivity criteria. The goal is to find a minimum-cost

subgraph H of G that meets the connectivity requirements. An important family

of this class is the survivable network design problem (SNDP): Given non-negative

integers ruv for each pair u, v ∈ V , the solution subgraph H should contain ruv

edge-disjoint paths for each pair u and v.

While this problem is known to admit good approximation algorithms in the

offline case, the problem is much harder in the online setting. Gupta, Krishnaswamy,

and Ravi [7] (STOC’09) were the first to consider the online survivable network

design problem. They demonstrate an elegant algorithm with competitive ratio of

O(k log3 n), where k = maxu,v ruv.

The competitive ratio of the algorithm by Gupta et al. grows linearly in k.

Indeed, an important open problem in the online community [7, 8] is whether the

linear dependency on k can be reduced to a logarithmic dependency. Moreover,

the O(log3 n) factor is also not plausible in practice. In this chapter, we show that

this problem can be circumvented by two different approaches, i.e. considering the

stochastic variant of the problem and allowing small congestion on the edges.
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We first show that a greedy algorithm does surprisingly well, if we relax the

connectivity requirements by a constant factor. In particular we prove the greedy

algorithm is O(log2 n log k)-competitive if we provide ruv/2 edge-disjoint paths be-

tween u and v, instead of ruv edge-disjoint paths. Our result is very similar in

spirit to the work of Chuzhoy and Li [9] (FOCS’12) in which the authors give a

polylogarithmic approximation algorithm for edge-disjoint paths with congestion 2.

Then we study the stochastic version of the problem. We consider the i.i.d.

model, where each online demand is drawn from a single probability distribution, the

unknown distribution model, where again every demand is drawn from a single but

unknown probability distribution, and the prophet setting of the problem, where

each online demand is drawn from a (possibly) different probability distribution.

We provide constant competitive algorithms for the i.i.d. and the prophet setting

of the problem, which surprisingly shows that knowing some stochastic information

about the online input can significantly improve the competitive ratio. We also

provide O(log n)-competitive algorithm for the unknown distribution model, which

is almost tight. To provide a competitive algorithm for the prophet setting, we

present a general framework to obtain competitive algorithms for prophet setting,

using oblivious algorithms for the i.i.d. model. Interestingly, this technique allows

us to obtain competitive algorithms for other fundamental online problems such as

set cover, vertex cover, and facility location in the prophet setting.

In Chaapter 5, we study a stochastic variant of the celebrated k-server problem.

In the k-server problem, we are required to minimize the total movement of k servers

that are serving an online sequence of t requests in a metric. In the stochastic setting
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we are given t independent distributions 〈P1, P2, . . . , Pt〉 in advance, and at every

time step i a request is drawn from Pi.

Designing the optimal online algorithm in such setting is NP-hard, therefore

the emphasis of our work is on designing an approximately optimal online algorithm.

We first show a structural characterization for a certain class of non-adaptive online

algorithms. We prove that in general metrics, the best of such algorithms has a

cost of no worse than three times that of the optimal online algorithm. Next, we

present an integer program that finds the optimal algorithm of this class for any

arbitrary metric. Finally by rounding the solution of the linear relaxation of this

program, we present an online algorithm for the stochastic k-server problem with

an approximation factor of 3 in the line and circle metrics and factor of O(log n) in

general metrics. In this way, we achieve an approximation factor that is independant

of k, the number of servers.

Furthermore, we extend our results to the correlated setting where the proba-

bility of a request arriving at a certain point depends not only on the time step but

also on the previously arrived requests.
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Chapter 2: Online Degree-Bounded Steiner Network Design

2.1 Introduction

The problem of satisfying connectivity demands on a graph while respecting

given constraints has been a pillar of the area of network design since the early

seventies [10–14]. The problem of degree-bounded spanning tree, introduced

in Garey and Johnson’s Black Book of NP-Completeness [15], was first investi-

gated in the pioneering work of Fürer and Raghavachari [16] (Allerton’90). In the

degree-bounded spanning tree problem, the goal is to construct a spanning

tree for a graph G = (V,E) with n vertices whose maximal degree is the smallest

among all spanning trees. Let b∗ denote the maximal degree of an optimal spanning

tree. Fürer and Raghavachari [16] give a parallel approximation algorithm which

produces a spanning tree of degree at most O(log(n)b∗).

Agrawal, Klein, and Ravi ( [17]) consider the following generalizations of

the problem. In the degree-bounded Steiner tree problem we are only

required to connect a given subset T ⊆ V . In the even more general

degree-bounded Steiner forest problem the demands consist of vertex pairs,

and the goal is to output a subgraph in which for every demand there is a path

connecting the pair. They design an algorithm that obtains a multiplicative ap-
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proximation factor of O(log(n)). Their main technique is to reduce the problem to

minimizing congestion under integral concurrent flow restrictions and to then use

the randomized rounding approach due to Raghavan and Thompson ( [18]).

Shortly after the work of Agrawal et al., Fürer and Raghavachari [19] signifi-

cantly improved the result for degree-bounded Steiner forest by presenting

an algorithm which produces a Steiner forest with maximum degree at most b∗ + 1.

They show that the same guarantee carries over to the directed variant of the prob-

lem as well. Their result is based on reducing the problem to that of computing a

sequence of maximal matchings on certain auxiliary graphs. This result settles the

approximability of the problem, as computing an optimal solution is NP-hard even

in the spanning tree case.

In this chapter, we study degree-bounded network design problems in an online

setting, where connectivity demands appear over time and must be immediately

satisfied. We first design a deterministic algorithm for online degree-bounded

Steiner forest with a logarithmic competitive ratio. Then we show that this

competitive ratio is asymptotically best possible by proving a matching lower bound

for randomized algorithms that already holds for the Steiner tree variant of the

problem.

In the offline scenario, the results of Fürer, Raghavachari [16,19] and Agrawal,

Klein, Ravi [17] were the starting point of a very popular line of work on vari-

ous degree-bounded network design problems [20–25]. We refer the reader to the

next sections for a brief summary. One particular variant that has been exten-

sively studied is the edge-weighted degree-bounded spanning tree. Initiated
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by Marathe et al. ( [20]), in this version, we are given a weight function over the

edges and a bound b on the maximum degree of a vertex. The goal is to find a

minimum-weight spanning tree with maximum degree at most b. The groundbreak-

ing results obtained by Goemans ( [21]) and Singh and Lau ( [26]) settle the problem

by giving an algorithm that computes a minimum-weight spanning tree with degree

at most b + 1. A slightly worse result is obtained by Singh and Lau ( [23]) for

the Steiner tree variant. Unfortunately, in the online setting it is not possible to

obtain a comparable result. We show that for any (randomized) algorithm A there

exists a request sequence such that A outputs a sub-graph that either has weight

Ω(n) ·OPTb or maximum degree Ω(n) · b.

2.1.1 Our Contributions

In the online variant of degree-bounded Steiner forest , we are given

the graph G in advance, however, demands arrive in an online fashion. At online

step i, a new demand (si, ti) arrives. Starting from an empty subgraph, at each step

the online algorithm should augment its solution so that the endpoints of the new

demand si and ti are connected. The goal is to minimize the maximum degree of

the solution subgraph. In the non-uniform variant of the problem, a degree bound

bv ∈ R+ is given for every vertex v. For a subgraph H and a vertex v, let degH(v)

denote the degree of v in H. The load of a vertex is defined as the ratio degH(v)/bv.

In the non-uniform variant of online degree-bounded Steiner forest, the

goal is to find a subgraph satisfying the demands while minimizing the maximum

10



load of a vertex.

Our algorithm is a simple and intuitive greedy algorithm. Upon the arrival of

a new demand (si, ti), the greedy algorithm (GA) satisfies the demand by choosing

an (si, ti)-path Pi such that after augmenting the solution with Pi, the maximum

load of a vertex in Pi is minimum. A main result of our work is to prove that the

maximum load of a vertex in the output of GA is within a logarithmic factor of

OPT, the maximum load of a vertex in an optimal offline solution which knows all

the demands in advance.

Theorem 2.1. The algorithm GA produces an output with maximum load at most

O(log n) ·OPT.

The crux of our analysis is establishing several structural properties of the

solution subgraph. First we group the demands according to the maximum load of

the bottleneck vertex at the time of arrival of the demand. We then show that for

every threshold r > 0, vertices with load at least r at the end of the run of GA,

form a cut set that well separates the group of demands with load at least r at their

bottleneck vertex. Since the threshold value can be chosen arbitrarily, this leads to

a series of cuts that form a chain. The greedy nature of the algorithm indicates that

each cut highly disconnects the demands. Intuitively, a cut that highly disconnects

the graph (or the demands) implies a lower bound on the number of branches of

every feasible solution.

We use a natural dual-fitting argument to show that for every cut set, the ratio

between the number of demands in the corresponding group, over the total degree
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bound of the cut, is a lower bound for OPT. Hence, the problem comes down to

showing that one of the cuts in the series has ratio at least 1/O(log n) fraction of the

maximum load h of the output of GA. To this end, we first partition the range of

r ∈ (0, h] into O(log n) layers based on the total degree bound of the corresponding

cut. We then show that the required cut can be found in an interval with maximum

range of r. We analyze GA formally in Section 2.2.

We complement our first theorem by giving an example for a special case of

online degree-bounded Steiner tree in which no online (randomized) algo-

rithm can achieve a (multiplicative) competitive ratio o(log n). This also implies

that obtaining (non-trivial) additive competitiveness is not possible in the online

setting.

Theorem 2.2. Any (randomized) online algorithm for the degree bounded online

Steiner tree problem has (multiplicative) competitive ratio Ω(log n). This already

holds when bv = 1 for every node.

The previously known techniques. As discussed before, the majority of techniques

used for solving the offline variants of degree-bounded problems involve rounding

an optimal fractional solution of a relaxed linear program. Since one may need to

buy a long path to connect the endpoints of a demand, independent rounding of

a fractional solution is hardly efficient. Instead, dependent and iterative rounding

methods are usually used for attacking degree-bounded problems. In the online

paradigm, one can maintain a competitive fractional solution for these problems,

however, it is inherently difficult to apply the aforementioned rounding techniques
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in an online setting: the underlying online fractional solution changes in between

the rounding steps, thus breaking the chain of dependencies.

In contrast to the works on the offline paradigm, in this study we propose a

simple combinatorial algorithm with a dual-fitting analysis. We use the structural

properties of the output of our algorithm to show the existence of a chain of cuts

that well separates the demand endpoints. When restricted to the case of uniform

bounds, these cuts imply an upper bound on the toughness of the graph. The tough-

ness of a graph is defined as minX⊆V
|X|

|CC(G\X)| ; where for a graph H, CC(H) denotes

the collection of connected components of H. It can be shown that the reciprocal

of the toughness gives a lower bound for OPT. Therefore we use a combinatorial

argument to show that the minimum of this ratio over the cuts in our chain of cuts

is within O(log(n)) approximation of the reciprocal of the maximum load of a vertex

in our solution.

We would like to emphasize that although the concept of toughness is well-

studied in the literature, this line of research is mainly focused on relating toughness

conditions to the existence of cycle structures, see for example a comprehensive

survey by Bauer et al. [27]. The relation between the graph toughness and degree-

bounded problems have been previously observed by Win [10] and Agrawal et al. [17].

However as mentioned in the introduction, Agrawal et al. use a completely different

argument for analyzing the problem when reduced to a congestion minimization

problem. We hope that the structural properties introduced in this study together

with the dual interpretation of our analysis, paves the way for solving the classical

problems in the family of degree-bounded problems.
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Hardness under more general constraints. We further investigate the following ex-

tensions of the online degree bounded Steiner tree problem. First, we consider the

edge-weighted variant of the degree-bounded Steiner tree problem. Second, we con-

sider the group Steiner tree version in which each demand consists of a subset of

vertices, and the goal is to find a tree that covers at least one vertex of each de-

mand group. The following theorems show that one cannot obtain a non-trivial

competitive ratio for these versions in their general form.1

Theorem 2.3. Consider the edge weighted variant of

online degree-bounded Steiner tree. For any (randomized) online al-

gorithm A, there exists an instance and a request sequence such that either

E [maxdegree(A)] ≥ Ω(n) · b or E [weight(A)] ≥ Ω(n) · OPTb, where OPTb denotes

the minimum weight of a Steiner tree with maximum degree b.

Theorem 2.4. There is no deterministic algorithm with competitive ratio o(n) for

the degree-bounded group Steiner tree problem.

2.1.2 Related Degree-Bounded Connectivity Problems

The classical family of degree-bounded network design problems have vari-

ous applications in broadcasting information, package distribution, decentralized

communication networks, etc. (see e.g. [28, 29]). Marathe et al. ( [20]), first con-

sidered the general edge-weighted variant of the problem. They give a bi-criteria

1Our lower bound results imply that one needs to restrict the input in order to achieve com-

petitiveness. In particular for the edge-weighted variant, our proof does not rule out the existence

of a competitive algorithm when the edge weights are polynomially bounded.
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(O(log n), O(log n) · b)-approximation algorithm, i.e., the degree of every node in

the output tree is O(log n) · b while its total weight is O(log n) times the optimal

weight. A long line of work (see e.g. [30] and [31]) was focused on this problem until

a groundbreaking breakthrough was obtained by Goemans ( [21]); his algorithm

computes a minimum-weight spanning tree with degree at most b + 2. Later on,

Singh and Lau ( [26]) improved the degree approximation factor by designing an

algorithm that outputs a tree with optimal cost while the maximum degree is at

most b+ 1.

In the degree-bounded survivable network design problem, a number di is asso-

ciated with each demand (si, ti). The solution subgraph should contain at least di

edge-disjoint paths between si and ti. Indeed this problem has been shown to admit

bi-criteria approximation algorithms with constant approximation factors (e.g. [23]).

We refer the reader to a recent survey in [32]. This problem has been recently con-

sidered in the node-weighted variant too (see e.g. [22, 25]). The degree-bounded

variant of several other problems such as k-MST and k-arborescence has also been

considered in the offline setting for which we refer the reader to [24,33] and references

therein.

2.1.3 Related Online Problems

Online network design problems have attracted substantial attention in the

last decades. The online edge-weighted Steiner tree problem, in which the goal is to

find a minimum-weight subgraph connecting the demand nodes, was first considered
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by Imase and Waxman ( [34]). They showed that a natural greedy algorithm has a

competitive ratio of O(log n), which is optimal up to constants. This result was gen-

eralized to the online edge-weighted Steiner forest problem by Awerbuch et al. ( [35])

and Berman and Coulston ( [36]). Later on, Naor, Panigrahi, and Singh ( [37])) and

Hajiaghayi, Liaghat, and Panigrahi ( [38]), designed poly-logarithmic competitive

algorithms for the more general node-weighted variant of Steiner connectivity prob-

lems. This line of work has been further investigated in the prize-collecting version

of the problem, in which one can ignore a demand by paying its given penalty.

Qian and Williamson ( [39]) and Hajiaghayi, Liaghat, and Panigrahi ( [40]) develop

algorithms with a poly-logarithmic competitive algorithms for these variants.

The online b-matching problem is another related problem in which vertices

have degree bounds but the objective is to maximize the size of the solution sub-

graph. In the worst case model, the celebrated result of Karp et al. ( [41]) gives a

(1 − 1/e)-competitive algorithm. Different variants of this problem have been ex-

tensively studied in the past decade, e.g., for the random arrival model see [42–45],

for the full information model see [46, 47], and for the prophet-inequality model

see [48–50]. We also refer the reader to the comprehensive survey by Mehta [51].

Many of the aforementioned problems can be characterized as an online pack-

ing or covering linear program. Initiated by work of Alon et al. [52] on online

set cover, Buchbinder and Naor developed a strong framework for solving pack-

ing/covering LPs fractionally online. For the applications of their general frame-

work in solving numerous online problems, we refer the reader to the survey in [53].

Azar et al. [54] generalize this method for the fractional mixed packing and covering
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LPs. In particular, they show an application of their method for integrally solving

a generalization of capacitated set cover. Their result is a bi-criteria competitive

algorithm that violates the capacities by at most an O(log2 n) factor while the cost

of the ouput is within O(log2 n) factor of optimum. We note that although the

fractional variant of our problem is a special case of mixed packing/covering LPs,

we do not know of any online rounding method for Steiner connectivity problems.

2.1.4 Preliminaries

Let G = (V,E) denote an undirected graph of size n (|V | = n). For

every vertex v ∈ V , let bv ∈ R+ denote the degree bound of v. In the

degree-bounded Steiner forest problem, we are given a sequence of connec-

tivity demands. The ith demand is a pair of vertices (si, ti) which we call the end-

points of the demand. An algorithm outputs a subgraph H ⊆ G in which for every

demand its endpoints are connected. The load of a vertex v w.r.t. H is defined

as `H(v) = degH(v)/bv. We may drop the subscript H when it is clear from the

context. The goal is to find a subgraph H that minimizes the maximum load of a

vertex. Observe that one can always find an optimal solution without a cycle, hence

the name Steiner forest. Furthermore, without loss of generality2, we assume that

the endpoints of the demands are distinct vertices with degree one in G and degree

2One can add a dummy vertex for every vertex v ∈ V connected to v. We then interpret a

demand between two vertices as a demand between the corresponding dummy vertices. The degree

bound of a dummy vertex can be set to infinity. This transformation can increase the degree of

any node by at most a factor of 2, which does not affect our asymptotic results.
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bound infinity. We denote the maximum load of a vertex in an optimal subgraph

by OPT = minH maxv `H(v).

The following mixed packing/covering linear program (P) is a relaxation for the

natural integer program for degree-bounded Steiner forest. Let S denote the

collection of subsets of vertices that separate the endpoints of at least one demand.

For a set of vertices S, let δ(S) denote the set of edges with exactly one endpoint

in S. In P, for an edge e, x(e) = 1 indicates that we include e in the solution

while x(e) = 0 indicates otherwise. The variable α indicates an upper bound on

the load of every vertex. The first set of constraints ensures that the endpoints of

every demand are connected. The second set of constraints ensures that the load of

a vertex is upper bounded by α. The program D is the dual of the LP relaxation P.

minimize α (P)

∀S ⊆ S
∑
e∈δ(S)

x(e) ≥ 1 (y(S))

∀v ∈ V
∑

e∈δ({v})

x(e) ≤ α · bv

(z(v))

x(e), α ∈ R≥0

maximize
∑
S∈S

y(S) (D)

∀e = (u, v)
∑

S:e∈δ(S)

y(S) ≤ z(u) + z(v)

(x(e))∑
v

z(v)bv ≤ 1 (α)

z(v),y(S) ∈ R≥0

In the online variant of the problem, G and the degree bounds are known in

advance, however, the demands are given one by one. Upon the arrival of the ith

demand, the online algorithm needs to output a subgraph Hi that satisfies all the

demands seen so far. The output subgraph can only be augmented, i.e., for every

j < i, Hj ⊆ Hi. The competitive ratio of an online algorithm is then defined as the
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worst case ratio of maxv `H(v)/OPT over all possible demand sequences where H is

the final output of the algorithm.

2.2 Online Degree-Bounded Steiner Forest

Consider an arbitrary online step where a new demand (s, t) arrived. Let H

denote the online output of the previous step. In order to augment H for connecting

s and t, one can shortcut through the connected components of H. We say an edge

e = (u, v) is an extension edge w.r.t. H, if u and v are not connected in H. Let

P denote an (s, t)-path in G. The extension part P ∗ of P is defined as the set of

extension edges of P . Observe that augmenting H with P ∗ satisfies the demand

(s, t). For a vertex v, we define `+
H(v) = `H(v) + 2/bv to be the uptick load of v.

We slightly abuse the notation by defining `+
H(P ∗) = maxv∈V (P ∗) `

+
H(v) as the uptick

load of P ∗, where V (P ∗) is the set of endpoints of edges in P ∗.

The greedy algorithm (GA) starts with an empty subset H. Upon arrival of

the i-th demand (si, ti), we find a path Pi with smallest uptick load `+
H(P ∗i ) where

P ∗i is the extension part of Pi. We break ties in favor of the path with a smaller

number of edges. Note that the path Pi can be found efficiently using Dijkstra-like

algorithms. We define τi = `+
H(P ∗i ) to be the arrival threshold of the i-th demand.

We satisfy the new demand by adding P ∗i to the edge set of H (see Algorithm 1).
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Algorithm 1 Online Degree-Bounded Steiner Forest

Input: A graph G, and an online stream of demands (s1, t1), (s2, t2), . . ..

Output: A set H of edges such that every given demand (si, ti) is connected via

H.

Offline Process:

1: Initialize H = ∅.

Online Scheme; assuming a demand (si, ti) is arrived:

1: Compute Pi, a (si, ti)-path with the smallest uptick load `+
H(P ∗i ) in its extension

part.

• Shortcut the connected components of H by replacing the edges of a com-

ponent with that of a clique.

• In the resulting graph, define the distance of a vertex v from si as the

minimum uptick load of a (si, v)-path.

• Find Pi by evoking a Dijkstra-like algorithm according to this notion of

distance.

2: Set H = H ∪ P ∗i .

2.2.1 Analysis

We now use a dual-fitting approach to show that GA has an asymptotically

tight competitive ratio of O(log(n)). In the following we use GA to also refer to

the final output of our greedy algorithm. We first show several structural properties
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of GA. We then use these combinatorial properties to construct a family of feasible

dual vectors for D. We finally show that there always exists a member of this family

with an objective value of at least a 1/O(log(n)) fraction of the maximum load of

a vertex in GA. This in turn proves the desired competitive ratio by using weak

duality.

For a real value r ≥ 0, let Γ(r) denote the set of vertices with `+
GA(v) ≥ r. Let

D(r) denote the indices of demands i for which the arrival threshold τi is at least

r. For a subgraph X, let CC(X) denote the collection of connected components

of X. For ease of notation, we may use the name of a subgraph to denote the set

of vertices of that subgraph as well. Furthermore, for a graph X and a subgraph

Y ⊆ X, let X \Y denote the graph obtained from X by removing the vertices of Y .

Recall that S is the collection of subsets that separate the endpoints of at

least one demand. The following lemma, intuitively speaking, implies that Γ(r)

well-separates the endpoints of D(r).

Lemma 2.1. For any threshold r > 0, we have |CC(G \ Γ(r)) ∩ S| ≥ |D(r)|+ 1.

Proof. For a vertex v ∈ G \Γ(r) we use CC(v) to denote its connected component.

Observe that, since the endpoints of demands are nodes with infinite degree bound,

the endpoints are not contained in Γ(r), and, hence, are in G \ Γ(r).

We construct a graph F that has one node for every connected component in

G \ Γ(r) that contains an endpoint of a demand in D(r). Edges in F are defined

as follows. For every demand i ∈ D(r) between si and ti, we add an edge that

connects the components CC(si) and CC(ti). In the following we argue that F does
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not contain cycles. This gives the lemma since in a forest |D(r)| + 1 = |EF | + 1 ≤

|VF | ≤ |CC(G \ Γ(r)) ∩ S|.

