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1 Introduction

1.1 Context of Research

Thisthesisis part of alarger study to quantify the freshwater fluxes of the Ob
River basinin Russian Siberia.  The larger study is a joint research effort with Micheal
Jasinski and Jeremy Stoll (NASA group), scientist and researchers at the National
Aeronautic Space Administration at Goddard Space Flight Center. The study is looking at
the effect the snowpack in the Eurasian mountains and Siberian plain has on the fresh
water fluxes and the Arctic water cycle. The goal isto use remote sensing and
hydrological modeling to improve the understanding of the contribution of snowpack
processes to the water budget of the Ob river basin. 1t will also look at how the
freshwater discharge from the Ob River affects the Arctic water cycle. The larger study
will serve as an important indication of the climate sensitivity and controls of freshwater
fluxesin the Artic Ocean (Brubaker et a. 2000).

The amount and timing of freshwater supply to the Artic Ocean are currently a
topic of great interest to studies of the world oceans and global climate. Though the Artic
Ocean only holds 1.5% of the world’s total water volume, it drains 10% of the world's
total surface runoff (ACSY'S, 1992). The freshwater fluxes discharging into the ocean
are said to be the driving cause in the global climate change (Gagosian, 2003). The
freshwater discharge into the ocean causes a change in the vertical stability of the ocean.
The basic circulation pattern in the arctic water is that cold water sinks, bringing warmer
water to the top. The freshwater discharge into the ocean makes the water less dense and
this could have two possible effects. The dilution of the waters could cause the sinking

of the cold water to stop since the heavy salty water usually sinks, which creates an in-



ocean circulation pattern. The fresh water could also cause an insulating layer, thus
cooling the ocean waters by suppressing heat exchange with the atmosphere. These
effects could cause a change in the ocean current patterns which in turn could cause a
change in the global climate since ocean currents affect air temperature and therefore air
circulation around the globe.

The Ob River isamajor contributor to the Artic Ocean. The Ob has the third
greatest discharge of Siberiasrivers,; on average, it pours 95 cubic miles (400 cubic km)
of water annually into the Arctic Ocean—about 12 percent of the ocean’ s total intake
from drainage (Britannica, 1994). The basin of the Ob River covers an area of 2,700,000
kn? and is located in Russia in the Siberian region; it is the fourth largest basin in the
world in terms of drainage area (Dingman, 2002). The Ob River beginsin the Altai
Mountains, flows north, and drains to the Arctic Ocean.

Like other Arctic rivers, the Ob experiences springtime flooding due to snowmelt
and icejams. Springtime snowmelt flooding is a major problem in the Siberian region.
The region suffers long, harsh winters, and short mild summers. Heavy snow fallsin the
mountain regions. Snow in the mountain regions averages 80 inches annually and the
forested region range from 24-36 inches annually. Snow cover usually lasts for
approximately 200 days. Springtime flooding in the upper Ob basin beginsin April.
This is when the snow on the plains begins to melt, but then the area goes through a
second phase when the mountain snow begins to melt. Springtime flooding from
snowmelt ends in July, but the water level rises again with rain in September and
October. The flooding in the upper Ob obstructs the drainage of therivers' tributaries

such as the Tom River basin (Brittanica, 1994). In addition to snowmelt flooding, ice



jams on the river cause flooding also. The entire river isfrozen by the end of November
and stays frozen for about 150-220 days depending on location. The thawing takes about
a month, from the end of April to the end of May. The ice jams cause flooding by
obstructing the flow of water. The flow either builds up causing overflow of the banks of
the river or, once the ice block is melted or eroded away, the backed up water flows
causing a higher than usua amount leading to flooding. Thisis a problem for the Ob as
well as many of its tributaries with mountain origins.

In order to predict the potential consequences of large scale climate change (such
as expected global warming), it is essential to quantify and understand the supply and
storage of fresh water in Arctic basins such as the Ob. In order to accurately assess the
effects of freshwater discharge into the ocean it is necessary to quantify the potential
amount of discharge, hence the supply and storage of water in the basins. The freshwater
in Arctic basins, such as the Ob, discharges about 35 cm per year into the Arctic Ocean,
making rivers the primary source of freshwater to the ocean (Serreze et a., 2003). For
the Ob River, the main source of water for the river is seasonal snowmelt and rainfall
(Brittanica, 1994). If the snow and other forms of precipitation in the mountains are not
accurately accounted for, the snowmelt cannot be accurately quantified, thus leading to
an inaccurate estimate of the amount of freshwater discharge into the Arctic Ocean. The
supply and storage of freshwater in the basin is needed in order to quantify the freshwater
fluxes into the ocean.

It is equally important to quantify the level of uncertainty in statements about the
components of the Artic water balance. The uncertainty in the componentsis an

indication of the accuracy of estimates of the components and the confidence in the



estimates. The confidence in the components and the water balance can be used to
determine the limitations of the use in such cases as predicting the effect of climate

changes.

1.2 Problem Statement

This thesis addresses the question, “How confident can we be in current estimates of
fresh water budget components for the Ob River?’ The current estimates of precipitation
are not very accurate because the river basin is sparsely gaged due to itsterrain. The
mountainous regions make it hard to position and maintain gages, yet the precipitation in
the mountains has larger yearly amounts than the other regions in the watershed due to
the snow. This under representation of gages leads to precipitation being annually
underestimated, possibly by as much as 50% (Brubaker et al., 2000). Also sampling
variability is an issue. The gage network can’t accurately capture the entire amount of
precipitation that falls in the mountainous regions due to terrain variability and the costly
factor of installing numerous gages in the mountains. It is more costly to install and
maintain a gage in the mountain than in flat, easily reachable land. The misrepresentation
of precipitation in the water balance leads to error in any water budget quantities derived
from precipitation. Precipitation is the basic input into the water balance for a region; if
the input is not accurately quantified than the outputs will aso bein error.

Assuming negligible change in storage over a 1-yr time period, the water budget
of aregion should be in balance. The simplified theoretical water balance for aregion is,

P-Q-E=0 (1-1)
where P is precipitation, Q is streamflow, and E is evapo(transpi)ration. The equation is

simplified to the basic inputs and outputs into the system. Since the change in storageis



being ignored, the region is assumed to be a conservative system, thus the inputs should
equal the outputs.

Errors in measuring or estimating the terms in equation 1-1 lead to a non-zero
total, or water balance closure (WBC):

WBC=P-Q-E (1-2)
Hydrologists and water resources managers share the goal of balancing the water budget
by trying to determine the sources of error leading to a nonzero water balance closure.
However, before trying to fix the budget imbalance, it is useful to determine how
significantly different from zero the water balance closure redlly is. This can be
determined by estimating a confidence interval (or an error bar) on the water balance
closure.

Uncertainty in the water balance can be quantified by the variance in the water
balance closure. The error in each component can be quantified as the variance of the
basin average estimates. The error in the water balance closure is propagated through the
variance of the estimates of each term. Assuming that the errors of each term are
independent of each other, the variance of the water balance closure is the sum of the
term variances (Dingman, 1994):

S(WBC) = S(P) + SY(Q) + SX(E) (1-3)
where S? is the variance of the term. The variance of the water balance closure can be
used to construct a confidence interval for the water balance closure at a chosen level of

confidence.

1.3 Research Goals and Objectives



The goal of this research is to determine the variance of the water balance closure
by calculating the individual variance of the components and to assess the accuracy of the
water balance through its bias and precision. To accomplish this goal, the objectives of
this research are:

1) Cdlculate the areal average of precipitation, streamflow, and
evapotranspiration for the Tom River basin using available measurements for
five water years (1981-1985) through independent calculations using a variety
of measurements characterized by different levels of uncertainty.

2) Quantify the uncertainty in each basin-average term for each water year.
Different methods for each term in the water balance will be used to perform
this task.

3) Caculate the water balance closure (equation 1-1) for each water year.

4) Calculate the variance of the water balance closure (equation 1-2) for each
water year.

5) Construct confidence intervals on the water balance closure for each water
year.

6) Perform statistical hypothesis tests on whether the water balance closure is

non-zero.

This study is limited to the Tom River basin for the years 1980 through 1985. The Tom
River basin is a sub basin of the Ob river basin. The upper Ob River basin begins where

the Tom River discharges into the Ob River at the city of Tomsk (Figure 1.1).
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Figurel.1 Map of Siberia, Russalncludes Tom River and

location of outlet to Ob River at Tomsk.

The Tom River, which is the location of important cities in the Siberian region, has
readily available data due to its importance in the region. Though much smaller than the
Ob River in flow and drainage area, the Tom River basin is an important factor in
determining the conditions of the Ob River basin.

This thesis will contribute to the goals of alarger study. The NASA group decided
that the Tom basin would be suitable to develop methods for this study, then apply them
to the larger Ob basin. Thiswork can then be applied to other basins around the world

with similar conditions.

1.4 Justification of Expected Results

Based on our previous knowledge about the basin the following results are expected:



1) Thewater balance closure is expected to be biased low (WBC < 0) dueto
underestimation of precipitation (P) in the mountains.

2) Dueto theleve of uncertainty in the water balance components, the water
balance closure will not be significantly different from zero for typical
confidence levels (90% and greater).

3) Different termsin the water balance will contribute different degrees of

uncertainty to the water balance closure.

If these results are in fact true, these still leave the question of how to lessen the anmount

of uncertainty in the water balance and how this uncertainty affects its practical use.



2 Literature Review

2.1 Introduction to Large Scale Water Balance

The water balance of a watershed follows the conservation of mass principle. The water
that enters a defined region (such as a watershed) through precipitation and groundwater
less that which exits through evapotranspiration, streamflow, and groundwater flow must
equal the change in storage in the region,

DS =P+ Gn + Qin — Qout —E — Gout (2-1)
where DS is the change in storage, P is precipitation, Qi is surface flows into the region
including artificial transfers, Qo IS Streamflow, E is evapotranspiration, and G, and Gyt
are groundwater flow to and from the region, respectively. The equation is evaluated
over some specified period of time; each of its terms has units of mass, volume, or depth
(volume divided by the region’s area). When looking at the water balance for a
watershed on along term basis, several terms in Equation (2-1) can be neglected
(Dingman 2002). Surface flowsinto aregion (Qji,) can be considered zero for a
watershed without artificial inflows. Groundwater inflow is neglected due to the
assumption that the surface boundaries of the watershed also constitute groundwater
boundaries. Groundwater flow out of the watershed is usually small because
groundwater makes its way to the stream network as baseflow and appears as surface
discharge, Q.

An argument can be made that if long-term averages of the inflow and outflows
are made, then the change in storage is approximately zero because physically an average
positive change in storage (gain in moisture) or negative change in storage (loss) cannot

be sustained over the long term. The change in storage can also be assumed small if the



water balance is analyzed over an annual cycle such as the water year. The water year is
different from the calendar year; the water year begins October 1 and ends September 30
in the northern hemisphere since the annual flow cycle and storage of water in soil,
vegetation, and water bodies is usually its lowest around this time.

With groundwater flow, surface inflows, and change in storage being negligible,
this leaves the three main physical processes of the water balance on along term or water
year basis to be precipitation, streamflow, and evapotranspiration,

P-Q-E=0 (2-2)
where the overbar notation indicates long-term average of the respective quantities.

Either equation 2-1 or 2-2 can be used to estimate terms of the water balance as
residuals. This method is usually used for terms that are hard to measure such as vertical
leakage, groundwater flow, and E. When the other values are known, the term being
calculated as aresidual is simply obtained through subtraction. The use of a lysimeter to
estimate evapotranspiration incorporates thisidea. The lysimeter is a block of soil buried
in the ground; the inflows and outflows are measured for the block of soil over a period
of time. The drainage type of lysimeter doesn’'t account for changes in storage, thusis
only useful when the change in storage is negligible; whereas the weighing type does
measure changes in storage. Evapotranspiration is calculated as the residual of the water
balance for the block of soil.

When calculating aterm as aresidual of the water balance one has to be careful
because the residual contains the net error of all the measured components. It is
recommended that all terms being calculated as aresidua are labeled and an error

analysisis performed (Kondolf et al., 1991).
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2.2 Sources & Types of Uncertainty in Each Term

Equation 2-2 is simple, but accurately quantifying each processis difficult. The
termsin equation 2-2 typically do not sum to zero, giving rise to a water balance closure.
The water balance closure is aresult of the individual errors in quantifying each of the
three processes. The sources and possible different types of error in each component are
discussed below.

