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According to a traditional rationalist proposal, it is possible to attain 

knowledge of certain necessary truths by means of insight—an epistemic mental act 

that combines the 'presentational' character of perception with the a priori status 

usually reserved for discursive reasoning. In this dissertation, I defend the insight 

proposal in relation to a specific subject matter: elementary Euclidean plane 

geometry, as set out in Book I of Euclid's Elements. In particular, I argue that 

visualizations and visual experiences of diagrams allow human subjects to grasp 

truths of geometry by means of visual insight. 

In the first two chapters, I provide an initial defense of the geometrical insight 

proposal, drawing on a novel interpretation of Plato's Meno to motivate the view and 

to reply to some objections. In the remaining three chapters, I provide an account of 

the psychological underpinnings of geometrical insight, a task that requires 

considering the psychology of visual imagery alongside the details of Euclid's 



geometrical system. One important challenge is to explain how basic features of 

human visual representations can serve to ground our intuitive grasp of Euclid's 

postulates and other initial assumptions. A second challenge is to explain how we are 

able to grasp general theorems by considering diagrams that depict only special cases. 

I argue that both of these challenges can be met by an account that regards 

geometrical insight as based in visual experiences involving the combined 

deployment of two varieties of 'dynamic' visual imagery: one that allows the subject 

to visually rehearse spatial transformations of a figure's parts, and another that allows 

the subject to entertain alternative ways of structurally integrating the figure as a 

whole. It is the interplay between these two forms of dynamic imagery that enables a 

visual experience of a diagram, suitably animated in visual imagination, to justify 

belief in the propositions of Euclid’s geometry. The upshot is a novel dynamic 

imagery account that explains how intuitive knowledge of elementary Euclidean 

plane geometry can be understood as grounded in visual insight. 
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Chapter 1: Geometrical Insight 

 

1 Introduction 

A familiar proposal, one that lies at the core of traditional rationalism, is that human 

beings are able to attain knowledge of necessary truths by means of the mental act of 

insight.1 The basic picture of insight is roughly as follows: One becomes consciously 

aware of the subject matter involved in a proposition, in some sense ‘bringing it 

before one’s mind’, and by attending to that subject matter in the right way, one is 

able to see or grasp or apprehend or recognize that the proposition concerning it must 

be true. Insight is distinguished from both empirical observation, on the one hand, and 

from discursive reasoning, on the other. It is held to differ from empirical observation 

in respect of the a priori character of the justification it provides. It is held to differ 

from discursive reasoning in virtue of its ‘directness’ or ‘immediacy’—the 

perception-like characteristic whereby one enjoys a presentational2 awareness of the 

subject matter of one’s judgment. Insight is further held to enjoy a special kind of 

epistemic security or certainty, presumably in connection to its a priori character. 

 In this dissertation, I will be concerned only with geometrical insight—that is, 

insight into geometrical truth. In particular, I will be concerned with basic Euclidean 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Terminology here varies. What I will call ‘insight’ is also often called ‘intuition’. 
Both terms, when used to denote the phenomenon under consideration, are often 
preceded by a qualifier such as ‘rational’ or ‘a priori’. When the truths in question are 
those of mathematics, it is common to speak of ‘mathematical intuition’. 
 
2 Cf. Chudnoff (2012), whose use of the term ‘presentational’ corresponds closely to 
the sense I have in mind here. 
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plane geometry, roughly corresponding to the subject matter of Book I of Euclid’s 

Elements. In this chapter, I will argue that we have good reason to take seriously the 

proposal that there is indeed a real phenomenon of geometrical insight. In Section 2, I 

begin by setting out some of the main reasons for skepticism about the very idea of 

geometrical insight, and offering some partial responses to those objection. The full 

responses to these objections will not be apparent until later in the chapter, and in 

some cases, until later chapters. In Section 3, I provide a phenomenological 

perspective on geometrical insight, as part of an overall case that our phenomenology, 

in relation to the relevant geometrical examples, gives us at least strong prima facie 

reason for taking the geometrical insight proposal seriously. Finally, in Section 4, I 

will consider Plato’s view of geometrical insight as a kind of ‘recollection’. My aim 

here will be to show that, while prima facie Plato’s view seems to be in tension with a 

naturalistic picture of the world, there is a plausible reading of Plato’s view which 

points the way towards an appealing account of geometrical insight. 

 

2 Reasons for skepticism 

The very idea of geometrical insight is likely to be met with a high degree of 

skepticism on the part of contemporary philosophers. Since my primary aim in this 

chapter is to argue that geometrical insight is indeed quite real, it is important to be 

clear up front about the primary reasons that underlie this contemporary skepticism. 

In my view, the case against geometrical insight can be usefully separated into five 

distinct lines of criticism. First, we lack sufficient motivation for believing in 
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geometrical insight in the first place. Second, our first-personal experience in the 

relevant cases is suggestive not of insight, but rather of uncertain empirical inference. 

Third, our first-personal experience in these cases does suggest a priori justification, 

but due not to insight but rather to discursive reasoning. Fourth, geometrical insight is 

at odds with naturalism, because it depends upon a mysterious, sui generis form of 

cognitive access to a realm of abstract objects. Fifth, geometrical insight appears to be 

mysterious from a purely psychological perspective. 

I believe that each of these challenges can be met. To be sure, doing so 

adequately will require embracing a picture of geometrical insight that is in certain 

crucial ways more modest than the traditional view. Some of the stronger claims 

traditionally made about geometrical insight will need to be qualified in significant 

ways, and in some cases, rejected outright. But I believe that this will still leave us 

with a view of geometrical insight that is substantially true to spirit of the proposal 

put forward, for instance, by Plato. 

  In this section, I will set out the main lines of criticism against the very idea of 

geometrical insight, and explain how they will be handled by the view to be put 

forward in this chapter. The arguments in this section, therefore, are largely 

prospective, anticipating the account to be developed below, which aims to answer 

these objections. In relation to certain points, the full response to these objections will 

not be evident until the discussion undertaken in later chapters. 
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2.1 First objection: lack of motivation 

An initial criticism of the idea of geometrical insight is just the straightforward 

objection that there seems to be little to motivate the proposal in the first place. 

Contemporary philosophers might understandably take the view that the notion of 

‘geometrical insight’ (along with ‘insight’ more generally) is merely a historically 

entrenched philosophical dogma, one motivated by nothing more than an unwarranted 

optimism about human epistemic abilities. In order to confront this criticism, it is 

important to consider what motivation Plato offers for taking the proposal seriously. 

The main motivation Plato offers is provided by the famous geometrical 

demonstration in Meno, which we will consider in detail in Section 4. 

In the passage, Socrates leads his student, an uneducated slave who has had no 

prior training in geometry, eventually to arrive at the correct answer to a geometrical 

problem. Since Socrates brings this about by doing nothing aside from posing 

questions in relation to drawn figures, he claims that the correct answer must have 

arisen ‘from within’ the student’s soul—in particular, it was not reached by receiving 

testimony from a teacher already in possession of the relevant knowledge. A frequent 

objection to Socrates’ inference here—one that is invariably raised by my 

undergraduate students, when I teach the passage—is that the ‘experiment’ has not 

been conducted in a methodologically sound manner. For Socrates has posed leading 

questions, ones that might well allow the student to infer, with high reliability, which 

responses Socrates wants to receive. In many cases, the correct response is 
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conspicuously encoded within the question itself, which from a pragmatic 

perspective, often seems only to ask for affirmation: “Why yes, Socrates!” 

This is, to be sure, a reasonable objection to the methodological soundness of 

the demonstration, regarded qua experiment. But to take this as an objection to 

Plato’s case for geometrical insight is to suppose that this case rests on our taking the 

passage to accurately report the results of a well-conducted experiment, and it is far 

from clear that this is the best reading available. As one commentator observes: 

 

There is an alternative approach to the text which undercuts this reaction. For 

by following the text supplemented by diagrams, one can discover for oneself 

the geometrical theorem as it might have been discovered by the slave if he 

had complied with Socrates’ request to give as answers only what he 

genuinely believed (83d2) rather than what he guessed Socrates believed; or, 

if one already knows the theorem, one can see how it could be discovered that 

way by someone not already in the know. We do not have to be convinced 

that people in the slave’s position, answering as the slave does in the text, 

would not be picking up latent information conveyed by the manner of 

questioning, in order to become convinced of the possibility of discovery for 

oneself. We can become directly acquainted with this possibility merely by 

following the exchange. (Giaquinto 1993, 82) 
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On this reading, Plato intends for his readers to rehearse the steps of the geometrical 

exercise for themselves, and thereby, to experience geometrical insight firsthand. 

One reason to favor this reading is that it harmonizes with the very 

phenomenon Plato is drawing to our attention: that of grasping a truth for oneself—by 

one’s own lights—as opposed to relying on testimony from others. In Section 4, I will 

argue that Plato’s central concern in the dialogue is in fact to investigate precisely this 

contrast, and to argue for the epistemic superiority of the former, internalist, variety 

of justification over the latter, externalist kind. It would be deeply ironic, even 

thematically incoherent, if Plato were to argue for the importance of recognizing the 

truth for oneself, by asking the reader to trust that the passage in Meno is an accurate 

recounting of an experiment actually performed. The principle of charity suggests that 

we ought to interpret Plato so that his argumentative methods are understood as 

aligning with his argumentative aims—that is, as appealing to what his readers 

experience for themselves when they follow along with the demonstration, rather than 

on the accuracy of his testimonial reports. 

 This impression, that Plato really is inviting his readers to experience 

geometrical insight for themselves, is further reinforced by reflecting on how well 

suited the passage is to serving this very purpose. Here is a quote from another 

commentator: 

 

In a sense, it doesn’t matter that the slave sees it; what matters is that we do. 

Repeatedly, when I have taught the passage, someone gasps or even cries out. 



! 7!

The impact of the proof is unquestionable. We see that it has to be so—that it 

is not a matter of convention, or custom, or even an empirical fact. It is seeing 

this—that it has to be so—that is at the heart of the passage, and the dialogue, 

and, I believe, Plato’s lifework…. When I reflect on my own experience, it is 

clear that the perception of necessary truth involves a kind of intellectual 

phenomenology—that necessary truth has a distinct feel, especially when it is 

given elegant and economical expression. This is what prompts the gasps, or 

the involuntarily raised eyebrows, in the classroom. (Zwicky 2009, 47) 

 

It is noteworthy how closely this phenomenological description of ‘getting’ the visual 

proof in Meno corresponds to the theoretical description of geometrical insight 

briefly sketched in the introductory section—as presentational, a priori, and 

epistemically certain. If we were to accept both descriptions, it would be difficult not 

to conclude that the defining features of geometrical insight are in some way directly 

manifest in the very phenomenology of the experience. What is suggested in the 

above quotation is threefold: that what has so impressed Plato about geometrical 

discovery is its distinctive phenomenology, that this phenomenology is indeed 

impressive, providing at least prima facie subjective evidence in favor of the 

geometrical insight proposal, and that Plato’s primary aim in going through the 

demonstration is therefore to prompt us to experience this phenomenology for 

ourselves. In Section 4, when we consider the Meno demonstration directly, we will 
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revisit the matter of its associated phenomenology, and reflect on the lessons Plato 

draws from the latter. 

 I do not mean to suggest, of course, that the entire case for geometrical insight 

can be rested on first-personal experience. Indeed, this is far from the case; theoretical 

considerations will matter a great deal. But it does seem that first-personal experience 

is what initially motivates the proposal of geometrical insight, by providing prima 

facie evidence for its reality. Accordingly, before considering Plato’s own example in 

Section 4, Section 3 will be devoted to first-personal reflections on the phenomenon. 

 

2.2 Second objection: unimpressive phenomenology 

Of course, appeals to first-personal experience are notoriously difficult to adjudicate. 

The skeptic about geometrical insight might attempt to defuse the apparent 

motivation from first-personal experience by taking one of two tacks. First, one might 

deny that one’s own first-personal experience, when one considers examples of the 

sort that have impressed Plato, is really suggestive of geometrical insight in the way 

that has been supposed. This would effectively result in a standoff, since of course 

neither party is in a position to evaluate the phenomenology of the other. Second, one 

might accept that one’s first-personal experience is indeed suggestive of geometrical 

insight, but claim that there is no reason to presume that one’s phenomenology in 

these cases is reflective of the actual epistemological qualities of the experience. 

 I will be focused primarily on responding to the first of these two options, but 

I will briefly comment on the second one here at the outset. I think that in cases where 
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one does genuinely experience the phenomenon in question, it is difficult to maintain 

that one’s phenomenology does not provide strong prima facie reason for believing 

that one is having an experience that genuinely possesses the qualities of geometrical 

insight. For in these cases, one does not merely experience a brute sensation of 

certainty or aprioricity or necessity, one that can at most be said to accompany belief 

in the relevant geometrical proposition. Instead, as suggested above, the experience is 

one in which the subject sees why the geometrical result must be true. That is, one has 

a presentational awareness of the features and relationships that secure and underlie 

the sense of necessity, and which suffice to make one certain about one’s judgment. 

The experience, that is, is a transparent one. We do not merely note the presence of a 

feeling of certainty about our judgment, whose origins and basis are opaque to us. 

Rather, the experience is one in which we enjoy an intimate, presentational awareness 

of the spatial relationships that serve to ground our sense of certainty. I think, 

therefore, that when critics object that there is no reason to take the phenomenology 

of geometrical insight as reflective of the actual epistemological qualities of the 

experience, it is because they are simply failing to experience this phenomenology. 

 The real obstacle to granting the first-personal motivation that Plato claims, 

then, is that some subjects, when confronted with the relevant examples, fail to 

recognize anything in their own phenomenology that is suggestive of geometrical 

insight. Anecdotally, I can report that this is a fairly common initial reaction to the 

diagrammatic ‘proofs’ I present in undergraduate lectures and at conference 

presentations. Typically, these individuals agree that consideration of the diagram 



! 10!

does make the target proposition seem ‘plausible’, and does perhaps incline them in 

the direction of believing it, but that they lack any phenomenology of necessity or 

certainty, of the sort described above in relation to the Meno demonstration. As such, 

their first-personal experience seems compatible with the view that the geometrical 

beliefs are reached in these cases by means of ordinary, highly fallible, empirical 

inference. This may lead them to suspect that proponents of geometrical insight are 

merely being overly eager in interpreting their own phenomenology, self-ascribing a 

sense of ‘necessity’ and ‘certainty’ that is simply not there to be found in the actual 

experience, soberly appraised. 

 I think this discrepancy can be explained by the straightforward proposal that 

there are multiple ways in which an experience of a diagram or a visual image is apt 

to incline one towards a geometrical belief, and that only some of these qualify as 

geometrical insight. Geometrical insight does not arise in any robust way without a 

significant degree of careful, directed attention by the subject. Moreover, the very 

same images that are held to support geometrical insight, when one attends to them 

carefully, are also capable of yielding less impressive epistemic phenomena, such as 

visually-based hunches. This should not be at all surprising to a proponent of 

geometrical insight. By way of example, consider a diagram of the sort that might 

allow a subject to grasp, through geometrical insight, that an angle constructed in a 

certain way must necessarily be a right angle. If the diagram is drawn with any 

reasonable degree of accuracy, it will surely display an angle that can be seen at a 

glance to be approximately right. Since the subject will arrive much more readily at 
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this latter kind of observation, and since it will often be sufficient at least to incline 

the subject towards belief in the target proposition, there is an understandable 

temptation to presume that the mere sense of plausibility or suggestiveness that the 

experience of the diagram delivers at first glance comprises all that it has, 

epistemically, to offer. In this way, I think there is a systematic tendency for subjects 

to underestimate the power of visual images to yield geometrical insight, because 

they are apt to conclude too hastily that they have already discovered what is there to 

be found. The contrast drawn here, between what initially seems plausible when 

confronted with a diagram, and what one can genuinely grasp via geometrical insight, 

is a central concern of Plato’s, as we will see in Section 4. 

  Anecdotally, I can report that in at least some cases in which individuals 

initially find a diagrammatic example to deliver only a sense of plausibility, they do 

eventually come to appreciate the example in a way that strikes them as more 

phenomenologically suggestive of geometrical insight. In other cases, they fail to 

achieve this result in relation to the original example, but succeed in doing so with 

simpler examples. I don’t regard these anecdotal reports as having much in the way of 

probative value, however. As I’ve already suggested, there is no adequate substitute 

for experiencing the phenomenon for oneself. That is why Section 3 will be devoted 

to first-personal reflection on a simple example. 

 

 

 



! 12!

2.3 Third objection: mere discursive reasoning 

One sometimes encounters a different sort of skeptical reaction to diagrammatic 

examples of the relevant kind. The skeptical reaction considered just above agrees 

with the proponent of geometrical insight that the mental act or episode that produces 

belief in these cases is presentational, but denies that it is either a priori or certain. 

Alternatively, it is sometimes claimed by subjects that when they consider these 

examples, they enjoy subjective justification that is perhaps both a priori and certain, 

but which is not presentational. Here the claim is generally that, although a diagram 

or visual image may stimulate or provoke or suggest a certain line of reasoning, it is 

in fact this discursive reasoning alone that carries the burden of justifying belief in the 

geometrical proposition, yielding the conclusion in a way that is justificationally 

independent of any contributions from visual imagery, and indeed from any form of 

‘presentational’ awareness of the geometrical subject matter. In short, the claim is that 

what one really experiences is not geometrical insight, but rather ordinary discursive 

reasoning about geometry. 

 This is not a novel proposal. Indeed, Leibniz famously advanced precisely this 

claim regarding Euclid-style geometrical practice: 

 

The force of the demonstration is independent of the figure drawn, which is 

drawn only to facilitate the knowledge of our meaning, and to fix the 

attention; it is the universal propositions, i.e., the definitions, axioms, and 
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theorems already demonstrated, which make the reasoning, and which would 

sustain it though the figure were not there. (1704, 403) 

 

Leibniz, however, is simply mistaken on this point. As is clearly established by 

Manders’ (2008) analysis, the deductions found in Euclid’s proofs will not go through 

without the contribution of the spatial relationships seen to obtain in the 

accompanying diagrams, which serve to justify what would otherwise be glaring 

inferential gaps. Moreover, this point generalizes to ordinary geometrical reasoning of 

the sort here under consideration. This is not to deny that the content of Euclidean 

geometry can be captured by a thoroughly deductive axiomatic system; indeed, both 

Hilbert and Tarski have achieved this, respectively, in second-order and first-order 

axiomatizations. Nor is it to deny that it may be possible to provide a formalized 

rendering of Euclid’s own proof procedures, by carefully selecting axioms to replace 

the justificational contribution that would ordinarily be made by visual diagrams; 

indeed, recent work in proof theory promises to achieve precisely this result (e.g., 

Avigad et al., 2009). It remains the case, however, that such purely formal-deductive 

treatments of Euclidean geometry do not provide a route for ordinary reasoners to 

grasp geometrical propositions in the cases here at issue. If an ordinary reasoner 

reflects on a geometrical problem like the one posed in Meno, and comes to grasp the 

solution in a way that is certain and a priori, they must either be relying on a 

presentational awareness of spatial relationships evident from the diagram, or else 
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their conclusion will be conditional on assumptions which are themselves nontrivial, 

and which fall within the purview of geometrical insight. 

 The upshot is that discursive reasoning alone cannot provide certain and a 

priori justification for geometrical belief in the cases at issue. In that case, why do 

some subjects believe this to be true of their own experience? One possibility is that 

they are reaching the result through a combination of insight and discursive 

reasoning. Indeed, this is perhaps the most natural way to follow Euclid’s diagram-

based proofs: The overarching frame is a discursive, deductive one, and diagram-

based insight is invoked, tacitly, at various stages, in order to justify unstated 

premises on which the argument would be seen to depend, were it to be spelled out in 

fully explicit detail. If one approaches the Euclidean proof in this manner, primarily 

attending to the deductive track set out in the text, and looking to the diagram 

ostensibly just to remind oneself of the concrete meaning of the textually encoded 

inferences, it is easy to overlook the fact that one’s visual understanding of the 

diagram is in fact making essential contributions to the deduction. For in this case, the 

contribution of insight becomes fragmented and piecemeal, and is thereby reduced to 

judgments that are so visually obvious (for instance, that a line drawn to certain 

specifications will have to lie inside a given angle, rather than outside it) that it is 

easy to miss the fact that one is relying upon them at all. I presume this is what 

accounts for Leibniz’s mistaken impression that the deductions set out in the text 

suffice to establish Euclid’s conclusions, independently of any contribution from the 

diagram itself. 
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 What is indicated by the example of Euclid’s proofs is that when it comes to 

the propositions of Euclidean geometry, there is generally available a partial 

discursive argument for those propositions. While this partial discursive argument 

will in almost every case contain gaps in its deductive structure, these gaps are readily 

overlooked because they can be bridged by premises whose truth is visually obvious, 

and is therefore easily taken for granted. As such, so long as one has available to 

one’s awareness a diagram drawn on paper, or one entertained in visual imagination, 

it is relatively easy for one to rely on visual understanding in one’s reasoning, without 

realizing that one is doing so. 

 The response to the objection, then, is that subjects may well be correct in 

thinking that they have reached the result in a way that is partially discursive. In this 

case, however, they have not grasped the result itself through geometrical insight—as 

such, they are simply experiencing a different epistemic phenomenon, the existence 

of which does not count against that of geometrical insight. It is worth taking a brief 

digression in order to reflect further on the nature of this contrast between insight and 

(partially) discursive reasoning in geometry. 

When one reasons in the manner I have described above, such that the 

thematic focus is on the discursive text, with only occasional, isolated appeals to 

visual understanding, one’s grasp of the conclusion itself does not count as an 

instance of geometrical insight, merely because this conclusion was reached in a way 

that depends upon geometrical insight, in relation to certain (perhaps implicit) 

premises in the discursive argument that supports the conclusion. This is because, in 
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order for one’s grasp of a given proposition to qualify as geometrical insight, it is 

necessary that one have a presentational awareness of the geometrical relationships 

that constitute the truth-makers for that very proposition. 

 There is, I think, a way of approaching Euclid’s proofs that does yield 

geometrical insight in relation to the proposition proved. In fact, in my experience 

this is something that emerges naturally as I become more familiar with a Euclidean 

proof, and arrive at a more complete understanding of it. When I first encounter a 

given geometrical proof in Euclid, I find myself constantly shifting attention back and 

forth between the text and the diagram. I first look to the text to read the current 

assertion in the deductive sequence, and then attend to the diagram in order to 

interpret the concrete spatial meaning of what Euclid asserts at that step, decoding 

Euclid’s reference to angle ‘ABD’, for instance, by noting which letters label which 

points on the diagram, and apprehending, now in an ostensive way, which angle 

Euclid has in mind. While, as noted above, some of Euclid’s inferences depend 

critically on the spatial interpretation of his statements, this is by no means always the 

case. Often, it is unnecessary to consider the spatial meaning at all in order to verify 

that a given inferential step is deductively valid. For instance, Euclid sometimes 

reasons by substitution, justifying the replacement of one angle by another in an 

equation by relying on a prior textual assertion that the angles are equal in magnitude. 

The validity of such an inferential step can be verified by attending only to the labels 

for the angles, without any concern for which spatial objects these labels represent. 
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 If one proceeds in this manner, however, considering the spatial meaning of 

Euclid’s statements only when it is strictly necessary in order to verify that the current 

inferential step is deductively valid, it is difficult to arrive at the proof’s conclusion 

feeling as though one has a genuine understanding of why the proof has succeeded. In 

practice, coming to understand a Euclidean proof seems to require that one interpret 

the spatial meaning of each textual statement in succession, and initially, this means 

shifting attention back and forth between the text and the diagram.  

 In my own experience, however, when I continue to rehearse a Euclidean 

proof in this manner, I find myself progressively devoting less attention to the text, 

and more to the diagram. Having previously decoded each of Euclid’s symbolic 

statements into their spatial meanings, I now find myself understanding these 

assertions only in reference to their spatial interpretations. It is no longer necessary 

for me to pay attention to the labels, for I am no longer translating the text into its 

spatial content. After all, I already know what Euclid is saying, in reference to the 

geometrical situation displayed by the diagram. Moreover, by considering the 

diagram, I find I can see why his inferences succeed. What was at first grasped 

abstractly as a textual substitution of symbols now becomes understood more 

concretely as a spatial substitution of angles, which I apprehend demonstratively. I 

find, in fact, that Euclid’s entire course of reasoning can be understood in a way that 

is based on my direction of visual attention to the diagram itself. By in this manner 

arriving at a concrete, spatial understanding of Euclid’s proof, I have effectively 

transformed it into a thoroughly visual proof: I see directly, in the diagram, the spatial 
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relationships that make the result true. In this way, I am able to attain an integrated, 

synchronous, synoptic appreciation of the proof as a whole. I claim that when I 

appreciate the proof in this way, I do grasp its conclusion by means of geometrical 

insight. Interestingly, this results naturally from my arriving at a complete 

understanding of what is, to begin with, a largely discursive proof. 

 So that I am not misunderstood, it is worth acknowledging the following 

point: I do not claim that discursive or linguistic content needs to be altogether absent 

from my phenomenology, when I grasp a geometrical proposition by means of 

insight. Indeed, when I visually attend to the diagram in a way that allows me to grasp 

why the geometrical proposition is true, I may well experience myself rehearsing 

thoughts in a discursive mode, for example: ‘If I were to substitute this angle for that 

one…”. In this case, however, it seems clear that these linguistic or quasi-linguistic 

contents are playing a supporting, ‘scaffolding’ role, serving to fix visual attention on 

the relevant relationships in the spatial, geometrical situation presented by the 

diagram. They do not themselves bear the burden of providing justification, but rather 

serve to organize and give shape to inferences that have an essentially visuo-spatial 

character. To put the point in slightly different terms, linguistic thought may serve to 

keep a running record of judgments made about relevant spatial relationships in the 

geometrical situation, but the justificational ground for those judgments is visual, 

based in what can be seen in relation to the diagram itself. 
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2.4  Fourth objection: mysterious access to abstract objects 

The objections to the idea of geometrical insight considered above relate to the 

question of whether first-personal experience provides motivation for taking the 

phenomenon seriously. I now turn to a pair of related objections of a more theoretical 

character. These objections question whether the putative phenomenon of geometrical 

insight can be squared with a naturalistic picture of the world. 

The first objection can be traced to arguments advanced by Benacerraf (1973). 

The objection points out that the propositions of geometry are concerned with abstract 

mathematical objects. Since these objects, if they are real at all, presumably exist 

outside of the spatiotemporal realm inhabited by human minds, it would seem that 

any justification of true beliefs concerning geometrical subject matter will require 

some mode of cognitive access to the platonistic realm of being that these objects 

inhabit. If so, the objection goes, the mechanisms through which we are able to enjoy 

this access to objects in an abstract mathematical realm are utterly mysterious. We 

don’t even know how to begin offering an explanation for their operations. 

In brief, my response to this objection is that, indeed, we do not enjoy any 

special form of cognitive access to a realm of abstract geometrical objects. On the 

view that I propose to defend, geometrical insight does not provide us with any 

justification for believing that the subject matter of geometry—consisting of the 

geometrical objects themselves—actually exists. Strictly speaking, what we grasp 

through geometrical insight are propositions that are subjunctive in character. That is, 

we apprehend what would be true of geometrical objects (and geometrical space) as 
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we envision them, if those objects (and that space) actually existed. While I will often 

omit mention of this subjunctive framing, for ease of exposition, it should be borne in 

mind that at no point in this dissertation should I be interpreted as claiming that we 

possess any knowledge concerning the metaphysical existence of abstract geometrical 

objects or of ideal Euclidean space. As such, the purely epistemological proposal that 

I will be putting forward is intended to be entirely neutral regarding all ontological 

matters concerning the existence and metaphysical nature of geometrical subject 

matter. Of course, this means that the version of the geometrical insight proposal I 

will defend makes a far weaker claim about geometrical knowledge than traditional 

versions such as Plato’s, at least in this particular respect. That this still leaves us with 

an interesting account of a nontrivial sort of geometrical knowledge—and one that 

remains substantially true to the spirit of Plato’s own account—is something I hope to 

demonstrate in the remainder of the chapter, and the dissertation as a whole. 

  

2.5 Fifth objection: sui generis psychology 

Our final objection to consider is that, even if we can set aside the concern about 

cognitive access to abstract objects in the manner suggested above, the geometrical 

insight proposal still seems to require us to postulate a mysterious, sui generis kind of 

psychological state. For the very characterization of geometrical insight as both 

presentational and a priori seems to confront us with puzzle. How can an epistemic 

mental act possibly have both of these features at once? The familiar case of 

justification based on ‘presentational’ awareness is that of ordinary perceptual 
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knowledge, acquired through sensory channels—but this sort of knowledge is of 

course not a priori. Conversely, the familiar case of a priori justification is that 

gained through discursive reasoning, which lacks the requisite presentational 

character. So the proposal of geometrical insight, which attempts to combine both of 

these features within a single epistemic act, seems to run against the natural grain of 

familiar psychology. As I will attempt to show in my interpretation of Plato’s view 

below, this apparent tension can indeed be reconciled, by regarding geometrical 

insight as grounded in an experience of visual understanding that is plausibly 

regarded as combining these presentational and a priori aspects. 

 

3 A phenomenological perspective 

As we noted in the Section 2.1, Plato appeals to first-personal experience in order to 

offer motivation for believing in geometrical insight. And as we saw in Sections 2.2 

and 2.3, subjects often report an absence of the kind of phenomenology that would 

serve to motivate the proposal. As I suggested there, the proper diagnosis may well be 

that these subjects are simply not having experiences of the relevant kind. Therefore, 

in this section I want to take the reader through a very simple example of geometrical 

insight, exploring it from a first-personal vantage point. This will provide an intuitive 

familiarity with some of the features of geometrical insight that will take on 

theoretical importance within the account provided by Plato. 

Suppose I imagine a circle, with a straight line drawn through its center. It 

seems clear to me, bringing the relevant image to mind, that the line will divide the 
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circle into exactly two parts. If I now pose to myself the question of whether these 

two parts will be congruent to one another, I find myself judging very confidently that 

they will have to be congruent—indeed, precisely so. And if I consider whether this 

would still be the case if the circle were of some different size, or if the line were 

drawn through the center at a different orientation, it seems clear to me that these 

variations would not interfere with the congruence of the circle’s parts. I now possess 

a belief about geometry that I hold with a high degree of confidence: In general, a 

straight line drawn through the center of a circle will divide the circle into two 

congruent parts. 

When I consider the question of what justifies my holding this belief with 

such confidence, it seems to me that my confidence is justified by the experience I 

have when I entertain the relevant geometrical situation in visual imagination. When I 

visualize a circle with a straight line drawn through its center, and I attend to what I 

am visualizing in a certain way—specifically, in the context of wondering whether 

the parts on either side of the line are congruent—I have an experience of things 

falling into place, with a sense of inevitability. I seem to find, within that experience, 

immediate justification for believing that the parts on either side of the line will 

indeed be congruent—and for believing that the size of the circle, and the orientation 

of the line, will not make any difference when it comes to this relationship. I am 

tempted to say that when I bring to mind a visual image of the geometrical situation, 

and I consider it in the right way, I can simply see that the two parts of the circle 

could not fail to be congruent. 
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If I am now asked to justify to someone else that a straight line through the 

center of a circle will divide it into two congruent parts, I may be unable to articulate, 

in a fully explicit manner, my reasons for holding this belief. After all, my reasons are 

private ones. Their basis lies not in any deductive argument that I could hope to 

communicate, but rather in a visual-imaginative experience I am undergoing. When I 

pose to myself the question of what justifies my holding this geometrical belief, it 

seems a sufficient answer to simply point to my own experience. Of course, that is 

not possible in the interpersonal case—that is, not unless my friend is willing to settle 

for secondhand justification, by testimony, and simply take my word for it that I am 

in possession of justification of the firsthand variety. It seems that the best I can do, 

then, is to point to the geometrical situation I am having the experience of, in the 

hopes that my friend will experience it in a similar way. I can do this by drawing a 

suitable diagram, and presenting it along with the necessary stipulations: that the 

diagram is supposed to depict a circle and a straight line, and the straight line is 

supposed to pass precisely through the circle’s center. 

 When I now look at the diagram I have drawn, I have a visual experience that 

seems to be, in all relevant respects, similar to the visual-imaginative experience I 

was having previously. It is true that I am now also having a visual experience of a 

physical object—the drawn diagram itself—which I take to be veridical. But that 

experience—or that aspect of my experience, anyway—strikes me as quite beside the 

point. What seems important is not my experience of the diagram, but my experience 

of what I see in the diagram: the same geometrical situation that I had previously 



! 24!

been imagining. When I now attend to what I see in the diagram, in the same way I 

was previously attending to the visualized situation, I experience the same sense of 

things falling into place, in a way that seems to justify my belief in the geometrical 

proposition. Considering both as experiences of the geometrical situation, the only 

significant difference I notice is that the diagram-aided experience seems more vivid 

than the imaginative one, and the justification it provides, accordingly stronger. 

  Of course, there is no guarantee that my friend, confronted by the same 

diagram, will have the same experience of ‘things falling into place’ in a way that 

seems to provide justification for believing the geometrical proposition. If not, there 

is little that I can do, except to try to gesture at the features and relationships that 

seem, within my own experience, to justify this belief. Figuring out how to do this is 

not a trivial matter. At first, I might simply point to the diagram, repeat the target 

judgment, and assert that an experience of the former justifies the latter: “Don’t you 

see that the arrangement just fits together so that this has to be the case?” After 

reflecting a bit on my experience—on why the arrangement seems to ‘fit together’ in 

a way that justifies the judgment—I might be able to say something a bit more 

helpful: “Suppose the circle were folded along the straight line—wouldn’t the parts of 

the circle on either side of the line now have to end up getting folded exactly onto one 

another? Alternatively, suppose the circle were rotated by precisely a half-turn about 

its center—wouldn’t each of the parts now have to occupy exactly the same space that 

the other one did before the circle was rotated?” In defense of the generality of the 

proposition, I might add: “Suppose the circle were larger or smaller, or the line were 
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drawn through its center at a different orientation—couldn’t we compensate for these 

changes simply by adjusting the viewing distance or the orientation of the diagram 

itself? Isn’t this very diagram, then, adequate to represent all of the possible 

variations that satisfy the initial characterization circle with a straight line drawn 

through its center?” 

 As these examples already suggest, my attempting to point out the relevant 

features and relationships might well result in my formulating something partially 

resembling an argument, one with the target judgment as its conclusion. Might this 

not imply that it is, after all, possible for me to articulate my justification for the 

judgment—or at least some nontrivial part of it—by providing an argument that 

captures that justification? Perhaps, then, my justification is not inherently bound to a 

private, ‘presentational’ experience? Suppose I decide that one of the key features to 

appreciate, in order to grasp the geometrical proposition, is the reflection symmetry of 

the circle about the straight line. Indeed, by attending to this symmetry, I seem 

immediately to grasp that the target proposition itself must be true, by appreciating 

the way that this symmetry seems to force congruence upon the circle’s parts, with a 

kind of necessity. (Making this relationship salient had been the point of my earlier 

suggestion that my friend consider the circle being folded along the line.) I might now 

attempt to explicitly formulate the relationship I have appreciated, in the form of a 

deductive argument. Taking ‘C’ to name the circle and ‘L’ to name the straight line 

drawn through its center, I could argue as follows: 
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 (P1) C is symmetrical about L. 

(P2) In general, if x is symmetrical about y, then y divides x into two 

congruent parts. 

(P3) If C is symmetrical about L, then L divides C into two congruent parts. 

(from P2) 

(C) L divides C into two congruent parts. (from P1 & P3) 

 

Of course, a deductive argument can only be as convincing as its basic premises. Here 

(P1) is a fact about the geometrical situation that seems so basic that I can, 

apparently, only point to it—if my friend does not accept that the circle will have to 

be symmetrical about the line through its center, there seems to be little more that I 

can say. And my visual experience does not seem to assume but rather seems to show 

me that the circle indeed has this symmetry. This already suggests that an argument 

will not be able to replace the justification provided by my visual experience. Still, it 

might be able to replace some of it. 

The universal statement (P2), in contrast to (P1), might reasonably be taken to 

be analytic, following from the concepts of symmetry and congruence. So let’s 

suppose that there is no difficulty accounting for knowledge of (P2). (P3) follows 

from (P2), by instantiating the variables x and y to the constants that appear in (P1), 

and (C) then follows by applying modus ponens to (P1) and (P3). Suppose I present 

this argument to my friend, and my friend grants that (P1) is visually obvious and that 

(P2) is analytic, and then validly reasons from these premises to the conclusion (C), in 
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the way indicated. Is my friend now justified in believing (C), in the same way I was 

justified in believing it, in the first place? 

 When I consider this question, while rehearsing for myself the steps of 

reasoning through the argument, it seems to me that while this procedure does yield 

justification for believing (C), it is not the same kind of justification that I had 

initially. In particular, there seems to be an important phenomenological difference. 

In following the argument, I start by separately confirming the truth of (P1) and 

(P2)—in the first case, by looking to what I see in the diagram, in the second (let’s 

suppose) by reflecting on the concepts involved. I then instantiate the variables in 

(P2) to the constants in (P1), ‘plugging in’ C for x, and L for y, in order to derive 

(P3). What strikes me about my phenomenology while I am performing this step is a 

feeling of uncertainty about the conclusion I reach. It is not that I feel uncertain about 

the step itself, while I am carrying it out. Indeed, the operation that takes me from 

(P2) to (P3) is purely syntactic, and I feel confident that I can perform it reliably, 

given the clarity with which I apprehend (P3)’s syntactic form. But precisely because 

I am only attending to the syntax of (P2) while carrying out this operation, it occurs to 

me in this moment to wonder whether the formulation of (P2) that I now hold before 

my attention was correctly stated in the first place. Even if the judgment I previously 

attempted to formulate as premise (P2) had been perfectly justified, am I certain that I 

did not made a mistake in symbolically ‘transcribing’ this judgment, say by mixing 

up the variables ‘x’ and ‘y’, and placing them in the wrong order? 
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 I find myself confronted by a similar doubt when I perform the final step, 

deriving (C) from (P1) and (P3) by modus ponens. While I am performing this step, I 

feel very confident that I am correctly carrying out the appropriate syntactic operation 

on premises (P1) and (P3), as formulated. From this ‘syntactic’ point of view, 

however, I find that I have lost sight of my reasons for having accepted (P1) and (P3) 

as expressions of true statements in the first place, those reasons being essentially 

bound up with the spatial meanings of the premises. Again, perhaps I have made an 

error in transcribing the thought. 

