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Non-Abelian superconductors are novel systems with exotic quasiparticle ex-

citations, namely Majorana fermions, which obey non-Abelian quantum statistics.

They are exploited as hardware platforms for fault-tolerant topological quantum

computing. In this thesis, we primarily study the non-topological decoherence ef-

fects existing in realistic systems and how they affect the stability of topological

qubits and gates built from the Majorana quasiparticles. The main decoherence

effects are the tunneling splitting of the topological degeneracy, thermal excitations

and superconducting fluctuations which are not treated in the usual BCS mean-

field theory. We calculate the tunneling splitting between non-Abelian vortices in

both chiral p-wave superconductors and the superconductor/topological insulator

heterostructure, as a function of the inter-vortex distance, superconducting gap and

the Fermi energy. It is shown that besides the well-known exponential suppression,

the splitting also oscillates with the distance on the scale of Fermi wavelength. This

implies that the fusion outcome of two non-Abelian particles depends strongly on

microscopic details. We then investigate the robustness of topological qubits and



their braiding against thermal effects and non-adiabaticity, unavoidable in any re-

alistic systems. We apply the formalism of density matrix and master equation

and characterize the topological qubits in terms of physical observables. Based on

this formulation, we show that the topological qubits are robust against both lo-

calized and extended fermionic excitations even when gapless bosonic modes are

present. Finally, we explore the non-perturbative effect of strong fluctuations of

superconducting order parameter, when the mean-field description in terms of Bo-

goliubov quasiparticles is invalidated. We consider a model of two-leg ladder of

interacting fermions with only quasi-long-range superconducting order and derive

the low-energy effective field theory using bosonization techniques. We find that

although the whole spectrum is gapless, one can identify degeneracies of low-energy

states resulting from Majorana edge modes. In the presence of certain impurity

scatterings, we show that the splitting of the degeneracy has a power-law decay

with the size of the system.
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Chapter 1

Introduction

The subject of this thesis, the non-Abelian topological superconductors in

two-dimensional space, is unique in many ways: it represents the simplest possible

non-Abelian phase and the only one of the whole family of non-Abelian phases that

can be understood completely in terms of non-interacting fermions, while all other

cases require strong correlation. Although the BCS theory of superconductivity was

born almost sixty years ago and superconductors are among the most well-studied

condensed matter systems, it was only realized in 2000 that exotic non-Abelian

phases can emerge in superconductors. The non-Abelian nature manifests itself in

the unusual zero-energy excitations bound to topological defects such as vortices.

Despite the theoretical interest, the study of non-Abelian superconductors is largely

driven by a potential application to quntum computation, since non-Abelian ex-

citations may be exploited as the fundamental building blocks of a fault-tolerant

topological quantum computer.

The purpose of the this chapter is to give a brief but self-contained account of

the theory of non-Abelian topological superconductors. We will address the follow-

ing questions:

1. What is a topological phase and how can a superconductor be topological?

1



2. What are non-Abelian statistics?

3. How is a non-Abelian superconductor related to quantum computation?

1.1 Topological Phases: An Overview

The 1980 discovery of Integer Quantum Hall Effect [1] opened the door to

the fascinating world of topological phases in condensed matter systems. The re-

markably precise quantization of Hall conductance, insensitive to many microscopic

details such as disorder and geometry, is the first example of the “universal”, exact

features common in topological phases, that are robust against any small perturba-

tions to the system. The even more striking discovery of fractional quantum Hall

effect [2] led to the conceptual formulation of the notion of topological order [3].

To understand its meaning, let us take a grand view of gapped quantum phases.

In one sentence, topological order can be regarded as a “periodic table” of all gapped

phases. Well-known examples of gapped phases are insulators: band insulators,

Mott insulators, etc. All the excitations in these phases are gapped so correlation

functions of any local observables decay exponentially in the limit of large space-time

separation. However, it does not mean that they are all alike: IQH states, albeit

gapped, have quantized Hall conductance while ordinary band insulators do not.

Therefore a more refined notion of the equivalence classes between gapped quantum

phases is needed, which is provided by the concept of adiabatic continuity [4]. Two

gapped quantum phases are said to be adiabatically connected, if there exists a

parameter path to connect their Hamiltonians such that the spectral gap is not
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closed throughout the path. If one adiabatically follows the path of the Hamiltonian,

the ground state smoothly evolves from one to the other. It is also clear that

under such equivalence relations, there has to be a quantum phase transition if one

wants to connect two different gapped phases. Interestingly, although it seems very

natural to consider adiabatic continuity between gapped phases, historically the first

application of adiabatic continuity in condensed matter physics was Landau’s Fermi

liquid theory [5, 6], where a Fermi liquid is in fact defined as a state adiabatically

connected to a non-interacting Fermi gas, a gapless phase.

Topological phases are then defined as those gapped phases that can not be

adiabatically connected to trivial phases. One may wonder what are trivial phases

to be compared with. The canonical example of a trivial gapped phase is an atomic

insulator, in which all electrons occupy localized atomic orbitals and the many-body

wavefunction is just a Slater determinant of all real-space atomic orbitals. This

definition of topological phases is quite general since we have not even invoked any

physical characterizations. Theoretically, it is an extremely complicated problem to

find all topological phases. Still, after thirty years of research, our understanding of

topological phases has been greatly enriched [7, 8].

The above definition of topological phases gives no hint on how to charac-

terize topological phases physically. It defines topological phases by what they are

not. Conventionally, phases of matter are often associated with broken symmetries,

characterized by local order parameters and correlation functions. This conven-

tional approach has been very successful in describing many solid state systems

such as magnets, superfluids and superconductors, but completely fails for topologi-
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cal phases, since in general topological phases can exist without the presence of any

symmetries. As we have mentioned, since all topological phases are gapped by defi-

nition, measurements of correlation functions can hardly tell us anything. So far we

are not aware of any “universal” physical characterizations that apply to all topo-

logical phases. However, generally there are two types of physical characterization

that are commonly found: first, topological phases often support gapless boundary

modes when they are put on a manifold with open boundary, robust against any

local perturbations. For example, the edge of IQHE supports a one-dimensional chi-

ral Fermi liquid and FQHE has gapless edge modes described by a chiral Luttinger

liquid [9, 10]. The existence of gapless edge modes is closely related to the quan-

tization of Hall conductance. Second, topological phases can exhibit fractionalized

quasiparticle excitations that carry fractional charges or anyonic statistics [11, 12].

We will discuss anyonic statistics in great detail in the next section. Each can be

considered as a sufficient condition of topological phases, but not necessary.

1.2 Exchange Statistics and Anyons

Most of us have been familiar with the fact that nature only permits two kinds

of exchanges statistics for indistinguishable particles: Bose-Einstein statistics and

Fermi-Dirac statistics. The usual argument leading to this statement is the following:

after exchanging a pair of identical particles, the many-body wavefunction can only

acquire a phase factor eiφ because the configurations of the system before and after

the exchange are the same. Since two exchanges must bring the system back to
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its original configuration, we require e2iφ = 1 and thus eiφ = ±1, corresponding to

bosonic or fermionic statistics. Although intuitively the argument is sound, there is

a deep subtlety which only became clarified in the late 1970’s [13]. Namely, the fact

that two exchanges equal an identity is a topological argument and only holds for

spatial dimension d ≥ 3. It is no longer true if d = 2 (d = 1 is another story since

the notion of exchange statistics is not even defined).

Mathematically, exchange statistics is related to the homotopy classes of the

world-line trajectories of identical particles starting and ending at the same spatial

configurations. The configuration space of N identical hard-core particles living in

d-dimensional space Rd is

CN =
RNd −∆N

SN
. (1.1)

Here ∆N = {(x1, · · ·xN) ∈ RNd |xi = xj for some i, j} is removed because of the

hard-core condition. SN , being the permutations group of N elements, is taken out

to account for the indistinguishability of the particles. Trajectories that correspond

to exchanges of particles correspond to “loops” in the many-particle configuration

space CN , and therefore classified homotopically by the first fundamental group

π1(CN). When quantizing the system using the path integral formalism [14] and

“summing over all paths” to get the transition amplitude between different states,

we clearly see that each path can be associated with an amplitude that is completely

determined by the homotopy class of the path [15]. This “topological term” precisely

represents the exchange statistics of identical particles. They must form unitary rep-

resentations of π1(CN) since quantum evolution is unitary. Although oftentimes only
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one-dimensional representation is considered, there is no reason to exclude higher-

dimensional representations. The whole subject of this thesis is about the physical

realization of a two-dimensional irreducible representation of the fundamental group

π1(CN) for d = 2.

The physical universe has d = 3 (as far as condensed matter system is con-

cerned) and π1(CN) = SN [16]. It is known mathematically that SN has two one-

dimensional representations: the trivial one, corresponding to Bose-Einstein statis-

tics and the “alternating” one corresponding to Fermi-Dirac statistics. Higher di-

mensional representations are possible but they are just disguised versions of bosonic

and fermionic statistics with internal degrees of freedom [17].

If d = 2, π1(CN) is no longer isomorphic to SN . Since the wordlines of particles

are just curves in (2+1)-dimensional spacetime and exchanging particles “braids” the

wordlines, π1(CN) is called the braid group, denoted by BN and exchange statistics

is often referred as braiding statistics. To represent the braid group, we need N −

1 generators σi which are physically nothing but counterclockwise braiding two

neighboring particles, subject to the following relations:

σiσj = σjσi, |i− j| > 1

σiσi+1σi = σi+1σiσi+1.

(1.2)

Recall in the beginning of this section we gave the textbook argument why

there are only bosonic and fermionic statistics when d = 3. The argument translates

to the mathematical statement that if we supplement the definition of the braid

group (1.2) with σ2
i = 1, the braid group reduces to the permutation group.

The study of unitary representations of the braid group is a rich subject of
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mathematics. It is easy to check that D[σi] = eiθ gives one-dimensional unitary

representation of BN . Since θ can be any real number besides 0 and π, particles

obeying this kind of statistics are called “anyons” [18]. Even more interesting are

multi-dimensional unitary representations. Contrary to the d = 3 case, here multi-

dimensional representations can not be reduced to the one-dimensional ones by any

means. Physically, a multi-dimensional representation requires the Hilbert space of

several particles at fixed positions to be multi-dimensional. Particles with exchange

statistics being multi-dimensional representation of BN are named “non-Abelian

anyons” for obvious reasons [8]. Abelian and non-Abelian anyons arise in two-

dimensional many-body systems as low-energy, point-like “quasiparticles” and in

fact reflect the topological order of the underlying quantum phases. Topological

phases with non-Abelian excitations are called non-Abelian phases.

1.3 Chiral Topological Superconductors

Among all theoretical models of non-Abelian topological phases, the px + ipy

superconductor is probably the simplest one and the only one that can be formulated

completely in terms of non-interacting fermions, which not only allows a thorough

theoretical understanding but also provides guidance for experimental searches. In

this section we review the BCS mean-field description of chiral superconductors and

their general topological classification.

The “prototype” of all chiral TSC is the chiral px + ipy superconductor of
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spinless fermions, given by the following BCS Hamiltonian [19, 20]:

H =

∫
drdr′ ψ†(r)h(r, r′)ψ(r′) +

1

2

∫
drdr′ ψ†(r)∆(r, r′)ψ†(r′) + h.c.. (1.3)

ψ is the fermionic field operator. h(r, r′) contains the single-particle contribution,

such as kinetic energy and potential energy. ∆(r, r′) is the superconducting order

parameter. Due to the anti-commutation of the fermionic operators, the order

parameter must be odd under the exchange of the two coordinates: ∆(r, r′) =

−∆(r′, r). Otherwise the pairing term would vanish identically. A typical expression

for ∆(r, r′) with px + ipy pairing symmetry is the following:

∆(r, r′) = ∆0

(r + r′

2

)
(∂x′ + i∂y′)δ(r− r′). (1.4)

To solve the Hamiltonian, we perform a Bogoliubov transformation [21, 22]

ψ(r) = u(r)γ + v∗(r)γ†. (1.5)

To diagonalize the Hamiltonian, we require that [H, γ] = −Eγ where E is the

corresponding eigenenergy, which implies that u and v should solve the following

eigenvalue problem:

E

u(r)

v(r)

 =

∫
dr′

 h(r, r′) ∆(r, r′)

∆∗(r, r′) −hT (r, r′)


u(r′)

v(r′)

 (1.6)

The 2× 2 matrix HBdG

HBdG =

 h(r, r′) ∆(r, r′)

∆∗(r, r′) −hT (r, r′)

 (1.7)

is often called the BdG Hamiltonian. Due to the doubling of the degrees of freedom,

the BdG Hamiltonian satisfies a particle-hole symmetry [23]:

τxHBdGτx = −H∗BdG. (1.8)
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Here τx is the Pauli matrix acting on the particle-hole space. Notice that this

is an anti-unitary symmetry for the BdG Hamiltonian matrix since the complex

conjugation is involved. It implies that the solutions of BdG equation always come

in pairs: for each solution ΨE = (uE, vE)T with energy eigenvalue E, there is a

corresponding solution Ψ−E = τxΨ
∗
E with energy −E. In terms of the Bogoliubov

quasiparticles, we readily have γ−E = γ†E. This again confirms that the particle-hole

symmetry reflects the doubling of the degrees of freedom: creating a hole excitation

by γ†−E is equivalent to annihilating a particle excitation γE. The Hamiltonian is

now diagonalized using γ operators:

H =
∑
En>0

Enγ
†
nγn + E0. (1.9)

Here E0 = −1
2

∑
En>0En is a constant.

To reveal the topological nature of the px+ ipy superconductor, we first review

the general framework of the topological classification of superconductors. Here by

superconductor we mean fermionic systems described by BCS mean-field Hamilto-

nians. We do not assume any symmetries present in the system. Without loss of

generality we consider lattice models of fermions with periodic boundary conditions,

since any continuum model can be approached as a limiting case of a lattice model.

A generic BCS Hamiltonian can be expressed in the momentum space as:

H =
∑

k

Ψ†kHkΨk,Ψk =

 ψk

ψ†−k

 . (1.10)

Here k is the lattice momentum taking value in the first Brillouin zone. ψk can

have internal degrees of freedom, such as spin and orbital indices. Hk is the BdG
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Hamiltonian:

Hk =

hk ∆k

∆†k −hT−k

 (1.11)

hk is the single-particle Hamiltonian and ∆k represents BCS pairing. Notice that

hk must be a Hermitian matrix hk = h†k and the order parameter matrix ∆k always

satisfies ∆−k = −∆T
k . Let τx be the Pauli matrix in Nambu (particle-hole) space,

we have

τxHkτx = −

 hT−k −∆†k

−∆k hk

 = −H∗−k. (1.12)

The last equality is derived from h†k = hk,∆
∗
−k = −∆†k. This defines the particle-hole

symmetry represented by τx. A non-interacting fermionic Hamiltonian with such a

symmetry is said to be in the class D [23]. The Hamiltonian can be diagonalized

by Bogoliubov transformation, as we did for the spinless px + ipy superconductor.

The ground state is defined to be the state with no positive-energy Bogoliubov

excitations.

At the level of topological classification, it is useful to consider the supercon-

ducting ground state as a state in which all “hole”-like states(i.e. with negative

energy eigenvalue) are filled. It is in many ways like an insulator with the Hamil-

tonian matrix the same as the BdG Hamiltonian and the Fermi energy set to zero.

Assume Hk is a 2N × 2N matrix and for each k the negative energy eigenstates

(the “occupied” states) are denoted by |unk〉 where n = 1, . . . N . Mathematically,

the ground state wavefunction defines a U(1) vector bundle on the Brillouin zone,

which is a two-dimensional torus T 2 [24, 25, 26]. This vector bundle can be specified
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by constructing the ground state projection operator Pk =
∑

n |unk〉〈unk|. Topo-

logically, we can characterize such a vector bundle by its first Chern number C [27],

which is the integral of the first Chern character:

ch1(F) = Tr

(
iF
2π

)
, (1.13)

and

C =

∫
T 2

ch1(F) =
1

2π

∫
T 2

Fk. (1.14)

Here Fk is the curvature form derived from the connection one-form:

Ak = i
∑
n

〈unk|∇|unk〉. (1.15)

There are a couple of equivalent representations of the Chern number. It can

expressed solely in terms of the ground state projector [24]

C =
1

2πi

∫
Tr(PkdPk ∧ dPk) =

1

2πi

∫
dk Tr

[
Pk

(
∂Pk

∂kx

∂Pk

∂ky
− ∂Pk

∂ky

∂Pk

∂kx

)]
. (1.16)

The first Chern number has very intuitive physical meaning. Any supercon-

ducting system with a non-zero Chern number support chiral Majorana edge modes,

the number of which is equal to the Chern number [19]. The Majorana edge mode

carries energy, leading to quantized thermal Hall effect [19]. It also determines the

existence of unpaired Majorana zero modes in topological defects, which will be

discussed later.

We now apply the formula to the spinless px + ipy superconductors with only

one band, so the BdG Hamiltonian is a 2× 2 matrix. We write the Hamiltonian in

terms of Pauli matrices in Nambu space:

Hk = dk · τ . (1.17)
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The projector is then given by

Pk =
1

2

(
1 +

dk · τ
|dk|

)
. (1.18)

Denote d̂k = dk/|dk| as the normalized d vector, we find

C =
1

4π

∫
d2k d̂k ·

(
∂d̂k

∂kx
× ∂d̂k

∂ky

)
. (1.19)

This formula has a simple geometrical interpretation. The normalized vector d

defines a mapping from the Brillouin zone T 2 to the two-dimensional unit sphere

S2 and the integral is nothing but the area of the image of T 2. Since the total area

of the unit sphere is 4π, C actually counts how many times the image of the torus

is “wrapped” around the sphere. It is also known as the degree of the mapping in

mathematics.

For px + ipy superconductors, the d vector is given by dk = (∆kx,−∆ky,
k2

2m
−

µ). Direct evaluation of the integral yields

C =


1 µ > 0

0 µ < 0

. (1.20)

Therefore px + ipy superconductor is topological with Chern number 1 if the Fermi

energy is above the band bottom. More generally, if the pairing order parameter

∆(k) ∝ (kx + iky)
n and µ > 0, the Chern number is n.

Evaluating the Chern number analytically is a cumbersome task if the super-

conductor has multiple bands. Fortunately, there is a great simplification if we only

want to know the parity of the Chern number which determines whether the super-

conductors have non-Abelian excitations or not [28, 29]. We present the formula
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here and leaves its proof to Appendix A:

(−1)C =
∏
K

Pf[HKΞ]. (1.21)

Here the product is taken over all symmetric points K satisfying K ≡ −K in the

first Brillouin zone.

1.4 Majorana Zero Modes and TQC

As we have reviewed in the previous section, superconductors have particle-

hole symmetry as a result of the redundant representation. The energy spectrum is

symmetric with respect to zero and γ−E = γ†E. Thus the zero-energy states are very

special because γE=0 = γ†E=0. Such a quasiparticle is self-conjugate, being identical

to its “antiparticle”. Given two self-conjugate quasiparticles at E = 0 denoted by

γ1 and γ2, it is straightforward to check that they still obey fermionic commutation

relation: {γi, γj} = δij. It immediately follows that γ2 = 1
2
. Such self-conjugate

fermionic quasiparticles are called Majorana fermions(MF). Loosely speaking it can

be regarded as half of an ordinary fermion, since an ordinary fermion can always

be represented as two degenerate MFs: given a fermion annihilation operator c

satisfying {c, c†} = 1, we can form two MFs γ1 = c+c†√
2
, γ2 = c−c†√

2i
and c = γ1 + iγ2.

One may then wonder what is special about MF here in a topological supercon-

ductor since they are just the usual fermionic operators in disguise. It is important

to clarify that what we are interested are unpaired (non-degenerate), localized Ma-

jorana fermionic excitations, which can not be obtained by naively rewriting a usual

fermionic operator as two MF operators. The particle-hole symmetry ensures that
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MF has zero excitation energy, implying a vanishing superconducting gap at where

the MF emerges. Thus the zero-energy MFs can only exist at “defects” in the su-

perconducting order parameter, such as domain walls or vortices. These defects can

be spatially very well separated. Then one can form an ordinary fermion out of two

Majorana fermions very far from each other, a highly non-local object. This non-

local fermionic mode can be occupied or empty, yielding two degenerate many-body

states. When there are 2N Majorana fermions, we can group them pairwise and

construct the Hilbert space from the N fermionic modes, leading to 2N degenerate

states. If there are no other zero-energy modes in the system, there is a further

superselection rule that the total fermion parity must be fixed. States with differ-

ent global fermion parity belong to different superselection sectors and can not be

connected by any physical matrix elements. Thus the actual degeneracy is reduced

to 2N−1. These degenerate states have no difference if only local measurements are

concerned. The only way to distinguish them is to measure the fermion parity stored

in pairs of topological defects, which certainly requires non-local measurements. We

therefore call such degeneracy “topological degeneracy”.

For spinless px + ipy superconductors, a Majorana zero mode can be found

in the core of an Abrikosov vortex [30, 22] around which the phase of the order

parameter winds by 2π:

∆0(r) = f(r)eiϕ. (1.22)

Here (r, ϕ) is the polar coordinate of the two-dimensional plane. f(r) represents the

profile of the order parameter. One can explicitly solve the BdG equation to find
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the zero mode (see Chapter 3 for details). Besides the zero modes, there are other

eigenstates with energy eigenvalues well below the bulk gap, the so-called midgap

states [31, 32, 33, 34]. A semiclassical argument, treating the vortex core as a hole

of size ξ ∼ vF
∆0

, gives an estimate of the energy of midgap states to be of the order

1
mξ2 ≈ ∆2

0

EF
where EF is the Fermi energy. As long as kF ξ � 1, this energy scale is

much smaller than the bulk gap.

1

2

2 1

Figure 1.1: Braiding of Majorana fermions bound to vortices.

We now demonstrate the very peculiar non-Abelian braiding statistics of MFs

in superconducting vortices, first derived by Ivanov [35]. It is crucial to keep track of

the branch cut where the superconducting phase jumps by 2π to uniquely define the

superconducting phase everywhere (except at the vortex cores). Pictorially we can

attach a “string” to each vortex, which goes all the way to infinity (or the system

boundary) to represent the branch cut. As the vortices are transported adiabatically,

the branch cuts are also “dragged” along with the vortices and we have to make sure

that the vortices do not cross the branch cuts, as depicted in Fig. 1.1. We denote the

local phases seen by vortices 1 and 2 by χ1 and χ2 respectively. Before the exchange,

χ1 = π+ 0+, χ2 = 0+ and after the exchange χ′1 = 2π− 0+, χ′2 = π+ 0+. The gauge

transformation then implies γ1 picks up a phase ei(χ1−χ′1)/2 = −1. Consequently,

γ1 is replaced by γ2 but γ2 is replaced by −γ1. We therefore conclude that the
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Majorana fermionic operators have the following transformation:

γ1 → γ2, γ2 → −γ1, (1.23)

which can be realized by a unitary transformation U12 = eiθ√
2
(1 + γ2γ1) = eiθe

π
4
γ2γ1 :

U12γ1U
†
12 = γ2, U12γ2U

†
12 = −γ1. (1.24)

The operator algebra determines U12 up to an Abelian phase. The Abelian phase is

not arbitrary if the superconducting vortices are deconfined excitations (i.e. there

are no long-range interactions between them except the topological ones). It is in

fact related to the topological spin of the non-Abelian vortex [24] and the value is

θ = −π
8
.

In summary, we have shown that 2N superconducting vortices in a non-Abelian

superconductor span a 2N−1-dimensional degenerate Hilbert space and braiding of

vortices results in unitary transformations given by U12. Both the degeneracy and

the braiding operations are topologically protected, immune to arbitrary local per-

turbations. Such non-Abelian vortices are called “Ising anyons”, due to its connec-

tion with Ising conformal field theory.

Kitaev [36] and Freedman et. al. [37] had the great insight that non-Abelian

anyons provide an ideal realization of a quantum computer: the ground state degen-

eracy due to multiple quasiparticles is exploited as qubits and quantum memory; the

braiding operations generate quantum gates on the qubits. Both the quantum infor-

mation stored in the qubits and the braiding operations are topologically protected,

thus eliminating errors at the hardware level.
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In the case of Ising anyons, 2N vortices can realize N−1 qubits. A topological

qubit thus requires at least 4 vortices. Let us label the four Majorana zero modes

as γi, i = 1, 2, 3, 4. We can construct two complex fermionic modes c1 = 1√
2
(γ1 +

iγ2), c2 = 1√
2
(γ3 + iγ4) and the degenerate states can be specified by the occupation

numbers of c1 and c2. Fixing the global fermion parity to be even, the two qubit

states can be specified by the occupation numbers in the fermionic states |00〉 and

|11〉 = c†1c
†
2|00〉. Braiding of the vortices generates π

2
rotations e±i

π
4
σx,y,z = 1√

2
(1 ±

iσx,y,z). The braids can be used to generate other single-qubit rotations, such as a

Hardamard gate H:

H =
1√
2

(σx + σz) =
1√
2

(1 + iσy)σz. (1.25)

So H can be implemented as a NOT gate (braiding twice) followed by another braid.

We can go on and consider two qubits constructed from six vortices and braidings

generate two-qubit gates in addition to single-qubit operations.

In addition, one also needs to find ways to read out the quantum information

stored in the topological qubits. Let us still take the Ising anyons as an example.

Since the qubit states are labeled by the fermion parity eigenvalues in pairs of

vortices, to read out the qubit is amount to measure the fermion parity contained in

a finite spatial region, which can be done typically by interferometry experiments [38,

39]. The basic idea is to exploit the fact that in a superconductor, when a fermion

goes around a superconducting vortex, a π Berry phase is experienced by the fermion

due to Aharonov-Bohm effect [40]. We have already made crucial use of this fact

when deriving the non-Abelian statistics of vortices in px+ipy superconductors. Now
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to measure the fermion parity, we need the “dual” version, the so-called Aharonov-

Casher effect [41], that when a superconducting vortex moves around a fermion it

also acquires a π Berry phase, which is almost a trivially obvious statement if we

put our reference frame on the fermion. Based on Aharonov-Casher effect one can

design appropriate interferometers to measure the fermion parity. For a detailed

exposition we refer the readers to Chapter 6.