The type of uncertainty or error in a measured or estimated quantity is defined by
its source. Three types of uncertainty are likelihood, ambiguity, and approximations. We
encounter uncertainty due to the natural variability in the quantity being measured and
our inability to accurately measure the quantity. The natural variability of the variable
can be described in two parts, physical randomness and sampling. Likelihood can be
defined in the context of chance, odds, and gambling (McCuen, 2003). Samplingisa
source of likelihood uncertainty. Sampling variation causes uncertainty because a sample
is used to describe a population, but a sample can rarely accurately quantify the whole
population. Ambiguity comes from having multiple possibilities of outcomes for a
system, thus recognizing those different possibilities creates the uncertainty (McCuen,
2003). The three main sources of uncertainty in ambiguity are spatial variability,
uncertainty in input parameters, and model uncertainty. Physical randomness is a source
of ambiguity, where the variable varies in nature, which makes it hard to accurately
quantify. Uncertainty from approximations comes from not clearly defining information
when developing knowledge. Sources of approximation uncertainty include such things
as vagueness in defining parameters, human factors, and defining interrel ationships

among variables. Our inability to accurately quantify the variable can be described as
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approximation uncertainty. Human factors cause uncertainty in measurement. Thereis
error in measuring instruments and human error in taking measurements.

Each individual measurement contains atype of error previoudy discussed. We
seek to quantify the cumulative error of the measurements and yield the total error in
each term.

Each estimate of any one of the three parameters in equation 2-2 hasits own
sampling distribution, with a mean and variance. The vaue provided is the mean or
central tendency of the variable, whereas the variance describes the dispersion about the
mean. The standard error of anestimate (such as the mean) is the square root of the
variance of its sampling distribution. The ambiguity uncertainty is quantified through
error bars for the value of the variable. The error bar describes the possible range of

values for the variable about the mean vaue.

2.2.1 Precipitation

Precipitation data contains errors due to measurement accuracy (approximation
uncertainty) and the spatial variability (ambiguity & likelihood uncertainty) of
precipitation. Milly (2002) described precipitation errors in three parts: orographic
effects, gage measurement error, and spatial sampling error. Gage and sampling error are
described as random error, and orographic effects are systematic errors, so they can be
modeled and removed from the data. Uncertainty from spatial variability is due to the
inability of a gage network to accurately sample the study area. Measurement errors are
due to the accuracy of the gages. There are two types of precipitation gages, non
recording and recording. Non-recording gages are cylinders open to the air that are

emptied at regular intervals to measure the volume of precipitation. Recording gages
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measure the volume of precipitation and the timing. Errors from these gages include
observer error, location of gage with respect to obstructions, wind effects, evaporation of
collected water, horizontal interception, and sensitivity of gage to trace amounts
(Dingman, 1988; Dingman 2002). Typically error in snow measurements is much greater
than rain measurements mainly due to undercatch (Maidment, 1993). The errorsin the
individual measurement accumul ate when using these point measurements to estimate
areal average precipitation in watersheds.

Methods of estimating areal averages of precipitation can be classified into two
categories, deterministic and stochastic. Deterministic methods use mathematical
formulas to form weighted averages of measured precipitation. The deterministic
methods have different methods of assigning weights to each of the gages, and the sum of
the weights must equal one. Stochastic methods use weighted averages and statistics that
minimize estimation errors to estimate areal distribution of precipitation.

Three common deterministic methods are the station average, Theissen polygon
method, and the isohyetal method. The station average assumes equal weight for all
gages within the watershed and is simply the mean precipitation of al the gages. That
method isideal for areas of little to no orographic effects, where precipitation gradients
across region are not strong, and the spatial distribution of the rain gagesis fairly uniform
(Dunne, et ., 1998). The Theissen polygon method divides the region into subregions,
dictating that al points within the subregion have to be closer to the gage at the center of
the subregion than any other gage. The weights are the fraction of the total area occupied
by the subregion. The isohyetal method draws isohyets (lines of equal precipitation) for

the region. The average precipitation for the area enclosed by adjacent isohyets is the
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average of the isohyets value. The weights become the proportion of the total area
enclosed between adjacent isohyets. The Theissen polygon and isohyetal methods both
account for non-uniform spatial distribution of gages and strong precipitation gradients;
however the isohyetal method considers strong gradients caused by topography.

A popular stochastic method is Kriging, which is an interpolation method used to
estimate values at ungaged locations based on existing values at gaged locations using
knowledge about the spatial correlation of avariable. Kriging has been used in numerous
applications such as mapping soil properties, metal concentrations, areal distribution of
temperature, and hydrologic processes: streamflow, and precipitation. It is an attractive
method because not only does it give precipitation estimates at ungaged sites, but it also
gives the error in the estimates. Dingman (1988) and Tsintikidis (2002) both used
kriging to estimate mean annual precipitation and the uncertainties associated with those

values.

2.2.2 Evapotranspiration

Evapotranspiration (E) is often the most uncertain variable due to the fact that it is
the hardest process to measure. Researchers choose to model evapotranspiration or use
real evaporation data obtained from pan methods.

Pan methods use pans placed at ground level, sunk slightly below ground, or
floating on water surfaces, together with an anemometer to measure wind speed and
floating thermometers to measure surface temperature. Evaporation is calculated as the
difference in incoming precipitation and the change in storage of water inside the pan.

Pan evaporation is corrected for wind speed and temperature effects and a pan

14



coefficient, which accounts for energy differences between the pan and alarge body such
asalake. This method contains measurement error in resulting evaporation values due to
the imperfections in the equipment and human error (approximation uncertainty) and it
does not account for evapotranspiration by vegetation.

Modeled evaporation estimates contain error from the model itself and uncertainty
in the inputs (ambiguity uncertainty and approximation), although they may be more
reliable than field methods because they account for more weather conditiors, and the
input data required are easier to obtain than field measurements of evaporation. Winter
(1981) found that the energy method and mass transfer method were the most reliable
method for estimating evaporation compared to field measurements for the regions
studied; with error estimates less than 10% and 15%, respectively. Penman (1948)
devel oped a combination equation of the energy budget and mass transfer to estimate
evaporation from a free water surface.

Plant transpiration is difficult to accurately measure because of its biological
nature. The Penman equation and variations of it are popular methods used to estimate
evapotranspiration [Ahn (1996), Moges (2003), and Hupet (2001)]. Monteith introduced
vegetation as a source of evapotranspiration, and developed the PenmanMontieth
equation, which is generally considered the most realistic model for estimating

instantaneous evapotranspiration rates from vegetated areas.

- DX(K+L)+raXCa >Cat >e;><(1- Wa)

ET (2-3)

a4 s+ g+ Sl
rW \" = _:(J
é % CCanm
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Where D (kPa/K) is the rate of change of saturation vapor pressure with respect to
temperature, K (MJ/nf/s) is the net shortwave radiation, L (MJnt/s) is the net longwave
radiation, r 5 (kg/nT) is the density of air, ca (MJkg/K) is the heat capacity of air, C4
[L/T] is the atmospheric conductance, e, (kPa) is the saturated vapor pressure
corresponding to air temperature, Wj is the relative humidity, r  (kg/n) is the density of
water, |  (MJKQ) is the latent heat of vaporization, g (kPa/K) is the psychometric
constant, and Ccan [L/T] isthe canopy conductance. The resultant ET has units of [L/T].
Canopy conductance represents the capacity of the plants to transfer water from the root
zone (soil) to the leaf surface (atmosphere). It is dependant on both properties of the

plants and the state of the atmosphere. Dingman (2002) suggests the following formulas

to calculate canopy conductance:

Ccan = fs xLAI >(:Ieaf (2'4)

Crear = Crear X, (K;) xF, (Dr ) xf1 (T,) xf, (D) (2-5)
12.78 XK, ,

fi (Ki) ' (2-6)

T 1157XK, +104.4
f (Dr,)=1- 66.65Dr, (2-7)

_De:2.17
' T

a

Dr

(2-8)
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T, 40- T,)*8

fT (Ta) = 691

(2-9)

f, (D) =1- 0.00119xe"*> (2-10)

where fs is shelter factor, LAI isthe leaf areaindex, c*eo [L/T] is the maximum value of
leaf conductance (dependent upon vegetation species), Ki, is incoming shortwave
radiation, Dr  is the humidity deficit, T, isthe air temperature, and Dq is the soil moisture
deficit. The leaf conductance is function of stomata openings per unit area of the leaf.
Stomata opening is affected by five processes: light intensity, CO, concentration, vapor
pressure deficit, leaf temperature, and leaf water content; CO, varies little with time so it
is excluded from calculating leaf conductance. Canopy conductance is a function of the
leaf conductance because the total canopy is a collection of individual leaves with an

account for the area of the vegetated surface and the shelter factor.

Errors due to the uncertainty of the inputs into the model can be estimated through
an error and sengitivity analysis. Ahn (1996) performed a sensitivity analysis on the
Penman Brusteart model and their correlated variables. Error was separated into 3 kinds:
model error, propagated error from variables, and error due to parameters. The
sengitivity analysis showed that the model was more sensitive to variables than to

parameters, so the error due to parameters was negligible.

2.2.3 Streamflow

Streamflow (Q) is generally considered the most accurate variable in the water
balance equation since it is readily measurable at a single location, the watershed outlet,

with well established methods. Discharge can either be measured directly with field
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equipment or computed from rating curves developed from previous discharge
measurements.

Direct methods of measuring discharge are vel ocity-area gaging and dilution
gaging. Velocity —area gaging directly measures the velocity and cross-sectional area of
ariver at numerous locations along the river. There are several different methods of
measuring the velocity of the river, but the most popular are current meters. The velocity
values are integrated to obtain the total discharge for the river. Dilution gaging uses a
tracer to measure the velocity of the river.

A rating curve for ariver isarelation of stage to discharge for ariver. Itis
constructed from measuring stage for the river and direct measurements of discharge.
Ideally, the rating curve covers all possible stages of theriver. It is constructed from a
number of years worth of measurements to construct a reasoreble curve for the river.
The rating curve becomes an indirect method of determining discharge for ariver; once
the stage is measured, then the corresponding discharge is obtained.

Sources of error in the discharge measurements are measurement error due to the
accuracy of the instruments being used, error due to timing (approximation uncertainty),
and hysteresis in the stage-discharge relationship. Stream discharge varies continuously
in time and measurements are instantaneous values taken at specific pointsintime. The
time at which the measurement is taken and the temporal frequency can affect the value.
The most important factors in quantifying errors in streamflow are the presence of a
rating curve or stage-discharge relation for the water body in question, and the type of
gage used to measure stage. A series of USGS papers for estimating errors in streamflow

were al based on the method of streamflow gauging and the rating curve for the river.
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Errors in streamflow values are cognitive errors in the form of human factorsin
measurement error. Moss and Gilroy (1980) found that uncertainty is a function of site
vigits to make discharge measurement and service recording equipment; whereas
increased Site visits decrease uncertainty in measurements. Anning (2002) agreed in that
he found that the accuracy of streamflow data could improve by increasing the number of
discharge measurements. For streamflow that was measured from a gage, Sauer and
Meyer (1992) found that there are numerous components of the measurement error
stemming from uncertainties in the measurements. They found that the standard error of
discharge measurements ranged from 3-6%, but could be as low as 2% under ideal
measurement conditions or as large as 20% when measurement shortcuts were taken.
Moss and Gilroy assumed that for computed discharges the uncertainty came from error
in the rating curve and devised a method that considered seria correlation of errorsin the
discharge rating shifts. Anning (2002) agreed with this idea but modified portions of
their process to account for more recent methods to estimate the error in discharge

measurements.
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3 Methodology

3.1 Introduction

The goal of this research isto determine the water budget water balance closure
and its accuracy using equation 1-2 by quantifying the components of the annual water
budget for the Tom River basin and-- most importantly — the uncertainty in the
components and the water balance closure using equation 1-3. Precipitation (P) and
evapotranspiration (E) are spatialy variable whereas streamflow (Q) is a point
measurement in space for thisbasin. Based on this, the areal coverage of precipitation
and evapotranspiration was needed to calculate the annual expected values (equation 1-
1), the water balance closure (equation 1-2), and the uncertainty in each term (equation 1-
3). Different methods of quantifying the components and their associated error were
used. The methods of quantifying uncertainty depended on the available information on
the processes, and the methods used to obtain the basin estimated average.