When I rehearse the argument in this way, then, I find myself grasping the 

truth of the premises independently, then operating syntactically on the forms of their 

statements, and eventually deriving a formula that encodes the conclusion. When I 

finally interpret the meaning of this formula, I find myself looking back to the 

diagram, and thinking: “I guess those parts either side of the circle must be congruent, 

then. After all, that is the meaning of the statement I seem to have derived.” This gets 

me to belief in the proposition, to be sure, but I do not thereby replicate my original 

experience of seeing that it must be the case. 

 To be sure, this is an implausibly ‘mechanical’ way of following the 

argument, by carrying out inferences without paying attention to the meaning of what 

is said (with the exception of the logical vocabulary, whose content must still be 

interpreted in order to perform the inferences). But in this case, the ‘meaning’ is a 

spatial, geometrical one—to attend to this in the course of following the argument, 

would be to help it along with the aid of visual understanding. In order to pinpoint the 



! 29!

relevant contrast, it seems appropriate to consider precisely this experience of 

following the argument ‘mechanically’. And it is clear that when I do so, I seem to 

miss out on the distinctive sort of justification that I am able to enjoy by means of 

visual understanding. What is lacking is something that seems both 

phenomenological as well as epistemological: The different steps of the argument are 

not sufficiently integrated in my experience, and correlatively, I am unable to achieve 

a synoptic understanding of the demonstration as a whole. I feel I have no 

appreciation of why the two parts of the circle must be congruent. Instead, I am 

simply faced with the fact that my reasoning process—in some way or other—has 

produced this result as output. 

 A closely related point bears specific emphasis: When I follow this argument 

in order to justify belief in the geometrical proposition, I experience a sense of doubt. 

This seems to result from the fact that my appreciation of the truth of the basic 

premises, by appeal to their semantics, occupies a distinct cognitive moment from the 

purely syntactic operations by which I carry out inferences on those premises. I 

wonder, in particular, if I might have made an error in transcription, for instance, by 

mixing up the symbols in some way. This sort of error is commonplace in such 

‘mechanical’ procedures—one may easily forget to ‘carry the one’ in performing the 

algorithm for addition of large numbers, for instance—which is why it is good 

practice to perform a ‘sanity check’ to ensure that the result produced by such a 

mechanical process is a plausible one. 
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In the present context, however, to perform a sanity check would just amount 

to my comparing the output of my reasoning process with what is intuitively apparent 

to me on the basis of my visual understanding, to make sure that the two align. If this 

is necessary in order for me to attain certainty about my conclusion, then it is clear 

that the process of reasoning, taken on its own, does not provide me with the same 

kind of certainty that I seem to have when I reply just on my visual understanding. 

Practically speaking, the doubt I feel may seem rather silly—I can, after all, simply 

rehearse the argument several times carefully, in order to increase my confidence that 

I have committed no error. But the important point is that, silly or not, the doubt does 

arise, in a way it does not when I simply attend to what I am able to visually 

appreciate about the way the spatial parts of the geometrical situation hang together. 

 

4  Plato: geometrical insight as recollection 

In this section I consider Plato’s account of geometrical insight as ‘recollection’, 

which is considered most directly in reference to the geometrical demonstration in 

Meno but also discussed in Phaedo.3 On the face of it, Plato’s recollection account is 

essentially in conflict with a naturalistic picture of the world. The proposal Plato 

seems to advance is that prior to its mortal existence, the disembodied soul was able 

to enjoy a direct contact with ideal geometrical objects, and now retains a buried 

memory of this prior knowledge by acquaintance, which needs only to be brought to 

the surface by the right stimulus or trigger. This view asks us to embrace not only 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Citations for both dialogues are to Plato (2002). 
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(unsurprisingly) a platonistic conception of geometrical objects, but also the existence 

of immortal souls. Since this extreme conflict with naturalism is too high a cost to 

bear for many contemporary theorists, there is a temptation to dismiss Plato’s view of 

geometrical insight outright. But I submit that to do so would be a mistake. 

Whether or not Plato genuinely held the view just outlined is a difficult 

interpretive question, especially given Plato’s frequent appeal to myths in order to 

present his philosophical views. This interpretive question, however, need not detain 

us much here. For present purposes, we are interested in whether Plato’s recollection 

view contains ideas that place us in a better position to make sense of geometrical 

insight as a naturalistically respectable phenomenon. I will attempt to show that this is 

indeed the case. If we are willing to forego the contentious ontological baggage 

associated with the ‘recollection’ idea, what remains of Plato’s view provides a very 

appealing account of geometrical insight as a kind of recognition. In particular, Plato 

helps us to resolve the puzzle raised in Section 2.5: how to make sense of a mental act 

of insight that has the ‘presentational’ character associated with sensory perception, 

as well as the a priori character that is usually defined in opposition to sensory 

perception. On the view that emerges out of consideration of Plato’s ideas, 

geometrical insight can be seen to rest on a form of understanding that is both 

presentational and a priori in nature. 
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4.1 Context 

In order to appreciate the significance of the geometrical demonstration presented 

below, it is important to consider it in context of the earlier discussion in the dialogue. 

Socrates and Meno have been inquiring into the nature of virtue. Meno repeatedly 

shows impatience with the Socratic method of investigation: He is unwilling to 

earnestly consider matters by his own lights, and instead simply wants to be told the 

answers to his questions.4 Thus when Socrates urges him to answer for himself what 

he thinks virtue is (71d), Meno responds by parroting a view acquired secondhand 

from Gorgias (71e). Again, when Socrates requests that Meno propose a definition of 

shape as a preliminary exercise to defining virtue (75a), Meno flatly refuses, and 

insists that Socrates just tell him (75b). Meno’s attitude here reflects a view of 

learning as the receipt of information, by testimony from those who are somehow 

already informed. 

Given Meno’s view of learning, it is not surprising that he reacts in the way he 

does when Socrates brings the discussion to its moment of aporia at 80c-d. Socrates 

has by this point revealed the inadequacies of each of the definitions of virtue that 

Meno has acquired secondhand from various sources. Meno is now thoroughly 

perplexed; the ground has been cleared for philosophical investigation to proceed, 

unencumbered by the false presumption of knowledge. Socrates, noting again that he 

himself is as perplexed as anyone regarding the nature of virtue, proposes they begin 

their inquiry afresh. Meno, who had regarded Socrates’ initial profession of ignorance 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 This aspect of Meno’s character is brought out clearly in Scott’s (2005) book on the 
dialogue, particularly in Chapter 5. 
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dubiously (71b-c), now realizes that Socrates is intent on standing his ground; he is 

not going to provide Meno with ready answers that he can simply accept on authority. 

For Meno, this is enough to establish that the inquiry into virtue is bound to be 

fruitless: “How will you look for it, Socrates, when you do not know at all what it is? 

… If you should meet with it, how will you know that this is the thing that you did 

not know?” (80d) 

The question is posed rhetorically. In effect, Meno is insisting that it is 

impossible that he should ever come to recognize, by his own lights, that something 

must be the case. This brings us to the crux of the dialogue. The point of the 

geometrical demonstration will be to show that, on the contrary, it is possible to 

recognize truth for oneself. First, however, Socrates answers Meno’s question 

directly, by giving an account of how this could be possible (81b-e). This is Plato’s 

doctrine of learning as anamnesis, or ‘recollection’. On this view, the human soul 

already contains latent knowledge of all things, from its prenatal existence. What we 

call learning is in fact just the conscious recovery of this latent knowledge, cued by 

some appropriate trigger. From the discussion in Phaedo (73a-75b), it is clear that on 

Plato’s view, the soul’s prenatal knowledge includes knowledge of abstract 

geometrical properties, such as equality. Thus when we perceive two objects that are 

roughly equal, even though they can only approximate perfect equality, we are 

reminded of equality itself—a perfect geometrical property with which our soul has 

been previously acquainted. Similarly, an imperfect geometrical diagram can trigger 

the recovery of latent knowledge of geometry, as Socrates will now show. 
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4.2 The geometrical demonstration 

The geometrical demonstration takes place in Meno at 82b-85b. Socrates will teach 

one of Meno’s slaves a simple proposition of geometry (in effect, the isosceles case 

of the Pythagorean theorem, reformulated as a construction problem), but will do so 

without imparting any information about geometry. Rather, Socrates will present the 

slave with a geometrical diagram, and by posing a series of questions in relation to 

the figure, will bring the student to recognize for himself that the theorem must be 

true. This will be learning through recollection. 

 Socrates begins by drawing a diagram of a square (82b). The student 

immediately appreciates that the figure represented, being square, has its four sides 

equal, and also that it could be larger or smaller while remaining the same shape 

(82c). Clearly, the area of any particular square will be a function of the length of the 

side on which it is constructed, and the longer the side is, the greater in area will be 

the square constructed from it. Socrates now poses the question: Supposing we had a 

square twice the area of the given one, how long would its side be? The student 

answers immediately: “Obviously, Socrates, it will be twice the length” (82e)—that 

is, twice the length of the side of our original square. 

 The student’s initial answer, despite its presumed obviousness, is incorrect. 

What prompts this incorrect response? The swiftness with which the judgment is 

issued, together with the apparent lack of any conscious reason for so judging (the 

slave says it is simply “obvious”), suggests as a plausible hypothesis that the student 



! 35!

has reached this judgment by employing an unconscious heuristic of the sort widely 

studied within the ‘heuristics and biases’ research program in cognitive psychology.5 

In this case, the heuristic assumes that one spatial magnitude (the area of the square) 

will increase in proportion to another spatial magnitude (the length of the square’s 

sides). It thereby issues in a swift intuitive judgment, with roughly the content: twice 

the length, twice the area. 

  Socrates now leads the student to recognize that doubling the length of the 

square’s side will yield a square with four (rather than two) times the area of the 

original square (83a-c). He does so by augmenting the original diagram, first taking 

the square’s base and extending it so it is twice the length of the original base. He 

then constructs a square on this extended base, which contains the original square 

inside itself. Drawing lines between the midpoints of the larger square yields the 

diagram in Figure 1.1. 

 

Figure 1.1: Step one of Plato’s proof 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 Tversky and Kahneman (1974) is the classic source; see also Gilovich et al. (2002). 
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Observing the augmented diagram, the student recognizes that the larger square can 

be seen as composed out of four smaller squares—the four ‘quadrants’ of the large 

square—each of which is equal to the original. The student now judges, correctly, that 

doubling the length of a square’s side yields a square four times the area of the 

original (83c). 

On what basis has the student arrived at this second, correct judgment? Here 

we can appeal to our own phenomenology, as we follow the demonstration through 

for ourselves. For when we look at Figure 1.1, we too can recognize what the student 

has now grasped. Taking an arbitrary one of the ‘quadrants’ as our original square, we 

can readily see the figure as one in which the whole, large square has sides twice as 

long as those of the original, smaller one. Perceiving the figure in this way, we see 

that the large square is made up out of four smaller squares, all of which are equal, 

and one of which is just our original square—so the area of the large square will have 

to be four times that of the original. 

Notice that we arrive at this judgment without scrutinizing the metric 

properties of the drawn figure, for instance by measuring the four smaller squares 

carefully (or, less reliably, by ‘eyeballing’ them) to satisfy ourselves they have been 

drawn precisely equal. Proceeding in this manner would be sensible only provided 

that we were in the first place confident that the diagram had been drawn to metric 

precision, with the base of the original square having been extended to exactly twice 

its original length, and a figure exactly square having been constructed on the 

extended base. It is true, of course, that one could attempt to learn about the 
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geometrical relationship between the side-lengths and areas of squares in this manner, 

through empirical measurement. But that is not how we seem to reach the judgment 

in this case. For when we reflect on the possibility that, strictly speaking, the 

empirical drawn figure has none of the metric properties relevant to the truth of our 

geometrical judgment, this does not seem in any way to undermine our warrant for 

making that judgment. After all, our judgment concerns not the figure, but the 

geometrical situation it represents. Just as in Plato’s example of recollection, being 

visually confronted with approximate equals serves to bring equality itself before our 

mind, in this case, the approximate rendering of the geometrical situation seems in 

some way to present us with the situation itself. When we consider this situation, in 

which the large square’s base is (exactly) twice the length of the small one, we seem 

to grasp clearly that the large square will have to be (exactly) four times the area of 

the small one. Our phenomenology suggests that the warrant for this judgment is 

based in some way on our visual experience of geometrical situation presented by the 

diagram, but it is not based on our experience of the precise metric features of the 

diagram itself, taken as a physical, empirical object. 

 How are we to assess the difference between the two conflicting judgments 

that have now been given by the student? Both can be regarded as ‘intuitive’ 

judgments, in the specific sense that the warrants supporting these judgments seem to 

be—at least in part—inherently private. That is, in neither case is the student in a 

position to fully articulate his reasons for judging in the way he does, such that he 

could provide an argument capable of convincing someone else to arrive at the same 
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judgment. In the first case, this is because (as I’ve suggested) the heuristic-based 

processes that result in his judgment are entirely unconscious, so he lacks any 

awareness of the warrant for his judgment. We might say that in this first case his 

judgment issues from blind intuition. 

In the second case, the student is similarly unable to fully articulate why he 

arrives at his judgment, though for a different reason. Here he seems simply to grasp, 

on the basis of what he perceives in the diagram, that the stipulated relation between 

side-lengths enforces on the pair of squares a certain relation between their areas. Of 

course, having grasped the relationship for himself, he might be able to go on to lead 

someone else to arrive at the very same recognition. For instance, he could employ 

Socrates’ own method, of drawing a suitable diagram, and drawing attention to its 

relevant features. But this would never amount to an argument that could compel 

belief in those who fail to see the relationship for themselves.6 The situation is 

reminiscent of Sibley’s comments about art criticism. A critic can never prove to an 

audience that the artwork has the aesthetic features the critic claims it does; all that 

can be done is to employ various indirect means to prompt or encourage the audience 

to see what the critic has seen aesthetically in the work (Sibley 1959, 439-45). The 

recognition of geometrical truth in the diagram, like the recognition of beauty in a 

painting, remains within the sphere of private experience. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 Cf. Zwicky’s comment on the experience of teaching the full demonstration to her 
undergraduates: “Yes, there are some who grasp the Meno proof with a gasp, but 
there are others who don’t see it the first, or even the second, time. If they don’t get it, 
there’s little I can do but say the same thing—walk through the demonstration...—
again.” (2006, 8) 



! 39!

While the second judgment is therefore also intuitive in the specific sense of 

having an inherently private warrant, it does not issue from blind intuition in the same 

way that the first judgment does. Again, reflecting on our own experience, of arriving 

at the geometrical judgment on the basis of our visual experience of Figure 1.1, it 

would be clearly false to say that we lack any awareness of the judgment’s warrant. 

For not only do we judge that the large square is four times the area of the original 

one, we can quite clearly see why it has to be so, by our lights—it’s just that we are 

unable to articulate the reason. In this case, the judgment issues not from blind 

intuition, but from what seems (to us) to be a kind of presentational awareness of the 

very geometrical situation that constitutes the subject matter of the judgment. That is, 

we seem to have an awareness of the geometrical situation, which provides an 

immediate ground for making propositional judgments about it, in something like the 

way that our visual awareness of our surroundings provides an immediate ground for 

making propositional judgments about what is going on around us. There is a 

phenomenology of the geometrical situation being there, presented to us, such that we 

can form judgments about it. 

 To return to the demonstration, the student has now realized that in order to 

construct a square twice the area of a given one, one cannot simply construct a square 

on a base twice as long. The initial problem remains unsolved. The discussion now 

progresses through a second iteration of the procedure we have just witnessed: 

Meno’s slave proposes another answer, also plausibly heuristic-based, and is again 

shown a diagrammatic construction that refutes his answer (83e). He is now 
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thoroughly puzzled about what the solution could be (84a). Socrates now takes a 

diagram just like the one in Figure 1.1, and draws in diagonals of the smaller squares 

to connect the midpoints of the adjacent sides of the large square, yielding the 

diagram shown in Figure 1.2 (85a). 

 

 Figure 1.2: Step two of Plato’s proof 

 

 

 

 

 

 

By posing a series of questions, directed at this diagram, Socrates leads the student to 

recognize that the four diagonals can be seen as the sides of a new square, which is 

obliquely oriented. Since the triangles created by drawing in the diagonals are all 

equal, the original square is made up of two triangles, and the new square is made up 

of four triangles, the new square has to be twice the area of the original square. The 

student now recognizes for the first time that the square twice the area of a given one 

is the one constructed on the diagonal of the given square (85a-b). The demonstration 

is complete. 

 What has it shown? Socrates, at least on the face of it, takes the demonstration 

to show that Meno’s slave has learned this truth of geometry by a process of 
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‘recollection’. That is, the true opinions were already in him prenatally, in latent 

form, and needed only to be “stirred up” by presenting him with suitable diagrams 

and posing suitable questions about them. After all, as Meno confirms, the slave has 

never been educated in geometry, and has answered only with his own opinions, at no 

point having been given the answer by Socrates himself (85b-e). Of course, given the 

leading nature of many of Socrates’ questions, one might wonder whether the slave 

has truly been giving his own opinions throughout, as opposed to simply telling 

Socrates the answers he thinks he wants to hear. As we discussed in Section 2.1, 

however, this worry misses the point. Moreover, it does so in essentially the same 

way in which we would miss the point in worrying that the ‘squares’ in the empirical, 

drawn diagram do not in fact possess the precise metric properties of the perfect, 

geometrical squares they are intended to stand for. It is not important that Meno’s 

slave has in fact recognized the truth of the proposition for himself. What is important 

is that Socrates has shown how he could have done so. We, the readers of the 

dialogue, grasp this possibility directly, in virtue of following through the 

demonstration for ourselves. It is our own phenomenology that shows us that we do, 

or at least can, recognize the truth for ourselves, as opposed to merely acquiring 

information, by means of measurement or any other form of testimony. Even if we 

resist Socrates’ story about recollection of prenatal knowledge—and he himself 

expresses some doubt on the matter (86b)—the demonstration should convince us 

that we have strong phenomenological grounds for believing in the possibility of 

recognizing geometrical truth ‘from within’. 
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I now want to suggest that Plato’s picture of geometrical insight, which we 

have just considered, allows us to see the way towards a resolution of the puzzle we 

encountered in Section 2.5: Namely, how are we to make sense of geometrical insight 

from a psychological perspective, given that it is held to be at once presentational as 

well as a priori? After all, the clearest example we have of presentationally grounded 

knowledge is that of ordinary sensory experience, which is clearly not a priori. And 

the clearest example we have of a priori knowledge is that of ordinary discursive 

reasoning, which seems to lack any ‘presentational’ character of the sort at issue. So 

how can we make sense of a mental act of insight that combines these apparently 

opposing characteristics? I think considering Plato’s view of geometrical insight as 

recollection suggests an appealing answer, which I now want to explain. The first task 

is to unpack Plato’s view of a priori justification. 

 

4.3 Plato’s notion of a priori justification 

To ask about Plato’s view on the a priori is somewhat anachronistic, since Plato’s 

writings predate the distinction between the a priori and the a posteriori as we now 

understand it. Nonetheless, I think that Plato does provide a clear characterization of a 

form of justification that is readily recognizable as corresponding to what we would 

now generally call ‘a priori’. Moreover, Plato’s own characterization of a priori 

justification turns out to be rather more perspicuous than the common contemporary 

gloss as justification ‘independent of experience’. In brief, I think Plato’s notion of ‘a 
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priori justification’ should be understood as justification independent of testimony. I 

will now try to spell out more clearly what I take Plato’s view here to be. 

 Plato’s main concern in Meno, as I read the dialogue, is to establish that there 

can be knowledge that does not rely on testimony. But what exactly is ‘testimony’? In 

the first place, Plato is concerned with testimony in the most familiar, and literal 

sense: that of second-hand reports from others supposedly ‘in the know’. This is why, 

as we noted in Section 4.1, Plato portrays the character of Meno, who serves as a foil 

for Socrates, as someone who apparently believes that all knowledge (at least of 

eternal matters) arises from testimony. Meno, not seeing the possibility of discovering 

the truth for oneself, simply wants to be told the answer. The point of the geometrical 

demonstration is to show that some eternal truths can be grasped in a way that does 

not rely on the testimony of others already presumed to have knowledge. 

 The dialogue is replete with textual examples that reflect the dim view taken 

by Plato of the epistemic practice of believing testimony in this familiar, literal sense. 

For instance, in an interlude that occurs after the geometrical demonstration, Anytus 

enters, expressing a highly critical opinion of the teaching methods of the Sophists. 

When Socrates inquires about what justification Anytus has for taking this view, 

Anytus admits that he has never met any of the Sophists—his opinions have 

apparently been acquired secondhand. Socrates responds with a pointed rhetorical 

question: “How then… can you know whether there is any good in their instruction or 

not, if you are altogether without experience of it?” (92b-c). Similarly, later in the 

dialogue, Socrates draws a pointed contrast between the epistemic positions of a 
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“man who knew the way to Larissa” and one who merely “had a correct opinion as to 

which was the way but had not gone there nor indeed had knowledge of it” (97a-b). 

The clear worry about testimony raised by these examples is that one has to trust the 

information channel—in this case, a person assumed to be reliable—to deliver an 

accurate correct report. The process that produces that report as output remains 

opaque—a ‘black box’, from the epistemic vantage point of the recipient of 

secondhand information. 

 In cases such as these, when Plato is considering testimony in the most literal 

sense—that is, testimony in the form of secondhand verbal reports—the contrast that 

is drawn is to firsthand perceptual knowledge. Nonetheless, it would be a mistake to 

interpret Plato as claiming that ordinary perceptual judgments are free from the sort 

of blind trust characteristic of testimony in general. For Plato is of course highly 

distrustful of the deliverances of the senses; in other texts, he places strong emphasis 

on the tendency of the senses to mislead, especially in relation to visual illusions.7 

 Moreover, it is clear that recollection, Plato’s ultimate contrast to justification 

by testimony, is not intended by Plato to depend upon the reliability of visual 

perception in presenting the subject with an empirically accurate representation of the 

physical diagram itself. This is perhaps most evident in Phaedo, where Plato’s 

examples of recollection make it clear that while the physical object may prompt or 

trigger the occurrence recollection, this does not involve taking one’s perception of 

the physical object itself as evidence. Rather, the physical object serves a ‘reminding’ 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 E.g., 602c-d in Republic (Plato 1992). 
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role, bringing to mind content that is already internally available. For instance, 

Socrates says the following in Phaedo by way of characterizing recollection: 

 

Well, you know what happens to lovers: whenever they see a lyre, a garment, 

or anything else that their beloved is accustomed to use, they know the lyre, 

and the image of the boy to whom it belongs comes into their mind. This is 

recollection, just as someone, on seeing Simmias, often recollects Cebes, and 

there are thousands of other such occurrences. (73d) 

 

Closer to our concerns regarding geometry, Plato also mentions the example of seeing 

a pair of approximately equal sticks, and being reminded of equality itself (74a-75c). 

The upshot is that while ordinary sensory perception plays a role in recollection, on 

Plato’s view, it is in no way an evidential role. While empirical perception might 

serve to remind one of things with which one is already familiar, it does not carry any 

justificational weight. So recollection, in these cases, does not rely on what we often 

aptly describe as the ‘testimony of the senses’. The same lesson, presumably, applies 

to the diagram in the Meno demonstration: Its role consists in merely bringing to 

mind an internal presentational awareness of the relevant geometrical situation, 

which itself grounds justification for the geometrical judgment. 

 In addition to testimony by secondhand verbal report and the testimony of 

empirical perception through the senses, it is clear that Plato is also concerned with 

internal forms of testimony, which he similarly intends to contrast with the sort of 
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genuinely testimony-free justification provided by recollection, in his view. As we 

saw when we considered the Meno demonstration above, the student’s initial, 

incorrect answer seemed to express an intuitive judgment that issued from an 

unconscious, and plausibly heuristic-driven, process. Part of Plato’s point in taking us 

through the demonstration in the way he does is to emphasize the contrast between 

such ‘blind intuition’ and the sort of presentational awareness we enjoy through 

recollection. The former is clearly a case of reliance on testimony, for the intuitive 

judgment one reaches in such a case is the output produced by a process whose 

operations remain an opaque ‘black box’ from the vantage point of the subject. In 

another example of blind intuition, Socrates later in the dialogue ironically suggests 

that it is “right to call divine” those soothsayers and prophets who receive divine 

dispensations of information “without any understanding” (99c-d). 

The distinction Plato is emphasizing here is sufficient to counter a certain 

skeptical complaint often raised against the very idea of insight: that what is claimed 

to be ‘insight’ is merely a case of intuition, and intuition is known to be highly 

untrustworthy. Plato might well respond that blind intuition, which merely delivers a 

judgment as output without allowing the subject to ‘see into’ the process that 

produces it, is indeed untrustworthy, because it is a variety of testimony. On the other 

hand, geometrical insight, construed as recollection, does not depend on testimony. 

The final form of testimony that Plato considers is testimony provided by 

memory. At one point in the discussion between Socrates and Meno about virtue, 

Socrates pauses to raise a doubt regarding a conclusion they had previously reached 
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in their discussion (that virtue is a kind of knowledge). Perhaps, Socrates suggests, 

they were wrong in arriving at this conclusion. Meno is resistant to reassessing the 

previous judgment, pointing out that “it seemed to be right at the time” when they 

originally considered the matter. Socrates responds by saying: “We should not only 

think it right at the time, but also now and in the future if it is to be at all sound” 

(89c). I read Plato here as suggesting that a mere memory to the effect that one has 

previously arrived at a confident judgment about some matter is itself a form of 

testimony, to be contrasted with the kind of justification provided by recollection. In 

order to enjoy this latter sort of justification, it is not enough to merely recall that one 

has previously judged so-and-so to be the case, for what one presumes to have been 

good reasons. Rather, one must presently have those reasons before one’s mind. 

The general picture Plato presents of justification by testimony, then, is a 

multifaceted one. The category of testimony includes not only the literal sort of 

testimony we encounter in secondhand verbal reports, but also the ‘testimony of the 

senses’, the testimony of blind intuition, and the testimony of memories of what one 

has oneself previously judged to be the case. What unites all these cases is that the 

subject is presented only with the output of an information-delivering process; this 

process itself remains a ‘black box’, opaque to the subject. As such, in relying on 

testimony, of any form, the subject has to trust in the reliability of the process that 

delivers the relevant information. The promise of recollection is to provide 

justification that is wholly independent of reliance on testimony, in any of these ways. 
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I submit that this condition, of being independent of reliance on testimony, captures 

the sense in which Plato regards recollection as providing a priori justification. 

 

4.4 Recollection as recognition 

The previous subsection characterized recollection negatively, in terms of its 

independence of reliance on testimony. Now, I want to offer a positive proposal, one 

that I claim makes the best overall sense of the ideas Plato advances about 

recollection. On the face of it, Plato has presented us with a puzzle. On the one hand, 

memory about what one has previously judged or seen to be the case is a form of 

testimony, and hence is not a priori in the sense that matters to Plato. On the other 

hand, what is ‘recollection’ supposed to be, if not a form of memory? In addition, we 

are still faced with our puzzle from Section 2.5: How are we to psychologically make 

sense of a mental act of attaining knowledge, which is at once presentational and a 

priori? I will try to show how both of these puzzles can be resolved, by interpreting 

Plato’s notion of ‘recollection’ as a kind of recognition or understanding. 

 Based on reading Meno alone, one could easily read Plato as holding that 

geometrical insight, construed as recollection, operates on the level of propositions. 

On this interpretation, the propositional knowledge that the relevant geometrical 

proposition is true is already tacitly present within one’s soul, and requires only the 

right triggering occasion—the right diagram, perhaps in combination with the right 

questions about it—to be broad to surface of one’s conscious awareness. Indeed, 

Socrates explicitly says precisely this: that the true opinions that Meno’s slave 
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eventually comes to assert must have been, in some form, already inside him (85c). If 

we read Socrates’ comment at face value, however, as the claim that recollection of 

geometrical truth consists in recovering latent propositional knowledge, then we are 

confronted with a view clearly in tension with Plato’s commitment to recollection 

being independent of reliance on testimony. For if recollection consists in 

remembering propositional opinions one already possesses, it will certain rely on the 

testimony of memory. 

 In the examples in Phaedo, Plato presents a different picture, one of objectual 

recollection. As we’ve already seen, in Phaedo Plato’s examples of recollection 

involve not recollecting propositional knowledge, but merely being reminded of 

objects with which one is already in some way familiar: When one sees a lyre, one 

may be reminded of one’s beloved, and upon seeing Simmias, one may be reminded 

of Cebes (73d). Immediately after presenting these examples, Socrates proposes a 

pictorial one: A person “seeing a picture of Simmias” may thereby “recollect 

Simmias himself” (73e). Then, following up on this example, Socrates then suggests 

that one can see two approximately equal objects (he mentions both sticks and stones 

as examples) and thereby recollect “Equality itself” (74a-75c). 

 These latter two examples suggest an appealing view of the role of the 

diagram in presenting subjects with the geometrical situation their judgments 

ultimately concerns. Just as in the pictorial case, where one recognizes Simmias in a 

depiction of him, one can also recognize perfect equality in a mere approximation to 

the latter. Presumably, this sort of objectual recognition will be similarly operative 



! 50!

when one is confronted with a geometrical diagram, as in the Meno demonstration: In 

that case, one would recognize a geometrical square in the drawn diagram. Of course, 

on Plato’s official view, this ability itself has a rather mystical explanation, being 

possible only in virtue of the soul already having seen The Square Itself, while in its 

pre-mortal, disembodied state. But it is unlikely that we need to accept such an 

extravagant story in order to explain how one can recognize a geometrical square in 

an imperfect diagram. An alternative proposal, one that will be considered at length in 

Chapter 3, is that we possess a recognitional concept of a geometrical square, which 

allows us, in effect, to see a perfect square in an imperfect diagram. Since this will be 

a central topic of later discussion, for present purposes, I will simply assume that 

there is some naturalistic explanation for our ability to recognize perfect geometrical 

objects in imperfect, approximate diagrams, such that the geometrical objects are, in a 

certain sense, brought ‘before one’s mind’. 

 On this proposal, then, the sort of ‘recollection’ that operates when one is 

confronted by a geometrical diagram is, in the first place, an objectual form of 

recognition, whereby we recognize geometrical objects in the diagram. This proposal 

places us in a better position to make sense of Plato’s ultimate target: ‘recollection’ of 

propositional truths of geometry. For we can view this propositional ‘recollection’ as 

itself a form of recognition, one that is grounded in the objectual form of recognition. 

The idea is that by ‘bringing before one’s mind’ the relevant geometrical objects, we 

are epistemically in a position to recognize that certain propositions are true of those 

objects, in a way that is a priori. In common parlance, we often use the phrase 
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‘recognize that’ to denote a propositional judgment that is arrived at, not by receipt of 

any new information, but rather by considering what one already knows in a new 

light, and grasping for the first time that it fits together in a way that supports the 

judgment. This sense of seeing how things fit together seems to be an apt 

characterization of the sort of phenomenology we enjoy when we ‘get’ the Meno 

proof. What we experience is an appreciation for how the geometrical situation as a 

whole is structurally integrated. There is, moreover, a feeling of things falling into 

their natural place, which is somewhat suggestive of objectual recognition—so it is 

not altogether surprising that Plato draws a close association between the two. 

 

4.5 Integrative understanding as a priori 

What I now want to suggest is that this sort of integrative appreciation, which seems 

to serve as the justificational basis for propositional recognition, is nothing 

mysterious, but in fact a rather familiar mental act, which we have independent good 

reason to believe in, and which is (or at least can be) both presentational and a priori. 

This integrative appreciation—the seeing how things fit together—is generally 

described by epistemologists as ‘understanding’. To briefly summarize the current 

thinking on the topic, understanding (in the relevant integrative sense) is usually held 

to take as its object a coherent body of information. One cannot capture the epistemic 

value of understanding reductively, however, by adding up knowledge of all the 

atomic propositions that collectively comprise the relevant body of information, since 

this would in some important sense leave out the understanding itself (Elgin 2007, 



! 52!

Gardiner 2012, Grimm 2012). For understanding requires the integration of all these 

disparate pieces into a unified whole. If one has failed to grasp how all the atomic 

propositions hang together as a collective whole, one has failed to understand. 

The following passage from Gardiner is representative of the current thinking 

on the nature of understanding: 

 

When we understand an object we also grasp relations among the various 

parts of that object; we see its structure. When we understand an explanation, 

we see how different elements of the causal or explanatory web hang together 

and how various facts interact…. It seems that in general when we think about 

the nature of understanding, as distinct from true belief, knowledge or other 

epistemic standings, what springs to mind is coherence among beliefs and a 

grasping of the relations between parts. (2012, 164-5) 

 

This picture of understanding suggests two important points. First, understanding 

seems to have a presentational character. As Gardiner says, we see the structure of 

the relevant subject matter; we see how its various elements hang together. In relation 

to some relatively abstract subject matter—say, understanding how a winner-takes-all 

electoral system systemically yields a de facto two-party political system as an 

emergent product—we might perhaps be inclined to dismiss this talk of ‘seeing’ as 

merely metaphorical. But in relation to our present concern—understanding how the 

relevant parts of a geometrical situation fit together, based on our visual experience of 
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a relevant diagram—there is little temptation to deny that our understanding is indeed 

presentational. Indeed, it seems to be literally visual in character. 

 The second important point is that, if we identify understanding with this 

integrative grasp of coherence relations, there is a simple argument to the conclusion 

that understanding is a priori. For understanding in this integrative sense is precisely 

what is left to achieve, epistemically, once one is already in possession of all the 

relevant pieces of information. Consider that the following is a clear commitment of 

the consensus view on the epistemology of understanding just sketched above: A 

subject can possess all the empirical information relevant to understanding how or 

why P, and yet can still fail to understand how or why P. Therefore, what is 

epistemically gained through understanding, in this sort of situation, cannot itself 

consist in grasping any further empirical information—by hypothesis, one already has 

all the relevant empirical information. It follows that the epistemic contribution of the 

understanding itself must be a priori. 

 Some might balk at this suggestion, given how thoroughly engaged 

understanding typically is with empirical content. One might think that understanding 

a scientific explanation of an empirical phenomenon, for instance, must surely be a 

thoroughly a posteriori matter. Here I think it is helpful to distinguish between two 

senses of ‘understanding’, a broad sense and a narrow one. In the broad sense of 

understanding, one can only be said to understand a scientific explanation (for 

instance) if all of the claims integrated within that explanation are themselves known 

to be true by the subject. Hence a scientific explanation that is internally coherent, but 
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which is based on mistaken hypotheses, cannot be said to be understood in the broad 

sense, even if the subject succeeds in grasping its internal coherence. Understanding 

in the narrow sense, in contrast, refers only to one’s grasp of the coherence relations 

themselves. So in the narrow sense of understanding, one could truly be said to 

understand an explanation, even if that explanation merely integrates spurious 

misinformation. It is the narrow sense of understanding that I claim to be a priori. I 

claim this for the reason that the grasping of coherence relations themselves—

considered independently of the truth or falsity of the pieces of information so 

integrated—is clearly something that makes a substantive epistemic contribution, in 

many cases. In particular, it is clearly capable of taking the subject from an epistemic 

state in which one is not justified in believing that P, to one in which one is justified 

in believing that P. (Such may well be the case when one grasps an explanation of P, 

for instance.) And just as clearly, this epistemic contribution does not depend on the 

receipt of any novel information. 

 Notice that understanding even in the narrow sense is, on its own, sufficient to 

justify a certain sort of propositional belief, even if the subject remains agnostic about 

the truth values of the pieces of information being integrated. This belief will merely 

have to take on a subjunctive form, being conditional on the assumption that those 

pieces of information are indeed true. That is, the understanding itself (taken in the 

narrow sense) will be able to justify belief in a proposition concerning what would be 

the case, were all those pieces of information to come out true. It is, in short, 

subjunctive propositions whose truth can be grasped a priori by means of integrative 
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understanding. Put differently, the epistemic contribution made by a priori 

understanding is one that is captured by a subjunctive proposition. This result, of 

course, fits very naturally with the proposal advanced in Section 2.4, to the effect that 

geometrical insight delivers justification that has a subjunctive form. 

 My suggestion, then, is that this form of integrative understanding is what 

underlies the recognition of the geometrical proposition at issue in the Meno proof. 

What one recognizes is roughly that if there were a square of the kind envisioned, and 

occupying space of the Euclidean sort tacitly assumed by the subject,8 and if there 

were a second square constructed on the diagonal of the former square, the second 

square would have exactly twice the area of the first one. The subject’s recognition 

that this relationship obtains is grounded in an integrative visual understanding of the 

relevant spatial relationships, seen to obtain in the diagram. By this means, the subject 

is able to enjoy justification for a geometrical belief of a sort that is both 

presentational as well as a priori. This, I submit, provides an appealing picture of 

geometrical insight that is substantially true to the spirit of Plato’s own proposal. 

 

5 Conclusion and prospect 

I conclude that the general proposal of geometrical insight does indeed stand up to 

scrutiny, and is capable of surviving the objections that have been raised against it. In 

Chapter 2, I will briefly confront an additional objection: that there are apparent 

counterexamples to the reliability of mathematical judgments reached on the basis of 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 The subject’s tacit imposition of assumptions reflecting the structure of Euclidean 
space will be a central topic of Chapter 4. 
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visualization or visual experiences of diagrams. In Chapters 3-5, I turn to the question 

of the psychological underpinnings of geometrical insight. In brief, I propose what I 

call the dynamic imagery account. I argue that this account enables us to make sense 

of the psychological bases of basic geometrical knowledge, understood to include the 

foundational assumptions of Euclidean geometry, as well as the theorems proved in 

Book I of Euclid’s Elements. Chapter 3 will set the stage by carefully examining the 

account of basic geometrical knowledge put forward by Giaquinto. Chapter 4 will 

provide a detailed examination of the cognitive basis of our grasp of the fundamental 

assumptions of Euclid’s geometry. Finally, Chapter 5 will aim to shed light on our 

understanding of Euclidean theorems, by addressing the generality problem: the 

problem of how we are able to gain insight into general theorems of geometry on the 

basis of our visual understanding of diagrams depicting only special cases. 