Assume for contradiction that the sequence (ei0 , . . . , eik−1
), k ≥ 2 forms a

(minimal) cycle in F , where eij corresponds to the demand between vertices sij and

tij (see Figure 2.1). Assume wlog. that eik−1
is the edge of the cycle for which the

corresponding demand appears last, i.e., ik−1 ≥ ij for every j < k. Let H denote

the online solution at the time of arrival of the demand ik−1. We can augment H

to connect each tij to sij+1 mod k
, 0 ≤ j ≤ k − 1 without using any node from Γ(r),

since these nodes are in the same component in G \ Γ(r). But then we have a path

P between sik−1
and tik−1

and the extension part P ∗ does not contain any vertex

from Γ(r). This is a contradiction since the arrival threshold for the demand ik−1 is

at least r. 2

Lemma 2.1 shows that cutting Γ(r) highly disconnects the demands in D(r).

Indeed this implies a bound on the toughness of the graph. Toughness, first defined

by Chvátal [11] and later generalized by Agrawal et al. [17], is a measure of how easy

it is to disconnect a graph into many components by removing a few vertices. More

formally, the toughness of a graph is defined as minX⊆V
|X|

|CC(G\X)| . For the spanning

tree variant of the problem, it is not hard to see that OPT is at least the reciprocal

of toughness. Although it is more involved, we can still establish a similar relation

for the non-uniform Steiner forest problem (see Lemma 2.3). However, first we need

to show a lower bound on the number of demands separated by Γ(r).

We establish a lower bound for |D(r)| with respect to the load of vertices in
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Γ(r). For any r, b > 0 we define Γb(r) := {`+
GA(v) ≥ r ∧ bv ≥ b}, as the set of nodes

with degree bound at least b that have uptick load at least r in the final online

solution. We further define

excess(r, b) =
∑

v∈Γb(r)

(
degGA(v)− drbve+ 2

)
,

which sums the (absolute) load that nodes in Γb(r) receive after their uptick load

became r or larger. The following lemma relates |D(r)| to excess(r, b).

Lemma 2.2. For any r, b > 0, excess(r, b) ≤ 2|D(r)|+ 3|Γb(v)|.

Proof. Consider some online step i. Let H denote the output of the previous

step. Let P ∗i be the extension part of the path selected by GA and let V (P ∗i )

denote the endpoints of edges of P ∗i . Since in GA we break ties in favor of the

path with the smaller number of edges, we can assume that the path does not go

through a connected component of H more than once, i.e., for every C ∈ CC(H),

|V (P ∗i ) ∩ C| ≤ 2.

Consider the variable quantity δ(r, b) :=
∑

v:`+H(v)≥r∧bv≥b(degH(v)− drbve+ 2)

throughout the steps of GA where H denotes the output of the algorithm at every

step. Intuitively, at each step δ(r, b) denotes the total increment in degrees of those

vertices in Γb(r) that already reached uptick load r. In particular, at the end of the

run of GA, δ(r, b) = excess(r, b).

Now suppose at step i adding the edges P ∗i to H increases δ(r, b) by qi. There

are two reasons for such an increase. On the one hand, if the demand i is from D(r)

it may simply increase degH(v) for some node with uptick load at least r. On the

other hand also if the demand is not from D(r) it may cause a node to increase its
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uptick load to r in which case it could contribute to the above sum with at most 1

(in a step the degree may increase by 2; the first increase by 1 could get the uptick

load to ≥ r and the second increase contributes to the sum).

Clearly increases of the second type can accumulate to at most |Γb(r)|. In

order to derive a bound on the first type of increases recall that we assume that

endpoints of demands are distinct vertices with degree one and thus si and ti are

outside any connected component of H. Since V (P ∗i ) contains at most two vertices

of a connected component of H, we can assert that the path selected by GA is

passing through at least qi/2 components of H that contain some vertices of Γb(r).

Hence, after adding P ∗i to the solution, the number of connected components of the

solution that contain some vertices of Γb(r) decreases by at least (qi−2)/2. However,

throughout all the steps, the total amount of such decrements cannot be more than

the number of vertices in Γb(r). Therefore

excess(r, b) =
∑
i∈D(r)

qi +
∑
i/∈D(r)

qi

= 2|D(r)|+
∑
i∈D(r)

(qi − 2) + |Γb(r)|

≤ 2|D(r)|+ 3|Γb(r)| ,

and the lemma follows. 2

Let ∆ > 0 denote the minimum degree bound of a vertex with non-zero degree

in an optimal solution. Note that this definition implies that OPT ≥ 1/∆. Indeed,

replacing ∆ with one in the following would make the arguments slightly simpler.

However, by doing so we incur an additive log(n) term in the final result which can
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be arbitrary far from OPT. Therefore it is necessary to employ ∆ in the analysis.

For a set of vertices Γ, let b(Γ) =
∑

v∈Γ bv. We now describe the main dual-fitting

argument for bounding the maximum load in GA.

Lemma 2.3. For any r > 0, |D(r)|/b(Γ∆(r)) ≤ OPT.

Proof. Let G∆ denote the graph obtained from G by removing vertices with degree

bound below ∆. Similarly, let S∆ denote the collection of sets that separate a

demand in G∆. Consider a slightly modified dual program D∆ defined on G∆ and

S∆, i.e., we obtain D∆ from the original dual program by removing all vertices with

degree bound below ∆. We note that the objective value of a dual feasible solution

for D∆ is still a lower bound for OPT. In the remainder of the proof, we may refer

to D∆ as the dual program. Recall that in a dual solution, we need to define a dual

value y(S) for every cut S ∈ S∆ such that for every edge e = (u, v) the total value

for cuts containing e does not exceed z(u) + z(v). On the other hand,
∑

v z(v)bv

cannot be more than one.

For a real value r > 0, we construct a dual vector (yr, zr) as follows. For

every v ∈ Γ∆(r), set zr(v) = 1/b(Γ∆(r)); for other vertices set zr(v) = 0. For every

component S ∈ CC(G∆ \ Γ∆(r)) ∩ S∆, set yr(S) = 1/b(Γ∆(r)); for all other sets

set yr(S) = 0. We prove the lemma by showing the feasibility of the dual vector

(yr, zr) for D∆.

Consider an arbitrary component C ∈ CC(G\Γ(r)). By definition, C separates

at least one demand. Let i be such a demand and let ti ∈ C denote an endpoint of it.

Removing vertices with degree bound below 1/∆ from C may break C into multiple
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smaller components. However, an endpoint of a demand has degree bound infinity,

and, hence, the component that contains ti belongs to S∆. Therefore |CC(G\Γ(r))∩

S| ≤ |CC(G∆\Γ∆(r))∩S∆|; which by Lemma 2.1 leads to |CC(G∆\Γ∆(r))∩S∆| ≥

|D(r)|+ 1. Therefore the dual objective for (yr, zr) is at least

∑
S∈S∆

yr(S) =
∑

S∈CC(G∆\Γ∆(r))∩S∆

1

b(Γ∆(r))
≥ |D(r)|+ 1

b(Γ∆(r))

Thus we only need to show that (yr, zr) is feasible for Program D∆. First, by

construction we have

∑
v

zr(v)bv =
∑

v∈Γ∆(r)

1

b(Γ∆(r))
· bv = 1 .

Now consider an arbitrary edge e = (u, v). If e does not cross any of the compo-

nents in CC(G∆ \ Γ∆(r)), then
∑

S:e∈δ(S) yr(S) = 0 and we are done. Otherwise,∑
S:e∈δ(S) yr(S) = 1/b(Γ∆(r)). However, exactly one endpoint of e is in Γ∆(r). Thus

zr(u) + zr(v) = 1/b(Γ∆(r)), which implies that the dual vector is feasible. 2

We now have all the ingredients to prove the main theorem.

Proof of Theorem 2.1: Let GA denote the final output of the greedy algo-

rithm. Let h denote the maximum load of a vertex in GA, i.e., h = maxv `GA(v).

Furthermore, let h∆ = maxv:bv≥∆ `GA(v). In the following we first show that

h∆ ≤ O(log n) ·OPT. For this we use the folowing claim.

Claim 2.1. There exists an r > 0 such that excess(r,∆) ≥ h∆−1/∆
4 log2 n+6

· b(Γ∆(r)) −

|Γ∆(r)|.

Proof. Recall that Γ∆(r) is the set of vertices with uptick load at least r in GA

and degree bound at least ∆. The function b(Γ∆(r)) is non-increasing with r since
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for every r1 < r2, Γ∆(r2) ⊆ Γ∆(r1). For r = 1/∆, b(Γ∆(r)) ≤ n(n + 1)∆ as a node

with degree bound bv > (n + 1)∆ will have uptick load at most (n + 1)/bv < 1/∆,

and, hence, will not be in Γ∆(r). Also, r < h∆ implies b(Γ∆(r)) ≥ ∆ as there exists

a node with load h∆ in Γ∆(r) and this node has degree bound at least ∆.

We now partition the range of r (from 1/∆ to h∆) into logarithmically many

intervals. We define the q-th interval by

U(q) ={
r | 1/∆ ≤ r < h∆ ∧ 2q/∆ ≤ b(Γ∆(r)) < 2q+1/∆

}
,

for q ∈ {0, . . . , dlog2((n + 1)n)e}. We further set r(q) = maxU(q) and r(q) =

minU(q), and call r(q) − r(q) the length of the q-th interval. Since there are only

2 log2 n + 3 possible choices for q there must exist an interval of length at least

(h∆ − 1/∆)/(2 log2 n+ 3).

Consider a node v that is contained in Γ∆(r) and, hence, also in Γ∆(r). This

node starts contributing to excess(r,∆), once its uptick load reached r and con-

tributes at least until its uptick load reaches r. Hence, the total contribution is at

least deg(r) − deg(r), where deg(r) and deg(r) denotes the degree of node v when

reaching uptick load r and r, respectively. We have

deg(r)− deg(r) = (drbve − 2)− (drbve − 2) ≥ (r − r)bv − 1.
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Summing this over all nodes in Γ∆(r) gives

excess(r,∆) ≥ (r − r) · b(Γ∆(r))− |Γ∆(r)|

≥ 1

2
(r − r) · b(Γ∆(r))− |Γ∆(r)|

≥ h∆ − 1/∆

4 log2 n+ 6
· b(Γ∆(r))− |Γ∆(r)| ,

where the second inequality uses the fact that |Γ∆(r)| ≤ |Γ∆(r)| ≤ |Γ∆(r)|/2. 2

Claim 2.2. h∆ ≤ (24 log2 n+ 37)OPT.

Proof. If we use the r from the previous claim and solve for h∆ we obtain

h∆ ≤ (4 log2 n+ 6) · excess(r,∆) + Γ∆(r)

b(Γ∆(r))
+

1

∆

≤ (4 log2 n+ 6) · 2D(r) + 4Γ∆(r)

b(Γ∆(r))
+

1

∆

Lemma 2.2

≤ (4 log2 n+ 6) ·
(

2OPT + 4
1

∆

)
+

1

∆

Lemma 2.3 and b(Γ∆(r)) ≥ ∆|Γ∆(r)|

≤ (24 log2 n+ 37) ·OPT

OPT ≥ 1/∆ .

2

We now bound the maximum load h in terms of the restricted maximum load

h∆. Consider a vertex v∗ with maximum load `GA(v∗) = h. If bv∗ ≥ ∆ then h∆ = h

and we are done. Otherwise consider the last iteration i in which the degree of v∗ is

increased in the solution. Let H denote the output of the algorithm at the end of

the previous iteration i− 1. The degree of v∗ in the online solution is increased by

at most two at iteration i. Hence h ≤ `+
H(v∗) ≤ τi.
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Recall that in our greedy algorithm, τi is the minimum uptick load of a path

that satisfies the new demand. Let P denote a path that connects si and ti in an

optimal solution. Recall that by the definition, bv ≥ ∆ for every vertex v of P . For

every vertex v in P we have

τi ≤ `+
H(v) ≤ h∆ +

2

bv
`H(v) ≤ `GA(v) ≤ h∆

≤ h∆ +
2

∆
bv ≥ ∆

≤ h∆ + 2OPT OPT ≥ 1/∆

≤ O(log n) ·OPT by the above claim

Therefore leading to h ≤ O(log n) ·OPT. 2

2.3 An Asymptotically Tight Lower Bound

In the following we show a lower bound for

online degree-bounded Steiner tree. Consider a graph G = (X ] Z,E),

with |Z| = 2` and |X| =
(

2`

2

)
. For every pair {z1, z2} of nodes from Z there exists

an edge {z1, z2} ∈ E and a node x ∈ X that is connected to z1 and z2. An arbitrary

node from Z acts as root for the Steiner tree problem.

For a node z ∈ Z, an algorithm A, and a request sequence σ (consisting of

nodes from X) we use degA,σ(z) to denote the number of neighbors of z among all

nodes from X in the Steiner tree obtained when running algorithm A on request

sequence σ. Similarly, we use deg′A,σ(z) to denote the number of those neighbors of

z that also appear in σ. Note that deg(·) and deg′(·) ignore edges between nodes
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from Z as an algorithm (online or offline) can simply connect all nodes in Z in a

cycle which increases the degree of any node by only 2.

Lemma 2.4. Fix a possibly randomized online algorithm A. For any subset S ⊆ Z,

|S| = 2s, 0 ≤ s ≤ ` there exists a request sequence σS consisting of terminals from

X s.t.

• for a node x ∈ σS both its neighbors in G are from set S;

• there exists a node z∗ ∈ S with E
[
deg′A,σ(z∗)

]
≥ s/2;

• there exists an offline algorithm OFF for servicing requests in σ with

maxz∈S{degOFF,σ(z)} ≤ 1, and degOFF,σ(z) = 0 for z ∈ (Z \ S) ∪ {z∗}.

Proof. We prove the lemma by induction over s. The base case s = 0 holds

trivially when choosing the empty request sequence. For the induction step consider

an arbitrary subset S ⊆ Z with |S| = 2s+1. Partition S into two disjoint subsets S1

and S2 of cardinality 2s each.

Let σ1 be the request sequence that exists due to induction hypothesis for set

S1. Hence, there is a node z∗1 ∈ S1 with E
[
deg′A,σ1

(z∗1)
]
≥ s/2. Now, let Ã behave

like algorithm A after it already received a request sequence σ1 (hence, it starts with

all edges that are chosen when running A on σ1; note, however, that deg′
Ã,σ2

(·) only

takes into account edges incident to nodes from σ2). Due to induction hypothesis for

Ã and set S2 there exists a request sequence σ2 such that E
[
deg′

Ã,σ2
(z∗2)

]
≥ s/2 for

a node z∗2 ∈ S2. Hence, the request sequence σ = σ1 ◦σ2 fulfills E
[
deg′A,σ(z∗1)

]
≥ s/2

and E
[
deg′A,σ(z∗2)

]
≥ s/2.
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We extend the request sequence by appending the node x that is connected to

z∗1 and z∗2 in G. After serving the request one of the edges {x, z1} or {x, z2} must be

chosen with probability at least 1/2 by A. Hence, afterwards either E
[
deg′A,σ(z∗1)

]
or E [deg′ δA,σ(z∗2)] must be at least (s+ 1)/2.

It remains to argue that there exists a good offline algorithm. Combining the

offline algorithms OFF1 and OFF2 for σ1 and σ2 gives an offline algorithm for σ1◦σ2

that has maxz{degOFF,σ1◦σ2
(z)} ≤ 1 and degOFF,σ1◦σ2

(z)} = 0 for z /∈ S1 ∪ S2 and

for z ∈ {z∗1 , z∗2}. Now, when the node x connected to z∗1 and z∗2 is appended to the

request sequence the offline algorithm can serve the request by either buying edge

{x, z1} or {x, z2}, and can therefore gurantee that z∗ (z1 or z2) has degree 0. 2

Proof of Theorem 2.2: Choosing s = log n in the above lemma gives our lower

bound. 2

.  .  .

𝑠𝑖𝑘−1𝑡𝑖𝑘−1

𝑠𝑖0

𝑡𝑖𝑘−2

𝑠𝑖1

𝑡𝑖0
𝑠𝑖𝑘−2

𝑡𝑖𝑘−3

𝑒0

𝑒1 𝑒𝑘−3

𝑒𝑘−2

𝑒𝑘−1

Figure 2.1: Existence of a cycle implies that of a path with low uptick load in its

extension part.
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2.4 Lower Bounds for Other Degree-Bounded Steiner Connectivity

Problems

In this section we consider strong lower bounds for the general form of two

variants of degree-bounded network design problems.

2.4.1 Online Degree-Bounded Group Steiner Tree

In this section, presenting an adversary scenario, we show there is no de-

terministic algorithm for online degree-bounded group Steiner tree with

competitive ratio o(n) even if G is a star graph.

Proof of Theorem 2.4: For any integer n > 1, we provide a graph instance G

of size n and an online scenario, in which no deterministic algorithm can obtain a

competitive ratio better than n− 1. Let G be a star with n− 1 leaves v2 to vn, and

v1 be the internal node. For an algorithm A, we describe the adversary scenario as

follows.

Let v1 be the root. Let the first demand group be the set of all leaves. When-

ever A connects a node vi to v1 in H, adversary removes the selected nodes vi from

the next demand groups, until all leaves are connected to v1 in H. In particular let

C denote the set of all nodes connected to v1 in H so far. Let the demand group be

the set of all leaves in {v2, v3, . . . , vn} \C. We do this until {v2, v3, . . . , vn} \C = ∅,

which means every leaf is connected to v1 in H. G is a star, thus a leaf vi is con-

nected to v1 in H iff H includes the edge between vi and v1. Thus after all demands
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A has added all edges in G to H. Hence deg(v1) = n− 1.

Now consider the optimal offline algorithm. Let gi denote the i-th demand

group. Assume we have k demand groups. By construction of the demand groups

gk ⊂ gk−1 ⊂ . . . ⊂ g1. Thus there is a single node that exists in all group demands.

Hence the optimal offline algorithms only needs to connect that node to the root

in H. Therefore, the degree of each node is at most 1 and the competitive ratio is

n− 1. 2
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Chapter 3: Online Weighted Degree-Bounded Steiner Network De-

sign

3.1 Introduction

Degree-bounded network design problems comprise an important family of net-

work design problems since the eighties. Aside from various real-world applications

such as vehicle routing and communication networks [55–57], the family of degree-

bounded problems has been a testbed for developing new ideas and techniques. The

problem of degree-bounded spanning tree, introduced in Garey and Johnson’s Black

Book of NP-Completeness [15], was first investigated in the pioneering work of Fürer

and Raghavachari [16]. In this problem, we are required to find a spanning tree of a

given graph with the goal of minimizing the maximum degree of the vertices in the

tree. Let b∗ denote the maximum degree in the optimal spanning tree. Fürer and

Raghavachari give a parallel approximation algorithm which produces a spanning

tree of degree at most O(log(n)b∗). This result was later generalized by Agrawal,

Klein, and Ravi [17] to the case of degree-bounded Steiner tree (DB-ST) and de-

gree bounded Steiner forest (DB-SF) problem. In DB-ST, given a set of terminal

vertices, we need to find a subgraph of minimum maximum degree that connects
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the terminals. In the more generalized DB-SF problem, we are given pairs of ter-

minals and the output subgraph should contain a path connecting each pair. Fürer

and Raghavachari [19] significantly improved the result for DB-SF by presenting

an algorithm which produces a Steiner forest with maximum degree at most b∗ + 1.

The study of DB-ST and DB-SF was the starting point of a very popular

line of work on various degree-bounded network design problems; e.g. [20, 22–25]

and more recently [25,58]. One particular variant that has been extensively studied

was initiated by Marathe et al. [20]: In the edge-weighted degree-bounded spanning

tree problem, given a weight function over the edges and a degree bound b, the goal

is to find a minimum-weight spanning tree with maximum degree at most b. The

initial results for the problem generated much interest in obtaining approximation

algorithms for the edge-weighted degree-bounded spanning tree problem [59–68].

The groundbreaking results obtained by Goemans [21] and Singh and Lau [26] settle

the problem by giving an algorithm that computes a minimum-weight spanning tree

with degree at most b + 1. Singh and Lau [23] generalize their result for the edge-

weighted Steiner tree (EW-DB-ST) and edge-weighted Steiner forest (EW-DB-SF)

variants. They design an algorithm that finds a Steiner forest with cost at most twice

the cost of the optimal solution while violating the degree constraints by at most

three.

Despite these achievements in the offline setting, it was not known whether

degree-bounded problems are tractable in the online setting. The online counter-

parts of the aforementioned Steiner problems can be defined as follows. The under-

lying graph and degree bounds are known in advance. The demands arrive one by
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one in an online manner. At the arrival of a demand, we need to augment the solu-

tion subgraph such that the new demand is satisfied. The goal is to be competitive

against an offline optimum that knows the demands in advance.

Recently, Dehghani et al. [69] explore the tractability of the Online DB-SF

problem by showing that a natural greedy algorithm produces a solution in which the

degree bounds are violated by at most a factor of O(log n), which is asymptotically

tight. They analyze their algorithm using a dual fitting approach based on the

combinatorial structures of the graph such as the toughness1 factor. Unfortunately,

they can also show that greedy methods are not competitive for the edge-weighted

variant of the problem. Hence, it seems unlikely that the approach of [69] can be

generalized to EW-DB-SF.

The online edge-weighted Steiner connectivity problems (with no bound on the

degrees) have been extensively studied in the last decades. Imase and Waxman [34]

use a dual-fitting argument to show that the greedy algorithm has a competitive

ratio of O(log n), which is also asymptotically tight. Later the result was generalized

to the EW SF variant by Awerbuch et al. [35] and Berman and Coulston [36]. In

the past few years, various primal-dual techniques have been developed to solve the

more general node-weighted variants [37,38,52], prize-collecting variants [39,40], and

multicommodity buy-at-bulk [70]. These results are obtained by developing various

primal-dual techniques [38, 52] while generalizing the application of combinatorial

properties to the online setting [37,40,70]. In this study however, we develop a primal

1The toughness of a graph is defined as minX⊆V
|X|

|CC(G\X)| ; where for a graph H, CC(H)

denotes the collection of connected components of H.
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approach for solving bounded-frequency mixed packing/covering integer programs.

We believe this framework would be proven useful in attacking other online packing

and covering problems.

3.1.1 Our Results and Techniques

In this study, we consider the online Steiner tree and Steiner forest problems

at the presence of both edge weights and degree bounds. In the Online EW-DB-SF

problem, we are given a graph G = (V,E) with n vertices, edge-weight function w,

degree bound bv for every v ∈ V , and an online sequence of connectivity demands

(si, ti). Let wopt denote the minimum weight subgraph which satisfies the degree

bounds and connects all demands. Let ρ = maxe w(e)
mine:w(e)>0 w(e)

.

Theorem 3.1. There exists an online deterministic algorithm which finds a sub-

graph with total weight at most O(log3 n)wopt while the degree bound of a vertex is

violated by at most a factor of O(log3(n) log(nρ)).

If one favors the degree bounds over total weight, one can find a subgraph with

degree-bound violation O(log3(n) log(nρ))
log log(nρ)

) and total cost O(log3(n) log(nρ))
log log(nρ)

)wopt.

We note that the logarithmic dependency on ρ is indeed necessary. It follows

from the result of [69] that the competitive ratio of any algorithm is either Ω(n) or

Ω(log ρ).

Our technical contribution for solving the EW-DB-SF problem is twofold.