All data were arranged into water years, not calendar years. This was done to be
consistent with the assumption of negligible change in storage. The water year begins

October 1 of the preceding year and ends September 30.

3.2 Study Site

The Tom basin is a 57000 knt subbasin of the Ob River watershed located in the
southwestern region of Siberiain Russia. The Tom River, 840 km long, flows north from
the Alatau Range of the Altai Mountains and drains into the Ob River at the city of

Tomsk. The elevation of the basin ranges from about 100 m to 3500 m. Theregionis
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primarily steppe land used for agricultural purposes, mountainous region, and a heavily

industrialized region (see Figure 1.1).

3.3 Precipitation

Kriging interpolation was used to estimate the annual basin average precipitation.

In addition, kriging provided the standard error of the basin averages.

3.3.1 Description of Data

Precipitation gage data from the National Climatic Data Center (NCDC) formerly
maintained and distributed by the National Snow and Ice Data Center (NSIDC) were
used. The data set consists of monthly precipitation data from 622 stations located in the
Former Soviet Union from the years 1891-1993. It aso includes gage information such
as elevation, latitude and longitude, and station names. For this analysis, 40 gages were
used with 2 located within the basin and the other 38 located outside the basin. A mask
of the Tom basin obtained from Saini (2002) was used to select the appropriate stations.
Since only two stations were |ocated within the basin, more had to be selected to achieve
amore accurate estimate of precipitation; all stations within a 600-km buffer of the basin
were selected (Figure 3.1). Datafrom 1980-1985 were used to make the precipitation
consistent with the streamflow and evaporation data. From the monthly values, annual
totals for each gage were produced, and this was the data set used for the estimation of

variance in precipitation.
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Precipitation Gage Network in Siberia , Russia
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Figure 3.1 Precipitation gagesin Siberia, Russia with outline of Tom River basin. Training set and
test set of gagesare shown. Map isin EASE grid projection.

3.3.1.1 Filling in Missing Values

Monthly precipitation values for some stations were missing during the period of
analysis. The missing vaues would introduce inaccuracies in the annua totals. The

normal station averaging method was used to fill in the missing values (Dunne et dl.,
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1978). This method was used to bypass the 10% within each value criterion needed for
the station average method (McCuen, 1998). Three nearby stations were used to get the

estimated amount of precipitation for the months in question.

1 N N N
P="(—4AP. +—AP.+—AP 3-1
A 3(NB N e TN b) (Y

where Ps Pc. and Pp are precipitation values for three surrounding stations during the gap

at station A and Na, Ng,N¢, and Np are the long-term monthly averages.

3.3.2 Estimation of Annual Average Precipitation, P

Orographic effects cause uncertainty in precipitation, so the data were tested for
orographic effects by performing aregression analysis between elevation and average
annual total of precipitation. A significant trend between elevation and precipitation for
the gages used was not detected (Figure 3.2), so an orographic effect was not included in
the analysis. Based on physical reasoning, such an orographic effect would be expected;

the lack of a significant trend may be explained by the lack of gages at high elevations.
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Figure 3.2 Plot of average annual precipitation (mm) for water years 1981-1985

versus elevation (m) of gages used for analysis
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The Rosner outlier test was used to test for outliersin the data (table 3.1). Thetest

assumes that all data points are from the same normal distribution with a mean and

standard deviation.

Table3.1: Rosner Outlier Test Results

standard
water Mean | deuation
year i n-i+1 [ (mm) (mm) X R R, decision | Station
station
1981 1 41 365.96 192.43 | 1195.1 | 4.309 3.05 outlier 418
2 40 345.24 141.10 641.2 | 2.098 3.04 no
station
1982 1 41 376.78 195.56 | 1038.8 | 3.385 3.05 outlier 289
station
2 40 360.23 166.45 890.1 | 3.183 3.04 outlier 418
3 39 346.65 144.41 641.7 | 2.043 3.03 no
station
1983 1 41 479.81 193.16 1216 | 3.811 3.05 outlier 418
station
2 40 461.41 155.00 959 3.210 3.04 outlier 289
3 39 448.65 134.07 689.7 | 1.798 3.03 no
4 38 442.30 129.80 667.7 | 1.736 3.01 no
station
1984 1 41 438.15 188.46 | 1101.7 | 3.521 3.05 outlier 418
station
2 40 421.56 157.66 | 1090.5 | 4.243 3.04 outlier 289
3 39 404.41 115.90 674.7 | 2.332 3.03 no
station
1985 1 41 487.71 | 251.10 | 1657.3 | 4.658 3.05 outlier 418
station
2 40 458.47 169.45 | 1053.7 | 3.513 3.04 outlier 289
3 39 443.21 141.09 769.8 | 2.315 3.03 no

Note: Tested largest values of dataset consisting of 41gages (n). Where i = the data point being tested, x is
the value of the data point in mm, R isthe computed test statistic, and R; is the critical values at a 5% level

of significance

The results of this test showed that two stations, station 418 & 289 were outliers. The

annual totals of precipitation for these two stations were much higher than the other

stations. Station 289 could not be discarded from the dataset, because it was one of only

two of the stations located within the basin. Although shown to be a statistical outlier,
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station 418 is one of very few stations at higher elevations, and could represent the true

range of variability in the precipitation population. As a result two datasets were created:
one with station 418 and one without station 418. All of the following procedures were
separately performed on both datasets.

The precipitation data file was converted into a comma separated value (CSV) file
in order to use it in ArcGIS. The data did not have spatia attributes, so these were
defined using ArcToolbox. The data was converted to the EASE grid projection
(Lambert Azimuthal Equal Area Projection). In this projection, every pixel represents an
equal areaon earth. Thisisimportant for the polar regions because of the areal distortion
caused by the convergence of the lines of longitude at the poles. The Cartesian
coordinates for the stations were given using a XY tool downloaded from ArcObjects
online source of add-ons for ArcGIS. The stations were mapped using the x and y fields

by the display eventstool. The mapped stations were then converted into a shapefile.

3.3.2.1 Developing Semivariograms

Kriging was the interpolation method chosen to estimate the areal distribution of
precipitation across the basin. In addition to being a recommended interpolation method
(Dingman, 1998), kriging can provide the standard error of the interpolated estimates;
this information is used in quantifying uncertainty in the basin precipitation (below).

In order to use kriging, a semivariogram had to be developed. A semivariogram
describes the spatial autocorrelation of data. Spatial autocorrelation is the likelihood that
values of a parameter are related the closer they are located to each other. The spatial
correlation decreases with increasing separation distance. The autocorrelation is

calculated as the variance between the points with respect to distance. The
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semivariogram graphically represents the variance of the values as a function of distance
between the points. The variance of the points are binned where the variance of points
within a certain distance of each other are averaged together to get the semivariance for
that range of the data. The binned raw semivariance becomes the experimental
semivariogram of the data. The semivariogram has two parameters: the range and sill.
The range is the maximum distance between the points where they are related to each
other. Points separated by a distance greater than the range are said to be independent of
each other, and at this distance the semivariance becomes a constant that is equal to the
sample variance. The constant value is the sill or the maximum semivariance between
the points. The experimental semivariogram isfit by atheoretical semivariogram, which
is afunction that best describes the shape of the semivariance.

Spherical semivariograms were chosen to model the data. The equation for a

spherical semivariogram is as follows (Deutsch et al., 1998):

9r) = Sg_h 2h3‘ :52 (3-2)
g(r)=s

where h isthe range, sisthe sill, and r is the separation distance. Spherical and
exponential semivariograms are the most popular types to use, but the spherical model
was chosen because it has a more defined sill. The goodness of fit of the spherical
semivariograms was determined through a numerical optimization program (McCuen,
1993). The program optimized the sill and range of the semivariograms based on the
objective function of minimizing the sum of the squares of the prediction errors. The
values of the sill and range were compared to those given by the ArcGIS geostatistical

program, and their prediction abilities were compared.
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The effects of the number of stations used was tested. Semivariograms were
calculated separately for a400 km, 500 km, and 600 km buffers, created from a buffer
tool in ArcMap, to evauate the effect of the increased number of points (Figure 3.3).
The stations within each of the buffers was selected and then converted into a separate
shapefile for ease of computing semivariograms. The semivariograms for the three

buffers did not vary much, with all three having similar ranges and sills (Table 3.2).

Buffers of Tom Basin

@ pte400km
@ ptsB00km
#  ptsEO00km
O Tom Basin Boundary

600 km

Figure 3.3: Map of Tom Basin surrounded by three buffersat distances of 400, 500, and 600 km
away from basin. Gageswithin each buffer are shown in different colors.
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Table 3.2: Semivariogram Parametersfor buffers400-600 km

buffer distance

(km) 400 500 600
lag size (m) 56958 56958 56958
number of lags 12 12 12
nugget 0 0 0
Range (m) 279930 279940 302760
Sill (mm2) 25325 22147 21072

The points within a 600 km radius of the watershed were used for the analysis because

the increased amount of points gave more confidence in the prediction model.

3.3.2.2 Kriging Prediction Models

All kriging procedures were performed using the geostatistical extension in
ArcGIS. Separate analysis was performed for each year of data. The precipitation data
for each shapefile was the input data for the kriging analysis. The data were separated
into atest and training set for validation using a tool to create data subsets in the program.
The model would be calibrated using the training set and then validated using the test set.
The test set consisted of 10 randomly selected points from the entire data set, while the
training set consisted of the remaining 30 points. Determining the optimal parametersto
produce the best- fit kriging map required subjective judgment as follows: decisions about
the type of kriging, trend removal, search neighborhood, and anisotropy had to be made.
The process includes four steps: geostatistical methods, semivariogram model, search
neighborhood, and cross validation (Figures 3.4-3.8). Geostatistical methods included
kriging type, trend removal, and type of map. For al analyses an, “ordinary kriging
prediction map” was the type used; since orographic effeds were not evident in the data,
it was not necessary to model atrend or transform the data. Inputs for the semivariogram

calculation were the semivariogram type, lag size, and number of lags.
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Geostatistical Wizard: Choose Input Data and Method
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spatial autocorrelation. Kriging uses statistical maodels that allow a wariety of map
Cokriging outputs including predictions, prediction standard errors, probabilite, etc. The fesibilitg

of kriging can require a lot of decision-making. Kriging assumes the data come from a
statiohary stochastic process, and some methods azzume nomally-distributed data.

| M ext > | Finizh Cancel

Figure 3.4: Screen capture of input data selection step. Step includesinput data file, selection of
information from itstable of data to be used for inter polation method, type of interpolation method,
and if validation will be used.

Geostatistical Wizard: Step 1 of 4 - Geostatistical Method Selection
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Figure 3.5: Screen Capture of Geostatistical wizard step one. Step includes decisions on type of
kriging used, transformation and trend removal options.
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Gepstatistical Wizard: Step 2 of 4 - Semivariogram/Covariance Modeling
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Figure 3.6: Screen capture of step 2 of geostatistical wizard. Step includestype of semivariogram
and its parameters, display of either semivariogram of covariogram, and sear ch direction and
weights of pointsin search surface. Parameters can either be calculated by the program or input by
the user.
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Geostatistical Wizard: Step 3 of 4 - Searching Neighborhood
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Figure 3.7: Screen capture of step 3 of geostatiscal wizard. Step includes number of pointsin search
radius and sear ch neighborhood shape. It also shows sear ch neighborhood for a particular location
and the weights of pointswithin radius.

30



Geopstatistical Wizard: Step 4 of 4 - Cross Validation
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Figure 3.8: Screen capture of step 4 of the geostatistical wizard. Thisstep isthe cross-validation
phase of the interpolation method. It usesevery point in the data set to validate the model. Each
point isremoved from the data set and the model is used to predict that point. The model statistics
aregiven, aswell as plotsto demonstrate the prediction capabilities of the model.