!
!
!
!
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Chapter 2: Reliability 

 

1 Introduction 

In the last chapter, I presented an initial defense of the reality of geometrical insight, 

in which I argued that subjects can attain geometrical knowledge through the 

integrative understanding of visual diagrams or through visualization. In this chapter, 

I will briefly address an outstanding objection to the geometrical insight proposal: 

That appeals to visualization and visual diagrams in mathematics are known to lead to 

errors in mathematical judgment. If so, this seems to cast a general doubt on the 

reliability of visual-based insight in mathematics, and thereby undermines the claim 

that geometrical insight is sufficiently reliable for the judgments that it yields to 

qualify as knowledge. 

A number of well-known cases purport to show that visualizations and visual 

diagrams are inherently unreliable as guides to mathematical truth. Even the 

staunchest defenders of diagrams grant that there are many cases in which diagrams 

are positively misleading. I argue that these ‘problem cases’ have been misdiagnosed. 

In all such cases, the erroneous judgments are not the result of any problem inherent 

to visual or diagrammatic methods, but are rather due to an uncritical reliance on a 

specific set of cognitive heuristics that operate at an unconscious level. In fact, in 

many of the cases thought to be most damaging to diagrams’ claim to epistemic 

reliability, the heuristic-based errors prove to be correctable by means of the 

appropriate use of diagram-based visual understanding. There is, I conclude, no 
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evidence at all to suggest that diagrams are inherently unreliable as guides to 

mathematical truth. 

There is, of course, a long tradition of using diagrams to justify belief in 

propositions of mathematics. Manders has speculated that in the pre-Euclidean 

practice of the early Greeks, “‘seeing in the diagram’ must have been the primary 

form of geometrical thought and reasoning” (2008, 81). For millennia following, the 

more systematic (though still diagram-based) Euclidean-style practice served as the 

very paradigm of rigorous mathematical reasoning. Around the turn of the 20th 

century, amidst an emerging crisis in the foundations of mathematics, the use of 

diagrams came under attack from various prominent figures, including Pasch, Hilbert, 

and Russell (see Mancosu 2005 for an overview). One of the major criticisms leveled 

against diagrams concerned their putative unreliability as a guide to mathematical 

truth. This criticism was motivated by a number of well-known cases in which 

mathematical claims that had been previously accepted, apparently on the basis of 

‘visual intuition’, were discovered to be false. 

 In the past two decades, there has been a resurgence of interest in the view 

that mathematical diagrams may have genuine justificatory value after all. Several 

philosophers have argued that in some cases, even standalone diagrams are sufficient 

to justify mathematical belief (Brown 1999, Giaquinto 2007, Azzouni 2013). Others 

have focused on the justificatory role of diagrams embedded within mathematical 

systems (such as that of Euclid) and have argued that claims of the unreliability of 

diagrams in these contexts have been significantly overstated (Manders 1995, Shabel 
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2003, Macbeth 2010). Nevertheless, even the staunchest defenders of diagrams have 

granted that in many cases, visual diagrams are indeed positively misleading, giving 

rise to compelling but illusory intuitions, which are at odds with the mathematical 

facts (Manders 1995, Brown 1999, Giaquinto 2007). 

This concession might well be thought to give much ground to the critics of 

diagrams. For to the extent that diagrams (and the ‘visual intuitions’ they yield) play a 

similar cognitive and phenomenological role in generating the beliefs, in the 

‘misleading’ cases as in the ‘safe’ ones, it becomes difficult to maintain that diagrams 

are ever truly reliable as guides to mathematical truth. As Burgess has recently 

pressed the challenge: 

 

For all one ever has to go on, if one appeals to intuition, is one’s apparent 

intuitions at the time. If “apparent” intuitions are not all “real” intuitions, then 

one is going to need something other than intuition… to sort out cases and 

distinguish which apparent intuitions are real ones.” (2015, 30) 

The challenge is clear: If the diagram-based means that lead us to true beliefs in some 

cases cannot be reliably distinguished from the ones that lead us to false belief in 

others, then we have every reason to regard the diagrammatic route in general as 

inherently unreliable as a guide to mathematical truth. 

In this chapter, I attempt to meet this challenge, by arguing that a clear 

distinction can in fact be drawn between the ‘reliable’ and ‘unreliable’ cases. 

Moreover (and crucially), I claim that this difference is one that is 
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phenomenologically manifest. Both kinds of cases involve ‘intuitive’ judgments, in 

the sense that one may not be in a position to provide a complete articulation of one’s 

reasons for so judging. But in the ‘reliable’ cases, one is nevertheless intuitively 

acquainted with those reasons, which are evident in one’s visual understanding of the 

mathematical situation the diagram depicts. The ‘unreliable’ cases, in contrast, are 

characterized by ‘blind intuition’, in which judgments arise in consciousness as a 

result of cognitive heuristics that operate at an unconscious level, according to 

principles opaque to the subject. If that is the correct analysis, then in order for one to 

use visual diagrams as a reliable guide to mathematical truth, it is sufficient to 

judiciously restrict oneself (as Descartes would have put it) to what can be seen 

‘clearly and distinctly’—while discounting any judgments that have the mere feeling 

of plausibility, whose justificatory basis is not only inarticulate but also opaque. 

A positive account, showing how visual diagrams can justify mathematical 

beliefs, lies well beyond the scope of this chapter, and I make no attempt to provide 

one here, aside from the most cursory indication. My focus is instead on diagnosing 

the ‘problem cases’: those that have been taken to count against the justificatory use 

of diagrams in mathematics. The burden of my argument is to show that these cases 

have been widely misdiagnosed—that the fault lies not with any inherent frailties of 

visual diagrams or ‘visual intuition’, but rather with unconscious heuristics of the sort 

widely studied in cognitive psychology in connection with cognitive biases. In 

particular, I identify three specific (plausible) heuristics, considering them in relation 

to a range of the problem cases, and showing how they would predictably generate 
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just the erroneous judgments observed. I also point out some points of contrast to the 

‘good’ cases—in which diagrams are used reliably—and I show that in all such cases, 

the heuristic-based errors seem in fact to be correctable by recourse to visual 

understanding of just the sort diagrams provide. 

Two clarifications are in order. First, while I claim that diagrams, properly 

used, can serve as a reliable guide to mathematical truth, I do not claim that this use 

of diagrams is mathematically rigorous. That is because rigor, in the sense relevant to 

mathematical practice, requires a degree of formality, and explicitness about 

assumptions, that is fundamentally opposed to the intuitive character of diagram-

based justification. In my view, the respective virtues of rigorous justification and 

intuitive justification are both important in mathematical practice, with neither 

displacing the other. Second, I do not deny that there are real limits to the scope of 

diagrammatic methods—indeed, much of mathematics appears simply inaccessible to 

visual understanding. What I do deny is that a sufficiently judicious use of visual 

understanding is apt to get us into trouble, by straying beyond its proper limits. 

 

2 An idea from Plato 

Recall from our discussion of Plato’s Meno in Chapter 1 that there seemed to be a 

special phenomenology that characterized geometrical insight experienced in relation 

to the relevant geometrical diagram. In particular, we seemed to grasp how the 

depicted geometrical arrangement necessarily ‘snaps together’, structurally, in a way 
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that guarantees the result. It is this kind of phenomenology that I take to be generally 

characteristic of the reliable use of visual diagrams as a guide to mathematical truth. 

In contrast, recall the initial, incorrect answer Meno’s slave gives to Socrates’ 

question, prior to being shown the complete diagram. If we consider a square twice 

the area of a given square, how long will its side be, in relation to the length of the 

side of our original square? The response was as follows: “Obviously, Socrates, it 

will be twice the length.” There is indeed superficial intuitive plausibility to this 

answer: twice the length, twice the area, we might suppose. Both the swiftness of this 

intuitive judgment and the apparent lack of any consciously entertained reason for so 

judging led us to speculate that this judgment issued from a heuristic of the sort 

considered within the ‘heuristics and biases’ research program in cognitive 

psychology.9 These heuristics operate unconsciously, according to ‘rough and ready’ 

principles, to deliver rapid judgments that are accurate enough, often enough, to 

promote human survival. They are, at the same time, notorious sources of persistent 

errors in human judgment. In this case, the relevant heuristic would seem to be that of 

‘attribute substitution’, in which a readily accessible attribute (length) is substituted 

for a less accessible one (area). 

 I think Plato is sensitive to our susceptibility to such ‘blind’ intuitions, and as 

we saw in the previous chapter, one of the central themes of Meno is the importance 

of recognizing (or ‘recollecting’) the truth for oneself, rather than relying on the 

‘testimony’ of opaque processes that yield judgments in the absence of 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 Again, Tversky and Kahneman (1974) is the classic source; see Gilovich et al. 
(2002) for a contemporary review. 
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understanding.10 For Plato, it is precisely this recognizing-for-oneself that the 

geometrical demonstration with the diagram is meant to illustrate. It is by facilitating 

appropriate visual understanding of the diagram that Socrates is able to correct the 

slave’s initial heuristic-driven error. In what follows, I attempt to show that this point 

generalizes to the range of cases widely thought to undermine the epistemic reliability 

of mathematical diagrams: the errors in these cases are in fact traceable to heuristics, 

and are correctable by diagram-based visual understanding of the Platonic kind. 

 

3 Attribute substitution 

We have just considered a case in which an erroneous geometrical judgment is 

plausibly the result of the attribute substitution heuristic. Might this heuristic explain 

some of the errors in judgment that are often attributed to the putative ‘unreliability’ 

of diagrams? Figure 2.1 shows an example from the mathematics educator Fischbein. 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 In this connection, consider again Socrates’ ironic remark in the dialogue, that “it is 
right to call divine” those “soothsayers and prophets” who “without any 
understanding” relay supposed divine dispensations of knowledge (99c-d). The 
phenomenological similarity to heuristic-based judgments is rather striking. 
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 Figure 2.1: Fischbein’s example11 

 

 

It is stipulated that the two horizontal ‘strips’ have the same width, constant 

throughout. What is the relation between the areas of the strips? While the tempting 

intuitive response is that the top strip is ‘larger’, in fact the areas are identical. The 

erroneous judgment, which might be taken as evidence of the inherent unreliability of 

diagrams, is handily explained as a result of attribute substitution: Since the relation 

of areas is not immediately apparent, but the top strip is clearly longer, the heuristic 

would predictably deliver the judgment that the top strip is also larger. But 

appropriate visual understanding of the way the figure ‘fits together’ can show why 

this heuristic response is wrong: Notice first that the regions ABFE and DCGH must 

be equal in area, because the strips have the same constant width. Now ‘subtract’ the 

common region DCFE from both, and one grasps immediately that the strips 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 Redrawn from Fischbein (1987, 116). 
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themselves must be equal. The error here is plausibly attributed, not to the use of a 

diagram, but to reliance on a heuristic, and is in fact readily corrected by appropriate 

visual understanding of the diagram. 

 

4 Approximation to perfection 

If we visually perceive that elements of a diagram appear (at least approximately) to 

exhibit some ‘perfect’ geometrical property—such as perfect straightness, 

parallelism, equality, and so forth—we are apt to jump to the conclusion that this 

property does in fact hold perfectly of the geometrical situation depicted. This is a 

simplifying assumption of just the sort characteristic of heuristics in general. Call this, 

then, the ‘approximation heuristic’. This heuristic is plausibly responsible for the 

error in what is perhaps the most famous fallacious geometrical proof: the isosceles 

triangle fallacy, which ‘proves’ that all triangles are isosceles. As is well known, the 

spurious plausibility of the ‘proof’ rests on the fact that the exact metric stipulations 

of the construction (that a given line be drawn to bisect an angle, that additional lines 

be drawn perpendicular to the triangles’ sides) are incompatible with the topological 

properties of the figure as it is (incorrectly) drawn. Nonetheless, the figure appears 

(at least approximately) to satisfy these stipulations, and this appearance is accepted 

by at face value by the naïve subject. 

  As Manders observes in his (2008) study of diagrams in Euclid, such ‘exact’ 

properties (those disrupted by even minimal distortions to the figure) are never 

attributed based on face-value appearance, in proper Euclidean practice. Rather, they 
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must be shown to follow from prior assumptions, or from the more stable topological 

or structural (in his terms, ‘co-exact’) properties, which can be reliably discerned 

based on appearance. While Manders emphasizes the importance of implicit norms in 

restricting attributions of ‘exact’ properties, it is anyway obvious that such appeals to 

the approximation heuristic would never satisfy the Cartesian test of ‘clearness and 

distinctness’. For it is phenomenologically apparent that we are unable to visually 

distinguish perfect straightness from near-straightness, etc. Indeed, there are well-

known visual illusions corresponding to just about every ‘exact’ geometrical 

property: position (Poggendorff), orientation (Zöllner), length (Müller-Lyer), 

straightness (Herring), size (Ebbinghaus), parallelism (the café wall illusion), and so 

forth. In contrast, there appear to be no visual illusions corresponding to Manders’ 

‘co-exact’ properties, such as containment, adjacency, etc. 

  The approximation heuristic plausibly accounts for such putative cases of 

‘misleading diagrams’ as the numerous variations on the ‘missing piece’ puzzle 

(Figure 2.2). This fallacious ‘proof’-by-rearrangement ‘works’ because the 

‘hypotenuses’ of the whole ‘triangles’ appear (approximately) straight, even while 

sufficient visual probing would reveal that they are not. 
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 Figure 2.2: Missing piece puzzle 

 

 

 

Contrast this case with the famous visual proof (also by rearrangement) of the 

Pythagorean Theorem (Figure 2.3).  

 

 Figure 2.3: Pythagorean proof by rearrangement 
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If one merely accepts, based on appearance, that the interior oblique quadrilateral on 

the right is a true square (with perfect right angles), one is not using the diagram in a 

reliable way. But sufficient reflection on the structural symmetries at play does, I 

think, establish that this must be the case, with the same degree of certainty that we 

observed in the similar Meno demonstration.12 

 

5 Failures of imagination 

Our final heuristic is a version of what Dennett has dubbed “Philosophers’ Syndrome: 

mistaking a failure of imagination for an insight into necessity” (1991, 401). The 

relevant version for us involves a judgment that something must be impossible based 

on one’s failure to imagine the possibility. This heuristic is a plausible source of those 

errors in judgment widely thought to be most threatening to diagrams’ claim to 

epistemic reliability. 

In his famous essay “The Crisis in Intuition”, Hahn (1933) draws attention to 

a number of famous examples of ‘pathological’ mathematical objects, drawn mostly 

from analysis, and identifies these as cases in which ‘visual intuition’ is shown to be 

inherently unreliable. Objects of this kind include everywhere-continuous-nowhere-

differentiable functions, space-filling curves, ‘sponges’ with zero volume and infinite 

surface area, and so forth. Prior to their discovery, such objects would very likely 

have been dismissed as impossible, with the fault apparently lying with the 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12 I leave it to the reader to consider how this proof works—it takes considerable 
imaginative probing before one can fully ‘get’ the proof, and it is therefore often 
dismissed much too quickly as being merely suggestive, rather than (as I take it in 
fact to be) genuinely demonstrative. 
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unjustified appeal to the visual. In virtue of their similarity, it will suffice to consider 

just one of these cases: functions that are everywhere continuous, but nowhere 

differentiable (i.e., admitting of tangents at no point). 

The reason why this case does not threaten the claim to reliability of the visual 

is this: One simply does not visually grasp the impossibility of such a function in a 

clear way. In contrast, Euclid does use a diagram to clearly establish, e.g., the 

impossibility of a triangle having two equal angles without being isosceles. He does 

so by performing ancillary constructions on the triangular figure, which serve to 

demonstrate (by appeal to topological properties) that the assumption that the relevant 

sides are unequal is contradictory. Nothing like that is true in the case at hand. Rather, 

here one fails to imagine the possibility, and jumps to the conclusion that the function 

is impossible, via a heuristic. 

Moreover, one can appeal to visual diagrams to grasp the possibility of 

constructing such a ‘pathological’ function, through a succession of iterations. 

Indeed, that was precisely the motivation underlying von Koch’s discovery of his 

famous ‘snowflake’, a curve which is everywhere continuous but has no tangents at 

any point. The iterative process for constructing this curve is shown in Figure 2.4. 
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Figure 2.4: The von Koch snowflake 

 

 

 

In von Koch’s own words: 

 

I have asked myself… whether one could find a curve without tangent for 

which the geometrical appearance is in agreement with the fact in question. 

The curve which I found and which is the subject of this paper is defined by a 

geometrical construction, sufficiently simple, I believe, that anyone should be 

able to see through “naïve intuition” the impossibility of a determinate 

tangent. (1906, 146)13 

 

This point generalizes, I believe, to all of the cases of ‘pathological’ functions 

mentioned by Hahn: Even though the completed object cannot itself be visually 

imagined, appropriate visual understanding of an appropriate iterative sequence of 

diagrams is sufficient to allow to subject to ‘see’ that such an object must be possible. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 As quoted in Mancosu (2005, 17). 
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6  Conclusion 

Through examining a range of cases, of the sort often thought to count against the 

claim of visual diagrams as reliable guides to mathematical truth, I have argued that 

the erroneous judgments in these cases are the result, not of any inherent unreliability 

on the part of diagrams themselves, but rather of an unjustified reliance on various 

cognitive heuristics. By restricting intuitive judgments to those that are properly 

grounded in visual understanding, these errors can be avoided. Moreover, they seem 

in fact to be correctable by recourse to the appropriate employment of diagram-based 

visual understanding. 

!
!
!
!
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Chapter 3: Towards a Theory 

 

1 Introduction 

In Chapter 1, we considered the way in which Socrates, in Meno, leads an uneducated 

slave to the spontaneous recognition of a simple truth of plane geometry, by visually 

presenting him with a drawn figure depicting the relevant geometric shapes. The 

discussion there seems to support the claim that genuinely novel mathematical 

knowledge is able to emerge out of the interplay between, on the one hand, 

constraints that are brought to bear on the perceptual understanding of diagrammatic 

representations, and on the other, the form and structure belonging to the figure itself. 

Some of the key components of this view appear to be borne out by recent research in 

cognitive science, which provides support for the idea of a universal geometrical 

competence among humans, as well as for a central role played by pictorial 

representations in the development of basic knowledge of geometry. For instance, 

there is evidence from cross-cultural studies to suggest that, even in the absence of 

formal training, humans universally develop concepts for the basic objects of 

Euclidean geometry (such as points, lines, and angles), and spontaneously converge 

on an intuitive acceptance of some of the basic principles embodied in the postulates 

of Euclid’s Elements, such as the existence of a unique parallel line that can be drawn 

through a given point placed off of a given straight line (Dehaene et al. 2006, Izard et 

al. 2011). There is also evidence to suggest that the development of such ‘natural 

geometry’ in childhood depends upon the integration of innate contributions from 
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multiple ‘core knowledge’ systems, and is thereby something of a constructive 

achievement, rather than merely an innate endowment (Shusterman et al. 2008, Izard 

and Spelke, 2009, Spelke and Lee 2012, Dillon et al. 2013). Moreover, among the 

most obvious vehicles capable of serving effectively as sites of the “productive 

combination” of the requisite forms of core knowledge are a set of “widespread but 

culturally variable cognitive devices, such as pictures, scale models, and maps” 

(Spelke et al., 2010). 

 The task that will be taken up in this and the next chapter is to propose an 

account of the visual understanding of geometrical diagrams in terms of what I will 

call ‘dynamic visual imagery’. The core contention of this dynamic imagery account 

is that mathematical knowledge can arise by perceiving pictorial representations 

‘dynamically’, that is, by employing in a concerted fashion two forms of dynamic 

visual imagery: dynamic aspectual imagery, which enables the subject to perceptually 

grasp the mappings among alternative perceptual integrations of a common pictorial 

surface form, and dynamic transformational imagery, which enables the subject to 

apprehend the perceived figure against a backdrop of imaginatively rehearsed spatial 

transformations of various kinds, including reflections, rotations, and translations. I 

will argue that these basic cognitive tools can serve to generate intuitive knowledge 

of the most fundamental objects and principles of Euclidean plane geometry, when 

they are applied to the pictorial understanding of simple line drawings of appropriate 

character. This will require considering basic features of visual perception alongside 

the basic definitions and postulates of the system set forth by Euclid in Elements.  
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The task will be to explain how concepts and assumptions of the sort 

identified by Euclid as fundamental to the system of plane geometry can arise from 

even more fundamental assumptions that are rooted in the structure of visual 

perception itself. Only by taking this approach will it be possible to provide a 

substantive explanation of our intuitive conviction that Euclid’s postulates are true—

for these basic propositions evidently seem to be true in a way that, while rather 

strikingly ineffable, nonetheless has a phenomenology of being in some sense 

‘presented’ to us by our visual experience. That is, we are not at all neutral in our 

intuitive attitudes to these basic propositions, regarding them merely as ‘axiomatic’ 

starting points that we opt to take on in order to explore their implications; we rather 

seem just to see their truth, in a way that is so visually obvious as to defy articulate 

justification independent of ostensive reference to the images themselves. The goal, 

then, is to explain how this intuitive knowledge arises; the main thesis to be defended 

is that it does so in a way that essentially involves the use of dynamic imagery in 

understanding pictorial representations. On the view that will emerge, global spatial 

structure is dynamically ‘unfolded’ out of the local structures at play in the attended 

portion of the picture plane; it is in a real sense the pictorial forms themselves, as 

perceived, which serve to enforce a recognizably Euclidean character on the space 

they ‘set up’ around themselves. 
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2  Giaquinto’s project 

In this chapter, we will be concerned with Giaquinto’s groundbreaking account of 

basic geometrical knowledge, set out in several articles (1998, 2005) and Chapters 2 

and 3 of his (2007) book. Giaquinto’s account serves as a useful starting point for 

several reasons. First, his account is distinctive among philosophical treatments of 

human knowledge of geometry in being directly informed by results from the 

cognitive science of vision. Second, his account aims to capture the epistemology of 

precisely the sort of ‘obvious’ geometrical propositions with which we are here 

concerned. In particular, Giaquinto takes as his case study a proposition that appeared 

as part of the line of reasoning in the demonstration in Meno, and was accepted as 

true by Meno’s slave immediately and without question upon perception of the drawn 

figure: that the diagonal of a square cuts the square into two equal (congruent) 

triangles. Third, the core features of Giaquinto’s account are broadly compatible with 

the key ideas of the dynamic imagery account, and their consideration thereby 

enables us to begin to see how dynamic imagery can play an important role in the 

acquisition of quite fundamental geometrical knowledge. In particular, Giaquinto’s 

emphasis on the centrality of orientation to the perception of geometric shape, and his 

associated postulation of a reference system, a pair of orthogonal axes of orientation 

that are standardly applied by the visual system to shapes on the picture plane, will 

also end up (with refinements) being critical components of the account to be 

developed throughout this chapter. Finally, some of limitations of the account 
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Giaquinto provides will help to set the agenda for the more comprehensive account of 

basic geometrical knowledge to be developed in the next chapter. 

 By “basic geometrical knowledge” Giaquinto means to refer to knowledge of 

geometry that is acquired by the subject in a way that is neither by testimony nor by 

means of inference from prior knowledge the subject possesses (2007, 35). The target 

piece of basic geometrical knowledge around which Giaquinto develops his account 

is indicated in Figure 3.1: It is that a diagonal line drawn between opposite corners of 

a square divides the square into two equal parts that are perfectly congruent (that is, 

they are the same in both shape and size). 

 

 Figure 3.1: Square with diagonal 
 

 

 

On the face of it, this does appear to be something that we can know immediately and 

non-inferentially, simply by perceiving the structure of the drawn figure. Giaquinto’s 

core contention is that knowledge of this proposition can indeed be acquired from the 

figure itself (either by perceiving a real picture or by entertaining a visual image), by 

bringing appropriate concepts to bear on its perceptual understanding. He is 
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concerned to demonstrate that the knowledge thereby acquired has at least the 

following three features. First, it should be suitably general, applying in scope not 

merely to a particular square, but to the entire class of squares. Second, it should be 

non-empirical, that is, it should not depend on the use of sensory experience as 

evidence for the belief acquired. Third, it should nonetheless depend essentially on 

the use of sensory experience, though of course this will need to be in some non-

evidentiary capacity. Satisfying this third requirement is in many ways the lynchpin 

of Giaquinto’s account, since the epistemic role visual experience is generally 

regarded as inherently evidentiary in character, which raises the question of how any 

non-evidentiary contribution of sensory experience to knowledge is even possible, let 

alone knowledge of a general class of objects. In brief, Giaquinto’s answer, which 

depends on Peacocke’s (1992) account of concept-possession in terms of belief-

forming dispositions, is that if we assume the subject’s possession of appropriate 

geometrical concepts, sensory experience may serve to trigger general belief-forming 

dispositions, yielding general beliefs which may qualify as knowledge, provided they 

meet certain further conditions. Since the resulting account thereby identifies basic 

geometrical knowledge as both non-empirical and essentially sensory-involving, 

Giaquinto notes that it may be interpreted as a defense of a version of the Kantian 

idea that geometrical knowledge is “synthetic a priori” (2007, 47). 
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3 Spatial structure and symmetry 

Giaquinto opens the exposition of his account with a consideration of some general 

features of human visual perception of shapes, which will prove important for the 

discussion to follow in this chapter. To begin with, he takes the perception of lines 

more or less for granted (2005, 31; 2007, 13-14), understanding them as 

consequences of the parsing of scenes by the visual system, by means of constructing 

an initial representation of the surface layout of visual scene, consisting of bordered 

segments (see Nakayama et al. 1995). While visual perception tends to use 

segmentation of surfaces as a preliminary to constructing visual representations of the 

three-dimensional spatial structure of objects in space, Giaquinto points out that, 

particularly in the context of the perception of pictures of Euclidean plane figures, the 

surface borders can also be interpreted merely two-dimensionally, that is, as lines 

laying in a flat plane. We will return to consider the visual basis of geometric lines in 

the next chapter. 

 From there Giaquinto turns to a consideration of orientation and its effects on 

the visual perception of shapes, which he will go on to make use of in providing a 

visual ‘category specification’ for squares, and (on that basis) in specifying a 

geometrical concept for squares that is grounded in visual perception. Mach (1897) 

was the first to draw attention to the radical influence orientation is capable of 

exerting on the perceived forms of objects or figures, as illustrated by the example of 

the square-diamond (Figure 3.2). 
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 Figure 3.2: Square and diamond 

 

 

The two figures are congruent under a rotation of 45 degrees, but perceptually, they 

are apprehended as having quite different ‘shapes’, merely as a result of the 

difference in orientation. While Giaquinto himself does not make the point explicit, it 

is worth pausing to consider that it is perfectly possible for a subject to be visually 

familiar with the shapes of both the square and the regular diamond, and to 

nonetheless fail to recognize that these shapes are identical (in the sense of being 

congruent). In fact, the recognition that they are identical might reasonably be 

regarded as a very elementary example of synthetic a priori knowledge of geometry. 

This is because, at least on the face of it, the insight that this identity holds depends 

essentially on sensory experience, though in a capacity that would seem to be non-

evidentiary, inasmuch as the epistemic force of the insight is not at all undermined by 

raising the prospect that one’s visual perception may not be veridical; it seems beside 

the point, that is, that the appearance of the square figure may be, for instance, a 

hallucination, because the recognition that the apparent shape is identical to a regular 

diamond remains sound. The case is also revealing in that it provides a very clear 

illustration of the way that the two postulated forms of dynamic imagery can interact 
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in order to deliver knowledge of geometry. Plausibly, the identity of square and 

regular diamond might be grasped by means of perceptually understanding Figure 3.2 

in the following way: First, one engages in a 45-degree “mental rotation” (Shepard 

and Metzler 1971) of one or the other of the figures, employing what we have 

characterized as transformational imagery; second, the resulting shift in orientation 

yields an accompanying shift in aspect or interpretive perceptual integration, such 

that the alternative ‘takes’ of square and diamond are apprehended as mapping to the 

same underlying surface form, in an application of what we have called dynamic 

aspectual imagery. 

 It is not yet clear, however, what it is to perceptually grasp a perceived figure 

as square or diamond, or why orientation should exert such a forceful influence on the 

perception of shape in situations of this kind. Here Giaquinto appeals to research from 

the psychologists Irvin Rock and Stephen Palmer on the intimate relationship 

between visual orientation and the perception of reflection or ‘mirror’ symmetry 

(Rock 1973, 1997; Palmer 1983, 1985; Rock and Leaman 1997). To briefly 

summarize the key connection between orientation and symmetry this research 

reveals, the visual system appears to construct representations of shapes by assigning, 

to perceived forms, axes of orientation, typically vertical and/or horizontal; these 

orientation axes then appear to serve as axes for perceptual judgments of reflective 

symmetry. (In fact, the interplay between orientation and symmetry is rather more 

complicated, since an initial ‘first-pass’ evaluation of reflection symmetry seems to 

play a role in the initial assignment of orientation axes, which thereafter serve to 
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support subsequent, more precise judgments of symmetry; see Palmer and Hemenway 

1978.) The visual system seems to have a general preference for vertical and 

horizontal orientations, in the sense that subjects tend to be significantly more 

accurate in making perceptual discriminations across a broad range of tasks—a 

widely studied phenomenon in psychophysics known as the “oblique effect” (Appelle 

1972). For our purposes, the important judgments to consider are those made about 

reflection symmetry and perpendicularity, both of which have been experimentally 

shown to be less susceptible to error when stimuli are presented to subjects aligned 

with vertical or horizontal axes of orientation (e.g., Goldmeier 1972, Ferrante et al. 

1997). 

 Giaquinto, borrowing terminology from Rock, characterizes a reference 

system as “a pair of orthogonal axes, one of which has an assigned ‘up’ direction” 

(2007, 15). Given his subsequent elaboration of geometric concepts in relation to 

reference systems, I take this to be a key posit of Giaquinto’s account, so it is worth 

getting clear on exactly what is meant by this term. One of the key findings of the 

research by Rock and Palmer is that a reference system is assigned to the visual 

representation of an object or figure in a way that can be informed by various factors. 

Retinal orientation plays a role, but tends to be outweighed by the influence of 

environmental orientation: Subjects viewing stimuli with their heads tilted, for 

instance, tend to be as accurate in their judgments concerning environmentally 

upright, but retinally oblique figures as subjects viewing the same stimuli with their 

heads oriented normally (Rock 1997). Environmental orientation, however, is itself 
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liable to be overridden by various framing effects, as illustrated by phenomena like 

that shown in Figure 3.3 (Palmer 1985). 

 

 Figure 3.3: Effect of framing on orientation  

 

 

Here, an embedded figure that would appear diamond-shaped based on either a retinal 

or an environmental (here, page-based) orientation, is instead perceived as square-

shaped, due to the ‘frame’ in which it is embedded. This example illustrates that the 

assignment of orientation, via the alignment of the perceived figure with a reference 

system, is in certain cases determined by the structural layout of the figure itself, a 

phenomenon called “intrinsic orientation” by Rock (1997); he provides the cases 

shown in Figure 3.4 as examples in which figures inherently possess a ‘natural’ 

vertical axis. 
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 Figure 3.4: Intrinsic orientation14 

 

 

Intrinsic orientation is important because it demonstrates the following key fact: 

While the assignment of a reference system appears to be one of the fundamental 

structuring assumptions the visual system brings to bear on the perceptual 

understanding of drawn figures, the manner in which the reference system is aligned 

with the perceived figure is marked by a receptivity to the figure’s inherent structure, 

which in some cases allows the figure itself to effectively ‘set up’ its own orientation. 

 In light of this fact, it is slightly odd that Giaquinto seems to characterize a 

reference system, as such, as a pair of orthogonal axes. The reason this is odd is 

because orthogonal structure is not an inherent feature of all perceived forms, and in 

some cases, it seems to run very much against the structural grain of the figure. For 

instance, the six-fold symmetry of the snowflake, which is perceptually quite vivid 

when one is presented with the form, would be rather obscured by the rigid 

imposition of orthogonal axes, if these were taken to be structurally primary. There 

remains, however, a clear phenomenological salience to the orientation of spatial 

forms simultaneously along orthogonal axes, as becomes quite apparent when 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14 Redrawn from Rock (1997, 139). 
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considering the aesthetics of simple forms. Rudolf Arnheim offers a particularly vivid 

illustration in his Art and Visual Perception (1974, 93-4), in a diagram apparently 

inspired by comments from Wertheimer, shown in Figure 3.5. 

 

 Figure 3.5: Sequence of triangles15 

 

The sequence of five triangles is to be understood as the succession of salient ‘stages’ 

of the continuous motion of the right-side vertex in a downward direction, as the two 

left-side vertices remain fixed in place. The telling point is that the structural 

consequences of the continuous motion of the point are not themselves continuous, 

but rather are parsed into a series of discrete stages determined by the proximity of 

the form to one of these five stages, each with natural orientation along orthogonal 

axes simultaneously. As Arnheim himself points out, however, alignment along 

orthogonal axes is not perceptually inevitable, even in cases for which it is 

structurally intrinsic or ‘natural’ to the figure—as illustrated in Figure 3.6, triangles c 

and d can, with some degree of effort, be seen ‘against their natural grain’ as, 

respectively, oblique (for c) and noticeably deviating from a right-angled ideal (for d). 

  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 Redrawn from Arnheim (1974, 93-4). 
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Figure 3.6: Deviant orientation16 

 

 

 It therefore seems that Giaquinto’s formulation overstates the centrality of 

orthogonal-axis structure, by apparently building it into the inherent nature of the 

visual reference system that gets assigned to perceived figures in general. At the same 

time, it seems clear that there is something privileged about orthogonal-axis structure, 

a fact that is likely bound up with the intimate relationship between orientation and 

reflection symmetry. For one of the findings already mentioned is that sensitivity to 

reflection symmetry is greatest when the symmetry is along the primary axis of 

orientation. If we take the primary axis of orientation (and hence, of reflection 

symmetry) to be the vertical axis, then, it is striking that the only straight line capable 

of intersecting this axis, that would also possess reflection symmetry across it, would 

be a straight line along the orthogonal (that is, horizontal) axis. So the mere fact that 

the primary axis of orientation is associated with reflection symmetry seems 

inherently to endow the orthogonal axis with salience, which may be reflected in 

visual processing in various ways. To an extent this speculation is borne out by recent 

experiments, which have used clever techniques to distinguish twofold reflection 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16 Redrawn from Arnheim (1974, 94). 
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symmetry simpliciter from twofold reflection symmetry along orthogonal axes, and 

which demonstrate a significantly greater visual salience of twofold symmetries with 

orthogonal axes as compared with twofold symmetries with non-orthogonal axes 

(Treder and van der Helm 2007). As we proceed in this chapter and the next, it will 

turn out to be important that the human visual system is not constrained to fix 

orientation with respect to an orthogonal pair of axes. It will also turn out to be 

important, however, that the visual system has a natural preference for orthogonal-

axis orientation. 

 We now return to the question of what it is to perceive a figure as a square vs. 

as a diamond, and why this difference in perceptual aspect would be tied to 

orientation. Giaquinto proposes that to recognize a figure as a particular kind of shape 

is just to perceive it as satisfying the relevant feature description set, an entity which 

he notes should be understood as playing roughly the same role as the category 

patterns posited by Kosslyn (1994) in his integrated account of visual perception and 

imagery—in essence, these are stored visual templates to which incoming visual 

information is matched in the process of object recognition; in a secondary use, they 

can play the role of driving the formation of visual imagery, especially in the absence 

of (or absence of attention to) visual inputs. Since sets of feature descriptions function 

to specify the category of the object being perceived, Giaquinto also describes them 

using the term “category specification”. The question then, thusly framed, is how the 

category specifications of squares and diamonds, respectively, differ in their feature 

descriptions. Following Palmer (1983), Giaquinto proposes that in both category 
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specifications, a prominent feature description will be the reflection symmetries that 

exist along the primary pair of orientation axes (2007, 21-2). In both cases, the 

primary axes are vertical and horizontal, but due to the different orientations of the 

two otherwise-identical figures this same pair of axes imposes different primary 

symmetries, as shown in Figure 3.7. 

 

 Figure 3.7: Square and diamond with main symmetry axes17 

 

 

The figure on the left is perceived as having reflection symmetries along 

orthogonal axes that cut the opposite sides at their midpoints; the figure on the right is 

perceived as having reflection symmetries along orthogonal axes that bisect the 

opposite angles. These different sets of perceived reflection symmetries have 

immediate geometrical consequences that serve to distinguish the two figures, in 

virtue of the way they enforce mappings between the structural components internal 

to the figure. The symmetries perceived in the figure on the left map opposite sides to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 Redrawn from Giaquinto (2007, 22). 
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one another, and map adjacent angles to one another. This effectively enforces 

rectangularity on the perceived figure, though these primary symmetries do not 

actually guarantee that the perceived figure is a square, as becomes evident when one 

imagines either the vertical or horizontal pair of sides changing in length; it is 

apparent that this spatial transformation would not violate symmetry along these two 

primary axes. Similarly, the symmetries perceived in the figure on the right map 

opposite angles to one another while also mapping adjacent sides. This guarantees 

equality of all the sides, but not equality of all the angles; one can imagine deforming 

the figure into a rhombus with varying angle measures without violating the primary 

reflection symmetries. 