However, it has been mathematically proved that the braiding operations can

not realize all possible single-qubit rotations. In fact, Bravyi has established [42]

that the Ising anyon computation model is an intersection of two classically simu-

latable models, quantum circuits with Clifford gates and fermionic linear optics. So

the computational power of Ising anyon model with braidings and measurements is

quite limited and is equivalent a classical computer. Thus, Ising anyons only offer

topologically protected quantum memory and a limited set of protected gates. Gen-

erally speaking non-topological operations are needed in order to perform universal

quantum computations [43]. There are also a number of interesting proposals to im-

plement universal quantum computation using Ising anyons in a fully topologically

protected way, e.g. by dynamically changing the topology [43], which we will not

go into details in this introduction.

1.5 Physical Realizations of TSC

In this section we discuss possible realizations of TSC. Although px+ipy super-

conductor is a rather simple model in theory, it turns out to be very challenging to
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find a realistic material in nature. Most electronic superconductors in metals have

s-wave pairing, which can be traced back to the electron-phonon mediated pairing

mechanism. To have the required p-wave pairing symmetry one clearly needs uncon-

ventional pairing mechanisms. There are a number of candidates, though, including

the 3He film in the superfluid A phase [44] and the oxide compound Sr2RuO4 [45].

Although a lot of experimental efforts have been taken, progress in identifying the

topological superconductivity/superfluidity in both systems is quite limited. Among

the many obstacles we just mention that in both cases, due to the spin degeneracy,

to observe a single Majorana zero mode requires creating a half-quantum vortex in

the superfluid [46], in which the phase of the order parameter and the Cooper pair

spin vector both wind by π. However this type of vortices are not thermodynam-

ically stable: Its free energy diverges logarithmically with the system size. This

apparently hinders the observation of Majorana excitations. In addition, the un-

conventional p-wave pairing symmetry, believed to be caused by ferromagnetic spin

fluctuations, results in very low superconducting transition temperature, making

the experimental setup very delicate.

Recent theoretical progress has revealed a completely new avenue towards re-

alizing chiral p-wave superconductivity, which becomes by far the most promising

direction in the search of non-Abelian superconductivity. The approach is to en-

gineer chiral p-wave superconductor from conventional materials instead of trying

one’s luck in nature. In particular, the stringent requirement of the p-wave pairing is

removed and all the proposals only involve ordinary s-wave superconductivity. In the

following we discuss three independent different proposals for the pratical realiza-
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tions of the chiral p-wave superconductivity: i) topological insulator/superconductor

heterostructure [47] ii) cold fermionic atoms with s-wave interactions [48] iii) ferro-

magnet/semiconductor/superconductor heterostructure [49].

We first introduce the TI/SC heterostructure proposal. The surface states of

three-dimensional time-reversal-invariant topological insulators (TI) [50, 51, 52] are

described by a two-component Dirac Hamiltonian at low-energy:

Hsurface = vFσ · p− µ, (1.26)

protected by the nontrivial Z2 topological invariant in the bulk of the TI. We notice

that this Hamiltonian is formally nothing but a spin-orbit coupling term, resulting

in helical spin textures on the Fermi surface. Namely, the (in-plane) spin direction is

aligned to the momentum. Therefore the electronic states at opposite momentums

on Fermi surface have opposite in-plane spin projections, which allows s-wave pairing

to take place on a single Fermi surface, effectively generating p-wave pairing. Here

it is crucial to exploit the surface states because they are fundamentally different

from electronic dispersions arising from a true two-dimensional lattice model where

the “fermion doubling” phenomena usually occurs.

S-wave pairing is induced by depositing a 3D superconductor on top of the TI

surface. The full second-quantized Hamiltonian density is

H = ψ†[vFσ · (−i∇)− µ]ψ + ∆ψ†↑ψ
†
↓ + h.c. (1.27)

To make the connection to px + ipy superconductor more explicit, we assume µ > 0

and ∆� µ. So to understand the low-energy physics we can project to the electronic
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states near the Fermi circle. We first diagonalize the single-particle Hamiltonian:

E±(p) = ±vF |p| − µ. (1.28)

And the eigenvectors are given by |±,p〉 = 1√
2
(1,±eiθp)T . Projecting onto the +

band, we find the effective Hamiltonian is given by

Heff =
∑

p

f †p(vF |p| − µ)fp −
1

2
∆e−iθpf †pf

†
−p + h.c.. (1.29)

Here fp = 1√
2
(ψ↑p+e−iθpψ↓p). So in this basis, the chirality of the Dirac Hamiltonian

results in the px+ ipy pairing symmetry. However, we would like to remark that the

surface states do not break time-reversal symmetry while px + ipy superconductors

break time-reversal symmetry.

We can further solve the corresponding BdG equation with superconducting

vortices and find a single Majorana zero-energy bound state in a hc
2e

vortex. The

explicit solution is displayed in Chapter 3.

We now turn to the second proposal, where effective p-wave pairing is realized

in cold fermionic atoms [48]. The idea is that for spin-1/2 fermions, a single Fermi

surface can be created by simply applying a Zeeman field to polarize the fermions

and tune the Fermi energy in the Zeeman gap. Notice that the Zeeman splitting

explicitly breaks the time-reversal symmetry for spin-1/2 fermions. S-wave interac-

tions between the fermions lead to the formation of a BCS superfluid with s-wave

singlet pairing. So Rashba spin-orbit coupling is needed to allow pairing on the same

Fermi surface. Therefore we are led to the following theoretical model describing

spin-orbit coupled fermions subject to a Zeeman field and s-wave superconducting
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Figure 1.2: Illustrations of the two heterostructure that support Majorana

excitations: (a) a superconductor-topological insulator heterostructure, (b) a

superconductor-semiconductor-magnetic insulator heterostructure. Reproduced

from Bonderson, Das Sarma, Freedman and Nayak, arXiv:1003.2856
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pairing:

H = ψ†
(

p2

2m
− µ+ α(σ × p) · ẑ + Vzσz

)
ψ + gψ†↑ψ

†
↓ψ↓ψ↑. (1.30)

Here m is the mass of the atoms, α is the strength of spin-orbit coupling and Vz

the Zeeman splitting. We have chosen the cold atomic gas to be confined in the xy

plane. Experimentally, Rashba spin-orbit coupling can be engineered by a variety

of ways [53, 54, 55, 56, 57].

The interaction can be treated by the standard BCS mean-field theory. A

careful analysis of the pairing symmetry reveals that even in the presence of spin-

orbit coupling, the short-range interaction we use in (1.30) only gives rise to s-

wave singlet pairing [48, 58]. So we can proceed with the following mean-field

Hamiltonian:

HMF = ψ†
(

p2

2m∗
− µ+ α(σ × p) · ẑ + Vzσz

)
ψ + ∆ψ†↑ψ

†
↓ + h.c.. (1.31)

The value of the s-wave gap ∆ can be determined self-consistently from the gap

equation.

Intuitively, the Zeeman field opens a “magnetic” gap 2|Vz| at the band crossing

point k = 0. When the Fermi level lies within the Zeeman gap, there is only one

Fermi surface, a “parent” state of chiral p-wave superconductor. To determine

precisely the condition under which TSC exists, we need to calculate the parity of

the Chern number using the Pfaffian formula (1.21), and the result is

(−1)C = sgn(µ2 + ∆2 − V 2
z ). (1.32)

Therefore if V 2
z > µ2 + ∆2, the Chern number must be odd which ensures the

existence of unpaired Majorana zero modes in superconducting vortices. A more
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careful calculation shows that C = Θ(V 2
z − µ2 −∆2) where Θ is the step function.

Solving the BdG equation with a hc
2e

vortex confirms the existence of a Majorana

zero-energy bound state in the parameter regime V 2
z > µ2 + ∆2.

The last proposal can be regarded as a solid-state version of the previous

one [49]. We notice that the key ingredients of the mean-field Hamiltonian (1.31),

the spin-orbit coupling, Zeeman splitting and s-wave pairing, are known to occur

in many solid state systems. Two-dimensional electron gas with strong spin-orbit

coupling arise in semiconductor quantum wells, such as InAs. Zeeman splitting can

be introduced by proximity to a ferromagnetic insulator (a perpendicular magnetic

field can also work, but it brings in unwanted orbital effect). S-wave superconduc-

tivity can be simply induced by superconducting proximity effect. We therefore

have a “sandwich”-like heterostructure consist of a ferromagnet, semiconductor and

a s-wave superconductor, as depicted in Fig. 1.2. The Hamiltonian for the semicon-

ductor is essentially the same as given in (1.31) and TSC occurs when V 2
z > µ2 +∆2.

It is an appealing proposal because the materials involved are all conventional and

well-studied in solid state physics.

So far we have focused on two-dimensional systems. By dimensional reduc-

tion (e.g. putting a confining potential along one of the dimensions), one can go

smoothly from two-dimensional TSCs to their one-dimensional descendants. Fol-

lowing our previous discussions, it is quite natural to envision engineering het-

erostructures to realize one-dimensional p-wave superconductors. For example, if

we pattern the superconductors on the surface of a three-dimensional topological

insulator to form a SC/TI/SC line junction, it has been shown to lead to one-
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dimensional non-chiral Majorana modes [47]. Just as the spinless px + ipy super-

conductor is the prototype of most two-dimensional non-Abelian superconductors,

its one-dimensional descendant, spinless fermions with p-wave pairing, can be con-

sidered as the prototype model of all one-dimensional topological superconductors,

where Majorana zero-energy bound states are found at the ends of the topological

regions [28]. Similarly, one can realize one-dimensional p-wave superconductor in

semiconductor nanowire/superconductor heterostructures [59, 60]. An great advan-

tage of the one-dimensional realization is that the Zeeman field can be applied along

the wire, thus avoiding the destructive orbital effect without the need to introduce

the second interface to a ferromagnet.

The proposals have stimulated a burst of theoretical and experimental efforts

to design and engineer low-dimensional electronic systems that behaves like chiral

px + ipy superconductors [61, 62, 63, 64]. Quite recently, the proposal involving

semiconductor nanowire/superconductor structure [59] has been claimed to be re-

alized in experiments and possible signatures of the desired Majorana zero modes

have been reported [65, 66, 67, 68].

1.6 Decoherence and Stability of Majorana Qubits

Ideally, a topological quantum computer based on non-Abelian anyons is free of

any errors and decoherence. This is because only the topological degrees of freedom

are used to build the quantum computer and non-topological degrees of freedom do

not participate in the low-energy physics. However, in reality this idealized scheme
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can only be regarded as an approximation, although a very good one. Understanding

quantitatively the non-topological aspects of topological qubits is of fundamental

importance to the practical implementation of topological quantum computation.

A large part of this thesis will be devoted to the study of problems related to this

topic. We briefly review the subject here in the context of Majorana qubits.

We first consider the stability of Majorana zero modes. Due to the particle-

hole symmetry, the only way a single Majorana fermion can decohere is to couple

to another Majorana fermion since it has no internal degrees of freedom. Given a

Majorana fermion γ, one can write a mass term:

Hmass ∝ iγ(uψ + u∗ψ†). (1.33)

Here u is a complex number and ψ is a fermion. However, since there is a super-

conducting gap everywhere in the bulk except at the defect where the Majorana

fermion resides, any other single-particle excitation must have a gap. The above

Hamiltonian (1.33) is thus irrelevant at energy below the bulk gap. We therefore

conclude that a single Majorana fermion in a gapped superconductor is stable. On

contrary, two or more Majorana fermions are generically not stable, since one can

pairwisely gap them out. They can be stabilized if there is a certain symmetry in

the system that prohibits the mass term.

The existence of a bulk gap for single-particle excitations plays a crucial role for

the stability of Majorana fermions. In fact, it implies an important conservation law

in fermionic systems. In a superconductor, due to the condensation of Cooper pairs

the total fermion number is not conserved: adding or removing a Cooper pair, which
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is formed out of two fermions, does not cost any energy. However, the parity of the

fermion number is conserved at low energy since exciting a single particle/hole costs

a lot of energy. The conservation of the discrete physical observable, the fermion

parity, plays an important role not only in protecting the Majorana fermions from

developing a gap but also the measurement of the topological qubits. We give here

a concise derivation of the non-Abelian statistics of Majorana fermions based on

fermion parity conservation. Let us consider adiabatically exchanging two Majorana

fermions γ1 and γ2, the net effect of which is a unitary transformation U . Since

before and after the exchange the configuration is exactly the same, we expect the

Majorana nature of the excitations remains intact. Therefore,

Uγ1U
† = s1γ2, Uγ2U

† = s2γ1. (1.34)

Here s2
1 = s2

2 = 1, required by the Majorana condition γ2
1,2 = 1. It follows that

Uiγ1γ2U
† = −s1s2 · iγ1γ2. (1.35)

Since iγ1γ2 = 1 − 2c†c measures the fermion parity, it should be invariant through

the entire process of the adiabatic braiding. Therefore we must have s1s2 = −1, i.e.

s1 and s2 must have opposite signs. We therefore reproduce the Ivanov’s rule derived

previously for Majorana fermions in superconducting vortices. The implication is

that the non-Abelianess of the braiding is closely related, or even a consequence of,

the conservation of fermion parity and the adiabaticity of the braiding process.

There are a number of ways that the fermion parity protection can be spoiled.

We have mentioned that in any realistic superconductors Majorana fermions must

come in pairs, but they can be very well separated from each other. The couplings
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between these Majorana fermions, which is equivalent to the process of tunneling of a

Majorana quasiparticle from one place to another, split the topological degeneracy.

The energy splitting determines the fusion channel of two non-Abelian vortices.

However, such tunneling process has to overcome the bulk gap, very similar to

tunneling of a quantum-mechanical particle through a potential barrier that is higher

than its kinetic energy. So the splitting is exponentially suppressed in the topological

phase as e−R/ξ where R is the separation between anyons and ξ is the correlation

length (the coherence length in a superconductor).

Another possibility is thermal excitations of non-Majorana fermionic modes.

The process (1.33) has non-vanishing probability to occur at finite temperature and

as such, represents a thermal decoherence of Majorana qubits. This issue is partic-

ularly pronounced when there are low-energy (but not zero) bound states present

together with the Majorana zero-energy states which is the case in superconducting

vortices.

At a more fundamental level, the BCS theory which all our discussions are

based on, is a mean-field theory neglecting all quantum and thermal superconduct-

ing fluctuations. In three-dimensional electronic superconductors the fluctuations

are gapped due to the famous Anderson-Higgs mechanism [69] and the relevant

energy scale is the plasmon frequency. However, since non-Abelian topological su-

perconductors all exist in dimensions smaller than three, the fluctuation effect needs

to be reconsidered. For example, in quasi-two-dimensional superconductors the Lon-

don penetration length is inversely proportional to the thickness of the system. In

the limit of vanishing thickness, the superconducting fluctuations are essentially
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gapless and should not be neglected for low-energy physics.

1.7 Outline of the Thesis

In this thesis, we present a systematic study of non-Abelian topological su-

perconductors, focusing on the interplay between non-topological aspects and the

topological degrees of freedom, motivated by the question of how these non-universal

effects affect topological quantum computation. The model system that is primarily

concerned is the chiral p-wave superconductor.

In Chapter 2 we address the question of how chiral p-wave superconductivity

arises from microscopic lattice models with four-fermion interaction. By analyz-

ing the BCS energetics of a minimal “Hubbard” model of spinless fermions with

nearest-neighbor interaction on a two-dimensional lattice, we show that the pairing

symmetry selected by the energetics strongly depends on the spatial symmetry. We

prove a general theorem specifying a set of necessary conditions that guarantees the

existence of chiral p-wave superconductivity.

In Chapter 3, we review the Majorana bound states as zero-energy solutions

of BdG equations when a superconducting vortex is present in the order parameter.

These analytical expressions will be used frequently in the rest of the thesis.

From Chapter 4 we turn to the study of non-topological effects. In Chapter 4

we calculate the splitting of topological degeneracy due to quasiparticle tunneling

when there are multiple non-Abelian vortices. We devise a WKB-like method to cal-

culate the energy splitting for px+ ipy superconductors and also TI/Superconductor
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heterostructure. The splitting shows interesting oscillations with inter-vortex sepa-

ration besides the well-known exponential decay. The implication of such oscillation

on the fusion of non-Abelian anyons is discussed.

In Chapter 5 we consider the thermal effects on the stability of Majorana-based

topological qubits. Thermal excitations of subgap states and possibly the contin-

uum states can change the quantum information stored in the topological qubits

resulting in qubit decoherence. We first consider the effect of thermally excited sub-

gap, localized states and by exploiting a density matrix formulation show that the

topological qubits are robust against this type of thermal excitations. However, they

do have a destructive effect on the read out of qubits which is demonstrated explic-

itly in a measurement scheme based on vortex interferometry. We then analyze the

depolarization of qubits due to coupling to a fluctuating environment modeled by

a collection of bosonic modes and derive the master equation for the reduced den-

sity matrix of the topological qubit. The decay rate is shown to be exponentially

suppressed at temperatures much lower than the bulk gap.

In Chapter 6, we ask the question of what is the correction to the braid-

ing operations due to non-adiabaticity. To answer this question, we develop the

framework of time-dependent Bogoliubov equation to track the time evolution of

various physical quantities in terms of Bogoliubov wavefunctions. We then derive

analytical expressions for the time evolutions of the Majorana quasiparticles when

non-adiabaticity is taken into account, so tunneling splitting and fermionic excita-

tions can not be neglected.

In Chapter 7, we consider the effect of quantum fluctuations on Majorana
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zero modes. We study a one-dimensional descendant of a chiral p-wave supercon-

ductor where the effect of quantum fluctuations is mostly pronounced. We found

by bosonization technique that, in the absence of long-range superconducting order,

there can still be degeneracies of low-energy eigenstates that should be related to

Majorana zero modes on the edges. We show the explicit forms of the zero modes in

a strongly interacting but still exactly-solvable case, the Luther-Emery liquid. We

then discuss the stability of the zero modes under various perturbations.

In Chapter 8 we present our conclusions and discuss possible future research

directions and open problems.
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Chapter 2

Topological Superconductivity in Fermionic

Lattice Models

Topological SCs, most notably px + ipy models, have been considered in the

theoretical literature in great detail. However, the starting point of all theoretical

models has been a quadratic mean-field Hamiltonian, with a predetermined topo-

logical order parameter of interest, or equivalently a reduced BCS Hamiltonian with

exotic interactions that are difficult to imagine being realized in the laboratory.

Such models are capable of answering some key questions related to the properties

of a given topological phase, but they do not provide much guidance in the search

of Hamiltonians that would host those phases. In other words, these models are

sufficient to produce nontrivial topological order by design, but do not shed light on

the minimal necessary conditions for the emergence of topological order.

In this chapter we prove a general theorem that allows us to construct a large

family of lattice models that give rise to topological superconducting states. We

show that contrary to a common perception, the nontrivial topological phases do

not necessarily arise from exotic Hamiltonians, but instead appear naturally within

a range of simple models of spinless (or spin-polarized) fermions with physically

reasonable interactions. Our theorem is based on examining the BCS free energy
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of possible paired states which is known to be asymptotically exact for weak cou-

pling since BCS instability is an infinitesimal instability and the use of the Jensen’s

inequality, which ensures that topological phases are often selected naturally by

energetics.

2.1 Spinless Fermion Superconductivity in Two dimensions

We start our general discussion with the following single-band Hamiltonian for

spinless fermions

Ĥ=

∫
k∈BZ

ξkĉ
†
kĉk +

1

2

∫
q/2,k,k′∈BZ

fkk′,qĉ
†
k+qĉ

†
−kĉ−k′ ĉk′+q, (2.1)

where ĉ†k/ ĉk are the fermion creation/annihilation operators corresponding to mo-

mentum k, “BZ” stands for “Brillouin zone,” ξk = εk−µ with εk being the dispersion

relation of the fermions and µ the chemical potential, and fk,k′,q describes an inter-

action, which is assumed to have an attractive channel.

We assume that the Hamiltonian (2.1) arises from a real-space lattice or con-

tinuum model and is invariant with respect to the underlying spatial symmetry

group, which we denote as G, and the time-reversal group, T. We note that in two

dimensions (2D) the range of possible spatial groups, G, is limited to the following

dihedral point-symmetry groups: D1, D2, D3, D4, and D6 in the case of a lattice or

orthogonal group of rotations O(2) = D∞ in continuum. We recall that the group

Dn includes 360 ◦

n
-rotations and in-plane reflections with respect to n axes. The

superconducting order parameter is classified according to the irreducible represen-

tations of the full group T⊗G. Since, T = Z2, Z2⊗D1 = D2 and Z2⊗D3 = D6, we
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can confine ourselves to studying representations of D2, D4, D6, and O(2), which

exhaust all physically relevant possibilities.

2.1.1 BCS Mean Field Theory

Now, we define the superconducting order parameter as

∆k =

∫
k′∈BZ

f̃k,k′〈ĉ−k′ ĉk′〉, (2.2)

where f̃k,k′ = (fk,k′,q=0−fk,−k′,q=0)/2 is the antisymmetrized BCS coupling strength.

Using a Hubbard-Stratonovich decoupling in Eq. (2.1) with q = 0 and ignoring

superconducting fluctuations, we arrive at

ĤMF =

∫
k∈BZ

(
ξkĉ
†
kĉk +

1

2
∆kĉ

†
kĉ
†
−k +

1

2
∆∗kĉ−kĉk

)
− 1

2

∫
k,k′∈BZ

∆∗kf̃
−1
k,k′∆k′ , (2.3)

with f̃−1
k,k′ being the matrix inverse of f̃k,k′ . By integrating out the fermions we

find the BCS free energy functional expressed in terms of ∆. It contains two parts,

F [∆k] = FI + FII , with

FI [∆k] =−T
∫

k∈BZ

ln

[
2 cosh

1

2T

√
ξ2
k + |∆k|2

]
(2.4)

FII [∆k] = −1

2

∫
k,k′∈BZ

∆∗kf̃
−1
k,k′∆k′ . (2.5)

2.1.2 Topological Classification

As we have reviewed in Chapter 1, 2D superconductors in class D is charac-

terized by the topological invariant(the Chern number) as follows [70]

C =

∫
k∈BZ

d2k

4π
d · ∂kxd× ∂kyd, (2.6)
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where d ≡ (d1, d2, d3) = (<∆k,−=∆k, ξk)/Ek and Ek =
√
ξ2
k + |∆k|2. In fact it has

a geometric interpretation: this topological index classifies all maps from T 2 to S2

representing the unit vector d(k) into equivalent homotopy classes. We will call a

SC state topological, if C 6= 0.

The Chern number is equal to the sum of the winding numbers, C =
∑

σWσ,

which can be defined for each segment of the Fermi surface (FS), Pσ, as follows:

2πWσ =

∮
Pσ
∇kϕk · dk (2.7)

where ϕk is the complex phase of ∆k. Note that even though we assume a single-

band picture, a general situation is allowed where the FS is formed by one or more

disconnected components, FS =
∑

σ Pσ with σ = 1, 2. . . . , n.

To prove the relation between C and Wσ’s, we separate the closed Brillouin

zone, ∂(BZ) = ∂ (S1 × S1) = 0, into an “electron” region, EBZ = {k ∈ BZ : d3(k) > 0}

and a “hole” region, HBZ = {k ∈ BZ : m3(k) < 0}. The Fermi surface is a directed

boundary of these regions, FS =
∑

σ Pσ = ∂EBZ = −∂HBZ. One can show that

C =
1

2

 ∫
k∈EBZ

−
∫

k∈HBZ

∇k ×
[
d1∇kd2 − d2∇kd1

1 + |d3|

]
. (2.8)

Eq. (2.8) and the Stoke’s theorem [71] yield C =
∑

σWσ.

If Wσ = 0 for all σ, the complex phase of the pairing order parameter can be

gauged away via a non-singular redefinition of the fermion fields and corresponds to a

topologically trivial state. This however is impossible if at least one winding number

is non-zero. We will call such states time-reversal-symmetry breaking (TRSB) states.

The class of TRSB superconductors is larger than and includes that of closely related
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topological SCs. If there is just one singly-connected FS, the two types of states are

equivalent.

2.1.3 General Theorem of the Stability of chiral SC States

Now we examine the stability of TRSB SCs. The order parameter in a certain

channel corresponding to a dΓ-dimensional irreducible representation, Γ, of the group

T⊗G can be written as a linear combination of real eigenfunctions of Γ, φΓ
a(k) (with

a = 1, . . . , dΓ)

∆k =

dΓ∑
a=1

λaφ
Γ
a(k). (2.9)

In two dimensions, the number of irreducible representations to be considered is

highly constrained and includes only 1D and 2D real representations. In partic-

ular: (i) For a system with a four-fold rotational symmetry (e. g., arising from a

square lattice), the corresponding point group, D4, has only one space-inversion-odd

irreducible representation, E, which is two-dimensional; (ii) With a six-fold rota-

tional symmetry (e. g., due to a triangular or hexagonal lattice), there exist three

irreducible representations of D6 odd under space inversion: A 2D representation,

E1 (corresponding to a p-wave pairing) and two 1D representations, B1 and B2

(corresponding to two types of f -wave pairing). (iii) The continuum group, O(2),

has an infinite set of 2D real representations, classified by odd orbital momenta,

l = 1, 3, 5, . . ..

We now consider a pairing channel corresponding to a 2D representation of

T⊗G. There are two real eigenfunctions for this representation: φ1(k) and φ2(k).
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If the order parameter is proportional to either of them, it is real and corresponds

to a topologically trivial state with zero winding number. We prove below that such

a state is always unstable. The invariance of the Hamiltonian under T⊗G ensures

FNon−top = F [φ1(k)] = F [φ2(k)] (e. g., px- and py-states have the same energies in

continuum).

Let us show that one can always construct a new TRSB state with

φTRSB(k) =
1√
2

[φ1(k) + iφ2(k)]

that has a lower free energy than FNon−top. One can see from Eq. (2.5) that

FII [φTRSB(k)] = FII [φ1(k)] = FII [φ2(k)] because φ2
TRSB(k) = φ2

1(k)/2 + φ2
2(k)/2,.

To handle the less trivial “quasiparticle part” of the free energy (2.4) we take advan-

tage of the Jensen’s inequality which states that for any function with f ′′(x) < 0,

f(x/2+y/2) < f(x)/2+f(y)/2 for any x 6= y. The integrand in Eq. (2.4) for FI is a

concave function of x = |∆k|2 and therefore satisfies the Jensen’s inequality (which

after integration over momentum becomes a strong inequality for all physically rel-

evant cases). Since φ2
TRSB(k) = φ2

1(k)/2 + φ2
2(k)/2, we have proven that

F [φTRSB(k)] <
F [φ1(k)] + F [φ2(k)]

2
≡ FNon−top. (2.10)

This inequality (to which we refer to as “theorem”) represents the main result of

our work and proves that a TRSB phase is always energetically favorable within

a 2D representation. This is a strong statement that is completely independent of

microscopic details, such as hoppings and interactions, and relies only symmetry. It

leads, in particular, to the conclusion that any single-band spinless SC (and certain

models of spin-polarized SCs) originating from a square lattice with singly-connected
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FS must be a (p+ ip)-paired state. Similarly, any SC arising from spinless fermions

in continuum must be of a (2l+1)+ i(2l+1)-type, which is topologically nontrivial.