The same lag size and the number of lags used in the NUMOPT program were selected to
allow comparison between the two semivariograms:. the ones calibrated from NUMOPT
and the ones calibrated within the geostatistical program. The program optimized the
range, sill, and nugget based on least squares regression for each chosen lag size and
number of lags. Anisotropy was not modeled, and the search radius was a circle with no
divisions because the data had no spatial trends. The initial search neighborhood was a
minimum of two points and a maximum of five points within the search radius. Thiswas
changed once the basic parameters of the semivariogram were chosen. Thefinal decision

for the parameters was made based on the goodness-of- fit statistics such as root mean
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sguare standardized, bias of errors, mean error, standard error ratio, and overal fit of
prediction map al given from the cross validation results.

Once the semivariogram parameters were fitted, the sensitivity of the model to the
search neighborhood was investigated. The search neighborhood always contained a
minimum of two gages, but the amount was increased from a minimum of two gages
within the search radius to the maximum number of gages where a change in the
prediction model was not observed. A change in the prediction model was defined as the
point where the goodness-of-fit statistics changed. The maximum number of gages to use
in the search neighborhood for the model was determined by the amount required to give
the lowest standard error ratio.

Once al the parameters were determined, the semivariogram was used to create
the prediction and standard error maps. The models for the analysis set without station
418 were validated to ensure their accuracy. The validation was performed on the test
dataset. Error analysis was performed to determine the quality of the prediction model.
The error analysis was a graphical check for local bias in the prediction values and
statistics on the error values.

3.3.3 Estimation of Uncertainty in Annual Average Precipitation,

S¥(P)

The standard error maps created by the ArcGIS Kriging routine were converted
into raster datasets (grids) with agrid cell resolution of 1 kn?. The Tom basin shapefile
was converted into a grid for use as a mask for the standard error maps. Raster
calculation was performed to multiply the Tom basin by the standard error map to obtain

amap displaying the standard error only in the Tom basin. The calculation grid was a
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temporary file, so it was exported as a permanent grid. The grids were converted into
ASCII text files to use as input into the total variance program.

The total variance program was developed in FORTRAN, based on the total
variance of alinear function theory. The program calculated the total standard error of
the estimates of the estimated precipitation in each grid cell and the covariance between
pair of grid-cell precipitation estimates. The covariance was based on the same spherical
semivariogram used to estimate the precipitation distribution across the basin (Deutsch et

al., 1998);
c= s>§l- S (3-3)

where sisthe sill of the semivariogram, r is the separation distance between points, and h
is the range of the semivariogram. The program calculated the separation distance
between all cells, noting that at any separation distance greater than the range (h), the
covariance becomes zero (in other words, beyond the range of the semivariogram, the
estimated precipitation values are independent of each other). The input into the program
was the ASCI| text file of standard errors, and the sill and range of the semivariogram
used for kriging. The program calculated the number of cells and the separation distance
between each pair of cells and then calculated the total variance (Mendenhall et al.,
1995):

1% ., g8 0
SiFFga S'()+2a a Cov(,j) (3-4)

i=1 j=i+ 2
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where S, thetotal variance, n isthe number of pixels, and Sis the standard error of the
estimated precipitation in pixel i, and Cov(i,j) is the covariance of precipitation between

pixelsiandj.

3.4 Streamflow

Streamflow is a point measurement, which was taken as the basin average. A literature

based estimate to quantify uncertainty in the basin average streamflow was used.

3.4.1 Description of Data

Streamflow data were obtained from the University of New Hampshire R-
Arcticnet Hydrological Data Group. The data set consists of average monthly discharge
given in m¥/sec for 1918-2000 for the Tom River at Tomsk river gage site. The gage is
137 m above sea level located at 56.43N and 84.97E. Data from 1980-1985 were used so

that this dataset would be compatible with the other two datasets.

3.4.2 Estimation of Annual Average Streamflow, Q

The average monthly streamflow for the measurement site was given in nt/sec.
These data were divided by the basin area to convert into monthly depths of flow in mm.

The monthly values were summed to get the average annua depth of flow.

3.4.3 Estimation of Uncertainty in Annual Average Streamflow, S Q)

The analysis was limited by the lack of arating curve for the Tom River. Based
on literature reviews, an error of 5% of average annua streamflow was assumed (Winter,

1981).



3.5 Evapotranspiration

The basic method was a derived distribution of evapotranspiration values based on
Monte Carlo simulation of the Penman-Monteith equation. This gave the estimated

expected E and variance of the estimate.

3.5.1 Description of Data

Evapotranspiration values, as well as the input variables used to compute
evapotranspiration, were supplied by the NASA group as output from PRMS model
based on the Penman-Monteith equation. The Tom basin was divided into 19 hydrologic
response units (HRU’ s) as a premise for the PRMS model. The evapotranspiration values
were given in inches in 3- hour increments daily for the years 1980-1985 for each of the
HRU’s. The basin-average evapotranspiration was calculated as an area-weighted
average of the values for each HRU. This mean was used as a check for the mean
obtained from the derived distribution method described below. The NASA group also
supplied the area of each HRU in square kilometers and acres.

Values of the input variables required by the PenmanMonteith equation were
given for Tomsk (elevation 137 m above sea level). The inputs obtained from the NASA
group were air temperature (T,) in °C, incoming clear-sky solar radiation (K ) in MJ m?
day?, cloud ratio (C), wind speed (vs) in m/s, relative humidity (W), and atmospheric
pressure (P) in kPa, all measured at Tomsk. Taken at the lowest point in the watershed,
these measurement may not be representative of the whole basin, but they are the only

meteorological observations available.
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The surface temperature at Tomsk (required for calculating net radiation) was
estimated as the 24- hour average of the reported air temperatures. The heat capacity of
air and the density of water were constants in the model at 0.001 MJkg* K™* and 1000 kg
m’> respectively.

Because measurements of soil moisture were not available, a model was
developed for soil moistur e deficit, assuming exponential drainage from saturation after a
rainfall event. The model was developed through approximation by inspection of soil
moisture discharge curves in Dingman (1994):

DY =D, (- &™) (3-5)
where Dq is the soil moisture deficit (cm), Dgmax (€M) is the difference between saturation
water content and field capacity, t (days) is the time since the last rain, and b (days™) isa
time scale. Saturation water content and field capacity were estimated based on

knowledge of the soil texture in the Tom basin. The time scale was estimated by

examining known soil drainage time series for soils similar to those found in the basin.

3.5.2 Estimation of Annual Average Evapotranspiration, E, and its
Uncertainty, S*(E)

The annual average and standard deviation of E were calculated for each water
year from a derived frequency distribution of E. A derived frequency distribution can be
describes as:

A function of random variables x and y, g(x,y), isitself a new random variable.
The expected value of g(x,y) may be found directly...without ever determining the
PDF f(g). However, if we have an interest only in the behavior of random variable
f and we wish to answer severa questions about it, we may desire to work...with
the PDF f(g). A PDF obtained for a function of some random variables whose PDF
isknown is referred to as a derived PDF (Drake, 1988).
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E isanonlinear function of many variables, and analytical determination of its derived
distribution would be tedious; therefore, a Monte Carlo method was used. The frequency
distribution of E was developed by simulation, using the Penman-Monteith equation. A
value of E was calculated for each 3-hour time step at each of 1000 simulated locations in
the basin. Characteristics of the smulated |ocations were assigned by a combination of
physical theory and random sampling. The steps in creating the derived distribution of E
are described in the following sections. The E values were in mm/s-3hr so the resultant

statistics were converted into mm.

3.5.2.1 Digtribution of Variables

Elevation. The gamma distribution was the assumed distribution of elevation determined
from information from Saini (2003) (Figure 3.9). The mean and standard deviation of
elevation had to be inferred by inspection of the elevation histogram, since the actual
numbers were not available due to computer system failure. The gamma probability

density function is

| a Xa-le- [
f = - 3-6
(x) &) (3-6)

where X in this case is elevation (m) inthe basin, | isthe scale parameter, a is the shape

parameter, and G is the gamma function. The parameters for the gamma distribution
were calculated based on the method of moments, which uses the assumed mean and

standard deviation.

(37
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(3-9)

&
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where xis the mean of the elevation, and & is the standard deviation of elevation. The
mean and standard deviation were assumed to be 500 m and 375 nt, respectively.

Elevations of the 1000 simulated points were sampled from this distribution.

Elevation Distribution
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/
0.001 I
[\
|
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Figure3.9: Gamma distribution of elevation in basin.

Mean = 375 m and standard deviation = 500 sg m

Temperature and Pressure. The elevation distribution was then used to assign the

temperature and atmospheric pressure for the simulated points. Temperature and
atmospheric pressure both decrease with increasing elevation. Both can be modeled as a
linear change with elevation. The linear rates of decrease are called lapse rates. The
temperature lapse rate is commonly called the environmental |apse rate, and the pressure
lapse rate is commonly called the scale height of the atmosphere. The air (a) and surface

(s) temperature modd is

Ta,s = (Ta,s)m - DT >(Z - Zm) (3_9)
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where T, s are the temperature of the subscript type at the ssmulation point, (T, 9m are the
temperatures of the subscript type at the measurement site, the temperature lapse rate, DT
= 0.65 °C/100 meters (Dingman, 2002), Z is the elevation of the simulation point in
meters, and Zy, is the elevation of the measurement point, Tomsk, at 137 m. The pressure
model is

P=P -DPXZ-2Z.) (3-10)
where P is the atmospheric pressure at the simulation point, Py, is the atmospheric
pressure at the measurement site, and the standard atmosphere lapse rate, DP, is taken as

0.0125 kPa/m (Wallace and Hobbs, 1977).

Vegetation Type and Parameters A multinomial distribution was assumed for vegetation
type, where the probability assigned to each type was proportiona to the areal coverage
of each across the basin (figure 3.10). The vegetation type and areal coverage of each
was obtained from Saini (2003). The three main types of vegetation in the basin are

conifer, savannah, and cropland. The probably mass function of the vegetation type is

nl

Px1x2x3 = - p1><1 p;2 pgg (3_ 11)
X I IX!

where p; are the probabilities of conifer, savannah, and cropland which are 0.7116,
0.0831, and 0.2053, respectively. It would have been preferred to have aland use map of
the region, but since this was unavailable, the multinomial distribution was the next best

approach to estimating the vegetation distribution conditional on elevation.
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Vegetation Coverage
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Figure 3.10 Vegetation distribution in basin

The following canopy characteristics were estimated based on the vegetation type
and season: maximum leaf conductance, LAI, albedo, and vegetation height. Each of
these was sampled from uniform distributions, whose limits were based on the type of
land cover (figures 3.11-3.14). The limits of the distribution varied for each time period

and plant type. The uniform distribution probability density function is
1
f(x)=—— (3-12)
b-a

where aand b are the lower and upper limits of the distribution, respectively. The mean
and range of those distributions were given typical values based on land cover, as found
in the literature (Dingman, 2002). The seasons for the vegetation parameters were
determined based on biological information. The vegetation seasons were determined by
the land types “greenup” and “green down” periods of the land types (www.globe.com).
Conifer land type was not assumed to have seasonal variation, but cropland and savannah
were. The dormant season, or “green down”, period was taken as September 1-April 30,
and the active season, or “green up,” was May 1-August 31. For each simulation point,
the vegetation type selected from the multinomial distribution dictated which uniform

distribution was used to simulate the vegetation properties for that location.
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Vegetation Height Distribution
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Figure 3.11: Uniform distribution of vegetation
height (Zveg) for the 3 v egetation types

Figure 3.12: Uniform distribution of Leaf Area
Index (LATI) for the 3 vegetation types
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Figure 3.13: Uniform distribution of Maximum L eaf

Conductance (C* leaf) for 3 vegetation types

The shelter factor was modeled based on its relationship with LAL.

Figure 3.14: Uniform distribution of albedo (a)
for the 3 vegetation types

The shelter

factor typically ranges from 0.5 to 1 and decreases with increasing LAI (Dingman, 2002).