 The empirically motivated proposal that orientation axes serve also as axes for 

the perception of reflection symmetry, then, turns out to provide a satisfying account 

of the phenomenological difference between perceiving the common square-diamond 

feature under the two different orientations. Intriguingly, while the figure in both 

cases is surely perceived as having all of its sides and all of its angles at least 

approximately equal, the difference in symmetry-based feature descriptions in each 

case ‘locks onto’ only one of these equalities, leaving the other ‘insecure’, or 

potentially variable. Once this difference is pointed out, it seems intuitively to get our 

phenomenology right. That is, the left-side figure forcefully asserts itself as 

rectangular, leaving no doubt as to the perpendicularity of all its angles, but is not so 

assertively square, that is, equal in respect of the lengths of all its sides. Conversely, 

the right-side figure patently has all equal sides, but the angles, which do seem at 
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least roughly perpendicular, nonetheless seem as though they could easily slip into a 

slight incongruence without our noticing. This is interesting insofar as the common 

figure, which lies at the intersection of the larger classes of rectangles and rhombuses, 

is perceived differently, effectively in virtue of its alignment with one or the other of 

these classes. From the perspective of the dynamic imagery view, however, there is a 

deeper significance, for the phenomenological effect of these different symmetry 

assignments can be seen to consist essentially in the dynamics those symmetries 

impose on the figure. Both figures are, we might say, allowed to stretch or compress 

along their vertical and horizontal axes, in the divergent ways that entails under their 

respective orientations. This exemplifies a general feature of axes of reflection 

symmetry that will play an important role in the account to be developed: They not 

only serve to structurally integrate static forms by enforcing mappings amongst their 

parts; they also serve to structure the dynamics of the space, rendering translation 

along the axis salient, in a sense negatively, precisely by enforcing restrictions on 

translations across the axis. 

 As is evident from the foregoing discussion, reflection symmetry about 

vertical and horizontal axes is not sufficient to distinguish squares from the broader 

class of rectangles. This implies that additional feature descriptions will need to be 

added to the category specification for squares. Giaquinto proposes that in order for a 

shape to be perceived as square rather than merely rectangular, it is necessary that it 

be perceived as having additional, secondary reflection symmetries about the two 

oblique (45-degree) axes, which will be fixed in relation to the initial assignment of 
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the primary (vertical and horizontal) axes. Giaquinto himself explicitly presents this 

postulation of a secondary sensitivity to symmetry about oblique axes merely as a 

convenient assumption (2007, 23), but in fact, the psychophysical evidence indicates 

that the sensitivity to reflection symmetry of the human visual system is distributed 

across different orientations of axes in just the manner Giaquinto proposes: Vertical 

symmetry is most salient, followed by horizontal, and then symmetry about the 

diagonal (45-degree) axes of orientation, with the latter having been found to be 

significantly stronger than for non-diagonal oblique orientations (Wenderoth 1994). 

The proposal of symmetry perception along secondary axes of lesser salience is, 

moreover, able to account for how the square can be perceived as possessing the same 

symmetries that serve as the primary feature descriptions for the diamond-shape, 

while still being perceived as primarily square-shaped rather than diamond-shaped. 

 

4 A perceptual concept for squares 

Giaquinto is now in a position to provide the full category specification for the visual 

recognition of squares, which contains the following feature descriptions: 

 

Plane surface region, enclosed by straight edges; 

edges parallel to H, one above and one below; 

edges parallel to V, one each side. 

Symmetrical about V. 

Symmetrical about H. 
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Symmetrical about each axis bisecting angles of V and H. (2007, 23) 

 

“V” and “H” here, of course, refer respectively to the vertical and horizontal axes of 

orientation. Now, one might expect this category specification itself to be identified 

as a perceptual concept of squares, but on the framework Giaquinto borrows from 

Peacocke (1992), it is the disposition to form beliefs in certain contexts that is 

regarded as criterial of concept possession. As such, the perceptual concept for 

squares will be framed in terms of the disposition to form beliefs, and can be stated 

concisely in terms of the category specification just provided, as follows: 

 

The concept {square} is the concept C that one possesses if and only if the 

following holds: When an item x is represented in one’s perceptual experience 

as [approximately satisfying the category specification] and one trusts the 

experience, one believes without reasons that that item x has C. Conversely, 

when one trusts one’s perceptual experience of an item x, one believes that x 

has C only if x is represented in the experience as [approximately satisfying 

the category specification]. (2007, 27)18 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
18 In fact, Giaquinto’s full statement of the perceptual concept {square} includes an 
additional clause designed to capture the fact that perceptual concepts can be applied 
to support inferences concerning things that are not being perceived. Given that our 
interest here is in things that are being perceived, we can ignore this complication for 
the sake of simplicity. 
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Note that there are actually two distinct senses ascribed to the term “C” here: The 

references to an item ‘having C’ presumably indicate that item’s possessing the 

property C that is picked out by the concept C. As Giaquinto notes (2007, 28-9), the 

perceptual concept for squares just characterized is a vague concept, since it captures 

the relationship between a disposition to form the belief that an item is square and the 

perceptual representation of that item as approximately (as he puts it, “nearly or 

completely”) satisfying the various description features that make up the category 

specification for squares. This is sensible, insofar as lines can be represented in 

perception as more or less straight or parallel, figures can be represented as more or 

less symmetrical about some axis, and correlatively, figures can be represented as 

more or less square. But of course, a geometrical concept for squares should not have 

this indeterminacy. Therefore, Giaquinto proposes that we can define such a 

geometrical concept of a (perfect) square based on the initial perceptual concept, by 

specifying that the item must be represented in one’s perceptual experience as 

perfectly satisfying the description features of the category specification. One might 

doubt whether human perception could ever represent an item as perfectly satisfying 

the description features of straightness, parallelism, symmetry, and hence as being 

perfectly square. Giaquinto’s response is to point out that, since there is “a finite limit 

to the acuity of perceptual experience, there are lower limits on perceptible 

asymmetry and perceptible deviation from (complete) straightness” (2007, 28). 

Accordingly, it is possible for our perceptual experience to represent certain items as 
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perfectly instantiating the relevant description features, and hence, as falling under 

the geometrical concept {perfect square}.19 

 Even granting this point (to which we will return in the next chapter), one 

might still worry that the concept {perfect square} imposes an unrealistically exacting 

constraint on the drawn figures that are capable of engaging the concept. In particular, 

these figures will have to be perceptually indistinguishable from perfectly square 

figures in order to be able to activate the belief-forming dispositions that will issue in 

general beliefs about geometric squares, on Giaquinto’s account. If his account is 

subject to this stricture, it is doubtful that it will be able to provide a realistic 

explanation of basic geometrical knowledge as it figures, for instance, in Meno. For it 

is simply implausible that Socrates’ demonstration depends on the figures being 

drawn perfectly. Giaquinto anticipates this problem, and responds that a figure that is 

a visibly imperfect instance of a square might still activate the belief-forming 

dispositions associated with the concept {perfect square} indirectly, via visual 

imagination (2007, 39). In this case, the subject would perceive the figure as 

(imperfectly) square (presumably using the perceptual, not geometrical, concept for 

squares), and is thereby caused to imagine a perfect square. While Giaquinto’s 

exposition of his account assumes that the figure itself can be perceived as perfectly 

square, then, this can be understood simply as a convenient assumption, given that the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
19 As Giaquinto explicitly notes, there are surely other concepts expressed by the 
word ‘square’ that are appropriately characterized as geometrical concepts; his claim 
is just that the geometrical concept for squares that is useful for explaining basic 
geometrical knowledge about squares is plausibly a modification of the perceptual 
concept, of the kind just indicated (2007, 29). 
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concept {perfect square} could be indirectly engaged by an imperfectly square figure 

in this manner. 

Giaquinto’s proposal that perception of a visibly imperfect square might cause 

visual imagery of a square that is perceptually indistinguishable from a perfect one 

seems plausible, insofar as it arises naturally out of the idea that the perceptual 

concept for squares is grounded in a “category specification” (in his own 

terminology) or what Kosslyn (1994) calls a “category pattern”. These category 

patterns can be thought of as stored templates that are matched to incoming visual 

information in object recognition. Visual imagery, on Kosslyn’s view, can arise when 

a category pattern is activated in the absence of visual input. As such, it is plausible 

that a figure that only approximately satisfied the activation conditions of the 

category pattern might issue in visual imagery of a more ‘perfect’ or idealized version 

of the figure itself, resulting from the activation of the category pattern itself. 

Giaquinto’s proposal still leaves some important questions unanswered, however, 

concerning the content of the perceptual experience the subject has, when perceiving 

a visibly imperfect figure in conjunction with visual imagery of a more idealized 

form. The view defended here will be that the contribution of imagery to perceptual 

content should be understood in relation to the depictive content of the figure. We 

will return to this point in the next chapter when we discuss the question of what it is 

to perceive a geometrical line. 
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5 Basic geometrical knowledge 

Having now offered a statement of the geometrical concept {perfect square}, 

Giaquinto is ready to provide his account of basic geometrical knowledge. Recall that 

the specific instance of knowledge Giaquinto wants to explain is one of the steps that 

is taken to be obvious in the geometrical demonstration in Meno: that a straight line 

drawn between opposite corners of a perfect square (that is, along the diagonal) will 

divide the square into two parts that are perfectly congruent (see Figure 3.1). On his 

account, acquiring this bit of knowledge, for the special case of the particular drawn 

figure (that is, not yet for the class of squares in general), will depend on two 

conditions. First, the figure must be perceptually represented as satisfying one of the 

description features of the category specification for squares: namely, reflection 

symmetry about (one of) the oblique axes assigned as part of the reference system. 

Second, the perceiver must possess the concept of congruence. Here is what 

Giaquinto says: 

 

Suppose one has a concept for geometrical congruence. If a figure a appears 

to one symmetrical about a line l and one trusts the perceptual experience, one 

will believe that the parts of a either side of l are congruent. (2007, 36) 

 

Given that Giaquinto’s statement of the geometrical concept {perfect square} links 

the perceptual judgment that an item is (perfectly) square directly to (perfect) 

reflection symmetry about the axis on which line l is drawn, this does provide a 



! 96!

plausible starting point for understanding how we can acquire knowledge of the 

relevant truth in the special case of the particular figure. This is, however, all that 

Giaquinto says about knowledge of the special case. One would like to hear more, in 

particular, about the nature of the concept for geometrical congruence, and how its 

belief-forming dispositions are engaged by the perception of reflection symmetry. 

Presumably, the statement of the concept for congruence (the relation between two 

figures with both the same shape and size) would not explicitly mention reflection 

symmetry itself, since the general property of congruence applies in many cases that 

lack reflection symmetry. And while one might be tempted, pre-theoretically, to think 

that the mere perception of reflection symmetry in some sense inherently ‘involves 

the idea’ of congruence, that claim itself stands in need of a more precise statement, 

and seems difficult to reconcile with Giaquinto’s claim that symmetry, in the sense in 

which it occurs as part of the category specification for squares, is intended to be non-

conceptual, merely a feature “that the visual system can detect and represent” (2007, 

33-4, note 39). In the next chapter, we will return to the problem of the perceptual 

basis of a geometrical concept for congruence, and its relation to symmetry. 

 The other feature that is missed in Giaquinto’s rather brief explanation of how 

we acquire knowledge of the special case has to do with a point that he makes vividly 

elsewhere in his book: “The creative heart of the discovery process lies in viewing a 

form in two ways at once” (2007, 158). The description ‘two ways at once’ is 

especially apt because indeed, it really is crucial for the perceiver to be able, not 

merely to view a figure under different aspects at different times, but further, to 
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represent the single figure as viewable in both ways. Indeed, this unified 

representation of the coincidence of multiple aspectual integrations is precisely the 

role played by what I have termed dynamic aspectual imagery. What is not fully clear 

is whether or not Giaquinto regards the same point as applying in the case of basic 

geometrical knowledge—whether seeing Figure 3.1 in ‘two ways at once’ is taken to 

be important in acquiring knowledge of congruence (in the special case), on his 

account. For Figure 3.1 does seem to have the kind of pictorial ambiguity that 

Giaquinto regards as playing a key epistemological role. One way of seeing this 

figure grasps it as a single square, with an interior line that can be thought of as 

placed onto the square. The other way of seeing it grasps it as a pair of adjacent 

triangles that share a border. Intuitively, these different ways of seeing the figure 

seem to parse it into different sets of ‘objects’, and correspondingly, they implicitly 

endow the figure with different dynamic profiles: On the first interpretation, the 

diagonal line (a positive ‘object’ instead of a negative border) could be placed 

differently onto the square; on the second interpretation, the triangles (as distinct 

‘objects’) could be arranged into different configurations that are not necessarily 

square-shaped. On the account of the concept of congruence to be given later, being 

able to perceive the figure in these ‘two ways at once’ will turn out to be crucial, 

because the judgment of congruence of parts will require imaginatively rehearsing a 

spatial transformation that necessarily destroys the original square. 

 In any case, having indicated how knowledge of congruence in the special 

case is to be acquired, Giaquinto proceeds to consider how this knowledge could be 
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extended to cover the general case, that is, how we can acquire knowledge that the 

congruent-parts property holds for any square. Here is the full passage in which 

Giaquinto first characterizes knowledge of the general case, beginning with the two 

sentences quoted above, which explain knowledge of the special case: 

 

Suppose one has a concept for geometrical congruence. If a figure a appears 

to one symmetrical about a line l and one trusts the perceptual experience, one 

will believe that the parts of a either side of l are congruent. We can further 

say that if a appears to one symmetrical about l, regardless of whether one 

trusts the experience one will believe that if a were as it appears (in shape), 

the parts of a either side of l would be congruent. With this antecedent 

condition, it is only the apparent shape of a that is relevant: having that shape, 

the shape that a appears to have, suffices for the attributed property. So one 

has a more general belief, about any figure having the apparent shape of a, 

that it has the attributed property. This is the level of generality that we 

require for geometrical truths. (2007, 36) 

 

Here Giaquinto assumes that the subject who perceives figure a (i.e., Figure 3.1) can, 

as he puts it, “think of its apparent shape demonstratively, as that shape” (2007, 35). 

Of course, if an account along these lines is going to be able to explain how the 

subject can come to form the belief that all perfect squares have the congruent-parts 

property, the content of the demonstrative “that shape” will have to abstract away 
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from differences in size, orientation, and position. That Giaquinto understands the 

scope of the demonstrative “that shape” in this way is clear from his characterization 

of the following belief-forming disposition (“PS” for “perfect square”), which he 

imputes to the perceiver: 

 

(PS) If you were to perceive a figure as perfectly square, you would believe of 

its apparent shape S that whatever has S is perfectly square, and that whatever 

is perfectly square has S. (2007, 36) 

 

It is the possession of this disposition (PS), on his account, which licenses the 

perceiver to treat the demonstratively grounded property “having S” and the 

geometrical property “being a perfect square” as “cognitively equivalent” in the sense 

that they will automatically be taken as substitutions for each other in inferences 

(2007, 38). Giaquinto appears to take the disposition (PS) to follow automatically 

from the dispositions inherent in three different concepts he assumes the perceiver to 

possess: the demonstrative concept {that shape} (or “S”),20 the geometrical concept 

{perfect square}, and finally, an additional concept for restricted universal 

quantification, or {r.u.q.}. Giaquinto doesn’t provide a complete statement of {r.u.q.}, 

but offers the following key fact about it: 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
20 Giaquinto himself doesn’t explicitly state that the demonstrative expression “that 
shape” expresses a demonstrative concept, but this seems like a reasonable 
interpretation. Note that, unlike possession of the other concepts to which he appeals, 
possession of this one will not only be specified relative to some (potential) 
perceptual experience, but will itself depend upon the actual occurrence of a 
perceptual experience. 
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If one has the concept of restricted universal quantification, one will believe 

the proposition ‘‘Every F has G’’ when and only when one would find cogent 

any given inference of the form ‘‘x has F, so x has G’’. (2007, 35) 

 

With these tools in place, Giaquinto is almost ready to provide his explanation of how 

the subject perceiving figure a is able to arrive at the general belief that all perfect 

squares have the congruent-parts property. Recall that he has already explained the 

forming of a belief about the special case (i.e., that the property holds for the 

particular square in the drawn figure) in terms of the following disposition: “If a 

figure a appears to one symmetrical about a line l and one trusts the perceptual 

experience, one will believe that the parts of a either side of l are congruent” (2007, 

36). In order to state the more general belief-forming disposition, about any figure 

with the same shape, he will need to say something along these lines: One will 

believe that for any figure with the apparent shape of figure a, the parts either side of 

that figure’s ‘line l’ would be congruent. Since “l” itself refers to particular line in 

figure a, though, that formulation will not do—Giaquinto needs a way for the subject 

to think about the line that corresponds to l in the generic case. He proposes, 

therefore, that the subject will need an additional concept for perfect correspondence. 

He provides a truth-conditional definition of correspondence of lines: 
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A line k through b corresponds to line l through a if and only if some 

similarity mapping of a onto b maps l onto k. (2007, 37) 

 

Giaquinto is now ready to characterize the belief-forming disposition (called “C” for 

“congruence") that will enable the subject to grasp the general truth about all figures 

with the same shape that figure a is perceived as having: 

 

(C) If one were to perceive a plane figure a as perfectly symmetrical about a 

line l, then (letting ‘‘S’’ name the apparent shape of a) one would believe 

without reasons that for any figure x having S and for any line k through x 

which would perfectly correspond to l through a if a were as it appears, the 

parts of x either side of k are perfectly congruent. (2007, 37) 

 

Since (C) includes a conditional disposition to form a belief about “any figure x 

having S”, it must therefore depend on {r.u.q.} operating in conjunction with the 

demonstrative concept {that shape}. Beyond that, the possession of (C) will of course 

depend on the possession of concepts for perfect congruence and for perfect 

correspondence. As stated, (C) itself is not yet a disposition to form a belief about 

geometrical squares as such, but given that the antecedent of the conditional (that a is 

perceived as symmetrical about some line l) is satisfied by perceptions of figures as 

square (taking l as the diagonal), and given also that (PS) licenses the subject to 

regard “having S” and “being perfectly square” as cognitively equivalent, we can take 
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the subject to possess as well, the following disposition—effectively, a paraphrase of 

a special case of (C): 

 

(C*) If one were to perceive a plane figure a as perfectly square, one would 

believe without reasons that for any perfect square x and for any diagonal k of 

x, the parts of x either side of k are perfectly congruent. (2007, 38)21 

 

Having reached this point, Giaquinto pauses to comment on the significance of what 

he takes this to demonstrate: 

 

The point here, the truly remarkable point, is that if the mind is equipped with 

the appropriate concepts, a visual experience of a particular figure can give 

rise to a general geometric belief. In short, having appropriate concepts 

enables one to ‘‘see the general in [the] particular’’. One cannot have those 

concepts without having a disposition to form a general belief as a result of a 

certain kind of visual experience. In the example at hand the general belief is 

the target belief that the parts of a square each side of a diagonal are 

congruent. (2007, 38-9) 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21 Strictly speaking—and as Giaquinto himself notes—possessing (C*) will further 
require one to have a concept for diagonals, so that one will be able to “think of a line 
through perfect square x which would correspond to a diagonal of a if a were 
perfectly square as, simply, a diagonal of x” (2007, 38).  
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Two comments are in order here. First, Giaquinto takes his account to have provided 

a solution to a restricted version of what was introduced at the conclusion of Chapter 

1 as the generality problem—the problem of how to grasp truths about a general class 

of objects by perceiving a depiction of only a particular instance from that class. The 

reason Giaquinto’s solution applies only to a restricted version is because squares are 

all geometrically similar (in shape) to one another—a feature that enables his account 

to derive a general claim from {r.u.q.} in connection with {that shape}, and also to 

appeal to a restricted concept of correspondence that is defined in terms of a 

“similarity mapping”, or “shape-preserving transformation”. The problem is more 

difficult in the case of claims quantifying over all triangles, for instance, since 

triangles are not all geometrically similar to one another; the account as it stands will 

not be equipped to handle these more difficult cases.22 Nonetheless, even the 

restricted version of the problem that arises for squares is far from trivial. 

 The second comment concerns Giaquinto’s claim that the solution to the 

generality problem (in its restricted version) is entirely a matter of possessing the 

right concepts. While it is true that a perceptual experience must occur in order to 

“trigger” the belief-forming dispositions entailed by possession of those concepts, it is 

indeed remarkable that on his account, the concepts themselves are taken as sufficient 

to dispose the subject to form a fully general geometrical belief immediately upon 

perceiving the particular diagram. Of course, according to DIA, dynamic imagery, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
22 Giaquinto does offer an account of how he thinks these difficult cases can be 
handled. That account will be discussed when we consider the generality problem 
directly in Chapter 5. 
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and not just concepts, plays a critical role in deriving geometrical beliefs from 

perceived figures. Therefore it is worth a careful look to see whether concepts are 

really able to accomplish what Giaquinto supposes they are. We have already 

identified a lacuna in Giaquinto’s account of the special case of congruence-of-parts, 

which seemed to point to a role for imagery of the sort posited by dynamic imagery 

account; we will now see that the same point applies to his account of the general 

case as well. 

 

6 Criticism of Giaquinto’s view on generality 

Consider that on the account just provided, generality (in the sense of the subject 

being disposed to form a belief about all members of a general class of geometrical 

objects) arises primarily due to the interaction of {r.u.q.} with the demonstrative 

concept {that shape}. These are the ingredients in common between the bases for the 

two general belief-forming dispositions (PS) and (C), which are themselves 

ultimately used in conjunction to determine (C*). In the case of (PS), the concept 

{perfect square} is also involved; in the case of (C), the concepts of correspondence 

and congruence are. It’s not difficult to see why {r.u.q.} and {that shape} would be 

the crucial ingredients in getting to a general geometrical belief (or a disposition to 

form such general beliefs): Effectively, the former is just a disposition to draw 

generalizations from an arbitrary case, and the latter is just a way of pointing to the 

feature that the perceived case has in common with the intended class of objects. In 

particular, {r.u.q.} disposes the subject to believe that “Every F has G” whenever the 
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subject finds cogent some inference of the form “x has F, so x has G”. In the cases 

Giaquinto presents, “F” would be the property of having “that shape” 

(demonstratively fixed in relation to a perceptual representation of figure a) and “G” 

would be either the property of being perfectly square (in order to determine the first 

disposition in (PS), that anything with that shape is a perfect square), or the 

congruent-parts property (in order to determine (C), the disposition to believe that 

anything with that shape has the congruent-parts property). 

What is unclear, however, is that the perception of figure a as having either of 

these properties “G” should be counted as a case in which the subject finds the 

inference “figure a has that shape, so figure a has G” cogent. The “so” here, of 

course, is crucial: The universal generalization to “Every F has G” is only logically 

valid provided that an inference has been made from “x has F” to “x has G” without 

any other assumptions having been made about x. Has the perceiver, in the cases 

Giaquinto describes, really made such an inference to “figure a has the property of 

being perfectly square” or “figure a has the congruent-parts property” merely on the 

basis of the judgment that “figure a has that shape”? It depends on how we 

understand the content of the demonstrative “that shape”. If this is understood simply 

to mean “that perceptual appearance” (i.e., the total manner in which figure a is 

represented in perception), then it does seem plausible that the perceiving subject’s 

subsequent judgments, about further properties figure a is perceptually represented as 

having, can be regarded as inferences made only on the basis of the demonstrative 

judgment “figure a has that appearance”. Given that figure a does depict what seems 
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commonsensically to be just a certain shape, it is tempting to think that when it comes 

to the appearance of figure a, we can treat “that shape” and “that appearance” as 

equivalent. 

It is clear, however, that Giaquinto intends “that shape” to pick out a more 

specific property of figure a (as represented in perception), which it has in common 

with other figures that do not necessarily have the same appearance. This is evident in 

the latter of the two belief-forming dispositions that make up (PS): that upon 

perceiving a figure as perfectly square, and also thinking of its apparent shape 

demonstratively, as “that shape”, one will believe that anything that is perfectly 

square will have that shape. If this is to be a perspicuous belief-forming disposition, it 

has to be the case that all perfect squares have the same shape. But we have already 

seen that all perfect squares do not have the same perceptual appearance: If a perfect 

square is oriented obliquely, it may appear not as square but rather as rhombic, or 

diamond-shaped. This shows that “that shape” will have to be understood as a picking 

out a property that abstracts away from differences in orientation, as well as 

differences in spatial location and size—indeed, if this were not the case, it could 

hardly serve to underwrite geometrical beliefs concerning properties that hold for all 

geometric squares. But this means that the content of “that shape” will have to 

abstract away from many of the features that are part of the perceptual appearance 

itself. 

As such, it seems that the belief-forming disposition {r.u.q.} does not apply to 

these cases in quite the way Giaquinto supposes. In particular, it is not directly 
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engaged by the general demonstrative concept {that shape}, but only by the more 

specific demonstrative concept {that appearance}. This is for the straightforward 

reason that the universal generalization to “Every F has G” is only valid (and is only 

licensed by Giaquinto’s {r.u.q.}) provided that “x has G” has been inferred by 

assuming nothing about x aside from its having F. This condition is easily met in the 

context of formal logic, where we can begin by introducing an ‘arbitrary x’ simply as 

a free variable, and can then reason about x in a fully general manner, by ensuring 

that any assumptions made about x (on which our subsequent judgments of the form 

“x is G” will be based) are discharged in the generalization step. In the present 

context, however, it seems that “x” is just figure a, as represented in the perceptual 

experience of the subject, and the judgments corresponding to “x is G” are perceptual 

judgments to the effect that figure a, as perceived, has the properties being square and 

congruent-parts. The absence in perception of anything corresponding to a truly 

arbitrary figure x (about which nothing at all is assumed) might lead one to that think 

the whole attempt to apply {r.u.q.} to perceptual judgments is misguided from the 

outset. After all, we don’t even seem to be capable of perceptually representing a 

figure adequate to the description “arbitrary figure x is that shape”—for we will 

always have “assumed” in our perceptual experience certain features, such as 

orientation, that are not mandated by the figure possessing the property of being that 

shape.23 Upon reflection, however, it is straightforward to recognize that {r.u.q.} can 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
23 One possible response on behalf of Giaquinto might be to say that when he speaks 
of the subject thinking of the figure’s apparent shape demonstratively, what he has in 
mind is that the subject thinks of the figure’s perceptual appearance, as a whole, 
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be made to apply to perceptual judgments, provided that we specify our assumption 

“x is F” as the assumption that the (“otherwise arbitrary”) figure-as-it-appears x has 

precisely the appearance represented in the subject’s own perceptual experience. 

For it does seem true that subjects are able to infer that figure a should have 

the properties being square and congruent-parts on the sole basis of the 

demonstrative judgment “figure a has that appearance”; after all, this demonstrative 

judgment encompasses all the features of the perceptual representation of figure a on 

the basis of which those further properties are perceived to hold. The subsequent 

universal generalization will then be valid: The subject possessing {r.u.q.} will then 

be apt to believe that any figure that was exactly as figure a appeared to be (not just in 

‘shape’, but in general) would have the geometrical properties that figure a appears to 

have. This is not enough to get us to a belief about squares in general, of course, but 

the belief formed by the “triggering” of this disposition by perception of an 

appropriate figure is nonetheless a belief with some nontrivial scope of generality, 

and it is of essentially the sort Giaquinto is aiming at; insofar as it depends crucially 

on sensory experience, but in a thoroughly non-evidentiary role, it can reasonably be 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
under the description “arbitrary figure of that shape”. In that case, {r.u.q.} could be 
used to validly generalize over perceptual judgments the subject goes on to make in 
relation to the figure, while thinking of its appearance in this way. Moreover, the idea 
is not implausible, given that we often do seem to think of a particular drawn figure 
as (depicting) “an arbitrary square”, for instance. But this response only defers on the 
real question at issue, which now takes the form of how it is possible for the subject 
perspicuously to think of the figure’s appearance under the description ‘arbitrary 
figure of that shape’. How is the subject able to recognize that the figure as it appears 
does serve suitably as an arbitrary instance of that shape? This is just the question for 
which Giaquinto’s account lacks a clear answer; on the alternative account sketched 
below, it is suggested that dynamic imagery can underwrite the perceptual recognition 
that the particular square figure serves as an arbitrary instance of its shape. 
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described as “synthetic a priori”. That sensory experience is playing a non-

evidentiary role here is implied by the fact that the justification for the belief—that 

any figure that was exactly as this one appears to be would have the property or 

properties in question—does not depend on the assumption that this figure is as it 

appears to be (that perception is veridical, that is).24 This is the important grain of 

truth in Giaquinto’s claim that concepts are sufficient to take us from the visual 

perception of a particular figure to knowledge of a general truth of geometry. 

The problem is that the belief in question, while it does ascribe geometrical 

properties to objects of a certain general class, is only able to pick out that class of 

objects by means of demonstrative reference to one’s own private perceptual 

experience. Moreover, the demonstrative concept {that appearance} seems too fine-

grained to be able to engage the belief-forming dispositions of our general 

geometrical concepts, such as {perfect square}, which abstract away from various 

features of particular appearances. The concept {that shape} is pitched at the right 

level to comport with our concepts for geometrical objects, but as we’ve seen, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
24 One might wonder whether this fact, that the belief’s justification does not depend 
on veridical representation of anything in the external world, is really sufficient to 
establish that the belief is truly “a priori” in the sense that it does not depend on the 
use of sensory experience as evidence. An alternative view might try to construe the 
belief’s justification as ultimately empirical, in the sense that it depends on one, in 
effect, observing oneself having a perceptual experience as of the figure, and 
perceptually judging that the figure (as it appears) has this or that property; on this 
sort of view, one might argue that it is a condition on justification that one’s higher-
order (perhaps ‘introspective’) awareness represents the (first-order) perceptual 
appearances in a way that is veridical. This challenge raises general questions 
concerning the epistemology of perceptual experience that are beyond the scope of 
this chapter; they will need to be addressed carefully, at a later point. Giaquinto 
himself considers and responds to a version of this challenge (2007, 56-9). 
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ascriptions of {that shape} are unable to support universal generalizations from 

perceptual experience in accordance with {r.u.q.}, precisely because they abstract 

away from some of the features necessarily present in the perceptual representation of 

the figure, which is itself what grounds the ascriptions of geometrical properties that 

we would seek to generalize. Of course, it might well seem obvious to the subject 

perceiving figure a that the geometrical properties observed to hold of it depend only 

on the figure’s shape, and not on its size, position, or orientation—but this cannot be 

taken for granted in the present context, because the task at issue is precisely to shed 

light on the psychological underpinnings of our intuitive knowledge of just such 

‘obvious’ truths. It appears that Giaquinto’s purely concept-based approach is unable 

to fully account for the intuitive obviousness of the claim that any square has the 

congruent-parts property. 

Nonetheless, the mere fact that it seems so obvious that the relevant 

geometrical properties of figure a depend only on its shape suggests that perhaps 

Giaquinto was correct in supposing that the generality of this belief hinges on 

something like the ability to think demonstratively about “that shape”, in abstraction 

from the more fine-grained property picked out by “that appearance”. It is unclear, 

though, what it is for a subject to think demonstratively about a given shape in itself. 

Given the central role played by {that shape} in Giaquinto’s account, it is somewhat 

surprising that he doesn’t offer an explicit account of what it is to possess a general 

concept of shape, such that one could come to form the belief that two figures, with 

different appearances, are the same in shape (the square and the diamond, for 
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instance). Nonetheless, he does offer a suggestive hint, in an endnote that clarifies the 

notion of a “similarity mapping”, in terms of which the concept of correspondence 

was defined (as we saw earlier). Here is the endnote, which is worth quoting in full: 

 

A similarity mapping is a shape-preserving transformation, such as uniform 

expansion or contraction, rotation, translation, or any composition of these. 

(We include the null transformation among similarity mappings.) Let a and b 

be similar, i.e. figures with the same shape. Imagine a contracting or 

expanding uniformly until it forms a figure a′ the same size as b; then imagine 

a′ moving so as to coincide with b. Any such similarity mapping maps each 

line through a onto a line through b. (2007, 47, note 4) 

 

While Giaquinto’s aim in this endnote is merely to specify the notion of “similarity 

mapping” that figures in his definition of correspondence (of lines), the passage 

provides a clear indication of how a general concept of shape might be specified, in 

terms of the ‘shape-preserving’ transformations that constitute a similarity mapping. 

Suppose, for instance, that one possesses the concept shape if and only if one is 

disposed to believe a figure to have the same shape as a given figure just in case one 

is disposed to believe that the former can be transformed into the latter (or into 

coincidence with it) by means of some composition of uniform expansion or 

contraction, rotation, and translation. Giaquinto even offers a description of the kind 

of perceptual experience that could give rise to a judgment that x and y have the same 
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shape, namely, an imaginative rehearsal of the sequence of spatial transformations 

that are required to make the figures coincide. 

 This proposal helps to flesh out the idea that one can think of the shape of 

figure a demonstratively, as “that shape”. What one will be thinking of here is the 

property shared by a general class of figures, such that they can be mapped onto 

coincidence with figure a (or vice versa) by a sequence of expansion/contraction, 

rotation, and translation. Suppose we then postulate, along the lines of the dynamic 

imagery account outlined earlier, the existence of dynamic transformational imagery 

that enables the subject to imaginatively rehearse spatial transformations of these 

kinds, in such a way that the representation of the figure-as-transformed is integrated 

with the representation of the figure-as-untransformed in perceptual content. We will 

then have at least a sketch of a plausible explanation for why the subject perceiving 

figure a should find it obvious that the geometrical properties the particular figure is 

perceived to possess are ones that depend only on the figure’s shape. For the subject 

will be able to perceive the figure against a backdrop of imagined transformations of 

the shape-preserving kinds, and will thereby be able immediately to see that 

transforming the figure in any these ways will still leave a figure that can be 

perceived as (for instance) a perfect square. 

This proposal provides at least a plausible route to explaining how the 

perception of a particular figure as having a certain geometric property (such as 

being perfectly square) can lead to a judgment that any figure with that shape would 

have that geometric property. It is importantly different from Giaquinto’s purely 
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concept-based proposal, which supposes that {r.u.q.} can license the generalization 

“any figure with that shape is perfectly square” on the grounds that the subject has 

drawn the inference “x has that shape, so x is perfectly square”. The problem, as we 

have seen, is that {r.u.q.} licenses no such generalization, because the subject has 

drawn no such inference: The subject never perceptually represents an otherwise 

arbitrary figure x with that shape—rather, the subject represents the total appearance 

of figure a and judges of the particular figure, as it appears, that it is perfectly square. 

Since the appearance includes the ‘assumption’ of features aside from shape, {r.u.q.} 

will not automatically attribute the subsequent property ascription to the shape itself. 

Moreover, Giaquinto’s account as it stands is unable to explain how the subject might 

be able to apprehend the distinctive dependence of the geometric property on the 

figure’s shape, as opposed to its size, orientation, or position. That is just what the 

present proposal is able to do—by appealing to dynamic imagery. It proposes that the 

general concept of shape can be specified in terms of invariance under a certain set of 

spatial transformations. By imaginatively rehearsing those transformations, applied to 

the particular figure, the subject is able to see that the properties seen to hold of the 

particular figure are themselves invariant under the transformations. Accordingly, the 

subject is in a position to judge that the properties (such as congruent-parts) seen to 

hold in the special case (that is, of the particular figure, as it appears to be) will hold 

for all figures of the same shape. This is just an initial sketch of how dynamic 

imagery can be applied toward a solution of the restricted version of the generality 

problem that arises in cases like the one Giaquinto considers. The purpose in 
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sketching the account here is to illustrate that the appeal to dynamic imagery is 

equipped to do real explanatory work at precisely the point where the explanations 

provided by Giaquinto’s concept-based approach appear to encounter problems. 
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Chapter 4: Basic Knowledge of Geometry 

 

1  Introduction 

Having in the previous chapter considered and critically evaluated Giaquinto’s 

account, we proceed in this chapter to consider how the insights thereby gained can 

help to set the agenda for developing a more comprehensive account of basic 

geometrical knowledge, one that is capable of explaining our intuitive belief in the 

truth of Euclid’s postulates. 

 

2 An assessment of Giaquinto’s account 

There is a good deal of extant literature concerning the visual perception of 

geometrical forms, on the one hand, as well as concerning the epistemological 

foundations of Euclidean plane geometry, on the other. The account we have just 

examined in the previous chapter, however, is distinctive in that it considers basic 

geometry from both psychological and epistemological vantage points, and aims to 

connect these two domains in order to explain how our knowledge of the fundamental 

propositions of Euclidean plane geometry could be grounded in features of human 

visual perception. As we have just seen, however, Giaquinto’s account as it stands 

fails to provide a fully satisfying answer to some of the key questions it aims to 

address in relation to the specific geometrical proposition it takes as its case study. 

Even to the extent that it is successful in handling this case, it is unclear how its 

approach might be generalized to apply to other, even more fundamental, 
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propositions of geometry. This chapter takes up the project Giaquinto has set out on, 

and attempts to provide a more comprehensive account of basic geometrical 

knowledge, which aims to explain our intuitive knowledge of the most fundamental 

propositions of Euclidean geometry, corresponding to Euclid’s own postulates. It will 

be argued that the postulation of dynamic imagery plays an important role in the 

acquisition of this knowledge. The account to follow is based in part on features of 

Giaquinto’s own account, and is at the same time partly motivated by the limitations 

of this account. Accordingly, we begin by reviewing some of his account’s key 

virtues, along with some of its limitations. 

One important virtue of Giaquinto’s account is the central role he assigns to 

the perception of orientation and symmetry in the understanding of geometric figures. 

To begin with, Giaquinto draws attention to the manner in which the perception of 

form depends on the assignment of orientation, by means of aligning the perceived 

figure with a reference system that consists of certain axes of orientation, whose 

assignment in relation to the figure is sensitive to the structural features inherent to 

the figure itself. This latter point will prove important, because it will help to explain 

how Euclidean spatial properties can arise ‘locally’, in the space the figure is 

perceived to set up around itself. The fact that a reference system can also be assigned 

by the conscious direction of attention is important as well, since it provides a 

mechanism by which a perceiver can actively determine a shift in the perceived 

aspectual integration of a figure. Giaquinto also draws attention to the crucial fact that 

the axes of orientation serve additionally as axes of symmetry. As illustrated by the 
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square-diamond example, reflection symmetry can be shown to influence the 

perception of certain geometrical properties, such as the equality of the lines or angles  

‘mapped’ to one another by reflection about an axis. As we also noted, reflection 

symmetry appears to structure the perceived dynamics of the figure, in the sense that 

certain spatial equalities are ‘locked in’ by the reflection symmetry, while others are 

left ‘variable’, depending on the assignment of the axis of reflection. In particular, the 

perception of reflection symmetry seems to determine the range of spatial 

translations that can easily be imagined: Translations across the axis, which would 

violate the reflection symmetry, are precluded, while translations along the axis, 

which respect the reflection symmetry, are perceived as possible or even salient. 