This includes all continuum models with attractive forces and conceivably some con-

tinuum models with weak repulsion that may give rise to pairing via Kohn-Luttinger

mechanism [72, 73, 74]. Since a large number of lattice fermion Hamiltonians at low

particle densities reduce to an effective single-band continuum model, it means that

at least in this low-density regime any paired state is guaranteed to be topological.

2.2 Lattice Models

To illustrate how our theorem manifests itself in practice, we examine specific

models within a large class of generic tight-binding Hamiltonians on a lattice

Ĥ = −
∑
r,r′

tr,r′ ĉ
†
rĉr′ − µ

∑
r

ĉ†rĉr +
∑
〈r,r′〉

Vr,r′ ĉ
†
rĉ
†
r′ ĉr′ ĉr,

where ĉ†r/ĉr creates/annihilates a fermion on a lattice site r. We note that this

real-space Hamiltonian reduces to a more general model (2.1) via a lattice Fourier-

transform. For the sake of concreteness, we focus below on the following two models

with nearest-neighbor hoppings, tr,r′ = tδ|r−r′|,1 and nearest-neighbor attraction,

Vr,r′ = −gδ|r−r′|,1 on (i) a simple square lattice and (ii) a simple triangular lattice.

2.2.1 Square Lattice

The square lattice case corresponds to the D4 symmetry group, which has only

a 2D representation. The attractive interaction guarantees that the ground state is a

SC [?] and the general theorem (2.10) guarantees that it is topologically non-trivial.
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Figure 2.1: The phase diagram for fermions on a square lattice with nearest-

neighbor hoppings and attraction (g/t=1). The phase boundary separates a normal

metal and a topological (px + ipy)-wave SC. The insets display FSs for µ < 0 (left)

and µ > 0 (right).

To see how this happens in the specific model, we define two independent order

parameters on horizontal and vertical links: ∆n = g〈ĉrĉr+en〉, where n = x or y

and en is the corresponding lattice vector (we use units where the lattice constant,

a = 1). These real-space order parameters are related to the momentum-space

definition (2.2) via ∆k = 2i
∑
α=x,y

∆αφα(k), with the BCS interaction being f̃k,k′ =

−g
∑
α=x,y

φα(k)φα(k′). Here we defined two eigenfunctions of the above-mentioned

2D representation of D4: φx,y(k) = sin (k · ex,y). It is straightforward to calculate

the BCS free energy given by Eqs. (2.4) and (2.5) for all possible order parameters

encompassed by the linear combinations ∆k = g [λxφx(k) + λyφy(k)], with arbitrary

λx,y ∈ C. We find that a px+ipy-superconducting state with λx = ±iλy is selected at
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all µ. Fig. 2.1 summarizes the phase diagram of the model on the µ−T plane. The

maximum Tc within the mean-field treatment occurs at half-filling. The tails of the

particle-hole symmetric phase boundary correspond to small “electron” and “hole”

densities, and therefore to continuum limit with the isotropic quadratic dispersion,

ξk = (k2 − k2
F) /(2m∗), the effective mass, m∗ = 1/(2ta2), and the Fermi momentum,

kFa =
√
|µ± 4t| /(2t).

It is useful to consider the continuum limit |µ± 4t| /t → 0 in more detail, as

it gives a valuable insight into stability of the topological phases. For this purpose,

we use standard perturbative expansion [75] in Eqs. (2.4) and (2.5) to derive the

Ginzburg-Landau free energy (per unit area):

1

A
FGL [∆0,S] = ν (T/Tc − 1) ∆2

0 +
7ζ(3)ν

8π2T 2
S−1∆4

0, (2.11)

where ν = m∗/(2π) is the density of states at the FS, Tc is the BCS transition

temperature, ζ is the Riemann zeta-function, ∆0 = g
√
|λx|2 + |λy|2 is the modulus

of the order parameter, A is the area of the sample, and we introduced a symmetry

factor, S, as follows [below, θk = tan−1 (ky/kx)]

S−1 =

∮
k∈FS

dθk

2π

|λxφx(k) + λyφy(k)|4

|λx|2 + |λy|2
. (2.12)

The minimal free energy below Tc is given by

FGL,min

A
= −
Smax

[
4πνT 2

c ln2 (T/Tc)
]

7ζ(3)
. (2.13)

Therefore, the absolute minimum is achieved by maximizing the symmetry factor, S.

In the continuum limit |k|a→ 0, we can approximate the normalized eigenfunctions

of D4, by φx(k) =
√

2 cos(θk) and φy(k) =
√

2 sin(θk). Hence, the topologically
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trivial px- and py-states lead to Spx,y = 〈4 cos4 θk〉−1
FS = 2/3, while the topological

states px ± ipy yield Spx±ipy =
〈∣∣e±iθk∣∣4〉−1

FS
= 1 > 2/3 and therefore are selected

by energetics. This fact is a special case of our general theorem summarized by

Eq. (2.10).

We note that the mean-field BCS-type model can formally be considered for

the extreme values of the non-interacting chemical potential |µ| > 4t, which is

not associated with a non-interacting FS. Hence, mean-field paired states in this

limit are not topological and correspond to the strong-pairing (Abelian) (p + ip)-

phase considered by Read and Green [19]. While such a mean-field BCS model

is sensible in the context of the quantized Hall state, it may be unphysical for

fermion lattice models. Indeed, the chemical potential, µ, is renormalized by non-

BCS interactions or equivalently by superconducting fluctuations originating from

the terms with q 6= 0 in Eq. (2.1). These strong renormalizations are bound to shift

µ towards the physical values with a reasonable Fermi surface, which in a metal is

guaranteed by Luttinger theorem. Hence, it is not clear whether the Abelian px+ipy

superconducting states may survive beyond mean-field. Due to these arguments, we

disregard here such case of non-topological px + ipy-paired states.

We now derive Bogoliubov-de Gennes equations from the lattice model. These

equations are often the starting point of discussions on bound states in a vortex

core [33, 76] and edge states [77]. To do so, we first present the fermionic mean-field

BCS Hamiltonian on a lattice as follows:

ĤMF =
1

2

∑
rr′

(
ĉ†rhrr′ ĉr′ − ĉr′hrr′ ĉ

†
r + ∆rr′ ĉrĉr′ + h.c.

)
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which is a real space version of Eq. (2.3) where ∆rr′ ≡ g〈ĉrĉr′〉 is the order parameter

on the bond (rr′) and hrr′ = −tδ|r−r′|,1 − µδrr′ is the matrix element of the single-

particle Hamiltonian. We then follow the standard route and introduce Bogoliubov’s

transform ĉr = γ̂ur + γ̂†v∗r and the commutation relation [ĤMF, γ̂] = −Eγ̂. This

yields gives the desired BdG equations

Eur =
∑
r′

(hrr′ur′ + ∆rr′vr′)

Evr =
∑
r′

(−∆∗rr′ur′ − hrr′vr′)

(2.14)

In principle, the order parameter ∆rr′ should be determined via solving BdG equa-

tion self-consistently. However, we know that in a homogeneous ground state the

order parameter has a px+ ipy-wave pairing symmetry, i.e., ∆y = ±i∆x. If there are

inhomogeneities in the system (e.g., vortices, domain walls) the pairing symmetry

(associated with the relative phase between ∆y and ∆x components) is not neces-

sarily px + ipy. But since this pairing symmetry is selected by energetics, we expect

such deviation to be irrelevant for low energy physics. Therefore we can assume that

the relation ∆y = ±i∆x holds for general configurations of order parameter at the

mean-field level. This is equivalent to separation of the Cooper pair wave function

into parts corresponding to the center-of-mass motion and relative motion.

Now we take the continuum limit of (2.14):
∑

r′ hrr′ur′ → ξ̂(−i∇)u(r) =

(−∇2/2m∗ − µ̃)u(r), where m∗ is the effective mass and µ̃ = µ+ 4t is the chemical

potential measured from the bottom of the band . To treat the off-diagonal part, we

formally represent the second term in Eq. (2.14.1) as follows
∑

r′ ∆rr′vr′ = ∆̂v(r),
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with the gap operator being

∆̂ =
∑
r′

∆rr′e
(r′−r)·∂r . (2.15)

The order parameter ∆rr′ , which “lives” on bonds, should be casted into only site-

dependent form as follows:

∆rr′ = ∆

(
r + r′

2

)
exp(iθr′−r) (2.16)

where θr′−r is the polar angle of r′ − r. Then, we expand (2.15) to first order in

|r′ − r| = a and obtain the familiar BdG equations in continuum:

Eu(r) = ξ̂(−i∇)u(r) + ∆̂v(r)

Ev(r) = ∆̂†u(r)− ξ̂(−i∇)v(r)

(2.17)

where the gap operator ∆̂ = a{∆(r), ∂x + i∂y}. An interesting question to be

addressed elsewhere is whether fluctuations and in particular deviations of pairing

symmetry from px + ipy play a role in the topological properties.

2.2.2 Triangular Lattice

We now address the very interesting case of a simple triangular lattice. Here

the D6 symmetry group has both a 2D representation (p-wave) and two 1D rep-

resentations (f -wave). Therefore, non-topological f -wave states are allowed. Low

“electron” densities correspond to a single circular-shaped Fermi surface and must

lead to the p + ip-wave pairing per the same argument as above. However, the

spectrum of the model is not particle-hole symmetric and at large fillings (with

µ > µ∗ = 2t), the electron Fermi surface splits into two hole-like Fermi pockets and
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maps onto an effective continuum model but with two fermion species:

Ĥ2h,eff =

∫
k

(ξkĥ
†
+,kĥ+,k + ξ−kĥ

†
−,kĥ−,k) + interactions, (2.18)

where ĥ±,k are fermion operators near the two pockets labeled by a pseudospin index

σ = ± and the spectrum is asymptotically given by

ξk = k2/2m+ α(k3
x − 3kxk

2
y)− EF, (2.19)

with k measured from the corner points of the hexagonal Brillouin zone. Note

that under a π or ±π/3 rotation, the spectrum transforms as ξk → ξ−k and this

symmetry is preserved if σ → −σ. This leads to a pairing analogous to the s-wave

pairing of spin-1/2 fermions, with the order parameter of the inter-pocket pairing

defined as ∆h = g
∫

k
〈ĥ+,kĥ−,−k〉. However, this is an f -wave pairing state, because

under a π/3-rotation, σ → −σ and ∆h(k) changes sign. Since the low-density

limit leads to a topological phase and the high-density limit leads to an f -wave

topologically trivial state, there must be a quantum phase transition in between.

The entire phase diagram can be derived using Eqs. (2.4) and (2.5) and the real-space

construction as follows: On a triangular lattice we can define three order parameters

on the nearest neighbor bonds corresponding to the three lattice vectors, en with

azimuth angles 2nπ/3 and n = 0, 1, 2: ∆n = g〈ĉrĉr+en〉. Two different types of

pairing channels are formed by these three order parameters: An f -wave channel

with ∆n = ∆ and a p-wave channel with ∆n = ∆e±2πin/3.

The resulting phase diagram is shown in Fig. 2.2. As expected, a topological

px + ipy-wave SC state with ∆n = ∆e±2πin/3 is stabilized at low fillings, while an
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Figure 2.2: The phase diagram for spinless fermions on a triangular lattice with

nearest-neighbor hoppings and attraction (g/t=1). The bottom of the band is lo-

cated at µ = −6t and the top is at µ = 3t; µ∗ = 2t corresponds to a van Hove

singularity. Two SC phases, with (px + ipy)- and f -wave symmetries are present.

They are separated by a first-order phase transition at µcr/t ≈ 1.057. The insets

(left to right) are the FSs for µ < µ∗, µ . µ∗, and µ > µ∗ and the dashed lines

indicate the nodal directions of the f -wave SC.
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f -wave state with ∆n = ∆ is favored at high densities. These phases are separated

by a first-order transition. As shown in Fig. 2.2, the van Hove singularity µ =

µ∗ gives rise to a maximal Tc and is located inside the f -wave superconducting

dome. This point represents another type of a quantum transition that separates

two qualitatively different topologically trivial paired states: (1) For µ < µ∗, there

is just one electron-type Fermi pocket that is cut by the nodes of the f -wave gap in

the directions, θ
(m)
node = mπ/3+π/6. This gives rise to gapless quasiparticles. (2) For

µ > µ∗, no FS can be cut and the nodal quasiparticles disappear. The phase becomes

fully gapped and eventually crosses over to the two-specie continuum model (2.18).

Experimentally, the two types of f -wave phases can be distinguished by different

T -dependence of the heat capacity.

We also present the Bogoliubov-de Gennes equations for the f -wave pairing

state in high-density limit µ → 3t. Their derivation goes along the same lines as

that given in Section 2.2.1 for px + ipy pairing SC. However, in the f -wave case, the

momentum space order parameter is given by ∆k = ∆(sin k·e1+sin k·e2+sin k·e3).

Therefore, the order parameter reads:

∆rr′ = ∆

(
r + r′

2

)
cos(3θr′−r).

Since e1 +e2 +e3 = 0, the leading term in the expansion is ∼ a3. With some algebra

one can show that the gap operator is

∆̂ =
a3

24

2∑
n=0

{∂n, {∂n, {∂n,∆(r)}}} (2.20)

with ∂n ≡ ∇ · en and the BdG equation takes the form of Eq. (2.17).
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2.3 Discussion and Conclusions

In conclusion, we discover that topological superconducting phases breaking

time -reversal symmetry emerge naturally within a large class of spinless fermion

models. The technique we apply here has a close relation to BCS mean field the-

ory of a spin-triplet superfluid 3He [78, 44], which concluded that the B-phase with

isotropic gap is stabilized compared to anisotropic A-phase (The A-phase can be

stabilized under high pressure. In this case, due to strong spin-fluctuations in liquid

3He, the ground state energy departs from the BCS theory, which is not a contra-

diction to our conclusion). However, we have shown that similar conclusion can be

generalized to any band structures, filling factors, and interactions, as long as the

system satisfies proper (discrete) rotational group symmetries. More importantly,

our proof is insensitive to the existence of the “nodes”. In continuum, it has been

argued that a px state is unstable against the px + ipy pairing state, because the

former has nodes thus having smaller condensation energy. However, the stability

of a nodeless px state, which could exists in lattice models, was unclear before this

our work.

We should also emphasize that although the discussions above focus on spinless

fermions, all the conclusions can be generalized to the triplet pairing channels of spin-

1/2 fermions, because these pairing channels also correspond to the space-inversion

odd representations of the symmetry group. In addition, we note that any pairing

state that spontaneously breaks a lattice rotational symmetry must have at least one

degenerate state for both spinless and spin-1/2 fermions. Our theorem indicates that
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these type of states must have a complex pairing order parameter to be energetically

stable.
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Chapter 3

Majorana Bound States in Topological Defects

In this chapter, we review the analytic solutions of the Bogoliubov-de Gennes

equation for Majorana zero modes in a px + ipy superconductor and at a topolog-

ical insulator/superconductor interface. From the explicit solutions we deduce the

generic Z2 classification of Majorana zero-energy modes in superconducting vortices,

as well as the Z classification for Dirac-type Hamiltonian when an additional chiral

symmetry is present. Some of the results are used in the later chapters.

3.1 Bound states in px + ipy superconductors

The BdG equation for px + ipy superconductor has been derived in:

HBdG

u(r)

v(r)

 = E

u(r)

v(r)

 , (3.1)

where the explicit form of the BdG Hamiltonian in real space is given by

HBdG =

 −∇
2

2m
− µ 1

kF
{∆(r), ∂x + i∂y}

− 1

kF
{∆∗(r), ∂x − i∂y}

∇2

2m
+ µ

 (3.2)

with anti-commutator being defined as {a, b} = (ab+ ba)/2.

The particle-hole symmetry of BdG Hamiltonian is represented by Ξ = τxK

withK being complex conjugation operator and τx being Pauli matrix in Nambu(particle-
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hole) space [76]. That is, if Ψ = (un, vn)T is a solution of Eq. (3.1) with eigenvalue

En, then ΞΨ = (v∗n, u
∗
n)T must be a solution with the eigenvalue (−En). Particularly,

a non-degenerate zero energy state must obey the following constraint: ΞΨ = λΨ.

Since Ξ2 = 1, it implies that λ = ±1. If λ = −1, we can make a global gauge

transformation and introduce Nambu spinors as Ψ′ = iΨ and then ΞΨ′ = Ψ′. Thus,

a non-degenerate zero energy state could always be made to satisfy u∗ = v in an

appropriate gauge.

We will now show that such zero energy states appear in the cores of vor-

tices in chiral p-wave superconductors. The localized states in the vortex cores are

known as Caroli-de-Gennes-Matricon states (CdGM) [32]. In conventional s-wave

superconductors all CdGM states have non-zero energies [79]. However, due to the

chirality of the order parameter px+ipy superconductors can host zero-energy bound

states [33, 79, 80, 76, 81]. Similar to the s-wave superconductors [32, 31], a vortex

with vorticity l(i.e. l flux quanta hc
2e

is trapped) can be modeled as

∆(r) = f(r)eilϕ, (3.3)

where ϕ is the phase of the order parameter and f(r) is the vortex profile which can

be well approximated by f(r) = ∆0 tanh(r/ξ) [31]. Here ∆0 is the mean-field value

of superconducting order parameter and ξ = vF/∆0 is coherence length. Taking

advantage of rotational symmetry, BdG equation can be decoupled into angular

momentum channels. The wave function can be written as

Ψm(r) = eimϕ(einϕum(r), e−inϕvm(r)), n =
l + 1

2
. (3.4)

As argued above, a non-degenerate zero mode requires ΞΨ = Ψ which can only be
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satisfied for m = 0. The singlevalueness of the wavefunction then requires l to be an

odd integer. We thus see that Majorana bound state only exist in vortices with odd

vorticity, which justifies the Z2 classification of Majorana zero modes in vortices.

The radial part of the BdG equations in m = 0 channel then reads − 1
2m

(∂2
r + 1

r
∂r − n2

r2 )− µ 1
kF

[
f(r)(∂r + 1

2r
) + f ′(r)

2

]
− 1
kF
f(r)

[
(∂r + 1

2r
) + f ′(r)

2

]
1

2m
(∂2
r + 1

r
∂r − n2

r2 ) + µ


u0(r)

v0(r)

 = 0. (3.5)

Given that the radial part of the BdG equation (3.5) is real, one can choose u0(r)

and v0(r) to be real. Then the condition ΞΨ0 = Ψ0 reduces to v0 = λu0 with

λ = ±1. Using this constraint, the differential equation for u0 becomes:{(
∂2
r +

1

r
∂r −

n2

r2

)
− 2mµ− 2λ

vF

[
f

(
∂r +

1

2r

)
+
f ′

2

]}
u0 = 0.

One can seek the solution of the above equation in the form

u(r) = χ(r) exp

[
λ

∫ r

0

dr′ f(r′)

]
, (3.6)

which leads to

χ′′ +
χ′

r
+

(
2mµ− f 2

v2
F

− n2

r2

)
χ = 0. (3.7)

Here the profile f(r) = ∆0 tanh(r/ξ) vanishes at the origin and reaches ∆0 away

from vortex core region. For our purpose, it’s sufficient to consider the behavior of

solution outside the core region where f(r) is equal to its asymptotic bulk value ∆0.

It is obvious now that λ = −1 yields the only normalizable solution.

When ∆2
0 < 2mµv2

F which is the case for weak-coupling BCS superconductors,

Eq.(3.7) becomes first order Bessel equation. Thus, the solution is given by Bessel

function of the first kind Jn(x):

χ(r) = N1J1(r
√

2mµ−∆2
0/v

2
F ), (3.8)
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where N1 is the normalization constant determined by the following equation

4π

∫
rdr |u0(r)|2 = 1. (3.9)

Evaluation of the integral yields:

N 2
1 =

8

3πk2
1ξ

4
2F1(3

2
, 5

2
; 3;−k2

1ξ
2)

(3.10)

with its asymptotes given by

N 2
1 ∼


8

3πk2
1ξ

4 k1ξ � 1

k1

2ξ
k1ξ � 1

. (3.11)

In the opposite limit ∆2
0 > 2mµv2

F , the solution of Eq. (3.7) is given by first

order imaginary Bessel function:

χ(r) = N2I1(r
√

∆2
0/v

2
F − 2mµ). (3.12)

The function In(r) diverges when r → ∞. But the radial wave function u0(r)

remains bounded as long as µ > 0. This is consistent with the fact that µ = 0

separates topologically trivial phase (µ < 0) and non-Abelian phase (µ > 0) [19].

We now give expressions for N2. Explicitly, it is given by

4πN 2
2

∫ ∞
0

rdr I2
1 (k2r)e

−2r/ξ = 1, (3.13)

where k2 =
√

∆2
0/v

2
F − 2mµ. Since µ > 0, k2ξ is always smaller than 1. We find N2

is given by

N 2
2 =

8

3πk2
2ξ

4
2F1(3

2
, 5

2
; 3; k2

2ξ
2)

(3.14)
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We summarize this section by providing an explicit expression for zero energy

eigenfunction:

Ψ0(r) = χ(r) exp

[
i
(
ϕ− π

2

)
τz −

1

vF

∫ r

0

dr′f(r′)

]
, (3.15)

where χ(r) is given by Eq.(3.8) for ∆2
0 < 2mµv2

F and Eq.(3.12) for ∆2
0 > 2mµv2

F .

Using the zero energy solution obtained for one vortex one can be easily write

down wave function for multiple vortices spatially separated so that tunneling effects

can be ignored. Assume there are 2N vortices pinned at positions Ri , i = 1, . . . , 2N .

The superconducting order parameter can be represented as

∆(r) =
2N∏
i=1

f(r−Ri) exp
[
i
∑
i

ϕi(r)
]
, (3.16)

where ϕi(r) = arg(r − Ri). Near the k-th vortex core, the phase of the order

parameter is well approximated by ϕk(r) + Ωk with Ωk =
∑

i 6=k ϕi(Rk) which is

accurate in the limit of large inter-vortex separation. Then in the vicinity of k-th

vortex core, a zero energy bound state can be found [20]:

Ψk(r) = e−iτz
π
2χ(rk) exp

[
− 1

vF

∫ rk

0

dr′f(r′)

]
exp

[
i

(
ϕk +

Ωk

2

)
τz

]
. (3.17)

where rk = |r − Rk|. Correspondingly, there are 2N Majorana fermion modes

localized in the vortex cores.

3.2 Bound states in the Dirac fermion model coupled with

s-wave superconducting scalar field.

We now discuss the zero energy bound states emerging in the model of Dirac

fermions interacting with the superconducting pairing potential. This model is
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realized at the interface of a 3D strong topological insulator having an odd number

of Dirac cones per surface and an s-wave superconductor [47]. Due to the proximity

effect an interesting topological state is formed at the 2D interface between the

insulator and superconductor. We will now discuss the emergence of Majorana zero

energy states at the TI/SC heterostructure [47]. This model was also considered

earlier in the high-energy context by Jackiw and Rossi [82].

Three dimensional time-reversal invariant topological insulators are character-

ized by an odd number of Dirac cones enclosed by Fermi surface [50, 52, 51]. The

metallic surface state is described by the Dirac Hamiltonian. The non-trivial Z2

topological invariant ensures the stability of metallic surface states against pertur-

bations which preserve time-reversal symmetry. When chemical potential µ is close

to the Dirac point the TI/SC heterostructure can be modeled as [47, 83]:

H = ψ̂†(vσ · p− µ)ψ̂ + ∆ψ̂†↑ψ̂
†
↓ + h.c, (3.18)

where ψ = (ψ↑, ψ↓)
T and v is the Fermi velocity at Dirac point. The Bogoliubov-de

Gennes equations are given by:

HBdGΨ(r) = EΨ(r) (3.19)

HBdG =

σ · p− µ ∆

∆∗ −σ · p + µ

 , (3.20)

where Ψ(r) is the Nambu spinor defined as Ψ = (u↑, u↓, v↓,−v↑)T . At µ = 0 the

BdG Hamiltonian above can be conveniently written in terms of the Dirac matrices:

HBdG =
∑
a=1,2

(γapa + Γana) . (3.21)
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Here γa and Γa are 4 × 4 Dirac matrices defined as γ1 = σxτz, γ2 = σyτz, and

Γ1 = τx,Γ2 = τy and n = (<∆,−=∆). One can check that these matrices satisfy

the following properties: {γa, γb} = {Γa,Γb} = δab and {Γa, γb} = 0. The fifth Dirac

matrix γ5 is given by γ5 = −γ1γ2Γ1Γ2 = τzσz.

As in the case of spinless px + ipy case, we first discuss the symmetries of

Eq.(3.20). The particle-hole symmetry is now Ξ = σyτyK where τ are Pauli matrices

operating in Nambu (particle-hole) space. The difference with the previous case is

the presence of time-reversal symmetry: Θ = iσyK, [Θ,HBdG] = 0 in this model.

Moreover, when µ = 0 there is additional chiral symmetry in the model which can be

expressed as {γ5,HBdG} = 0. Bogoliubov quasiparticles are defined from solutions

of BdG equations as

γ̂† =
∑
σ

∫
d2r (uσ(r)ψ̂†σ(r) + vσ(r)ψ̂σ(r)). (3.22)

If we require γ̂ to be a Majorana fermion, i.e. γ̂ = γ̂†, the necessary and sufficient

condition is vσ = u∗σ up to a global phase.

A vortex with vorticity l can be introduced in the order parameter as ∆(r) =

f(r)eilϕ. Rotational symmetry allows decomposition of solutions into different an-

gular momentum channels:

Ψm(r) = eimϕ



e−iπ/4χ↑(r)

eiπ/4χ↓(r)e
iϕ

e−iπ/4η↓(r)e
−ilϕ

eiπ/4η↑(r)e
−i(l−1)ϕ


.