The proposed model was (Figure 3.15)

—

1 O£ LAl £3
i1- E(LAl -3) 3ELAIE£6

10.5 6£LAI £8
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Shelter Factor Model

1.2

0:8 \
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Figure 3.15: Shelter factor (fs) model for the defined
Range of Leaf Area Index (LAI)

Cloud Cover. Frequency histogram analysis of the observed cloud ratio in time was
performed to propose a distribution of the input. Using the cloud cover time series
obtained from the NASA group, the average for the water years 1981-1985 was found
and each daily value was subtracted from the average to remove the annual cycle. These
deviations were plotted as a time series for each water year (Figure 3.16). The
variability in the time series was used to distinguish between seasons instead of using the
calendar seasons following the reasoning that cloud cover was expected to vary
differently during different times of the year. The seasons for cloud cover were
determined by inspection of the plots. The seasonal periods for cloud cover were
October-April and May-September.

Because cloud cover is defined as a number between 0 and 1, the beta distribution

is a convenient choice to describe this variable (Figure 3.17)
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Cloud Cover Time Series
water year 1984
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Figure 3.16(a-€) Times Series of Cloud Cover for each water year. Figure 3.16(f) shows the deviation
of thetime seriesfrom the 5-yr average.



Cloud Cover Distribution
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Figure3.17: Gamma distribution of cloud cowver

For time periods, Oct-Apr & May-Sep

The beta probability density function is

_ Xa—l(l_ X) b-1

) B(@,b)

(3-14)

where a is shape the parameter, b is the scale parameter, and B(a ,b) is the beta function.
The chi-squared goodness-of-fit test was performed on the proposed distribution to test if
the assumption was appropriate (table 3.3). The results showed that the beta distribution
was not appropriate to model cloud cover in time; however, due to the need of a spatial
distribution and the physical limits of cloud cover, the beta distribution was used.

At each time step, cloud cover for each simulation point was simulated by

sampling from a beta distribution with the mean equal to the observed cloud cover at
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Table 3.3: Chi-Squared goodness-of-fit test results on the beta distribution for Oct-Apr during water
year 1981

Xl 0 cum p p e (o-e)"2/e
0 288 0 0 0 0
0.05 176 0.260715|0.260715|442.1721|160.2263
0.1 88 0.3583 |0.097585|165.5041|36.29451
0.15 128 0.431335|0.073036|123.8684| 0.13781
0.2 144 0.491844|0.060508| 102.6221| 16.68383
0.25 72 0.544406| 0.052562|89.14596| 3.297783
0.3 64 0.591346| 0.04694 |79.60943|3.060622
0.35 112 0.634029(0.042683|72.39064 | 21.67271
0.4 104 0.673338|0.039309| 66.66792| 20.90487
0.45 64 0.709879|0.036541|61.97387|0.066241
0.5 96 0.744089| 0.03421 | 58.0197 |24.86229
0.55 48 0.776291|0.032202|54.61521|0.801261
0.6 40 0.806732|0.030441|51.62816| 2.619
0.65 48 0.835601|0.028869|48.96187|0.018896
0.7 24 0.863043|0.027442)46.54153|10.91757
0.75 40 0.889166|0.026123|44.30475|0.418259
0.8 16 0.9140440.024878| 42.1933 [16.26062
0.85 24 0.937713|0.023669| 40.1421 [6.491125
0.9 24 0.960151|0.022438| 38.05559|5.191346
0.95 8 0.981215|0.021064|35.72394|21.51546
1 88 1 0.018785| 31.85925| 98.92838

Note: mean and standard deviation of cloud cover for time period of analysis were 0.302 & 0.289,
respectively. x| isthe limit of theinterval, o isthe observed frequency, cum p is the cumulative beta
probability, p isthe probability of occurrence, and e isthe expected frequency. The total observed datawas
1696 and the total test statistic was 450.

Tomsk and the variance was based on a seasonal analysis. The parameters for the beta
distribution were calculated from the mean and standard deviation of the measurement

site using the method of moments.

_—@l-x) 0 ]
a =g 1 (3-15)
b =(- i)w- 12 (3-16)
9

In the beta distribution, high variances are not compatible with very low or very

high means. The highest variance possible for the beta distribution is when alpha and beta
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= 0. When apha equals beta, the mean is 0.5. As the mean approaches either O or 1
(highly skewed beta distribution), the variance must become small. Analysis
demonstrates that the variance for the beta distribution must be less than or equal to the
mean for pu< 0.5, and less than or equal to (1- mean) for > 0.5.

The observed seasonal variance was used as a maximum possible variance for the
simulated cloud cover. When the observed mean was either quite high or quite low, the
variance was assigned as the minimum value of the following three choices:

calculated seasonal variance at measurement point

1
52 = :’ (1' n,)2
I nt

This analysis was based on forcing the beta function as the spatial cloud cover
distribution, even though it was not well supported by time-series observations. Thiswas
anecessity of choosing a distribution from which to sample for Monte Carlo simulation.
If the measured value of cloud cover was either 1 or 0, the simulated cloud cover was set

equa to the mean.

Wind Speed Distribution

0.35
0.3

0.25 —A
0.2
015 -—/A‘
0.1 / \
'\
[
07; = AR ACE AR AR AN

0 12 3 456 7 8 91 1112134 1586 17
wind speed (m/s)

0.05 7

|—0—oct—nov —&—dec-june july-sept |

Figure 3.18: Gamma distribution of wind speed for time
Periods, Oct-Nov, Dec-Jun, & Jul-Sep
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Wind Speed. Wind speed at each point was sampled from a gamma distribution (Figure
3.18). The parameters were calculated using equations 3.7 and 3.8. The mean for each
time step was the measured wind speed at the measurement site, and the standard
deviation was the standard deviation of the measurement site for the appropriate time
period, as determined by time-for-space substitution in analysis of the measured data,
similar to the approach used with cloud cover. The seasonal periods for wind speed were
October-November, December-June, and July-September (Figure 3.19). When the
measured wind speed was 0.2, the lowest reported value, the simulated value was set
equal to the mean, the measured value due to numerical issues in inverting the

distributionfor very low values.

Soil Moisture Deficit. Soil moisture deficit was calculated using equation 3.5 at the

measurement site (Figure 3.20). For the smulation points, it was generated from the
uniform distribution. The lower limit was zero and the upper limit was the value at the

measurement site.

Soil Moisture Deficit Model

time (days)

Figure 3.20: Soil moisture deficit model, where
betais0.75 days™

48



Wind Speed Time Series
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Wind Speed Time Series
water year 1984
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Figure 3.19 (a-e) Time series of wind speed for each water year. Figure 3.19(f) shows the deviation of
the timeseriesfrom the 5-yr average
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Relative Humidity. The relative humidity was assumed to be the equal to the value at

Tomsk for each point in the basin. (Figure 3.21)

Clear-Sky Shortwave Radiation The clear-sky short-wave radiation was also assumed to

be the same as the measurement point throughout the basin. Actual radiation at each

simulation point is affected by cloud cover. (Figure 3.22)

3.5.2.2 Calculation of Evapotranspiration at Simulated L ocations

All of the other inputs into the Penman Monteith Equation were calculated for

each simulation point through a series of physically-based formulas.

17.3%,
— 25083 ; eTa+237.3 (3_ 16)
(T, +237.3)
where ? was in units of kPa
|, =250- 2.36 X0 xT, (3-17)
where ?, was in units of MJkg.
c:P
=_7a’ = 3-18
g 0.6224 |, ( )
where ? was in units of kPa/K.
17.3%,
e'a = 0.611e™*%"3 (3-19)

wheree;, was in units of kPa.
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Relative Humidity Time Series
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Relative Humidity Time Series
water year 1984
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Figure 3.21 (a-€) time series of relative humidity for each of the water years. Figure 3.20(f) showsthe

deviation of thetime seriesfrom the5
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Clear-Sky Solar Radiation Time Series
water year 1981
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Clear-Sky Solar Radiation Time Series
water year 1984
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Figure 3.22 (a€) timeseries of clear -sky solar radiation for each water year. Figure 3.21 (f) showsthe
deviation of the time series from the 5-yr average.
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ro=——r (3-20)
T, +2732
where 2, was in units of kg/n?
C, = L R (3-21)
5 o
6.25anon " Za 2y
é AN §
2,52, t2 (3-22)
2, =07%2,, (3-23)
2, = 0.1z, (3-24)

where C4 was in units of m/s and 2, was in units of m/s, z.g (M) is the height of the
vegetation, z (M) is the zero-plane dispacement, z, (M) is always assumed to be 2 m
above the top of the vegetation, z (m) and is the roughness height.

L=e, e, s {T, +2732)*- ¢, AT, +2732)' (3-25)
where ey, is a constant with a value of 0.97, s is the Stefan-Boltzman constant with a
vaue of 490" 10° MIm?day K*, and ey is the effective emissivity of the atmosphere

calculated with the following equation

1

e e O
€, =L72%——"——3 x1+0.22xC’ 3-26
“ T 2132, 4 ) (329

where C is cloud cover ratio, and e, (kPa) is the vapor pressure in the air given as
e, =e AW, (3-27)
The net shortwave radiation is given by the following equation

K=K, X1- a) (3-28)
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where ais albedo, and K, ( MJ m? day%) is incoming shortwave radiation given by the
following equation

K,, =[0.355+0.681- C)|K (3-29)
Finally, an evapotranspiration value was calculated for each time step at each point using
equation 2-4. E was set to zero if the canopy conductance was zero. Thetotal E for each

simulation point was summed for each water year.

3.5.3 Sampling from Distributions using Random Number Generator

The Excel random number generator was used to generate random numbers from
the assumed distributions. The random number was generated from the specified
distribution by using the inverse of the distribution function. A test run of each
distribution: gamma, beta, and uniform, was performed to ensure that each function
worked. The parameters for each distribution were predefined. The parameters were
used to create a probability density function (pdf) plot for a given range. 5000 numbers
were generated using the random number generator. The numbers were grouped into
histograms and the probability of each range was computed. This was plotted against the
theoretical pdf. The mean, standard deviation, and parameters were calculated for each
simulated pdf. These values were compared to the given values to ensure that the Excel

random number generator was being applied properly for each distribuion (Figure 3.23).
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Figure 3.23: Comparison of theoretical distribution and simulated distributions from sampling of the

(a) inverse gamma distribution and (b) inver se beta distribution. Number of simulated points was 5000

3.6 Hypothesis Test on Water Balance Closure

The water balance closure for each water year was calculated using equation 1-2. The
variance of the water balance closure for each water year was calculated using equation
1-3.

A hypothesis test on the water balance closure as the mean was performed. In
order to perform the hypothesis test the sample size had to be determined. Each
component had different sample sizes so the composite sample size was unknown. An
effective sample size was determined using the following equation from Haan (1977)

B n
"t @)
@) )

(3-30)

where n is the actual number of samples, and r 1 is the lag 1 autocorrelation coefficient.
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Table 3.4 Effective sample size (ng) determination for each water year

water
year Component n r Ne
1981 streamflow 12 0.484897 | 4.253936
ET 2920 0.743982 | 428.6734
precip 12 0.543894 | 3.613203
1982 streamflow 12 0.464457 | 4.487959
ET 2920 0.764908 [ 388.9657
precip 12 -0.2154 17.65269
1983 streamflow 12 0.432218 | 4.870323
ET 2920 0.766933 | 385.1739
precip 12 -0.11769 14.83767
1984 streamflow 12 0.220067 7.8461
ET 2928 0.753107 | 412.3686
precip 12 0.14451 9.130617
1985 streamflow 12 0.580497 3.240189
ET 2920 0.752904 | 411.6272
precip 12 0.580162 [ 3.243513

Table 3.4 shows that the different data sources had very different effective sample sizes.
The composite sample size for WBC is unknown. Lacking a good estimate of the true
degrees of freedom for the problem, the z test (large-sampl e test) on the hypothesis of the
mean was used. The z Satitic is

_X-

‘T s4n

3

(3-31)

(7]

where X is the mean water balance closure for the water year, U is the hypothesized
population water balance closure, n is the effective sample size, and sis the standard
deviation of the sample water balance closure.

The mean of the hypothesized water balance closure population was zero. The
sample mean was the water balance closure calculated above. The standard deviation
was the square root of the variance of the water balance closure calculated above. The
null hypothesis is the water balance closure equal to zero, thus the alternative hypothesis

is the water balance closure is not equal to zero.
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H,:m=0
Hy,:m? O

The two-sided test was performed to test if the water balance closure was zero. A one

sided test was not performed because it wasn't necessary to test if the WBC was less than

or greater then zero. Thelevel of significance used was 10% and less.
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4 Results

4.1 Introduction

In this chapter, analysis results are presented for the three terms in the water balance:
Precipitation (P), Streamflow (Q), and Evapotranspiration (E). The order of presentation
follows the order in which the methods were presented in Chapter 3. The chapter

concludes with the results of the hypothesis test on water balance closure.