Symmetries in general will play a central role in the application of dynamic imagery 

to basic geometry, precisely because of the deep relationship between the perception 

of symmetry and the imagination of spatial transformations. 

 The other key virtue of Giaquinto’s account that bears special mention is the 

way that he combines ideas from Kosslyn and Peacocke in order to explain how the 

possession of perceptual concepts for geometrical objects or properties (such as 

square) can dispose the perceiver to form beliefs about the geometrical properties of a 

figure automatically, on the basis of the visual detection of features such as 

symmetry. By building (Kosslyn-style) visual category specifications directly into the 

content of geometrical concepts (understood, Peacocke-style, as belief-forming 

dispositions), Giaquinto provides a framework in which geometrical concepts can be 

identified in terms of the visual experiences that would be apt to generate beliefs 
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employing those concepts.25 This general approach will prove especially fruitful in 

combination with dynamic imagery, since imaginative rehearsals of spatial 

transformations will themselves be included among the visual experiences capable of 

engaging our geometrical concepts. We will then be able to characterize our concepts 

for geometrical relations like parallelism and congruence, for instance, in terms of 

our dispositions to make judgments of parallelism and congruence on the basis of 

imaginatively rehearsing spatial transformations of certain specific kinds. 

 Giaquinto’s account also has some significant limitations, however. For it is 

unable to provide a complete explanation of our intuitive knowledge of the 

proposition Giaquinto takes as his case study: that every square divides into two 

congruent parts along its diagonal. The judgment that this proposition holds can 

usefully be thought of as involving two stages: In the first stage, the subject judges 

that the congruent-parts property holds in the special case, that is, for the particular 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
25 As we saw earlier, Giaquinto stresses the distinction between “perceptual concepts” 
(which are vague and therefore apply to approximate instances) and “geometrical 
concepts” (which are still based in the same visual category specifications, but which 
properly apply only to perfect instances). While the distinction he draws here is quite 
real, it is unclear that it is best captured as a distinction between different concepts (or 
different kinds of concepts). After all, the vague “perceptual” concept already 
implicitly characterizes the sort of object that would satisfy the more exacting 
“geometrical” concept. Indeed, the view that one and the same concept engages with 
both approximate and perfect instances seems to provide the most natural means for 
explaining how a visual experience of a perceptibly imperfect drawn figure can 
activate visual imagery of a perfect instance, which is imaginatively ‘projected onto’ 
the visual experience of the drawn figure, along the lines Giaquinto himself suggests 
(2007, 39). Instead of drawing a distinction between two sorts of concepts, then, we 
will speak more inclusively about ‘perceptual concepts for geometrical properties’, 
and will understand these concepts to apply properly just to perfect instances, but to 
be responsive to imperfect (or approximate) ones as well, and thereby to support the 
judgment that a line is approximately straight, for instance. 
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figure, as it appears; in the second stage, the subject judges that the first judgment 

holds in general—that the congruent-parts property is possessed by all squares. As 

we’ve seen, Giaquinto’s account faces unresolved problems at both stages. In 

explaining the first stage, he assumes that the perception of reflection symmetry 

issues directly in a belief about congruence, but this leaves a mystery concerning how 

the belief-forming dispositions of the general concept for congruence come to be 

engaged by the perception of symmetry. This is precisely where dynamic imagery can 

be useful: If we understand the concept congruence in terms of the rigid spatial 

transformations that would suffice to demonstrate congruence, we have a natural link 

to the perception of reflection symmetry, given that reflection (which can be 

imagined as folding across the axis) is among the relevant spatial transformations. 

Giaquinto’s explanation of the second, generalization stage is similarly incomplete, 

because his account turns on an appeal to the demonstrative content {that shape}, 

which proves unable to engage the belief-forming dispositions of his {r.u.q.} in the 

way he supposes. As we’ve seen, however, putting pressure on his appeal to {that 

shape} leads quite naturally to a view in which the concept shape can be engaged 

directly by the imaginative rehearsal of dynamic spatial transformations, in a way that 

can provide the subject with an intuitive basis for generalizing over the class of 

figures with the same shape. The general impression, then, is that if we take seriously 

the question of how the more fundamental concepts he invokes, such as shape and 

congruence, can be constituted so that they are engaged by our visual experiences in 
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the appropriate ways, we find ourselves pushed in the direction of granting an 

important role to dynamic imagery. 

 This consideration already highlights an important limitation of Giaquinto’s 

account: It is not pitched at as fundamental a level as one might desire for an account 

of basic geometrical knowledge. Giaquinto takes as his case study a proposition about 

squares, and accordingly, considers {perfect square} as his key example of a 

geometrical concept. It is evident just from examining his category specification for 

squares, however, that this concept presupposes more fundamental ones, for it 

specifies that the edges are “straight” and the opposite ones “parallel”. It seems 

reasonable to suggest that, in the absence of a prior account of what is to perceive a 

line as straight, or two straight lines as parallel, one has not really been given a 

complete account of what it is to perceive a figure as square. Moreover, we have just 

seen that, in attempting to explain our knowledge of this proposition about squares, 

Giaquinto’s account encounters problems precisely around the appeal to the more 

fundamental concepts of shape and congruence, which are simply taken for granted. 

This suggests that what is needed is an epistemological account that approaches the 

subject matter of geometry beginning with its most fundamental concepts and 

principles—only on that basis will we be able to provide a truly comprehensive 

account of geometrical knowledge. Of course, the classical statement of the 

fundamental concepts and principles of Euclidean plane geometry is given by Euclid 

himself, in the list of definitions and postulates that are stated at the beginning of 
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Elements. In order to set the agenda for the investigation to follow, we will look to 

Euclid as our guide. 

 

3 Applying dynamic imagery to Euclid’s starting points 

In the rest of this chapter, then, we will put dynamic imagery to work explaining our 

most fundamental intuitive knowledge of Euclidean plane geometry, and we will take 

knowledge of Euclid’s postulates as our target. The five postulates are stated as 

follows: 

 

1. To draw a straight line from any point to any point. 

2. To produce a finite straight line continuously in a straight line. 

3. To describe a circle with any center and distance. 

4. That all right angles are equal to one another. 

5. That, if a straight line falling on two straight lines make the interior angles on 

the same side less than two right angles, the two straight lines, if produced 

indefinitely, meet on that side on which are the angles less than two right 

angles.26 

 

Of course, Euclid’s postulates are only meaningful provided that one has a grasp of 

the concepts they employ: straight line, right angle, and so forth. In considering each 

postulate, we will begin by specifying a perceptual concept for each of the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
26 Here and throughout, I follow Heath’s edition of Elements (Euclid, 1956). 
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geometrical terms appearing in the statement of the postulate. These perceptual 

concepts will be specified along the lines indicated by Giaquinto, in terms of the 

conditions that must be met by the perceptual experience of a figure, in order that it 

should be apt to issue in a judgment ascribing the relevant geometrical property to the 

figure. Having in this manner specified the concepts involved in the postulate, we will 

proceed to explain how the subject can acquire intuitive knowledge of the postulate, 

by means of perceiving an appropriate figure, ‘animating’ the perceptual experience 

of the figure by employing dynamic visual imagery, and bringing the relevant 

concepts to bear on the experience, thereby arriving at the judgment that the postulate 

is true. Throughout, our specifications of the concepts will be informed by a careful 

reading of Euclid’s own definitions; at the same time, we will be guided by the 

constraint that our geometrical concepts should be constituted in such a way that they 

are apt to be engaged by possible perceptual experiences of appropriate figures. 

Moreover, rather than assuming that the subject antecedently possesses concepts for 

geometrical objects and properties, we will, when possible, aim to show how these 

concepts themselves can arise synthetically out of the interplay between the visual 

system’s inherent sensitivity to certain spatial features, on the one hand, and the 

perceived forms themselves, on the other. 

In explaining intuitive knowledge of Euclid’s postulates (or their equivalents), 

we will rely only on a core set of minimal assumptions about the visual perception of 

drawn figures. We will not rely on any assumptions about the geometry of the 

subjective ‘visual space’ in which the figures are perceptually ‘given’ to the subject: 
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In particular, we will not assume that visual space inherently possesses the properties 

of zero curvature (the ‘flatness’ of Euclidean space guaranteed by Euclid’s fifth 

postulate) or even constant curvature (the uniformity-in-all-directions guaranteed by 

his fourth postulate, which characterizes not only Euclidean, but also elliptic and 

hyperbolic spaces). This is just as well, given the compelling reasons—already 

suggested by informal observations regarding the many well-known geometrical-

optical illusions—for doubting that visual space can be adequately described by 

Euclidean geometry (Suppes 1977), or indeed, by any single, consistent geometry 

(Wagner 2006). On our approach, Euclidean spatial properties are not held to be a 

priori in the sense that the perception of a drawn figure already involves or includes 

its being perceived as located ‘within’ some preexisting space that has Euclidean 

properties already ‘built in’. Instead, it is the figures that are held to come first; 

Euclidean space will always arise locally, in the figures, and will be ‘unfolded’ out of 

them, as the space they effectively set up around themselves. In fact, in the context of 

the present account, it is in a certain sense misleading to talk of “Euclidean space” at 

all, since we will only ever properly be concerned with Euclidean figures, and with 

the manner in which they enforce Euclidean structure onto the (extended) figures that 

can be ‘unfolded’ or constructed out of them. We will never have a need for a 

Euclidean “space” (or an intuition thereof) to serve as a ‘venue’ that provides for the 

possible presence of Euclidean figures ‘within’ it. 

 The key assumptions we will make concerning the visual perception of drawn 

figures can be roughly indicated as follows. We inherit our first two assumptions 
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more or less directly from Giaquinto’s account, with some modifications. The first is 

that the visual system assigns to any perceived figure a reference system, consisting in 

the alignment of the figure with one or more orientation axes, which themselves can 

serve secondary roles as axes of perceived symmetries. Based on observations made 

earlier, we will assume that a privileged “up” direction is inherent to any reference 

system, and that the visual system strongly prefers to assign the primary axis or axes 

of orientation vertically and/or horizontally with respect to this “up” direction (and 

otherwise, along one of the diagonals).27 Secondary axes may also be assigned, at 

various orientations. In addition, we assume that the assignment of reference system 

can be influenced by both environmental orientation and the figure’s ‘intrinsic’ 

orientation, as well as by deliberate attention. 

We also borrow from Giaquinto the assumption of perceptual concepts for 

geometrical properties. We will construe these rather more narrowly, as consisting in 

dispositions that visual experiences representing certain kinds of objects as having 

certain spatial symmetries should issue directly in judgments ascribing the correlative 

geometrical properties to those objects. (That is, we will attempt to establish a much 

tighter connection between geometrical concepts and the perception of symmetry in 

particular.) Similar to Giaquinto’s own view, we will allow that these concepts are 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27 The proposal that any of these four orientations (and not just the vertical) can be 
assigned as primary with respect to “up” comports well with the psychophysical data 
reported by Wenderoth (1994), which shows that sensitivity to reflection symmetry 
peaks at these four specific orientations, with greatest sensitivity at the vertical 
orientation, followed by the horizontal, and finally the two diagonals. It also explains 
our apparent ability to perceive straight lines (which have only one salient axis) as 
horizontal or oblique. Presumably other orientations can be accommodated to one of 
these four, by means of shifting the assignment of the “up” direction. 
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vague, such that they can support judgments of both approximate and perfect 

straightness (for instance), and will also suppose that figures that approximately 

satisfy the relevant visual category specifications are apt to give rise to visual imagery 

of an idealized or ‘perfect’ version of the (imperfect) figure, which is overlaid onto 

one’s visual experience of the figure itself. In this manner, the perceiver is able to see 

the perfect (ideal) object in the imperfect (drawn) figure—in something akin to the 

way one can look at an ordinary picture and see its depictive content in the surface 

markings.28 In general, we will understand judgments of perfect straightness, etc., to 

be ascriptions of these properties, not to the drawn figures themselves, but rather to 

the ideal geometrical objects that are their depictive contents. 

 Our two final assumptions are just the two forms of dynamic visual imagery 

postulated by the dynamic imagery account. As is by now familiar, dynamic 

aspectual imagery captures the perceiver’s ability to see a figure (as Giaquinto put it) 

‘in two ways at once’—that is, to see it as seeable in multiple ways. Of course, this 

presupposes the ability to see a figure in some or other ‘way’, which in the present 

context comes down to three things: parsing a figure into constituent parts, assigning 

it a reference system, and perceiving symmetries. It also presupposes the ability to 

attend to the continuity of certain parts across aspectual shifts. For instance, in 

understanding the proof of Euclid’s Proposition I.1, the perceiver will need not only 

to represent each of the three lines, alternately, as radii of the relevant circles, and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
28 See Wollheim (1980) for the original statement of the ‘seeing-in’ idea in relation to 
pictorial perception. 
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also as sides of the triangle, but moreover, to grasp in each case that it is the very 

same line that belongs to both structures (see Figure 4.1). 

 

 Figure 4.1: Diagram for Euclid’s Proposition I.1 

 

 

  

 

 

In order to accommodate this perceptual awareness of continuity across alternative 

aspectual integrations, we will assume that visual perception includes something like 

the “object files” that have been postulated to explain subjects’ visual tracking of 

persisting individual objects, independently of the properties that subjects ascribe to 

those objects in perceptual representation (Kahneman and Treisman 1984, Kahneman 

et al. 1992). 

Dynamic transformational imagery captures the ability to visually imagine the 

spatial transformation of a figure or one of its parts—in effect, to see it ‘in two 

positions at once’ (the position it does occupy, and the one it would, under the 

relevant transformation). While we can visualize spatial transformations of various 
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kinds, for the purposes of this chapter, the relevant transformations are just the rigid 

motions (or ‘isometries’) of reflection, translation, and rotation, which we take as 

basic. We will assume that reflections of planar objects are imagined as rotations in 

three-dimensional space about the axis of reflection—effectively, the object gets 

‘flipped over’ (or ‘folded over’) so that it comes to rest again in the original plane. 

Translations and rotations, on the other hand, are imagined as motions within the 

plane, either along an axis (in the case of translation) or about a point (for rotation). In 

addition to the ability to imagine spatial transformations applied to the objects 

represented by perception, we also include, as part of dynamic transformational 

imagery, the ability to imagine the visual consequences of adjustments in subjective 

perspectival vantage point: for example, visually scanning across an image, or 

visually ‘zooming in’ on, or ‘zooming out’ from an image.29 These latter 

transformations do affect the subject’s perceptual representation of the relevant object 

(e.g., a line may appear to grow smaller when one imaginatively ‘zooms out’ from 

it), but they are thought of as transformations of one’s perspective on a stable object, 

rather than transformations of the object itself. Finally, we will assume that different 

transformations can be imagined concurrently, and that transformational imagery in 

general can operate concurrently with aspectual imagery, in such a way that the two 

kinds of dynamic imagery interact in perception. For example, given that dynamic 

aspectual imagery may involve parsing a figure into different sets of component 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
29 See Chapter 10 of Kosslyn (1994) for discussion of the inspection and 
transformation of visual images, including the operations of imaginative ‘scanning’ 
and ‘zooming in’. 
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parts, the choice of parsing will have implications for the range of dynamic 

transformations that can be applied to these parts. Conversely, since the perception of 

symmetries will on this account be understood in terms of the rehearsal of isometries 

(that is, rigid motions), transformational imagery will have implications for aspectual 

integrations, which are themselves partly structured by perceived symmetries. 

These are all the assumptions, then, that we will need in order to explain our 

intuitive knowledge of Euclid’s postulates: the ability to assign a reference system, to 

apply perceptual concepts, and to employ dynamic aspectual imagery and dynamic 

transformational imagery in an integrated fashion. If this small set of core 

assumptions is indeed sufficient to this task, it is a remarkable fact, since these 

assumptions exclusively concern processes of visual perception, rather than any 

distinctively ‘cognitive’ processes. As we will see in the next chapter, this same set of 

core assumptions is in fact sufficient to explain, further, how our intuitive knowledge 

of plane geometry can be extended beyond the postulates, to the propositions proved 

in Book I of Elements. For the time being, however, the focus is just on fundamentals. 

 

4 The common notions 

Of course, the ‘first principles’ of Euclid’s system are only partly comprised by the 

five postulates; these stand alongside his five “common notions”, so called because 

they are meant to capture assumptions that are not specific to geometry, but which 
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geometry shares in common with other sciences.30 The common notions are stated as 

follows: 

 

1. Things which are equal to the same thing are also equal to one another. 

2. If equals be added to equals, the wholes are equal. 

3. If equals be subtracted from equals, the remainders are equal. 

4. Things which coincide with one another are equal to one another. 

5. The whole is greater than the part. 

 

The common notions are noticeably more abstract than the postulates: Instead of 

specific objects, they concern the general notions of equality, addition/subtraction, 

greater/lesser, and whole/part, which will end up being applied by Euclid to quite 

different kinds of objects—lines, angles, triangles, and so forth—in relation to which 

these notions will take on quite different spatial meanings. (For instance, the greater-

than relation as it applies to lines is quite different from the corresponding relation 

that applies to angles.) This abstract character might seem to make the common 

notions inherently bad candidates for being grasped by means of pictorial perception, 

and hence to place them outside the scope of our account. One might therefore 

naturally be led to conclude, against what has just been claimed, that we will need to 

take on further assumptions that are not of a distinctively perceptual character, but 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
30 This goes back to Aristotle’s division of first principles into the postulates that are 
peculiar to a given science, and the axioms that are common to all sciences. See 
Heath’s editorial commentary in Euclid (1956), pp. 117-122. 
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instead concern the subject’s possession of prior knowledge of a more abstract, 

logical character. Upon further reflection, however, the common notions can be seen 

to accord much more naturally with the perception-based approach of our account 

than initial impressions might suggest.31 

It is useful to begin by considering Common Notion 4, which is quite 

plausibly read not as an axiom at all, but rather as an attempt at defining the abstract 

notion of equality (as it figures in Euclidean plane geometry, that is) in terms of the 

perceptible spatial property of coincidence. Matters are somewhat complicated here 

by the fact that Euclid employs the notion of equality in plane geometry in two 

distinct senses. First, there is equality as in the sense of congruence, which applies 

univocally to lines, angles, and plane figures. For instance, Proposition I.4 states that 

if two triangles have two sides equal, and the angle contained by those sides also 

equal, the triangles will themselves be “equal” to one another (Euclid 1956, 247). 

Here the claim that the triangles are equal is plausibly read as the claim that the 

triangles are congruent—that is, identical in both shape and size. On the other hand, 

Proposition I.38 reads as follows: “Triangles which are on equal bases and in the 

same parallels are equal to one another” (Euclid 1956, 333). In this case, the equality 

asserted between the triangles cannot be understood as congruence, because triangles 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
31 Of course, if the task were to explain the subject’s knowledge of unrestricted 
versions of the common notions, which would apply outside of spatial contexts, the 
challenge of providing a thoroughly perceptual basis for this knowledge would be 
much greater. Here our task is merely to explain knowledge of the common notions 
as they apply in the context of plane geometry; as such, we will only be concerned to 
explain knowledge of the equality and relative magnitude of the relevant objects, 
namely: lines, angles, and plane figures. 
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on equal bases and in the same parallels are not, in general, congruent; here 

“equality” must rather be understood to refer to equality of planar area. 

 Let’s consider, first, equality in the sense of congruence. If we read Common 

Notion 4 in this sense, it states that if two things coincide, then they are congruent. 

Here we may take coincidence to be the relation two objects have when they align 

with each other perfectly, such that one object is directly ‘on top of’ the other in the 

plane. It is standard, however, to take Common Notion 4 as licensing the method of 

superposition, in which one plane figure is ‘applied to’ another, so that they 

coincide.32 This is the method Euclid uses to prove Propositions I.4 and I.8; in both 

cases, he reasons that if one triangle is applied to another, such that certain of their 

parts coincide, the triangles’ other parts will coincide as well, and will therefore be 

equal. If we interpret Common Notion 4 together with the method of superposition, 

we can see that it follows that two things are congruent, not merely if they do 

coincide, but if they can be made to coincide by means of the ‘application’ of one 

onto the other. Moreover, Euclid’s own reasoning in Propositions I.4 and I.8 appeals 

not only to Common Notion 4, but also to its converse: In particular, Euclid reasons 

that if one straight line is applied to another that is equal to it, then the two straight 

lines will coincide. This indicates that (at least restricting ‘equality’ to the sense of 

congruence, which is the sense that applies to straight lines) Euclid accepts a 

biconditional form of Common Notion 4. Putting these points together, we have the 

basis for a definition of congruence: In particular, two objects are congruent if and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
32 See Heath’s commentary in Euclid (1956), p. 225. 
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only if they can be made to coincide with one another by means of the ‘application’ 

of one object onto the other. The important thing to notice here is that the property in 

terms of which congruence is defined—namely, potential coincidence under some 

possible ‘application’—is itself a perceptible symmetry of the kind that is able to 

engage a perceptual concept for geometrical congruence, on our approach. In 

particular, a concept for congruence can be specified in terms of the disposition to 

believe that two planar objects are congruent if and only if one believes that some 

sequence of rigid motions would map the objects into spatial coincidence with one 

another. The former belief is a geometrical one; the latter is perceptual, grounded in 

the capacity to imaginatively rehearse visual imagery of the spatial transformation of 

one of the perceived objects, by reflection, translation, and rotation. So far, then, 

Common Notion 4 seems to comport quite naturally with the core assumptions of the 

dynamic imagery account. 

 As already indicated, there is an additional complication, resulting from 

Euclid’s use of the term “equal” sometimes to refer not to congruence but to equality 

of area—a use that first occurs in the statement of his Proposition I.35. This 

proposition is the first in a series, in the course of which Euclid develops what is 

effectively an account of area-preserving transformations (which, unlike the ‘basic’ 

transformations considered in this chapter, involve deformations of planar objects). 

The culmination of this series is Proposition I.45, in which Euclid provides a general 

procedure for constructing a parallelogram (of any angle-size) that is equal in area to 

any given rectilinear figure. While a complete discussion of area-preserving 
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transformations will need to be deferred to the next chapter, those transformations, 

which can be specified in a way that is independent of the notion of area, will enable 

us to specify a complete perceptual concept for equality of area, along the same lines 

as our perceptual concept for congruence. In particular, possession of this concept 

will consist in a disposition to judge two plane figures to be equal in area just in case 

one judges that the two plane figures can be made to coincide with one another other 

under the appropriate spatial transformations. For the time being, however, we can 

understand Common Notion 4, on the reading under which it refers to equality of 

area, simply as it is stated: that is, as asserting that coincidence is a sufficient 

condition for equality (of area). Taking account of the associated method of 

superposition, we can say that Common Notion 4 corresponds to a part of our 

perceptual concept for equality of area, which consists in a disposition to judge two 

plane figures to be equal in area whenever one believes that they can be made to 

coincide by applying some sequence of rigid spatial transformations. 

 In the context of this understanding of Common Notion 4, it is now possible 

to interpret Common Notion 5 along similar lines, as playing a definitional role, 

rather than an axiomatic one. In particular, it can be read as an attempt to define the 

abstract greater-than relation (and, by implication, the lesser-than relation) in terms 

of perceptible part-whole relations. Common Notion 5 states: “The whole is greater 

than the part.” Now, in Euclidean plane geometry, there are three different kinds of 

magnitude to which the greater-than relation applies, and correspondingly, three 

different kinds of part-whole relationships: A whole line is greater (in length) than 
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one of its parts (e.g., one of the lines into which it divides, when intersected by a 

different line), a whole angle is greater (in angular size) than an angle contained 

within it (e.g., one of the acute angles into which a right angle divides, when a line is 

drawn bisecting the right angle), and a whole plane figure is greater (in area) than one 

of the plane figures it contains (e.g., one of the two triangles contained by a square 

that has been divided along its diagonal). Of course, so far we have only said that 

standing in the part-whole relation in the right manner is a sufficient condition on 

instantiating the greater-than relation; we will need the converse in order to have a 

genuine definition of greater-than in terms of the part-whole relation. Here it is 

useful to borrow, from Common Notion 4, the idea of spatial coincidence and the 

associated method of superposition. We can then say that one object is greater than 

another if and only if the latter can be applied to the former, so that it coincides with 

one of its parts. As was the case with Common Notion 4, this will give us, initially, 

only a restricted concept of greater-than: Because ‘application’ refers to rigid 

motions only, we will need to restrict greater-than to apply only to pairs of objects 

that are commensurable (such that their parts can be made to coincide) by means of 

rigid motions. We could accomplish this by restricting our definition to apply only to 

straight lines, rectilinear angles (that is, angles contained by straight lines), and 

similar plane figures (or more broadly, pairs of plane figures such that one is 

congruent to some part of the other). The second of these three restrictions is 

innocent, since the only angles Euclid ever refers to in Elements are rectilinear ones, 

and it is unclear that there is any other useful notion of angle (given that the ‘angles’ 
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formed by curves are sensibly regarded as identical to the angles formed by the 

straight lines tangent to those curves at the point of intersection). The other two 

restrictions, however, are not so innocent. Eventually, we would like our concept of 

greater-than to be able to figure in judgments about a straight line being longer than a 

curved line, say, or a square being larger than a triangle, even when these two plane 

figures are of such shape and size that no set of rigid motions will make one to 

coincide with a part of another. 

The problem is that rigid motions do not provide a general means for 

comparing all such pairs of objects. Like the concept of equality we associated with 

Common Notion 4, the concept of greater-than suggested by Common Notion 5 

thereby stands in need of further elaboration, specifically concerning the spatial 

transformations by which, respectively, two lines of arbitrary curvature, and two 

plane figures of arbitrary shape, can be made commensurable—in the specific sense 

that one can be made to spatially coincide with a (not necessarily proper) part of the 

other. We do, it seems, have at least a rough intuitive grasp of what it would look 

like, visually, for a curved line to be ‘pressed flat’ so that it can be compared to a 

given straight one, and similarly, what it would look like for the ‘matter’ of an 

arbitrary plane figure to be spatially reconstituted, by means of deformation, into 

(say) a rectangular shape such that it can be compared to a rectangle of given 

dimensions.33 But what is lacking in these cases is a grasp of the specific constraints 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
33 These intuitions have clear connections to the ‘conservation tasks’ used by Piaget 
to demonstrate children’s achievement of the ‘concrete operational stage’ on his 
theory of cognitive development, which elicit, for instance, judgments about whether 
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that guarantee that these transformations will conserve the magnitudes of linear 

length and planar area. In contrast, we are supposing that our intuitively basic 

transformations (the rigid motions) are instrumental in fixing the concepts of these 

magnitudes in the first place, via the concept of equality as applied to these 

magnitudes; since equality of magnitude is defined in terms of coincidence under 

rigid motions, there is no room for a question to arise about whether the rigid motions 

guarantee conservation of magnitude. 

To summarize where we have gotten to, Common Notion 4 (together with the 

rigid motions implicated by the associated method of superposition) can be 

understood as defining equality as (potential) spatial coincidence under some set of 

rigid motions. Common Notion 5 then associates the greater-than relation with the 

spatial part-whole relation; together with Common Notion 4, it effectively defines the 

greater-than relation as (potential) spatial coincidence, of one object with a part of 

another, under some set of rigid motions. Neither definition is complete, however, 

because we would like our notions of (equal and relative) magnitude to apply, more 

broadly, to pairs of objects not commensurable by means of rigid motions, and we 

have only a rough intuitive sense of the requisite spatial transformations, which will 

involve deformations of planar objects. It is plausible, I believe, that non-rigid 

transformations can be specified in terms of the basic, rigid ones (drawing 

additionally on dynamic aspectual imagery). In particular, certain non-rigid spatial 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
liquid volume is conserved when the contents of a tall, narrow container are poured 
into a shorter, wider one. The connection between the intuitive understanding of 
conservation of magnitudes in concrete and geometrical contexts is a topic I hope to 
take up in future research. 
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transformations can be shown to preserve equal area, by assuming only the standard 

of equality (of area) that is provided by potential coincidence under the rigid motions. 

For the time being, however, we do have in hand acceptable definitions of equal and 

greater-than, so long as we restrict the application of these notions to pairs of 

geometrical objects that are commensurable by means of rigid motions: that is, pairs 

of straight lines, pairs of rectilinear angles, and pairs of plane figures such that one is 

congruent to some part of the other. That will be more than sufficient for the purposes 

of the present chapter—indeed, it will be enough to get us through the majority of the 

propositions that make up Euclid’s Book I. 

 This leaves us, then, with the first three common notions, all of which employ 

the concept of equality implicitly defined by Common Notion 4, and two of which 

employ, respectively, the new notions of addition and subtraction. Again, these read 

as follows: 

 

1. Things which are equal to the same thing are also equal to one another. 

2. If equals be added to equals, the wholes are equal. 

3. If equals be subtracted from equals, the remainders are equal. 

 

As was true of Common Notions 4 and 5, these three will need to be treated 

differently, depending on whether or not their scope is thought of as restricted to 

objects that are commensurable by rigid motions. Ultimately, they will need to be 

understood as having scope not bound by this restriction: In particular, the 
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unrestricted versions of Common Notions 2 and 3 will need to be employed (in 

Euclid’s proof of I.35) in order to establish the validity of the area-preserving 

transformations that will serve to underwrite the possession of a complete, 

unrestricted notion of equality (of planar area). That more general application of these 

common notions will be taken up in due course; for present purposes, it is sufficient 

to provide an interpretation of the first three common notions in their restricted 

versions, that is, where ‘equal’ is taken in the sense of congruent, a sense that has 

been fully specified by the way we have interpreted Common Notion 4. 

 Under this restriction, then, Common Notion 1 says that if two objects are 

both congruent to some third object, then they are congruent to each other. When we 

consider this conditional alongside the perceptual concept for congruence we have 

articulated above, we can see that no need will arise for assuming Common Notion 1 

as a general principle; rather, the subject will already be able to perceive that it holds 

in any of the particular cases for which the principle might be invoked. For on the 

account just provided, if the subject perceiving a figure is disposed to believe that the 

antecedent of the conditional holds of some particular case—for instance, that each of 

two straight lines is congruent to a third straight line—then the subject will also be 

disposed to believe that (different) rigid motions can be applied to the third straight 

line so as to map it onto perfect spatial coincidence with (respectively) the first and 

second straight lines. That much follows directly from the subject’s possession of the 

perceptual concept of congruence, of the sort that we argued was implicitly specified 

by Common Notion 4. All that is now required is for the subject to rehearse 
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transformational imagery of the third line being applied to each of the first two;34 the 

subject will already be disposed to perceptually judge these imagined applications to 

be rigid motions that bring the lines into perfect coincidence. If the subject now 

perceives the two separate motions (mapping the third line onto the first and second, 

respectively) as conjoined, that is, as parts of a single sequence of rigid motion that 

maps the first line onto the coincidence with the second (via coincidence with the 

third), the subject will thereby undergo a perceptual experience of the total figure that 

includes all these lines, which will be apt to issue in a perceptual judgment that the 

first line is congruent to the second. To put the main point more concisely, the visual 

experience by which the subject sees the third line as congruent to both the first and 

second35 needs only to be reparsed in order to constitute an experience in which the 

subject sees the first line as congruent to the second. The use of dynamic imagery 

allows the subject to perceive that any particular application of Common Notion 1 

will hold true; there is no need, then, to invoke the general common notion as an 

additional assumption. 

A similar point can be seen to hold for Common Notions 2 and 3, once the 

notions of addition and subtraction they respectively invoke can be provided with a 

basis in visual perception. This is relatively straightforward: As is suggested by the 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
34 This imagery is likely to be cued by the activation of the belief that rigid motions 
will map the third line onto coincidence with each of the first two, which is itself 
plausibly prompted by the judgment that the third line is congruent to each of the first 
two. 
 
35 By “visual experience” here, I mean to refer inclusively to both the visual imagery 
of the relevant motions, as well as their appraisal as rigid motions that map the 
objects onto perfect coincidence. 
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statements of these two common notions, these notions can be understood in terms of 

part-whole relationships. In particular, the addition of one object (line, angle, or plane 

figure) to another can be understood in terms of the inclusion of the former object 

within the larger object that results from considering the two objects as parts of the 

same whole; similarly, the subtraction of one object from another can be understood 

in terms of the consideration of the latter as constituted by two parts, one of which is 

the former object.36 No transformational imagery is required in order to perceptually 

grasp addition and subtraction; the only imagistic requirement is the ability to 

entertain alternative part-whole integrations, which of course falls within the scope of 

dynamic aspectual imagery. The perceptual understanding of addition and subtraction 

of geometrical objects does, however, require that the subject be able to arrive at the 

following perceptual judgment: that the parts are collectively equal to the whole. This 

does not itself need to be assumed as a general principle, however, for it can be seen 

to hold in any particular case in which such a principle would apply. Shabel considers 

the case of an angle that is divided into two smaller angles by an interior line; she 

observes that in this case, “the diagram shows us that the parts coincide with the 

whole in the sense that they additively and exhaustively determine the whole” (2003, 

20). Indeed, this spatial coincidence can be seen to hold by employing dynamic 

aspectual imagery to the perception of the diagram, seeing it alternately as depicting a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
36 Given the restrictions presently in place on our interpretation of these common 
notions, we will stipulate that the relevant parts and wholes should all be of the same 
category. For instance, we will take it as a constraint on addition of two straight lines 
that they be collinear, and should thereby additively constitute a whole that is itself a 
straight line. 
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larger angle with a line placed inside it, and as depicting two smaller angles that are 

adjacent and hence share a border. Given that the subject thereby has a perceptual 

experience of perfect spatial coincidence, Common Notion 4 applies 

straightforwardly (that is, without the need to invoke the rigid motions of the method 

of superposition), leading the subject to be apt to judge that the parts that are seen to 

(collectively) coincide with the whole are (collectively) equal to it (in the sense of 

being congruent). 

While no motion needs to be rehearsed in order to grasp the way parts 

additively determine wholes (or the way the subtraction of parts from wholes 

determine other parts, as remainders), perceptual judgments to the effect that 

Common Notion 2 or 3 holds in some particular case will require the use of 

transformational imagery, since these common notions involve the mapping of part-

whole structures onto other part-whole structures. If we consider the application of 

Common Notion 3 to a pair of arbitrarily positioned straight lines, for instance, it says 

in effect that if the two straight lines are equal, and each can be divided into two parts 

such that the first parts are equal, then the second parts will be equal as well. Similar 

to what we observed for Common Notion 1, in this case too a subject who judges that 

the antecedent of the conditional holds will be apt to have a perceptual experience 

that is itself apt to trigger a judgment that the consequent holds.37 In particular, a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
37 Note that it is not being claimed that the subject who makes the initial judgment 
will necessarily have this perceptual experience, nor that the subject who does 
undergo this perceptual experience will necessarily arrive at the latter judgment. This 
is because there is no guarantee that the subject making the initial judgment will 
activate the relevant visual imagery, nor that the subject will succeed in the aspectual 
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subject who sees the whole lines as equal will do so in virtue of rehearsing the rigid 

motion of one whole onto perfect coincidence with the other. Throughout the course 

of this rigid motion, however, the whole line remains available to be seen alternately 

as a conjunction of two adjacent parts, themselves straight lines. Given that by 

hypothesis, the subject believes the first parts of both wholes are equal, the subject 

will be disposed to believe that the rigid motion of the first part of the first whole 

maps it onto perfect coincidence with the first part of the second whole. By 

employing dynamic imagery of both transformational and aspectual varieties in an 

integrated fashion, the subject will thereby be apt to perceptually judge that the 

second part of the first whole maps onto perfect coincidence with the second part of 

the second whole. This is because the subject will grasp the same rigid motion, 

alternately, as the motion of the whole line and as the motion of the conjoined parts. 

Since the wholes and the first parts are both assumed to coincide perfectly under the 

motion, the coincidence of the second parts will be perceived as a direct consequence 

of the fact (which the subject perceptually judges to hold) that the parts are 

collectively equal to the whole. The subject will then be apt to judge that the second 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
reconfiguration of that imagery, nor that the subject will attend to the experience of 
the reconfigured imagery in a manner that triggers the latter judgment. This 
contingency, however, does not undermine the claim that the subject can attain 
genuine knowledge that the conditional holds, nor does it reduce the account provided 
here to a mere psychological generalization. This is because the manner in which the 
initial judgment is “apt to” generate an experience, and the manner in which the 
(subsequently reconfigured) experience is “apt to” trigger a second judgment, is a 
disposition grounded in the possession of perceptual concepts for geometrical 
properties. 
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parts are themselves equal. A parallel explanation applies to the grasp of particular 

applications of Common Notion 2. 

The upshot, then, is that in spite of initial appearances, explaining the basic 

knowledge captured by Euclid’s common notions does not require us to posit 

anything beyond the resources already provided by the dynamic imagery account.38 

For Common Notions 4 and 5 appear to be best understood as implicit definitions of 

equality and relative magnitude, for which perceptual concepts can be specified in 

accordance with our approach. And Common Notions 1-3 need not be invoked as 

independent, general principles, for our account is already capable of accounting for 

the perceptual knowledge of the equalities they assert, in any given particular case. In 

the remainder of this chapter, then, we proceed to apply this account to the task of 

explaining our intuitive knowledge of Euclid’s postulates. In the next section, we 

consider the basic objects to which all of the five postulates (including, tacitly, the 

third) appeal: namely, straight lines. Our investigation of the perceptual 

underpinnings of Euclidean geometry will begin with the fundamental question of 

what it is to have a visual experience of a geometrical straight line. 