First by exploiting a structural result and massaging the optimal solution, we show

a formulation of the problem that falls in the restricted family of bounded-frequency
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mixed packing/cover IPs, while losing only logarithmic factors in the competitive

ratio. We then design a generic online algorithm with a logarithmic competitive

ratio that can solve any instance of the bounded-frequency packing/covering IPs.

In what follows, we describe our results in detail.

3.1.1.1 Massaging the optimal solution

Initiated by work of Alon et al. [52] on online set cover, Buchbinder and Naor

developed a strong framework for solving packing/covering LPs fractionally online.

For the applications of their general framework in solving numerous online problems,

we refer the reader to the survey in [53]. Azar et al. [54] generalize this method for

the fractional mixed packing and covering LPs. The natural linear program relax-

ation for EW-DB-SF, commonly used in the literature, is a special case of mixed

packing/covering LPs: one needs to select an edge from every cut that separates the

endpoints of a demand (covering constraints), while for a vertex we cannot choose

more than a specific number of its adjacent edges (packing constraints). Indeed, one

can use the result of Azar et al. [54] to find an online fractional solution with poly-

logarithmic competitive ratio. However, doing the rounding in an online manner

seems very hard.

Offline techniques for solving degree-bounded problems often fall in the cate-

gory of iterative and dependent rounding methods. Unfortunately, these methods

are inherently difficult to adapt for an online settings since the underlying fractional

solution may change dramatically in between the rounding steps. Indeed, this might
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be the very reason that despite many advances in the online network design paradigm

in the past two decades, the natural family of degree-bounded problems has remained

widely open. In this study, we circumvent this by reducing EW-DB-ST to a novel

formulation beyond the scope of standard online packing/covering techniques and

solving it using a new online integral approach.

The crux of our IP formulation is the following structural property: Let (si, ti)

denote the ith demand. We need to augment the solution Qi−1 of previous steps

by buying a subgraph that makes si and ti connected. Let Gi denote the graph

obtained by contracting the pairs of vertices sj and tj for every j < i. Note that

any (si − ti)-path in Gi corresponds to a feasible augmentation for Qi−1. Some

edges in Gi might be already in Qi−1 and therefore by using them again we can

save both on the total weight and the vertex degrees. However, in Section 3.2 we

prove that there always exists a path in Gi such that even without sharing on any of

the edges in Gi and therefore paying completely for the increase in the weight and

degrees, we can approximate the optimal solution up to a logarithmic factor. This in

fact, enables us to have a formulation in which the covering constraints for different

demands are disentangled. Indeed, we only have one covering constraint for each

demand. Unfortunately, this implies that we have exponentially many variables,

one for each possible path in Gi. This may look hopeless since the competitive

factors obtained by standard fractional packing/covering methods introduced by

Buchbinder and Naor [53] and Azar et al. [54], depend on the logarithm of the

number of variables. Therefore we come up with a new approach for solving this

class of mixed packing/covering integer programs (IP).
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3.1.1.2 Bounded-frequency mixed packing/covering IPs

We derive our result for EW-DB-ST by demonstrating a new technique for

solving mixed packing/covering integer programs. We believe this approach could be

applicable to a broader range of online problems. The integer program IP1 describes

a general mixed packing/covering IP with the set of integer variables x ∈ Zn≥0 and α.

The packing constraints are described by a m×n non-negative matrix P . Similarly,

the q × n matrix C describes the covering constraints. The covering frequency of a

variable xi is defined as the number of covering constraints in which xi has a positive

coefficient. The covering frequency of a mixed packing/covering program is defined

as the maximum covering frequency of its variables.

minimize α , (IP1)

s.t. Px ≤ α .

Cx ≥ 1 .

x ∈ Z≥0, α ∈ R>0 .

In the online variant of mixed packing and covering IP, we are given the packing

constraints in advance. However the covering constraints arrive in an online manner.

At the arrival of each covering constraint, we should increase the solution x such

that it satisfies the new covering constraint. We provide a deterministic algorithm

for solving online mixed packing/covering IPs.

Theorem 3.2. Given an instance of the online mixed packing/covering IP, there
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exists a deterministic integral algorithm with competitive ratio O(k logm), where m

is the number of packing constraints and k is the covering frequency of the IP.

We note that the competitive ratio of our algorithm is independent of the

number of variables or the number of covering constraints. Indeed, there can be

exponentially many variables.

Our result can be thought of as a generalization of the work of Aspnes et al. [71]

on virtual circuit routing. Although not explicit, their result can be massaged to

solve mixed packing/covering IPs in which all the coefficients are zero or one, and the

covering frequency is one. They show that such IPs admit a O(log(m))-competitive

algorithms. Theorem 3.2 generalizes their result to the case with arbitrary non-

negative coefficients and any bounded covering frequency.

We complement our result by proving a matching lower bound for the com-

petitive ratio of any randomized algorithm. This lower bound holds even if the

algorithm is allowed to return fractional solutions.

Theorem 3.3. Any randomized online algorithm A for integral mixed packing and

covering is Ω(k logm)-competitive, where m denotes the number of packing con-

straints, and k denotes the covering frequency of the IP. This even holds if A is

allowed to return a fractional solution.

As mentioned before, Azar et al. [54] provide a fractional algorithm for mixed

packing/covering LPs with competitive ratio of O(logm log d) where d is the max-

imum number of variables in a single constraint. They show an almost matching

lower bound for deterministic algorithms. We distinguish two advantages of our
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approach compared to that of Azar et al :

• The algorithm in [54] outputs a fractional competitive solution which then

needs to be rounded online. For various problems such as Steiner connec-

tivity problems, rounding a solution online is very challenging, even if offline

rounding techniques are known. Moreover, the situation becomes hopeless if

the integrality gap is unbounded. However, for bounded-frequency IPs, our

algorithm directly produces an integral competitive solution. Thus it does

not depend on rounding methods, and is applicable to problems with large

integrality gap, or the problems for which it is shown that rounding methods

do not preserve any approximation guarantee, and as such, the traditional

approach fails.

• Azar et al. find the best competitive ratio with respect to the number of

packing constraints and the size of constraints. Although these parameters

are shown to be bounded in several problems, in many problems such as con-

nectivity problems and flow problems, formulations with exponentially many

variables are very natural. Our techniques provide an alternative solution with

a tight competitive ratio, for formulations with bounded covering frequency.

3.1.2 Preliminaries

Let G = (V,E) be an undirected graph of size n (|V | = n). Let w : E →

Z>0 be a function denoting the edge weights. For a subgraph H ⊆ G, we define

w(H) :=
∑

e∈E(H) w(e). For every vertex v ∈ V , let bv ∈ Z>0 denote the degree
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bound of v. Let degH(v) denote the degree of vertex v in subgraph H. We define

the load lH(v) of vertex v w.r.t. H as degH(v)/bv. In DB-SF we are given graph G,

degree bounds, and k connectivity demands. Let σi denote the i-th demand. The

i-th demand is a pair of vertices σi = (si, ti), where si, ti ∈ V . In DB-SF the goal is

to find a subgraph H ⊆ G such that for each demand σi, si is connected to ti in H,

for every vertex v ∈ V , lH(v) ≤ 1, and w(H) is minimized. In this study without

loss of generality we assume the demand endpoints are distinct vertices with degree

one in G and degree bound infinity.

In the online variant of the problem, we are given graph G and degree bounds

in advance. However the sequence of demands are given one by one. At arrival of

demand σi, we are asked to provide a subgraph Hi, such that Hi−1 ⊆ Hi and si is

connected to ti in Hi.

The following integer program is a natural mixed packing and covering integer

program for EW-DB-SF. Let S denote the collection of subsets of vertices that

separate the endpoints of at least one demand. For a set of vertices S, let δ(S)

denote the set of edges with exactly one endpoint in S. In SF IP, for an edge e,

xe = 1 indicates that we include e in the solution while xe = 0 indicates otherwise.

The variable α indicates an upper bound on the violation of the load of every vertex

and an upper bound on the violation of the weight. The first set of constraints

ensures that the load of a vertex is upper bounded by α. The second constraint

ensures that the violation for the weight is upper bounded by α. The third set of

constraints ensures that the endpoints of every demand are connected. Here we

assume wopt is known to the algorithm, although this can be waived by standard
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doubling techniques.

minimize α . (SF IP)

∀v ∈ V 1

bv

∑
e∈δ({v})

xe ≤ α . (3.1)

1

wopt

∑
e∈E

w(e)xe ≤ α . (3.2)

∀S ⊆ S
∑
e∈δ(S)

xe ≥ 1 . (3.3)

xe ∈ {0, 1}, α ∈ Z>0 .

3.1.3 Overview

We begin Section 3.2 by providing a bounded frequency IP for EW-DB-SF.

The IP is not a proper formulation of the problem, however, we can show that one

can map feasible solutions of EW-DB-SF to feasible solutions of the IP without

increasing the cost too much. In Section 3.3 we provide a deterministic algorithm

for online bounded frequency mixed packing/covering IPs. Finally, in Section 3.4

we merge our techniques to obtain online polylogarithmic-competitive algorithms

for EW-DB-SF.

3.2 Finding the Right Integer Program

In this section we design an online mixed packing and covering integer pro-

gram for EW-DB-SF. We show this formulation is near optimal, i.e. any

f−approximation for this formulation, implies an O(f log2 n)-approximation for

EW-DB-SF. In Section 3.4 we show there exists an online algorithm that finds
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an O(log n)-approximation solution for this IP and violates degree bounds by

O(log3 n logwopt), where wopt denotes the optimal weight.

First we define some notations. For a sequence of demands σ =

〈(s1, t1), . . . , (sk, tk)〉, we define Rσ(i) to be a set of i edges, connecting the end-

points of the first i demands. In particular Rσ(i) :=
⋃i
j=1 e(sj, tj), where e(sj, tj)

denotes a direct edge from sj to tj. Moreover, we say subgraph Hi satisfies the con-

nectivity of demand σi = (si, ti), if si and ti are connected in graph Hi ∪Rσ(i− 1).

Let Hi denote the set of all subgraphs that satisfy the connectivity of demand σi. In

PC IP variable α denotes the violation in the packing constraints. Furthermore for

every subgraph H ⊆ G and demand σi, there exists a variable xiH ∈ {0, 1}. xiH = 1

indicates we add the edges of H to the existing solution, at arrival of demand σi.

The first set of constraints ensure the degree-bounds are not violated more than α.

The second constraint ensures the weight is not violated by more than α. The third

set of constraints ensure the endpoints of every demand are connected.
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minimize α . (PC IP)

∀v ∈ V 1

bv

k∑
i=1

∑
H⊆G

degH(v)xiH ≤ α . (3.4)

1

wopt

k∑
i=1

∑
H⊆G

w(H)xiH ≤ α . (3.5)

∀σi
∑
H∈Hi

xiH ≥ 1 . (3.6)

∀H ⊆ G, 1 ≤ i ≤ k xiH ∈ {0, 1} .

α > 0 .

We are considering the online variant of the mixed packing and covering pro-

gram. We are given the packing Constraints (3.4) and (3.5) in advance. At arrival

of demand σi, the corresponding covering Constraint (3.6) is added to the program.

We are looking for an online solution which is feasible at every online stage. More-

over the variables xH should be monotonic, i.e. once an algorithm sets xH = 1 for

some H, the value of xH is 1 during the rest of the algorithm. Figure (3.1) illus-

trates an example which indicates the difference between the solutions of PC IP and

SF IP.

Let popt and lopt denote the optimal solutions for PC IP and SF IP, respec-

tively. Lemma 3.1 shows that given an online solution for PC IP we can provide a

feasible online solution for SF IP of cost popt.

Lemma 3.1. Given a feasible solution {x, α} for PC IP, there exists a feasible

solution {x′, α} for SF IP.

46



v1

v2 v4

t2: v6t1: v5

s1:

s2: v3

Figure 3.1: An example where every vertex has degree-bound 3 and every edge has

weight 1. The first demand is (v2, v5) and the second demand is (v3, v6). The optimal

solution for SF IP is a subgraph, say H, with the set of all edges and vertices, i.e.

H = G. However an optimal solution for PC IP is: Two subgraphs H1 for the first

request which has edges {e(v1, v2), e(v1, v4), e(v4, v5)} and H2 for the second request

which has edges {e(v2, v3), e(v4, v5), e(v4, v6)}. Note that w(H) = 5 and w(H1) +

w(H2) = 6, since we have edge e(v4, v5) in both H1 and H2. Moreover the number of

edges incident with v4 in the solution of PC IP is 4, i.e. degH1
(v4) + degH2

(v4) = 4.

In the rest of this section, we show that we do not lose much by changing

SF IP to PC IP. In particular we show popt ≤ O(log2 n)lopt.

To this end, we first define the connective list of subgraphs for a graph G, a

forest F , and a list of demands σ. We then prove an existential lemma for such a

list of subgraphs with a desirable property for any 〈G,F, σ〉. With that in hand, we

prove popt ≤ O(log2 n)lopt. Given G, a list of demands σ = 〈(s1, t1), . . . , (sk, tk)〉,

and a forest F ⊆ G:

Definition 3.1. Let Q = 〈Q1, Q2, Q3, . . . , Qk〉 be a list of k subgraphs of F . We say

Q is a connective list of subgraphs for 〈G,F, σ〉 iff for every 1 ≤ i ≤ k there exists

no cut disjoint from Qi that separates si from ti, but does not separate any sj from

tj for j < i.
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The intuition behind the definition of connective subgraphs is the following: If

Q is a connective list of subgraphs for an instance 〈G,F, σ〉 then for every i we are

guaranteed that the union of all subgraphs ∪ij=1Qi connects si to ti. In Lemma 3.2

we show for every 〈G,F, σ〉, there exists a connective list of subgraphs for 〈G,F, σ〉,

such that each edge of F appears in at most O(log2 n) subgraphs of Q.

Lemma 3.2. Let G be a graph and F be a forest in G. If σ is a collection of

k demands 〈(s1, t1), . . . , (sk, tk)〉, then there exists a connective list of subgraphs

Q = 〈Q1, Q2, . . . , Qk〉 for 〈G,F, σ〉 such that every edge of F appears in at most

3 log2 |V (F )| number of Qi’s.

Proof.

Here we give a sketch of the proof of lemma; we refer the reader to the full

version for detailed proofs. We first prove a cost-minimization variant of the lemma.

Consider an arbitrary weight vector ŵ : F → R≥0. We argue that there is a

connective list Q, such that
∑

i ŵ(Qi) ≤ O(log2 n)ŵ(F ). Let Ĥi = (V, F ∪Rσ(i), ŵi)

denote a weighted graph for which ŵi(e) = ŵ(e) for e ∈ F , and ŵi(e) = 0 for

e ∈ Rσ(i). Now we note that there is no cost-sharing among Qi’s in the goal∑
i ŵ(Qi). Therefore the optimal choice for Qi corresponds to the minimum-weight

(si, ti)-path in Ĥi−1. Hence, we need to analyze the cost of these greedy choices.

Awerbuch et al. [35] showed that the greedy algorithm is indeed O(log2 n)-

competitive for the edge-weighted Steiner forest problem. The standard greedy

algorithm is slightly different from the greedy process we discussed above. In the

greedy algorithm of Awerbuch et al., at time step i we choose a minimum-cost (si, ti)-
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path in a graph in which there is a zero-cost edge between any pair of vertices in

the same connected component of the current solution; not just the (sj, tj) pairs of

the previous demands. However, in their analysis they only use the zero-cost edges

among the terminals of a previous demand. This is indeed not surprising since we

hardly have any control on the greedy choices other than the fact that they satisfy

the demands. Therefore the following claim follows from the result of Awebuch et

al.2:

Claim 3.1 (implicitly proven in Theorem 2.1 of [35]). For any weight function ŵ

defined over F , there exists a connective list Q for which

∑
i

ŵ(Qi) ≤ O(log2 n)ŵ(F )

.

However, Claim 3.1 is not enough for us. We need a solution in which every

edge is used at most O(log2 n) times, not just in an amortized sense. Indeed we can

show that since there is a solution for every weight function, we can have a fractional

connective list Q in which every edge is used (fractionally) at most O(log2 n) times.

This implies that we have a fractional connective list. Finally, we provide a rounding

argument which obtains an integral connective list by losing only a constant factor;

which completes the proof of lemma.

2

2There is also a lower bound of Ω(log n) for the competitive ratio of the greedy algorithm.

Closing the gap between this lower bound and the upper bound of O(log2 n) for EW Steiner forest

is an important open problem.
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Finally, we can leverage Lemma 3.2 to show popt ≤ O(log2 n)lopt. This shows

we can use PC IP as an online mixed packing/covering IP to obtain an online so-

lution for online edge-weighted degree-bounded Steiner forest losing a

factor of O(log2 n).

In Section 3.4 we show this formulation is an online bounded frequency mixed

packing/covering IP, thus we leverage our technique for such IPs to obtain a

polylogarithmic-competitive algorithm for online EW-DB-SF.

3.3 Online Bounded Frequency Mixed Packing/Covering IPs

In this section we consider bounded frequency online mixed packing and cover-

ing integer programs. For every online mixed packing and covering IP with covering

frequency k, we provide an online algorithm that violates each packing constraint by

at most a factor of O(k logm), where m is the number of packing constraints. We

note that this bound is independent of the number of variables, the number of cov-

ering constraints, and the coefficients of the mixed packing and covering program.

Moreover the algorithm is for integer programs, which implies obtaining an integer

solution does not rely on (online) rounding.

In particular we prove there exists an online O(k logm)-competitive algorithm

for any mixed packing and covering IP such that every variable has covering fre-

quency at most k, where the covering frequency of a variable xr is the number of

covering constraints with a non-zero coefficient for xr.

We assume that all variables are binary. One can see this is without loss of
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generality as long as we know every variable xr ∈ {1, 2, 3, . . . , 2l}. Since we can

replace xr by l variables y1
r , . . . , y

l
r denoting the digits of xr and adjust coefficients

accordingly. Furthermore, for now we assume that the optimal solution for the given

mixed packing and covering program is 1. In Theorem 3.4 we prove that we can

use a doubling technique to provide an O(k logm)-competitive solution for online

bounded frequency mixed packing and covering programs with any optimal solution.

The algorithm is as follows. We maintain a family of subsets S. Initially S = ∅.

Let S(j) denote S at arrival of Cj+1. For each covering constraint Cj+1, we find a

subset of variables Sj+1 and add Sj+1 to S. We find Sj+1 in the following way. For

each set of variables S, we define a cost function τS(S(j)) according to our current

S at arrival of Cj+1. We find a set Sj+1 that satisfies Cj+1 and minimizes τS(S(j)).

More precisely we say a set of variables S satisfies Cj+1 if

•
∑

xr∈S Cj+1,rxr ≥ 1, where Cj+1,r denotes the coefficient of Cj+1 for xr.

• For each packing constraint Pi,
∑

xr∈S
1
k
Pir ≤ 1.

Now we add Sj+1 to S and for every xr ∈ Sj+1, we set xr = 1. We note that

there always exists a set S that satisfies Cj+1, since we assume there exists an

optimal solution with value 1. Setting S to be the set of all variables with value

one in an optimal solution which have non-zero coefficient in Cj+1, satisfies Cj+1.

It only remains to define τS(S(j)). But before that we need to define ∆i(S) and

Fi(S(j)). For packing constraint Pi and subset of variables S, we define ∆i(S) as
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∆i(S) :=
∑

xr∈S
1
k
Pir. For packing constraint Pi and S(j), let

Fi(S(j)) :=
∑
S∈S(j)

∆i(S) . (3.7)

Now let τS(S(j)) =
∑m

i=1 ρ
Fi(S(j))+∆i(S) − ρFi(S(j)), where ρ > 1 is a constant to be

defined later.

Algorithm 2

Input: Packing constraints P , and an online stream of covering constraints

C1, C2, . . ..

Output: A feasible solution for online bounded frequency mixed packing/covering.

Offline Process:

1: Initialize S ← ∅.

Online Scheme; assuming a covering constraint Cj+1 is arrived:

1: Sj+1 ← arg minS{τS(S(j)) | S satisfies Cj+1}.

2: for all xr ∈ Sj+1 do

3: xr ← 1.

Let x∗ be an optimal solution, and x∗(j) denote its values at online stage j.

We define Gi(j) as

Gi(j) :=

j∑
l=1

∑
r:Clr>0

1

k
x∗rPir . (3.8)

Now we define a potential function Φj for online stage j.

Φj =
m∑
i=1

ρFi(S(j))(γ −Gi(j)) , (3.9)

where ρ, γ > 1 are constants to be defined later.

Lemma 3.3. There exist constants ρ and γ, such that Φj is non-increasing.
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Proof. We find ρ and γ such that Φj+1 − Φj ≤ 0. By the definition of Φj,

Φj+1 − Φj =
m∑
i=1

ρFi(S(j+1))(γ −Gi(j + 1))− ρFi(S(j))(γ −Gi(j)) . (3.10)

By Equation (3.7), ρFi(S(j+1)) − ρFi(S(j)) = ρFi(S(j))+∆i(S) − ρFi(S(j)). Moreover by

Equation (3.8), (γ −Gi(j + 1))− (γ −Gi(j)) = −
∑

r:Cj+1,r>0
1
k
x∗rPir. For simplicity

of notation we define Bi(j + 1) :=
∑

r:Cj+1,r>0
1
k
x∗rPir. Thus we can write Equation

(3.10) as:

Φj+1 − Φj =
m∑
i=1

ρFi(S(j+1))(γ −Gi(j)−Bi(j + 1))− ρFi(S(j))(γ −Gi(j)) (3.11)

=
m∑
i=1

(γ −Gi(j))(ρ
Fi(S(j))+∆i(S) − ρFi(S(j)))− ρFi(S(j+1))Bi(j + 1) Since Gi(j) ≥ 0

≤
m∑
i=1

γ(ρFi(S(j))+∆i(S) − ρFi(S(j)))− ρFi(S(j+1))Bi(j + 1) Fi(S(j + 1)) ≥ Fi(S(j))

≤
m∑
i=1

γ(ρFi(S(j))+∆i(S) − ρFi(S(j)))− ρFi(S(j))Bi(j + 1) .

Now according to the algorithm for each subset of variables S ′ such that∑
xr∈S′ Cj+1(xr) ≥ 1, either τS(S(j)) ≤ τS′(S(j)) or there exists a packing con-

straint Pi such that ∆i(S
′) > 1. In Bi(j + 1), we are considering variables xr such

that x∗e = 1, thus for every Pi, Bi(j + 1) ≤ 1. Therefore setting S ′ to be the set of

variables xr such that x∗r = 1 and Cj+1,r > 0, we have τS(S(j)) ≤ τS′(S(j)). Thus∑m
i=1 ρ

Fi(S(j))+∆i(S) − ρFi(S(j)) ≤
∑m

i=1 ρ
Fi(S(j))+Bi(j+1) − ρFi(S(j)). Therefore we can

rewrite Inequality (3.11) as

Φj+1 − Φj ≤
m∑
i=1

γ(ρFi(S(j))+Bi(j+1) − ρFi(S(j)))− ρFi(S(j))Bi(j + 1) (3.12)

=
m∑
i=1

ρFi(S(j))(γρBi(j+1) − γ −Bi(j + 1)) .
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We would like to find ρ and γ such that Φj is non-increasing. We find ρ and γ such

that for each packing constraint Pi, γρ
Bi(j+1) − γ −Bi(j + 1) ≤ 0. Thus

γρBi(j+1) − γ ≤ Bi(j + 1) Since 0 ≤ Bi(j + 1) ≤ 1 (3.13)

γρBi(j + 1)− γ ≤ Bi(j + 1) By simplifying (3.14)

ρ ≤ 1 + 1/γ . (3.15)

Thus if we set ρ ≤ 1 + 1/γ, Φj is non-increasing, as desired. 2

Now we prove Algorithm 2 obtains a solution of at most O(k logm).