We define Ψ̃0 = (χ↑, χ↓, η↓, η↑)
T for later convenience.
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Similar to the previous analysis, we first look for non-degenerate Majorana

zero-energy state. The Majorana condition ΞΨ ∝ Ψ fixes the value of m to be l−1
2

for odd l. For even l, there is no integer m satisfying Majorana condition so no

Majorana zero mode exists. The radial part of BdG equation then becomes Hr f(r)

f(r) −σyHrσy

 Ψ̃0(r) = 0 (3.23)

Hr =

 −µ v
(
∂r + m+1

r

)
−v
(
∂r − m

r

)
−µ

 . (3.24)

Here Ψ̃0 is assumed real. Since we are interested in non-degenerate solution, Ψ0 must

be simultaneously an eigenstates of σyτy (particle-hole symmetry). This condition

implies that η↑ = −λχ↑, η↓ = λχ↓ where λ = ±1. Taking into account above

constraints 4× 4 BdG equation reduces to −µ v
(
∂r + m+1

r

)
+ λf

−v
(
∂r − m

r

)
− λf −µ


χ↑
χ↓

 = 0. (3.25)

The solution of the above equation can be easily obtained for µ 6= 0:χ↑
χ↓

 = N3

 Jm(µ
v
r)

Jm+1(µ
v
r)

 e−λ
∫ r
0 dr′ f(r′). (3.26)

Obviously, we should take λ = 1 to make radial wave functions normalizable. Here

N3 is the normalization constant, which is determined by

4πN 2
3

∫ ∞
0

rdr
[
J2
m(
µ

v
r) + J2

m+1(
µ

v
r)
]
e−2r/ξ = 1, (3.27)

yielding

N 2
3 =

8

πξ2
[
8 2F1(1

2
, 3

2
; 1;−λ2)+3λ2

2F1(3
2
, 5

2
; 3;−λ2)

] (3.28)
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with λ = µξ/v. It has the following asymptotes:

N 2
3 ∼


1
πξ2 λ� 1

λ
2ξ2 λ� 1.

(3.29)

The case of µ = 0 is special due to the presence of an additional symmetry of BdG

Hamiltonian - chiral symmetry. For l > 0 the solution of Eq.(3.25) becomesχ↑
χ↓

 ∝
rm

0

 e−λ
∫ r
0 dr′ f(r′), (3.30)

and for l < 0, χ↑
χ↓

 ∝
 0

r−(m+1)

 e−λ
∫ r
0 dr′ f(r′). (3.31)

Again the normalizability requires λ = 1.

Because the chiral symmetry also relates eigenstates with positive energies to

those with negative energies which follows from γ5HBdGγ
5 = −HBdG, one can always

require the zero-energy eigenstates to be eigenstates of γ5. The wave function in

Eq.(3.30) is an eigenstate of γ5 with eigenvalue 1 while wave function (3.31) has

eigenvalue −1. We define eigenstates of γ5 with eigenvalue ±1 as ± chirality.

To summarize we have obtained the Majorana zero-energy bound state at-

tached to the vortex with odd vorticity:

Ψ0(r) = ei(l−1)ϕ/2



e−iπ/4χ↑(r)

eiπ/4χ↓(r)e
iϕ

e−iπ/4χ↓(r)e
−ilϕ

−eiπ/4χ↑(r)e−i(l−1)ϕ


(3.32)
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Generalization to the case of many vortices is straightforward. Order parameter

with 2N vortices pinned at Ri is already given in (3.16). Assuming that they are

well separated from each other, we can find an approximate zero-energy bound state

localized in each vortex core:

Ψi(r)=ei(l−1)ϕi/2eiΩiτz/2



e−iπ/4χ↑(ri)

eiπ/4χ↓(ri)e
iϕi

e−iπ/4χ↓(ri)e
−ilϕi

−eiπ/4χ↑(ri)e−i(l−1)ϕi


(3.33)

the construction of N Dirac fermions and 2N−1 ground state Hilbert space are the

same as the case of spinless px + ipy superconductors.

3.3 Atiyah-Singer-type index theorem

Index theorem provides an intelligent way of understanding the topological

stability of zero modes. It is well-known that one can relate the analytical index of

an elliptic differential operator (Dirac operator) to the topological index (winding

number) of the background scalar field in 2D [84] through the index theorem. Since

BdG Hamiltonian for TI/SC system at µ = 0 can be presented as a Dirac operator

(see Eq.(3.21)), we give a brief review of this index theorem, see also recent expo-

sition in Ref. [85]. Specifically, the Hamiltonian for TI/SC heterostructure can be

written as

HD = iγ ·∇ + Γ · n, (3.34)
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where n = (<∆,−=∆) field describes the non-trivial configuration of the super-

conducting order parameter. We assume the following boundary condition for n

field:

|n(r)| → const as |r| → ∞. (3.35)

As mentioned above, this model Hamiltonian has particle-hole symmetry, time-

reversal symmetry and chiral symmetry which is given by γ5. It anticommutes with

the Dirac Hamiltonian {γ5,HD} = 0. Therefore, all zero modes Ψ0 of HD are

eigenstates of γ5. Since (γ5)2 = 1 eigenvalues of γ5 are ±1. We define ± chirality of

zero modes as γ5Ψ±0 = ±Ψ±0 . The analytical index of HD is defined as

indHD = n+ − n−, (3.36)

where n± are number of zero modes with ± chirality.

The index theorem for the Hamiltonian HD states that the analytical index is

identical to the winding number of the background scalar field in the two-dimensional

space [84]:

indHD = − 1

2π

∫
dix εabn̂a∂in̂b, (3.37)

where n̂ = n/|n|. According to the index theorem, the number of zero modes is

determined by the topology of order parameter at infinity. The right hand side is

ensured to be an integer by the fact that the homotopy group π1(S1) = Z. If we

have a vortex in the system with vorticity l, the right hand side of (3.37) evaluates

exactly to l. Thus the index theorem implies that the Dirac Hamiltonian has at least

l zero modes which agrees with explicit solution obtained by Jackiw and Rossi [82].

Our explicit solutions for a single vortex in the previous section also agrees perfectly.
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This conclusion can be generalized to the case where multiple vortices are present.

In that case the right hand side is basically the sum of vorticities of all vortices.

The index theorem (3.37) requires chiral symmetry which is broken by presence

of a finite chemical potential µ 6= 0. Now we argue that when chiral symmetry is

broken the Majorana zero modes admit a Z2 classification corresponding to even-

odd number of zero energy solutions. Generally speaking, a small chiral symmetry

breaking term cause coupling between zero modes and split them away from zero

energy. However, due to particle-hole symmetry, the number of zero modes that are

split by chiral symmetry breaking term must be even. So the parity of the topological

index is preserved in the generic case. This is consistent with an explicit solutions

of zero mode in TI/SC heterostruture with finite chemical potential. Thus, we

conclude that without chiral symmetry the Majorana zero modes bound to vortices

are classified by Z2 corresponding to even or odd number of zero modes.
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Chapter 4

Topological Degeneracy Splitting of Majorana

Zero Modes

In the topological quantum computation scheme based on Majorana non-

Abelian vortices in topological superconductors, the quantum information is en-

coded in the degenerate ground states when there are multiple non-Abelian vortices

present. The degeneracy is crucial for the topological protection of the qubits as well

as the braiding operations on them. Understanding the fate of ground-state degen-

eracy of many-anyon system in realistic solid-state structures is a difficult problem

of fundamental importance and of relevance to practical realization of topological

quantum computing. In this chapter we address one mechanism that may lift the

ground state degeneracy associated with the tunneling processes between spatially

separated vortices. The presence of the bulk gap protects ground state degeneracy

from thermal fluctuations at low temperature leaving out only processes of Majo-

rana fermion quantum tunneling between vortices. Generic features of tunneling

of topological charges have been explored recently [86]. The lifting of ground state

degeneracy due to intervortex tunneling for a pair of vortices have been studied

numerically for ν = 5/2 quantum Hall state [87, 88], px + ipy superconductor [89]

and Kitaev’s honeycomb lattice model [90]. Analytical calculation has been carried
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out for the model of spinless px + ipy superconductors [91].

Generally energy splitting due to intervortex tunneling is determined by the

wave function overlap of localized Majorana bound states. In this chapter we cal-

culate the splitting for both spinless px + ipy superconductor and a model of Dirac

fermions interacting with the scalar superconducting pairing potential realized in

a TI/SC heterostructure. In both cases, besides the expected exponential decay

behavior, it is found that the prefactor exhibits an oscillatory behavior with the

intervortex distance which originates from the interference of different bound state

wave functions oscillating with the Fermi wave length. This is generic situation for

weak coupling superconductors where the Fermi energy EF is much larger than the

superconducting gap ∆. In this chapter, we also consider several cases where the

Fermi wavelength is much larger than the coherence length. This scenario is rele-

vant, for example, for TI/SC heterostructure as well as some other systems involving

the proximity-induced superconductivity. When chemical potential is tuned to the

Dirac point (µ → 0), we find indeed that the splitting in TI/SC heterostructure

vanishes. This fact can be related to the Atiyah-Singer index theorem an additional

symmetry possessed by the system at µ = 0 - the chiral symmetry.

4.1 Degeneracy splitting due to intervortex tunneling

The ground state degeneracy, which is crucial for topological quantum compu-

tation with non-Abelian anyons, heavily relies on the assumption that intervortex

tunneling is negligible. When tunneling effects are taken into account zero energy

62



bound states are usually splitted and the ground state degeneracy is lifted. Besides,

the sign of energy splitting is important for understanding many-body collective

states [92].

We now discuss a general formalism to calculate the energy splitting. We focus

on the case of two classical vortices each with vorticity l = 1 located at certain fixed

positions R1 and R2. To develop a physical intuition, it is useful to view a vortex

as a potential well, which may host bound states including zero-energy states, while

the regions where superconducting gap is finite play the role of a potential barrier.

Therefore, the two-vortex problem resembles the double-well potential problem in

single-particle quantum mechanics (sometimes referred to as the Lifshitz problem in

the literature [93]). The solution to this simple problem in one-dimensional quan-

tum mechanics is readily obtained [93] by considering symmetric and antisymmetric

combinations of single-well wave-functions (which can be taken within the quasi-

classical approximation for high barriers) and the overlap of these wave-functions

always selects the symmetric state as the ground state in accordance with the el-

ementary oscillation theorem (i.e., the ground state has no nodes). We note that

both quasiclassical approximation and the Lifshitz method are not specific to the

Schrödinger equation, but actually represent general mathematical methods of solv-

ing differential equations of certain types. Moreover, these methods can be applied

to rather generic matrix differential operators, and such a generalization has been

carried out by one of the authors in a completely different context of magnetohy-

drodynamics, [94] where interestingly the relevant differential operator appears to

be mathematically similar to the BdG Hamiltonian. These considerations suggest
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that one can use the generalized Lifshitz method to obtain the splitting of zero

modes of the BdG equations, by considering certain linear combinations of the in-

dividual Majorana modes in the two vortices and calculating their overlap, which

reduces to a boundary integral along a path between the two vortices. Also, if the

inter-vortex separation is large, one can use the semiclassical form of the Majorana

wave-functions (effectively their large-distance asymptotes) to obtain quantitatively

accurate results. Let us note here that apart from a technically more complicated

calculation that needs to be carried out for the BdG equation, another important

difference between this problem and the simple Lifshitz problem is that we can not

rely on any oscillation theorem and there is no way to determine a priori which

state has a lower energy. As discussed below, this “uncertainty” is fundamental to

this problem and is eventually responsible for a fast-oscillating energy splitting with

intervortex separation.

With the two zero-energy eigenstates Ψ1 and Ψ2 localized at R1 and R2

(given by Eq.(3.17) for spinless px + ipy superconductor and by Eq.(3.32) for TI/SC

heterostructure), we can construct approximate eigenstate wave functions in the

case of two vortices: Ψ± = 1√
2
(Ψ1 ± eiαΨ2) analogous to the symmetric and anti-

symmetric wave functions in a double-well problem with energies E±, respectively.

The phase factor eiα can be determined from particle-hole symmetry which requires

that new eigenstates Ψ+ with energy E+ = δE and Ψ− with energy E− = −δE

be related by ΞΨ+ = Ψ−. Since Ψ1 and Ψ2 are real (Majorana) eigenstates, one

finds ΞΨ+ = 1√
2
(Ψ1 + e−iαΨ2) = Ψ−. Thus, one arrives at e2iα = −1 which fixes

α = ±π/2. In the rest of the text we take α = π/2 for convenience. The corre-
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sponding quasiparticle operator can be identified with the Dirac fermion operator.

We explicitly show this for the case of spinless px + ipy superconductor:

ĉ =
1√
2

(γ̂1−iγ̂2) =

∫
d2r

[
ψ̂
u∗1 − iu∗2√

2
+ψ̂†

v∗1 − iv∗2√
2

]
. (4.1)

Therefore ĉ (ĉ†) annihilates(creates) a quasiparticle on energy level E+. The original

two fold degeneracy between state with no occupation ĉ|0〉 = 0 and occupied |1〉 =

ĉ†|0〉 is lifted by energy splitting E+.

To calculate the energy of Ψ+, we employ the standard method based on

the wave function overlap [93]. Suppose the two vortices are placed symmetrically

with respect to y axis: R1 = (R/2, 0) and R2 = (−R/2, 0). BdG equations are

HBdGΨ+ = E+Ψ+,HBdGΨ1 = 0. We then multiply the first equation by Ψ∗1 and

second by Ψ∗+, substract corresponding terms, and integrate over region Σ which is

the half plane x ∈ (0,∞), y ∈ (−∞,∞) arriving finally at the following expression

for E+:

E+ =

∫
Σ

d2r Ψ†1HBdGΨ+ −
∫

Σ
d2r Ψ†+HBdGΨ1∫

Σ
d2r Ψ†1Ψ+

. (4.2)

This is the general expression for the energy splitting which is used to evaluate E+

in px + ipy SC and TI/SC heterostructure.

4.1.1 Splitting in spinless px + ipy superconductor

We now calculate splitting for two vortices in spinless px + ipy supercon-

ductor. The denominator in Eq.(4.2) can be evaluated quite straightforwardly
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∫
Σ

d2r Ψ†1Ψ+ ≈ 1/
√

2. With the help of Green’s theorem the integral over half

plane in the numerator can be transformed into a line integral along the boundary

of Σ, namely the y axis at x = 0 which we denote by ∂Σ:

E+ =
2

m

∫
∂Σ

dy [g(s)g′(s) cos 2ϕ2 cosϕ2 +
g2(s)

s
sin 2ϕ2 sinϕ2 −

g2(s)

ξ

]
(4.3)

where s =
√

(R/2)2 + y2, tanϕ2 = 2y/R. The function g(s) is defined as g(s) ≡

χ(s) exp(−s/ξ).

First we consider the regime where ∆2
0 < 2mµv2

F and radial wave function of

Majorana bound state has the form (3.8). We are mainly interested in the behavior

of energy splitting at large R � ξ with ξ being the coherence length, where our

tunneling approximation is valid. Another length scales in our problem is the length

corresponding to the bound state wave function oscillations k =
√

2mµ−∆2
0/v

2
F .

In the limit R� max(k−1, ξ) upon evaluating the integral (4.3) we obtain

E+ =

√
8

π

N 2
1

m

(
λ2

1 + λ2

)1/4
1√
kR

exp

(
−R
ξ

)[
cos(kR + α)− 2

λ
sin(kR + α) +

2(1 + λ2)1/4

λ

]
,

(4.4)

where λ = kξ, 2α = arctanλ and N1 is the normalization constant defined in

Eq.(3.8). We find the asymptotes for λ� 1 and λ� 1:

N 2
1 =


k
2ξ

λ� 1

8
3πk2ξ4 λ� 1

. (4.5)

The exponential decay is expected due to the fact that Majorana bound states

are localized in vortex core. In addition, the splitting energy E+ oscillates with

intervortex seperation R which can be traced back to interference between the wave

functions of the two Majorana bound states since they both oscillates in space.
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Of particular importance is the sign of splitting as noted in Ref. [92]. It

determines which state is energetically favored when tunneling interaction is present.

If E+ > 0, |0〉 is favored whereas E+ < 0 favors |1〉. We note here that the definition

of states |0〉 and |1〉 relies on how we define the Dirac fermion operator ĉ and ĉ†.

Due to the presence of a constant term together with trigonometric function, the

sign of splitting can change. To figure out when the sign oscillates, we require the

amplitude of the trigonometric part is greater than the constant part which gives√
1 +

4

λ2
>

2(1 + λ2)1/4

λ
.

Solving this inequality yields λ = kξ > 8. Therefore in this parameter regime

the sign of splitting changes with distance R. Otherwise the splitting still shows

oscillatory behavior but the sign is fixed to be positive.

In weak-coupling superconductors where ∆0 � εF or equivalently kF ξ � 1,

the expression for the energy splitting (4.4) can be considerably simplified. In this

case, µ ≈ εF and k ≈ kF . Keeping only terms that are leading order in (kF ξ)
−1, we

find

E+ ≈
√

2

π
∆0

cos(kFR + π
4
)

√
kFR

exp

(
−R
ξ

)
, (4.6)

which is the expression reported in Ref. [[91]]. A similar expression for splitting of a

pair of Majorana bound states on superconductor/2D topological insulator/magnet

interface is found in Ref. [95].

Next we consider a different limit ∆2
0 > 2mµv2

F in which the wave function

of Majorana bound state for a single vortex doesn’t show any spatial oscillations.

Thus, we expect that tunneling splitting will show just an exponential decay without
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any oscillations. The wave function (3.12) grows exponentially when r →∞:

χ(r) ∼ 1√
r
ek0r

with k0 =
√

∆2
0/v

2
F − 2mµ. The overall radial wave function decays exponentially

∼ exp(−k′r) where k′ = 1/ξ − k0. In this case, the tunneling approximation is only

valid for k′R� 1 since bound state wave function is localized approximately within

distance 1/k′ to vortex core. The resulting energy splitting monotonically decays:

E+ ≈
√

2

π

N 2
2

m

(
3

k0ξ
− 1

)
1√
k′R

exp(−k′R), (4.7)

As µ approaches 0 there is a quantum phase transition between the non-Abelian

phase and Abelian phase. This transition is accompanied by closing of the gap and

the Majorana bound state is no longer localized since k′ → 0.

We briefly comment on the degeneracy splitting between vortex zero modes

in the ferromagnetic insulator/semiconductor/superconductor hybrid structure pro-

posed by Sau et. al. [49] which can be modeled by spin-1/2 fermions with Rashba

spin-orbit coupling and s-wave pairing induced by the superconducting proximity

effect. Since time-reversal symmetry is broken by the proximity-induced exchange

splitting, this system belongs to the same symmetry class as spinless px + ipy su-

perconductor - class D. The connection between this hybrid structure and spinless

px + ipy can be made more explicit by the following argument: the single particle

Hamiltonian after diagonalization yields two bands. Assuming a large band gap

(which is actually determined by exchange field), one can project the full Hamil-

tonian onto the lower band and then the effective Hamiltonian takes exactly the

form of spinless px + ipy superconductor, see, for example, the discussion in Ref.
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[61]. Although analytical expression for Majorana bound state in vortex core is not

available, the solution behaves qualitatively similar to the one in spinless px + ipy

superconductor. Therefore, we expect that splitting should also resemble that of

spinless px + ipy superconductor.

4.1.2 Splitting in TI/SC heterostructure

In this section we discuss the case of vortex-vortex pair in TI/SC heterostruc-

ture. We assume both vortices have vorticity 1. Similar the case of px + ipy su-

perconductor, one can transform the surface integral over half plane Σ to a line

integral along its boundary ∂Σ. Exploiting the explicit expressions for the zero

mode solution, we arrive at∫
Σ

d2r Ψ†1HBdGΨ+ −
∫

Σ

d2r Ψ†+HBdGΨ1

= −2
√

2v

∫ ∞
−∞

dy χ↑(s)χ↓(s) cosϕ2,

(4.8)

where s =
√

(R/2)2 + y2, cosϕ2 = R/2s.

First we consider the case with finite µ. There are two length scales: Fermi

wavelength k−1
F = v

µ
and coherence length ξ = v

∆0
. We evaluate the integral (4.8) in

the limit where R is large compared to both k−1
F = v/µ and ξ:

E+≈
4N 2

3 v√
πkF (1 + k2

F ξ
2)1/4

cos(kFR + α)√
R/ξ

exp

(
−R
ξ

)
, (4.9)

where 2α = arctan(kF ξ). One can notice that the splitting, including its sign,

oscillates with the intervortex separation R when R is large. In the limit of large µ,

say kF ξ � 1, Eq. (4.9) can be simplified to

E+ ≈
2∆0√
π

cos(kFR + π
4
)

√
kFR

exp

(
−R
ξ

)
. (4.10)

69



We now turn to the limit where µ is very close to Dirac point, i.e. µ →

0, kF ξ � 1. We evaluate the integral for ξ � R� k−1
F .

E+ ≈ −
2µ√
π

(
R

ξ

)3/2

exp

(
−R
ξ

)
, (4.11)

where we have made use of asymptote of N3 in the limit kF ξ � 1. Eq. (4.11)

implies that for fixed R the splitting vanishes as µ approaches Dirac point. Actually

this fact can be easily seen from (4.8) without calculating the integral. Because at

µ = 0 either χ↑ or χ↓ vanishes, the splitting which is proportional to the product of

χ↓ and χ↑ is zero. The same result for splitting at µ = 0 has also been obtained in

Ref. [96].

We now show that vanishing of the splitting at µ = 0 is a direct consequence

of chiral symmetry. At µ = 0 zero modes carry chirality which labels the eigenvalues

of γ5. More specifically, wave function is an eigenstate of γ5: γ5Ψi = λΨi. Consider

an arbitrary perturbation represented by O to the ground state manifold expanded

by these local zero modes. To leading order in perturbation theory its effect is

determined by matrix element Oij = 〈Ψi|O|Ψj〉. Now assume that Ψi and Ψj have

the same chirality(which means that vortices i and j have identical vorticity). If the

perturbation O preserves chiral symmetry, i.e. {γ5,O} = 0, then

〈Ψi|{γ5,O}|Ψj〉 = 2λ〈Ψi|O|Ψj〉 = 0. (4.12)

Therefore matrix element 〈Ψi|O|Ψj〉 vanishes identically. Tunneling obviously pre-

serves chiral symmetry so there is no splitting between two vortices with the same

vorticity from this line of reasoning. As discussed below this fact actually holds
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beyond perturbation theory and the robustness of zero modes in the presence of

chiral symmetry is ensured by an index theorem.

Now we can fit our splitting calculation into the general picture set by index

theorem. As being argued above, Majorana zero modes in spinless px+ipy supercon-

ductor is classified by Z2. When there are two vortices in the bulk, the topological

index of order parameter is 2 thus there is no zero mode and we find the splitting as

expected. The same applies to two vortices in TI/SC heterostructure with µ 6= 0.

However, as we have seen in the calculation the splitting vanishes for µ = 0. This

should not be surprising since according to index theorem, there should be at least

two zero modes associated with total vorticity 2 which is the case for two vortices.

4.1.3 Comparison with the splitting calculations in other systems.

Recently numerical calculations of the degeneracy splitting have been per-

formed for other systems supporting non-Abelian Ising anyons [87, 88, 90]. In all

these calculations it was found that the splitting has qualitatively similar behavior

- there is an exponential decay with the oscillating prefactor which stems from the

spatial oscillations of Majorana bound states. In the case of Moore-Read quantum

Hall state [88], the splitting between two quasiholes exponentially decays and os-

cillates with the magnetic length lc = ~
eB

since there only one length scale in the

problem. The oscillatory behavior is also predicted for pair of vortex excitations in

the B-phase of Kitaev’s honeycomb lattice model in an external magnetic field [90].
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4.2 Collective states of many-anyon system

The microscopic calculations of the degeneracy splitting for a pair of vortices

are important for understanding the collective states of anyons arising on top of

the non-Abelian parent state when many Majorana fermions (Ising anyons) are

present [97, 98, 99, 92]. Essentially, the sign of the splitting favors certain fusion

channel ( 1 or ψ in the terminology of Ref.[100]) when two vortices carrying Ma-

jorana fermions are brought together. These fusion channels correspond to having

a fermion (ψ-channel when E+ < 0) or no fermion (1-channel when E+ > 0) left

upon fusing of two anyons.

For pedagogical reason we start with the dilute anyon density limit assuming

that the average distance between Majorana fermions is large compared with the

coherence length ξ. In this regime, the many anyon state of the system will resemble

gas of weakly bound pairs of anyons formed out of two anyons separated by the

smallest distance. Because of the exponential dependence of the energy splitting

the residual “interactions” with other anyons are exponentially smaller and can be

ignored. In this scenario the parent state remains unchanged.

When the density of anyons is increased so that the average distance between

them becomes of the order of the Majorana bound state decay length (coherence

length ξ in p-wave superconductors or magnetic length lc in Quantum Hall states)

the system can form a non-trivial collective liquid (Wigner crystal of anyons or

some other incompressible liquid state). This question has been investigated in

Refs. [101, 102, 103, 92]. Although our approach used to calculate energy splitting
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breaks down in this regime and one should resort to numerical calculations for the

magnitude of the splitting, we believe that qualitative form of the splitting will

remain the same. It is interesting to discuss the collective state that forms in this

regime. Remarkably, it was shown in Ref. [92] that depending on the fusion channel

(i.e. sign of the splitting) the collective state of anyons may be Abelian or non-

Abelian. This result was obtained assuming that the magnitude of the splitting is

constant and the sign of the splitting is the same for all anyons (positive or negative).

However, because of the prefactor changing rapidly with the Fermi wave length we

expect the magnitude of the splitting energy to be random realizing random bond

Ising model discussed in Ref. [104, 92].

Finally, we mention that our calculations above and all existing studies of

interacting many-anyon systems treat host vortices as classical objects with no in-

ternal dynamics. This is a well-defined mathematical framework, which corresponds

to the BCS mean-field approximation. In real superconductors, however, there are

certainly corrections to it. The order parameter field, ∆(r, t), which describes a

certain vortex configuration has a non-trivial dynamics and fluctuates in both space

and time. At low temperatures, when the system is fully gapped, these fluctuation

effects are suppressed in the bulk, but they are always significant in the vicinity

of the vortex core, where the order parameter vanishes. This dynamics gives rise

to an effective motion of a vortex as well as to the dynamics of its shape and

the radial profile. The relevant length-scales of these effects certainly exceed the

Fermi wave-length, which is the smallest length-scale in the problem in most re-

alistic systems. Even if the vortex is pinned, e.g. by disorder, its motion can be

73



constrained only up to a mean-free path or another relevant length-scale, which is

still much larger than the Fermi wave-length for local superconductivity to exist.