 

5 Straight lines 

Straight lines are the ‘basic’ objects of Euclid’s geometry in the sense that throughout 

the Elements, straight lines tend either to serve as the objects assumed as given in the 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
38 Strictly speaking, this has only been established so far for restricted-scope 
interpretations of the common notions, which suffice for present purposes, but not for 
the treatment of planar area as magnitude, which occurs beginning with Euclid’s I.35. 
This will be addressed in the following chapter. 



! 144!

setting-out39 phase of the proof (thus Proposition I.1 begins: “Let AB be the given 

finite straight line…”), or else the objects assumed to be given in the setting-out are 

ones that can be constructed out of straight lines, in ways established by previous 

propositions. An exception to this rule is of course the circle, which might reasonably 

be regarded as comparably basic, since Postulate 3 directly warrants its assumption in 

the setting-out, and it is not constructible out of straight lines in the sense in which 

rectilinear angles and plane figures are so constructible (that is, the placement of 

finitely many straight lines in a certain configuration does not yield a figure that can 

be seen as a circle). Nonetheless (as we will see in more detail later), Euclid’s 

definition of the circle is given in terms of the equality of the straight lines that serve 

as its radii, and the construction of the circle assumed in Postulate 3 (which is 

specified relative to a given radial ‘distance’) is naturally understood in terms of the 

rotation of a straight line about one of its (fixed) endpoints—effectively the same 

procedure used to mechanically draw a circle using a compass. Moreover, the 

exclusive role of circles in Book I40 (which is our focus in this chapter and the next) is 

to establish properties of the straight lines that serve as the circles’ radii: for instance, 

that two straight lines are equal, given that both can be seen as radii of the same 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
39 Classical Greek proofs had a characteristic six-step form that Euclid respects: First 
is the enunciation of the general proposition to be proved, second the setting-out 
which provides the particular figure; the third step, the specification, restates the 
proposition in relation to the particular figure. Thereafter follows the construction, 
which extends the figure (e.g., by drawing additional lines), the proof proper, and 
finally the conclusion, which echoes the original enunciation. See Heath’s 
commentary in Euclid (1956, pp. 129-31). 
 
40 Euclid considers circles in their own right in Book III of Elements. 
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circle. In such cases, the circular parts of drawn figures can be thought of, intuitively, 

as explicit depictions of the rotational trajectories that are available to map these 

straight lines onto coincidence with one another. For these reasons, it seems 

appropriate to treat straight lines as more basic than circles. 

 One might also be inclined to regard points as the truly ‘basic’ Euclidean 

objects. Indeed, points might seem to be the obvious choice from a contemporary 

standpoint, which tends to identify continuous lines with sets of (infinitely many) 

points. This viewpoint, though, is obviously anachronistic as applied to Euclid, and 

seems unlikely to shed light on our basic intuitive understanding of points and lines. 

There are, however, other reasons we might be inclined to take points as ‘most basic’, 

some of which stem from consideration of Euclid’s text itself. The point is, for 

instance, the only object that Euclid defines in entirely negative terms, as “that which 

has no part”, and it is the only object whose placement may be directly assumed in 

the setting-out steps of his demonstrations, without being warranted by any postulate 

or previous proposition—both indications that Euclid regards the point, in contrast to 

the line, as too fundamental to be provided a meaningful analysis. 

One might be tempted to draw a similar conclusion about points and straight 

lines as the one drawn above regarding straight lines and circles: Namely, just as the 

construction of the circle in Postulate 3 can be thought of in terms of the rotation of a 

straight line, so the construction in Postulate 1, “to draw a straight line from any point 

to any point”, can be thought of in terms of the translation of a (third) point, which 

takes it from spatial coincidence with the first fixed point onto coincidence with the 
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second. Now, it does seem intuitively very plausible that curves in general (for our 

purposes: straight lines and circles) are often thought of in terms of motions applied 

to points; indeed, this is effectively how they are drawn in ruler-and-compass 

constructions, which would hardly be possible without moving the (physical) point of 

the pencil across the page. But of course, the trajectory of this movement is always 

dictated by either compass or straightedge—in either case, by what is a physical 

approximation to a straight line. In the first case, we hold the ‘straight line’ fixed at 

one of its endpoints, and thereby enforce its rotation in such a way that the other 

endpoint is constrained to draw a circle; the circle arises from the dynamics inherent 

to a straight line that is fixed at one end. In contrast, a straight line does not arise out 

of the ‘internal’ dynamics of a point—rather, the point-in-translation rather needs to 

be externally constrained by the straightedge, which is needed to ensure that the axis 

of translation is itself straight. So we cannot get straight lines from points in the same 

way we can get circles from straight lines. 

 Now, Euclid’s definition of straight line does indeed mention points; his 

definition of the general notion of line, however, does not. This suggests at least that 

Euclid does not suppose that lines are to be reduced to, or exclusively understood in 

terms of, points. Indeed, Euclid’s opening three definitions might well give the 

impression of points and lines as having equal standing as regards fundamentality: 

 

1. A point is that which has no part. 

2. A line is breadthless length. 
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3. The extremities of a line are points. (Euclid 1956, p. 153; bold in original) 

 

The first two are ‘proper’ definitions, with the definienda (indicated in bold text) 

characterized independently of each other; the third definition is ‘improper’, in that it 

merely describes one central way in which points and lines are related to one another, 

and thereby serves to further characterize both notions simultaneously, in terms of 

each other. Definition 3 can thus be read in two different ‘directions’: as 

characterizing lines in reference to their endpoints, or as characterizing points as the 

extremities of lines. One plausible motivation Euclid might have had in offering 

Definition 3 is to explain how objects of both kinds can arise ‘synthetically’ in the 

construction phase of a proof, in a way that depends on the prior presence of an object 

of the other kind. On the one hand, given the presence of two points, Postulate 1 

licenses the construction of a novel straight line, drawn from one point to the other. 

On the other hand, given the presence of a straight line, Postulate 2 licenses its 

extension, which yields a new terminal endpoint. In addition, if Postulate 1 is used to 

draw a new line across an existing one, this again yields a novel point by Definition 3, 

since the intersection itself is the extremity of each of the four branches that result, 

when we consider each of the original lines as divided into parts by the line that 

intersects it. In two different ways, then, points can be ‘constructed’ in the course of a 

Euclidean demonstration, and indeed, constructed out of lines. 

 While the foregoing discussion does not definitively resolve the question of 

the relative fundamentality of points and lines, it ought to be sufficient to dispel the 
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impression that our decision to regard the straight line, and not the point, as the basic 

object of Euclidean geometry is clearly misguided. In treating (straight) lines as basic, 

we will not be denying that points can be grasped independently of the lines that 

terminate in them. In particular, we can allow that points can be visually grasped 

simply as locations in planar space,41 relative to a planar object at the current focus of 

attention (to which a reference system is assigned). For instance, points in the space 

surrounding an attended square figure can be indicated by small dots drawn in the 

surrounding region of the page. On our approach, however, we will only ever 

consider points in relation to the straight lines which are or which could be drawn to 

them, in the manner captured by Euclid’s first postulate. 

Before addressing Postulate 1’s construction of a straight line, we need to 

consider how we might specify a perceptual concept for geometrical straight lines, 

since it is only by engaging such a concept that a figure drawn in accordance with 

Postulate 1 will be perceived by the subject as (depicting) a straight line, in such a 

manner as to permit visually-based knowledge concerning the geometrical properties 

of straight lines. In a recent paper, Giaquinto offers a brief comment on perceptual 

and geometrical concepts for straight line, which serves as a useful starting point for 

this investigation: 

 

[We] start with a perceptual concept of straight line which applies to 

apparently straight uninterrupted surface edges or surface marks that have 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
41 Recall, however, that we are not making the assumption that the planar space 
depicted by the surface of the page comes with its Euclidean properties ‘built-in’. 
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length but negligible or imperceptible breadth. A line falling under that 

concept looks perfect if it has no perceptible breadth and its deviations fall 

below visual acuity. Perception or visual imagination thus supplies us with the 

material for a concept of a perfectly straight line: it is a line that has the spatial 

properties that any perfect-looking straight line must appear to have in order 

to look perfect and perfectly straight. This, I suggest, is our initial geometrical 

concept of straight line. (2011, 291) 

 

This passage applies to straight line the idea that Giaquinto previously defended in 

relation to square: In short, there is a bridge between the vague ‘perceptual’ concept 

and the more exacting ‘geometrical’ concept, in such a way that the latter can be 

derived from the former, by restricting its scope of application to instances of perfect 

accordance with the relevant feature descriptions. It is clear from the passage that 

there are two independent components of the feature description set, corresponding 

respectively to the properties of straightness and linearity, and that Giaquinto intends 

that both properties should be perfectly instantiated by the objects to which the (strict) 

‘geometrical’ concept straight line properly applies. Notably, the first property, 

straightness, is simply assumed in his characterization of the perceptual concept for 

straight line, so there is a complete absence of the kind of informative reduction of a 

geometrical property to more basic features that was evident in his earlier treatment 

of the square. This may reflect nothing beyond the brief treatment Giaquinto gives to 

straight line—which after all is offered here in the service of making a more general 
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point about perceptual and geometrical concepts—in contrast to the thoroughgoing 

analysis of the square concept he provides elsewhere. A more intriguing possibility is 

that Giaquinto regards the perceptual concept for straightness42 as ‘basic’, in the 

sense that its associated feature description set (unlike that of square) includes just 

the visually detectable feature of straightness itself. It is not fully clear how this idea 

of basic-level visual features might be cashed out in psychological terms, but one 

option would be to maintain that there are no more fundamental features, in virtue of 

which straightness is visually represented, that are themselves accessible to visual 

awareness at the personal level. Rather, the representation of straightness would be a 

task exclusively reserved for sub-personal visual processes. This proposal would 

seem to establish a major difference in epistemological status between, on the one 

hand, judgments about the properties straight objects possess in virtue of their 

straightness (e.g., that they can be ‘produced’ in accordance with Euclid’s second 

postulate), and on the other, corresponding judgments about square objects. For on 

Giaquinto’s account, the latter judgments can appeal to properties that square objects 

are conceptually guaranteed to possess in virtue of being square (in his example, 

reflection symmetry about the diagonals). On the proposal that straightness is a basic-

level visual feature, there would be no comparable properties to which judgments 

about straight objects could rationally appeal, since the perceptual concept straight 

would merely point to a nonconceptual simple. The main task in Section 7 will be to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
42 Here I am taking some interpretive license in assuming that Giaquinto’s view 
supports the postulation of an independent concept of straightness, which might apply 
to lines as well as non-lines (e.g., bars or strips). 
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motivate the contrary proposal that straightness need not be regarded as basic in the 

above sense, but rather can itself be visually represented in terms of certain 

symmetries, and in particular, the motions associated with those symmetries.43 

 

6 Linearity in general 

Before proceeding to a consideration of how perceived straightness might be 

grounded in perceived symmetry, it is worth briefly remarking on the other 

component feature of the description set for Giaquinto’s straight line concept: 

namely, linearity itself. What is it to perceive a drawn line as a perfect, geometrical 

line (or as depicting one)? The property of perfect linearity poses a distinctive 

challenge for Giaquinto’s attempt to derive precise ‘geometrical’ concepts from 

vague ‘perceptual’ ones. Recall that Giaquinto’s general strategy here appeals to 

lower limits on perceptual discrimination, which allow that drawn figures may in 

certain respects be perceptually indistinguishable from perfect instantiations of 

geometrical properties. Even in the absence of such a close approximation to the 

geometrical ideal, a visibly imperfect figure might still yield a perceptual experience 

as of its perfect geometrical counterpart, by triggering the visual imagination of an 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
43 This is not to deny that it might also be true that straightness is often visually 
represented as a ‘nonconceptual simple’, in virtue of the operation of exclusively sub-
personal visual processes. The claim being advanced here is just that it is possible to 
visually represent something as straight in virtue of other properties that are 
accessible to personal-level visual understanding. A similar point could be made 
about reflection symmetry itself: That is, there are very plausibly sub-personal visual 
processes that issue directly in consciousness visual experiences of symmetry. But 
this in no way precludes the intuitively ‘thicker’ representation of reflection 
symmetry as a property an object possesses in virtue of being invariant under the 
motion of reflection, which can itself be rehearsed in visual imagination. 
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apparently perfect instance. In this way, Giaquinto is able to explain how visual 

experiences of imperfect drawn figures can engage concepts that apply to properly 

geometrical objects or properties. This strategy applies quite straightforwardly to his 

examples of square and straight, given that it is intuitively plausible that subjects can 

perceptually entertain, in either veridical experience or in visual imagination, figures 

that are perceptually indistinguishable from perfectly square or perfectly straight 

figures. The same strategy confronts immediate difficulties, however, when it comes 

to the property of geometrical linearity that Euclid points to in his definition of a line 

as “breadthless length”. While we can readily imagine having a visual experience as 

of a perfectly straight line (or linear strip), it is far from clear what it would be to 

have a visual experience as of a perfectly thin line—one altogether lacking in breadth 

altogether. In the passage quoted above, Giaquinto suggests that our initial, imprecise 

perceptual concept of line applies to “uninterrupted surface edges or surface marks 

that have length but negligible or imperceptible breadth” (2011, 291, emphasis 

added). It is the second part of the disjunction that is puzzling here. We can grant that 

a subject might have a visual experience as of a roughly linear object whose 

perceptible breadth is not significant enough to ‘count’ in the given context, but it is 

rather mysterious how a subject might have a visual experience as of a line with 

imperceptible breadth, since the very supposition that the line itself is visible seems to 

entail that it should have at least some perceptible breadth. This consideration makes 

Giaquinto’s assertion that a line “looks perfect if it has no perceptible breadth” 

difficult to accept, and seems to require his claim that “perception or visual 
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imagination… supplies us with the material for a concept of a perfectly straight line” 

to be at least significantly qualified, given that he understands this concept to apply to 

lines that are not only perfectly straight but also perfectly linear. For there would 

seem to be no possible visual experience that represents a line as entirely without 

breadth. 

 If this is right, and the objects of geometrical knowledge are, in this manner, 

imperceptible in principle, one might be tempted to conclude that the sort of 

thoroughly perception-based account of basic geometrical knowledge being defended 

here cannot possibly succeed. Since providing a complete response to this challenge 

would take us beyond the scope of the present chapter, only a sketch of such a 

response will be offered here. In brief, the idea is to pursue the first part of 

Giaquinto’s disjunction, which ties the perceptual concept of line to a visual 

experience of “negligible” rather than “imperceptible” breadth. Provided that we can 

give a sufficiently precise account of the sense in which the drawn lines comprising 

Euclidean diagrams are perceived as having negligible breadth, that will in fact 

suffice as an account of how those diagrams can provide a perception-like 

acquaintance with the Euclidean objects themselves. In this connection, it is useful to 

take seriously the identification of Euclidean diagrams as pictorial representations of 

a certain kind. It is now a familiar idea in the philosophy of art that the aesthetic 

properties of an artwork are determined not only by the full set of (non-aesthetic) 

perceptual features of the work in question, but also by which of these properties are 

“standard” as opposed to “variable” relative to the conventions of the general 
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category (that is, the artistic medium or genre) to which the work belongs (Walton 

1970).44 For example, the flatness and rectangularity of the picture plane, being 

standard properties for the category of paintings, do not figure thematically in the 

overall aesthetic effect generated by a given painting: Since paintings are, as a matter 

of course, expected to be flat and rectangular, the presence of such features fails to 

strike the observer at all, instead serving to implicitly direct aesthetic attention to the 

variable features of the work, which concern how paint is arranged on the flat, 

rectangular canvas. This implicit recognition of certain properties as standard for the 

relevant category plays an important role, in Walton’s view, in determining the 

depictive contents of pictorial works. This is because it is only by, effectively, looking 

past the standard features of flatness and rectangularity that the viewer is able to 

discern the resemblance between the picture and the object(s) depicted that Walton 

regards as a necessary condition on the depiction relation itself: 

 

The properties of a work which are standard for us are ordinarily irrelevant to 

what we take it to look like or resemble in the relevant sense, and hence to 

what we take it to depict or represent. The properties of a portrait which make 

it so different from, so easily distinguishable from, a person—such as its 

flatness and its painted look—are standard for us. Hence these properties just 

do not count with regard to what (or whom) it looks like. It is only the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
44 Walton also mentions a third sort of category-relative property—the “contra-
standard”—which comprises those properties that subvert the conventions of the 
artistic medium or genre to which the work in question nonetheless belongs. 
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properties which are variable for us, the colors and shapes on the work’s 

surface, that make it look to us like what it does. And these are the only ones 

which are taken as relevant in determining what (if anything) the work 

represents. (Walton 1970, pp. 344-5) 

 

Walton’s view here can help us make sense of the idea that the drawn lines of 

Euclidean diagrams might issue in a visual experience as of negligible breadth, in a 

way that provides a kind of perceptual acquaintance with genuine Euclidean lines, via 

their role as the depictive contents of the drawn lines—without any need for a 

problematic appeal to a visual experience of imperceptible breadth. In this 

connection, it is worth emphasizing several features of Walton’s account. First, the 

sense in which the standard properties of a pictorial work “just do not count” in 

determinations of resemblance and depictive content in no way depends on those 

properties lying beneath or even near the threshold of perceptual discriminability. On 

the contrary, their very perceptual obviousness typically plays a key role in achieving 

their exclusion from the experienced depictive content, by facilitating their swift 

assignment to the class of standard properties. Second, the fact that these properties 

may be in principle incompatible with certain properties of the depicted objects places 

no limitations on the degree of the apparent resemblance between the objects and the 

picture that represents them, given the manner in which category-relative 

understanding of the picture delimits the range of features relevant for resemblance. 

As such, a picture can be properly said to be a “perfect likeness” of an object, 
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notwithstanding the obvious discrepancies when it comes to those features that are 

standard for the relevant category (Walton 1970, 344). Third, the mediation of 

pictorial experience by category-relative determinations of certain features as 

standard or variable operates on a perceptual level, affecting not merely what a 

picture is understood to represent, but rather, in a more basic sense, what the picture 

looks like. 

 Provided that we do take seriously the identification of Euclidean diagrams 

with a certain category of pictorial representations, we can apply Walton’s distinction 

between standard and variable properties, and can thereby regard the visible breadth 

of the drawn lines as a standard property of depictions belonging to this category. On 

this view, the visible breadth of the drawn lines should not, in itself, preclude their 

serving as the basis for a pictorial experience in which the perceiver sees in the 

diagram something truly breadthless. Moreover, the Waltonian perspective on Euclid 

suggests an appealingly charitable way of interpreting Euclid’s much-maligned 

definition of line as “breadthless length” (among others), which in this light can be 

read alongside the diagram itself, as an instruction concerning the conventional 

depictive character of the latter. By stipulating breadthlessness of the drawn lines, 

which do of course have visible breadth, Euclid can be understood to be laying down 

the convention that line-breadth is a standard as opposed to variable property of 

diagrams belonging to the relevant category. In this manner, the definition, in 

conjunction with demonstrative reference to the perceived diagram, is capable of 
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conveying the idea of a Euclidean line rather precisely: To a first approximation, it is 

an object like that one, where the breadth is understood not to count.45 

 The proposal that a roughly linear strip drawn on the picture surface can in 

this manner depict something perfectly breadthless might seem like a dubious one, 

given how different it is from ordinary cases of depiction, in which the depicted 

object is something that is, in principle, perceptible. If there can be no such thing as 

the appearance of a true Euclidean line, it is difficult to make sense of the idea that 

category-relative perception results in the line looking breadthless, even in the very 

special sense in which a cartoon caricature, say, can look just like the subject it 

depicts. In that case, even granting that the diagram represents a geometrical line, the 

mode of representation might be viewed not so much as pictorial, but rather as resting 

on a stipulated identification with an object that can be grasped ‘by thought alone’, as 

one might put the point. Here again, however, we can appeal to dynamic aspectual 

imagery in order to explain the depiction of breadthlessness. For it is a general feature 

of the geometrical diagrams at issue that they are, in a certain specific sense, 

pictorially ambiguous. 

 Figure 4.2, for instance, could be seen either as a line (or more precisely, a 

linear strip) ‘drawn inside’ (or perhaps ‘placed onto’) a disk, or else as a pair of half-

disks that fit together perfectly to determine the shape of a whole disk. On the former 

interpretation, the line is apprehended as, roughly, an object—that is, something that 

could be moved or handled directly—and in that capacity, as something that takes up 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
45 Shabel (2003, 13-17) offers a somewhat similar interpretation of Euclid’s 
definitions. 
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at least a bit of space on the disk’s surface. On the latter interpretation, it is only the 

half-disks that are apprehended as objects in this sense; the line has assumed a purely 

negative existence, now appearing merely as the border shared by the half-disks 

where they meet one another. On this second pictorial interpretation, the line is 

indeed perceived as breadthless; the breadth of the drawn line does not count 

pictorially, because the only spatial objects being depicted are the half-disks whose 

mutual border it serves to indicate. The identification of a line with this negative role 

is made explicit in Euclid’s Definition 6, which reads: “The extremities of a surface 

are lines”. The problematic idea of there being visual experiences as of perfectly 

breadthless lines has been replaced by the entirely unproblematic idea of there being 

visual experiences as of surface objects with perfectly determinate boundaries. 

 

 Figure 4.2: Circle with diameter 

 

 

 

 

 

 Of course, given the fundamental role of (straight) lines in Euclidean 

constructions, it will not suffice to regard lines exclusively as, in this manner, negative 

non-objects. For Euclid’s constructions are performed precisely by treating lines as 

objects in their own right—by drawing or placing them in such a way as to allow the 
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‘synthetic’ emergence of rectilinear angles and plane figures, which appear as soon as 

one entertains the alternative pictorial interpretation.46 Lines thus appear to have a 

special status in Euclid’ system: Effectively, they straddle two alternative pictorial 

vantage points or ways of seeing the diagram, inheriting their object-hood from one, 

and their breadthlessness from the other. In other words, lines as geometrical objects 

can be regarded as constituted by a fundamental convention governing the visual 

understanding of Euclidean diagrams, which permits the integration of the two 

alternative interpretations just illustrated in relation to Figure 4.2. This convention 

can be plausibly regarded as implicitly set out in Euclid’s definitions, by means of the 

sui generis notion of ‘containment’ that relates lines to both angles and plane figures, 

for example, in Definitions 9, 14, 15, and 19: 

 

9. And when the lines containing the angle are straight, the angle is called 

rectilinear. 

14. A figure is that which is contained by any boundary or boundaries.  

15. A circle is a plane figure contained by one line such that… 

19. Rectilinear figures are those which are contained by straight lines… 

(Euclid 1956, pp. 153-4; italics mine, bold in original) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
46 Cf. Kant’s famous passage in which he describes the geometer performing the 
construction for Euclid’s proof of Proposition I.32, the triangle angle-sum theorem: 
“…he extends one side of his triangle, and obtains two adjacent angles that together 
are equal to two right ones. Now he divides the external one of these by drawing a 
line parallel to the opposite side of the triangle, and sees that here there arises an 
external adjacent angle which is equal to an internal one, etc.” (Kant 1998, 
A716/B744, my emphasis) 
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It is worth remarking on how different this containment relation is from the part-

whole relation considered previously in connection with the common notions. The 

latter relation applies only between objects of the same type, that is, between two 

lines, angles, or plane figures. For instance, the half-disks in Figure 4.2 (on the 

second pictorial interpretation) are both parts of the whole disk; taken together, they 

coincide with and hence are collectively equal to the whole. Containment, on the 

other hand, obtains exclusively between objects of different types: Specifically, it is 

lines that contain both angles and plane figures. The striking fact about the 

containment relation is that it purports to relate coplanar geometrical objects of 

distinct types, but this relation between coplanar objects cannot be observed within a 

single pictorial interpretation of the diagram, as we just observed in the case of Figure 

4.2: On one interpretation, the line-as-object appears to lie either ‘on top of’ the 

complete disk or ‘within’ the circumscribed space, while on the other interpretation, 

the line inevitably becomes something negative—a mere boundary—as the half-disks 

assert themselves as objects. By defining angles and plane figures in terms of their 

containment by lines, Euclid is introducing a relation that spans across pictorial 

interpretations, in what might be termed the ‘foundational equivocation’ of Euclidean 

plane geometry. From this perspective, there is a fundamental duality in the very 

nature of Euclidean lines: They serve both as positive objects that can be directly 

manipulated—“set up on” other lines (Definition 10), “drawn through” circles 

(Definition 17), and so forth—and also as the (negative) delimiting boundaries of 
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angles and plane figures, which then themselves take on the ‘positive’ character of 

objects: that of being subject to rigid motion, and hence able to be judged congruent 

to other angles or plane figures, for instance. 

 If this is the right view to take, then it follows that visual experiences of 

geometrical lines are inherently pictorial experiences of a distinctive, ‘complex’ 

character, involving the integration of alternative pictorial interpretations of a single 

drawn figure. While this may seem initially like a rather obscure notion, it has 

precedent, once again, in the aesthetics of pictorial perception. In particular, Brown 

(2010) argues at length for the central and ubiquitous role, in the aesthetic 

appreciation of pictures, of what he terms “separation seeing-in”, so called because it 

involves seeing-in-the-picture a pictorial content that is separate from the official 

subject matter. In a pencil sketch of a human figure, for instance, one such 

“separation subject” might be a human body that is graphite-colored, partly 

translucent, and with skin decorated by contours and cross-hatchings that are well 

defined in some places, while becoming indeterminate in others. Clearly none of 

these visual features could be properly ascribed to the primary or ‘official’ pictorial 

subject, which is after all a human figure, presumably with an ordinary appearance. 

When we see this official content in the picture, features of the sketch itself, such as 

its monochromatic coloration and use of cross-hatching, become discounted in the 

manner proposed by Walton, as we saw earlier. Brown’s point is not at all to deny the 

primacy of the Waltonian seeing-the-official-content in the picture, but he resists the 

usual assumption that the features that are discounted in such seeing-in can inform 
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our pictorial experience only qua surface features of the sketch itself. Rather, some of 

them become (as we might say) ‘inherited’ by the alternative subject matters of 

separation seeing-in, which are entertained concurrently, alongside the official 

depictive content. As he argues, not only can we “maintain a lively awareness of both 

in any well-conducted course of pictorial seeing,” but in general, the “full depictive 

character of a painting is revealed only by the ensemble of seeings-in it offers” 

(Brown 2010, 213; 217). 

Brown’s account of separation seeing-in, then, seems to provide at least a 

good initial basis for making sense of the dual character of Euclidean lines articulated 

above. A geometrical line must be visually experienced, not as a single depictive 

content, but rather within the complex depictive character that arises from the 

integrated awareness of distinct depictive contents. To visually grasp a true 

geometrical line will thereby require, in Brown’s terms, that we “maintain a lively 

awareness” of both pictorial interpretations: one on which the line inherits its visible 

breadth from the drawn line that depicts it, and another on which this breadth is 

discounted in the manner articulated by Walton. This makes the visual experience of 

a geometrical line a rather eccentric sort of visual experience, but nonetheless one that 

arises relatively straightforwardly out of our core postulation of dynamic aspectual 

imagery. To a rough approximation, then, we can say that a perceptual concept for a 

geometrical line consists in something like the following bidirectional belief-forming 

disposition: When one trusts one’s visual experience, one will be apt to perceptually 
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judge that x is a line if and only if one has an integrated visual experience that 

represents x as both a linear strip and as a determinate surface border. 

 

7 Straightness 

Having thereby indicated how a subject could have a visual experience as of a 

geometrical line, we are ready to consider the question of how the geometrical 

property of straightness might be represented in visual experience. It will simplify 

matters somewhat if we restrict our attention just to the straightness of lines, given 

that we will then be able to approach the question of x’s straightness under the 

assumption that x has constant breadth.47 Now, it seems plausible that straightness is 

represented in early visual processing, perhaps in multiple, convergent ways. This 

seems likely, given that quite basic visual features, like direction, orientation, 

distance, etc., effectively presuppose straightness. So we should expect that there is a 

thoroughly nonconceptual representation of straightness, which is encountered in 

visual experience simply as ‘given’. As we noted earlier, however, if we specify our 

perceptual concept for the geometrical property of straightness by appealing to 

straightness qua ‘basic-level’ visual feature in this sense, this will place 

epistemological limitations on the justificatory character of any judgments about the 

properties of straight lines that are formed by employing this perceptual concept. For 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
47 This is because a linear strip is assumed to have constant breadth. Note that if we 
can specify a perceptual concept for straight line in this manner, it should be a trivial 
matter to derive from this a broader concept of straightness, simply by building in the 
assumption of constant breadth directly. This doesn’t appear to limit the generality of 
the concept straight, which intuitively, applies only to things with either zero breadth 
(like edges and contours) or else constant positive breadth. 
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if we appeal only to straightness as it is directly ‘given’ in perceptual experience, we 

will have no conceptual knowledge about straightness as a geometrical property. 

Therefore, our task is to specify a conceptually ‘thicker’ means of visually 

understanding straightness, preferably in terms of dynamic imagery. 

 The common definition of a straight line as ‘the shortest distance between two 

points’ will not do for our purposes, because if we simply presuppose distance, we 

will confront essentially the same problem as if we took straightness as a basic visual 

feature. While it is no doubt true that we have a direct visual experience of distance, 

we lack a conceptually ‘thick’ way of understanding distance—it is seemingly 

directly ‘given’ in visual experience. Not only would presupposing distance in this 

way limit the justificatory status of our judgments about distance in virtue of its 

‘thin’, nonconceptual character, but it would commit us to the assumption that visual 

space is Euclidean, and as we noted earlier, there is considerable psychophysical 

evidence that counts against this claim. A better strategy is to begin by specifying a 

‘thick’ perceptual concept for straight lines. Given that straight lines are subject to 

rigid motions, we will thereby be in a position to apply the perceptual concept for 

congruence discussed in earlier, and on this basis, we will be able to derive a concept 

for equal distance in terms of congruent straight lines. This reflects a basic 

commitment of our approach, which is to explain judgments about Euclidean 

properties in the first place with reference to constructed geometrical objects, and 

only derivatively to the ‘space’ they occupy. 



! 165!

 A more promising avenue proceeds by way of Euclid’s own definition: “A 

straight line is a line which lies evenly with the points on itself.” This formulation is 

notoriously hard to interpret, as discussed in Heath’s notes on the definition (Euclid 

1956, pp. 165-9). Heath provides a careful analysis of the wording and grammar of 

the Greek text, and argues that the crucial term ‘evenly’ should be understood as 

roughly equivalent to ‘indifferently’ or ‘without bias’ (among other synonyms); he 

concludes: 

 

While the language is thus seen to be hopelessly obscure, we can safely say 

that the sort of idea Euclid wished to express was that of a line which presents 

the same shape at and relatively to all points on it, without any irregular or 

unsymmetrical feature distinguishing one part or side of it from another. 

(Euclid 1956, p. 167) 

 

This exposition of Euclid’s definition gives us just the kind of conceptually ‘thick’ 

characterization of a straight line that we are seeking, for it specifies a precise set of 

visually detectable features whose recognition can serve to provide content to a 

perceptual judgment to the effect that a perceived line is straight. In particular, both 

sides of the line need to be such that their visual appearance is invariant as one directs 

visual attention continuously along its length in a process of visual scanning,48 and in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
48 This scanning-based method is perhaps the most straightforward means of 
verifying continuous symmetry along the length of the line (as seen from one side); 
alternatively, one could direct attention to a proper part or segment of the line, and 
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addition, the line needs to appear the same regardless of which side it is being viewed 

from.49 This characterization, which is in terms of perceived invariance under 

changes in subjective vantage point (as one visually scans, or regards the line from 

alternative sides, that is) should be understood to fall within the scope of our account, 

given that we are understanding transformational imagery in a broad sense, as 

encompassing not only imagery corresponding to potential motions of attended 

objects, but also to potential shifts in the vantage point of visual attention (scanning 

being the most obvious example). As such, we could use the above characterization 

as a basis for a perceptual concept of straight lines. Alternatively, we could frame our 

perceptual concept in terms of object motion, which is the approach we will take here. 

 It is clear upon consideration that if a line possesses reflection symmetry, it 

will have both of the properties required for straightness, for there will be in this case 

a mapping between the two opposite sides, which will apply across their entire 

lengths. This suggests that an appeal to reflection could provide the basis for a 

perceptual concept of straight lines. One might wonder whether such an approach 

would introduce a problematic circularity, given that reflection symmetry is observed 

relative to an axis that must itself be straight. If we understand the motion of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
imagine this segment rigidly moving along the length, while the whole line remains 
intact. 
 
49 Since the first requirement is satisfied by any line of constant curvature (including 
not only straight lines but also circles and circular arcs), we need this second 
requirement to capture the more specific property of zero curvature or straightness. 
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reflection merely as a ‘folding over’, however, we won’t face any such problem.50 

Suppose one imagines the line in question being lifted out of the plane, ‘flipped’ in 

three-dimensional space, and set back into the plane, while ensuring that its endpoints 

remain in their original locations.51 The question is then whether the line coincides 

with its original position52 under the imagined transformation; if so, it can be judged 

straight. Importantly, the imagined transformation of ‘folding over’ can be 

entertained on either of the two pictorial interpretations whose integration was held 

just above to constitute the experience of geometrical linearity in general. On one 

interpretation, it is the linear strip that serves as the object of motion, and which, 

supposing it to be straight, is seen to be self-symmetrical, being mapped by the 

transformation onto a perfect coincidence with itself in its original position. On the 

alternative interpretation, it is the two planar surfaces that open out from either side of 

the line that are seen to be mutually symmetrical; assuming straightness, when one is 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
50 Intuitively, consider the way that folding a piece of paper haphazardly (that is, 
without bothering to align any straight edges) is able to produce a straight fold. 
 
51 This is to ensure that the line is not rotated while being reflected, in such a way that 
its endpoints become mapped onto their opposites. That composition of reflection 
with rotation would allow a circular arc, for instance, to be mapped onto coincidence 
with itself, in spite of not being straight. In case it seems question-begging to assume 
that both endpoints can remain in place under the motion of reflection, it is sufficient 
to require that only one endpoint remain in place—the question of straightness will 
then turn on whether any rigid motion that respects that constraint (which will be 
limited to rotations about the fixed point) is capable of bringing the line into 
coincidence with its original position. 
 
52 Of course, given that the drawn line remains on the page while one imaginatively 
rehearses it being moved, one simply needs to judge whether its potential position 
under the imagined motion corresponds to its actual, present position. In this sense, 
the experience is somewhat like that of manipulating a ‘copy’ or ‘duplicate’ that starts 
off in a position of coincidence with the ‘original’. 
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‘folded over onto’ the other, the boundaries of the two will be seen to coincide 

perfectly. 

 In this manner, the visual imagination of reflection can serve to ground a 

perceptual concept for geometrical straight lines, without taking straightness itself as 

a ‘basic-level’ visual feature. For a subject S to possess this perceptual concept is 

roughly for S to have the following pair of belief-forming dispositions: (1) If S 

believes that x is a line, and has (as well as trusts) an experience that consists in 

visualizing x being reflected into a state of coincidence with itself, then S will believe 

that x is a straight line; (2) If S believes that x is a straight line, then S will believe that 

x is a line and that if x were to be reflected so that its endpoints coincide with their 

original positions, then x as a whole will coincide with its original position under the 

imagined transformation. We have, then, succeeded in showing that the resources of 

the dynamic imagery account are able to provide the basis for a perceptual concept of 

geometrical straight lines. While this symmetry-based perceptual concept almost 

certainly does not exhaust the ways that straight lines are represented as such in visual 

experience, it does provide a plausible account of the way a perceived line’s seeming 

straightness can be ‘fulfilled’ by visual experience, rather than being merely present 

as part of its content. When one inspects a drawn figure of an apparently straight line 

with an eye to straightness, the general phenomenological experience is of having a 

quasi-observational acquaintance with those spatial features in virtue of which the line 

qualifies as straight, which gives the perceptual experience of apparent straightness a 
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‘transparent’ (as opposed to ‘opaque’) character.53 Even if one is in no position to 

articulate in any informative terms what it is about the figure that gives rise to an 

impression of straightness, the experience of seeming straight nonetheless includes as 

part of its phenomenology that one is somehow visually acquainted with such 

straight-making features. The present account supports this phenomenological 

impression, by explaining (one case of) the visual experience of straightness as 

consisting in the active recognition of reflection symmetry by means of the 

imaginative rehearsal of the motion of reflection. 

In the discussion to follow, we consider whether the reflection symmetry that 

forms the foundation of this experience of a straight line can serve to underwrite the 

recognition of further properties of straight lines, in a way that yields similarly 

‘transparent’ or visually ‘fulfilled’ intuitive judgments. In particular, our focus will be 

on the question of whether such a perceptual concept might underlie intuitive belief in 

Euclid’s first three postulates. 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
53 In that respect, the phenomenological experience of apparent straightness is quite 
unlike the initial (erroneous) judgment made by the slave at the outset of the 
geometrical demonstration in Meno. As we noted in Chapter 1, this latter judgment 
captures the kind of ‘intuition’ that is plausibly ascribed to an encapsulated, heuristic-
based process that merely delivers a judgment without making the underlying reasons 
for the judgment accessible to consciousness or otherwise available for rational 
consideration. In the experience of apparent straightness, in contrast, we have a 
judgment that still qualifies as ‘intuitive’ insofar as it arises spontaneously and 
without mediation by conscious deliberation, but which is accompanied by a 
conscious visual awareness of the features in virtue of which the appraisal is an apt 
one. 
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8  From straight lines to construction postulates 

The propositions proved in Elements can be categorized into the problems, which 

establish a procedure by which a figure satisfying certain properties can be 

constructed, and the theorems, which establish that some property holds for all figures 

belonging to a certain class (where existence is ultimately to be justified by providing 

a general construction procedure).54 A parallel distinction can be applied to Euclid’s 

postulates themselves: The first three serve to justify the basic constructions of 

Euclid’s plane geometry—the drawing and extending of straight lines, and the 

drawing of circles—while the latter two serve justify basic assumptions about the 

general properties of right angles and (in effect) parallel lines.55 In the next several 

sections we will consider the three construction postulates, whose focus is primarily 

on the local spatial properties of Euclidean figures.56 The fourth and fifth postulates, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
54 The choice to frame a given proposition as either a problem or a theorem appears to 
be arbitrary to at least a significant degree. Consider, in this regard, the Pythagorean 
theorem, which appears as Euclid’s Proposition I.47: “In right-angled triangles the 
square on the side subtending the right angle is equal to the squares on the sides 
containing the right angle” (Euclid 1956, p. 349). While Euclid thereby opts to frame 
what we might neutrally describe as ‘the Pythagorean relation’ (that between the 
squares’ areas) as a theorem, he could alternatively have taken this relation as the 
topic for a construction problem, viz.: “To construct a square equal in area to two 
given squares.” For further discussion of the theorem/problem distinction, see Heath’s 
notes on the topic (Euclid 1956, pp. 124-9). 
 