Lemma 3.4. Given an online bounded frequency mixed packing covering IP with

optimal value 1, there exists a deterministic integral algorithm with competitive ratio

O(k logm), where m is the number of packing constraints and k is the covering

frequency of the IP.

Proof. By Lemma 3.3 for each stage j, Φj+1 ≤ Φj. Therefore Φj ≤ Φ0 = γm.

Thus for each packing constraint Pi,

ρFi(S(j))(γ −Gi(j)) ≤ γm . (3.16)

Thus,

ρFi(S(j)) ≤ γm

(γ −Gi(j))
≤ γm

γ − 1
. Since Gi(j) ≤ 1 (3.17)

Thus we can conclude

Fi(S(j)) ∈ O(logm) . (3.18)

By definition of Fi(S(j)), Fi(S(j)) =
∑

S∈S(j) ∆i(S) =
∑

S∈S(j)

∑
xr∈S

1
k
Pir. Since

each variable xr is present in at most k sets, 1
k
Pi · x(j) ≤ Fi(S(j)) . Thus by

Inequality (3.18) Pix(j) ∈ O(k logm), which completes the proof. 2
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Finally we prove there exists an online O(k logm)-competitive algorithm for

bounded frequency online mixed packing and covering integer programs with any

optimal value.

Theorem 3.4. Given an instance of the online mixed packing/covering IP, there

exists a deterministic integral algorithm with competitive ratio O(k logm), where m

is the number of packing constraints and k is the covering frequency of the IP.

3.4 Putting Everything Together

In this section we consider the online mixed pack-

ing/covering formulation discussed in Section 3.2 for

online edge-weighted degree-bounded Steiner forest PC IP.

In this section we show this formulation is an online bounded fre-

quency mixed packing/covering IP. Therefore we our techniques dis-

cussed in Section 3.3 to obtain a polylogarithmic-competitive algorithm for

online edge-weighted degree-bounded Steiner forest.

First we assume we are given the optimal weight wopt as well as degree bounds.

We can obtain the following theorem.

Theorem 3.5. Given the optimal weight wopt, there exists an online deterministic

algorithm which finds a subgraph with total weight at most O(log3 n)wopt while the

degree bound of a vertex is violated by at most a factor of O(log3 n).

Proof. By Lemma 3.1, given a feasible online solution for PC IP with violation

α, we can provide an online solution for SF IP with violation α. Moreover, in
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Section 3.2 we show that popt ≤ O(log2 n)lopt. Thus given an online solution for

PC IP with competitive ratio f , there exists an O(f log n)-competitive algorithm

for online degree-bounded Steiner forest. We note that in PC IP we know

the packing constraints in advance. In addition every variable xiH has non-zero

coefficient only in the covering constraint corresponding to connectivity of the i-th

demand endpoints, i.e. the covering frequency of every variable is 1. Therefore by

Theorem 3.4 there exists an online O(logm)-competitive solution for PC IP, where

m is the number of packing constraints, which is n+ 1. Thus there exists an online

O(log3 n)-competitive algorithm for online degree-bounded Steiner forest.

This means the violation for both degree bounds and weight is of O(log3 n). 2
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Chapter 4: Online Survivable Network Design

4.1 Introduction

In an instance of the network design problem, we are given a graph G = (V,E),

an edge-cost function c : E → R≥0, and a connectivity criteria. The goal is to find a

minimum-cost subgraph H of G that satisfies the connectivity requirements. An im-

portant family of this class is the survivable network design problem (SNDP): Given

non-negative integers ruv for each pair u, v ∈ V , the solution subgraph H should

contain ruv edge-disjoint paths for each pair u and v. SNDP arises in fault tolerance

management and thus is of much interest in design community: the connectivity of

nodes u and v in H is resilient to even (ruv − 1) edge failures. This problem clearly

generalizes the Steiner tree1 and Steiner forest2 problems.

For a non-empty cut S ⊂ V , let δ(S) denote the set of edges with exactly one

endpoint in S. SNDP falls in the general class of network design problems that can

be characterized by proper cut functions. A function f : 2V → Z≥0 defined over cuts

in the graph is proper, if it is symmetric (f(S) = f(V \ S) for all S ⊂ V ) and it

1In the Steiner tree problem, given a set of terminal nodes T ⊂ V , the goal is to find a

minimum-cost subgraph connecting all terminals.
2In the Steiner forest problem, given a set of pairs of vertices si, ti ∈ V , the goal is to find a

minimum-cost subgraph in which every pair is connected.
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satisfies maximality (f(S ∪ T ) ≤ max{f(S), f(T )} for all S ∩ T = φ). For SNDP,

one can choose f(S) = maxu∈S,v /∈S ruv for every cut S. Given a proper function f

over cuts in the graph, the goal is to find a minimum-cost subgraph H such that

|E(H) ∩ δ(S)| ≥ f(S) ∀non-empty S ⊂ V .

Over the past decades, the offline SNDP and proper cut functions have been

extensively studied especially as an important testbed for primal-dual and iterative

rounding methods (see e.g. [72–77]). In this study, we consider SNDP in the online

setting: we are given a graph G = (V,E) and an edge-cost function c in advance. We

receive an online sequence of demands in the form of tuples (u, v, ruv) ∈ V ×V ×Z≥0.

We start with the empty subgraph H. Upon the arrival of a demand (u, v, ruv), we

need to immediately augment H such that there exist at least ruv edge-disjoint paths

between u and v in H. The goal is to minimize the cost of H. The competitive ratio

of an algorithm is defined as the maximum ratio of the cost of its output and that

of an optimal offline solution, over all possible input instances.

The online 1-connectivity problems, in which ruv ∈ {0, 1} for all pairs, have

been extensively studied in the last decades. Imase and Waxman [78] (SIAM’91)

were first to consider the edge-weighted Steiner tree problem. They used a dual-

fitting argument to show that the natural greedy algorithm is O(log n)-competitive

where n = |V |3. Their result is asymptotically tight. Later, Berman and Coul-

ston [79] (STOC’97) and Awerbuch, Azar, and Bartal [80] (TCS’04) demonstrated

3In fact, the competitive ratio is O(log min{n,D}) where D is the number of demand requests.

However, to simplify the comparison with results for SNDP, in this study we ignore the distinction

between this factor and O(log n).
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an O(log n)-competitive algorithm for the more general Steiner forest problem by

designing an elegant online primal-dual technique. The latter also shows that the

greedy algorithm achieves the competitive ratio of O(log2 n) for Steiner forest. In-

deed, due to the simplicity of greedy approaches, an important open problem is

to settle the competitiveness of the greedy algorithm for Steiner forest. In the re-

cent years, several primal-dual techniques are developed for solving node-weighted

variants [8, 81,82], and prize-collecting variants [83, 84] of 1-connectivity problems.

Gupta, Krishnaswamy, and Ravi [7] (SIAM’12) were first to consider the online

survivable network design problem. They demonstrate an elegant algorithm with

competitive ratio of Õ(k log3 n), where k = maxu,v ruv. The crux of their analysis

is to use distance-preserving tree-embeddings in an online setting. More precisely,

they first pick a random distance-preserving spanning subtree T ⊆ G. They satisfy

a connectivity demand ruv by iteratively increasing the connectivity of u and v. In

each iteration, they show that it is sufficient to use cycles that are formed by an

edge e = (a, b) /∈ T and the {a, b}-path in T ; hence, reducing the number of options

for satisfying a connectivity demand. This would enable them to use a set cover

approach to solve the problem in an online manner and achieve the first competitive

algorithm for online SNDP.

Single-source SNDP is a variant of SNDP where all demands share a same

endpoint. Naor, Panigrahi, and Singh [8] (FOCS’11) partially improve the results

of Gupta et al. [7] by demonstrating a bi-criteria competitive algorithm for single-

source SNDP using structural properties of a single-source optimal solution. A

bi-criteria competitive ratio of (α, β) for SNDP implies that the solution produced
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by the online algorithm achieves a connectivity of b ri
b
c for every demand σi and is at

most a factor of α more expensive than the optimal offline solution for connectivity of

ri. The algorithm by Naor et al. achieves the competitive ratio of O(k logn
ε
, 2+ ε) for

any ε > 0. They also study and give bi-criteria algorithms for the vertex-connectivity

problem.

The competitive ratio of algorithms by Gupta et al. and Naor et al. grows

linearly in k. This seems to be inherent to their methods since they may need

to solve a set-cover-like problem in each iteration of incrementing the connectivity

of a demand; hence, losing a polylogarithmic factor in each iteration. One would

need a new approach to break the linear dependency to k. Indeed, both factors of

O(log3 n) and O(k) are not plausible in practice, and an important open problem in

the online community [7,8] is whether the linear dependency to k can be reduced to

a logarithmic dependency. In this study we circumvent this problem by two main

approaches, first by considering the stochastic setting of the problem, and also by

allowing small congestion on the edges.

Allowing small congestion. Interestingly, we show that if the online al-

gorithm is allowed to buy three copies of an edge, then a simple greedy approach

is O(log2 n log k)-competitive. More precisely, we demonstrate a deterministic algo-

rithm with a bi-criteria competitive ratio of (O(log2 n log1+ε k), 2+ε) for any constant

ε > 0. For the single-rooted variant, the competitive ratio is (O(log n log1+ε k), 2+ε).

In our analysis of the greedy algorithm, our main technical contributions are two

folds: (i) establishing the connection between online SNDP and the celebrated

Steiner packing problem; and (ii) demonstrating the optimal packing ratio of 1/2
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for the relaxed fractional variant of Steiner packing problem; which is a decades old

open problem for the integral variant.

It is worth mentioning that one can think of our bi-criteria algorithm as a

solution to the online SNDP with congestion 2. Relaxing a hard-to-approximate

problem by allowing small congestion is quite natural and has been very fruitful

over the past decade. Perhaps the most important example of such line of research

is the edge-disjoint path problem with congestion [85–94], for which the work of

Chuzhoy and Li [9] (FOCS’12) gives a polylogarithmic approximation algorithm

with congestion 2.

Stochastic SNDP. For many online optimization problems it is natural and

fruitful to assume that at each online step the online query is drawn independently

from a known probability distribution. We call this model the i.i.d. model. This

model has been considered for many fundamental problems (see e.g. online stochas-

tic matching [95–100], k-server [101,102], set-cover, Steiner network design, facility

location [103], multi-commodity flow [104], among others). There are two impor-

tant generalizations of the i.i.d. model. The unknown distribution i.i.d. model,

where the queries are again drawn independently from the same probability distri-

bution, but the probability distribution is not known, and also the prophet setting.

In the prophet setting, instead of only one distribution for every online query, the

queries are independently drawn from different distributions, inspired by the classi-

cal prophet inequality problem. The prophet setting is also studied for many online

problems (see e.g. [105–108]). In this study we consider all three variants of the

stochastic SNDP and show that we can achieve significantly more efficient algo-
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rithms having a stochastic information about the input. We first provide an obliv-

ious constant competitive algorithm for the i.i.d. SNDP. Using a similar approach

to Garg et al. [103] we provide an O(log n)-competitive algorithm for the unknown

distribution i.i.d. SNDP. Then we provide a constant competitive algorithm for the

prophet SNDP, through a novel technique which leverages the oblivious algorithm

provided for the i.i.d. SNDP.

Interestingly we provide a general framework to obtain competitive algorithms

for online optimization problems in the prophet setting. Indeed it is an interesting

open problem that what is the relation between the i.i.d. setting and the prophet

setting? We show, by a simple but tricky technique that we can obtain a competitive

online algorithm in the prophet setting if we can design an oblivious competitive al-

gorithm for the problem in the i.i.d. setting. Using this technique we provide asymp-

totically tight competitive algorithms for fundamental online problems in prophet

setting, such as set cover and facility location.

4.1.1 Our Results and Techniques

Let σi = (ui, vi, ri) denote the i-th connectivity demand. Consider the fol-

lowing intuitive greedy approach. Upon the arrival of σi, we augment the solution

subgraph H, by finding the minimum-cost set of edges whose addition to H creates

ri edge-disjoint paths between ui and vi. Awerbuch et al. [80] (TCS’04) show that

if all the demands require 1-connectivity (i.e., ri = 1 for every i), this algorithm

achieves a competitive ratio of O(log2 n). This leads to a natural question that
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whether greedy works for higher connectivity problems as well. However, we show

an instance of online SND in Section 4.3, for which the greedy algorithm has a com-

petitive ratio of Ω(n). Indeed, the connectivity demands in the instance are either

zero or two, hence greedy is not competitive even for low connectivity demands.

In this study we interestingly show that greedy-like algorithms do surprisingly

well, if we consider the stochastic version of the problem, or if we allow a small

congestion on the edges. In the following we present our algorithms techniques in a

high-level perspective.

Allowing small congestion. We show that a greedy algorithm does sur-

prisingly well, if we relax the connectivity requirements by a constant factor. Let

α denote an arbitrary scale factor. We define an α-scaled variant of the greedy

algorithm in which the goal is to find only b ri
α
c disjoint paths between the endpoints

of σi. Our main result states that the scaled greedy algorithm is polylogarithmic

competitive.

Theorem 4.1. For any constant ε > 0, the (2 + ε)-scaled greedy algorithm is

(O(log2 n log1+ε k), 2 + ε)-competitive. For the single-source variant, the competi-

tive ratio is (O(log n log1+ε k), 2 + ε).

Furthermore, for uniform SNDP, 2-scaled greedy is (O(log2 n), 2)-competitive.

We start by demonstrating a deep connection between the greedy method

for SNDP and the Steiner packing problems. The Steiner packing problems are

motivated by vast applications in VLSI-layout and has been used as an algorithmic

toolkit in computer science. In the Steiner tree packing problem, we are given
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a graph G = (V,E) and a set S of vertices and the goal is to find the Steiner

decomposition number (SDN), the maximum number of edge-disjoint subgraphs that

each connects the vertices of S. We note that a minimal connecting subgraph is a

Steiner tree with respect to S. In the Steiner forest packing problem, we are given

a set of demand pairs ui, vi ∈ V and the goal is to find SDN, the maximum number

of edge-disjoint subgraphs that in each, the demand pairs are connected.

For simplicity, let us assume we have an uniform instance. Let opt denote the

optimal SNDP solution, with the Steiner decomposition number q. In Section 4.3,

we show that the (k
q
)-scaled greedy algorithm approximates opt up to logarithmic

factors. Intuitively, every forest in the Steiner forest decomposition, gives us a

path to satisfy a demand. Hence, we need to bound the overall cost of satisfying

demands in all the q forests. The crux of our analysis is then to charge the cost of the

scaled greedy to that of a parallel set of greedy algorithms that solve 1-connectivity

instances on every forest. Finally, to get a polylogarithmic competitive algorithm,

we need to find a universal lower bound on the SDN number q with respect to k.

It is shown that finding SDN is NP-hard and cannot be computed in poly-

nomial time unless P=NP [109] (Algorithmica’06). Given that there exist q dis-

joint Steiner forests connecting a set of demands, it is straight forward to show

the graph is q-connected on the demands. Therefore, a natural upper bound on

SDN is the minimum connectivity of the endpoints of demands. For the case of

spanning trees (Steiner tree with S = V (G)), it is proven that the above upper

bound also provides a good approximation guarantee for the problem. In other

words, any k-connected graph can be decomposed into k/2 edge-disjoint spanning
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trees [110] (JCT’03). This is also followed by a matching upper bound. The prob-

lem is much subtler when S does not encompass all vertices of the graph. The first

lower bound for the Steiner tree packing problem was achieved by Petingi and Ro-

driguez [111] (CON’03) who proved every S-k-connected4 has b(2/3)(|V (G)−|S|)k/2c

dijsoint Steiner trees. This was later improved by Kriesell [110] (JCT’03), Jain,

Mahdian, and Salavatipour [112] (SODA’03), Lua [113] (FOCS’04), and DeVos,

McDonald, and Pivotto [114] (Man’13), the most recent of which shows for every

S-(5k+ 4)-connected graph, we can find k edge-disjoint Steiner trees. However, the

main conjecture is that, similar to the case of spanning trees, every S-k-connected

graph admits a k/2-dijsoint Steiner tree decomposition [110]. In this study, we prove

this conjecture for the fractional variant of the problem.

For a set of demand pairs (ui, vi)’s, let T denote the set of Steiner forests that

satisfy all the demands. In the fractional Steiner forest packing problem, the output

is a fractional assignment x over T such that for every edge e,
∑

T∈T :e∈T xT is not

more than one. The goal is to find a fractional Steiner forest decomposition with

maximum ||x||. In Section 4.2, we prove the fractional variant of the conjecture of

Kriesell. We believe this result can be of independent interest in improving upon

other problems that rely on Steiner packing problems. We would like point out that

the fractional Steiner forest decomposition is also presented in [114].

Theorem 4.2. Given a set of demand pairs (ui, vi), if G is k-connected for every

demand pair, then the fractional Steiner decomposition number is at least k/2.

4A graph which is k-connected on a set of vertices S
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Indeed, in Section 4.3, we use a dependent rounding method to show that

the connection between SDN and the competitiveness of the greedy approach holds

even for the stronger fractional variant of SDN. Hence, Theorem 4.2 implies that

the 2-scaled greedy algorithm, achieves a polylogarithmic competitive ratio for the

uniform SNDP. Finally, in Section 4.4, we prove Theorem 4.9 by showing that the

scaled greedy is also competitive for the non-uniform variant, if one is willing to lose

an extra log k factor in the competitive ratio.

Stochastic SNDP. A single-source uniform instance of online SNDP is an

instance in which for every demand σi, ui = u, ri = k for some vertex u ∈ V and

integer k. For a non-uniform variant, let k = maxi ri. Let D be a given probability

distribution over V . In i.i.d. SNDP at each online step i, a random connectivity

demand σi = (u, vi, k) arrives, where vi is drawn independently at random from

distribution D. We call the problem unknown distribution SNDP if the probability

distribution D is not given in advance. Another interesting generalization of the

i.i.d. model, which we call the prophet SNDP is defined as follows. In prophet

SNDP, instead of only a single probability distribution D, we are given T probability

distributions D1, . . . , DT , such that the i-th demand is σi = (u, vi, k), where vi

is drawn independently at random from distribution Di. In all three variants of

the stochastic SNDP, the competitive-ratio is defined as the the expected cost of

an algorithm A over the expected cost of an optimal offline algorithm while the

distribution(s) is chosen by an adversary. More precisely let E[A(ω)] and E[opt(ω)]

denote the expected cost of an algorithm A and the expected cost of an optimal

offline algorithm for an online scenario ω, respectively. Thus the competitive-ratio
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of algorithm A is defined as follows.

cr(A) := max
D

Eω∼D[A(ω)]

Eω∼D[opt(ω)]
.

We first provide an oblivious algorithm for the i.i.d. SNDP. The algorithm has

two steps. First we realize a random scenario from distribution D. Then we compute

a 2-approximate solution for this random offline instance using Jain [75]. We buy

all the edges in the offline solution. Now considering the edges already selected, for

each vertex v we compute a minimum-cost k-flow to the root u. In the second step,

upon arrival of each demand, we buy the computed minimum-cost k-flow to satisfy

the k-connectivity to the root. While the algorithm is similar to the algorithm in

Garg et al. [103] for the 1-connectivity case, the analysis needs careful consideration

of the k-connected graphs. In fact, despite previous works on the online survivable

network design which do not take the structures of k-connected graphs into account,

we obtain a structural result about k-connected graphs. Then we leverage the

structural result to analyze our algorithm, and to prove that our algorithm is 4-

competitive. This is quite surprising, since it is dramatically improving the known

O(k log3 n)-competitive-ratio.

Theorem 4.3. There exist a 4-competitive algorithm for i.i.d. SNDP.

Afterwards, we show that a greedy algorithm is O(log n)-competitive if the

input is drawn from an even unknown distribution. This is very interesting since,

in the adversary setting where there is no stochastic information about the input,

we show that a greedy algorithm may be Ω(n)-competitive. Note that due to [103]

even the 1-connectivity version of this problem is Ω( logn
log logn

)-hard.
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Theorem 4.4. There exist an O(log n)-competitive algorithm for unknown distri-

bution SNDP.

Then we consider the prophet SNDP. In fact we provide a general framework to

obtain competitive algorithms for online optimization problems in prophet setting.

From oblivious i.i.d. to prophet. We show if there exists a competitive

oblivious algorithm for an online problem in i.i.d. setting, we can obtain a compet-

itive algorithm for the same problem in prophet setting.

Theorem 4.5. Given an oblivious α-competitive online algorithm for problem P in

the i.i.d. setting, there exists a α 2e
e−1

(1 + o(1))-competitive online algorithm for P

in prophet setting.

Roughly speaking, we show that we can combine different distributions in

the prophet setting to obtain a single distribution. Then using the i.i.d. oblivious

algorithm, we may not lose more than a constant factor in the competitive ratio.

Thus the following is a direct corollary of this technique.

Corollary 4.1. There exists a O(1)-competitive algorithm for prophet SNDP.

Using this framework, we can obtain competitive algorithms for many funda-

mental and classical problems in prophet setting. For example define D1, . . . , DT

be T probability distributions over the elements of a set cover instance. Now let

i-th demand of a set cover problem be an element randomly and independently

drawn from distribution Di. We call this problem the prophet set cover problem.

Similarly one may define prophet facility location the same as the classical facility
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location problem, with the difference that the i-th demand is randomly drawn from

a known distribution Di. Garg et al. [103] provide oblivious online algorithms for

i.i.d. facility location and i.i.d. vertex cover. Grandoni et al. [115] also provide

an oblivious online algorithm for i.i.d. set cover. Thus we can directly obtain the

following corollaries.

Corollary 4.2. There exists an O(1)-competitive algorithm for prophet vertex cover.

Corollary 4.3. There exists an O(1)-competitive algorithm for prophet facility lo-

cation.

Corollary 4.4. There exists an O(log n)-competitive algorithm for prophet set

cover.

4.1.2 Further Related Work

Over the past decades, SNDP and proper cut functions have been an im-

portant testbed for primal-dual and iterative rounding methods. Goemans and

Williamson [73] (SIAM’95) were first to consider the case of {0, 1}-proper func-

tions. They used a primal-dual method to obtain a 2-approximation algorithm

for the problem; which later on got generalized to the celebrated moat-growing

framework for solving connectivity problems. Klein and Ravi [76] (IPCO’93) con-

sidered the two-connectivity problem and the case of {0, 2}-proper functions. They

gave a primal-dual 3-approximation algorithm for the problem. Williamson, Goe-

mans, Mihail, and Vazirani [77] (Combinatorica’95) were first to consider general

proper functions. They too developed a primal-dual algorithm with approxima-
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tion ratio 2k, where k = maxS f(S). Subsequently, Goemans, Goldberg, Plotkin,

Shmoys, Tardos, and Williamson [72] (SODA’94) presented a primal-dual 2H(k)-

approximation algorithm, where H(k) is the kth harmonic number. Finally, in

his seminal work [75] (Combinatorica’01), Jain introduced the iterative rounding

method by developing a 2-approximation algorithm for network design problems

characterized by proper cut functions5. We refer the reader to [74] for a survey of

results for (offline) network design problems.