These considerations suggest that the intervortex separation between quantum vor-

tices has an intrinsic quantum uncertainty, which is expected to much exceed the

inverse Fermi wave-vector. This makes the question of the sign of Majorana mode

coupling somewhat ill-defined in the fully quantum problem. Indeed we found the

energy splitting to behave as δE(r) = |δE0(r)| cos (kF r + α), where |δE0(r)| is an

exponentially small magnitude of coupling insensitive to any dynamics of r(t). The

cosine-factor, which determines the sign, is however expected to be very much sen-

sitive to quantum dynamics. To derive the actual microscopic model even in the

simplest case of two non-Abelian anyons living in the cores of quantum vortices is a

tremendously complicated problem, which requires a self-consistent treatment of the

vortex order-parameter field and fermionic excitations beyond mean-field. However,

one can argue that the outcome of such a treatment would be an effective theory

where the eikF r(t) factor that appears in Majorana interactions, should be replaced

with a random quantum-fluctuating phase (c.f., Ref. [105]), eiθ(t), whose dynamics

is governed by an effective action of type, S[θ] ≈
∫
dτ
[
(θ − θ0)2 + c (∂τθ)

2]. This

generally resembles a gauge theory, but of an unusual type, and at this stage it is

unclear what collective many-anyon state such a theory may give rise to.
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4.3 Conclusions

In this chapter, we address the problem of topological degeneracy lifting in

topological superconductors characterized by the presence of Majorana zero-energy

states bound to the vortex cores. We calculate analytically energy splitting of zero-

energy modes due to the intervortex tunneling. We consider here canonical model of

topological superconductor, spinless px + ipy superconductor, as well as the model

of Dirac fermions coupled to superconducting scalar field. The latter is realized

at the topological insulator/s-wave superconductor interface. In the case of spinless

px+ipy superconductor, we find that, in addition to the expected exponential decay,

the splitting energy for a pair of vortices oscillates with distance in weak-coupling

superconductor and these oscillations become over-damped as the magnitude of the

chemical potential is decreased. In the second model, the splitting energy oscillates

for finite chemical potential and vanishes at µ = 0. The vanishing of splitting energy

is a consequence of an additional symmetry, the chiral symmetry, emerging in the

model when chemical potential is exactly equal to zero. We show that this fact

is not accidental but stems from the index theorem which relates the number of

zero modes of the Dirac operator to the topological index of the order parameter.

Finally, we discuss the implications of our results for many-anyon systems.
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Chapter 5

Topological Protection of Majorana-Based Qubits

In this chapter we investigate the effect of finite-temperature thermal fluctua-

tions on three key aspects of topological quantum computation: quantum coherence

of the topological qubits, topologically-protected quantum gates and the read-out

of qubits. Since the information is encoded in non-local degrees of freedom of the

ground state many-body wavefunction, it is important to keep the system close to

the ground state. However, any systems realized in the laboratory are operated at

a finite temperature T > 0. To prevent uncontrollable thermal excitations, it is

generally accepted that T has to be way below the bulk excitation gap. However,

complications appear when there exist various types of single-particle excitations

with different magnitudes of gaps which can change the occupation of the non-

local fermionic modes. Note that throughout the chapter we assume that Majorana

fermions are sufficiently far away from each other and neglect exponentially small

energy splitting due to inter-vortex tunneling. The effect of these processes on topo-

logical quantum computing has been discussed elsewhere [91, 106]. Another trivial

effect not considered in this work is a situation where the fermion parity conser-

vation is explicitly broken by the Majorana mode being in direct contact with a

bath of fermions (electrons and holes) where obviously the Majorana will decay into
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the fermion bath, and consequently decohere. Such situations arise, for example,

in current topological insulators where the existence of the bulk carriers (invariably

present due to the unintentional bulk doping) would make any surface non-Abelian

Majorana mode disappear rather rapidly. Another situation that has recently been

considered in this context [107] is the end Majorana mode in a one-dimensional

nanowire being in contact with the electrons in the non-superconducting part of

the semiconductor, leading to a zero-energy Majorana resonance rather than a non-

Abelian Majorana bound state at zero energy. The fact that the direct coupling of

Majorana modes to an ordinary fermionic bath will lead to its decoherence is rather

obvious and well-known, and does not require a general discussion since such situa-

tions must be discussed on a case by case basis taking into account the details of the

experimental systems. In particular, the reason the quantum braiding operations

in Majorana-based systems involves interferometry is to preserve the fermion parity

conservation. Our theory in the current work considers the general question of how

thermal fluctuations at finite temperatures affect the non-Abelian and the non-local

nature of the Majorana mode.

We consider a simple model for two-dimensional chiral px + ipy supercon-

ductor where Majorana zero-energy states are hosted by Abrikosov vortices. The

quasiparticle excitations in this system are divided into two categories: a) Caroli-de

Gennes-Matricon (CdGM) or so-called midgap states localized in the vortex core

with energies below the bulk superconducting gap [32, 33] (the gap that separates

the zero-energy state to the lowest CdGM state is called the mini-gap ∆M); b)

extended states with energies above the bulk quasiparticle gap which is denoted
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by ∆. The natural question arising in this context is how these two types of ex-

citations affect topological quantum computation using the Majorana zero-energy

states at finite temperature. This question is very relevant in the context of stron-

tium ruthenate as well as other weak-coupling BCS superconductors where the

Fermi energy EF is much larger than the superconducting gap ∆ in which case

∆M ∝ ∆2/EF � ∆. We mention in passing here that the semiconductor-based Ma-

jorana proposals in nanowires [49, 61, 59, 60] do not have low-lying CdGM states

because the one-dimensionality reduces the phase space for the bound states and

the minigap ∆M ∼ ∆ [108] due to the small Fermi energy in the semiconduc-

tor. If the temperature is substantially below the minigap, i.e. T � ∆M , obvi-

ously all excited states can be safely ignored. However, such low temperatures with

T � ∆M can be hard to achieve in the laboratory since for typical superconductors

∆/EF ∼ 10−3−10−4. We note that even in the semiconductor two-dimensional sand-

wich structures the energetics of the subgap states [109] obey the inequality ∆M < ∆

since in general EF > ∆ even in the semiconductor-based systems in view of the fact

that typically ∆ ∼ 1 K. This makes our consideration in this chapter of relevance

also to the semiconductor-based topological quantum computing platforms. We in-

vestigate the non-trivial intermediate temperature regime ∆M � T < ∆. To make

this chapter more pedagogical, we will use a simple physical model that captures the

relevant physics. We find that the presence of the excited midgap states localized

in the vortex core does not effect braiding operations. However, the midgap states

do affect the outcome of the interferometry experiments.

We also study the quantum dynamical evolution and obtain equations of mo-
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tion for the reduced density matrix assuming that the finite temperature is set by

a bosonic bath (e.g. phonons). We find that the qubit decay rate λ is given by the

rate of changing fermion parity in the system and is exponentially suppressed (i.e.

λ ∝ exp(−∆/T )) at low temperatures in a fully-gapped px+ ipy superconductor. In

this context, we make some comments about Refs.[110] claiming to obtain different

results regarding the effect of thermal fluctuations.

5.1 Non-Abelian Braiding in the Presence of Midgap States

In this section we address the question of how the midgap states affect the

non-Abelian statistics at finite temperature. The usual formulation of the non-

Abelian statistics as unitary transformation of the ground states does not apply,

since at finite temperature the system has to be described as a mixed state. We

need to generalize the notion of the non-Abelian braiding in terms of physical ob-

servables [111]. This can be done as the following: consider a topological qubit

made up by four vortices labeled by a = 1, 2, 3, 4. Each of them carries a Majorana

zero-energy state, whose corresponding quasiparticle is denoted by γ̂a0 which satis-

fies γ̂2
a0 = 1, γ̂a0 = γ̂†a0. There are other midgap states in the vortex core which are

denoted by d̂ai, i = 1, 2, . . . ,m. (Actually the number of midgap states is huge and

the midgap spectrum eventually merges with the bulk excitation spectrum. How-

ever, since we are interested in T � ∆, we can choose an energy cutoff Λ such

that T � Λ � ∆ and only include those midgap states that are below Λ.) It is

convenient to write d̂ai = γ̂a,2i−1 + iγ̂a,2i, so each vortex core carries odd number of
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Majorana fermions γ̂ai, i = 0, 1, . . . , 2m.

Having the notations set up, we now define a generalized Majorana operator

Γ̂a = im
∏2m

i=0 γ̂ai. It is straightforward to check that {Γ̂a, Γ̂b} = 2δab. We then define

the fermion parity shared by a pair of vortices Σ̂ab = iΓ̂aΓ̂b. The topological qubit

can be uniquely specified by a set of measurements of the expectation value of the

following Pauli matrices σ̂ = (σ̂x, σ̂y, σ̂z):

σ̂x = Σ̂32, σ̂y = Σ̂13, σ̂z = Σ̂21. (5.1)

The non-Abelian braiding can be represented as the transformation of 〈σ̂〉.

Now we list the key assumptions to establish the non-Abelian properties of

the vortices:

1. The fermion parity Σ̂ab is a physical observable that can be measured by

suitable interferometry experiments, even at finite temperature.

2. All the bound states remain localized together with the zero-energy state when

the vortices are transported. Therefore they can be considered as one com-

posite system.

3. The tunneling processes of fermions between different vortices and transitions

to the gapped continuum are exponentially suppressed due to the presence of

the bulk superconducting gap. This condition needs to be satisfied in the first

place to ensure the existence of (nearly) zero modes in the topological phase.

Under these conditions, the only local dynamical processes are the transitions of

fermions between the localized bound states, e.g. scattering by collective excitations
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like phonons. However, such processes necessarily conserve Γ̂a, therefore also the

parities Σ̂ab.

To see this explicitly, the state of the qubit is described by the density matrix

ρ̂(t). Because we are truncating the whole Hilbert space to include only those below

our cutoff Λ, it is necessary to use the time-dependent instantaneous basis [112]. At

low-energies, The occupations of the various subgap states can be changed

by four-fermion scattering processes or coupling to bosonic bath. To be

specific, we write down the Hamiltonian of the system:

Ĥ = Ĥ0 + Ĥint. (5.2)

Here Ĥ0 is the Hamiltonian of the BCS superconductor with vortices, whose po-

sitions Ri are time-dependent. At each moment of time Ĥ0 can be diagonalized,

yielding a set of complete eigenbasis which are represented by the time-dependent

generalization of the aforementioned Bogoliubov quasiparticles γ̂a0(t), d̂ai(t). Ĥint

describes all kinds of perturbations that are allowed under the assumptions.

Without going into the details of microscopic calculations, we write down the

general Lindblad form of the master equation [113] governing the time-evolution of

the density matrix:

dρ̂

dt
=
∂ρ̂

∂t
− i[Ĥt(t), ρ̂] + Ŝρ̂Ŝ† − 1

2
{Ŝ†Ŝ, ρ̂}. (5.3)

The ∂ρ̂
∂t

denotes the change of ρ̂ solely due to the change of basis states. Here Ĥt

describes the (effective) unitary evolution of the density matrix due to transitions

between different fermionic states and the Lindblad superoperators Ŝ corresponds
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to non-unitary evolution induced by system-environment coupling. Our assumption

on the locality of the interactions in the system implies that

[Ĥt, Σ̂ab] = 0, [Ŝ, Σ̂ab] = 0. (5.4)

The time evolution of the expectation values of σ(t) is given by

d〈σ〉
dt

=
d

dt
Trσρ̂ = Tr

∂σ

∂t
ρ̂(t) + Trσ

dρ̂

dt
. (5.5)

With (5.4), it is straightforward to check that

Trσ[Ĥ, ρ̂] = 0,Trσ
(
Ŝρ̂Ŝ† − 1

2
{Ŝ†Ŝ, ρ̂}

)
= 0. (5.6)

Therefore we have

d〈σ(t)〉
dt

= Tr
∂σ(t)

∂t
ρ̂(t) + Trσ(t)

∂ρ̂(t)

∂t
= ∂tTr [σ(t)ρ̂(t)]. (5.7)

As we have defined, ∂t means that all changes come from the change in the basis

{γ̂ai(t)}. Since after the braiding the system returns to its initial configuration, the

operators γ̂ia undergo unitary transformations. So if the braiding starts at t = ti and

ends at t = tf , we have the simple result 〈σ(ti)〉 = 〈σ(tf )〉. However, the operators

Γ̂(tf ) are different from Γ̂(ti). One can easily verify that the operators Γ̂a satisfy

Ivanov’s rule [35, 111] under braiding of vortices a and b:

Γ̂a → Γ̂b, Γ̂b → −Γ̂a. (5.8)

And the transformation of 〈σ̂〉 is identical to the case without any midgap states. In

conclusion, in terms of physically measurable quantities, the non-Abelian statistics

is well-defined in the presence of excited midgap states localized in the vortex core.
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We also notice that in this formulation, the Abelian phase in the braiding is totally

out of reach. It is very likely that occupations of the midgap states cause dephasing

of this Abelian phase.

This result is thoroughly non-obvious because it may appear on first sight

that arbitrary thermal occupancies of the mid-gap excited states would completely

suppress the non-Abelian nature of the system since the Majorana mode resides

entirely at zero energy and not in the excited mid-gap states.

We now briefly discuss how the condition of fermion parity conservation are

satisfied in realistic systems. It requires that no local physical processes that can

change fermion parity are present in the system. This is indeed the case in a super-

conductor since the presence of bulk superconducting gap suppresses single-particle

excitations at low energies and results in even-odd effect in fermion number. There-

fore in a fully gapped superconductor the fermion parity is indeed well-defined at

equilibrium and there are no parity-violation processes intrinsic to the supercon-

ductor. On the other hand, if the topological qubits are in contact with gapless

fermions, the fermion parity is apparently not a good quantum number (see [107]

for a detailed discussion of related issues and possible resolutions). Therefore the

topological qubits have to be separated galvanically from external sources of un-

paired electrons, which can also be achieved experimentally(e.g. in superconducting

charge qubits [114]).
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Figure 5.1: Mach-Zehnder interferometer proposed in Ref. [122] for topological qubit

detection. Due to the Aharonov-Casher effect, the vortex current is sensitive to the

charge enclosed. Long Josephson junction between two topological superconduc-

tors carries allows for Josephson vortices (fluxons) that carry Majorana zero-energy

modes.

5.2 Interferometry in the Presence of Midgap States

We now discuss the effect of the midgap states in interferometry experiments

designed for the qubit read-out [115, 116, 117, 118] There is a number of recent pro-

posals for interferometry experiments in topological superconductors [119, 120, 121].

Here we use an example of the Mach-Zehnder interferometer proposed by Grosfeld

and Stern [122] based on Aharonov-Casher (AC) effect. In this proposal, a Joseph-

son vortex (fluxon) is driven by supercurrent Js to circumvent a superconducting

island with charge Q and flux Φ, see Fig. 5.1. The fluxon appearing at the interface
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between two topological px+ ipy superconductors (represented by the shaded region

in Fig. 5.1) carries a zero-energy Majorana modes, and behaves as a non-Abelian

anyon. Therefore, the vortex current around the central superconductor is sensi-

tive to the topological content of the enclosed superfluid. (We refer the reader to

Ref. [122] for more details.) Indeed, the vortex current is proportional to the total

tunneling amplitude:

Jv ∝ |(tLÛL + tLÛR)|Ψ0〉|2

= |tL|2 + |tR|2 + 2Re{t∗LtR〈Ψ0|Û−1
L ÛR|Ψ0〉}

= |tL|2 + |tR|2 + 2Re{t∗LtReiϕAC〈Ψ0|M̂ |Ψ0〉}.

(5.9)

Here |Ψ0〉 is the initial state of the system and ÛL and ÛR are the unitary evolution

operators for the fluxon taking the two respective paths. ϕAC is the Aharonov-

Casher phase accumulated by the fluxon: ϕAC = πQ/e. Here Q is the total charge

enclosed by the trajectory of the fluxon, including the offset charge Qext set by

external gate and the fermion parity np of the low-energy fermionic states:

Q = Qext + enp. (5.10)

M̂ encodes the transformation solely due to the braiding statistics of the non-Abelian

fluxon around n non-Abelian vortices. If the superconducting island contains no

vortices, then M̂ = 1 and the interference term is solely determined by the AC

phase. The magnitude of the vortex current shows an oscillation:

Jv = Jv0

[
1 + ζ cos

(πQ
e

)]
. (5.11)

Here ζ is the visibility of the interference.
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When n is odd, there is no interference because M̂ |Ψ0〉 and |Ψ0〉 have different

fermion parity, implying 〈Ψ0|M̂ |Ψ0〉 = 0. To see this explicitly, let us consider n = 1

and denote the Majorana zero mode in the vortex by γ̂1. When the Majorana fermion

γ̂0 in the fluxon is taken around γ̂1, a unitary transformation M̂ = exp(±iπ
2
γ̂1γ̂0) =

±iγ̂1γ̂0 is acted upon the ground state of the system. Thus the matrix element

〈Ψ0|M̂ |Ψ0〉 = 0. The vortex current becomes independent of the charge encircled.

Therefore, the disappearance of the interference can be used as a signature of the

non-Abelian statistics of the vortices.

We now consider a situation where the non-Abelian fluxon has midgap states

other than the Majorana bound state. The internal state of the fluxon then also

depends on the occupation of these midgap states. As we have argued in the previous

section, as far as braiding is concerned the non-Abelian character is not affected at

all by the presence of midgap states. So the interference still vanishes when there

are odd numbers of non-Abelian vortices in the island. On the other hand, when

there are no vortices in the island, transitions to the midgap states can significantly

reduce the visibility of the interference term ζ.

To understand quantitatively how the visibility of the interference pattern is

affected by the midgap state, let us consider the following model of the fluxon. Since

we are interested in the effect of midgap states, we assume there is only one midgap

state and model the probe vortex by a two-level system, or spin 1/2, with the Hilbert

space {|0〉, |1〉}. Here |1〉 denotes the state with the midgap state occupied. We also

assume that the charge enclosed by the interference trajectory Q = 0 so we can
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neglect the AC phase. The Hamiltonian is then given by

Ĥ = |L〉〈L| ⊗ ĤL + |R〉〈R| ⊗ ĤR. (5.12)

where ĤL,R is given by

Ĥη =
∆

2
σz + σx

∑
k

gk(â
†
η,k + âη,k) +

∑
k

ωη,kâ
†
η,kâη,k. (5.13)

Here η = L,R. Here âk are annihilation operators for a bosonic bath labeled by k.

The form of the coupling between the internal degree of freedom and the

bosonic bath are motivated on very general grounds. In fact, Hermiticity requires

that coupling between Majorana mode and any other fermionic modes have to take

the following form:

Hcoupling = iγ̂0(zd̂+ z∗d̂†). (5.14)

Here in this context γ̂0 is the zero-energy Majorana operator in the fluxon and

d̂ is the annihilation operator for the midgap fermion, z is a bosonic degree of

freedom. We then use the mapping between Majorana operators and spin operators:

σz = 2d̂†d̂− 1, σx = iγ̂0(d̂+ d̂†), σy = γ̂0(d̂† − d̂) to rewrite the above coupling term

as:

Hcoupling = Re(z)σx + Im(z)σy. (5.15)

If we take z ∼ â + â†, we recover the coupling term in (5.13). Eq. (5.14) can arise

from, e.g. electron-phonon interaction.

We also assume the bath couples to the fluxon locally so we introduce two

independent baths for L and R paths. The unitary evolution at time t is then

factorizable:

Û(t) = |L〉〈L| ⊗ ÛL(t) + |R〉〈R| ⊗ ÛR(t). (5.16)
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Given initial state ρ̂(0) = ρ̂path⊗ ρ̂s⊗ ρ̂bath, we can find the off-diagonal component

of the final state ρ̂(t) = Û(t)ρ̂(0)Û †(t), corresponding to the interference, as

λLR = Tr
[
ÛL(t)Û †R(t)ρ̂s ⊗ ρ̂bath

]
= Tr

[
ρsTrL[ρ̂bath,LÛL(t)]TrR[ρ̂bath,RÛR(t)]

]
.

(5.17)

Now we evaluate Ŵη(t) = Trη[ρ̂bath,ηÛη(t)] (notice Ŵη is still an operator in

the spin Hilbert space). We drop the η index in this calculation. First we switch to

interaction picture and the evolution operator Û(t) can be represented formally as

Û(t) = T exp{−i
∫ t

0
dt′ Ĥ1(t′)} where

Ĥ1(t) =
∑
k

gk(σ
+ei∆t/2 + σ−e−i∆t/2)(â†ke

iωkt + âke
−iωkt). (5.18)

Following the derivation of the master equation for the density matrix, we can derive

a “master equation” for Ŵ (t) under the Born-Markovian approximation:

dŴ

dt
= −γ(n+ 1/2 + σz/2)Ŵ , (5.19)

where γ = π
∑

k g
2
kδ(ωk −∆), n = γ−1

∑
k g

2
knkδ(ωk −∆).

Therefore, the visibility of the interference, proportional to the trace of Ŵ , is

given by

ζ ∝ Tr[Ŵ (t)ρs] ∝ e−γnt = e−γnL/v. (5.20)

Here L is the length of the inteferometer and v is the average velocity of the fluxon.

We notice that the model we have used is of course a simplification of the real

fluxon. We only focus on the decoherence due to the midgap states and assume

that only one such state is present. In reality, there could be many midgap states
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which in principle lead to a stronger suppression of visibility. The approach taken

here can be easily generalized to the case where more than one midgap states.

The above interferometor is able to detect the existence of non-Abelian vortices

which requires that the Josephson vortex (i.e. fluxon) also has Majorana midgap

states. To fully read out a topological qubit, one needs to measure the fermion

parity of the qubit. This can also be done using interferometry experiments with

flux qubits, essentially making use of the AC effect of Josephson vortices [39, 38].

Another relevant question is whether the thermal excitations of the (non-

Majorana) midgap states localized in the vortex core have any effects on the inter-

ferometry. Since the interferometry is based on AC effect where vortex acquires a

geometric phase after circling around some charges, one might naively expect that

the interferometric current might depend on the occupation of the midgap states

due to the charge associated with the midgap states (i.e. for a midgap state whose

Bogoliubov wavefunctions are (u, v), its charge is given by Q = e
∫

dr (|u|2 − |v|2)).

The situation is more subtle, however, once one takes into account the screening

effect due to the superfluid condensate. The kinetics of the screening process is

beyond the scope of this chapter. However, assuming equilibrium situation, we now

show that the geometric phases acquired by the Josephson vortices only depends

on the total fermion parity in the low-energy midgap states (even if they are not

Majorana zero-energy modes) and the offset charge set by the external gate voltage.

We follow here the formalism developed in the context of AC effect for flux

qubits [39]. We assume that a superconducting island with several midgap fermionic

states, labeled by d̂†m, is coupled to a flux qubit. In the low-energy regime well below
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the bulk superconducting gap and the plasma frequency, the only degrees of freedom

of this system are the superconducting phase φ and the midgap fermions. We also

assume that the phase varies slowly so the fermionic part of the system follows the

BCS mean-field Hamiltonian with superconducting phase φ.

We want to know the geometric phase associated with vortex tunneling in

the presence of midgap fermions. It can be derived by calculating the transition

amplitude Afi associated with a time-depedent phase φ = φ(t):

Afi = 〈φf |Q̂f Û(tf , ti)Q̂
†
i |φi〉, (5.21)

where |φ〉 denotes the BCS ground state with superconducting phase φ and φf−φi =

2wπ. Q̂† =
∏

m(d̂†m)nm denote the occupation of the midgap fermionic states with

nm = 0, 1.

The midgap fermionic operators d̂†m are explicity expressed in terms of Bogoli-

ubov wavefunctions um and vm:

d̂†m(t) = e−iεmt
∫

dr
[
um(r)ψ̂†(r)eiφ/2 + vm(r)ψ̂(r)e−iφ/2

]
. (5.22)

Therefore,

Û(tf , ti)d̂
†
m(ti)Û

†(tf , ti) = d̂†m(tf )e
iπwnm . (5.23)

So the transition amplitude is evaluated as

Afi = 〈φf |Q̂f Û(tf , ti)Q̂
†
i Û
†(tf , ti)Û(tf , ti)|φi〉

= eiπwne−i
∑
m nmεm(tf−ti)〈φf |Q̂fQ̂

†
f Û(tf , ti)|φi〉

= eiπwne−i
∑
m nmεm(tf−ti)〈φf |Û(tf , ti)|φi〉

(5.24)

90



We conclude that the geometric phase is precisely πwn = n
2
(φf −φi) Physically this

reflects the fact that one fermion is “half” of a Cooper pair. The vortex tunneling

causes the phase of the Cooper pair condensate changes by 2π and correspondingly

the fermionic states obtain π phases. Notice that the phase
∑

m εm(tf− ti) is simply

the overall dynamical phase of the whole system due to its finite energy and does

not contribute to the interference at all.

5.3 Depolarization of Qubits at Finite Temperature

We now study the coherence of the topological qubit itself. From our discus-

sion on the effect of bound states in the vortex core, it is clear that decoherence

only occurs when the qubit is interacting with a macroscopically large number of

fermionic degrees of freedom, a fermionic bath. An example of such a bath is pro-

vided by the continuum of the gapped quasiparticles, which are unavoidably present

in any realsuperconductors. Once the Majorana fermion is coupled to the bath via

a tunneling Hamiltonian, the fermion occupation in the qubit can leak into the en-

vironment, resulting in the depolarization of the qubit. It is then crucial to have a

fully gapped quasiparticle spectrum to ensure that such decoherence is exponentially

small, as will be shown below.

To study the decay of a Majorana zero mode, we consider two such modes, γ̂1

and γ̂2, forming an ordinary fermion ĉ = γ̂1 + iγ̂2. The gapped fermions are coupled

locally to γ̂1, without any loss of generality. The coupling is mediated by a bosonic
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bath. The Hamiltonian then reads

Ĥ = iεγ̂1γ̂2 +
∑
k

εkd̂
†
kd̂k +

∑
l

ωlâ
†
l âl + i

∑
kl

gklγ̂1(d̂†k + d̂k)(â
†
l + âl). (5.25)

Here d̂k is the annihilation operator of the gapped fermions with quantum number k

and energy εk. âl is the annihilation operators of the bosonic bath. The last term in

the model Hamiltonian, representing the coupling between the Majorana zero mode

and the gapped fermions mediated by the bosonic bath, has been justified in the

previous section.