4.2 Precipitation

Different decisions had certain effects on the results meaning the prediction estimation
model and the standard error of the estimates. The results were compared for datasets

with and without the outlier station 418.

4.2.1 Parameter Decisions

The semivariograms parameters mainly came from ArcGIlS computations. Both
methods of optimizing the range and sill (NUMOPT and ArcGIS) gave similar values,
but the dlight difference was noticed (T ables 4.1-4.2). For some of the years, the
semivariogram calculated within ArcGIS included a nugget, but the NUMORPT program
didn’'t have this option, so this could be the reason for some of the differences. A
semivariogram with less than 7 lags could not be modeled in ArcGIS, so there was no
way to compare the NUMOPT semivariograms to those of the other program. The least
amount of lags was modeled because the data seemed unrelated beyond the search radius

so modeling those extra lags would have been pointless.
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Table 4.1: Semivariogram parameter decisions for analysis set w/o station 418

Search average root mean
semivario- |lag size (m) & nieghbor- [root mean mean error |standard  [square
gram number of lags|range(m) |sill (mm"2) [hood square (Se) (mm) error standardized |Se/Sy Se/sill~0.5
wy81 Sy 157.16
computed |100K, 7 309450 26400(10, 2 138.6 15.89 151.3 0.9412| 0.882 0.890
309450 26400(5, 2 138.3 14.72 151.6 0.9329] 0.880 0.888
100K, 13 272500 24250(10, 2 140.1 15.94 1531 0.9278| 0.891 0.900
272500 24250(5, 2 140 14.11 153.3 0.9269| 0.891 0.881
100K, 15 286300 25230|10, 2 139.2 16.63 153.2 0.925| 0.886 0.876
286300 2523015, 2 139.3 14.96 1533 0.9252| 0.886 0.877
computer |100K, 7 302190 27078|10, 2 138.2 16.27| 154.8 0.9105| 0.879 0.840
302190 27078|5, 2 1384 14.55 155 0.9114| 0.881 0.841
100K, 13 279720 25319|10, 2 139.8 16.14 154.9 0.9174] 0.890 0.879
279720 25319|5, 2 139.8 14.32 155 0.9165| 0.890 0.879
100K, 15 280460 25380|10, 2 139.8 16.16) 154.9 0.9173] 0.890 0.878
280460 2538015, 2 139.7 14.34 155.1 0.9164| 0.889 0.877
wy82 Sy 180.19
computed |100K, 8 439300 3802010, 2 156.1 9.206 150.6 1.078] 0.866 0.801
439300 380205, 2 151.7 5.765 151.7 1.029| 0.842 0.778
100K, 13 323160 33360]10, 2 154.5 5.053 164.8 0.9598| 0.857 0.846
323160 333605, 2 151.4 3.507 165.2 0.9341] 0.840 0.829
100K, 15 307300 32270]10, 2 153.2 6.564 167.8 0.9416] 0.850 0.853
307300 32270|5, 2 152.5 5.921] 168.1 0.9302| 0.846 0.849
computer  |100K, 8 330310 36339|10, 2 154 5.251 1704 0.9282| 0.855 0.808
330310 363395, 2 151.3 3.759 170.8 0.9042| 0.840 0.794
100K, 13 296570 33571|10, 2 154.2 7.973 174.1 0.9071] 0.856 0.842
296570 335715, 2 153.8 6.752 1744 0.9023] 0.854 0.839
100K, 15 294940 33450(10, 2 154.2 7.942 174.2 0.9066| 0.856 0.843
294940 3345015, 2 153.8 6.716 1744 0.9018| 0.854 0.841
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Table 4.1 continued

wy83 Sy 164.31

computed |100K, 6 299140 30920]5, 2 couldn't get results, lag number must be > 7
100K, 13 251950 27770(5, 2 164.2 3.984 169.6 1.024] 0.999 0.985
100K, 15 231300 259105, 2 162.2 4.959 169.1 1.002] 0.987| 1.008

computer  |100K, 7 194470 29162|5, 2 159.4 8.656 190.7 0.8534| 0.970 0.933
100K, 13 193450 275285, 2 159.4 8.638] 185.6 0.8766| 0.970 0.961
100K, 15 213470 27460(5, 2 162.4 11.49 179.3 0.9296| 0.988 0.980

wy84 Sy 172.34

computed |100K, 6 466900 3961015, 2 couldn't get results, lag number must be > 7
100K, 13 248000 27500(5, 2 155.4 7.45 169.7 0.9023| 0.902 0.937
100K, 15 213500 24000(5, 2 164.8 16.66) 167.6 0.9515| 0.956 1.064

computer |100K, 7 331860 35460(5, 2 150.6 13.25 1684 0.8887| 0.874| 0.800
100K, 13 279480 31000(5, 2 155 13.34 1716 0.8923| 0.899 0.880
100K, 15 275110 30420(5, 2 155.2 13.15 171 0.8958| 0.901 0.890

wy85 Sy 188.15

computed |100K, 9 461600 39800|5, 2 165.9 13.83| 151.2 1.122| 0.882 0.832
100K, 13 333000 36070|5, 2 165.3 15.13| 169.6 0.9876] 0.879 0.870
100K, 15 282700 32480|5, 2 166.9 16.69 1749 0.9661| 0.887 0.926

computer  |100K, 9 329200 37832|5, 2 165.3 15.07 1745 0.9589| 0.879 0.850
100K, 13 320610 37208|5, 2 165.4 14.91 175.1 0.9548( 0.879 0.857
100K, 15 290320 36277|5, 2 166.8 16.82 182.8 0.9254| 0.887 0.876
100K, 7 317520 36989|5, 2 165.1 16.34 175.9 0.9515| 0.877 0.858

Note: Highlighted regions was the set of paramters chosen to model the semivariogram to produce prediction maps
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Table 4.2: Semivariogram parameter decisions for ananlysis set w/ station 418

Standard  |lag size (m) Search average root mean
Water  [Deviation |& number of sill neighbor- |root mean mean error |standard  |square

year Sy) lags range (m) |(mm"2) [hood square (Se) (mm)  |error standardized |Se/Sy Se/silI~0.5
1981 217.33]100K, 7 573240] 5393810, 2 220.1 -9.247 158.5 1212 1.013] 0.948
573240 53938|5, 2 205.2 -13.6 160.1 1.138] 0.944f 0.884
100K, 13 | 570470 55381]10, 2 220.1 -9.271 161 1.193] 1.013] 0.935
1982 227.1]100K, 8 644600] 6376310, 2 204.9 -5.205 162.2 1.103] 0.902] 0.811
644600 63763|5, 2 187.7 -10.24 163.8 1.016] 0.827[ 0.743
100K, 13 | 613240 61073]10, 2 205 -4.328 162.8 1.098] 0.903] 0.830
613240 61073|5, 2 187.7 -9.882 164.5 1.011] 0.827] 0.760
100K, 15 | 607440 60553]10, 2 205 -4.227 162.9 1.097] 0.903] 0.833
607440 60553|5, 2 187.4 -0.811 164.6 1.01] 0.825] 0.762
1983] 207.69]100K, 7 538810] 50264{5, 2 215.2 -11.89 159.6 1242 1.036] 0.960
100K, 13 | 530490] 49612|5, 2 215.1 -11.81 159.9 1.24] 1.036] 0.966
1984 212.84]100K, 7 587580 58416|5, 2 195.5 -3.287 164.5 1.095] 0.919( 0.809
100K, 13 | 499320 50880]5, 2 195 2.317 17.1 1.073] 0.916] 0.864
100K, 15 4947601 50424]5, 2 195 -2.27 167.1 1.073] 0.916 0.868
1985] 281.39]100K, 7 696420 920975, 2 262.8 -24.17 189.1 1.163] 0.934] 0.866
100K, 9 7362001 94496|5, 2 263.5 -24.51 186.1 1184 0.936] 0.857
100K, 13 | 821780| 1026805, 2 265.2 -25.18 183.3 1.208] 0.942| 0.828

Note: Highlighted regions was the set of paramters chosen to model the semivariogram to produce prediction maps




It wouldn't have made a difference which semivariograms parameters were used,
NUMORPT or ArcGIS, since the values were so close for most of the years, but we chose
to use the values with the smallest standard error ratio. The standard error ratio was the
main factor in determining the best-fit model. The standard error-sill ratio was also a
determining factor. These values were generally around 80%. These are acceptable
values, but not excellent where preferred values are less than 50%; however the
computed values were till less than 100%. The mean error was aso a factor. The
desired value for this factor was zero or as close to it as possible. Most of the years the
error was a positive 15 mm. This was an acceptable value compared to the range of
precipitation data, 150 to 800 mm. The positive value indicates that the model tends to
overpredict precipitation relative to the data.

The radius of influence was small relative to the spread of the data. Thiswasn't a
problem because we wanted the estimated precipitation in the basin only. The extra
points were used to improve the prediction accuracy of the model. Only a small number
of lags were used to illustrate this fact. After the range of the data, the values became
independent so there was no need to mode! all of the data points. However the extra
points overall gave more confidence in the prediction values.

The errors were accurately assessed through the semivariogram. This was shown
in the standardized root mean square. This value should be as close to 1.0 as possible
showing that the root mean square of the errors was close to or equal to the average
standard error. This would mean the semivariogram is accurately ng the

variability in the data.
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The search neighborhood used only included a small amount of points, mainly up to 5

gages (Tables 4.3-4.4).

Table 4.3: Search neighborhood determination for analysis set w/o station 418

water year 1981 | water year 1982 | water year 1983 [ water year 1984 | water year 1985
Gages
n
search
radius | RMS | Se/Sy RMS | Se/Sy RMS | Se/Sy RMS | Se/Sy RMS | Se/Sy
2| 140.2 0.8921 | 152.2 0.8447 | 163.1 0.9926 | 155.2 0.9006 | 170.6 0.9067
3| 152.8 0.9723 | 166.1 0.9218 | 157.8 0.9604 | 161.2 0.9354 | 177.9 0.9455
4 138 0.8781 155 0.8602 | 159.7 0.9719 152 0.8820 | 167.1 0.8881
5] 1384 0.8807 | 151.7 0.8419 | 159.4 0.9701 | 150.6 0.8739 | 165.9 0.8817
6| 138.3 0.8800 | 153.3 0.8508 152.3 0.8837 | 169.6 0.9014
7| 138.6 0.8819 151 0.8380 150.8 0.8750 167 0.8876
8| 138.4 0.8807 | 152.3 0.8452 150.9 0.8756 | 169.1 0.8987
9| 138.2 0.8794 | 154.8 0.8591 151.2 0.8773 | 172.3 0.9157
10 156.1 0.8663 151.3 0.8779| 173.3 0.9211
Table 4.4: Search neighborhood determination for analysis set w/ station 418
water year 1981 | water year 1982 | water year 1983 | water year 1984 | water year 1985
Gages
n
search
radius | RMS | Se/Sy RMS | Se/Sy RMS | Se/Sy RMS | Se/Sy RMS | Se/Sy
2 216 099388 | 207.2( 0.91237 231 111223 | 2154| 1.01203 | 268.6 | 0.95455
3] 220.2| 1.01321 | 205.6| 0.90533 | 226.5| 1.09057 | 214.1| 1.00592 | 272.3 0.9677
41 2171 0998 | 201.6| 088771 | 223.8| 1.07757 | 207.8| 0.97632 271 | 0.96308
5] 205.2| 0.94419 ( 187.7| 0.82651 | 215.1 | 1.03568 | 195.5| 0.91853 | 262.8 | 0.93394
6| 207.6| 095523 | 194.3| 0.85557 221 | 1.06409 199 | 0.93497 | 268.7 0.9549
7| 214.3| 0.98606 | 197.3| 0.86878 | 224.7 1.0819| 201.5| 0.94672 ( 279.4 | 0.99293
8 215 0.98928 | 198.3| 0.87318 | 224.6| 1.08142 205 | 0.96316
9] 2194 1.00952 | 202.8 0.893
10| 220.1| 1.01275

Note: RM S isthe root mean square of the error, Seis the standard error also called RMS and Sy

is the standard deviation. The highlighted values were the number of points selected for the
search neighborhood

Only a small number of gages was needed because the radius of influence was small (the

range), so there were not alot of gages in the search radius. Even if the radius of

influence was large, with numerous points, the increased amount of points wouldn't relay

more important information needed to improve the model. The extra points added the

same information as the points already in the circle. The amount of points chosen was
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based mainly on the standard error ratio. For water year 1983 the value was smaller for 7
gages in the search neighborhood, but the mean error and average error were much
higher, so we chose to stay with the dightly larger standard error ratio. The ratios were
approximately equal so it wouldn't have had an effect on the prediction mode.