Prophet inequality has been first studied in 70s by Krengel and Sucheston

[116, 117]. Hajiaghayi, Kleinberg and Sandholm [118] study the relation between

online auctions and prophet inequality. In particular, they show that algorithms

used in derivation of prophet inequality can be reinterpreted as truthful mechanisms

for online auctions. In the prophet inequality setting, an onlooker is given an online

sequence of independent random variables X1, X2, . . . Xn, such that Xi is drawn

from known probability distribution Di. The onlooker has to choose at most one

variable from the succession of the values. The onlooker can choose a value only at

the time of arrival. The onlookers goal is to maximize her revenue. The onlooker’s

revenue is compared with the expected revenue of an optimal offline algorithm which

known all the realized random variables in advance, like a prophet. Many online

optimization problem have been studied under a prophet type of stochastic setting

(see e.g. [105–108]), i.e. at each online step the demand, or the input is drawn from

a specific known distribution.

5Indeed, the results in [72] and [75] applies to the more general class of weakly or skew super-

modular cut functions.
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In particular, the first generalization of the prophet inequality is the multiple-

choice prophet inequality [119–121]. In the multiple-choice prophet inequality we

are allowed to pick k values, and the goal is to maximize the total sum of picked

values. Alaei [122] gives an almost tight (1− 1√
k+3

)-approximation algorithm for the

k-choice prophet inequality (the lower bound is proved in Hajiaghayi, Kleinberg,

and Sandholm [118]). Prophet inequalities have been studied under complicated

combinatorial structures such as matroid, polymatroid, and matching.

Kleinberg and Weinberg [123] consider matroid prophet inequalities, in which

the set of selected values should be an independent set of a predefined matroid.

They give a tight 0.5-approximation worst order algorithm for this problem. Later,

Dütting and Kleinberg extended this result to polymatroids [124].

Alaei, Hajiaghayi and Liaghat study matching prophet inequalities [105–107].

They extend the multiple-choice prophet inequality and give an almost tight (1 −

1√
k+3

)-approximation worst order algorithm for any matching prophet inequality

instance, where k is the minimum capacity of a vertex.

Rubinstein considers the prophet inequalities restricted to an arbitrary

downward-closed set system [125]. He provides a O(log n log r)-approximation al-

gorithm for this problem, where n is the number of distributions and r is the size

of the larges feasible set. Babaioff, Immorlica and Kleinberg show a lower bound

of Ω( logn
log2(logn)

) for this problem [126]. Prophet inequalities has also been studied

restricted to independent set in graphs [127].
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4.2 Steiner Tree Packing

In this section we study a variant of the Steiner tree packing problem which we

call “the fractional Steiner tree packing problem” and show the conjecture of Kriesell

holds for this variant. We use this tool in Section 4.3 to analyze the behavior of

the greedy algorithm in survivable network design. An immediate corollary of this

theorem is a simple logarithmic approximation algorithm for the Steiner tree packing

problem.

4.2.1 Fractional Steiner Tree Packing

One way to formulate the Steiner tree packing problem is via an integer pro-

gram. Let TS(G) be the set of all Steiner trees of G on the vertices of S. By

definition, the Steiner tree packing problem is the solution of the following integer

program.

maximize:
∑

T∈TS(G)

xT

subject to:
∑
T3e

xT ≤ 1 ∀e ∈ E(G)

xT ∈ {0, 1} ∀T ∈ TS(G) (4.1)

In Program 4.1, for every Steiner tree T ∈ TS(G) we have a variable xT that is either

0 or 1. The goal is to maximize the number of trees T with xT = 1 while every

edge appears in no more than one of such trees. One way to relax this problem is
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by lifting the constraint of xT ∈ {0, 1} and instead assume 0 ≤ xT ≤ 1. This results

in the following linear program:

maximize:
∑

T∈TS(G)

xT (4.2)

subject to:
∑
T3e

xT ≤ 1 ∀e ∈ E(G)

0 ≤ xT ≤ 1 ∀T ∈ TS(G)

We call the optimal solution of LP 4.2 the fractional Steiner tree packing problem.

We show in Section 4.2.2 that for every graph G that is k-connected on a set S of

vertices, the answer of the fractional Steiner tree packing problem on set S is greater

than or equal to k/2.

4.2.2 Fractional Steiner Tree Packing of k-connected Graphs

In this section we show the conjecture of Kriesell for Steiner tree packing holds

when we relax the problem to the fractional case. More precisely, we show any graph

which is k-connected on a set S of vertices, has a fractional Steiner tree packing of

at least k/2. We begin the proof by an auxiliary lemma.

Lemma 4.1. Let R be a subspace of Rn that contains all points of Rn with non-

negative coordinates and P be a convex set of points in R. If for every point x̂ =

(x1, x2, . . . , xn) ∈ R there exists a point p̂ ∈ P such that

p̂.x̂ ≤ k
n∑
i=1

xi

then P contains a point r̂ such that maxni=1 ri ≤ k.
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Proof. We define P ′ as the set of all points in Rn whose all indices are greater than

or equal to the corresponding indices of a point in P . In other words

P ′ = {p̂ ∈ Rn|∃q̂ ∈ P such that pi ≥ qi for all 1 ≤ i ≤ n}.

We show in the rest that (k, k, . . . , k) ∈ P ′ which immediately implies the lemma.

To this end, suppose for the sake of contradiction that (k, k, . . . , k) /∈ P ′. Note that,

since P is a convex set, so is P ′. Therefore, there exists a hyperplane that separates

all points of P ′ from point (k, k, . . . , k). More precisely, there exist coefficients

h0, h1, . . . , hn such that
n∑
i=1

hipi > h0 (4.3)

for all points p̂ ∈ P ′ and
n∑
i=1

hik < h0. (4.4)

Due to the construction of P ′ we are guaranteed that all coefficients h1, h2, . . . , hn

are non-negative numbers since otherwise for any index i such that hi < 0 there

exists a point in P ′ whose i’th index is large enough to violate Inequality (4.3).

Now let x̂ = (h1, h2, . . . , hn). By Inequalities (4.3) and (4.4) we have

p̂.x̂ =
n∑
i=1

xipi =
n∑
i=1

hipi > h0 ≥ k

n∑
i=1

hi = k

n∑
i=1

xi

for every p̂ ∈ P ′ which means there is no p̂ ∈ P such that p̂.x̂ ≤ k
∑n

i=1 xi. This

contradicts the assumption of the lemma. 2

Now based on Lemma 5.2, we give a lower bound on the fractional Steiner tree

packing of any S-k-connected graph. Let G be a graph which is k connected on a

set S, and R be the set of all randomized algorithms that randomly select a Steiner
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tree of G. In other words, every element of R is an algorithm that can be specified

with a distribution of probabilities over the Steiner trees of G. We associate every

element of R to a point in a |E(G)| dimensional space in the following way:

f(A) = 〈x̂1, x̂2, . . . , x̂|E(G)|〉

where A is an algorithm and for every edge e ∈ E(G), x̂e is the probability that e

appears in a random tree of algorithm A. Now, let R =
⋃
A∈R f(A) be the set of

all points associated to the elements of R. Convexity of R is a direct consequence of

its definition; For every two algorithms A,B ∈ R, one can construct a randomized

procedure C that selects a random Steiner tree based on each of the procedures

with probability 1/2 and hence f(C) = (f(A) + f(B))/2. Thus, for every two

points x̂, ŷ ∈ R, (x̂+ ŷ)/2 is also in R. Moreover, all indices of the points in R are

non-negative. Next, we show the following important property of R.

Lemma 4.2. For any point ŷ ∈ R|E(G)| with non-negative indices, there exists a

point x̂ in R such that

x̂ · ŷ ≤
∑

2ŷi/k.

Proof. To prove this lemma, we assume every edge e of G has a weight equal to

ŷe. Moreover, let W =
∑

e∈E(G) we be the total sum of the weights of the edges. We

show the minimum Steiner tree of G on set S, has a weight of at most 2W/k. This

implies the lemma since the point associated to an algorithm that deterministically

selects the minimum Steiner tree of G, trivially satisfies the condition of the lemma.

Therefore, it only suffices to show that the minimum Steiner tree of G has a weight
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of at most 2w/k. To this end we write the LP relaxation of the Steiner tree problem

as follows:

minimize: xewe

subject to:
∑
e∈σ

xe ≥ 1 ∀ cut σthat separates the vertices of S

0 ≤ xe ≤ 1 ∀e ∈ E(G) (4.5)

One feasible solution to LP 4.5 can be achieved by setting xe = 1/k for all

edges of the graph. The reason such a solution is feasible is that every cut that

separates two vertices of S has at least k edges and therefore the summation of

xe’s for every separating cut is at least 1. Thus, the optimal solution of LP 4.5 is

bounded by W/k. It has been shown that the integrality gap of the Steiner tree

problem is less than 2 [1]. Therefore, the weight of the minimum Steiner tree of

graph G is at most 2W/k which concludes the lemma.

2

According to Lemmas 5.2 and 4.2, and the fact that R is convex, there exists

a point x̂ ∈ R such that x̂e ≤ 2/k for every edge e of the graph. Now, we construct

a solution to LP 4.2 in the following way: Let Ax̂ be a randomized algorithm which

is associated to x̂ (f(Ax̂) = x̂). For every T ∈ TS(G), we set xT = k/2Ax̂(T ), where

Ax̂(T ) is the probability that Ax̂ selects tree T . Since the probability that every

edge appears in a tree of Ax̂ is bounded by 2/k, then all constrains of LP 4.2 are

satisfied. Note that the objective function of LP 4.2 for solution x is equal to k/2

since we multiplied the probabilities by k/2.
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Theorem 4.6. The fractional Steiner tree packing problem for any graph which is

k-connected on a set S of vertices is at least k/2.

4.2.3 Steiner Forest Packing

In this section we generalize the Steiner tree packing problem and again, give

a lower bound for the fractional variant of this problem. Let G be a graph and S be

a sequence of vertex pairs (u1, v1), (u2, v2), . . . , (uk, vk). We call a subgraph of G a

Steiner forest for S, if it connects all of the pairs in S and is minimal (it contains no

cycles). Now, the Steiner forest packing problem is defined as follows: Given a graph

G and a sequence of vertex pairs S, what is the maximum number of edge-disjoint

Steiner forests in G with respect to set S? It is trivial to show that the Steiner forest

packing problem is a generalization of the Steiner tree packing problem and hence

this problem is also NP-hard. Similar to Section 4.2.1, we formulate the Steiner

forest problem as follows:

maximize:
∑

F∈FS(G)

xF

subject to:
∑
F3e

xF ≤ 1 ∀e ∈ E(G)

xF ∈ {0, 1} ∀F ∈ FS(G) (4.6)
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where FS(G) stands for the set of all Steiner forests of G with respect to S. Again,

we relax the integer constraints to obtain the following linear program:

maximize:
∑

F∈FS(G)

xF

subject to:
∑
F3e

xF ≤ 1 ∀e ∈ E(G)

0 ≤ xF ≤ 1 ∀F ∈ FS(G) (4.7)

We call the optimal solution of LP 4.7 “the fractional Steiner forest packing” prob-

lem. A similar analysis to what we present in Section 4.2.2 yields to Theorem 4.2.

4.3 Uniform SNDP

In this section we consider the uniform-connectivity version of the online sur-

vivable Steiner network design problem. The assumption of this version is that all

connectivity requirements are equal to a given number. For this problem we first

give a very simple algorithm and then analyze it using the tools introduced in the

previous section. The next section explains how we generalize our algorithm to make

it work for inputs with non-uniform connectivity requirements.

In the online uniform-connectivity survivable Steiner forest problem we are

given an offline graph G = 〈V (G), E(G)〉, an integer k, and an online stream of

demands S = (s1, t1), (s2, t2), . . .. Every time a demand (si, ti) arrives we have to

add some of the edges of G to our current solution H in order to make k edge-disjoint

paths between si and ti in H. The online uniform-connectivity survivable Steiner

tree problem is a special case of the forest problem in which the second endpoints
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of all demands are fixed at some vertex root. The objective of the problems is to

minimize the cost of the selected subgraph H according to a given cost function.

A simple approach to solve these problems is to choose edges based on the

following greedy method: for every demand add a minimum-cost subset of edges

that satisfies the k-connectivity between its endpoints. In this section we show that

this algorithm is not competitive to the optimum offline solution. This is shown by

Lemma 4.6 in which we give an instance graph and a series of demands for which

the greedy algorithm gives a solution of cost Ω(n) times the cost of the optimum

offline solution.

However, we show a modified version of the greedy algorithm can be a viable

approach for these problems if we lose some factor on the connectivity requirement.

This can be done by satisfying half of the required connectivity. In particular, for

every demand we add a minimum-cost subset of the edges that makes the cur-

rent solution (k/2)-connected between the endpoints of that demand. Let us call

this algorithm GA. In this section we show the cost of the edges GA selects is

poly-logarithmically competitive to that optimum offline solution which satisfies

k-connectivity for every demand.

Theorem 4.7. For the online survivable Steiner forest problem, the output of GA

satisfies (k/2)-connectivity for every demand and its cost is O(log2 n)-competitive.

Theorem 4.8. For the online survivable Steiner tree problem, the output of GA

satisfies (k/2)-connectivity for every demand and its cost is O(log n)-competitive.

As a direct consequence of adding edges according to GA, the (k/2)-
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Algorithm 3 2-scaled Greedy

Input: A graph G, an integer k, and an online stream of demands

(s1, t1), (s2, t2), . . ..

Output: A setH of edges such that every given demand (si, ti) is connected through

k edge-disjoint paths in H.

Offline Process:

1: Initialize H = ∅.

Online Scheme; assuming a demand (si, ti) is arrived:

1: Pi = A minimum-cost subset of edges, such that si is k/2-connected to ti in

H ∪ Pi.

2: Update H = H ∪ Pi.

connectivity is guaranteed for every demand. To complete the proof of the theorems,

we need to show that the cost of the solution produced by GA is upper bounded by

a factor of O(log2 n) for forests, and O(log n) for trees.

Let c : E(G) → R≥0 be the cost function on the edges. With some abuse of

notation, we also use c(Y ) for a subset of edges Y ⊆ E(G) as the sum of the cost of

the edges in Y . With this notation we can say at every step i GA chooses a subset

of edges Pi that satisfies (k/2)-connectivity and minimizes c(Pi).

The overall idea of the proofs is as follows. We take an optimum solution and

charge every c(Pi) to c(Li), where Li is a set of edges chosen from the optimum

solution. The way we define Li’s allows them to have overlapping edges, but we

show that their total cost is limited by the desired poly-logarithmic factor of the
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cost of the optimum solution. More specifically, we charge c(Li) to the cost of a

fractional routing Qi between si and ti. Every Qi is itself a linear combination

of routes on different Steiner forests of the optimum solution. The coefficients of

this linear combination are achieved from an Steiner forest packing of the optimum

solution. In this fashion, the problem boils down to finding an upper bound for

the total cost of routings on each Steiner forest. In the following we formally prove

every step in detail.

Let OPT be an optimum offline solution of the survivable Steiner forest prob-

lem on graph G, a stream of demands S, and the connectivity requirement k. Now

we define Li for every demand i as a minimum-cost set of edges in OPT that is

(k/2)-connected between si and ti assuming the endpoints of every previous de-

mand are contracted. In particular, we call a set of edges a pseudo-path between si

and ti if there is a path between these vertices using those edges and the edges in

{(sj, tj)|∀j < i}. A pseudo-routing between si and ti is hence a set of pseudo-paths

between si and ti. With these definitions, Li is a minimum-cost pseudo-routing

between si and ti in OPT that consists of k/2 pseudo-paths. The following lemma

shows the relation between the costs of Li and Pi.

Lemma 4.3. For every demand i, c(Pi) ≤ c(Li).

Proof. Every time a demand i arrives, GA finds a set Pi with the minimum cost and

adds it to H in order to satisfy (k/2)-connectivity between si and ti. Note that the

endpoints of every demand j < i are already connected with k/2 disjoint paths in H.

Besides, Li is a pseudo-routing between si and ti which is (k/2)-connected between si
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and ti if we contract the two endpoints of every previous demand. Therefore adding

Li to H makes H (k/2)-connected between si and ti. Since GA finds a minimum-

cost set of edges that satisfies (k/2)-connectivity in H, c(Pi) never exceeds c(Li).

2

In the remaining we show how to charge the total cost of Li’s to c(OPT ). As

a property of an optimum solution, OPT contains k edge-disjoint paths between

the endpoints of every demand (si, ti) ∈ S. Therefore, according to Theorem 4.2

there exists a solution for the fractional Steiner forest packing of OPT and demand

set S with value at least k/2. Let z be a Steiner forest packing of OPT with value

k/2. In the following we use FS(OPT ) to denote the collection of all Steiner forests

of OPT with respect to demand set S. The theorem states there exists a vector z

such that

∑
F∈FS(OPT )

zF = k/2 (4.8)

∑
F∈FS(OPT ):e∈F

zF ≤ 1 ∀e ∈ OPT . (4.9)

Moreover, the following inequality holds for the summation of the costs of

these forests.

Lemma 4.4.
∑

F∈FS(OPT ) zF .c(F ) ≤ c(OPT ) .
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Proof. For each forest we replace its cost with the sum of the cost of its edges.

∑
F∈FS(OPT )

zF .c(F ) =
∑

F∈FS(OPT )

zF
∑
e∈F

c(e)

=
∑

e∈OPT

∑
F∈FS(OPT ):e∈F

zF c(e)

=
∑

e∈OPT

c(e)

( ∑
F∈FS(OPT ):e∈F

zF

)
.

Now we use the fact that the load on every edge in the fractional Steiner forest

packing is no more than 1.

∑
F∈FS(OPT )

zF .c(F ) ≤
∑

e∈OPT

c(e) Inequality (4.9)

= c(OPT ) .

2

Now for every forest F ∈ FS(OPT ) and every demand i we define Qi(F ) as

a minimum-cost pseudo-path between si to ti in F . This definition allows using

an edge e ∈ F multiple times in Qi(F ) of different demands. Note that Qi(F )

can be considered as a fractional pseudo-routing between si and ti with value zF .

Considering this for all forests in FS(OPT ), we achieve a fractional pseudo-routing

between si and ti that has a value of k/2. We use Qi to refer to this fractional

pseudo-routing and c(Qi) =
∑

F∈FS(OPT ) zF .c(Qi(F )) to refer to its cost.

For every demand i we have mentioned two different pseudo-routings between

si and ti in OPT with value k/2: an integral pseudo-routing Li, and a fractional

pseudo-routing Qi. The following lemma shows the relation between the costs of

these two.
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Lemma 4.5. For every Li and Qi pseudo-paths defined as above, we have:

c(Li) ≤ c(Qi)

Proof. Let P be the family of all pseudo-paths that connects si to ti in OPT . Now

Consider the following LP :

minimize:
∑
p∈P

xpc(p)

subject to:
∑

p∈P:e∈p

xp ≤ 1 ∀e ∈ OPT

∑
p∈P

xp = k/2

0 ≤ xp ≤ 1 ∀p ∈ P (4.10)

A feasible solution to this LP is in fact a pseudo-routing between si and ti

in OPT with value k/2. Since every F ∈ FS(OPT ) is a subset of OPT , the set

of pseudo-paths between si and ti in F is a subset of P . As a result, every Qi(F )

is also a member of P and thus Qi corresponds to a feasible fractional solution to

LP 4.10 with an objective function equal to c(Qi). Similarly, Li is corresponding

to a feasible integral solution to this LP. Due to the definition, Li is an optimum

integral solution of this LP, meaning that c(Li) is the minimum among the objective

functions of all integral solutions. Note that this LP is essentially a minimum-cost

flow which has an integrality gap of 1. Therefore, c(Li) equals an optimum solution

of the LP, and thus does not exceed c(Qi). 2

Finally for a particular F ∈ FS(OPT ) we show an upper bound for the sum

of c(Qi(F )) over all demands. First let us take a closer look at every Qi(F ) on a
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𝑠1 𝑠2

𝑡1 𝑡2

(a) Graph G with unit cost

edges. Bold edges show an opti-

mum offline solution for demand set

{(s1, t1), (s2, t2)} and k = 4.

𝑠1 𝑠2

𝑡1 𝑡2

0.6
0.25
0.75
0.4

(b) A Steiner forest packing of OPT

in which four forests have non-zero

values in vector z.

𝑠1 𝑠2

𝑡1 𝑡20.4

0.4

0.25

0.25

(c) Bold edges show Q2, the frac-

tional pseudo-routing from s2 to

t2 achieved from pseudo-paths on

Steiner forests of OPT with respect

to vector z.

𝑠1 𝑠2

𝑡1 𝑡21

1

(d) Bold edges represent L2, a

minimum-cost integral pseudo-

routing from s2 to t2 in OPT which

consists of k/2 = 2 pseudo-paths.

Figure 4.1: An example to show the pseudo-routings Qi and Li in OPT which we

use to bound c(Pi).
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particular F . Every time a new demand (si, ti) arrives Qi(F ) connects its endpoints

through a pseudo-path in F . This can be generalized to an algorithm for the on-

line single-connectivity Steiner forest problem that greedily connects the endpoints

of every demand by fully buying a minimum-cost pseudo-path between si and ti.

This is very similar to the greedy algorithm proposed in [80]. Theorem 2.1 of that

paper states that their greedy algorithm is O(log2 n)-competitive. The statement

of that theorem is slightly different than Claim 4.1, but the same proof verifies the

correctness of the claim.

Claim 4.1. For the online Steiner forest problem, the algorithm that connects every

demand with a minimum-cost pseudo-path is O(log2 n)-competitive.

Now we are ready to wrap up the proof of Theorem 4.7.

Proof of Thorem 4.7: Let ALG denote the output of GA. The cost of ALG is

the sum of the cost of Pi’s over all demands. Therefore, by applying lemmas 4.3

and 4.5 we have

c(ALG) =
∑

(si,ti)∈S

c(Pi)

≤
∑

(si,ti)∈S

c(Li) Lemma 4.3

≤
∑

(si,ti)∈S

c(Qi) Lemma 4.5

Now we replace c(Qi) with the weighted sum of c(Qi(F ))’s with respect to z.

c(ALG) ≤
∑

(si,ti)∈S

∑
F∈FS(OPT )

zF .c(Qi(F ))

=
∑

F∈FS(OPT )

zF
∑

(si,ti)∈S

c(Qi(F )) (4.11)
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By applying Claim 4.1 to Inequality (4.11) we achieve an O(log2 n)-competitive ratio

for GA.

c(ALG) ≤
∑

F∈FS(OPT )

zF

(
O(log2 n)c(F )

)
Claim 4.1

≤ O(log2 n)
∑

F∈FS(OPT )

zF .c(F )

≤ O(log2 n)c(OPT ) . Lemma 4.4

2

Finally, for the survivable Steiner tree problem we show that GA is O(log n)-

competitive. In other words, if one endpoint of every demand is fixed at the root,

then the output of GA is at most O(log n) times the optimum offline solution. To

complete the proof of Theorem 4.8 we use a result from [8]. In that paper the

authors prove a competitive ratio of O(log n) for the algorithm which satisfies every

demand using a minimum-cost pseudo-path. The following claim is a restatement

of their result.