55 Strictly speaking, this characterization ascribes the wrong content to Euclid’s fifth 
postulate, which in spite of being commonly called ‘the parallel postulate’, makes no 
reference to parallel lines, but instead to lines whose internal angles with a transversal 
are equal to less than two right angles. The postulate tells us that such lines are not 
parallel. 
 
56 This is not to say that the construction postulates are without any implications 
concerning the global structure of Euclidean space. On the contrary, the second 
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which respectively impose the global properties of homogeneity and flatness on 

Euclidean planar space, will be considered thereafter. Throughout this discussion, our 

aim will be to explain how intuitive belief in the postulates can arise out of the 

employment of dynamic imagery in the visual understanding of straight lines. 

 We begin with Euclid’s first and second postulates, which respectively justify 

the drawing and extending of straight lines. Again, these read as follows: 

 

1. To draw a straight line from any point to any point. 

2. To produce a finite straight line continuously in a straight line. 

 

In practical terms, these postulates characterize what can be drawn by placing an 

(arbitrarily long) straightedge in alignment with two given points, or with an existing 

straight line. A few initial comments are in order. First, it is an unstated assumption of 

Euclid’s system that points exist, and that they can be placed in arbitrary locations in 

planar space; accordingly, the first postulate can be taken the justify the construction 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
postulate implies that the plane is unbounded. Perhaps less obviously, it is actually 
the first postulate (on the standard interpretation according to which it implies that 
two points determine a unique straight line) that rules out the elliptical model (in 
essence, the surface of the sphere) as a possible interpretation of Euclid’s geometry, 
and thereby implies that Euclidean space has either zero (Euclidean) or negative 
(hyperbolic) curvature. While Euclid’s fifth postulate does rule out hyperbolic 
geometry as an interpretation, it is, as stated, true in elliptical geometry. Thus, 
contrary to what is widely claimed, the fifth postulate is not always rejected by (even 
the classical) non-Euclidean geometries, nor is it sufficient to establish the flatness of 
the Euclidean plane; the first postulate is needed in order to rule out the elliptical 
model, with its positively curved space. 
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of an arbitrary straight line.57 The fact that any straight line whatsoever is 

constructible by the first postulate does not render the second postulate redundant, 

however, for even the first postulate together with the unstated assumption that points 

can be arbitrarily placed does not justify the existence of a point precisely collinear 

with a given straight line; it is the second postulate that permits the construction of 

such a point, as the new extremity of the ‘produced’ line. Relatedly, the second 

postulate implies that a straight line divides the plane as a whole, permitting Euclid to 

speak unambiguously about a point placed arbitrarily within the space on a given side 

of a given straight line. 

Second, as stressed by Heath (Euclid 1956, pp. 195-9), both postulates should 

be read as implying uniqueness of the straight lines drawn or produced on their 

warrant. In the case of the first postulate, we can understand uniqueness as requiring 

that any straight line drawn between the extremities of a given straight line will 

coincide with the latter. This assumption is needed for the proof of Proposition I.4 

(which establishes the side-angle-side congruence criterion for triangles), in which 

Euclid justifies the coincidence of the triangles’ bases with the parenthetical remark 

that if they do not coincide, “two straight lines will enclose a space: which is 

impossible” (1956, p. 248). In the case of the second postulate, uniqueness intuitively 

requires that “the straight line can only be produced in one way at either end” (Heath 

in Euclid 1956, p 196). One way to make this idea more precise is in negative terms 

that mirror the statement that two distinct straight lines cannot enclose a space: In 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
57 The proof of Proposition I.2 thus begins: “Let A be the given point, and BC the 
given straight line” (Euclid 1956, p. 244). 
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this case, the formulation would be that two distinct straight lines cannot share a 

part. Alternatively, we could formulate the requirement positively: If a straight line is 

produced twice at one end, the produced parts will coincide until an extremity is 

reached. 

 The final comment concerns the assumption, made explicit in the second 

postulate but already implied by the first, that lines can be drawn of indefinite length. 

Notwithstanding Euclid’s apparent appeal to a “given infinite straight line” in the 

statement of Proposition I.12 (1956, p. 270), it is not actually necessary that we 

should read the second postulate as warranting the construction of an infinite straight 

line that can be assumed as “given”—nor would this be desirable, in light of the 

remoteness of such an ‘actual infinity’ from any possible visual experience. Rather, 

the second postulate need only be taken to underwrite the ‘potential infinity’ that 

consists in the possibility of extending any line, however long, by some finite amount. 

To summarize the content jointly conveyed by the first and second postulates, then, 

they establish: (1) that two points determine a unique straight line, (2) that a straight 

line can be produced from either end indefinitely and in only one way, and (3) that a 

particular drawn line is (therefore) adequate to represent an arbitrary straight line. 

This provides us with a sufficiently precise target for the intuitive knowledge our 

account is intended to capture in relation to the first two postulates. 

 While (1) and (2) should ultimately be read as applying, respectively, to any 

two points and to any straight line, it is convenient to begin by considering these 

claims merely in reference to a particular given instance, deferring the question of 



! 174!

generality until it can be addressed directly in relation to (3). Consider, then, a 

diagram depicting a particular pair of points, which (1) claims will determine a 

unique straight line. Recall from the earlier that a sufficiently thin linear strip can 

serve conventionally to depict a geometrical line, because it can be seen, in 

accordance with Definition 6, as the extremity of a surface region. Similarly, points 

can be conventionally depicted by sufficiently small (circular) dots, which can be 

seen as (potential) “extremities of lines” in accordance with Euclid’s Definition 3. A 

dot, that is, can readily be seen as something to which, or out of which, lines may be 

drawn.58 Assuming our two points to be positioned along a horizontal axis with 

respect to the picture plane, then, the relevant diagram will look like Figure 4.3. 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
58 It is only by perceiving drawn points in connection to lines that one can attain any 
visual appreciation of their being ‘perfectly dimensionless’—the key geometrical 
property that Euclid captures negatively, in Definition 1, in terms of the 
inapplicability of the part/whole relation to points. This lack of dimensionality can be 
thought of as being ‘downward inherited’ from surfaces to lines to points, via the 
containment-by-extremity relation discussed earlier. Note that points, being the 
extremities of lines, are not parts of lines in Euclid’s sense of ‘part’; that is, they do 
not ‘share space’ in the plane—something Euclid indicates by figuratively describing 
points as being on lines. Similarly, the line drawn through the circle in Figure 2, when 
interpreted as a linear strip with some degree of breadth, is not seen as sharing planar 
space with the circle, but rather as being ‘placed onto’ the underlying, complete 
circle. It is only when being viewed as extremities that points (or lines) are seen as 
properly coplanar with lines (or surfaces). 
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Figure 4.3: Pair of points 

 

 

 

 

 

 

If we understand this image as a depiction of two geometrical points, can we 

see that the points determine a unique straight line? To begin with, it is relatively easy 

to explain how we can see that at least one straight line can indeed be drawn between 

these points. For even in the absence of any suggestive framing, the cue provided by 

the presence of dot-like elements in an otherwise blank space is often sufficient to 

provoke a spontaneous visual impression of a continuous contour, through a kind of 

amodal completion; there is, moreover, psychophysical evidence that the visual 

system implicitly expects contours to continue in a direction that minimally departs 

from the local tangent direction (with smaller divergence from the tangent direction 

being treated as more probable), creating a natural tendency for the visual system to 

represent contours as straight, when that possibility is consistent with the stimuli 

(Feldman 1997, Elder and Goldberg 2002, Yuille et al. 2004). In light of these 

features of visual contour detection, it is plausible that the subject perceiving an 

image like Figure 4.3 will be apt to have a visual experience in which an apparently 

straight contour seems immediately to ‘pop out’. Since contour completion is in this 
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case amodal, however, the experience won’t involve a visual illusion as of a contour 

(the sort of thing that occurs in the Kanisza triangle illusion, for instance). The 

phenomenology, then, is not of seeming to see a drawn line; the contour is 

experienced rather as something closer to a feature of the structural integration of the 

two-dot figure, which provides an immediate awareness of where the line would be 

seen if it were to be ‘drawn in’. In this way, the contour can be thought of as playing 

a role somewhat analogous to that of the straightedge in ruler-and-compass 

constructions. While the amodally-completed contour doesn’t itself have the 

determinate appearance of a drawn line, this appearance can be fulfilled in visual 

imagination, yielding something like Figure 4.4. 

 

Figure 4.4: Straight line drawn between points 

 

 

 

 

While the straightness of this imagined line is in the first place experienced 

nonconceptually, this experience can readily issue in an augmented one that engages 

the perceptual concept for straight line described earlier, provided that the subject—at 

least tacitly—appreciates that the drawn line would self-coincide under the relevant 
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reflection. We have, then, an explanation for the perceiver’s intuition that at least one 

straight line can be drawn to connect the points depicted by Figure 4.3. 

In order to see that this straight line is unique, it suffices to recognize that any 

line that connects the given points, but which does not coincide with the line in Figure 

4.4, is asymmetrical, and hence cannot be straight, given the conceptual link between 

straightness and reflection symmetry established perviously. Consider first the 

particular case illustrated in Figure 4.5, with the candidate alternative straight line 

placed above our original straight line. 

 

 Figure 4.5: Step one of uniqueness demonstration 

 

 

 

 

 

 

Of course it is immediately apparent to us that the top line is not symmetrical in the 

manner necessary to qualify as straight. If we left the original in place, and ‘flipped’ a 

duplicate while keeping it fixed at the endpoints, the duplicate would clearly fail to 

coincide with the original. The result would look somewhat like Figure 4.6. 
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 Figure 4.6: Step two of uniqueness demonstration 

 

 

 

 

If this judgment of asymmetry were made merely on the basis of ‘eyeballing’ the 

figure, however, it would rest on dubious epistemological grounds, for in that case it 

would depend on an auxiliary empirical assumption concerning the veridicality of our 

visual experience, one that is undermined considerably by our evident susceptibility 

to visual-geometrical illusions of various kinds. It would, in any case, be question-

begging to judge that the top line is not straight, on the grounds that it can be seen to 

be asymmetrical due to its shape. Fortunately, we need not appeal to the shape of the 

top line to see that it lacks the requisite symmetry for straightness, for it is sufficient 

to attend in the right way to the pictorial ambiguity associated with Euclid’s 

fundamental notion of spatial containment. In particular, in addition to being able to 

see Figure 4.5 as a pair of linear strips that share a pair of endpoints, we can 

alternatively see in it the plane figure contained by the top and bottom lines. And 

since we already know—as it were, by hypothesis—that the bottom line is straight, 

we know that it enforces reflection symmetry on the spatial regions that open out 

from it on either side. We can thereby appeal to the assumption that the bottom line is 

straight to warrant the reflection of the enclosed plane figure above it, taking the line 
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itself as the axis of reflection. This gives us the same Figure 4.6, now seen as a pair of 

plane figures symmetrical about the middle line that forms their shared border. Since 

the enclosed figures are symmetrical to each other, so are the boundaries that contain 

them, including in particular the pair of top and bottom lines. And since these lines do 

coincide at their endpoints, the perceptual concept for straight lines implies that they 

must themselves coincide if they are indeed straight. We can see in Figure 4.6 that 

they do not coincide, because they enclose the larger plane figure comprised of the 

two symmetrical halves. So we can indeed see that the top line is not straight—and 

we do so by visually rehearsing the reflections associated with our perceptual concept 

for straight line, while at the same time attending to the relationship between the 

alternative pictorial interpretations of the drawn figure. 

 This is not, strictly speaking, enough to justify the belief that two points 

determine a unique straight line, because we have only considered one case of a non-

coincident line drawn between the given points. The succession of visual inferences 

that convinced us that the top line is not straight, however, depends only on a feature 

that holds in the general case as well: that the (by hypothesis) straight line and the 

additional, non-coincident line enclose some (that is, at least one) plane figure. 

Indeed, they must enclose a plane figure, if indeed they coincide at their points but 

not completely. While this statement is both true and obvious, it is not an analytic or 

‘conceptual’ truth in any ordinary sense—rather, it is true in virtue of the distinctive 

spatial relationship that obtains between plane figures and the lines that are their 

boundaries, as characterized by Euclid’s special notion of ‘containment’ and 
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understood in reference to the fundamental pictorial ambiguity of the drawn diagram. 

As such, it is reasonable to wonder how, precisely, one is able to discern that the 

statement indeed holds true in all possible cases. This question will not be pursued 

further at the present point, but will be taken up in earnest in Chapter 5, when we turn 

our focus to the generality problem. 

 

9 Indefinite extensions of straight lines 

We now turn to claim (2)—that a straight line can be produced from either end 

indefinitely and in one way only—beginning with the latter component, which 

captures a distinctive property that straight lines share only with circular ones: A 

given part of the line, however small, is sufficient to uniquely determine the trajectory 

of the whole. The recognition that straight lines are, in this manner, uniquely 

extendable, turns on appreciating a relationship that we encountered earlier, between 

reflection symmetry and translation symmetry. As we noted, we can define reflection 

symmetry for lines without presupposing that a (straight) symmetry axis is already 

given: Instead, the axis (which coincides with the straight line) can arise out of the 

performance of reflection, in roughly the manner in which a straight crease can be 

imposed on a piece of paper by the action of folding. This is not the case for 

translation—without prior reference to a given straight axis of translation, it could not 

be clearly distinguished against the general backdrop of what we might term ‘intra-

planar’ rigid motions: those that remain within the plane throughout (excluding 

reflections, which need to be ‘lifted out’ of the plane to be ‘flipped over’). Reflection 
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symmetry can therefore be regarded as delimiting the scope of translation, by setting 

up a straight axis in the first place. So the relationship between the two symmetries 

runs quite deep. The aspect of this relationship with relevance for the present target 

property of straight lines is this: Given any reflection-symmetrical spatial context, and 

any embedded figural component, itself reflection-symmetrical about the same axis, 

the set of intra-planar rigid motions of the part that will leave overall reflection 

symmetry intact is identical to the set of translations along the very same axis. While 

the general principle is not easily stated in a way that makes its truth immediately 

apparent, even the general truth does seem obvious when encountered in relation to a 

concrete case, whereupon respect for the overarching reflection symmetry seems, on 

a phenomenological level, to assert itself as a felt demand that constrains permissible 

movements.59 

 In the case at issue—which we can take to be the straight line depicted by 

Figure 4.4—the important recognition is that the only possible symmetry-respecting 

intra-planar motions to which any proper part of the line can be subjected are 

translations along the line itself, which remain invisible so long as they do not breach 

the endpoints.60 Recognizing this fact requires no knowledge of the line’s properties 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
59 The kind of translation under consideration here is, of course, not symmetry in the 
sense typically applied to the context of geometry. Given the general definition of 
‘symmetry’ as ‘invariance under transformation’, however, it can be thought of as a 
distinctive kind of (higher-order) symmetry, insofar as it constitutes a transformation 
under which reflection symmetry itself is invariant. 
 
60 As before, we are considering this motion to be applied to a ‘duplicate’ of the 
original part, the latter of which remains in place when the duplicate is moved out of 
a state of spatial coincidence with it. 
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aside from its identification as a straight line in the sense captured by the perceptual 

concept specified earlier. The experience of reflection symmetry as an overarching 

constraint, together with the immediate detectability of any violation, combine to 

make the possibility of translating linear parts without violation quite visually salient. 

It is this tacit visual appreciation of the symmetry-respecting character of the 

translation of straight-line parts that can serve to justify the intuitive belief that the 

straight line can be uniquely extended. One needs only to imagine such a part being 

continuously translated to a position that straddles one of the endpoints, such that it 

now partly overlaps the original line, and partly extends beyond it.61 The altered 

figure can then itself be seen alternatively as a single whole line, which can 

immediately be seen to possess the following properties: (i) It is greater than the 

original line (by Common Notion 5), because it includes the latter as a proper part; 

(ii) it is straight, because the reflection symmetry of the original line has been 

preserved by the translation used to construct the new one; (iii) it is the unique way of 

extending the original straight line to its new endpoint, because of the way in which 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 
61 Note that since a particular part of the moving part remains coincident with (some 
or other) part of the original line throughout, there is no need to assume that any form 
of symmetry (or symmetry axis) is already defined or determined (that is, prior to 
linear extension) beyond the original line. Rather, the moving part’s point of contact 
with the translation axis can be identified in a way that always falls within the spatial 
scope of the reflection symmetry bound up with the original line. The overlap, 
together with the fact that the moving part—itself a straight line—carries its own 
local symmetry axis along with it as it rigidly moves, allows the line to be extended 
beyond its original boundaries in a way that assumes only symmetries defined within 
its original boundaries. 
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the symmetry-respecting constraint has restricted the extension-constituting motion to 

translation along the axis marked out by the original line.62  

 The visual-imaginative experience just described can serve as the basis for the 

intuition that our given straight line can be produced or extended in a unique way 

from one of its endpoints, but of course it only permits the line to be extended by a 

certain amount, which cannot exceed the length of the original line itself. In order to 

see that the line can be extended indefinitely, one needs to be able to apply the 

procedure in an iterative manner. Fortunately, the use of aspectual imagery to 

reappraise the result of translating the part as a new, whole straight line already gives 

us the starting point for a new iteration of the extension procedure. The difficulty that 

now arises is that our newly constructed straight line is longer than the original, and 

the outcome of the subsequent iteration will be longer still. Whether we construct the 

extended lines on paper, or merely in imagination, the successively longer lines will 

swiftly reach the upper limits of what can be represented by vision or in visual 

imagination. Even if this were not a problem, however—even if, say, visual 

experience had no such upper bound—any succession of iterations, however long, 

will still only support the intuition that the line can be extended by some specific, 

finite length, namely the length of the total extension realized across the finitely many 

iterations we have rehearsed so far. This way of approaching the matter is guaranteed 

never to get us to an intuition that the line can be indefinitely extended. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
62 Uniqueness follows in any case from the straightness of the new line on the 
assumption of claim (2), whose intuitive justification has already been explained. 
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 This is a difficult problem, and it is one that we will not be able to fully 

address until Chapter 5, when we provide a general consideration of the generality 

problem, of which this is a specific instance. It is, however, worth briefly previewing 

the solution that will be given to this version of the problem, given its importance for 

understanding Euclid’s second postulate. The solution does not require us to look any 

further than the very first iteration of the extension procedure; it turns on the ability to 

represent the line that results from the first iteration as both (i) greater than the 

original line, and also (ii) able to be depicted by the same drawn line that served to 

depict our original line. The integrated recognition of (i) and (ii) is based in the same 

ability to meta-represent one’s own visual experience that is implicit in the use of 

dynamic aspectual imagery, conceived as enabling the perceiver to ‘see the same 

form as seeable in two ways’. Taken alone, (i) can of course be grasped directly on 

the basis of the extension procedure outlined just above. This leaves (ii), whose 

recognition depends on a form of dynamic transformational imagery in which the 

change in a figure’s appearance is understood to result not from motions applied to 

the figure, but rather from a shift in subjective, perspectival vantage point. In 

particular, one can imagine visually ‘zooming out’ from the figure, such that it 

appears ‘smaller’, and indeed, can be made to coincide in imagination with (the 

appearance of) the original drawn figure.63 By integrating the contents of (i) and (ii) 

in visual experience, the subject is given a distinctively visual basis for understanding 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
63 The property of depictions of geometrical lines that was discussed earlier, whereby 
the visible breadth of the drawn line does not ‘count’ in recognizing the (breadthless) 
line depicted, plays a crucial role here, since it effectively allows visual-imaginative 
‘zooming out’ to compress visible length without compressing visible breadth. 
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that the application of a single iteration of the extension procedure yields a longer 

line, while nonetheless leaving entirely untouched the initial (depiction-mediated) 

appearance of the line, on the basis of which the possibility of applying the procedure 

was apprehended in the first place. In bringing this understanding to bear on Figure 

4.4, one can thereby see not only that the depicted line can be extended in a unique 

way, but also that such extension will in no way affect or disturb the (visually 

apparent) possibility of so extending the line. This allows the perceiver, then, to see 

that the line can be extended indefinitely. 

 The solution just sketched to the ‘indefinitely’ clause of claim (2) already gets 

us on the way to an explanation of intuitive knowledge of claim (3): that a particular 

drawn line—again, we can consider Figure 4.4—is adequate to represent an arbitrary 

straight line with full generality. For what this solution shows us is precisely that 

Figure 4.4 is adequate to represent a straight line of arbitrary length. Moreover, the 

crucial move in the solution—the ‘neutralization’ of the extension-induced shift in 

figural appearance by a compensatory shift in subjective vantage point—can be 

generalized to capture arbitrary orientation as well. In particular, one can imagine the 

line depicted in Figure 4.4 as rotating about a fixed endpoint for a full turn, thereby 

encompassing all possible orientations. One can then see, further, the possibility of 

neutralizing the shift in appearance that accompanies a given increment of rotation, 

by allowing the reference system assigned to the line to drift along with the rotation; 

the line in rotation, then, continues to appear horizontally oriented with respect to the 

reference system it sets up around itself, which allows the perceiver immediately to 
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intuit the adequacy of the original Figure 4.4 to represent all possible orientations of 

the line, were it to be subjected to rotation. This explanation depends on several 

assumptions concerning the properties of reference systems. First, the line itself must 

be able to set up its own ‘intrinsic’ reference system. Second, the assignment of this 

local reference system must be independent of a distinct, global orientation 

assignment (corresponding to the orientation of the picture plane itself) which 

remains constant when the line is (imagined to be) rotated—for if this second 

condition were not met, then the rotation-induced change in orientation could not be 

seen as neutralized, but rather would be merely invisible. Fortunately, both of these 

assumptions are highly plausible in light of the characteristics of reference systems 

we noted earlier. Indeed, both of them would seem to be operative in the simple (and 

quite immediate) experience of seeing a picture frame as hanging on a wall with a 

not-quite-upright orientation. For the perceiver who notices this discrepancy 

presumably does so by representing both the natural ‘up’ direction intrinsic to the 

frame, and the global, embedding orientation of the wall itself, in an integrated visual 

experience that coordinates the two reference-system assignments. The only 

additional feature in the case at hand is the continuous change in the local orientation 

structure as the line’s rotation is visualized. 

 We have thereby provided a basis in visual experience for the judgments that 

Figure 4.4 can serve, respectively, to depict straight lines of arbitrary length and also 

of arbitrary orientation. There is still a lacuna in our account of the intuitive 

knowledge of claim (3), however, for we haven’t yet explained what basis the subject 
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has for assuming that arbitrariness in both length and orientation is sufficient to 

encompass the full generality implicit in the term ‘arbitrary straight line’. As such, we 

need to return to the general construction procedure for straight lines provided by 

Euclid’s first postulate, which tells us that a straight line can be drawn from any point 

to any (other) point. The initial ‘point of departure’—the point from which we draw 

our line—can trivially be taken as arbitrary, given that the spatial properties peculiar 

to a given (geometrical) point are exhausted by its location in the plane, and it is easy 

to see that the shift in appearance that accompanies change in location can be 

neutralized simply by means of visual tracking—by keeping visual attention directed 

at the point. This arbitrariness of location will thereafter be inherited by any figures 

constructed out of the point, including our present target: the arbitrary straight line. 

We can suppose that when we visually attend to a point in space, a reference system 

is applied, with orientation axes meeting at the point’s location, thereby providing 

some minimal structure to the planar space that opens out locally around the point, 

enabling the subject to at least roughly discriminate locations about the point itself. 

 Suppose we now draw a second point at some particular relative location—

say, along the horizontal orientation axis. This gives us a diagram that looks like 

Figure 4.3. As we’ve seen, this diagram effectively invites the perceiver to imagine 

drawing in the straight line that would connect the two points, which would give us a 

diagram like Figure 4.4. Now, whichever of these diagrams the perceiver presently 

beholds, it takes only a little effort to see in it the spatial content that is most naturally 

depicted by the other diagram. That is, the perceiver can not only see the connecting 
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line ‘in’ Figure 4.3, but can also see the separated points of Figure 4.3 ‘in’ Figure 4.4, 

by suppressing visual awareness of the line. The ready availability of this aspectual 

shift allows the perceiver (to borrow Brown’s apt phrase) to “maintain a lively 

awareness” of both interpretations while imagining the free movement of the second 

point as the original point remains fixed. While grasping the movement of the point 

on the ‘Figure 4.3’ interpretation, the motion can then be reappraised according to the 

‘Figure 4.4’ interpretation, so that the movement is then interpreted as a combination 

of linear rotation (about the fixed point) and linear contraction or extension, as 

appropriate. This makes visually apparent the fact that the very same motion-

appearance could have been generated on the ‘Figure 4.4’ interpretation, by 

imagining the appropriate combination of linear rotation and contraction or 

expansion. Of course, this requires the subject to simultaneously keep track not only 

of alternating aspectual interpretations, but also of movement along both of the two 

‘dimensions’ of length and orientation. This demand on attention can be somewhat 

mitigated, however, provided the subject has developed a degree of expertise with the 

visual imagination of straight-linear extension (and contraction); since straight lines 

are extended/contracted along a unique trajectory, the expert perceiver can visualize a 

line produced all the way to the somewhat indeterminate outer edges of visual 

awareness, while understanding that the true endpoint of the line could potentially lie 

anywhere along this trajectory. Then, simply by visualizing the (indeterminate) line 

rotationally sweeping through the space surrounded the central ‘reference point’, one 

can visually grasp that all the points lying within this region have been ‘captured’: 
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Draw attention to a sufficiently local point, and one immediately understands how to 

construct a line to it, by taking our original horizontal line, imaginatively producing it 

along its trajectory of extension to the point of indeterminacy, rotating it until it meets 

the point, and then contracting it appropriately.64 Points that are insufficiently local, 

finally, can be handled using a version of the neutralizing strategy used to solve the 

problem of ‘indefinitely’ extending a line. Putting all these components together, 

then, one can that a straight line can be drawn from a given point to any point, and 

also that the straight lines so constructible can alternatively be constructed by 

applying some appropriate combination of rotation and extension/contraction to a 

given particular line. Since one can also see the possibility of ‘neutralizing’ any 

change in appearance that results from transforming the line in these ways, the upshot 

is that one can arrive at an intuitive belief in the truth of claim (3), whose justification 

is grounded in the visual understanding of the diagrams shown in Figure 4.3 and 4.4. 

This completes our discussion of the intuitive foundations of Euclid’s first and second 

postulates. 

 

10 Circles 

The third and final construction postulate warrants the drawing of “a circle with any 

center and distance” (Euclid 1956, p. 199). As indicated previously, circles play 

something of a subsidiary role in the constructions of Book I of the Elements, serving 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
64 Unlike linear extension, contraction is rather trivial, since it can be performed 
simply by shifting attention to the part of the line that runs from the origin point until 
the position where the second point cuts it. 
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primarily as ‘scaffolding’ for what is, in effect, the rotational movement of straight 

lines. By considering two straight lines that share an endpoint as radii of a common 

circle, Euclid is able to establish their equality to each other. By composing such 

circle-mediated ‘rotations’, Euclid is able to move straight lines around in planar 

space while keeping length constant. On our explicitly dynamic approach to 

Euclidean geometry, the order of priority is reversed: We assume the free mobility of 

straight lines, and can appeal to it to justify the construction of various plane figures, 

including circles themselves.65 Since we won’t need circles for our epistemological 

account of the content of Book I in the next chapter, we won’t devote the degree of 

careful attention to the third postulate as we did to the first two; we briefly consider it 

here for the sake of completeness. 

 The circle has various distinctive properties that might be taken to serve as a 

basis for a perceptual concept. Euclid’s definition focuses on the existence of a 

unique central point, to which equal lines can be drawn from any point that lies on the 

circumference. While this characterization has been taken to indicate Euclid’s 

preference for precisely the sort of construction procedure we will endorse, in terms 

of the rotation of a straight line about a fixed endpoint (see Heath’s notes in Euclid 

1956, p. 184), it is not clear that it captures the basic visual experience of circularity. 

Giaquinto (2011, p. 290) pursues a different tack, opting to specify a perceptual 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
65 As is clear from our discussion of the common notions, however, Euclid himself 
assumes free mobility in any case, due to his reliance on the method of superposition 
associated with Common Notion 4, without which Proposition I.4 (or an equivalent) 
would have to be taken as a postulate, as is the case in Hilbert’s (1910) axiomatic 
system for Euclidean plane geometry. 
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concept for circles in terms of another distinctive property of circles: their reflection 

symmetry about all axes that pass through the center. We will take a different (though 

closely related) symmetry property as basic, while allowing that sophisticated visual 

understanding of circles will involve the treatment of alternative perceptual concepts 

as equivalent, given prior insights to the effect that the different symmetry-based 

characterizations converge uniquely on the same geometrical object. We will take 

continuous self-symmetry under rotation to be the basic defining property of circles: 

To see something as circular, on this account, is to see that rotating it continuously 

(about the center) leaves it in a state of coincidence with its original position. This 

perceptual concept does seem plausibly to capture the naïve experience of circularity, 

as well as the characteristic functional utility of the circular form (think of the wheel 

as well as the lazy Susan). Another nice feature of this choice is that it gives us an 

elegant way to intuit the fact that our construction procedure—rotating a straight line 

about a fixed endpoint—will deliver the intended result. Consider that the static 

Figure 4.4 can be interpreted (somewhat fancifully, but also with clarity and 

legitimacy) as an animation of a line being continuously rotated, while the subjective 

frame of reference rotates in the same direction and at the same right. Keeping this 

interpretation in mind, consider Figure 4.7. 
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 Figure 4.7: Circle with radius 

 

 

 

This static figure can be similarly interpreted as an animation: The radius is 

continuously rotating counterclockwise, as is our subjective reference frame. The 

circle, which is in fact motionless on this interpretation, is moving clockwise relative 

to our subjective reference frame—this clockwise motion is invisible, however, which 

shows that the traced line is symmetrical under this rotation. If we visually understand 

the figure on this interpretation (or one of various other equivalent ones), we can 

grasp in an instant that when the straight line is rotated about a fixed endpoint, the 

other endpoint traces a closed curve that is symmetrical under continuous rotation—

and which is therefore immediately recognizable as a circle, given the perceptual 

concept we have chosen.66 

 This completes our discussion of Euclid’s construction postulates. In the next 

section, we turn finally to his fourth and fifth postulates, which serve, respectively, to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
66 Of course, much more explanation would be required to fully justify the claim that 
such a visual experience of Figure 4.7 can justify knowledge of the third postulate. 
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enforce the global spatial properties of homogeneity and flatness on the planar figures 

that are constructible by successive applications of postulates 1-3. 

 

11 The structure of Euclidean space 

Euclid’s fourth postulate reads as follows: “That all right angles are equal to each 

other” (1956, p. 200). As we established earlier, the notion of equality, as applied to 

angles, is to be understood in terms of the definition implicitly provided by Common 

Notion 4: For two angles to be equal is for it to be possible that they should be made 

to coincide, if one is ‘applied to’ the other by means of the method of superposition. 

The notion of right angle invoked in the postulate is the one captured by Euclid’s 

Definition 10: 

 

When a straight line set up on a straight line makes the adjacent angles equal 

to one another, each of the equal angles is right, and the straight line standing 

on the other is called a perpendicular to that on which it stands. (1956, p. 

153; bold in original) 

 

In Figure 4.8, line AB has been ‘set up’ on CD in a way that makes angles ABC and 

ABD (apparently) equal—which we can visually grasp by rehearsing a reflection 

across the axis on which line AB lies, which maps these angles onto one another.67 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
67 Seen in a different way, this reflection maps line CD onto (collinearity with) itself. 
This reflection symmetry thereby gives us a basis on which we could specify 
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Putting together these interpretations of ‘right angle’ and ‘equal’, Euclid’s fourth 

postulate amounts to the claim that any two configurations that have the symmetry 

properties of Figure 4.8 can be made to coincide with each other by rigid motion (or 

‘application of figures’). 

 

 Figure 4.8: Right angles 

 

 

What is striking about Euclid’s fourth postulate is that it is actually redundant, 

in the sense that it could itself be proved by the method of superposition, in a manner 

analogous to the proof of the side-angle-side triangle congruence criterion that Euclid 

provides in Proposition I.4. In this latter proof, Euclid assumes the ability to apply 

one angle to another.68 Now, he has already proven (in Proposition I.2) that a straight 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
perceptual concepts for right angles and perpendiculars, respectively. This won’t be 
spelled out here. 
 
68 More carefully: He assumes the ability to move a configuration of lines that 
‘contain’ the angle, so that not only the angular magnitude but also the linear 
magnitudes are preserved. 
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line equal to a given one can be placed at a given point. He accomplishes this in his 

construction by composing what are, in effect, rotations of straight lines, made 

possible without explicit movement by the ‘scaffolding’ provided by circles.69 But the 

construction of circles won’t permit Euclid to ‘move’ angles in the same way (that is, 

to construct an angle equal to a given one, at a given location), nor will any other 

postulate.70 So the proof of Proposition I.4 has to be interpreted as appealing directly 

to the assumption of the application of angles.71 There is, then, no reason why this 

assumption should not be available for proving the fourth postulate itself, which 

could then be taken as a proposition. We won’t go through the full proof here, but the 

basic idea is that we apply the configuration ABCD in Figure 4.8 to its counterpart 

A’B’C’D’, which is constructed to have the same symmetry properties that are 

indicated by Definition 10, so that the angles of both configurations are right. We 

then apply the one configuration to the other so that B coincides with B’, and CD 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 
69 The fact that circles can be used to ‘scaffold’ rotations of straight lines rests, of 
course, on the third postulate, whose intuitive justification itself rests on the 
assumption that we can freely rotate straight lines about their endpoints. 
 
70 Of course, the fourth postulate, by asserting equality of right angles directly, 
underwrites this possibility in the special case of right angles. But this won’t get us to 
the general case that is needed for the proof of Proposition I.4, because Euclid’s 
system provides no basis for making precise comparisons in magnitude between right 
and arbitrary angles. It should also be noted that Euclid does eventually (in 
Proposition I.23) provide a general procedure for constructing at an arbitrary point an 
angle equal to a given one—but his proof depends crucially on Proposition I.8, which 
is itself proved by assuming that one angle can be rigidly applied to another. 
 
71 Moreover, it cannot be proved without this assumption, which is why contemporary 
axiomatic treatments of Euclidean plane geometry take the side-angle-side 
congruence criterion—or a close relative, as in the system of Hilbert (1910)—as itself 
an axiom. 
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with C’D’—until an endpoint is reached, since we are not assuming equal length—

and so that AB and A’B’ are positioned on the same side. To demonstrate that the 

(right) angles are equal, we need to show that the lines containing them coincide, so it 

suffices to show that AB coincides with A’B’ (up to an endpoint), which can be done 

in different ways by appealing to the (configuration-internal) angular equalities (that 

is, to symmetry). 

 Given that the fourth postulate is in this sense redundant, why does Euclid 

bother to state it at all? Heath’s comments on this point are worth quoting in full: 

 

While this Postulate asserts the essential truth that a right angle is a 

determinate magnitude so that it really serves as an invariable standard by 

which other (acute and obtuse) angles may be measured, much more than this 

is implied, as will easily be seen from the following consideration. If the 

statement is to be proved, it can only be proved by the method of applying one 

pair of right angles to another and so arguing their equality. But this method 

would not be valid unless on the assumption of the invariability of figures, 

which would therefore have to be asserted as an antecedent postulate. Euclid 

preferred to assert as a postulate, directly, the fact that all right angles are 

equal; and hence his postulate must be taken as equivalent to the principle of 

invariability of figures or its equivalent, the homogeneity of space. (Euclid 

1956, p. 200; emphasis in original) 
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Heath accurately observes that the homogeneity of space (the fact that it has ‘the 

same structure’ at all locations) is of a piece with the ‘invariability of figures’ under 

changes in position, so that they can be moved through planar space without 

deformation. This is important for our purposes, because it shows the manner in 

which the possibility of subjecting Euclidean objects to free rigid motion (which is a 

fundamental assumption on our view) serves implicitly to enforce the global property 

of homogeneity on the space through which figures are moved. Heath’s comments 

also underscore the appropriateness of Euclid’s postulating an equivalent to the 

assumption of free rigid motion. As we noted earlier, Common Notion 4 implicitly 

defines equality (in the sense of congruence) in terms of possible coincidence under 

rigid motion. As a definition, this can’t be taken to justify the existence of any actual 

equality—in general, justifying existence is the role of the postulates. The primary 

role of the fourth postulate, then, is presumably to establish the existence of equality 

between angles.72 The problem with Euclid’s formulation of the postulate is that it 

doesn’t succeed in establishing that non-right angles can be equal, and this is needed 

to prove Proposition I.4, on which much of the rest of Euclid’s geometry crucially 

depends. While Heath’s remark that the postulate “must be taken as equivalent to the 

principle of invariability of figures” is perhaps plausible as an interpretation Euclid’s 

intentions, it is therefore problematic in that that equality of right angles is not 

equivalent to the assumption of the invariability of figures. In order to properly 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
72 Of course, the fourth postulate as stated will only be able to fulfill this role given 
the existence of right angles themselves, which is demonstrated in Euclid’s 
Proposition I.11. 
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ground Euclid’s system, it would be preferable to assert invariability of figures 

directly, rather than allowing the equality of right angles, which is only a special case, 

to implicitly justify the general method of superposition. But since angles in general 

do not have the distinctive symmetry properties that characterize right angles, we 

can’t accomplish this by taking on a postulate to the effect that all ‘similar’ angles are 

equal—for there is no available equality-independent way to capture ‘similarity’ in 

the general case. The alternative seems to be to take on a postulate that, like the 

construction postulates, is framed in a way analogous to a problem instead of a 

theorem—something along the lines of: “To freely move any figure without 

deformation.” Of course, this corresponds precisely to one of the core assumptions of 

the dynamic imagery account: that when a figure is apprehended qua object, rigid 

motions can be imagined applied to the figure, by means of dynamic transformational 

imagery. Not only, then, does the dynamic imagery account allow us to explain 

knowledge of Euclid’s fourth postulate, as stated—it actually directly provides a more 

acceptable foundation for Euclid’s edifice, one that Euclid is in any case committed to 

assuming. 