The validation showed poor prediction ability, but only 10 points were used to
validate so thisis an indication of the small amount of points used for validation and not
the overall accuracy of the model. However the error plots did show that the model was
not biased. The spread of the errors showed no trend meaning they have no loca biases.

(Figures4.1-4.5).
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Figures4.1-4.5 show measured precipitation values vs the error in the predicted values for the test gages
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4.2.2 Discussion of Areal Coverage of Precipitation

The estimated average annual precipitation was consistent with average published ranges
of 600 mm (Dutova et a., 1999) (Figure 4.6). As expected the mountainous regions had

the largest values of precipitation. The estimated average basin precipitation for the

analysis setswith (P ») and without ( P) station 418 is given in Table 4.5. Including

station 418 dlightly increased average basin precipitation

Table 4.5: Estimated Average Basin Precipitation for each water year

Wysl |[Wy82 |Wy83 |Wysd |Wyss
B (mm) | 55481 | 64245 | 65219 | 70008 | 737.11
B,(mm) | 55716 | 65608 | 66466 | 70817 | 74263

4.2.3 Discussion of Standard Error of Estimates

The mountain points (station 289 & station 418) were the source of much error in
the model. Their quantity was much larger than many of the other points, but station 289
couldn’t be discarded because it was one of two points in the basin. The argument for
keeping station 418 (rather than discarding it as an outlier) was that it is one of very few
measurements stations at higher elevations. These points introduced much error to the
prediction model.

Kriging models tend to underestimate high measured values, while overestimating
low measured values. This was the case with our models; it was much more dramatic
with the analysis set including station 418. This affected the confidence in the model, but
didn’t have as much of an effect on the estimated values of precipitation in the basin.
Thisis because the basin is small compared with the areal extent of the stations used.

The width of the basin was typically smaller than the radius of influence.
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Precipitation Prediction Maps for Tom Basin
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Figure 4.6: Precipitation prediction maps of the Tom Basin for each water year. Prediction maps
wer e produced from Kriging inter polation method.
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The kriged values at the station gages were very accurate; the standard error was
small compared to the estimates in the rest of the basin. The higher amounts of error

were in the mountainous regions in the northeastern corner of the basin (Figure 4.7).

4.2.4 Total Uncertainty in Annual Average Precipitation

The total uncertainty in the precipitation estimates for each water year computed using

equation 3-4 is provided in Table 4.6.

Table 4.6: Variance of Estimated Precipitation for each Water Y ear

Wy 81 Wy 82 Wy 83 Wy 84 Wy 85
P(P)mn? | 271.0 541.6 271.2 541.9 541.8
SXP), mn? | 537.2 537.2 537.3 537.2 1074

Table 4.7: Standard Deviation of Estimated Precipitation for each Water Y ear

Wy81 Wy82 Wy83 Wy84 Wy85

S(P) mm 16.46 23.27 16.47 23.28 23.28

S(P), mm 23.18 23.18 23.18 23.18 32.78

The estimated variance of the estimated precipitation were approximately the same for
water years 1981 and 1983 as well as 1982, 1984, and 1985. The sills for these two
groups of years were approximately the same however the ranges of the semivariograms
were not. The sills were the mgjor influence in the calculation of the total error.

Station 418 had an impact on the total variance in the basin average of
precipitation. The total variance of the estimated precipitation doubled in water year
1985; this was due to the large value of the sill. Again the values for water years 1981-
1984 were similar where the sills of the semivariograms were similar in those years also.
However in water year 1982 & 1984 the variance for the basin average precipitation was

similar for both sets of analysis data, yet their sills were quite different.
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Standard Error of the Prediction
Maps for Tom Basin
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Figure 4.7: Maps of standard error (mm) of the estimated precipitation in the Tom Basin for each
water year. Standard error maps wer e produced from the precipitation prediction maps.
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4.3 Streamflow

The streamflow followed the same trend as precipitation; a gradual increase until water
year 1984, but then a decrease in water year 1985. The average annual streamflow,
variance, and standard deviation were as given in Table 4.8. The standard deviation of

annua streamflow was estimated at 5% of the total.

Table 4.8: Estimated Average Streamflow and the variance and standard deviation of the estimate
for each Water Year

Wy 81 | Wy 82 Wy 83 Wy 84 Wy 85
Q (mm) 406.7 | 454.2 607.7 696.1 667.8
S(Q) (mm) 2034 | 2271 30.38 34.80 33.39
Q) (mn?) | 4136 |[5157 923.1 1211 1114

4.4 Overview of Evapotranspiration

Annual Evapotranspiration estimates showed a slight decrease until water year 1984, but
then an increase in water year 1985. Evapotranspiration estimates contained the most
uncertainty. Thisis consistent with our initial assumption. Evapotranspiration is a highly

variable process, and very hard to quantify accurately.
4.4.1 Spatial Distribution of Evapotranspiration and Results of
Frequency Analysis

The values of simulated evapotranspiration ( E ) were very close to the modeled values of

evapotranspiration from the NASA group ( E ). The estimated average annua E is given

in Table 4.9. The E vaues were very similar throughout the study years.
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Table 4.9: Estimated Average Evapotranspiration for each Water Year

Wy8lL [Wy8 [Wy83 [Wy84 [Wy&5
E (mm) |37668 [347.24 [33943 [32942 [34535
E,(mm) |34810 [35002 [33941 [30863 [33295

The total E values for the 1000 simulation points were grouped into histograms for each
year. The frequency analysis showed a bimodal histogram (Figure 4.8). Although this
bimdeality was not investigated in detail, it is probably due to the differencesin
vegetation type, as reflected by the conductance parameters in the Penman-Monteith

equation.

4.4.2 Effects of Assumptions and Major Sources of Error

Two of the biggest assumptions made in this study were the elevation distribution
and the vegetation coverage. From the available information, which were frequency
analysis charts of elevation across the basin, the mean and standard deviation of elevation
had to be estimated. This visible inspection introduced error in the assumed elevation
distribution and its parameters.

The vegetation coverage was also estimated. The type of land cover and areal
coverage in the basin had to be estimated based on existing information on the land types.
Some of theses land types were not given in published information, so they had to be
converted into the closest possible match in the published information. This uncertainty
in the vegetation coverage introduced uncertainty in the E values.

The statistical distributions of the canopy characteristics were also estimated The
gpatial probability distribution and intraannual variation of canopy characteristics were

specified based on physical reasoning and published values. Fortunately, for the
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Figures4.8(a-e): Histograms of annual E (mm/s) for each water year summed for all simulation points
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winter months the canopy conductance was zero so these assumptions were less
influential in the winter months, but for the rest of the year it is suspected that the
assumptions had an effect on the resultant E values.

Another assumption made was that relative humidity was constant throughout the
basin. Thiswas done for simplifying purposes, based on an assumption that relative
humidity is a general property of the air mass over a region and that it does not vary
gpatialy at a given time. An argument can be made that thisis not true, and that it may
have been more appropriate to apply the same time- for-space substitution used for wind
speed and cloud cover. A test of this assumption (and of the time-for-space substitutions)
would require spatially distributed simultaneous observations, which were not available.

The soil moisture deficit model was created for this research. The beta factor was
estimated based on visible inspection of soil type drainage profiles and an assumed soil
type; this was a source of uncertainty in the model.

The number of ssimulation points chosen had an effect on the basin average
evapotranspiration. The number was constrained to 1000 simulation points due to limited
programming capabilities. The number used was sufficient for the method chosen to
simulate E values. It can be shown that simulating 3000 or more points is more accurate
for smulating the inputs to the E model, compared to the assumed theoretical
distributions (Figures 4.9-4.12). The error becomes more consistent and decreases as
more points are simulated. The effect of simulation points was only analyzed for
vegetation, elevation, cloud cover, and wind speed because vegetation and elevation were
the basis for most ssimulated inputs to the E model, and cloud cover and wind speed were

independently simulated.
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The chosen 1000 simulation points was acceptable but 3000 or more points would have

provided more confidence in the resultant basin average E and the standard deviation of

the estimate (computational limitatiors are discussed in Chapter 5).

4.4.3 Total Uncertainty in Annual Average Evapotranspiraton

The total uncertainty in the simulated evapotranspiration values is shown in Table 4.10. E

estimates contained the most uncertainty of the three water balance terms, as can be seen

in the highest values of the variance of the estimated parameter.
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Table 4.10: Standard deviation & variance of estimated E for each water year

Wy 81 Wy 82 Wy 83 Wy 84 Wy 85
SE) (mm) | 42.92 42.35 39.08 37.95 4257
S(E) (mn?) | 1842 1793 1527 1440 1813

4.5 Results of Hypothesis Test and Implications

4.5.1 Water Balance Closure and Variance of Water Balance Closure

The water balance closure and the variance of the closure are as given in Tables 4.11 and
4.12. The water balance closure is negatively biased for all water years. Thisis
consistent with our assumption that precipitation is underestimated thus negatively
biasing the water balance closure, athough this does not constitute proof that P is
underestimated in the basin. Other explanations for a negative water balance closure
include:

overestimated streamflow (Q)

overestimated evapotranspiration (E)

a decrease in storage during each of the five water years (this analysis assumed

negligible change in storage over each water year).

Table 4.11: Water balance closure and variance of water balance closure for each water year for
analysis set w/o station 418

Wy 81 Wy 82 Wy 83 Wy 84 Wy 85
WBC (mm) -2286 | -159.0 -294.9 -325.4 -276.0
S(WBC) mm 50.27 53.39 52.17 56.51 58.90
SY(WBC) mnt | 2527 2851 2722 3193 3469
WBCas%of P |41 25 45 46 37
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Table 4.12: Water balance closure and variance of water balance closure for each water year for
analysis set w/ station 418

Wy 8l | Wy 82 Wy 83 Wy 84 Wy 85
WBC (mm) 2262 | -145.3 -282.4 -317.3 -270.5
S(WBC) mm 52.85 53.35 54.66 56.47 63.26
SA(WBC) mn?_ | 2793 2846 2988 3188 4002
WBCas%of P | 41 22 42 45 36

4.5.2 Hypothesis Test

The null hypothesis that the water balance was actually zero was rejected for all tested
levels of significance for al water years for both analysis sets based on the two-sided Z
test. For the set excluding station 418, the null hypotheses were rejected with rejection
probability of approximately 0.0% meaning there is an extremely small probability that
the water balance closures were actually zero. The set including station 418 had rejection
probabilities ranging from 0.0% to 0.36%. There was a slight increase in the probability
that the water balance closure is actually zero for the analysis set with station 418; this is
shown through the increased variance of the water balance closure. However the
probability is so small that it can be considered zero. Implications of the results are

further discussed in Chapter 5.
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Table 4.13: Hypothesis Test Information for analysisw/o station 418

wy81 wy82 wy83 wy84 wy85

Mean (mm) -228.5934 -158.947 | -294.899 -325.39 -276.022
Variance (mmz) 2526.7907 | 2850.517 | 2721.521 | 3192.961| 3469.091
standard

deviation (mm) 50.267194 | 53.39023 52.1682 | 56.50629| 58.89899
Ne 3.6132028 | 4.487959 | 4.870323 7.8461| 3.240189
n 4 5 5 8 4
z -9.095135 -6.65697 | -12.6401| -16.2874| -9.37272
z(a=0.1) -1.281552 -1.28155| -1.28155| -1.28155| -1.28155
z(a = 0.05) -1.644854 -1.64485 | -1.64485| -1.64485| -1.64485
z(a = 0.025) -1.959964 -1.95996 | -1.95996 | -1.95996| -1.95996
rejection

probability 4.723E-20 14E-11| 6.34E-37| 6.06E-60| 3.53E-21

Table 4.14: Hypothesis Test Information for analysisw/ station 418
wy81 wy82 wy83 wy84 wy85