Claim 4.2. For the online Steiner tree problme, the algorithm that satisfies each

demand with a minimum-cost pseudo-path is O(log n)-competitive.

Proof of Theorem 4.8: Note that the tree problem is a special case of the forest

problem, hence Inequality (4.11) also holds for it. By applying Claim 4.2 to that
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inequality the proof is complete.

c(ALG) ≤
∑

F∈FS(OPT )

zF

(
O(log n)c(F )

)
Claim 4.2

≤ O(log n)
∑

F∈FS(OPT )

zF .c(F )

≤ O(log n)c(OPT ) . Lemma 4.4

2

The following Lemma shows that there exists a graph G and a sequence of

demands σ such that Greedy algorithm performs Ω(n) times worse than the optimal

solution.

Lemma 4.6. The competitive ratio of the greedy algorithm for survivable Steiner

network design is Ω(n), even if every connectivity requirement is exactly 2.

Proof. First we provide an online instance of the survivable network design problem

where every connectivity requirement is exactly 2 and show the greedy algorithm

performs poorly in comparison with the optimal solution. We construct a graph G

of size n as follows. For each 1 ≤ i ≤ n − 1, there exist two undirected edges from

node i to node i+ 1 of weights 1 and n− i− ε for some small ε > 0. There exist two

undirected edges from node n to node 1 with weights 1 and n − ε. Thus G is the

union of two cycles of size n. Figure (4.2) illustrates graph G. We construct a set

of demands S as follows. For each 1 ≤ i ≤ n − 1, let (i, i + 1) be the i’th demand

in S.

Now we analyze the output of the greedy algorithm for the input instance. We

claim that after satisfying demand i the greedy algorithm has selected both edges
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Figure 4.2: An example graph illustrating that the greedy algorithm has Ω(n)-

competitive ratio.

between j and j + 1 for every j ≤ i. We prove this claim by induction. For the

base case, when the first demand arrives the greedy algorithm chooses both edges

between nodes 1 and 2 which costs n − ε. Now assume the greedy algorithm has

selected every edge between j and j + 1 for every j < i before the arrival of the

i’th demand. When the i’th demand arrives, the set of edges with minimum cost

that provides two edge-disjoint paths from i to i+ 1 is the two edges between i and

i + 1 which costs n− i− ε. Thus the total cost of the greedy algorithm at the end

is n(n−1)
2
− εn. However, the optimum offline solution chooses the cycle containing

all edges of weight 1. Thus the competitive ratio of the greedy algorithm is Ω(n).

2
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4.4 Non-Uniform SNDP

In Section 4.3 we considered uniform online survivable network design, where

all connectivity requirements are the same, or in other words, for every σi =

〈si, ti, ri〉, ri equals some fixed integer k. Theorems 4.8 and 4.7 show a greedy algo-

rithm which satisfies k/2 edge connectivity of the demands, is O(log n)-competitive

for online survivable Steiner tree, and O(log2 n) competitive for online survivable

Steiner forest, respectively. Now we consider the non-uniform case where connectiv-

ity requirements are arbitrary numbers between 1 and some value k. In particular,

each demand σi = 〈si, ti, ri〉 indicates an ri edge-connectivity requirement between si

and ti. Theorem 4.9 shows one can use algorithms provided in Section 4.4 to obtain

an online competitive algorithm that satisfies ri
2+ε

connectivity of the demands.

Theorem 4.9. Given an α-competitive online algorithm A for online survivable

Steiner network design with equal connectivity demands, which partially satisfies

every demand of k connectivity with k
2

edge-disjoint paths, there exists an O( α log k
log(1+ε)

)-

competitive algorithm for online survivable Steiner network design that provides a

solution that partially satisfies every demand of ri connectivity with ri
2+ε

edge-disjoint

paths.

Proof. Let l be d log k
log(1+ε/2)

e + 1. Roughly speaking we define l subgraphs of G,

H1, . . . , Hl, such that Hj is supposed to maintain a d(1 + ε/2)j−1e-connected graph

on the subset of demand pairs with connectivity requirement (1 + ε/2)j−1 ≤ ri <

(1 + ε/2)j.
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We use l parallel and independent greedy algorithms A1, . . . ,Al, such that Hj

is the solution of Aj at every time. Let σi = 〈si, ti, ri〉 be the i-th demand. Assume

(1 + ε/2)j−1 ≤ ri < (1 + ε/2)j, then we use Aj for demand i. At arrival of σi, we

define another request σ′i as follows. Set σ′i = 〈si, ti, r′i〉, where r′i = d(1 + ε/2)j−1e.

Now we use Aj to satisfy demand σ′i. Let the solution of the algorithm S be the

union of the selected edges in H1, . . . , Hl.

First we prove S partially satisfies every demand of ri connectivity with ri
2+ε

edge-disjoint paths. Since Aj provides k/2 edge-disjoint paths for a connectivity

demand of k , if σ′i is assigned to Aj, Aj provides d(1+ε/2)j−1e
2

edge-disjoint paths

between si and ti. Moreover, since we assign σ′i to Aj only if (1 + ε/2)j−1 ≤ ri <

(1 + ε/2)j, ri
d(1+ε/2)j−1e ≤ (1 + ε/2). Thus d(1+ε/2)j−1e

2
≥ ri

2+ε
, hence there are at least

ri
2+ε

edge-disjoint paths between si and ti in Hj. Since Hj ⊆ S, there are at least

ri
2+ε

edge-disjoint paths between si and ti in S.

Let opt denote the cost of an optimal offline solution which maintains edge-

connectivity of ri for each demand i. Let cost(H) denote the total cost of edges

in graph H, where H is a subset of G. We prove cost(S) is no more than

O( α log k
log(1+ε/2)

) · opt. Let optj denote the cost of an optimal solution for maintaining

edge-connectivity of ri for each demand i such that (1 + ε/2)j−1 ≤ ri < (1 + ε/2)j.

Since the set of such demands is a subset of all demands optj ≤ opt. Aj is α-

competitive to optj, thus

cost(Hj) ≤ α · optj ≤ α · opt . (4.12)
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Since S =
⋃l
j=1Hj, cost(S) =

∑l
j=1 cost(Hj). Thus by Equation (4.12),

cost(S) ≤
l∑

j=1

α · optj ≤
l∑

j=1

α · opt .

Since l ≤ O( log k
log(1+ε/2)

),

cost(S) ≤ O(
α log k

log(1 + ε)
) · opt .

2

Using Theorems 4.8 and 4.7 for online survivable Steiner tree and forest in

Section 4.3 and Theorem 4.9, we can immediately imply the following corollaries.

Corollary 4.5. There exists an algorithm for the Survivable Steiner tree network

design problem that: (i) provides a solution that partially satisfies every demand of

ri connectivity with ri
2+ε

edge-disjoint paths, and (ii) is O( logn log k
log(1+ε)

)-competitive to an

optimal solution that maintains ri-connectivity for every demand.

Corollary 4.6. There exists an algorithm for the Survivable Steiner forest network

design problem that: (i) provides a solution that partially satisfies every demand of

ri connectivity with ri
2+ε

edge-disjoint paths, and (ii) is O( log2 n log k
log(1+ε)

)-competitive to

an optimal solution that maintains ri-connectivity for every demand.

4.5 From Oblivious I.I.D. to Prophet and Applications to Online

Problems

In this section we show how one can use an oblivious competitive algorithm

for an online optimization problem in the i.i.d. setting to obtain a competitive
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algorithm for that problem in the prophet setting. We first define and formulate

a general set of online problems. Note that for simplicity, we only consider cost

minimization problems, but one can similarly obtain the same statements for welfare

maximization problems as well.

Let P be an online problem. Let Q be a set of queries or demands. Let E be

a set of elements, such that each response of an algorithm to a demand σ ∈ Q is a

subset of E . At each online step i, an online algorithm is given a demand σi ∈ Q.

Then the algorithm needs to provide a response Ri ⊆ E that satisfies the given

demand. Finally let C : 2E → R denote a monotone and sub-additive cost function

that maps each subset of E to a real number denoting the cost. The overall cost of

an online algorithm that responds R1, . . . , RT to demands σ1, . . . , σT is computed

as C(
⋃T
i=1Ri). To clarify the notations, consider the online SNDP. Given a graph

G = (V,E), Q is the set of triples (u, v, r) such that u, v ∈ V and r is an integer

such that there exist at least r edge-disjoint paths from u to v in G. Let E be the set

of edges E. Now Ri ⊆ E is a feasible response to a given demand σi = (ui, vi, ri), if

adding Ri to the existing graph guarantees ri edge-disjoint paths from ui to vi. The

overall solution of an algorithm up to time T is R =
⋃T
i=1 Ri. The cost function is

defined as the total cost of edges in the solution, i.e. C(R) :=
∑

e∈R C(e), where C(e)

denotes the cost of a single edge e. Similarly one can formulate other fundamental

online optimization problems such as online set-cover, online facility location, etc.

in this way.

For an online problem in the i.i.d. setting we are given a probability distri-

bution D over Q. At each time i, a random demand σi is drawn randomly and
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independently from distribution D. Let PDiid denote problem P in the i.i.d. setting

given probability distribution D. For an online problem in the prophet setting we

are given T probability distributions over Q, D = 〈D1, . . . , DT 〉. At each time i,

a random demand σi is drawn randomly and independently from distribution Di.

Let PDpht denote problem P in the prophet setting given the sequence of probability

distributions D. Now given PDpht, we define a corresponding i.i.d. instance of the

problem as follows. Define D∗ to be the average of all distributions D1, . . . , DT ,

i.e. D∗ =
∑T

i=1
Di

n
. Let A be an oblivious α-competitive algorithm for PD∗iid . In the

following we show that A is 2e
e−1

(1 + o(1))α-competitive for PD∗iid .

First we need to define another problem WD
pht, which is the same as PDpht, but in

the beginning, with probability e−
T (1− 1

e )

8 we do not provide any demand at all, and

with the remaining probability we remove 1
2
(1 − 1

e
) fraction of the T distributions

uniformly at random, i.e. we do not provide any demands at those times.

Consider a subset of demands σ = σ1, . . . σ 1
2

(1− 1
e

) in WD
pht. We prove that the

probability that a super set of σ is an online scenario for PD∗iid is no less than the

probability that σ is an online scenario for WD
pht, or roughly speaking if one ignores

the order of the online demands, WD
pht is an easier problem than PD∗iid .

Lemma 4.7. For every subset of demands σ = σ1, . . . σ 1
2

(1− 1
e

), the probability the

online scenario for PD∗iid is a super set of σ is no less than the probability that the

online scenario for WD
pht is σ.

Proof. Without loss of generality we can assume the demands in D1, . . . , DT are

different. In other words each demand either arrive at a specific time, or never
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arrives. We can easily add dummy demands, if a demand can possibly arrive at two

or more different time steps. For drawing a random online scenario in PD∗iid , we define

an equivalent random process as follows. At each time, first we draw a distribution

from all T distributions uniformly at random, and then we draw a random demand

from that distribution. Now for every subset S of distributions of size 1
2
(1 − 1

e
)T

we show that the probability that S is drawn in WD
pht is less than or equal to the

probability that a super set of S is drawn in PD∗iid . Note that this shows that for

every subset of demands σ = σ1, . . . σ 1
2

(1− 1
e

), the probability that a super set of σ

is an online scenario for WD
pht is less than or equal to the probability that σ is an

online scenario for PD∗iid . Since if the set of distributions is fixed, we can use the same

random coin for drawing random demands from the same distributions in WD
pht and

PD∗iid .

Using a Chernoff bound we show that with probability e−
T (1− 1

e )

8 there are at

least 1
2
(1− 1

e
)T distinct distributions drawn by PD∗iid . Let Y be the number of distinct

distributions that are drawn. Let Xi be 1 if distribution i is drawn and 0 if not. We

have

E[Y ] =
T∑
i=1

E[Xi] =
T∑
i=1

P [Xi = 1] = T − (T − 1)T

T T−1
≥ T (1− 1

e
). (4.13)

Since Xi’s are negatively correlated we can use a Chernoff bound to bound the

probability that we have less than 1
2
T (1− 1

e
) distinct distributions in PD∗iid .

Pr[Y ≤ 1

2
T (1− 1

e
)] ≤ e−

T (1− 1
e )

8 . (4.14)

Since there is a symmetry across distributions in the random process, the probability

for every subset of distributions of size k to be drawn is the same. Thus for every
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subset of distributions S of size 1
2
(1− 1

e
)T the probability that S is drawn in WD

pht

is less than or equal to the probability that a super set of S is drawn in PD∗iid . 2

Let CD
W (A) and CD∗

iid (A) denote the expected cost of algorithm A for online

random scenarios drawn by WD
pht and PD∗iid , respectively. By Lemma 4.7, since A is

oblivious and indifferent to the order of the input,

CD
W (A) ≤ CD∗

iid (A). (4.15)

Recall that in WD
pht with probability e−

T (1− 1
e )

8 we do not provide any demand at all,

and with probability 1− e−
T (1− 1

e )

8 we remove 1
2
(1− 1

e
) fraction of the T distributions

uniformly at random. Moreover A is oblivious and the cost function is monotone

and subadditive. Thus

1− e−
T (1− 1

e )

8

1
2
(1− 1

e
)

CD
pht(A) ≤ CD

W (A), (4.16)

where CD
pht(A) is the expected cost of algorithm A for an online random scenario

drawn by PDpht.

Now we are ready to prove that one can use A to obtain a competitive algo-

rithm for PDpht. Let optDpht and optD
∗

iid denote the expected cost of an optimal offline

solution for a random online scenario drawn in PDpht and PD∗iid , respectively.

96



1−e−
T (1− 1

e )
8

1
2

(1− 1
e

)
CD
pht(A)

optDpht
≤

1−e−
T (1− 1

e )
8

1
2

(1− 1
e

)
CD
pht(A)

optD
∗

iid

Since optD
∗

iid ≤ optDpht

≤ CD
W (A)

optD
∗

iid

By Inequality (4.16)

≤ CD∗

iid (A)

optD
∗

iid

By Inequality (4.15)

≤ α. Since A is α-competitive

Thus
CD

pht(A)

optDpht
≤ 2e

e−1
(1 + o(1))α.

Theorem 4.10. Given an oblivious α-competitive online algorithm for an online

problem in the i.i.d. setting, there exists a 2e
e−1

(1 + o(1))α-competitive online algo-

rithm for the problem in the prophet setting, where the competitive ratio approaches

2e
e−1

α exponentially fast as the number of online steps T grows.

Interestingly, we can use Theorem 4.10 to obtain online competitive algorithms

for other fundamental problems in the prophet setting. Using the oblivious i.i.d.

algorithms in [103] for i.i.d. vertex cover and i.i.d. facility location, we may obtain

O(1)-competitive online algorithms for prophet vertex cover and prophet facility

location. Moreover using the oblivious i.i.d. algorithm for i.i.d. set cover in [115],

we can obtain O(log n)-competitive algorithm for the prophet set cover problem.

4.6 Stochastic Survivable Network Design

In this section we study the stochastic variant of survivable network de-

sign. Recall that in this model, the input consists of both offline and online

97



data. The offline input is given in advance to the algorithm and specifies a graph

G = 〈V (G), E(G)〉, a source node s, an integer k denoting the connectivity require-

ment, a distribution D of probabilities over the vertices of the graph, and an integer

l denoting the number of demands. Next, an online stream of demands t1, t2, . . . , tl

arrive one by one, upon every arrival of which we are required to update our solution

to make sure the newly arrived vertex is k-connected to the source node s. No prior

information about the demands is given in advance, however, we’re guaranteed that

the demands are randomly and independently drawn from the given distribution D.

In this section we show that a slight variation of the greedy algorithm performs

almost optimally in this setting. This improves upon the result of Garg et al. [103]

which is a constant bound for the case where the connectivity is equal to 1. This is

surprising since the proven bounds of the online algorithms for survivable network

design are much worse than that of single the connectivity [7]. From a high-level

perspective our method is similar to the greedy algorithm in Garg et al. [103], how-

ever, such a generalization requires a deep and innovative study of the k-connected

graphs. In Section 4.6.2 we present a structural lemma which basically simplifies

the analysis of our greedy algorithm.

Theorem 4.11. There exists an oblivious 4-approximation algorithm for the

stochastic survivable network design problem.

Moreover, we generalize the algorithm to the setting in which the demands are

drawn from independently from an unknown distribution D.

Theorem 4.12. There exists an oblivious O(log n)-approximation algorithm for the
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stochastic survivable network design problem with an unknown distribution.

Note that achieving a constant factor approximation algorithm is not possible

for an unknown distribution due to the work of Garg et al. [103]. In particular,

they show there is an Ω( logn
log logn

) lower bound for Steiner tree, therefore our greedy

algorithm is almost tight.

The rest of this section is summarized in the following. In Section 4.6.1 we

describe our algorithm and show a sufficient condition for obtaining the constant

approximation factor. We also prove the approximation factor of the algorithm for

unknown distribution. Finally, in Section 4.6.2 we provide a study of k-connected

graphs and prove the structural lemma.

4.6.1 Algorithm

In this section we explain our algorithm and outline the analysis. The algo-

rithm is as follows. Before any demand arrives, we simulate a stream t∗1, t
∗
2, . . . , t

∗
l of

demands by drawing l random vertices from probability distribution D. Next, we

find a 2-approximation Steiner network of the graph that k-connects all the simu-

lated demands to the source node via the algorithm of Jain [75]. Let H denote this

network. Based on this solution, for every node v of the graph, we find a minimum

cost k-flow from v to s that uses the edges of H for free and call that the partial

solution of v. Now we’re ready to run the algorithm on the actual demands. We

start with an empty graph for our initial solution. Every time a demand ti arrives,

we update our solution by adding all of the edges of the partial solution of ti to our
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current solution. Notice that our solution is oblivious in the sense that the k-flow

of each demand is regardless of the queries that have arrived prior to that demand.

In the rest we show that the approximation factor of our algorithm is bounded

by 4. Let for every list L of vertices, sol(L) be the set of all subsets of E(G) that

k-connect all vertices of L to s. Moreover, let for a subset of edges Q, cost(Q)

denote the total cost of the edges in Q. We define a pseudo-cost function for a list

of vertices L = 〈v1, v2, . . . , v|L|〉 and another vertex u as follows:

β(L, u) = max
F1∈sol(L)

min
F2∈sol(L∪{u})

cost(F2 \ F1)

In words, β(L, u) is the smallest cost that we need to pay in order to k-connect u

to the source in any solution that already k-connects all vertices of L to the source.

Monotonicity of β follows from its definition; the more vertices we add to L, the less

costly it will be to satisfy another node in any solution that satisfies L. In other

words, by adding more vertices to L, the max in the formulation of β will be more

constrained.

The main observation that enables us to prove a constant approximation factor

for our algorithm is a bound on the psudocost of a pair (L, u). More precisely, in

Section 4.6.2 we prove the following theorem.

Theorem 4.13 [to be proven in Section 4.6.2]. For any set S of vertices we have

∑
v∈S

β(S \ {v}, v) ≤ 2c(optS)

where optS is a minimum cost Steiner network that k-connects all vertices of S to

the source node s.
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Roughly speaking, the idea is to consider a minimum weight subgraph that

k-connects all vertices of S to the source node. Next, we find a k-flow for each node

in S that k-connects this node to other vertices of the set. We do this in a way that

k-flows use only the edges of the Steiner network, and that every edge appears in

at most two k-flows. This in turn implies that summation of the β functions for all

nodes is bounded by two times c(optS). This is discussed in details in Section 4.6.2.

An immediate corollary of Theorem 4.13 is that if we randomly draw l demands

d1, d2, . . . , dl from D, β({d1, d2, . . . , dl−1}, dl) is no more than 2/l times the minimum

cost of k-connecting all vertices of d1, d2, . . . , dl to the source.

Now, recall that before the stream of demands arrives, our algorithm ran-

domly draws l demands t∗1, t
∗
2, . . . , t

∗
l and finds a 2-approximation solution for these

demands. We refer to this subgraph as H. Since we use a 2-approximation algo-

rithm and all demands are drawn from D, the expcted cost of H is bounded by

2c(opt). Moreover, for every actual demand ti, the total cost of the edges in the

partial solution of ti that are not in H is bounded by β({t∗1, t∗2, . . . , t∗l }, ti) which is by

monotonicity bounded by β({t∗1, t∗2, . . . , t∗i−1, t
∗
i+1, . . . , t

∗
l }, ti). Notice that all t∗i ’s and

ti’s are independently drawn from D and thus the expected cost of such edges in the

partial solution of a demand ti is no more than 2c(opt)/l in expectation. Therefore,

if we add the cost of all such edges for all of the demands to the cost of H, it yields

an upperbound on the total cost of our algorithm as follows

c(T ) + l
2c(opt)

l
≤ 4c(opt) .

This proves a 4-approximation bound on the cost of the greedy algorithm.
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Now suppose the distribution of demands is unknown. In this case, the greedy

algorithm is simply k-connecting new demand ti to the source by buying a minimum

cost set of edges. Let Ti denote the set of these edges. We show that as we serve

more demands the expected cost of Ti decreases for larger i. For every demand i let

Li = {t1, . . . , ti} and p(i) = 2blog ic. We have

c(Ti) ≤ β(Li−1, ti) ≤ β(Lp(i)−1, ti) .

Using Theorem 4.13 and the fact that all items are drawn from independently from

the same distribution, in expectation we have

β(Lp(i)−1, ti) ≤ 2c(optLp(i)−1
)/pi .

Now we use c(opt) as an upper bound for c(optLp(i)−1
). Therefore,

l∑
i=1

c(Ti) ≤
l∑

i=1

2c(opt)

2blog ic ≤ 2 log(l)c(opt) .

The number of demands is at most n, and thus the greedy algorithm is

O(log n)-approximation for unknown distribution.

4.6.2 Structural Lemma for k-connected Graphs

In this section we provide a study of k-connected Steiner graphs. Roughly

speaking, we state a lemma that shows the k-connectivity property suffices for the

existence of concurrent k-flows for all the vertices such that the congestions on the

edges are bounded by a factor of 2. We formally define k-flows in the remainder.

As a result of this lemma, we can prove the following theorem, which has been used

in Section 4.6.1.
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Theorem 4.13. For any set S of vertices we have

∑
v∈S

β(S \ {v}, v) ≤ 2c(optS)

where optS is a minimum cost Steiner network that k-connects all vertices of S to

the source s.

The theorem states that the overall cost of k-connecting every vertex v ∈ S

to the optimum solution that k-connects S \ {v} is no more two times the cost of

the optimum solution that k-connects all vertices in S. We prove this theorem via

a structural lemma on unweighted k-connected Steiner graphs. To this end let us

first define k-flows.