Since we are interested in the qubit only, we will derive the master equation

for the reduced density matrix ρ̂r, tracing out the bosonic bath and the gapped

fermions. The density matrix of the whole system evolves according to the equation

of motion:

dρ̂

dt
= i[ĤI , ρ̂]. (5.26)

Notice that we will be working in interaction picture in the following. Here the

coupling Hamiltonian

ĤI(t) = i
∑
kl

gklγ̂η̂k(t)φ̂l(t). (5.27)

where

η̂k(t) = d̂ke
iεkt + d̂ke

−iεkt,

φ̂l(t) = âle
iωlt + âe−iωlt.

(5.28)

Assume the coupling between the qubit and the bath is weak, we integrate the

equation of motion for a time interval ∆t:

∆ρ̂r

∆t
= − 1

∆t

∫ t+∆t

t

dt1

∫ t1

t

dt2 TrB[ĤI(t1), [ĤI(t2), ρ̂(t2)]]. (5.29)
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The first-order term vanishes due to the fact that 〈φ̂(t)〉 = 〈η̂(t)〉 = 0. Now we make

the Born approximation for the bath: assume that the bath is so large that it relaxes

very quickly to thermal equilibrium. The density matrix of the whole system can be

factorized as ρ̂(t) = ρ̂r(t) ⊗ ρ̂B. Here the bath includes with the gapped fermionic

bath and the bosonic bath.

The commutator on the right-hand side of (5.29) can be evaluated:

TrB[ĤI(t1), [ĤI(t2), ρ̂(t2)]] ≈[
ρ̂r(t)−γ̂(−1)n̂ρ̂r(t)(−1)n̂γ̂

]{
〈η̂k(t1)η̂k(t2)〉〈φ̂l(t1)φ̂l(t2)〉]+〈η̂k(t2)η̂k(t1)〉〈φ̂l(t2)φ̂l(t1)〉]

}
(5.30)

The factor (−1)n̂ appears because of the anti-commutation relation between fermionic

operators. The correlators of the bath are easily calculated:

〈η̂k(t1)η̂k(t2)〉 = nfke
iεk(t1−t2) + (1− nfk)e

−iεk(t1−t2)

〈φ̂l(t1)φ̂l(t2)〉 = nble
iωl(t1−t2) + (nbl + 1)e−iωl(t1−t2)

(5.31)

Here nfk = 1/(eεk/T + 1), nbl = 1/(eωl/T − 1) are the Fermi and Bose distribution

functions.

Performing the integral over t1 and t2, we finally arrive at

dρ̂r

dt
= −λ

[
ρ̂r − γ̂1(−1)n̂ρ̂r(t)(−1)n̂γ̂1

]
. (5.32)

Here λ is given by

λ = 2
∑
kl

g2
kl

[
(1− nfk)n

b
l + nfk(n

b
l + 1)]δ(εk − ωl). (5.33)

Notice that at low temperatures T � ∆, due to energy conservation, both nbl and

nfk are suppressed by the Gibbs factor e−∆/T . Therefore, the rate λ ∼ e−∆/T .
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Figure 5.2: Schematic illustration of the topological qubit coupled to thermal bath,

modeled by a collection of harmonic oscillators.

Then the polarization of the qubit 〈σz〉 = Tr[σzρ̂r] satisfies dt〈σz〉 = −2λ〈σz〉.

Therefore the lifetime of the topological qubit is given by T1 ∼ λ−1. Physically,

this is reasonable since we introduce tunneling term between the Majorana fermion

and the gapped fermionic environment so the fermion parity of the qubit is no

longer conserved. It is expected that λ is determined by the exponential factor

e−∆/T when T � ∆. Therefore, this provides a quantitative calibration of the

protection of the topological qubit at finite temperature. In the high-temperature

limit T � ∆, the distribution function scales linearly with T so the decay rate is

proportional to T . This is quite expected since T � ∆, the gap does not play

a role. We note that a recent work by Goldstein and Chamon [110] studying the

decay rate of Majorana zero modes coupled to classical noise essentially corresponds

to the high-temperature limit of our calculation T � ∆ and, as such, does not
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apply to any realistic system where the temperature is assumed to be low, i.e.

T � ∆.In fact, in the trivial limit of ∆� T , the Majorana decoherence is large and

weakly temperature dependent because the fermion parity is no longer preserved

and the fermions can simply leak into the fermionic bath [123]. By definition, this

classical limit of T � ∆ is of no interest for the topological quantum computation

schemes since the topological superconductivity itself (or for that matter, any kind

of superconductivity) will be completely absent in this regime. Our result makes

sense from the qualitative considerations: quantum information is encoded in non-

local fermionic modes and changing fermion parity requires having large thermal

fluctuations or external noise sources with finite spectral weight at frequencies ω ∼

∆. Furthermore, it is important to notice that such relaxation can only occur when

the qubit is coupled to a continuum of fermionic states which renders the fermion

parity of the qubit undefined. Intuitively, the fermion staying in the qubit can tunnel

to the continuum irreversibly, which is accounted for by the procedure of “tracing

out the bath” in our derivation of the master equation. It is instructive to compare

this result to a different scenario, where the zero-energy fermionic state is coupled to

a fermionic state (or a finite number of them) instead of a continuum. In that case,

due to hybridization between the states the fermion number oscillates between the

two levels with a period (recurrence time) determined by the energy difference ∆E

between them. The expectation value of the fermion number (or spectral weight) in

the zero-energy state is depleted and oscillatory in time, but will not decay to zero.

The above derivation can be straightforwardly generalized to N > 2 Majorana
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fermions, each coupled locally to gapped fermions and bosonic bath.

dρ̂r

dt
= −

N∑
i=1

λi
[
ρ̂r − γ̂i(−1)n̂i ρ̂r(−1)n̂i γ̂i

]
, (5.34)

The depolarization of the qubit can be calculated in the same fashion.

5.4 Conclusion and Discussion

We study quantum coherence of the Majorana-based topological qubits. We

analyze the non-Abelian braiding in the presence of midgap states, and demon-

strate that when formulating in terms of the physical observable (fermion parity

of the qubit), the braiding statistics is insensitive to the thermal occupation of the

midgap states. We also clarify here the conditions for such topological protection

to hold. Our conclusion applies to the case of localized midgap states in the vortex

core which are transported along with the Majorana zero states during the braiding

operations. If there are spurious (e.g. impurity-induced [124, 125, 126]) midgap

bound states spatially located near the Majorana zero-energy states but are not

transported together with them, they could strongly affect braiding operations. For

example, during braiding the fermion in the qubit has some probability (roughly

determined by the non-adiabaticity of the braiding operation) to hybridize with the

other bound states near its path leading to an error. If the disorder is weak and

short-ranged, such low-energy states are unlikely to occur unless the bulk supercon-

ducting gap is significantly suppressed at some spatial points (e.g. vortices) as it is

well-known that for a single short-range impurity the energy of such a bound state

is close to the bulk excitation gap [127, 128]. Thus, well-separated impurity-induced
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bound states are typically close to the gap edge and would not affect braiding opera-

tions. If the concentration of impurities is increased, then it is meaningful to discuss

the probability distribution of the lowest excited bound state in the system [129].

The distribution of the first excited states determing the minigaps depends on many

microscopic details (e.g. system size, concentration of the disorder). Since the mag-

nitude of the minigaps is system-specific, one should evaluate the minigap for a

given sample. As a general guiding principle, it is important to reduce the effect of

the disorder which limits the speed of braiding operations. However, we note here

that physically moving anyons for braiding operations might not be necessary and

there are alternative measurement-only approaches to topological quantum compu-

tation [130] where the issue of the low-lying localized bound states is not relevant.

We also consider the read-out of topological qubits via interferometry experi-

ments. We study the Mach-Zehnder interferometer based on Aharonov-Casher effect

and show that the main effect of midgap states in the Josephson vortices is the re-

duction of the visibility of the read-out signal. We also consider the effect of thermal

excitations involving midgap states of Abrikosov vortices localized in the bulk on

the interferometry and find that such processes do not effect the signal provided

the system reaches equilibrium fast enough compared to the tunneling time of the

Josephson vortices.

Finally, we address the issue of the quantum coherence of the topological qubit

itself coupled to a gapped fermionic bath via quantum fluctuations. We derive the

master equation governing the time evolution of the reduced density matrix of the

topological qubit using a simple physical model Hamiltonian. The decoherence rate
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of the qubit is exponentially suppressed at low temperatures T � ∆. Since topo-

logical protection assumes that fermion parity in the superconductor is preserved,

our result is very intuitive.

We conclude that the Majorana-based qubits are indeed topologically well-

protected at low temperatures as long as the experimental temperature regime is

well below the superconducting gap energy.
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Chapter 6

Non-adiabaticity in the Braiding of Majorana

Fermions

Mathematical definition of quantum statistics necessarily builds upon the con-

cept of Berry phase of many-body wavefunctions. This implies that the adiabaticity

of braiding is an essential ingredient for non-Abelian statistics, since the quantum

state has to stay in the ground state manifold during the entire process of the braid-

ing [131, 132]. In the real world, however, braidings are necessarily performed within

a finite time interval, i.e., they are always non-Adiabatic. As known from the adi-

abatic perturbation theory, Berry phase is the leading-order term in the adiabatic

perturbative expansion. [133, 134, 135] Given the fundamental role played by adi-

abatic braiding in TQC, it is therefore important to understand quantitatively the

higher order corrections arising from non-adiabatic evolution,

In this chapter, we present a systematic study of the non-adiabatic correc-

tions to the braiding of non-Abelian anyons and develop formalism to describe their

dynamical aspects. In our treatment, braidings are considered as dynamical evo-

lutions of the many-body system, essentially using the time-dependent Schrödinger

equation of the BCS condensate whose solutions are derived from time-dependent

Bogoliubov-de Gennes (BdG) equation. Generally, adiabaticity may break down in
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three different ways: (a) tunneling of non-Abelian anyons when there are multiples

of them, which splits the degenerate ground state manifold and therefore introduces

additional dynamical phases in the evolution; (b) transitions to excited bound states

outside the Hilbert space of zero-energy states, in this case topologically protected

braidings have to be defined within an enlarged Hilbert space; (c) transitions to

the continuum of extended states which render the fermion parity in the low-energy

Hilbert space ill-defined. These non-adiabatic effects are possible sources of errors

for quantum gates in TQC. The main goal of this chapter is to quantitatively address

these effects and their implications on quantum computation.

Our work is the first systematic attempt to study non-adiabaticity in the

anyonic braiding of non-Abelian quantum systems. Given that the braiding of non-

Abelian anyons is the unitary gate operation [136] in topological quantum com-

putation [100], understanding the dynamics of braiding as developed in this work

is one of the keys to understanding possible errors in topological quantum com-

putation. The other possible source of error in topological quantum computation

is the lifting of the ground state anyonic degeneracy due to inter-anyon tunneling,

which we have studied elsewhere [91, 106]. Although we study the braiding non-

adiabaticity in the specific context of the topological chiral p-wave superconductors

using the dynamical BdG equatons within the BCS theory, our work should be of

general validity to all known topological quantum computation platforms, since all

currently known non-Abelian anyonic platforms in nature are based on the SU(2)2

conformal field theory of Ising anyons, which are all isomorphic to the chiral p-

wave topological superconductors [100]. As such, our work, with perhaps some
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minor modifications in the details, should apply to the fractional quantum Hall

non-Abelian qubits [136], real p-wave superconducting systems based on solids [46]

and quantum gases [137], topological insulator-superconductor heterostructures [47],

and semiconductor-superconductor sandwich structures [49] and nanowires [59, 125].

Our results are quite general and are independent, in principle, of the detailed meth-

ods for the anyonic braiding which could vary from system to system in details.

However, it is worthy to point out that the susceptibility of the systems to the non-

adiabatic effects is sensitive to the microscopic details, such as the size of the bulk

gap, the overlap between the various eigenstates which will become further clarified

later.

6.1 Quantum Statistics of Majorana Fermions

6.1.1 Quantum Statistics and Adiabatic Evolution

We first briefly review how quantum statistics is formulated mathematically in

terms of the adiabatic evolution of many-body wavefunctions, following a recent ex-

position in Ref. [138]. Consider the general many-body Hamiltonian Ĥ[R1(t), . . . ,Rn(t)]

where parameters {Ri} represent positions of quasiparticles. We assume the exis-

tence of well-defined, localized excitations which we call quasiparticles. At each mo-

ment t, there exists a subspace of instantaneous eigenstates of Ĥ[R1(t), . . . ,Rn(t)]

with degenerate energy eigenvalues. Instantaneous eigenstates in the subspace are

labeled as |α(t)〉 ≡ |α({Ri(t)})〉. We constraint our discussion in the ground state

subspace with zero energy eigenvalue.
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The adiabatic exchange of any two particles can be mathematically imple-

mented by adiabatically changing the positions of two particles, say Ri and Rj, in

such a way that in the end they are interchanged. This means that

Ri(T ) = Rj(0),Rj(T ) = Ri(0). (6.1)

According to the adiabatic theorem [139], it results in a unitary transformation

within the subspace: if the system is initially in state |ψ(0)〉, then |ψ(T )〉 = Û |ψ(0)〉.

To determine Û , we first consider initial states |ψ(0)〉 = |α({Ri(0)})〉. Under this

evolution the final state can be written as

|ψα(T )〉 = Û0|α(T )〉. (6.2)

Here the matrix Û0 is the non-Abelian Berry phase:[133, 140, 141]

Û0 = P exp

(
i

∫ T

0

dtM̂(t)

)
, (6.3)

where P denotes path ordering and matrix element of the Berry’s connection M̂ is

given by

M̂αβ(t) = i〈α(t)|β̇(t)〉. (6.4)

Although the exchange defines a cyclic trajectory in the parameter space

of Hamiltonian, the final basis states can be different from the initial ones (e.g,

|α({Ri})〉 can be multivalued functions of Ri, which is allowed if we are consid-

ering quasiparticles being collective excitations of many-body systems). The only

requirement we impose is that the instantaneous eigenstates {α(t)} are continuous

in t. Therefore, we have another matrix B̂ defined as B̂αβ ≡ 〈α(0)|β(T )〉, relating
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{α(T )} to {α(0)}: |α(T )〉 = B̂αβ|β(0)〉. Combining with (6.2), we now have the

expression for Û :

|ψ(T )〉 = Û0B̂|ψ(0)〉. (6.5)

Therefore

Û = Û0B̂ = P exp

(
i

∫ T

0

dtM̂(t)

)
B̂. (6.6)

In fact, the factorization of Û into Û0 and B̂ is somewhat arbitrary and gauge-

dependent. However, their combination Û is gauge-independent provided that the

time-evolution is cyclic in parameter space(positions of particles). The unitary trans-

formation Û defines the statistics of quasiparticles.

6.1.2 Non-Abelian Majorana Fermions

We now specialize to the non-Abelian statistics of Majorana fermions in topo-

logical superconductors, carefully treating the effect of Berry phases. We mainly

use spinless superconducting fermions as examples of topological superconductors

in both 1D and 2D since all known topological superconducting systems supporting

non-Abelian excitations essentially stem from spinless chiral p-wave superconductors.[19,

61, 47]

In the BCS mean-field description of superconductors, the Hamiltonian is

particle-hole symmetric due to U(1) symmetry breaking. In terms of Nambu spinor

Ψ̂(r) = (ψ̂(r), ψ̂†(r))T , the BCS Hamiltonian is expressed as ĤBCS = 1
2

∫
d2rΨ̂†(r)HBdGΨ̂(r).
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The Bogoliubov-de Gennes Hamiltonian HBdG takes the following form [20, 19]

HBdG =

 h ∆

∆† −hT

 , (6.7)

where h is the single-particle Hamiltonian [for spinless fermions it is simply h =(
− 1

2m
∂2

r − µ
)
δ(r − r′)] and ∆ is the gap operator. The BCS Hamiltonian can be

diagonalized by Bogoliubov transformation

γ̂† =

∫
d2r
[
u(r)ψ̂†(r) + v(r)ψ̂(r)

]
. (6.8)

Here the wavefunctions u(r) and v(r) satisfy BdG equations:

HBdG

u(r)

v(r)

 = E

u(r)

v(r)

 . (6.9)

Throughout this work, we adopt the convention that operators which are hatted are

those acting on many-body Fock states while bold ones denote matrices in “lattice”

space.

The single-particle excitations γ̂, known as Bogoliubov quasiparticles, are co-

herent superpositions of particles and holes. The particle-hole symmetry implies

that the quasiparticle with eigenenergy E and that with eigenenergy −E are re-

lated by γ̂−E = γ̂†E. Therefore, E = 0 state corresponds to a Majorana fermion

γ̂0 = γ̂†0 [76]. The existence of such zero-energy excitations also implies a non-trivial

degeneracy of ground states: when there are 2N such Majorana fermions, they

combine pair-wisely into N Dirac fermionic modes which can either be occupied or

unoccupied, leading to 2N -fold degenerate ground states. The degeneracy is further

104



reduced to 2N−1 by fermion parity [100]. Since these fermionic modes are intrinsi-

cally non-local, any local perturbation can not affect the non-local occupancy and

thus the ground state degeneracy is topologically protected. This non-locality lies

at the heart of the idea of topological qubits.

We are mostly interested in Majorana zero-energy states that are bound states

at certain point defects (e.g. vortices in 2D, domain walls in 1D). In fact, Majorana

bound states are naturally hosted by defects because that zero-energy states only

appear when gap vanishes. Defects can be moved along with the Majorana fermions

bound to them. Braidings of such Majorana fermions realizes very non-trivial non-

Abelian statistics.

We now apply the general theory of quantum statistics as previously discussed

in Sec. 6.1.1 to the case of Majorana fermions in topological superconductors. The

simplest setting where non-trivial statistics can be seen is the adiabatic braiding of

two spatially separated Majorana fermions γ̂1 and γ̂2. We denote the two bound

state solutions of the BdG equation by Ψ01 and Ψ02. When R1 and R2 vary with

time they become instantaneous zero-energy eigenstates of BdG Hamiltonian. We

choose their phases in such a way that the explicit analytical continuation of BdG

wavefunction leads to the following basis transformation under exchange [35, 142]

Ψ01(T ) = sΨ02(0)

Ψ02(T ) = −sΨ01(0),

(6.10)

where s = ±1. The value of s depends on the choice of wavefunctions and we choose

the convention that s = 1 throughout this work. In the case of Majorana fermions in

vortices, the additional minus sign originates from branch cuts introduced to define
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the phase of wavefunctions. This transformation actually gives the B̂ matrix in the

general theory. Equivalently in terms of quasiparticle operator, we have

γ̂1 → γ̂2

γ̂2 → −γ̂1.

(6.11)

If we define the non-local fermionic mode d̂† = 1√
2
(γ̂1 + iγ̂2), the states with

even and odd fermion parity are given by |g〉 and d̂†|g〉. Due to the conservation

of fermion parity, the two states are never coupled. However, the non-Abelian

statistics still manifest itself in the phase factor acquired by the two states after an

adiabatic exchange. To see this, first we notice that under exchange, the analytical

continuation(or basis transformation) gives the following transformation of the two

states:

|g〉 → eiϕ|g〉

d̂†|g〉 → ei
π
2 eiϕd̂†|g〉.

(6.12)

Here the π
2

phase difference is reminiscence of non-Abelian statistics.

So far we have obtained the basis transformation matrix B̂. To know the

full quantum statistics we also need to calculate the adiabatic evolution Û0. We

now show by explicit calculation that Û0 ∝ 1̂ up to exponentially small corrections.

This requires knowledge of Berry connection accompanying adiabatic evolutions of

BCS states. Fortunately, for BCS superconductor the calculation of many-body

Berry phase can be done analytically [34]. The ground state |g〉 has the defining

property that it is annihilated by all quasiparticle operators γn. All other states can

be obtained by populating Bogoliubov quasiparticles on the ground state |g〉. Let

us consider a state with M quasiparticles |n1, n2, . . . , nM〉 = γ̂†n1
γ̂†n2
· · · γ̂†nM |g〉. The
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Berry connection of this state then reads [34]

〈n1, . . . , nM |∂|n1, . . . , nM〉 = 〈g|∂|g〉+
M∑
i=1

(u∗ni , v
∗
ni

)∂

uni
vni

 . (6.13)

So the difference between the Berry phase of a state with quasiparticles and the

ground state is simply the sum of “Berry phase” of the corresponding BdG wave-

functions. Since the Berry phase of ground state |g〉 can be eliminated by a global

U(1) transformation, only the difference has physical meaning.

According to (6.13), the relevant term to be evaluated is

(u∗01−iu∗02, v
∗
01−iv∗02)∂

u01 + iu02

v01 + iv02

 = 2Re (u∗1∂u1 + u∗2∂u2)+2iRe(u∗1∂u2−u∗2∂u1),

(6.14)

where we have made use of the Majorana condition v = u∗. The first term in

(6.14) vanishes because
∫
u∗∂u must be purely imaginary. The second term has a

non-vanishing contribution to the total Berry phase. However, due to the localized

nature of zero-energy state, the overlap between u1 and u2 is exponentially small:

∫ T

0

dtRe(u∗1∂tu2 − u∗2∂tu1) ∼ e−|R1−R2|/ξ. (6.15)

Therefore the Berry phase can be neglected in the limit of large separation R. This

completes our discussion of non-Abelian statistics. The above calculation can be

easily generalized to the case of many anyons.
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6.2 Time-dependent Bogoliubov-de Gennes Equation

In this section we derive the formalism to track down time-evolution of BCS

condensate within mean-field theory. For BCS superconductivity arising from inter-

actions, the pairing order parameter has to be determined self-consistently, which

makes the mathematical problem highly nonlinear. In the situations that we are

interested in, it is not critical where the pairing comes from. In some systems that

are believed to be experimentally accessible, e.g. semiconductor/superconductor

heterostructure, superconductivity is induced by proximity effect [47, 49] and there

is no need to keep track of the self-consistency. We will take the perspective that

order parameter is simply a external field in the Hamiltonian.

The time-dependent BdG equation [143, 144] has been widely used to describe

dynamical phenomena in BCS superconductors. To be self-contained here we present

a derivation of the time-dependent BdG equation highlighting its connection to

quasiparticle operators. It can also be derived by methods of Heisenberg equation

of motion or Green’s function. Suppose we have a time-dependent BdG Hamiltonian

HBdG(t). The unitary time-evolution of the many-body system is formally given by

Û(t) = T exp

[
−i
∫ t

0

dt′ ĤBCS(t′)

]
. (6.16)

To obtain an explicit form of Û(t), we define the time-dependent Bogoliubov

quasiparticle operator as

γ̂n(t) = Û(t)γ̂nÛ
†(t), (6.17)

where γ̂n is the quasiparticle operator for ĤBCS(0) and the corresponding BdG
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wavefunction is un(r), vn(r). We adopt the normalization condition

∫
d2r |un(r)|2 + |vn(r)|2 = 1, (6.18)

which means {γ̂n, γ̂†n} = 1.

γ̂n(t) by definition satisfies the following equation of motion

i
dγ̂n(t)

dt
= [ĤBCS(t), γ̂n(t)]. (6.19)

In fact, by direct calculation one can show that the equation of motion is

solved by

γ̂†n(t) =

∫
dr
[
un(r, t)ψ̂(r) + vn(r, t)ψ̂(r)

]
, (6.20)

where the wavefunction un(r, t) and vn(r, t) are solutions of time-dependent BdG

equation:

i
d

dt

un(r, t)

vn(r, t)

 = HBdG(t)

un(r, t)

vn(r, t)

 (6.21)

together with initial condition (another way of saying γ̂n(0) = γ̂n)

un(r, 0) = un(r), vn(r, 0) = vn(r). (6.22)

As long as the solutions of the time-dependent BdG equation (6.21) are obtained,

we can construct the operators {γ̂n(t)}.

We now derive an explicit formula of Û when the time-evolution is cyclic(i.e.,

ĤBCS(T ) = ĤBCS(0)). In that case, it is always possible to express γn(T ) as a linear

combination of γ̂n ≡ γ̂n(0) and γ̂†n. Since particle number is not conserved, it is more

convenient to work with Majorana operators. We thus write γ̂n = ĉ2n−1 + iĉ2n where

cm are Majorana operators. Suppose the BdG matrix has totally 2N eigenvectors
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so n = 1, 2 . . . , N . Assume that by solving time-dependent BdG equation we obtain

the transformation of cm as follows:

ĉk(T ) =
∑
l

Vklĉl, (6.23)

where V ∈ SO(2N) as required by unitarity and the conservation of fermion parity.

The matrix V can be calculated once we know the BdG wavefunctions. Then we

can write down an explicit expression of Û(T ) in terms of ĉm [28]:

Û(T ) = exp

(
1

4

∑
mn

Dmnĉmĉn

)
, (6.24)

where the matrix D is defined by the relation e−D = V . Here D is necessarily a

real, skew-symmetric matrix. We notice that the usefulness of (6.24) is actually not

limited to cyclic evolution. In fact, (6.24) is purely an algebraic identity that shows

any SO(2N) rotation of 2N Majorana operators can be implemented by a unitary

transformation.

In the following we outline the method to solve the time-dependent BdG equa-

tion. To make connection with the previous discussion of Berry phase, we work in

the “instantaneous” eigenbasis of time-dependent Hamiltonian. At each moment t,

the BdG Hamiltonian HBdG(t) can be diagonalized yielding a set of orthonormal

eigenfunctions {Ψn(r, t)}. A remark is right in order: because of particle-hole sym-

metry, the spectrum of BdG Hamiltonian is symmetric with respect to zero energy

and the quasiparticle corresponding to negative energy are really “holes” of positive

energy states. However, at the level of solving BdG equation mathematically, both

positive and negative energy eigenstates have to be retained to form a complete
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basis. The most general form of BdG wavefunction can be expanded as

Ψ(r, t) =
∑
n

cn(t)Ψn(r, t). (6.25)

Plugging into time-dependent BdG equation, we obtain

iċn +
∑
m

Mnm(t)cm = En(t)cn, (6.26)

where Mnm(t) = i〈Ψn(t)|∂t|Ψm(t)〉.

Assume that starting from initial condition cn(0) = δmn(roughly the quasipar-

ticle is in the Ψm state at t = 0), we obtain the solutions of (6.26) at t = T denoted

by cmn (T ). The transformation of basis states themselves is given by the matrix B̂.

Combining these two transformations we find

γ̂n →
∑
kl

cnkB̂klγ̂l, (6.27)

from which the linear transformation V can be directly read off. Then by taking

the matrix log of V̂ we can obtain the evolution operator. This is the procedure

that we will use to solve the (cyclic) dynamics of BCS superconductors.