Mean (mm) -226.2434 -145.317 -282.429 -317.3 -270.502
Variance (mmz) 27929467 | 2846.164 | 2987.605 3188.31 | 4001.521
standard

deviation (mm) | 52.848337 53.34945| 54.65899| 56.46512| 63.25757
Ne 3.6132028 | 4.487959 | 4.870323 7.8461 | 3.240189
n 4 5 5 8 4
z -8.561989 -6.09078 -11.554 -15.8941 -8.5524
z(a=0.1) -1.281552 -1.28155 -1.28155 -1.28155 -1.28155
z(a = 0.05) -1.644854 -1.64485 -1.64485 -1.64485 -1.64485
z(a = 0.025) -1.959964 -1.95996 -1.95996 -1.95996 -1.95996
rejection

probability 5.547E-18 | 0.003674 | 0.000321 9.47E-07 | 0.003359

Note: mean, standard deviation, and variance is the calculated water balance closure and its variance and
standard deviation. Sample size, n, rounded value of effective sample size, ne, was the sample size used for

calculation of test statistic, z.
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5 Conclusion

5.1 Summary of Results

This study has attempted to quantify the components of the annual water budget,
precipitation (P), streamflow (Q), and evapotranspiration (E), and most importantly, the
uncertainty in those components for the 57000-knt Tom River basin in Russian Siberia.
The component terms and their corresponding uncertainty were calculated either from
independent observational data or, in the case of E, using a physically-based model. The
basin mean P was estimated by kriging analysis of available station observations;
uncertainty in P was estimated as the standard error of the mean, derived from the kriging
results. The annual mean Q was obtained from gage discharge measurements of the Tom
at Tomsk, Russia; uncertainty in Q was computed based on published estimates of
uncertainty in streamgage records. The basin mean and variance of E were computed
from a statistical distribution based on Monte Carlo simulation of the Penman-Monteith
(PM) model, driven by measured meteorological data at Tomsk, and accounting for
physical variation in elevation and vegetation type as well as uncertain parameters of the
PM modd.

Uncertainty in the various terms arises from different sources, but each estimate of
uncertainty can be expressed as a standard error, where “standard error” is the square root
of the estimated error variance of the quantity (Weisstein, 2004). Annual average
evapotranspiration contained the most uncertainty, with a standard error that ranged from
38 to 48 mm, wheresas the standard errors of basin average streamflow and precipitation

ranged from 20 to 35 mm and 16 to 23 mm, respectively.
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Table5.1: Summary of Results

Wy 81 Wy 82 Wy 83 Wy 84 Wy 85
P, (mm) 554.8 642.5 652.2 700.1 737.1
P, (mm) 557.2 656.1 664.7 708.2 742.6
S(P) (mn?) 271 541.6 271.2 541.9 541.8
Error bar: 2S(P;) (mm) 329 46.5 329 46.6 46.6
S(P,) (mnt) 537.2 537.2 537.3 537.2 1074
Error bar: 2S(P;) (mm) 46.4 46.4 46.4 46.4 65.6
Q (mm) 406.7 454.2 607.7 696.1 667.8
F(Q) (mn?) 413.6 515.7 923.1 1211.2 1114.8
Error bar: 25(Q) (mm) 40.7 454 60.8 69.6 66.8
E (mm) 376.7 347.2 339.4 329.4 345.4
Eprus (Mm) 348.1 350.0 339.4 308.6 333.0
SA(E) (mn?) 1842 1793 1527 1440 1813
Error Bar: 2S(E) (mm) 85.8 84.7 78.2 75.9 85.1
WBC; (mm) -228.6 -158.9 -294.9 -325.4 -276
S(WBC,) (mn) 2527 2851 2722 3193 3469
Error Bar: 2S(WBC,;) (mm) 100.5 106.8 104.3 113 117.8
WBC, (mm) -226.2 -145.3 -282.4 -317.3 -270.5
S(WBG,) (mnf) 2793 2846 2988 3188 4002
Error Bar: 2S(WBGC,) (mm) 105.7 106.7 109.3 112.9 126.5

Note: P; is average precipitation calculated from analysis set without station 418 and P, is average annual
precipitation calculated from analysis set with station 418. E is simulation based average annual
evapotranspiration and Epry s is weighted average evapotranspiration from NASA group

The uncertainty in the water balance was quantified by the variance of the annual
Water Budget Closure, which is equal to the sum of the component variances. This
calculation assumes that the errors in the components are independent, a reasonable
assumption given that each of the components was computed from a different set of input
data. Annual Water Budget Closure values were negatively biased ranging from -160 to
-325 mm, and the standard error of Water Budget Closure ranged from approximately 50
to 60 mm. The hypothesis that the variance of the water balance closure was so large,

that it in fact the WBC is zero was rejected at al levels of confidence (90% and above).
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5.2 Implications and Contribution

Although the Water Budget Closure was negatively biased, this does not constitute
proof that precipitation is underestimated in the basin (as suspected at the outset of the
study). The negative water balance closure is an indication of water not being accounted
for in the analysis;, however, the source of missing water is unknown. Possible
explanations for a negative Water Budget Closure can be identified by examining the
origina equation,

WBC =P- Q- E- DS (5-1)
If al terms of the water budget, including change in storage, were properly quantified,
WBC would equal 0. A negative WBC for a given water year indicates that either:
1. Pisunderestimated,
2. Qisoverestimated,
3. Eisoverestimated, or
4. DSisoverestimated,
or any combination of these. Each possibility is examined in turn, in the following.
Underestimated precipitation in the mountainous regions was originally presumed
to be amagjor factor in the water balance not closing. Additional evidence that basinwide
precipitation is underestimated is provided by computing runoff ratios for the five years.
The runoff ratio is defined as the ratio of discharge to preciptation, Q/P. A typical runoff
ratio for a high-latitude watershed is 0.25 (Dingman 2002). The annual runoff ratios
computed for the Tomsk basin lie between 0.70 and 0.99; ratios greater than 0.70 are
unusual, and greater than 0.90 highly unlikely. In fact, the NASA modeling group has

found it necessary to augment the precipitation inputs in order to obtain physically-
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realistic streamflows in their deterministic modeling. The gage data available do not
support an orographic effect (increased precipitation at higher elevations). However, most
of the gages are found at elevations below 500 m, and do not sample the higher
elevations (see Figure 3.2); therefore a significant orographic trend was not detected in
the data.

If the negative WBC is due to precipitation alone, then P for this basin would
need to be underestimated by about 50 percent. This error is an order of magnitude
greater than the error bars computed by kriging. That callsinto question whether kriging
is appropriate for estimating the true uncertainty in basin-average precipitation in this
situation where alack of quality data leads to model uncertainty.

A positive bias (overestimation) of stream discharge could result from
overestimation of rating curves. Changes in streamflow could have occurred over the
time period in question yet would not be reflected in the rating curve. The rating curve
for the Tom River could have become outdated and not updated.

The Monte Carlo simulation method applied is what is considered the best
available physically based evapotranspiration model. Many of the parameters required by
the PM model are uncertain, and this analysis has attempted to identify the most
reasonable estimates of those parameters, while also specifying possible ranges and
quantifying uncertainty via assumed probability distributions of the unknown parameters.
The uncertainty in the parameter distributions could have lead to the overestimation of E.

Information about water storage in the Siberian region was not known. Changein
storage was assumed to be negligible or zero in computing the WBC,; if in fact there was

adecrease in storage, then this would explain the negative WBC. Storage decreases
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could originate from decreases in surface water bodies (including reservoirs), soil
moisture, groundwater, year-round mountain snowpack or glaciers. Data were not
available to quantify these terms for the Tom River basin.

The use of the water balance must be done with caution due to the amount of
uncertainty in the statement. Evapotranspiration contained the most uncertainty, and this
level of uncertainty makesit difficult to assess the magnitude of the suspected biasin
precipitation. The uncertainties in the components and the Water Balance Closure are an
indication of the confidence that can be placed in statements about the water balance of
the region under current or changing conditions.

For example, alarge-scale water budget analysis such as this might be used to
confirm predictions that large-scale warming in the Arctic will cause melting of
permafrost, releasing fresh water from previously permanent storage. A negative WBC
might seem to confirm that this is actually occurring; however, this conclusion would be
premature without eliminating the possibility of biasin the components, especialy P.

This research has demonstrated a new derived-distribution approach to estimating
basin-average evapotranspiration and its uncertainty. These results can be compared to
those obtained by a different, widely used approach: computing E as aresidual, assuming
negligible change in storage and dictating a perfectly-closed water balance:

E.=P-Q (5-2)
Following Dingman, the error variance of Ees can be calculated as the sum of the
variances in P and Q. This method was applied to the five study years to show how
greatly Ees differs from E as computed by ssmulation. As shown in Table 5-2, such

assumptions and such a method would have resulted in very small values of E for several



of the study years. It is interesting to note that the estimated error variance of Ees iS
generally less than that calculated from the derived distribution of E; it would be

incorrect, however, to conclude on this basis that the B estimate is more accurate.

Table 5.2 Estimate of Evapotranspiration as a Water Balance Residual (E;es), comparedto
Simulation-based estimate (Esm)

WY 81 WY 82 WY 83 WY 84 WY 85
Eres (MM) 148.1 188.3 44.53 4.03 69.33
S (Eres) (M) 684.6 1057 1194 1753 1657
Error Bar: 25(Ees) (Mm) 52.33 65.03 69.12 83.74 814
Esm (Mm) 376.7 347.2 339.4 329.4 345.4
S (Egm) (MM?) 1842 1793 1527 1440 1812
Error Bar: 25(Eyy,) (mm) 85.84 84.70 78.16 75.89 85.15

The error variance, or error bar, quantifies precision, not accuracy, in the estimate.
Neither the E nor the B estimate shown here is able to quantify the model error that
results from neglecting change in storage in the former, and additionally forcing water

balance closure in the latter approach.

5.3 Future Research

For watersheds like the Tom, it is difficult to predict future changes if the current
state and fresh water fluxes are not well understood. This research demonstrates that
unanswered questions remain about the supply and storage of water in the basin, and
proposed new questions about the individual hydrologic components. Different ways to
explore these issues include the investigation and quantification of the missing water in
the water budget analysis and the investigation of the distribution of evapotranspiration
values.

The negatively biased water balance closure for the basin needs to be investigated

to determine whether it is due to underestimated precipitation in the mountains or a
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significant decrease in storage in the basin. It is hoped that efforts to use remote sensing
to quantify snow water equivalent (SWE) in the mountains can address both the
hypothesized precipitation deficit and possible inter-annual changesin storage. The
methods developed in this project can be used to indicate if the SWE measurements
indeed decrease the gap.

Investigate the frequency distribution of evapotranspiration values. Our
frequency analysis showed a bimodal histogram; however, we were unable make
conclusions as to this occurrence. An increased number of simulation points would give
more confidence in the evapotranspiration statistics.

One extension of this research is to apply the methods of quantifying the
components and their uncertainty to the entire Ob basin to see how the results compare to
those achieved in this paper. Parts of the Ob basin are more densely gaged, with more
gages at higher elevations, so this might provide a more reliable precipitation estimate.
Future studies will investigate how the increased basin size and number of precipitation
gages trandate to uncertainty in the estimates of the water budget components and

closure.

5.4 Lessons Learned

Technical skills were essential to completing this research. Learning the basics of a
newer version of ArcGIS was a massive task performed under personal tutelage. Once
the basics were learned, the geostatistical tool was explored to perform the necessary
tasks of thisresearch. Thistool is powerful with many different computational options;
those used in these tasks were only a portion of the many possibilities. The tool can be

misused if the internal procedures are not understood beforehand, which isatime
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consuming task in itself. It was also important to understand the tool to verify the
outputs.

Programming skills would have been a tremendous help in smulating the E
values. A stand-aone program would have taken more time to develop, but would have
been less time-consuming to run, and would have allowed alarger number of smulation
points, as well as greater exploration of how different parameters contribute uncertainty

in the smulated E.
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