Definition 4.1. Consider an S-k-connected graph G which is undirected and un-

weighted. A k-flow for a vertex v ∈ S in G is the union of k edge-disjoint directed

paths that k-connects v to S \ {v}.

Let optS be a minimum cost solution that k-connects every vertex to the

source node s. Since every vertex is k-connected to s it follows that every other

pairs of vertices are k-connected too. Therefore optS is an S-k-connected graph.

Now for every v ∈ S let F (v) be a k-flow in optS from v to S \ {v}. We note that

β(S \ {v}, v) ≤ c(F (v)) because one can k-connect v to S \ {v} through F (v). As a

result we have ∑
v∈S

β(S \ {v}, v) ≤
∑
v∈S

c(F (v)) .

The following structural lemma states that one can find such k-flows in an

S-k-connected graph for every vertex in S in a way that every edge appears in at
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most two k-flows. Therefore, for such set of k-flows in optS we have

∑
v∈S

c(F (v)) ≤ 2c(optS)

which completes the proof of Theorem 4.13.

Lemma 4.8. In every S-k-connected graph G there exists a set of k-flows {F (v)|v ∈

S} such that every edge is used at most once in each direction.

Proof. Without loss of generality we can assume that the graph is minimal, i.e.

removing any edge decreases the connectivity of S to k − 1. This minimality as-

sumption implies that every edge participates in a separating cut of S with size k.

As a result, every minimum size separating cut of S has exactly k edges. We prove

the lemma by induction on the number of vertices in G. In particular, we find a

minimum size separating cut on S and considering the following two cases:

• Basis : In every min-cut C = [A,B] either A or B has one vertex. Recall that

every edge e belongs to a min-cut of S. For such cut, we now that one of the

sides has size one, therefore at least one endpoints of e belongs to S.

Now we explain how to find the k-flows for every v ∈ S. Take a neighbor u

of v. If u ∈ S then we draw a direct flow from v to u. If u /∈ S, then every

neighbor of u belongs to S, because every edge (u,w) has to have at least one

endpoint in S. Without loss of generality assume that the neighbors of u are

ordered such that each of them has a unique next. Let w be the next vertex

after v. We draw a flow from v to u and from u to w. Since the degree of

v is at least k the total number of outflows from v to S \ {v} is at least k.

Moreover, in this manner every edge has at most one flow in each direction.
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• Inductive step: There exists a min-cut C = [A,B] of S such that both A

and B have more than one vertex. In this case we proceed with the following

two actions. We once contract all the vertices in B into a vertex vB. Let

SA = {S ∩ A} ∪ {vB} be the set of Steiner vertices in the new graph. As a

consequence, this contracted graph is SA-k-connected and its size is smaller

than G. Therefore, due to the induction we can find k-flows for every v ∈ SA

to SA \ {v} such that every edge in A has a flow of at most one in each

direction. Similarly, we can find flows in B by contracting A and then using

the induction.

In this way, for every v ∈ S we get k flows that leave v, but may not end up

to a vertex in S \ {v}. This is because there are some flows that go to vB or

vA in the contracted graphs, and become incomplete after mapping them to

the original graph. However, we show that the flows of the other side can be

used in order to continued the incomplete flows to reach S.

Consider the graph achieved from contracting B. Let inA(vB) be the set of

flows from SA\{vB} to vB and outA(vB) be the set of flows from vB to SA\{vB}.

Note that outa(vB) is of size k and inA(vB) is of size at most k, because there

are k edges in the cut. Likewise, we we define inB(vA) and outB(vA) for the

graph achieved from contracting A

Now consider a flow of inA(vB). This flow ends up to and edge (x, y) of the

cut, where x ∈ A and y ∈ B. Since outB(vA) is of size k, for every such y

there exists a flow from y to SB. Therefore, we can continue that flow in A
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such that it reaches a vertex of S. By doing this for all such flows in inA(vB)

and inB(vA) every v ∈ S has a k-flow such that every edge of G is used at

most once in each direction.

2
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Chapter 5: Online Stochastic k-Server

5.1 Introduction

The k-server problem is one of the most fundamental problems in online com-

putation that has been extensively studied in the past decades. In the k-server

problem we have k mobile servers on a metric space M. We receive an online se-

quence of t requests where the ith request is a point ri ∈ M. Upon the arrival of

ri, we need to move a server to ri, at a cost equal to the distance from the current

position of the server to ri. The goal is to minimize the total cost of serving all

requests.

Manasse, McGeoch, and Sleator [128] introduced the k-server problem as a

natural generalization of several online problems, and a building block for other

problems such as the metrical task systems. They considered the adversarial model,

in which the online algorithm has no knowledge of the future requests. Following the

proposition of Sleator and Tarjan [129], they evaluate the performance of an online

algorithm using competitive analysis. In this model, an online algorithm ALG is

compared to an offline optimum algorithm OPT which is aware of the entire input

in advance. For a sequence of requests ρ, let |ALG(ρ)| and |OPT(ρ)| denote the

total cost of ALG and OPT for serving ρ. An algorithm is c-competitive if for every
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ρ, |ALG(ρ)| ≤ c |OPT(ρ)|+ c0 where c0 is independent of ρ.

Manasse et al. [128] showed a lower bound of k for the competitive ratio of any

deterministic algorithm in any metric space with at least k+1 points. The celebrated

k-server conjecture states that this bound is tight for general metrics. For several

years the known upper bounds were all exponential in k, until a major breakthrough

was achieved by Koutsoupias and Papadimitriou [130], who showed that the so-called

work function algorithm is (2k−1)-competitive. Proving the tight competitive ratio

has been the “holy grail” of the field in the past two decades. This challenge has

led to the study of the problem in special spaces such as the uniform metric (also

known as the paging problem), line, circle, and trees metrics (see [131, 132] and

references therein). We also refer the reader to Section 5.1.3 for a short survey of

randomized algorithms, particularly the recent result of Bansal, Buchbinder, Madry,

and Naor [133] which achieves the competitive ratio of O(log3 n log2 k) for discrete

metrics that comprise n points.

The line metric (or Euclidean 1-dimensional metric space) is of particular inter-

est for developing new ideas. Chrobak, Karloof, Payne, and Vishwnathan [131] were

the first to settle the conjecture in the line by designing an elegant k-competitive

algorithm. Chrobak and Larmore [132] generalized this approach to tree metrics.

Later, Bartal and Koutsoupias [134] proved that the work function algorithm is also

k-competitive in line. Focusing on the special case of k = 2 in line, Bartal et al. [135]

show that, using randomized algorithms, one can break the barrier of lower bound k

by giving a 1.98-competitive algorithm for the case where we only have two servers.

Despite the strong lower bounds for the k-server problem, there are heuristics
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algorithms that are constant competitive in practice. For example, for the paging

problem- the special case of uniform metric- the least recently used (LRU) strategy

is shown to be experimentally constant competitive (see Section 5.1.3). We also run

our algorithm on real world data to measure its performance. In particular we use

the distribution of car accidents obtained from road safety data. Our experiments

illustrate our algorithm is performing even better in practice. The idea of comparing

the performance of an online algorithm (with zero-knowledge of the future) to the

request-aware offline optimum has led to crisp and clean solutions. However, that is

not without its downsides. The results in the online model are often very pessimistic

leading to theoretical guarantees that are hardly comparable to experimental results.

Indeed, one way to tighten this gap is to use stochastic information about the input

data as we describe in this study.

We should also point out that the competitive analysis is not the only possible

or necessarily the most suitable approach for this problem. Since the distributions

from which the input is generated are known, one can use dynamic programming (or

enumeration of future events) to derive the optimal movement of servers. Unfortu-

nately, finding such an optimal online solution using the distributions is an NP-hard

problem 1, thus the dynamic programming or any other approach takes exponential

time. This raises the question that how well one can perform in comparison to the

best online solution. In the rest of this chapter we formally define the model and

1Reduction from k-median to Stochastic k-server: to find the k median of set S of vertices, one

can construct an instance of stochastic k-server with t = 1 and P1(v) = 1/|S| for every v ∈ S. The

best initialization of the servers gives the optimum solution to k-median of S.
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address this question.

5.1.1 The Stochastic Model

In this study, we consider the stochastic k-server problem where the input is

not chosen adversarially, but consists of draws from given probability distributions.

This problem has applications such as equipment replacement in data centers. The

current mega data centers contain hundreds of thousands of servers and switches

with limited life-span. For example servers usually retire after at most three years.

The only efficient way to scale up the maintenance in data centers is by automation,

and robots are designed to handle maintenance tasks such as repairs or manual

operations on servers. The replacement process can be modeled as requests that

should be satisfied by robots, and robots can be modeled as servers. This problem

also has applications in physical networks. As an example, suppose we model a

shopping service (e.g. Google Express) as a k-server problem in which we receive

an online sequence of shopping requests for different stores. We have k shopping

cars (i.e., servers) that can serve the requests by traveling to the stores. It is quiet

natural to assume that on a certain time of the week/day, the requests arrive from

a distribution that can be discovered by analyzing the history. We formalize this

stochastic information as follows.

For every i ∈ [1 · · · t], a discrete probability distribution Pi is given in advance

from which request ri will be drawn at time step i. The distributions are chosen

by the adversary and are assumed to be independent but not necessarily identical.
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This model is inspired by the well-studied model of prophet inequalities 2 [118,136].

As mentioned before, the case of line metric has proven to be a very interesting

restricted case for studying the k-server problem. In this study, we focus mainly on

the class of line metric though our results carry over to circle metric and general

metrics as well.

In the adversarial model, the competitive ratio seems to be the only well-

defined notion for analyzing the performance of online algorithms. However, in the

presence of stochastic information, one can derive a much better benchmark that

allows us to make fine-grained distinctions between the online algorithms. We recall

that in the offline setting, for a class of algorithms C, the natural notion to measure

the performance of an algorithm ALG ∈ C is the approximation ratio defined as the

worse case ratio of |ALG| to |OPT(C)| where OPT(C) is the optimal algorithm in the

class. In this study, we also measure the performance of an online algorithm by its

approximation ratio– compared to the optimal online solution. We note that given

distributions P1, . . . , Pt, one can iteratively compute the optimal online solution by

solving the following exponential-size dynamic program: for every i ∈ [0 · · · t] and

every possible placement A of k servers (called a configuration) on the metric, let

τ(i, A) denote the minimum expected cost of an online algorithm for serving the

first i requests and then moving the servers to configuration A. Note that τ(i, A)

2In the prophet inequality setting, given (not necessarily identical) distributions P1, . . . , Pt, an

online sequence of values x1, . . . , xn where xi is drawn from Pi, an onlooker has to choose one item

from the succession of the values, where xi is revealed at step i. The onlooker can choose a value

only at the time of arrival. The goal is to maximize the chosen value.
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can inductively be computed via the following recursive formula

τ(i, A) = min
B
τ(i−1, B)+Eri∼Pi

[min. distance from B to A subject to serving ri] ,

where τ(0, A) is initially zero for every A.

5.1.2 Our Results

Our first main result is designing a constant approximation algorithm in the

line metric when the distributions for different time steps are not necessarily iden-

tical.

Theorem 5.1. There exists a 3-approximation online algorithm for the stochastic

k-server problem in the line metric. The running time is polynomial in k and the

size of the support of the input distributions. The same guarantee holds for the circle

metric.

For the general metric, we present an algorithm with a logarithmic approxi-

mation guarantee.

Theorem 5.2. There exists a O(log n)-approximation online algorithm for the

stochastic k-server problem in the general metric.

We prove the theorems using two important structural results. The first key

ingredient is a general reduction from class of online algorithms to a restricted class

of non-adaptive algorithms while losing only a constant factor in the approximation

ratio. Recall that a configuration is a placement of k-servers on the metric. We

say an algorithm ALG is non-adaptive if it follows the following procedure: ALG
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pre-computes a sequence of configurations A0, A1, . . . , At. We start by placing the

k-servers on A0. Upon the arrival of ri, (i) we move the servers to configuration Ai;

next (ii) we move the closest server s to ri; and finally (iii) we return s to its original

position in Ai. We first prove the following structural result.

Theorem 5.3. For the stochastic k-server problem in the general metric, the opti-

mal non-adaptive online algorithm is within 3-approximation of the optimal online

algorithm.

Using the aforementioned reduction, we focus on designing the optimal non-

adaptive algorithm. We begin by formulating the problem as an integer program.

The second ingredient is to use the relaxation of this program to formalize a natural

fractional variant of the problem. In this variant, a configuration is a fractional

assignment of server mass to the points of the metric such that the total mass

is k. To serve a request at point ri, we need to move some of the mass to have

at least one amount of server mass on ri. The cost of moving the server mass

is naturally defined as the integral of the movement of infinitesimal pieces of the

server mass. By solving the linear relaxation of the integer program, we achieve the

optimal fractional non-adaptive algorithm. We finally prove Theorems 5.1 and 5.2

by leveraging the following rounding techniques. The rounding method in line has

been also observed by Türkoglu [137]. We provide the proof for the case of line in

Section 5.5 for the sake of completeness. The rounding method for general metrics

is via the well-known embedding of a metric into a distribution of well-separated

trees while losing a logarithmic factor in the distortion. Bansal et al. [133] use a
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natural rounding method similar to that of Blum, Burch, and Kalai [138] to show

that any fractional k-server movement on well-separated trees can be rounded to an

integral counterpart by losing only a constant factor.

Theorem 5.4 (first proven in [137]). Let ALGf denote a fractional k-server algo-

rithm in the line, or circle. One can use ALGf to derive a randomized integral algo-

rithm ALG such that for every request sequence σ, E [|ALG(σ)|] = |ALGf (σ)|. The

expectation is over the internal randomness of ALG. Furthermore, in the stochastic

model ALG can be derandomized.

Theorem 5.5 (proven in [133]). Let ALGf denote a fractional k-server algorithm

in any metric. One can use ALGf to derive a randomized integral algorithm ALG

such that for every request sequence σ, E [|ALG(σ)|] ≤ O(log n) |ALGf (σ)|.

We further show that in the stochastic setting, if the number of possible input

scenarios is m, even if the distributions are correlated, one can compute the best

fractional online competitive algorithm in time polynomial in m and n. Note that

since the number of placements of k servers on n points is exponential, it is not

possible to enumerate all the possible choices of an online algorithm. We solve

this problem by presenting a non-trivial LP relaxation of the problem with size

polynomial in n and m; therefore obtaining the following result. We present the

formal model and analysis in Appendix 5.7.

Theorem 5.6. The optimal online algorithm of the stochastic k-server problem

with correlated setting in line and circle can be computed in polynomial time w.r.t.
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the number of possible scenarios. In general metrics, an O(log n)-approximation

algorithm can be obtained.

5.1.3 Further Related Work

The randomized algorithms often perform much better in the online paradigm.

For the k-server problem, a lower bound of Ω(log k) is known for the competitive

ratio of randomized algorithms in most common metrics. Despite the exponential

gap, compared to the lower bound of deterministic algorithms, very little is known

about the competitiveness of randomized algorithms. In fact, the only known al-

gorithms with competitive ratios below k, work either in the uniform metric (also

known as the paging problem [139–142]), a metric comprising k + 1 points [143],

and two servers on the line [135]. Two decades after the introduction of the k-server

problem, a major breakthrough was achieved by Bansal et al. [133] in discrete met-

rics with sub-exponential size. IfM comprise n points, their randomized algorithm

achieves a competitive ratio of O(log3 n log2 k).

The case of uniform metric has been extensively studied under various stochas-

tic models motivated by the applications in computer caching. Koutsoupias and

Papadimitriou [130] consider two refinements of the competitive analysis for server

problems. First, they consider the diffuse adversary model. In this model, at every

step i the adversary chooses a distribution Di over the uniform metric of the paging

problem. Then the ith request is drawn from Di which needs to be served. The dis-

tribution Di is not known to the online algorithm and it may depend on the previous
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requests. However, in their paper, they consider the case wherein it is guaranteed

that for every point p, Di(p) ≤ ε for a small enough ε; i.e., the next request is not

predictable with absolute certainty for the adversary. The results of Koutsoupias

and Papadimitriou and later Young [144] shows that the optimum competitive ratio

in this setting is close to 1 + Θ(kε).

The second refinement introduced in [130] restricts the optimal solution to

having lookahead at most `. Hence, one can define a comparative ratio which indi-

cates the worst-case ratio of the cost of the best online solution to the best solution

with lookahead `. They show that for the k-server problem, and more generally the

metrical task system problem, there are online algorithms that admit a comparative

ratio of 2`+ 1; for some instances this ratio is tight.

Later, Panagiotou and Souza [145] considered the paging problem when the

adversary is restricted to certain local constraints on the request. These constraints

are motivated by the locality of reference in a memory cache and typical memory-

access patterns. They show that under these constraints the LRU algorithm is

constant competitive, which indeed gives a theoretical explanation to why LRU

works pretty well in practice.

Various other models of restricting the adversary (access graph model [146–

148], fault rate model [149–151], etc) have also been considered for the paging prob-

lem (see [145, 152] and references therein for a further survey of these results).

Unfortunately, many of the stochastic settings considered for the paging problem do

not seem to have a natural generalization beyond the uniform metric setting. For

example, in the diffuse adversary model, most of the studied distributions do not
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weaken the adversary in the general metric. In this study, we look for polynomial-

time approximation algorithms in the class of online algorithms that have access to

the distributions.

We would like to mention that various online problems have been previously

considered under prophet inequality model or i.i.d. model (where all distributions

are identical). Motivated by ad auctions, the maximum matching problem has been

extensively studied in these models, achieving near one competitive ratios [105–107].

In the graph connectivity problems, Garg, Gupta, Leonardi,and Sankowski [153]

consider the online variants of Steiner tree and several related problems under the

i.i.d. stochastic model. In the adversarial model, there exists an Ω(log n) lower

bound on the competitive ratio of any online algorithm, where n is the number

of demands. However, Garg et al. show that under the i.i.d. assumption, these

problems admit online algorithms with constant or O(log log n) competitive ratios.

We refer the reader to the excellent book by Borodin and El-Yaniv [154] for further

study of online problems.

5.2 Preliminaries

In this section we formally define the stochastic k-server problem. The classical

k-server problem is defined on a metric M which is consisted of points that could

be infinitely many. For every two points x and y in metric M, let d(x, y) denote

the distance of x from y which is a symmetric function and satisfies the triangle

117



inequality. More precisely for every three points x, y, and z we have

d(x, x) = 0 (5.1)

d(x, y) = d(y, x) (5.2)

d(x, y) + d(y, z) ≥ d(x, z). (5.3)

In the k-server problem the goal is to place k servers on k points of the metric,

and move these servers to satisfy the requests. We refer to every placement of the

servers on the metric points by a configuration. Let ρ = 〈r1, r2, . . . , rt〉 be a sequence

of requests, the goal of the k-server problem is to find configurations 〈A0, A2, . . . , At〉

such that for every i there exists a server on point ri in configuration Ai. We say

such a list of configurations is valid for the given list of requests. A valid sequence

of configurations is optimal if
∑
d(Ai−1, Ai) is minimized where d(X, Y ) stands

for the minimum cost of moving servers from configuration X to configuration Y .

An optimal sequence 〈A0, A2, . . . , At〉 of configurations is called an optimal offline

solution of OFKS(M, ρ) when ρ is known in advance. We refer to the optimal cost

of such movements with |OFKS(M, ρ)| =
∑
d(Ai−1, Ai).

We also define the notion of fractional configuration as an assignment of the

metric points to non-negative real numbers. More precisely, each number specifies

a mass of fractional server on a point. Every fractional solution adheres to the

following condition: The total sum of the values assigned to all points is exactly

equal to k. Analogously, a fractional configuration serves a request ri if there is a

mass of size at least 1 of server assigned to point ri. An offline fractional solution

of the k-server problem for a given sequence of requests ρ is defined as a sequence
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of fractional configurations 〈A0, A1, . . . , At〉 such that Ai serves ri.

In the online k-server problem, however, we’re not given the whole sequence

of requests in the beginning, but we will be informed of every request once it is

realized. An algorithm A is an online algorithm for the k-server problem if it

reports a configuration A0 as an initial configuration and upon realization of every

request ri it returns a configuration Ai such that 〈A0, A1, A2, . . . , Ai〉 is valid for

〈r1, r2, . . . , ri〉. If A is deterministic, it generates a unique sequence of configurations

for every sequence of requests. Let A(M, ρ) be the sequence that A generates for

requests in ρ and |A(M, ρ)| denote its cost.

In the online stochastic k-server problem, in addition to metric M, we are

also given t independent probability distributions 〈P1, P2, . . . , Pt〉 which show the

probability that every request ri is realized on a point of the metric at each time. An

algorithm A is an online algorithm for such a setting, if it generates a configuration

for every request ri not solely based on 〈r1, r2, . . . , ri〉 and 〈A0, A1, . . . , Ai−1〉 but

also with respect to the probability distributions. Similarly, we define the cost of an

online algorithmA for a given sequence of requests ρ with |A(M, ρ, 〈P1, P2, . . . , Pt〉)|.

We define the expected cost of an algorithm A on metric M and with probability

distributions 〈P1, P2, . . . , Pt〉 by

|A(M, 〈P1, P2, . . . , Pt〉)| = E∀i,ri∼Pi
|A(M, ρ, 〈P1, P2, . . . , Pt〉)|.

For every metric M and probability distributions 〈P1, P2, . . . , Pt〉 we refer to the

online algorithm with the minimum expected cost by OPTM,〈P1,P2,...,Pt〉.

An alternative way to represent a solution of the k-server problem is as a
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vector of configurations 〈B0, B1, . . . , Bt〉 such that Bi does not necessarily serve

request ri. The cost of such solution is equal to
∑
d(Bi−1, Bi) +

∑
2d(Bi, ri) where

d(Bi, ri) is the minimum distance of a server in configuration Bi to request ri. The

additional cost of 2d(Bi, ri) can be thought of as moving a server from Bi to serve

ri and returning it back to its original position. Thus, every such representation of

a solution can be transformed to the other representation. Similarly, d(Bi, ri) for

a fractional configuration Bi is the minimum cost which is incurred by placing a

mass 1 of server at point ri. We use letter B for the configurations of such solutions

throughout this chapter.

In this study the emphasis is on the stochastic k-server problem on the line

metric. We define the line metric L as a metric of points from −∞ to +∞ such

that the distance of two points x and y is always equal to |x − y|. Moreover, we

show that deterministic algorithms are as powerful as randomized algorithms in this

setting, therefore we only focus on deterministic algorithms. Thus, from here on,

we omit the term deterministic and every time we use the word algorithm we mean

a deterministic algorithm unless otherwise is explicitly mentioned.

5.3 Structural Characterization

In this section we define a class of online algorithms for the stochastic k-server

problem and show an important structural property for this class. Later, we leverage

this property to provide a polynomial time algorithm for the problem. Although

we give the algorithm for the line metric, the structural characterization holds for
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general graphs and is of independent interest.