We will not be attempting to obtain the most general solution, since it de-

pends heavily on the microscopic details. Instead, we focus on two major aspects of

non-adiabaticity: (a) finite splitting of ground state degeneracy which only becomes

appreciable when the braiding time is comparable to the “tunneling” time of Majo-

rana fermions. (b) excited states outside the ground state subspace. In both cases,

the non-adiabaticity caused by the finite speed of transporting the anyons enters

through the Berry matrix M. The explicit forms of the matrix M will be presented

in the following analysis, but several general remarks are in order. Since the matrix
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element of M is given by Mnm = i〈Ψn|∂t|Ψm〉, and the time dependence only enters

in the parameters {Ri(t)} in the basis eigenstates, we can rewrite it as

Mnm =
∑
i

Ṙi · i〈Ψn|∇Ri
|Ψm〉, (6.28)

where i〈Ψn|∇Ri
|Ψm〉 is time-independent. Therefore, the degree of the non-adiabaticity

is characterized by |Ṙ| ∼ Rω where R measures the average distance between the

two anyons that are braided and ω measures the instantaneous angular velocity. In

general, the speed of the anyons can vary with time. But if we assume that the

variation of the speed is not significant, then it is reasonable to characterize the

non-adiabaticity by the average value of ω and neglect its variation. We will make

this approximation throughtout our work. In this sense, we can relate ω to the total

time T of the braiding operation by ω = 2π
T

.

The path {Ri(t)} can be arbitrary as long as they form a braid. To illustrate

the physics in the simplest setting, we assume that the two vortices travel on a circle

whenever we have to specify the trajectory. Mathematically, the positions of the

two anyons are

R1(t) = −R2(t) = R(cos(ωt+ θ0), sin(ωt+ θ0)). (6.29)

Here ω = 2π
T

. The choice of the path makes the Berry matrix M independent of

time which simplifies our calculation. In realistic situations, the Berry matrix may

acquire time-dependence from the variation of the speed of the anyons varies with

time, but we expect this level of complication has only minor quantitative changes

to our results.
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6.2.1 Effect of Tunneling Splitting

The derivation of transformation rule (6.11) assumes that the two Majorana

bound states have vanishing energies so there is no dynamical phase accumulated.

The assumption is only true when tunneling splitting of zero-energy states is ne-

glected. It has been established that the finite separation between anyons always

leads to a non-zero splitting of zero-energy states [19, 91, 145] although the splitting

is exponentially suppressed due to the existence of bulk gap. As a result, the two

ground states acquire different dynamical phases during the time-evolution. Here

we take into account all the non-universal microscopic physics including dynamical

phase induced by tunneling splitting and non-Abelian Berry phase.

In the framework of time-dependent BdG equation, the two basis states are

Ψ± = 1√
2
(Ψ01 ± iΨ02). The energy splitting between two zero-energy states in

vortices in a spinless px + ipy superconductor has been calculated in the limit of

large separation [91, 106]:

E+ = −E− ≈
√

2

π
∆0

cos(kFR + π/4)√
kFR

e−R/ξ, (6.30)

with ∆0 being the amplitude of the bulk superconducting gap, kF the Fermi momen-

tum and ξ the coherence length. The exponential decay of splitting is universal for

all non-Abelian topological phase and is in fact the manifestation of the topological

protection.

The Berry matrix M can be evaluated:

M++ = M−− =
i

2

(
〈Ψ1|Ψ̇1〉+ 〈Ψ2|Ψ̇2〉

)
M+− =

1

2

(
i〈Ψ1|Ψ̇1〉 − i〈Ψ2|Ψ̇2〉+ 〈Ψ1|Ψ̇2〉 − 〈Ψ2|Ψ̇1〉

)
.

(6.31)
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From (??) we have 〈Ψ01|Ψ̇01〉 = 〈Ψ02|Ψ̇02〉 = 0. So M only has off-diagonal

elements. Furthermore, we can show that M+− must be a real number following the

Majorana condition Ψ∗ = Ψ. Write Ψ = (u, u∗)T , we have

〈Ψ01|Ψ̇02〉 =

∫
d2r (u∗1u̇2 + u1u̇

∗
2), (6.32)

from which we can easily see 〈Ψ01|Ψ̇02〉 ∈ R. The same for 〈Ψ02|Ψ̇01〉. The integral

in M+− can be further simplified:

M+− = ωα, α =
1

2

∫
d2r Ψ†(r + R)Ψ(r), (6.33)

where R = R1 − R2. The form of α is not important apart from the fact that

|α| ∼ e−R/ξ.

Therefore the matrix M takes the following form:

M = ω

0 α

α 0

 . (6.34)

Since both α and E± are functions of R, they are time-independent. We now

have to solve essentially the textbook problem of the Schrödinger equation of a spin

1/2 in a magnetic field, the solution of which is well-known:c+(T )

c−(T )

 =

cos ET − iE+

E sin ET iωα
E sin ET

iωα
E sin ET cos ET + iE+

E sin ET


c+(0)

c−(0)

 , E =
√
E2

+ + ω2α2.

(6.35)

We can translate the results into transformation of Majorana operators:

γ̂1 →
(

cos ET+
iωα

E
sin ET

)
γ̂2−

E+

E
sin ET γ̂1

γ̂2 → −
E+

E
sin ET γ̂2−

(
cos ET+

iωα

E
sin ET

)
γ̂1

. (6.36)
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Because E+ ∼ ∆0e
−R/ξ, |α| ∼ e−R/ξ and ω � ∆0, by order of magnitude we

can safely assume |E+| � ω|α|. In the limiting case ω → 0 we find

γ̂1 → cos ET γ̂2 − sin ET γ̂1

γ̂2 → − sin ET γ̂2 − cos ET γ̂1

, (6.37)

which can be compactly written as γ̂i → Û γ̂iÛ
† where

Û = exp

[(
π

4
− ET

2

)
γ̂2γ̂1

]
. (6.38)

Physically it simply means that the two ground states with different fermion parity

pick up different dynamical phases due to the energy splitting. When ET becomes

O(1), the dynamical phase becomes appreciable so a unneglibible error has been

introduced. Physically, this means that the braiding is carried out so slowly that

the two ground states can not be considered as being degenerate.

When we also take into account the terms containing ω, the transformation

matrix is no longer in SO(2). This implies that the two-dimensional Hilbert space

spanned by the two Majorana zero-energy bound states is not sufficient to describe

the full time evolution. However, this contribution is small in both ω and α compared

to the dynamical phase correction and can be safely neglected.

The above calculation is carried out for the case of two vortices, where the

two degenerate ground states belong to different fermion parity sectors and can

never mix. Four vortices are needed to have two degenerate ground states in the

same fermion parity sector. But the applicability of the result (6.36) and (6.38) is

not limited to only two vortices. We expect that due to the tunneling splitting,

the ground states with different fermion parities in each pair of vortices acquires

115



different dynamical phases, which interferes with the non-Abelian transformation.

6.2.2 Effects of Excited Bound States

The concept of quantum statistics is built upon the adiabatic theorem claim-

ing that in adiabatic limit, quantum states evolve within the degenerate energy

subspace. Going beyond adiabatic approximation, we need to consider processes

that can cause transitions to states outside the subspace which violates the very

fundamental assumption of adiabatic theorem. In the case of the braiding of Majo-

rana fermions in superconductors, there are always extended excited states in the

spectrum which are separated from ground states by roughly the superconducting

gap. In addition, there may be low-lying bound states within the bulk gap, such

as the CdGM states in vortices. We call them subgap states. Extended states and

subgap bound states apparently play different roles in the braiding of Majorana

fermions. To single out their effects on the braiding we consider them separately

and in this subsection we consider excited bound states first. Since the energy scale

involved here is the superconducting gap, we neglect the exponentially small energy

splitting whose effect has been considered in the previous subsection.

The BdG wavefunctions of excited bound states in each defect are denoted

by Ψλi, i = 1, 2 where i labels the defects, with energy eigenvalues ελ. If no other

inhomogeneities are present, the wavefunctions are all functions of r−Ri. Assuming

|Ri − Rj| � ξ, we have approximately 〈Ψλi|Ψλ′j〉 = δij up to exponentially small

corrections. Therefore, the BdG equation decouples for the two defects since the
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tunneling amplitudes between them are all negligible. So it is sufficient to consider

one defect and we will omit the defect label i in the following. We write the solution

to time-dependent BdG equation as

Ψ(t)=c0(t)Ψ0(t) +
∑
λ

[
cλ(t)Ψλ(t) + cλ(t)Ψλ(t)

]
, (6.39)

where we have defined Ψλ as the particle-hole conjugate state of Ψλ, with energy

eigenvalue −ελ. We will focus on the minimal case where only one extra excited

state is taken into account. Actually, in the case of bound states in vortices, due

to the conservation of angular momentum, zero-energy state is only coupled to one

excited bound state and to the leading order we can neglect the couplings of the

zero-energy states to other excited states as well as those between excited states.

The time-dependent BdG equation reduces to

iċ0 = −βcλ + β∗cλ

iċλ = (ελ − α)cλ − β∗c0

iċλ = −(ελ + α)cλ − βc0

, (6.40)

where we have defined the components of the Berry matrix as

βλ = i〈Ψ0|Ψ̇λ〉, αλ = i〈Ψλ|Ψ̇λ〉. (6.41)

In the following we suppress the subscript λ and shift the energy of excited level

to eliminate αλ: ελ → ελ + αλ. The quasiparticle operator corresponding to the

excited level is denoted by d̂, as defined in. For technical convenience, we write it

as d̂ = 1√
2
(ξ̂ + iη̂) where ξ̂ and η̂ are both Majorana operators. Solving the BdG
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equation (6.40), we find

γ̂ →
(

1− 4β2

E2
sin2 Et

2

)
γ̂+

2
√

2βε sin2 Et
2

E2
ξ̂−
√

2β sinEt

E
η̂

ξ̂ →
2
√

2εβ sin2 Et
2

E2
γ̂+
(

cosEt+
4β2 sin2 Et

2

E2

)
ξ̂+

ε sinEt

E
η̂

η̂ →
√

2β sinEt

E
γ̂ − ε sinEt

E
ξ̂ + cosEt η̂

(6.42)

which should be followed up by the basis transformation B̂. Here we have defined

E =
√
ε2 + 4β2.

By using (6.24) we can work out explicitly how the ground state wavefunctions

transform. Physically, the non-adiabatic process causes transitions of quasiparticles

residing on the zero-energy level to the excited levels. Superficially these transitions

to excited states significantly affect the non-Abelian statistics, since the parity of

fermion occupation in the ground state subspaces is changed as well as the quantum

entanglement between various ground states [20, 146]. This can also be directly

seen from (6.42) since starting from |g〉 the final state is a superposition of |g〉 and

d̂†0d̂
†
λ|g〉. So we might suspect that errors are introduced to the gate operations.

However, noticing that the excited states are still localized, they are always

transported together with the zero-energy Majorana states. Threfore the parity of

the total fermion occupation in the ground state subspace and local excited states are

well conserved. This observation allows for a redefinition of the Majorana operators

to properly account for the fermion occupation in local excited states, as being done

in [111]. We therefore have to represent the fermion parity in the following way:

P̂12 = −iγ̂1ξ̂1η̂1γ̂2ξ̂2η̂2 = iγ̂1γ̂2

∏
i=1,2

(1− 2d̂†i d̂i) (6.43)

shared by defects 1 and 2. Accordingly, we define the generalized Majorana operators
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Γ̂i = iγ̂iξ̂iη̂i, i = 1, 2. Since the couplings between the two vortices are exponentially

small, we treat their dynamics independently. Γ̂i is invariant under local unitary

evolution, which can be checked explicitly using (6.42). An even general proof

proceeds as following: according to (6.23), the three Majorana operators γ̂i, ξ̂i, η̂i

must transform by a SO(3) matrix V. Then it is straightforward algebra to show

that Γ̂i → det V·Γ̂i. Since V ∈ SO(3), det V = 1 which means that Γ̂i is unchanged.

Thus the effect of the braiding comes only through the basis transformation matrix

B̂. As a result, the fermion parities, being the expectation values of (6.43), transform

exactly according to the Ivanov’s rule under the braiding. This result can be easily

generalized to the case where many bound states exist in the vortex core.

From the perspective of measurement, to probe the status of a topological

qubit it is necessary and sufficient to measure the fermion parity as defined in

(6.43). It is practically impossible(and unnecessary) to distinguish between the

fermion occupations in ground state subspace and excited states as long as they are

both localized and can be considered as a composite qubit.

To conclude, non-Adiabatic population of fermions onto the low-lying excited

bound states has no effect on the non-Abelian statistics due to the fact that the

fermion parity shared by a pair of vortices is not affected by such population.

6.2.3 Effects of Excited Extended States

We next consider the effect of excited states that are extended in space. Usu-

ally such states form a continuum. The scenario considered here may not be very
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relevant to Majorana fermions in 2D px + ipy superconductor since bound states

in vortices often dominate at low energy. However, for Majorana fermions in one-

dimensional systems, zero-energy state is the only subgap state and coupling between

zero-energy state and continuum of excited states may become important.

Again we write time-dependent BdG equation in the instantaneous eigenbasis

iċ0,1 = −
∑
λ

(β1λcλ − β∗1λcλ)

iċ0,2 = −
∑
λ

(β2λcλ − β∗2λcλ)

iċλ = (ελ − αλ)cλ − β∗1λc0,1 − β∗2λc0,2

iċλ = −(ελ − αλ)cλ + β1λc0,1 + β2λc0,2

. (6.44)

Here we still use λ to label the excited states. As in the case of bound states, we

ignore the coupling between excited states since these only contribute higher order

terms to the dynamics of zero-energy states. In another word, we treat each excited

state individually and in the end their contributions are summed up.

To proceed we need to determine matrix elements β1λ and β2λ. We will con-

sider the spinless one-dimensional p-wave superconductor as an example. The zero-

energy states localize at two ends of the 1D system which lie in the interval [0, L].

We also assume reflection symmetry with respect to x = L/2. Without worrying

about the tunneling splitting, we can consider the two ends near x = 0 and x = L

independently. Then we make use of the fact that BdG equations near x = 0 and

x = L are related by a combined coordinate and gauge transformation x→ L− x,

∆(x)→ −∆(L− x). Therefore, the bound state and the local part of the extended

states near x = 0 and x = L are related by gauge transformations. Based on these
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considerations, we should have β1λ = β2λ ≡ βλ, up to exponentially small correc-

tions. Similar argument also applies to vortices in 2D px + ipy superconductors.

As mentioned above, we will make the approximation that each excited state

can be treated independently. So we consider the effect of one of the excited states

first and omit the label λ temporarily. Again we write d̂ = 1√
2
(ξ̂ + iη̂). Without

loss of generality we also assume that β is real. We find from the solution of time-

dependent BdG equation that

γ̂1 →
4β2

E2
sin2 Et

2
γ̂1 +

(
1− 4β2

E2
sin2 Et

2

)
γ̂2 +

2
√

2βε sin2 Et
2

E2
ξ̂ +

√
2β sinEt

E
η̂

γ̂2 → −
(

1− 4β2

E2
sin2 Et

2

)
γ̂1 −

4β2

E2
sin2 Et

2
γ̂2 +

2
√

2βε sin2 Et
2

E2
ξ̂ +

√
2β sinEt

E
η̂

ξ̂ →
2
√

2βε sin2 Et
2

E2
(−γ̂1 + γ̂2) +

(
cosEt+

8β2 sin2 Et
2

E2

)
ξ̂ −
√

2ε sinEt

E
η̂

η̂ →
2
√

2β sin2 Et
2

E
(−γ̂1 + γ̂2) +

ε sinEt

E
ξ̂ + cosEt η̂

.

(6.45)

Here again E =
√
ε2 + 4β2.

At first glance the physics here is very similar to what has been discussed

for local bound states: non-adiabatic transitions cause changes of fermion parity in

the ground state subspace. The crucial difference between local bound states and

a continuum of extended states is that, in the former case, local fermion parity is

still conserved as long as we count fermion occupation in the excited states while in

the latter, it is impossible to keep track of the number of fermions leaking into the

continuum so the notion of local fermion parity breaks down. These non-adiabatic

effects may pose additional constraints on manufacturing of topological qubits. Let’s

consider to what extent the braiding statistics is affected. A useful quantity to look
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at here is the expectation value of the fermion parity operator in the ground state

subspace, namely 〈P̂0〉 = 〈iγ̂1γ̂2〉.

Suppose at t = 0 we start from the ground state |g〉 with even fermion parity

〈g|P̂0|g〉 = 1 and the excited level is unoccupied, too. After the braiding at time T

the expectation value of P̂0 becomes

〈P̂0(T )〉 = 1− 8β2

E2
sin2 ET

2
. (6.46)

where P̂0(T ) = Û †(T )P̂0Û(T ). This confirms that fermion parity is not conserved

anymore. For |β| � ε, the coupling to excited state can be understood as a small

perturbation. 〈P̂0〉 only slightly deviates from the non-perturbed value. In the

opposite limit |β| � ε, 〈P̂0〉 can oscillate between 1 and −1 so basically fermion

parity is no longer well-defined.

Now we can sum up the contributions from each excited state and (6.46) is

replaced by:

〈P̂0(T )〉 = 1−
∑
λ

8|βλ|2

E2
λ

sin2 EλT

2
. (6.47)

The sum over the continuum states can be replaced by an integral over energy.

We assume that the couplings βλ dependes only weakly on the energy ελ so it can

be factored out as βλ ≈ β. Then we obtain

〈P̂0(T )〉 = 1−8|β|2
∫ ∞

∆0

dε
ν(ε)

ε2 + 4|β|2
sin2 εT

2
. (6.48)

The density of states ν(ε) depends on the microscopic details of the underlying

superconducting phase. For simplicity we take the typical BCS-type density of

122



states:

ν(ε) =
2ν0ε√
ε2 −∆2

0

Θ(ε−∆0). (6.49)

Here ν0 is the normal-state density of states and ∆0 is the bulk superconducting

gap. We consider the limit ∆0T � 1. The long-time asymptotic behavior of the

integral is given by

〈P̂0(T )〉 ≈ 1−
8ν0|β| sinh−1 2|β|

∆0√
4|β|2 + ∆2

0

+O

(
1√

∆0T

)
. (6.50)

Therefore, the non-adiabatic coupling to the excited continuum causes finite de-

pletion of the fermion parity in the zero-energy ground state subspace, which can

be regarded as the dissipation of the topological qubit. The depletion becomes

comparable to 1 if ν0

( |β|
∆0

)2 ∼ 1, rendering the qubit undefined. We notice that our

calculation breaks down for large |β| since then the excited states can not be treated

as being independent. They are coupled through second-order virtual processes via

the zero-energy state, which is weighted by ( |β|
∆0

)2 perturbatively. Thus our results

should be regarded as the leading-order correction in the non-adiabatic perturbation

theory.

6.3 Discussion and Conclusion

In conclusion, we have considered the braiding of non-Abelian anyons as a

dynamical process and calculated the corrections to non-Abelian evolutions due

to non-adiabatic effects. We discuss several sources of non-adiabaticity: first of

all, tunneling between non-Abelian anyons results in splitting of the degenerate

ground states. The Abelian dynamical phase accumulated in the process of braiding
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modifies Ivanov’s rule of non-Abelian statistics. Since the bulk of the superconductor

is fully gapped such corrections are exponentially small. In the context of TQC such

deviations from Ivanov’s rule are sources of errors in single-qubit quantum gates.

Second, we consider dynamical transitions of Majorana fermions in the zero-

energy ground states to excited states. The effects of such non-adiabatic transitions

strongly rely on whether these excited states are bound states with discrete spectrum

and localized at the same positions with the Majorana bound states, or they extend

through the whole bulk and form a continuum. Generally speaking, non-adiabatic

transitions mix the zero-energy ground states with other excited states and it is

questionable whether the quantum entanglement crucial to non-Abelian statistics is

still preserved. In the former case where excited states are localized, we are still able

to define conserved fermion parity stored in these low-energy bound states. Non-

Abelian statistics can be generalized once we enlarge the Hilbert space to include all

local bound states. In the latter case, the situation is dramatically different because

the notion of fermion parity in the low-energy Hilbert space no longer makes sense

once extended states above the bulk gap are involved. We characterize the loss

of fermion parity in such non-adiabatic transitions by the expectation value of the

“local fermion parity” operator. This can be viewed as the dissipation of topological

qubit resulting from couplings to a continuum of fermionic states. We have thus

quantified the expectation that a zero-energy Majorana mode will decay if it is put

in contact with a continuum of fermionic states(e.g., electrons).

Although the underlying technological motivation for topological quantum

computation is that quantum error correction against continuous decoherence is un-

124



necessary as a matter of principle in topological systems since decoherence due to lo-

cal coupling to the environment is eliminated, other errors, such as non-adiabaticity

considered in this work, would invariably occur in all quantum systems in the pres-

ence of time-dependent quantum gate operations. In addition, braiding is the cor-

nerstone of the strange quantum statistical properties which distinguish non-Abelian

anyons from ordinary fermions and bosons. Our work, involving the non-adiabatic

corrections to anyonic braiding, is therefore relevant to all current considerations in

the subject of Ising anyons whether it is in the context of the observation of the

non-Abelian statistics or the implementation of topological quantum computation.

In particular, non-adiabaticity in the Majorana braiding in the specific context of

non-Abelian topological superconductors as discussed in this chapter, may be rel-

evant to various recently proposed Majorana interferometry experiments involving

vortices in 2D [147, 148, 120, 121].

We now speculate about the physical sources of non-adiabaticity of braidings.

Throughout our work we have focused on the intrinsic non-adiabaticity originating

from the fact that braidings are done during a finite interval of time. For such effects

to be appreciable, the time-scale of braidings has to be comparable to ∆t ∼ ~
∆E

where ∆E is the energy gap protecting the anyonic Majorana modes. For the

corrections from the tunneling of Majorana fermions, ∆t is exponentially large so

it is usually legitimate to neglect the tunneling effect. On the other hand, if we are

interested in corrections from states above the gap, then the relevant time scale is

~/∆. Using (6.47) one can estimate the non-adiabatic error rate in performing gate

operations.
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These considerations also apply to other types of non-adiabatic perturbations

as long as they have non-zero matrix elements between zero-energy states and ex-

cited states. In particularly disorder scattering, which is unavoidable in solid state

systems, can be a source of non-adiabaticity [146]. As the non-Abelian anyons are

moving, the disorder potential seen by the anyons changes randomly with time so

it can be modeled as a time-dependent noise term in the Hamiltonian which may

cause dephasing. Other possible perturbations in solid state systems include col-

lective excitations, such as phonons and plasmons(or phase fluctuations). We leave

the investigation of these effect for future work. The formalism developed in the

current work can, in principle, be used to study these dephasing errors.
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Chapter 7

Majorana Zero Modes Beyond BCS Mean-Field

Theory

The BCS theory of superconductivity [149], which all our theoretical study

of topological superconductors is based on, is a mean-field theory of the many-

body effect originating from four-fermion interaction. Although it has been proved

to be enormously successful in describing superconductivity, fluctuation effects be-

yond the mean-field theory do arise in certain circumstances. For example, in the

neighborhood of the superconducting phase transition where the mean-field order

parameter is very small, the fluctuation effect can be dominant in various thermo-

dynamical quantities. Another scenario where fluctuations can not be neglected is

low-dimensional systems, where fluctuation effects are actually most prominent. A

celebrated theorem proved by Mermin and Wagner [150], states that under very

generic conditions (e.g. short-range interactions) no spontaneous continuous sym-

metry breaking can occur in one dimension (1 + 1 space-time dimension) even at

zero temperature. The same is true in two dimensions at any finite temperature. In

both cases, the off-diagonal long-range order [151], which defines the spontaneous

symmetry breaking, is smeared out by strong quantum or thermal fluctuations and

becomes quasi-long-range order characterized by the algebraic decay of order pa-
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rameter correlations.

It is therefore an important question to understand the fluctuation effects on

the topological aspects, particularly the Majorana zero modes in TSC, since they

do live in one or two dimensions. From a more general perspective, the interplay

between interaction (since fluctuations are essentially caused by interactions) and

topological classification of non-interacting systems is a fundamental problem which

we only began to understand quite recently. A remarkable progress is that the topo-

logical classification of one-dimensional non-interacting fermionic systems with time-

reversal symmetry is dramatically changed by interactions [152, 153, 154]. Several

theoretical studies on the effects of interactions on Majorana fermions in proximity-

induced TSC have been performed recently [155, 156, 157, 158], confirming the

stability of Majorana fermions against weak and moderate interactions.

In this chapter we present an attempt to understand the fate of Majorana

zero modes when quantum fluctuations are strong enough that only quasi-long-

range superconducting order can exist. We consider a generic theoretical model of

spinless fermions on two-chain ladders. The model generalizes the simplest one-

dimensional TSC, namely spinless fermions with p-wave pairing (also known as Ma-

jorana chain) [28], to interacting two-chain systems. Instead of introducing pairing

by proximity effect, the effective field theory includes inter-chain pair tunneling with

inter-chain single-particle tunneling being suppressed. Therefore the fermion parity

on each chain is conserved. When the pair-tunneling interaction drives the system to

strong coupling, localized Majorana zero-energy states are found on the boundaries,

which represents a nontrivial many-body collective state of the underlying fermions.
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We then demonstrate that in a finite-size system the Majorana edge states lead to

(nearly) degenerate ground states with different fermion parity on each chain, thus

revealing its analogy with the Majorana edge states in non-interacting TSC. The

degeneracy is shown to be robust to any weak intra-chain perturbations, but inter-

chain single-particle tunneling and backscattering can possibly lift the degeneracy.

We also discuss a lattice model where such field theory is realized at low energy.

7.1 Field-Theoretical Model

We start from an effective field-theoretical description of the model for the

purpose of elucidating the nature of the Majorana edge states. We label the two

chains by a = 1, 2. The low-energy sector of spinless fermions on each chain is well

captured by two chiral Dirac fermions ψ̂L/R,a(x). The non-interacting part of the

Hamiltonian is simply given by Ĥ0 =
∫

dx Ĥ0(x) where

Ĥ0 = −ivF
∑
a

(
ψ̂†Ra∂xψ̂Ra − ψ̂

†
La∂xψ̂La

)
. (7.1)

Four-fermion interactions can be categorized as intra-chain and inter-chain in-

teractions. Intra-chain scattering processes (e.g., forward and backward scattering)

are incorporated into the Luttinger liquid description of spinless fermions and their

effects on the low-energy physics are completely parameterized by the renormalized

velocities va and the Luttinger parameters Ka. We assume that the filling of the

system is incommensurate so Umklapp scattering can be neglected. For simplicity

we assume the two chains are identical so v1 = v2 = v,K1 = K2 = K.

We now turn to inter-chain interactions. Those that can be expressed in terms
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of the densities of the chiral fermions can be absorbed into the Gaussian part of the

bosonic theory after a proper change of variables(see below) and we do not get

into the details here. We have to consider the pair tunneling and the inter-chain

backscattering:

Ĥpair = −gp(ψ̂†R2ψ̂
†
L2ψ̂L1ψ̂R1 + h.c.)

Ĥbs = gbs(ψ̂
†
L1ψ̂R1ψ̂

†
R2ψ̂L2 + 1↔ 2).

(7.2)

The microscopic origin of such terms is highly model-dependent which will be dis-

cussed later. The motivation of studying pair tunneling is to “mimic” the BCS

pairing of spinless fermions without explicitly introducing superconducting pairing

order parameter.

The Hamiltonian of the effective theory is then expressed as Ĥ = Ĥ0 + Ĥbs +

Ĥpair. Notice that total fermion number N̂ = N̂1 + N̂2 is conserved by the Hamilto-

nian, but N̂1 and N̂2 themselves fluctuate due to the tunneling of pairs. However,

their parities (−1)N̂a are still separately conserved. Due to the constraint that

(−1)N̂1 · (−1)N̂2 = (−1)N , we are left with an overall Z2 symmetry. Therefore we

define the fermion parities P̂a = (−1)N̂a , the conservation of which is crucial for es-

tablishing the existence and stability of the Majorana edge states and ground state

degeneracy. In the following we refer to this overall Z2 fermion parity as single-chain

fermion parity. It is important to notice that the conservation of the single-chain

fermion parity relies on the fact that there is no inter-chain single-particle tunnel-

ing in our Hamiltonian. We will address how this is possible when turning to the

discussion of lattice models.

We use bosonization [159, 160] to study the low-energy physics of the model.
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The standard Abelian bosonization reads

ψ̂r,a =
η̂r,a√
2πa0

ei
√
π(θa+rϕa) (7.3)

where a0 is the short-distance cutoff, r = +/− for R/L movers and η̂r,a are Majo-

rana operators which keep track of the anti-commuting character of the fermionic

operators. We follow the constructive bosonization as being thoroughly reviewed in

[160]. The two bosonic fields ϕa and θa satisfy the canonical commutation relation:

[∂xϕa(x), θa(x
′)] = iδ(x− x′). (7.4)

The ϕa field is related to the charge density on chain a by ρa = 1√
π
∂xϕa, and θa is

its conjugate field, which can be interpreted as the phase of the pair field.

It is convenient to work in the bonding and anti-bonding basis:

ϕ± =
1√
2

(ϕ1 ± ϕ2), θ± =
1√
2

(θ1 ± θ2). (7.5)

The resulting bosonized Hamiltonian decouples as Ĥ = Ĥ+ + Ĥ−:

Ĥ+ =
v+

2

[
K+(∂xθ+)2 +K−1

+ (∂xϕ+)2
]
,

Ĥ− =
v−
2

[
K−(∂xθ−)2 +K−1

− (∂xϕ−)2
]

+
gp

2(πa0)2
cos
√

8πθ− +
gbs

2(πa0)2
cos
√

8πϕ−.

(7.6)

Here a0 is the short-distance cutoff. This decoupling of the bonding and the anti-

bonding degrees of freedom is analogous to the spin-charge separation of electrons in

one dimension. Without any inter-chain forward scattering, we have K± = K, v± =

v.

The bonding sector is simply a theory of free bosons. The Hamiltonian

in the anti-bonding sector can be analyzed by the perturbative Renormalization
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Group(RG) method, assuming the bare couplings gp and gbs are weak. RG flow

of the coupling constants are governed by the standard Kosterlitz-Thouless equa-

tions [161]:

dyp

dl
= (2− 2K−1

− )yp

dybs

dl
= (2− 2K−)ybs

d lnK−
dl

= 2K−1
− y2

−,

(7.7)

where y− = gp

πv−
, ybs = gbs

πv−
are the dimensionless coupling constants and l = ln a

a0

is the flow parameter. When K− > 1(corresponding to attractive intra-chain inter-

action), yp is relevant and flows to strong-coupling under RG flow, indicating gap

formation in the anti-bonding sector, while ybs is irrelevant so can be neglected when

considering long-wavelength, low-energy physics. Semiclassically, the θ− is pinned

in the ground state. From now on, we will assume K− > 1 and neglect the irrelevant

coupling ybs.

7.2 Majorana zero-energy edge states

To clarify the nature of the gapped phase in the anti-bonding sector, we study

the model at a special point K− = 2, known as the Luther-Emery point [162], where

the sine-Gordon model is equivalent to free massive Dirac fermions. First we rescale

the bosonic fields:

ϕ̃− =
ϕ−√
K−

, θ̃− =
√
K−θ−, (7.8)
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and define the chiral fields by ϕ̃r− = 1
2
(ϕ̃−+rθ̃−). Neglecting the irrelevant backscat-

tering term, Ĥ− is refermionized to

Ĥ− = −iv−(χ̂†R∂xχ̂R − χ̂
†
L∂xχ̂L) + im(χ̂†Rχ̂

†
L − χ̂Lχ̂R), (7.9)

where the Dirac fermionic fields χ̂r are given by

χ̂r =
1√

2πa0

ξ̂re
ir
√

4πϕ̃r− , (7.10)

with the fermion mass m = gp

πa0
. ξ̂r are again Majorana operators. It is quite clear

that effective theory (7.9) also describes the continuum limit of a Majorana chain,

which is known to support Majorana edge states [28].

However, caution has to be taken here when dealing with open boundary

condition(OBC). We impose open boundary condition at the level of underlying

lattice fermionic operators [163]:

ĉia ≈
√
a0

[
ψ̂Ra(x)eikF x + ψ̂La(x)e−ikF x

]
, (7.11)

where ĉia are annihilation operators of fermions and x = ia0. Since the chain

terminates at x = 0 and x = L, we demand ĉ0 = ĉN+1 = 0 where N = L/a0 is

the number of sites on each chain. Let us focus on the boundary x = 0. Thus the

chiral fermionic fields have to satisfy ψ̂Ra(0) = −ψ̂La(0). Using the bosonization

identity, we find ϕa(0) =
√
π

2
, from which we can deduce the boundary condition of

the anti-bonding field:

ϕ−(0) = 0. (7.12)

Therefore, we obtain the boundary condition of the Luther-Emery fermionic

fields as χ̂R(0) = χ̂L(0). The Hamiltonian is quadratic in χ̂ and can be exactly
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diagonalized by Bogoliubov transformation. We find that the Luther-Emery fields

have the following representation:χ̂R(x)

χ̂L(x)

 =

√
m

v−

1

1

 e−mx/v− γ̂ + . . . . (7.13)

Here . . . denotes the gapped quasiparticles whose forms are not of any interest to

us. The γ̂ is a Majorana field(i.e., γ̂ = γ̂†) and because [Ĥ−, γ̂] = 0, it represents a

zero-energy excitation on the boundary.

Now suppose the system has finite size L � ξ = v−/m. The same analysis

implies that we would find two Majorana fermions localized at x = 0 and x = L

respectively, denoted by γ̂1 and γ̂2. As in the case of TSC, the two Majorana modes

have to be combined into a (nearly) zero-energy Dirac fermionic mode: ĉ = 1√
2
(γ̂1 +

iγ̂2). Occupation of this mode gives rise to two degenerate ground states. Tunneling

of quasiparticles causes a non-zero splitting of the ground state degeneracy: ∆E ≈

me−L/ξ [91, 106].

We notice that very similar technique was previously applied to the spin-1/2

edge excitations [164, 163, 165] in the Haldane phase of spin-1 Heisenberg chain,

the SO(n) spinor edge states in the SO(n) spin chain [166] and also the edge state

in an attractive one-dimensional electron gas [167, 168].

To understand the nature of the Majorana edge state, we have to explicitly

keep track of the Klein factors which connect states with different fermion numbers.

Therefore we separate out the so-called zero mode in the bosonic field φr,a and write

ψ̂ra = 1√
2πa0

η̂raF̂rae
ir
√

4πφra where the Klein factors F̂ra are bosonic operators that

decrease the numbers of r-moving fermions on chain a by one [160]. Bosonized form
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of (7.2) has a product of the Klein factors F̂ †R2F̂
†
L2F̂L1F̂R1 in it. Since this term is

to be refermionized as ∼ χ̂Lχ̂R, we are naturally led to define new Klein factors

F̂r = F̂ †r2F̂r1 for χ̂r. Notice that so-defined Klein factors satisfy {P̂a, F̂r} = 0, i.e.

F̂r change single-chain fermion parity. Then the fermionic fields that refermionize

the sine-Gordon theory at the Luther-Emery point should take the form

χ̂r =
1√

2πa0

ξ̂rF̂re
ir
√

4πϕ̃r− . (7.14)

Thus one can identify that χ̂r corresponds to inter-chain single-particle tunneling.

The ground state |G〉 of the Hamiltonian (7.9) can be schematically expressed as

|G〉 = exp

[∫
dx1dx2 χ̂

†(x1)g(x1, x2)χ̂†(x2)

]
|vac〉, (7.15)

where g(x1, x2) is the Cooper-pair wave function of the spinless p-wave supercon-

ductor and |vac〉 is the vacuum state of χ̂ fermion. With the definition (7.14), it is

easy to check that |G〉 is a coherent superposition of Fock states having the same

single-chain fermion parity, thus an eigenstate of P̂a. On the other hand, the Majo-

rana fermion γ̂, being a superposition of χ̂ and χ̂†, changes the single-chain fermion

parity: {γ̂, P̂a} = 0. As a result, the two degenerate ground states |G〉 and ĉ†|G〉

have different single-chain fermion parity which is the essence of the Majorana edge

states. If the total number of fermions N is even, then the two (nearly) degener-

ate ground states correspond to even and odd number of fermions on each chain,

respectively.

So far all the conclusions are drawn at the Luther-Emery point K− = 2. Once

we move away from the Luther-Emery point, the theory is no longer equivalent to

free massive fermions. An intuitive way to think about the situation is that if we
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Figure 7.1: Schematic view of the two chains coupled by pair tunneling(denoted by

dashed lines). The chains are bended near the two ends to avoid the single-particle

tunneling.

move away from the Luther-Emery point, the χ̂ fermions start to interact with each

other. Since the Majorana edge states are protected by the bulk gap as well as the

single-chain fermion parity [155, 156, 157, 158], we expect the qualitative features

hold for the whole regime K− > 1 based on adiabatic continuity.

Notice that the bonding sector remains gapless. In our field-theoretical model,

the bonding and anti-bonding degrees of freedom are completely decoupled so the

gaplessness of the bonding boson does not affect the degeneracy in the anti-bonding

sector.
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7.3 Stability of the Degeneracy

We now examine whether the ground state degeneracy we have found has a

topological nature. Here we define a topological degeneracy of the ground states by

the following criteria: the two degenerate ground states are not distinguishable by

any local order parameters(i.e. the difference of the expectation values of any local

order parameters in the two ground state must be exponentially small in system size

). By local, we mean local operators in the original fermionic operators , otherwise

we can easily find such an operator in the bosonic representation. For example, in the

model (7.6) the operator O(x) = cos
√

2πθ−(x) can distinguish the two degenerate

ground states. But the operator itself is highly non-local in terms of the original

fermionic operators.

First of all, by analogy with Majorana chain it is quite obvious that any local

operators that involve even numbers of fermion operators on each chain are not able

to distinguish the two ground states because such operators always commute with

single-chain fermion parity operator. Therefore we only have to consider operators

that consist of odd number of single-chain fermion operators. They change the

single-chain fermion parity and thus presumably connect the two degenerate ground

states. Since all such operators can be decomposed into products of single-particle

inter-chain tunneling and backscattering operators, it is sufficient to consider these

single-particle operators.

Let us start with single-particle inter-chain tunneling

OT =
∑
r=R,L

(ψ̂†2rψ̂1r + h.c.). (7.16)
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Its bosonic representation is

OT =
2

πa0

cos
√

2πϕ− cos
√

2πθ−. (7.17)

First let us consider the case when the operator is taken in the bulk of the chain

away from any of the boundaries. Because θ− is pinned in the ground states, ϕ− gets

totally disordered and therefore 〈OT〉 ∝ 〈cos
√

2πϕ−〉 = 0, which is just equivalent

to the fact that the Luther-Emery fermions are gapped. However, this is no longer

true as one approaches the ends of the chains, since there exists zero-energy edge

states. Let us focus on the left boundary x = 0. The boundary condition of the

anti-bonding boson field ϕ− has been derived: ϕ−(0) = 0. With the boundary

condition, we proceed with Luther-Emery solution at K− = 2 and find OT(0) ∼

χ̂(0)+χ̂†(0). Thus OT(0) has non-vanishing matrix element between the two ground

states, independent of the system size. As a result, the two-fold degeneracy is

splitted.

We now turn to the inter-chain backscattering

OB = ψ̂†2Rψ̂1L + ψ̂†2Lψ̂1R + h.c.

=
2

πa0

cos
√

2πϕ+ cos
√

2πθ−.

(7.18)

An analysis similar to the single-particle tunneling leads to the conclusion that

backscattering at the ends also splits the degeneracy. However, even if the backscat-

tering occurs in the middle of the chain, it still causes a splitting of the ground states

decaying as a power law in system size L. To see this, let us consider a single im-

purity near the middle of the chain, modeled by OB(x) where x ≈ L/2. We assume

that the backscattering potential is irrelevant under RG flow and study its conse-
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quence. The splitting is then proportional to 〈cos
√

2πϕ+(x)〉 since cos
√

2πθ− has

different expectation values on the two ground states. Because ϕ+ is pinned at

x = 0, 〈cos
√

2πϕ+(x)〉 ∼ 1/xK+ . Therefore the splitting of the ground states due

to a single impurity in the middle of the system scales as 1/LK+ .

We thereby conclude that the ground state degeneracy is spoiled by the single-

particle inter-chain tunneling near the boundaries and the backscattering processes

in the bulk. To avoid the unwanted tunneling processes near the ends, one can put

strong tunneling barriers between the two chains near the ends, or the chains can

be bended outwards so that the two ends are kept far apart, as depicted in Fig. 7.1.

7.4 Lattice Model

We now show that the field theory (7.6) can be realized in lattice mod-

els of fermions. We consider the model of two weakly coupled chains of spinless

fermions [169, 170, 159, 171]. The Hamiltonian reads

Ĥ = −t
∑
i,a

(ĉ†i+1,aĉia + h.c.) +
∑
i,a,r

V (r)n̂ian̂i+r,a − t⊥
∑
i

(ĉ†i2ĉi1 + h.c.). (7.19)

Here a = 1, 2 labels the two chains. We assume the filling is incommensurate

to avoid complications from Umklapp scatterings. V (r) is an intra-chain short-

range attractive interaction between two fermions at a distance r (in units of lattice

spacing). Thus without inter-chain coupling, each chain admits a Luttinger liquid

description with two control parameters: charge velocity v and Luttinger parameter

K (we assume V is not strong enough to drive the chain to phase separation).

We bosonize the full Hamiltonian and write the theory in the bonding and anti-
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bonding basis. Hamiltonian in the bonding sector is just a theory of free bosons. In

the anti-bonding sector, it reads

Ĥ=
v

2

[
K(∂xθ)

2+
1

K
(∂xϕ)2

]
+

2t⊥
πa0

cos
√

2πϕ cos
√

2πθ. (7.20)

The bosonic fields ϕ and θ are in the anti-bonding basis. The perturbation (t⊥)

term has nonzero conformal spin which implies that two-particle processes are auto-

matically generated by RG flow even when they are absent in the bare Hamiltonian.

Therefore, one has to include two-particle perturbations in the RG flow

Ĥ2 =
g1

(πa0)2
cos
√

8πϕ+
g2

(πa0)2
cos
√

8πθ. (7.21)

The RG flow equations for weak couplings have been derived by Yakovenko [169]

and Nersesyan et al. [170]. Here we cite their results [159]:

dz

dl
=
(

2− K +K−1

2

)
z

dy1

dl
= (2− 2K)y1 + (K −K−1)z2

dy2

dl
= (2− 2K−1)y2 + (K−1 −K)z2

dK

dl
=

1

2
(y2

2 − y2
1K

2)

, (7.22)

where the dimensionless couplings are defined as z = t⊥a
2πv

and y1,2 = g1,2

πv
.

Since we are interested in the phase where the pair tunneling dominates at low

energy, we assume K > 1 so y1 is irrelevant and can be put to 0. Also we neglect

renormalization of K. Integrating the RG flow equations with initial conditions

z(0) = z0 � 1, y2(0) = 0 we obtain

y2(l) = z2
0

K−1 −K
2α

[
e2(1−α)l − e2(1−K−1)l

]
, (7.23)
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where α = 1
2
(K + K−1 − 2). Assume K−1 < α, then the large-l behavior of y2

is dominated by e2(1−K−1)l. y2 becomes of order of 1 at l∗ ≈ − ln z0/(1 − K−1),

where the flow of z yields z(l∗) ≈ z
(α−K−1)/(1−K−1)
0 � 1 given z0 � 1. This means

that if K >
√

2 + 1 (so K−1 < α), then y2 reaches strong-coupling first. Thus the

strong-coupling field theory is given by (7.6).
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Chapter 8

Conclusion and Outlook

We first present a summary of the findings in this dissertation and then dis-

cuss open problems that can be pursued in the future. In the first Chapter, we

reviewed the theory of non-Abelian topological superconductors, focusing on the

topological classification and the non-Abelian statistics of quasiparticle excitations

and briefly introduced the topological quantum computation scheme based on non-

Abelian superconductors. In Chapter 2 we established a general condition under

which topological superconductivity can arise in lattice models of interacting spin-

less fermions, within the framework of BCS mean-field theory. We showed that due

to the particular convexity property of the BCS free energy, superconducting or-

der parameters with a chiral pairing symmetry are naturally selected by energetics

when the point symmetry group has only multidimensional irreducible representa-

tions. We also studied the phase diagram and topological phase transitions in other

lattice models which do not satisfy the condition. In Chapter 3 we reviewed the

solutions of Bogoliubov-de Gennes equation and derived the analytical expressions

of the zero-energy Majorana bound states in vortices. We also made the connection

to the general index theorem and provided a physical argument that the Majorana

zero modes in vortices admit a Z2 classification. In Chapter 4 we considered the
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effect of quasiparticle tunneling on the topological degeneracy that is fundamental

to the realization of topological qubits, and calculated the energy splitting of the

degenerate states using a generalized WKB method. We found the energy split-

ting exhibits an oscillatory behavior with the inter-vortex distance, apart from the

well-known exponential suppression. The presence of these oscillations has impor-

tant implications for topological quantum computation, since the energy splitting

determines the fusion channel of two non-Abelian vortices. In Chapter 5 we turn

to the question of thermal effects on the topological quantum computation scheme

based on Majorana quasiparticles. We distinguished two types of fermionic exci-

tations that can possibly spoil the topological protection of qubits, the localized

midgap states and extended states above the gap, and considered their effects on

the braiding, read out and the lifetime of the qubits. We exploited a density ma-

trix formulation based on physical observables and found the topological braiding

remains intact in the presence of thermal excitations. However, thermally excited

midgap states do result in decoherence in the read out of topological qubits based

on vortex interferometry and we derived an analytical expression for the deduction

in the interference visibility using a simplified but still physical model. In Chapter 6

we consider the effect of non-adiabaticity on vortex braiding in a microscopic model

of a spinless px + ipy superconductor. We developed a time-dependent Bogoliubov-

de Gennes equation approach to describe time evolution of BCS superconductors.

With the help of this formalism, we studied the robustness of the braiding opera-

tions when non-adibaticity is taken into account and calculated the corrections to

the Ivanov’s rule perturbatively. In Chapter 7, we addressed the question of whether
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Majorana zero modes can survive under strong quantum fluctuations, especially in

one dimension. We first considered a continuum field theory of spinless fermions

on a two-leg ladder with pair tunneling, in the presence of quasi-long-range super-

conducting order. Using bosonization technique we analyze non-perturbatively the

strong-coupling phase and found interesting degeneracies of low-energy states that

can be interpreted as Majorana zero-energy edge states. We discussed the stability

of these degeneracies under various perturbations. Then we proposed a possible

lattice realization of this field theory.

We now discuss possible future research directions. It is interesting to explore

the possible vortex lattice phase in a topological superconductor where low-energy

physics can be described by Majorana fermions hopping on the lattice with hopping

amplitudes determined by the energy splitting calculated in Chapter 3. More work

needs to be done to fully understand the robustness of topological qubits, including

the effect of disorder and possible low-energy impurity bound states, and how they

affect the braiding and the read out schemes. The effect of quantum fluctuations on

Majorana zero modes in higher dimensions remains a open problem although the

one-dimensional case has been rather well understood. It would be very interesting

to generalize the bosonization approach to higher dimensions.
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Appendix A

Derivation of the Pfaffian Formula for the Chern

Parity

In this appendix we derive the Pfaffian formula for the parity of the Chern

number in a class D topological superconductor, defined by BdG Hamiltonian H(k)

satisfying

Ξ−1H(k)Ξ = −H∗(−k). (A.1)

Assume that H(k) is a 2N ×2N matrix. After diagonalizing we get 2N bands

εm(k). Due to particle-hole symmetry energy eigenvalues come in pairs so we label

the bands as ε−m(−k) = εm(k). We choose a gauge such that the eigenvectors

um(k) satisfy

u−m(−k) = Ξu∗m(k).

The topological invariant for class D superconductors is the Chern number:

C =
∑
m<0

1

2π

∫
1BZ

d2kFm(k) =
∑
m<0

1

2π

∮
1BZ

dk · Am(k) ∈ Z. (A.2)

Here the Berry connection is defined as

Amn(k) = −i 〈um(k)|∇k|un(k)〉 ,

and we denote Am ≡ Amm. And the Berry curvature follows:

Fm(k) = [∇k ×Am(k)]z .
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Notice that we choose the first Brillouin zone kx ∈ [−π, π], ky ∈ [−π, π].

We now start simplifying the expression for C. The particle-hole symmetry

implies

Am(k) = A−m(−k),Fm(k) = F−m(−k).

Therefore

∑
m<0

∫ 0

−π
dkx

∫ 0

−π
dky Fm(k) =

∑
m<0

∫ 0

−π
dkx

∫ 0

−π
dky F−m(−k) =

∑
m>0

∫ π

0

dkx

∫ π

0

dky Fm(k),

∑
m<0

∫ π

0

dkx

∫ 0

−π
dky Fm(k) =

∑
m>0

∫ 0

−π
dkx

∫ π

0

dky Fm(k).

So altogether we obtain

∑
m<0

∫ π

−π
dkx

∫ 0

−π
dky Fm(k) =

∑
m>0

∫ π

−π
dkx

∫ π

0

dky Fm(k),

and the Chern number is expressed as

C =
1

2π

∑
m<0

(∫ π

−π
dkx

∫ 0

−π
dky +

∫ π

−π
dkx

∫ π

0

dky

)
Fm(k)

=
1

2π

∑
m

∫ π

−π
dkx

∫ π

0

dky Fm(k)

We now choose a gauge in whichAy is single-valued, and let am(k) = −i 〈um(k)|∂kx|um(k)〉.

C =
1

2π

∑
m

∫ π

−π
dkx

∫ π

0

dky
∂am(k)

∂ky

=
1

2π

∑
m

(∫ π

−π
dkx am(kx, π)−

∫ π

−π
dkx am(kx, 0)

)
.

Using the same trick, we can further deduce∑
m

∫ π

−π
dkx am(kx, π) =

∑
m

∫ 0

−π
dkx am(kx, π) +

∑
m

∫ π

0

dkx am(kx, π)

=
∑
m

∫ 0

−π
dkx a−m(−kx,−π) +

∑
m

∫ π

0

dkx am(kx, π)

= 2
∑
m

∫ π

0

dkx am(kx, π),
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which allows further simplification of C:

C =
1

π

∑
m

(∫ π

0

dkx am(kx, π)−
∫ π

0

dkx am(kx, 0)

)
.

We can relate the gauge fields am to the eigenstates of the Hamiltonian. Define

the unitary matrix U(k) as

U †(k)H(k)U(k) = D(k),

where D(k) is the diagonal matrix of eigenvalues ordered in descending order of

value. It is easy to show that

∑
m

Am(k) = −i∇k ln detU(k).

Therefore ∑
m

am(k, θ) = −i∂k ln detU(k, θ).

As a result,

C =
1

πi

[∫ π

0

dk ∂k ln detU(k, π)−
∫ π

0

dk ∂k ln detU(k, 0)

]
=

1

πi
ln

detU(π, π) detU(0, 0)

detU(0, π) detU(π, 0)
.

It can be written in a more natural form:

eiπC =
detU(π, π) detU(0, 0)

detU(0, π) detU(π, 0)
. (A.3)

which is the desired result.

Although in the derivation we choose a certain gauge, the result is certainly

gauge-invariant.

We now further simplify this results. (A.3) basically means that the parity

of Chern number of a 2D particle-hole symmetric insulator is determined by the
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product of detU(Γ) where Γ is a particle-hole symmetric momentum (Γ = −Γ + G

where G is reciprocal lattice vector). We can relate the detU to the Hamiltonian.

Define a matrix W (Γ) = H(Γ)Ξ. First we can show that it is anti-symmetric:

W T (Γ) = ΞTHT (Γ) = −ΞTΞ−1H(−Γ)Ξ = −H(Γ)Ξ = W (Γ).

On the other hand, we have

W (Γ) = H(Γ)Ξ = U(Γ)D(Γ)U †(Γ)Ξ.

Notice that ΞU(k) = U∗(k)Λ, so

U(Γ)D(Γ)U †(Γ)Ξ = U(Γ)D(Γ)ΛUT (Γ).

One can show that D(Γ)Λ is anti-symmetric. Therefore

Pf W (Γ) = Pf
[
U(Γ)D(Γ)ΛUT (Γ)

]
= detU(Γ)Pf [D(Γ)Λ] .

Combining, we finally obtain

eiπC =
∏
Γ

Pf W (Γ).
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