Recall that an online algorithm A has to fulfill the task of reporting a config-

uration Ai upon arrival of request ri based on 〈A0, A1, . . . , Ai−1〉, 〈r1, r2, . . . , ri〉,

and 〈P1, P2, . . . , Pt〉. We say an algorithm B is request oblivious, if it reports

configuration Bi regardless of request ri. As such, B generates configurations

〈B0, B1, . . . , Bt〉 for a sequence of requests 〈r1, r2, . . . , rt〉 and the cost of such con-

figuration is
∑
d(Bi−1, Bi) +

∑
2d(Bi, ri). More precisely, no matter what request

ri is, B will generate the same configuration for a given list of past configurations

〈B0, B1, . . . , Bi−1〉, a given sequence of past requests 〈r1, r2, . . . , ri−1〉, and the se-

quence of probability distributions 〈P1, P2, . . . , Pt〉. In the following we show that

every online algorithm A can turn into a request oblivious algorithm BA that has a

cost of at most |3A(M, ρ, 〈P1, P2, . . . , Pt〉)| for a given sequence of requests ρ.

Lemma 5.1. Let A be an online algorithm for the stochastic k-server problem. For

any metric M, there exists a request oblivious algorithm BA such that

|BA(M, 〈P1, P2, . . . , Pt〉)| ≤ 3|A(M, 〈P1, P2, . . . , Pt〉)|.

Proof. Let ρ be a sequence of requests. We define online algorithm BA as

follows: The configuration that BA reports for a given list of input arguments

〈B0, B1, . . . , Bi〉, 〈r1, r2, . . . , ri〉, and 〈P1, P2, . . . , Pt〉 is the output of algorithm A

on inputs 〈B0, B1, . . . , Bi〉, 〈r1, r2, . . . , ri−1〉, and 〈P1, P2, . . . , Pt〉 (The same input

except that ri is dropped from the sequence of requests). We show the cost of such

algorithm for input ρ is at most 3 times the cost of A for the same input.

Let 〈A0, A1, . . . , At〉 be the sequence of configurations that A generates for
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requests ρ and 〈B0, B1, . . . , Bt〉 be the output of algorithm BA. According to the

construction of BA, B0 = A0 and Bi = Ai−1 for all 1 ≤ i ≤ t. Note that for

algorithm A, we assume every Ai serves request ri. By definition, the cost of solution

〈B0, B1, B2, . . . , Bt〉 is equal to
∑
d(Bi−1, Bi) + 2

∑
d(Bi, ri). Since B0 = B1 = A0

and Bi = Ai−1,

t∑
i=1

d(Bi−1, Bi) =
t−1∑
i=1

d(Ai−1, Ai) ≤
t∑
i=1

d(Ai−1, Ai) = |A(M, ρ, 〈P1, P2, . . . , Pt〉)|.

(5.4)

Moreover, since every Ai servers request ri, d(Bi, ri) ≤ d(Bi, Ai) = d(Ai−1, Ai).

Hence,

2
t∑
i=1

d(Bi, ri) ≤ 2
t∑
i=1

d(Bi, Ai) = 2
t∑
i=1

d(Ai−1, Ai) = 2|A(M, ρ, 〈P1, P2, . . . , Pt〉)|.

(5.5)

Inequality (5.4) along with Equation (5.5) implies

|BA(M, ρ, 〈P1, P2, . . . , Pt〉)| ≤ 3|A(M, ρ, 〈P1, P2, . . . , Pt〉)|.

Since this holds for all requests ρ ∼ 〈P1, P2, . . . , Pt〉, we have

|BA(M, 〈P1, P2, . . . , Pt〉)| ≤ 3|A(M, 〈P1, P2, . . . , Pt〉)|

and the proof is complete. 2

An immediate corollary of Lemma 5.1 is that the optimal request oblivious

algorithm has a cost of at most |3 OPTM,〈P1,P2,...,Pt〉(M, 〈P1, P2, . . . , Pt〉)|. Therefore,

if we only focus on the request oblivious algorithms, we only lose a factor of 3 in

comparison to the optimal online algorithm. The following lemma states a key

structural lemma for an optimal request oblivious algorithm.
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Lemma 5.2. For every request oblivious algorithm B, there exists a randomized

request oblivious algorithm B′ with the same expected cost which is not only oblivious

to the last request, but also oblivious to all requests that have come prior to this.

Proof. For any given request oblivious online algorithm B, we construct an on-

line algorithm B′ which is oblivious to all of the requests as follows: For an input

〈B1, B2, . . . , Bi−1〉 of configurations and probability distributions 〈P1, P2, . . . , Pt〉,

draw a sequence of requests 〈r1, r2, . . . , ri〉 from 〈P1, P2, . . . , Pt〉 conditioned on

the constraint that B would generate configurations 〈B1, B2, . . . , Bi−1〉 for re-

quests 〈r1, r2, . . . , ri−1〉. Now, report the output of B for inputs 〈B1, B2, . . . , Bi−1〉,

〈r1, r2, . . . , ri〉, and 〈P1, P2, . . . , Pt〉.

We define the cost of step i of Algorithm B′ as d(Bi−1, Bi) + 2d(Bi, ri). Due

to the construction of algorithm B′, the expected cost of this algorithm at every

step i for a random sequence of requests is equal to the expected cost of algorithm

B for a random sequence of requests drawn from 〈P1, P2, . . . , Pt〉. Therefore, the

expected cost of both algorithms for a random sequence of requests are equal and

thus |B(M, 〈P1, P2, . . . , Pt〉)| = |B′(M, 〈P1, P2, . . . , Pt〉)|. 2

Lemma 5.2 states that there always exists an optimal randomized request

oblivious online algorithm that returns the configurations regardless of the requests.

We call such an algorithm non-adaptive. Since a non-adaptive algorithm is indiffer-

ent to the sequence of the requests, we can assume it always generates a sequence of

configurations just based on the distributions. For an optimal of such algorithms,

all such sequence of configurations should be optimal as well. Therefore, there al-
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ways exists an optimal non-adaptive online algorithm which is deterministic. By

Lemma 5.1 not only do we know the optimal request oblivious algorithm is at most

3-approximation, but also the same holds for the optimal non-adaptive algorithm.

Theorem 5.7. There exists a sequence of configurations 〈B0, B1, . . . , Bt〉 such that

an online algorithm which starts with B0 and always returns configuration Bi upon

arrival of request ri has an opproximation factor of at most 3.

5.4 Fractional Solutions

In this section we provide a fractional online algorithm for the k-server problem

that can be implemented in polynomial time. Note that by Theorem 5.7 we know

that there exist configurations 〈B1,B2, . . . ,Bt〉 such that the expected cost of a non-

adaptive algorithm that always returns these configurations is at most 3. Therefore,

we write an integer program to find such configurations with the least expected

cost. Next, we provide a relaxed LP of the integer program and show that every

feasible solution of such LP corresponds to a fractional online algorithm for the

stochastic k-server problem. Hence, solving such a linear program, that can be done

in polynomial time, gives us a fractional online algorithm for the problem.

5.4.1 Linear Program

Recall that given t independent distributions 〈P1, . . . , Pt〉 for online stochas-

tic k-server, an adaptive algorithm can be represented by t + 1 configurations

〈B0, . . . , Bt〉. Upon the arrival of each request ri, we move the servers from config-
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uration Bi−1 to Bi and then one server serves ri and goes back to its position in

Bi. The objective is to find the configurations such that the cost of moving to new

configurations in addition to the expected cost of serving the requests is minimized.

Therefore the problem can formulated in an offline manner. First we provide an

integer program in order to find a vector of configurations with the least cost.

The decision variables of the program represent the configurations, the move-

ment of servers from one configuration to another, and the way that each possible

request is served. In particular, at each time step τ :

• For each node v there is a variable bτ,v ∈ N denoting the number of servers

on node v.

• For each pair of nodes u and v, there is a movement variable fτ,u,v ∈ N

denoting the number of servers going from u to v for the next round.

• For each node v and possible request node r, there is a variable xτ,v,r ∈ {0, 1}

denoting whether r is served by v or not.

In the following integer program, the first set of constraints ensures the number

of servers on nodes at each time is updated correctly according to the movement

variables. The second set of constraints ensures that each possible request is served

by at least one server. The third set of constraints ensures that no possible request is

served by an empty node. By the definition, the cost of a sequence of configurations

〈B0, . . . , Bt〉 is
∑t

i=1 d(Bi−1, Bi)+2
∑t

i=1 d(Bi, ri). Thus the objective is to minimize
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the expression

∑
τ

∑
u,v

fτ,u,vd(u, v) + 2
∑
τ

∑
v

∑
r

xτ,v,r Pr(z ∼ Pτ = r)d(v, r)

, where Pr(z ∼ Pτ = r) denotes the probability that r is requested at time τ .

min.
∑
τ

∑
u,v

fτ,u,vd(u, v) + 2
∑
τ

∑
v

∑
r

xτ,v,r Pr(z ∼ Pτ = r)d(v, r)

∀τ, v bτ+1,v = bτ,v +
∑
u

fτ,u,v −
∑
u

fτ,v,u.

∀τ, u, v
∑
v

xτ,v,r ≥ 1.

∀τ, v, r xτ,v,r ≤ bτ,v.

∀τ
∑
v

bτ,v ≤ k.

∀τ, v, r xτ,v,r ∈ {0, 1}.

∀τ, u, v fτ,u,v ∈ N.

∀τ, v bτ,v ∈ N.

Now we consider the following relaxation of the above integer program.

min.
∑
τ

∑
u,v

fτ,u,vd(u, v) + 2
∑
τ

∑
v

∑
r

xτ,v,r Pr(z ∼ Pτ = r)d(v, r)

∀τ, v bτ+1,v = bτ,v +
∑
u

fτ,u,v −
∑
u

fτ,v,u.

∀τ, u, v
∑
v

xτ,v,r ≥ 1.

∀τ, v, r xτ,v,r ≤ bτ,v.

∀τ
∑
v

bτ,v ≤ k.
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Next, in Section 5.5 we show how a fractional solution can be rounded to an

integral solution.

5.5 Reduction from Integral k-server to Fractional k-server

In this section we show how we can obtain an integral algorithm for the stochas-

tic k-server problem from a fractional algorithm. We first show that every fractional

algorithm for the line metric can be modified to an integral algorithm with the same

cost. Next, we study the problem on HST metrics; we give a rounding method that

produces an integral algorithm from a fractional algorithm while losing a constant

factor. Finally, we leverage the previously known embedding techniques to show

every metric can be embedded into HST’s with a distortion of at most O(log n).

This will lead to a rounding method for obtaining an integral algorithm from every

fractional algorithm on general metrics while losing a factor of at most O(log n).

Combining this with the 3 approximation fractional algorithm that we provide in

Section 5.4, we achieve an O(log n) approximation algorithm for the stochastic k-

server problem on general graphs.

5.5.1 Integrals Are as Strong as Fractionals On the Line

In this section we show every fractional algorithm on the line metric can be

derandomized to an integral solution with the same expected cost. The rounding

method is as follows: For every fractional configuration A, we provide an integral

configuration I(A) such that (i) the distance of two configurations A1 and A2 is
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equal to the expected distance of two configurations I(A1) and I(A2). (ii) for every

point x in the metric that A has a server mass of size at least 1 on x, there exists a

server on point x in I(A).

Let for every point x in the metric, A(v) denote the amount of server mass on

node v of the line. For every fractional configuration B, we define a mass function

fA : (0, k] → V as follows. fA(x) = vj if and only if j is the minimum integer such

that
∑j−1

i=1 A(i) < x and
∑j

i=1A(i) ≥ x. Intuitively, if one gathers the server mass

by sweeping the line from left to right, fA(x) is the first position on which we have

gathered x amount of server mass. The rounding algorithm is as follows:

• Pick a random real number r in the interval [0, 1).

• I(A) contains k servers on positions fA(r), fA(r+1), fA(r+2), . . . , fA(r+k−1).

Note that the rounding method uses the same r for all of the configurations.

More precisely, we draw r from [0, 1) at first and use this number to construct the

integral configurations from fractional configurations. The following two lemmas

show that both of the properties hold for the rounding algorithm we proposed.

Lemma 5.3. Let A be a fractional configuration and x be a point such that A(x) ≥ 1.

Then I(A) has a server on x.

Proof. Due to the construction of our rounding method, for every two consecutive

servers a and b in I(A), the total mass of servers after a and before b in the fractional

solution is less than 1. Therefore, I(A) should put a server on point x, otherwise

the total mass of servers in the fractional solution between the first server before x

and the first server after x would be at least 1. 2
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The next lemma shows that the rounding preserves the distances between the

configurations in expectation.

Lemma 5.4. Let A1 and A2 be two fractional configurations and |A1−A2| be their

distance. The following holds for the distances of the configurations

E| I(A1)− I(A2)| = |A1 − A2|.

Proof. The key point behind the proof of this lemma is that the distance of two

fractional configurations A1 and A2 can be formulated as follows

|A1 − A2| =
∫ 1

0

| Iω(A1)− Iω(A2)|dω

where Iω(A) stands for an integral configurations which places the servers on points

fA(ω), fA(ω+1), fA(ω+2), . . ., fA(ω+k−1). Since at the beginning of the rounding

method we draw r uniformly at random, the expected distance of the two rounded

configurations is exactly equal to∫ 1

0

| Iω(A1)− Iω(A2)|dω

which is equal to the distance of A1 from A2. 2

Theorem 5.8. For any given fractional online algorithm A for the k-server problem

on the line metric, there exists an online integral solution for the same problem with

the same expected cost.

5.5.2 Reduction for General Graphs

An HST is a undirected rooted tree in which every leaf represents a point in

the metric and the distance of a pair of points in the metric is equal to the distance
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of the corresponding leaves in the tree. In an HST, weights of the edges are uniquely

determined by the depth of the vertices they connect. More precisely, in a σ-HST

the weight of an edges between a vertex v and its children is equal to σh−dv where

h stands for the height of the tree and dv denotes the depth of vertex v.

Since HSTs are very well structured, designing algorithms on HSTs is relatively

easier in comparison to a more complex metric. Therefore, a classic method for

alleviating the complexity of the problems is to first embed the metrics into HSTs

with a low distortion and then solve the problems on these trees.

Perhaps the most important property of the HSTs is the following:

Observation 5.9. For every pair of leaves u, v ∈ T of an HST, the distance of u

and v is uniquely determined by the depth of their deepest common ancestor.

Note that, the higher the depth of the common ancestor is, the lower the

distance of the leaves will be. Therefore, the closest leaves to a leaf v are the ones

that share the most common ancestors with v. Bansal et al. propose a method for

rounding every fractional solution of the k-server problem to an integral solution

losing at most a constant factor [133].

Theorem 5.10. [133] Let T be a σ-HST with n leaves, σ > 5, and let A =

〈A0, A1, A2, . . . , At〉 be a sequence of fractional configurations. There is an on-

line procedure that maintains a sequence of randomized k-server configurations

S = 〈S0, S1, S2, . . . , St〉 satisfying the following two properties:

• At any time i, the state Si is consistent with the fractional state Ai.
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• If the fractional state changes from xi−1 to xi at time i, incurring a movement

cost of ci, then the state Si−1 can be modified to a state Si while incurring a

cost of O(ci) in expectation.

Embedding general metrics into trees and in particular HSTs has been the

subject of many studies. The seminal work of Fakcharoenphol et al. [155] has shown

that any metric can be randomly embedded to σ-HSTs with distortion O(σ logn
log σ

).

Theorem 5.11. [155] There exists a probabilistic method to embed an arbitrary

metric M into σ-HSTs with distortion σ logn
log σ

.

Therefore, to round a fractional solution on a general metric, we first embed

it into 6-HSTs with a distortion of at most O(log n) and then round the solution

while losing only a constant factor. This will give us an integral algorithm that has

an expected cost of at most O(log n) times the optimal.

Theorem 5.12. For any given fractional online algorithm A for the k-server prob-

lem on an arbitrary metric, there exists an online integral solution for the same

problem having a cost of no worse that O(log n) times the cost of A in expectation.

5.6 Acknowledgment

We would like to thank Shi Li for having helpful discussions, and anonymous

reviewers for their comments 3.

3We exploit the structural properties of non-adaptive algorithms and provide a simple approxi-

mation algorithm for the stochastic k-server problem. Nonetheless, one might think our structural

result has a simpler proof via sampling and simulation methods. However, to the best of our
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5.7 Correlated Setting

In this section, we study the k-server problem when the probability distribu-

tions are not independent. Recall that in the independent setting the sequence of

requests is referred to by ρ = 〈r1, . . . , rt〉. In the correlated model we assume all

different possibilities for ρ have been given in the form of a set R = {ρ1, . . . , ρm} of

m sequences ρi = 〈ri,1, . . . , ri,t〉. Moreover, we assume the probability of each sce-

nario ρi is denoted by pi and given in advance. Given the list of different scenarios

and probabilities, the goal is to design an online algorithm to serve each request ri,j

prior to arrival of the next request such that the overall movement of the servers is

minimized.

We model this problem by an integer program. We first write an integer

program and show that every solution of this program is uniquely mapped to a

deterministic online algorithms for the problem. Moreover, every online algorithm

can be mapped to a feasible solution of the program. More precisely, each solution

of the program is equivalent to an online algorithm of the problem. Furthermore,

we show how to derive an online algorithm from the solution of the integer program.

These two imply that the optimal deterministic online algorithm can be obtained

from the optimal solution of the program.

knowledge such approaches do not deliver the right bounds.
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5.7.1 Program

To better convey the idea behind the integer program, we first introduce the

tree T which is a trie containing all sequences ρ1 to ρm. Let us use w(v) to denote

the path from the root to a node v. With these notations, a node v ∈ T represents

a request which may occur conditioning all requests in w(v) occur beforehand. Be-

sides, every leaf of T uniquely represents one of the ρi’s. Let us use l(v) to denote

the set of those indices i for which ρi is a leaf of the subtree of v. At each step t, only

those ρi’s can be a final option for R that 〈ρi,1, . . . , ρi,t〉 = 〈r1, . . . , rt〉. Hence, a new

request rt can be informative since we know that none of the ρi’s in l(rt−1)\l(rtau)

will occur anymore. For a node v we define Pr(v) as the probability of all requests

in w(v) happening i.e. Pr(v) =
∑

i∈l(v) Pr(R = ρi).

We extend the tree T by adding k − 1 additional nodes. As shown in Figure

1, these nodes form a path leading to the root of T . These nodes plus the root

represent the initial configuration of the k servers. Let us call these nodes the initial

set I. Now we can show the movement of the servers in our metric space by means

of k tokens in T . To do so, we begin with putting one token on each of the k

nodes of I. Each token corresponds to one of the servers. After a server moves to

serve a request rt, we move its corresponding token to a node of T which represents

the request rt. Note that at this step, there is no discrimination between any of

the sequences in l(rt) in terms of occurrence. This causes a deterministic online

algorithm A to serve the first |w(rt)| requests of R in the same way if R is going to

be one of ρi’s (i ∈ l(rt)). A result of this uniquely serving is that we can use some
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downward links on T in order to show how each request v gets served. In the next

paragraphs we explain about these links and how we construct the integer program.

Let us use xu,v to denote a link from a node u ∈ T to its descendant v. xu,v is

one if and only if A uses the same server to serve u and then v without using that

server to serve any other request between u and v. This consecutive serving may

occur with probability Pr(v) = Pr(u)Pr(v|u). In this case, the algorithm moves a

server from u to v and pays |u − v| as the distance cost between the two points of

the metric space corresponding to u and v.

There are two conditions for these links that we must care about. First, since

each request v should be served with a server, at least one of the xu,v’s should be

one for all u in w(v). Without loss of generality, we assume this is exactly one of

them, i.e. there is no need to serve a request with more than one server. Second,

after serving a request u, a server can go for serving at most one other request.

That is, for each i ∈ l(u), there should be at most one v ∈ ρi such that xu,v = 1.

This condition guarantees that in serving the sequence of requests R, a server which

serves rt1 ∈ R has always at most one other request rt2 ∈ R as the next serving

request.

The following integer program maintains both conditions for xu,v’s and has
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the expected overall movement of all servers as the objective function:

min.
∑

u,v∈T ;u∈w(v)

Pr(v)|u− v|xu,v

∀v ∈ T\I
∑
u∈w(v)

xu,v = 1.

∀u ∈ T, i ∈ l(u)
∑
v∈ρi

xu,v ≤ 1.

∀u, v ∈ T, u ∈ w(v) xu,v ∈ {0, 1}

Next, we can relax the constraints of the program to make it linear. Therefore,

instead of assigning either {0} or {1}, to each xu,v we let it be a real number between

0 and 1. Thus, the integer program turns to the following linear program with the

same objective function but more relaxed constraints.

min.
∑

u,v∈T ;u∈w(v)

Pr(v)|u− v|xu,v

∀v ∈ T\I
∑
u∈w(v)

xu,v = 1.

∀u ∈ T, i ∈ l(u)
∑
v∈ρi

xu,v ≤ 1.

∀u, v ∈ T, u ∈ w(v) xu,v ≤ 1

∀u, v ∈ T, u ∈ w(v) xu,v ≥ 0

Note that every feasible solution of the linear program is corresponding to a frac-

tional solution of the problem. Since the optimal solution of the linear program

can be found in polynomial time, using the rounding methods presented in Sec-

tion 5.5 we obtain an optimal online algorithm for the line metric and a O(log n)

approximation algorithm for general metrics as stated in Theorem 5.6.
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5.8 Experimental Results

The goal of this section is to make an evaluation of our method for the line

on a real world data set. The line can be an appropriate model for a plenty of

applications. For example, it could be sending road maintenance trucks to different

points of a road or sending emergency vehicles to accident scenes along a highway.

For this experiment, we take the case of car accidents.

Data sets. We use Road Safety Data4 to find the distribution of the accidents

along the A15 road in Great Britain. In 2015, over 1600 accidents occurred on this

highway, with an average of 140 accidents per month. We assume a point every 10

miles along the highway. That is 40 points in total. Then we build the distributions

with respect to how the accidents are spread over the days of month. In this way,

we achieve 30 distributions for 40 points along the line.

Algorithms. We compare the performance of our method to that of the

optimum algorithm. To find the optimum solution we use backtracking. The running

time of the algorithm is exponential to k. However, we use techniques such as branch

and bound and exponential dynamic programming to get a fast implementation.

Results. We run different experiments with k from 2 to 11 on the line and

distributions explained above. In previous sections we showed an upper bound of 3

for the approximation factor of our algorithm. Interestingly, in these experiments we

can observe a better performance as shown by Figure 5.1. We compare the running

4https://data.gov.uk/dataset/road-accidents-safety-data/
5https://en.wikipedia.org/wiki/A1 road (Great Britain)
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Number of Servers 2 3 4 5 6 7 8 9 10 11

Algorithm 6.5 7.6 6.7 7.1 7.5 8.3 8.5 8.4 9.3 8.2

Optimum 0.2 0.8 3.1 8.4 29.4 57.9 126.3 406.7 1477.1 6173.6

Table 5.1: The running time of our algorithm and the optimum algorithm in seconds.

For higher number of servers, the optimum solution was not calculable within 5

hours.

time of the algorithms in Table 5.1. Note that the size of our LP our method solvers

does not vary by k. This is in fact the reason behind why its running time remains

almost the same. In contrast, the running time of the optimum algorithm grows

exponentially.

Figure 5.1: Performance of our algorithm compared to the optimum. The dashed

curve indicates two times the optimum.
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