 We now turn, finally, to Euclid’s infamous fifth postulate, whose statement is 

significantly longer than the first four: 

 

That, if a straight line falling on two straight lines make the interior angles on 

the same side less than two right angles, the two straight lines, if produced 
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indefinitely, meet on that side on which are the angles less than two right 

angles. (1956, p. 155) 

 

While this is often referred to as the ‘parallel postulate’, it notably does not mention 

parallel lines, nor are any lines parallel in the situation it describes. Rather, since the 

postulate states that the two straight lines do meet if produced indefinitely, they are 

implicitly postulated not to be parallel, according to Euclid’s Definition 23: 

 

Parallel straight lines are straight lines which, being in the same plane and 

being produced indefinitely in both directions, do not meet one another in 

either direction (1956, p. 154). 

 

This definition—the final one Euclid provides in Book I—departs in one critical 

respect from all the definitions that precede it: It defines its object with respect to a 

condition whose representation lies beyond the scope of any possible visual 

experience. While we noted previously that it is possible for visual experience to 

justify a judgment that a straight line can be produced indefinitely, the explanation of 

that justification was importantly free of any commitment to a visual experience of an 

indefinitely produced line. That would involve a problematic commitment to the 

visual experience of an actual (rather than potential) infinity. This is precisely the 

commitment we would have to take on if we attempted to specify a perceptual 

concept of parallels according to Euclid’s definition, for in order to perceptually 
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judge that two straight lines were parallel, we would need to be able to visually 

entertain the result of their indefinite extension so that we could judge on the basis of 

that visual representation that the indefinitely extended lines do not meet each other. 

This particular definition is therefore decidedly uncharacteristic of Euclid’s 

definitions, which otherwise serve to indicate how a subject might visually experience 

a depicted object as having the property in question. It is, in fact, precisely on these 

grounds that Kant objected to Euclid’s definition of parallels. Accordingly, we will 

attempt to characterize parallels in an alternative way, which does allow for the 

possibility of visual experiences that represent straight lines as parallel. 

 In particular, we will appeal to the notion of parallel transport: Roughly 

speaking, this is a translation of a straight line along an intersecting straight axis, 

which preserves the angle it makes with respect to that axis (and hence preserves 

orientation). On our view, one will see two straight lines as parallel just in case one 

visually represents their being made to coincide by means of a parallel transport. To 

be more precise, we will take parallel transport to be defined only in reference to a 

given pair of intersecting straight lines, and we will define the motion of parallel 

transport in terms of the translation along one of the lines of a special geometrical 

object that we term an intersection. This term refers to the roughly X-shaped figure 

that opens out locally around the point at which the lines intersect. (We allow that the 

T-shaped figures where one straight line meets another along its length, and the L-

shaped figures where two lines meet at an endpoint can also be counted as 

intersections.) An intersection, in this technical sense, does not encompass the full 
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configuration of intersecting lines, but is rather composed only out of the parts of the 

lines that are ‘close to’ the point at which they intersect. As a rigid object, an 

intersection thereby serves as a kind of brace, which holds the lines at fixed angles to 

each other while one is translated along the axis provided by the other. The parallel 

transport of a straight line along another straight line, then, is visually grasped as an 

alternative aspectual interpretation of the motion of an intersection along one of the 

lines, which ‘forces’ the translation of the other line it ‘holds’ along that same linear 

axis. 

 The specification of a perceptual concept for parallel lines in this manner, in 

terms of the motion of parallel transport, enables us to explain intuitive belief in 

Euclid’s fifth postulate, provided that we accept the core assumption of the dynamic 

imagery account, that transformational and aspectual imagery can be employed in an 

integrated manner in visual experiences of drawn figures. Consider first the 

construction characterized in this postulate: a straight line, falling across two straight 

lines, making the interior angles on the same equal to less than two right angles. It is 

not obvious how we can specify the general construction of such a configuration, 

where the only restriction on the angles is that they be together less than two right 

angles. Suppose, then, that we restrict this characterization somewhat, so that we are 

considering only the range of cases where one of the internal angles is right (and the 

other is therefore acute). We can construct such configurations by applying a parallel 

transport to an initial configuration like the following: 
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Figure 4.9: Diagram for fifth postulate  

 

 

 

 

 

This is merely an augmentation of the configuration in reference to which Euclid 

defines right angles (shown in Figure 4.8), with an additional line AB drawn internal 

to the angle CBE. It follows from construction that angle DBE is right, and also that 

angle ABC is acute (since it is a proper part of angle CBE, which is right). Suppose 

we now apply a parallel transport to AB along CD in the direction of D. The dotted 

line in Figure 4.10 indicates roughly where AB would be located after being 

transported along this axis by a certain amount. 
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Figure 4.10: Animated diagram for fifth postulate 

 

 

 

 

 

 

If we visualize this transformation as a parallel transport of AB along CD, we can 

immediately see that it is also seeable as a translation of the angles AB makes where 

it meets CD, through a trivial application of aspectual imagery. Simply put, when a 

line is parallel-transported, the angles ride along for free. In particular, angle ABC has 

been translated, so that it now lies on the opposite side of BE. Since it remains acute 

and we know by construction that DBE is right, the result of applying this parallel 

transport to the initial configuration can now be seen to be an instance of the kind of 

configuration characterized by Euclid’s fifth postulate—for the straight line CD “falls 

upon” the straight lines BE and transported-AB, and the interior angles on the same 

side as E (the right angle DBE and the acute angle transported-ABC) are together 

equal to less than two right angles. 

 Now, what the fifth postulate claims about this figure is that if BE and 

transported-AB are produced indefinitely, they will meet on the same side of CD as 
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E. This can be seen to be the case, provided we use aspectual imagery to reappraise 

the parallel transport by which we construct the configuration to which the postulate 

refers. For note that in the initial configuration (in Figure 4.9), since AB intersects 

with two lines at point B, it is held by two distinct intersections (in our technical 

sense), and hence there are two axes along which it could be parallel-transported. So 

instead of imagining the parallel transport of AB along CD in the direction of D, we 

could alternatively imagine the parallel transport of AB along BE in the direction of 

E. The important thing to notice here is that it doesn’t make any difference which one 

of these options is used to drive the transformational imagery that rehearses the 

parallel transport—the appearance of the visualized continuous motion of overall 

configuration is exactly the same in both cases. This means, in particular, that when 

we imagine AB to be parallel-transported in the manner that yields the configuration 

to which the fifth postulate refers, we can use aspectual imagery to see the 

configuration-in-motion as the parallel transport of AB along BE in the direction of 

E. On this latter interpretation, we will see the intersection that initially holds lines 

AB and BE as being translated continuously along BE in the direction of E. 

Moreover, we can see that this translation can be continued indefinitely, in the same 

way that we were able to grasp that a straight line can be continuously extended in a 

given direction, as explained previously. The upshot is that we can see that as we 

imagine AB to be parallel-transported along CD in the direction of D, that motion is 

seeable as the translation of the AB-BE intersection along BE in the direction of E. 

We can thereby visually grasp that the construction of the configuration to which the 
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fifth postulate applies guarantees that BE and transported-AB will meet on the same 

side of CD as E—for these two lines will remain held in place throughout by the AB-

BE intersection. And this is just to see that what the fifth postulate asserts about this 

configuration is true. 

 Now, this doesn’t quite give us a visually justified belief in the fifth postulate 

as stated, because we haven’t considered the full range of cases to which it applies, in 

which it may be that neither of the interior angles is right, so long as they are together 

less than two right angles. This doesn’t pose an insuperable difficulty, however—in 

the next chapter we will see, in connection with our discussion of Euclid’s 

Proposition I.13, how we could capture the general case. In any case, we have in a 

significant sense already achieved our target, for in the technique just used to justify 

intuitive belief in the restricted cases, we have already laid down the foundations that 

are necessary for the visual apprehension of the truth of those propositions that 

depend, in Euclid’s system, on his fifth postulate. The assumption—one that follows 

directly from our account’s core postulation of the integrated employment of 

transformational and aspectual imagery—that we can reappraise a parallel transport 

along one line as a parallel transport along a different line is, in fact, equivalent to 

Euclid’s fifth postulate, in the context of the first four postulates. It is all we will need 

in order to impose the distinctive Euclidean flatness on the configurations that are 

constructible in accordance with postulates 1-3. With this result, then, we complete 

our discussion of Euclid’s postulates, and with that, our account of basic knowledge 

of Euclidean plane geometry. 
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12 Conclusion 

In the last two chapters, we have taken the first and most significant step forward in 

explaining how the core psychological posits of the dynamic imagery account are 

able to support justified intuitive belief in the claims of Euclidean plane geometry, on 

the basis of visual experiences of drawn figures. We began by considering 

Giaquinto’s account of basic geometrical knowledge, and we then applied his central 

idea of perceptual-geometrical concepts to the most fundamental claims of Euclid’s 

geometry, through a careful reading of the definitions, postulates, and common 

notions that appear at the beginning of Book I of the Elements. The upshot of this 

investigation is that Euclid’s fundamental starting points are themselves based in 

more fundamental assumptions, which constitute the true ‘psychological axioms’ 

underlying Euclidean plane geometry. These consist in the perceiver’s ability to 

employ, in an integrated fashion, the two forms of dynamic visual imagery postulated 

by our account. In the next chapter, we will consider how this account can be 

extended to explain general knowledge of Euclidean theorems. 

!
!
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Chapter 5: The Generality Problem 

 

1  Introduction 

In this chapter, I address an outstanding challenge to the account of geometrical 

knowledge put forward across the previous chapter: the generality problem. This 

problem arises largely when one attempts to extend that account beyond the domain 

of basic geometrical knowledge to the understanding of geometrical theorems. 

 

2 The problem 

The generality problem arises due to a contrast between the inherent particularity of 

the geometric objects that can be depicted by diagrams, on the one hand, and the 

generality of the theorems those diagrams are intended to support, on the other. It 

should be clear that the problem does not arise with the same force for geometric 

objects of all kinds. Any particular circle or square, for instance, is geometrically 

similar to all others, in the sense that any such pair of the same kind can be made 

congruent by means of uniform scaling. Here, the problem of generality is relatively 

trivial, since ensuring the generality of a conclusion reached in reference to a depicted 

circle or square requires nothing more than recognizing that the result persists across 

uniform scaling. A different order of difficulty confronts the attempt to generalize a 

truth grasped about a particular depicted triangle, so that the result can be legitimately 

held to apply to any triangle whatsoever. In such cases, the generality of the intended 

conclusion appears to outstrip the scope of what can be depicted in a single diagram, 
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or indeed, in any finite set thereof. The reason, of course, is that the class of all 

triangles encompasses an indefinite range of minute variations in shape, so that any 

particular depicted triangle will necessarily possess accidental spatial properties that 

are not characteristic of the class as a whole. The problem is that this ‘particularizing’ 

character of triangles would seem to render theorems concerning triangles in general 

unknowable by diagram-based means. At best, it would seem that generalizations 

could be drawn across a sample of special cases, which might provide inductive 

support for the general theorem. If this were the best that could be achieved through 

visual understanding, then that would considerably undermine the claim of the latter 

to be a genuine source of geometrical knowledge. 

 Discussions of the generality problem go back at least to Proclus’ fifth-

century commentary on the Elements, and continue in the modern period with Locke, 

Berkeley, and Kant. Interestingly, these discussions all seem to take as their common 

example a single theorem from Euclidean plane geometry: the angle-sum theorem, 

Proposition 32 from Book I of the Elements. This choice is perhaps unsurprising, 

since this theorem is perhaps the most basic theorem of Euclidean geometry that 

establishes a truly significant result about triangles in general. While I will not 

rehearse Euclid’s proof in full, it will be instructive to acquaint ourselves with the 

basic character of Euclid’s diagram-based reasoning. To begin with, the theorem 

claims that the sum of the interior angles of any triangle is equal to two right angles 

(equivalently, to a ‘straight angle’). The proof consists of an initial construction 

phase, followed by a demonstration performed in reference to the constructed 
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diagram. We are first asked to construct (i.e., to draw) an arbitrary triangle ABC, and 

then to extend line BC to a point D, and to draw a line CE, parallel to AB, on the 

same side of BD as A. This yields a diagram like the one in Figure 5.1 (though of 

course, any actual construction will necessarily introduce accidental features as 

regards the particular shape of the triangle). 

 

 Figure 5.1: Diagram for Euclid’s Proposition I.32 

 

 

 

In order to see that the theorem holds true for the particular triangle depicted, it 

suffices to attend to two facts in concert: first, that the three angles about point C (on 

the ‘upper’ side of line BD) are together equal to two right angles; second, that these 

three angles are equal to the interior angles of the triangle itself. This second fact is 

grasped by considering the angles in turn: First, we see that ∠ACB is common to both 

the triangle and the arrangement about point C; second, we see that ∠ECD=∠ABC 
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(since these angles are, respectively, ‘exterior’ and ‘opposite-interior’ in relation to 

parallel lines AB and CE); third, we see that ∠ACE=∠BAC (since these angles are 

‘alternate’ in relation to the Z-shaped arrangement of parallel lines AB and CE, joined 

by the transversal AC). When these various spatial relations are grasped in 

combination, as sharing the space of a common figure, the conclusion—that the 

interior angles of (the particular, depicted) ∆ABC are equal to two right angles—

becomes intuitively apparent. 

In Euclid’s own presentation, the steps are individuated more finely than this, 

and are arranged linearly, in deductive sequence—all of which might suggest to the 

contemporary reader that something like a formal deduction is being provided. This 

impression would be misleading, however, for the argument depends at almost every 

step on what can be seen in the diagram. For instance, the fact that angles 

∠ACB,∠ACE, and ∠ECD collectively fill (without remainder) the space about point 

C on the ‘upper’ side of line BD is something that must be seen by inspection of the 

diagram, as must facts about the spatial arrangements of the angles, such as that 

∠ACE and ∠BAC are ‘alternate’. In fact, even the existence of these angles is not 

something that follows deductively from any postulates or prior theorems set out by 

Euclid; they must rather be seen to ‘arise’ spatially out of the specific placement of 

lines that is prescribed in the construction phase, as their ‘negative space’. It follows, 

then, that regardless of whether in understanding Euclid’s proof we place primary 

emphasis on the diagram or on the accompanying text, our conclusion appears to be 

limited in scope to the special case our diagram depicts. On the first option, where we 
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read the text simply as a guide to the way spatial relations within the diagram must be 

appreciated in combination, this limitation is obvious, because the theorem has been 

seen to hold only for this particular depicted triangle. On the second (more 

traditional) reading, where we identify the proof primarily with the deductive 

argument set out in the text itself, we note that this argument contains a number of 

premises (some explicit, some unstated) that are justified only by what is observed to 

hold of the geometric structure depicted by the diagram; in this case, the scope of our 

conclusion will be limited to that for which these premises have been established, 

which is to say, to the depicted special case. 

To be sure, there is much more to say about the visual processes by which we 

can derive diagram-based knowledge of the special case of the angle-sum theorem, 

but even this brief consideration suggests that there is no essential bar to providing 

such an account. In contrast, it remains utterly mysterious how we can attain 

knowledge of the general case by diagram-based means. Repeating the proof for 

multiple variations of the diagrammatic construction may be practically sufficient to 

convince us of the truth of the general claim, but it is the principle that matters here, 

for we will still remain in the realm of special cases, of which there are indefinitely 

many—in this case, our justification for believing the general claim will be merely 

inductive, and this falls short of an acceptable standard for mathematical knowledge. 

In a particularly influential critique of the diagram-based view, Kitcher (1984) 

argues forcefully that this problem—which he terms the irrelevance problem—is in 

fact fatal to the whole enterprise. Understanding Kitcher’s critique will prove useful 
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for appreciating the deficiencies of the attempted solutions to be considered shortly. 

Kitcher frames his criticism in response to Kant’s version of the diagram-based view. 

Briefly, Kant argues that our geometric knowledge is grounded in the constraints our 

mind necessarily imposes on any possible spatial experience—including our 

perceptual experience of constructed geometric figures. The constructed figure, as 

perceived, reflects not only properties that are contained in the concept of triangle 

(such as being three-sided), but also properties that are necessarily imposed on 

triangular constructions by the nature of spatiality in general (such as the angle-sum 

property). Our synthetic a priori knowledge of geometry arises out of our intuitive 

discernment of properties of the latter sort (which in Kant’s view, take us ‘beyond’ 

our concepts themselves). Kitcher points out, however, that the spatial constraints 

imposed on the construction of a triangular figure necessarily introduce a third sort of 

property, namely the accidental properties of specific shape that arise as an inevitable 

by-product of spatial construction (for instance, that a triangle is acute rather than 

obtuse). The problem is that there is no apparent diagram-based means for 

distinguishing between the (relevant) properties that necessarily result from spatiality 

in general, and the (irrelevant) properties that accidentally result from the particular 

spatial construction. Given that the particular figure has the angle-sum property as 

well as (say) the acute-angled property, in order to derive a suitable general 

conclusion from our perception of the diagram, we need to be able to (legitimately) 

generalize over the former sort of property, while avoiding (illicitly) generalizing 

over the latter sort. But that would seem to require that we have antecedent 
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knowledge of which properties are spatially necessary, and which are accidental—

precisely the knowledge, Kitcher observes, that the diagram-based view is supposed 

to provide. Kitcher’s negative conclusion is that putative solutions to the ‘irrelevance 

problem’ can be presumed to be circular, tacitly assuming possession of the very 

knowledge they purport to explain. As we shall see shortly, this is in fact a fair 

assessment of a number of the solutions that have been offered to the problem. 

 The plan for the rest of the chapter is as follows. In the following two 

sections, I consider, respectively, historical and contemporary solutions to the 

generality problem, concluding that none are satisfactory. Nonetheless, I suggest that 

Kant’s attempted solution provides an indication of the lines along which a successful 

solution might be provided. This task is then taken up in the final two sections. I first 

briefly sketch some of the key components of the dynamic imagery account that has 

been developed over the course of the last two chapter. This account is then applied to 

the specific case of the angle-sum theorem, yielding a novel solution to the generality 

problem. 

 

3 Historical solutions 

I will consider three different historical solutions to the generality problem: those 

offered by Locke, Berkeley, and Kant. While I will argue that each of these solutions 

end up failing, they collectively provide a useful map of the available conceptual 

terrain, with Locke and Berkeley occupying opposite horns of a dilemma that Kant 

attempts to straddle. 
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 Locke’s solution is effectively to deny that the diagrammatic proof acquaints 

us in the first place with a mere special case. Euclid’s proof, on his view, is 

performed not on a particular triangle, but rather on the “general Idea of a Triangle”, 

which is “neither Oblique, nor Rectangle, neither Equilateral, Equicrural, nor Scalene; 

but all and none of these at once” (1975, 596). This general Idea of a Triangle is 

derived by abstraction from particular perceived instances: that is, by “leaving out but 

those particulars wherein they differ, and retaining only those wherein they agree” 

(412). The problem with this proposal is that, as we saw in the previous section, 

Euclid’s proof depends on relations that are observed to obtain in the perceived 

figure, and insofar as one has abstracted away from the determinate shape of that 

figure (which possesses the accidental properties noted by Kitcher), it is unclear in 

what sense there remains anything like a figure to perceive. Observing that two angles 

are ‘alternate’, for instance, seems to require that one be observing some concrete 

figure in which they appear in such a spatial configuration. If Locke’s Idea of 

Triangle is meant to be something of which we can have an intuitive, perception-like 

acquaintance, then it is something with which we have no familiarity in ordinary 

experience, for there is no obvious answer to what such a general Idea looks like. On 

the other hand, if Locke does not intend that we should have at least a quasi-

perceptual intuition of his Idea of a Triangle, then it is unclear how he can maintain 

that Euclid’s proof is demonstrated for such an Idea, since the proof patently depends 

on something like the perceptual observation of a figure. Locke’s solution, then, fails 

even to get off the ground. 
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 Berkeley’s solution, in contrast, steadfastly affirms the particularity of the 

figure in relation to which the theorem is proved; he simply denies that this poses a 

problem for the subsequent inference to the general conclusion: 

 

To which I answer that, though the idea I have in view whilst I make the 

demonstration be, for instance, that of an isosceles rectangular triangle whose 

sides are of a determinate length, I may nevertheless be certain it extends to 

all other rectilinear triangles, of what sort or bigness soever. And that because 

neither the right triangle, nor the equality, nor determinate length of the sides 

are at all concerned in the demonstration. It is true the diagram I have in view 

includes all these particulars, but then there is not the least mention made of 

them in the proof of the proposition. It is not said the three angles are equal to 

two right ones, because one of them is a right angle, or because the sides 

comprehending it are of the same length. Which sufficiently shows that the 

right angle might have been oblique, and the sides unequal, and for all that the 

demonstration have held good. And for that reason it is that I conclude that to 

be true of any obliquangular or scalenon which I had demonstrated of a 

particular right-angled equicrural triangle, and not because I demonstrated the 

proposition of the abstract idea of a triangle. (1988, Introduction §13) 

 

The basic idea in this passage seems to be that, since “there is not the least mention” 

of any property not universal to all triangles in Euclid’s proof, therefore the proof 
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does not depend on the triangle possessing any such particular property; in that case, 

the conclusion will be known to hold for triangles in general. 

This line of reasoning faces an obvious problem, however: It does not follow 

from the fact that a proof fails to explicitly mention that the triangle possesses a 

particular property, that the proof does not implicitly depend on the triangle 

possessing that property. In the case of a purely formal proof this would indeed be a 

valid inference to draw. As seen in the previous section, however, Euclid’s proof is 

not purely formal; rather, it depends on a number of premises that are supported only 

by inspection of the diagram, and that diagram necessarily depicts only a special case. 

Now of course, Berkeley is correct that the truth of these premises depends only on 

properties that are universal to all triangles. What is in question, however, is how we 

are in a position to know that this is so, without actually observing that the relevant 

spatial relation holds for each of the indefinitely many possible constructions. 

Berkeley’s solution, then, appears to succumb to precisely the sort of vicious 

circularity Kitcher warned about in connection with the ‘irrelevance problem’. In 

justifying his claim that Euclid’s argument does not depend on properties that are 

peculiar only to certain triangles, Berkeley is helping himself to the claim that the 

diagram-supported premises depend only on properties shared by all triangles. This is 

true, but the question of how we are able to know it is true remains unanswered. 

Berkeley’s solution fails. 

Finally, we turn to Kant’s solution, which can be viewed as an attempt to 

carve out a middle ground between the Scylla of Locke’s solution and the Charybdis 



! 217!

of Berkeley’s. Consider that Locke’s solution was unconvincing in its attempt to 

import generality into the initial intuition of the geometric figure; Berkeley’s solution, 

in contrast, fully acknowledged the particularity of the intuited figure, and then failed 

to explain how the deliverances of this intuition can be generalized beyond the 

particular case. Kant’s solution attempts to straddle the gap between generality and 

particularity by appealing to schemata, which seem to serve as something like an 

intermediary between general concepts and particular intuitions. Kant’s account 

seems to me to be unsuccessful as well, though I think it does point the way towards a 

genuine solution to the generality problem. 

On Kant’s view, the judgment that the general theorem is true rests on our 

possession of a general schema for constructing the figures that depict particular 

instances of triangles: 

 

In fact it is not the images of objects but schemata which ground our pure 

sensible concepts. No image of a triangle would ever be adequate to the 

concept of it. For it would not attain the generality of the concept, which 

makes this valid for all triangles, right or acute, etc., but would always be 

limited to one part of this sphere. (1998, A140/B180-A141/B181) 

 

By ‘schemata’ here Kant is referring to the “representation of a general procedure of 

the imagination for providing a concept with its image” (A140/B180), e.g., the 

general rule according to which a triangular figure can be constructed (on paper or in 
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the imagination). Here Kant is taking seriously the presence of the initial 

‘construction phase’ in the Euclidean proof. There are various general procedures for 

constructing arbitrary triangles—the simplest is to pick three arbitrary points in the 

plane (not all collinear), and to connect them. What is difficult to see is how Kant can 

appeal to such a schema in order to solve Kitcher’s irrelevance problem. For the 

schema of triangularity itself, as Kant notes, “can never exist anywhere except in pure 

thought”, and in particular, “is something that can never be brought to an image at 

all” (A141/B181). Rather, the schema embodies the procedure by which images of 

particular triangles (which necessarily have accidental spatial properties) can be 

constructed. Now, if we attend only to the perceivable result of applying the schema, 

we are unable to discern which qualities are common to all triangles constructed on 

that basis. On the other hand, if we try to reason about the general constraints on what 

is so constructible by entertaining the schema itself in “pure thought”, we lose the 

synthetic character of our judgment, which is clearly not Kant’s intent. Kant responds 

to this dilemma as follows: 

 

Thus I construct a triangle by exhibiting an object corresponding to this 

concept, either through mere imagination, in pure intuition, or on paper, in 

empirical intuition, but in both cases completely a priori, without having to 

have borrowed the pattern for it from any experience. The individual drawn 

figure is empirical, and nevertheless serves to express the concept, without 

damage to its universality, for in the case of this empirical intuition we have 
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taken account only of the action of constructing the concept, to which many 

determinations, e.g., those of the magnitude of the sides and the angles, are 

entirely indifferent, and thus we have abstracted from these differences, which 

do not alter the concept of the triangle. (1998, A713/B741-A714/B742, my 

emphasis) 

 

So Kant’s attempted solution to the generality problem depends on the claim that we 

perceive the particular constructed triangle qua (and only qua) its status as a product 

of the general schema or procedure for constructing all such triangular figures. What 

Kant highlights here is that the ‘drawing’ of the figure is an action we undertake 

deliberately, and as such, in subsequently perceiving the figure, we can ‘take account’ 

only of what we put into it by enacting this procedure. 

While I think that this account is on the right track, it leaves key questions 

unanswered that are crucial for solving the generality problem. For what is missing is 

precisely an explanation of how the ‘free’ character of any particular active 

construction (based in the fact that choices regarding, e.g., the lengths of the sides of 

the triangle, are arbitrary with respect to the general schema) is linked to the 

perception of the specific arbitrariness that obtains in the particular figure that 

emerges as a product. What is required is that, in grasping the figure as a product of 

one’s action, one sees that one could have drawn it differently, and that the important 

relations one observes as holding in the particular figure would remain invariant. But 

how is one to see that this is so, if not by actually enacting all these (indefinitely 
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many) alternative constructions as well, and observing that the same truth holds 

across the entire set? In order for Kant’s suggestion to constitute a viable solution to 

the generality problem, it is necessary that one be able to perceive the particular 

figure as in some sense ‘modally animated’, that is, situated amongst alternative 

variants, in such a way that one simultaneously apprehends the full range of possible 

variation (encompassing all particular triangles), together with the important 

invariants that obtain across this range (that all such triangles have certain geometric 

properties). This is the line of thought I take up later in the paper, in developing my 

own positive account. First, however, I briefly consider some contemporary solutions 

to the generality problem. 

 

4 Contemporary solutions 

Here I’ll consider two representative solutions to the generality problem from 

contemporary philosophers. The discussion will be relatively routine, however, as 

these contemporary solutions are both recognizable as variants of Berkeley’s solution, 

which we have already discussed. 

 The first contemporary solution is put forward by Norman (2006, 158-9), 

toward the end of his book-length case study of the epistemology of the angle-sum 

theorem. Norman’s book contains a number of useful insights about the nature of 

diagram-based inferences, some of which are embraced by the account I will put 

forward in the following section. Here, however, we are concerned just with 

Norman’s solution to the generality problem. Norman approaches the problem by first 
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distinguishing between generic properties (shared by all triangles) and non-generic 

properties (peculiar to only some triangles), and framing the question at issue as one 

of whether the reasoner can be justified in believing that Euclid’s proof does not 

depend on any non-generic properties of the triangle depicted. Norman now considers 

the three components of construction phase of Euclid’s proof: the drawing of an 

arbitrary triangle ABC, the extension of line BC to point D, and the drawing of line 

BE parallel to AB (and on the same side of BD). Norman notes, quite correctly, that 

each of these construction steps is warranted on the basis of some prior postulate or 

theorem, and that none of them requires that the triangle possess any particular non-

generic property. Specifically, none of them explicitly mentions, nor depends upon, 

any property not common to all triangles. Norman now says: 

 

But this is all the reasoner needs to believe in order to make the generalization 

with justification. Recall that, by the rule of Universal Generalization, if a 

claim about a given but arbitrary object rests on no prior assumption about the 

object in question, then it may be generalized into a claim about all such 

objects. The geometrical analogue of this claim here would be that if a claim 

about one or more given but arbitrary triangles rests on no prior assumption 

about the triangles in question, then it may be generalized into a claim about 

all such triangles. The antecedent of this conditional is satisfied here. No 

assumption has been made as to the triangles represented by the diagram…. 

So the reasoner can make the general claim with justification. (158-9) 
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This is, clearly enough, merely a variation on Berkeley’s solution, which held that 

generalization can be justified by the observation that Euclid’s argument fails to 

mention any non-generic property of the triangle in question. Here Norman goes a 

step farther, claiming explicitly that the proof does not depend on the assumption of 

any non-generic property. In fact, Norman has shown no such thing. He has shown 

only that the general construction procedure does not depend on the triangle 

possessing any non-generic property—this much does indeed follow from the 

justification of the various construction steps by prior postulates and theorems. But in 

order for the proof actually to be carried out, the construction procedure must be 

performed so as to yield a particular constructed figure. It is this particular figure the 

observation of which will serve to support the subsequent inferences in Euclid’s 

deductive argument. And Norman has offered no reason to think that the spatial 

relations seen to hold in the constructed figure do not depend on any non-generic 

properties. After all, the figure itself will necessarily possess such properties, as 

Kitcher has stressed. The analogy Norman draws to the formal inference rule of 

Universal Generalization is a poor one, because the diagram-based proof of the angle-

sum theorem is not a formal proof. It rather depends on constructing a particular 

figure in which certain relations are seen to obtain. Universal Generalization only 

applies where one has assumed nothing in particular about the object under 

consideration. In Euclid’s proof, the ‘particularization’ that takes place when one 

actually enacts the general construction procedure so as to yield a concrete figure 
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violates this constraint, since subsequent inferences are justified by what is seen to be 

true of the particular figure itself. Norman has merely obscured this point by drawing 

attention to the general construction procedure, rather than the figure constructed on 

its basis. 

 Our next candidate solution is provided by Giaquinto (2007), whose account 

of basic geometrical knowledge we considered in detail in Chapter 3. Giaquinto’s 

solution to the generality problem, in relation to cases like the angle-sum theorem, is 

essentially the same as Norman’s, and fails for the same reason. In discussing the 

question of valid generalization from diagrams, Giaquinto considers a different 

example from the angle-sum theorem (Thales’ theorem), but the essential points are 

all the same, since in this example too, we have inferential steps that are licensed by 

observation of a diagram depicting a geometric object with non-generic properties. 

Like Norman, Giaquinto appeals to the formal inference rule of Universal 

Generalization, and considers whether the reasoner can be justified in believing that 

the proof of the special case depends on no non-generic features, and hence can be 

justified in applying this generalization rule. Here is the crucial passage: 

 

The question we need to answer is whether this kind of valid generalizing can 

occur in an argument that uses a diagram in a non-superfluous way to reach an 

intermediate statement about an arbitrary instance. The worry is that in using a 

diagram to reason about an arbitrary instance c of a class K, we will be using 

some feature of c represented in the diagram that is not common to all 
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instances of the class K…. Is there [such an] error in our example…? … What 

property of instance not shared by all members of the class might we be 

unwittingly relying on when following the argument? Well, there is the size of 

the semicircle… and there is the orientation of the semicircle. But it is clear 

that the argument does not depend in any way on these features. There is also 

the position of the chords’ meeting point… [and other properties—these 

details need not concern us]. A simple step by step inspection makes it clear 

that none of these properties is relied on in the argument…. As there is no 

threat from any other properties that the figure is represented as having, the 

argument contains no violation of the conditions for deductively valid 

generalizing. I conclude that valid generalizing can indeed occur in an 

argument that uses a diagram in a non-superfluous way to reach an 

intermediate statement about an arbitrary instance. (79-80) 

 

Let’s consider Giaquinto’s argument in relation to our own example, the angle-sum 

theorem (our considerations here will apply in the same way to his example of 

Thales’ theorem). Giaquinto proposes that, in order to know that the diagram-based 

proof of the special case is independent of the assumption of any non-generic 

properties, it suffices to perform a “step by step inspection” of all such properties, 

checking each to ensure that our proof depends on none. But how exactly is this 

inspection to be performed? Consider that the proof of (a given special case of) the 

angle-sum theorem depends on observing in the diagram properties like the 
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following: that these two angles occupy ‘alternate’ positions in the spatial 

configuration, that those three angles fill (without remainder) the space about a given 

point on one side of the line on which it is placed, and so forth. These facts are seen 

to hold in the particular constructed diagram, which as we have seen, is not 

‘arbitrary’, but rather necessarily possesses some or other non-generic properties. 

How can we tell ‘by inspection’ that these properties are indeed generic ones, given 

that our ‘inspections’ are restricted to the special case depicted by the diagram? In 

order to convince ourselves that these properties are generic, we might consider an 

alternative construction, to see if they still obtain. Even if they do, however, this will 

only count as inductive evidence in support of the hypothesis of their generic status. 

In order to establish the truth of this hypothesis with certainty, we will need to inspect 

all possible constructions. What Giaquinto has assumed here is that we are able to see 

that a given property will hold of all possible constructions—but an explanation of 

this supposed ability is precisely what is at issue in the attempt to solve the problem 

of generality. Kitcher’s warning about circularity has proven prescient: Giaquinto has 

ended up presupposing precisely the knowledge he set out to explain. I conclude that 

both of these contemporary solutions fail, for essentially the same reason that 

Berkeley’s solution fails. 

 

5  Review of the dynamic imagery account 

In this section I briefly review the main features of the account of geometrical 

understanding that has been developed across the previous two chapters. I will restrict 
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myself to sketching some of the key features of the account that are relevant for 

addressing the generality problem as it arises for the angle-sum theorem. In the next 

section I go on to provide a novel solution to this problem based on the account. 

 The basic idea at the core of the account is that diagram-based insight into 

mathematical truth arises by means of the ‘animation’ of a visual diagram, 

accomplished by means of projecting ‘dynamic’ visual imagery into the static form. 

This dynamic imagery comes in two basic varieties. First, dynamic aspectual imagery 

captures the ability to appreciate, in an integrated fashion, the manner in which 

alternative ways of parsing or structuring a perceived form converge on a common 

spatial figure, in such a way that the mapping between these different ‘aspectual 

contents’ becomes intuitively apparent. A simple example is provided by the way that 

we can come to appreciate the way the ‘duck’ and ‘rabbit’ interpretations of the 

ambiguous duck-rabbit figure coexist as possible ‘takes’ on the same raw visual form. 

By attending to our alternating perceptual interpretation, we can grasp the way the 

duck’s bill ‘maps onto’ the rabbit’s ears. Second, dynamic transformational imagery 

actively represents the possible salient transformations of a given spatial form (or 

parts thereof), including, for example, translations, rotations, and deformations of 

lines and figures composed out of lines. This latter form of imagery allows us to 

imagine rigid translations of lines onto their parallels, for instance, or the continuous 

dilations and contractions of angles that result from rotations of the lines bounding 

them. The claim is that by bringing these two varieties of dynamic imagery to bear in 

concert, in relation to an appropriate geometric diagram, we can intuitively grasp not 
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only why a theorem is true in the depicted special case, but can also see that the 

spatial basis for its truth in the depicted case will extend to the non-depicted cases as 

well. This will constitute a solution to the generality problem. 

 I’ll now discuss both types of dynamic imagery as they apply specifically to 

the case of the angle-sum theorem. Dynamic aspectual imagery is important, in the 

first place, in order to appreciate the interrelations of lines and their associated angles. 

As noted earlier, angles are not explicitly mentioned in the construction phase of 

Euclid’s proof; they rather arise as by-products of the placements of lines, as, in 

effect, their ‘negative space’. It is crucial for grasping even the truth of the special 

case that the observer be able to see a given figure alternately as depicting two lines 

that share an endpoint, and as depicting the angle ‘contained’ by these lines; 

moreover, that the observer be able to appreciate the ‘mapping’ in virtue of which 

these alternative aspectual contents are mutually constraining. Indeed, the importance 

of this instance of ‘seeing a figure two ways’ is directly tied to what on Kant’s 

account appears as the synthetic a priori character of mathematical judgments. While 

the philosopher “will never produce anything new” with the concept of a triangle, 

Kant says, the geometer 

 

extends one side of his triangle, and obtains two adjacent angles that are 

together equal to two right ones. Now he divides the external one of these 

angles by drawing a line that is parallel to the opposite side of the triangle, and 
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sees that here there arises an external adjacent angle which is equal to the 

internal one, etc. (1998, A716/B744, my emphasis) 

 

The ‘synthesis’ of the angles that are said to “arise” out of the drawing of a line in this 

passage is the result of the observer’s appreciation of a figure-ground shift, which is 

based in the employment of dynamic aspectual imagery. In the construction phase, 

the line is apprehended thematically, as a sort of object, placed within an empty 

space; the drawing as a whole is then reappraised in a way that regards the pie-slice-

shaped regions (the ‘angles’) as objects, whereupon the line is viewed negatively, as 

the boundary they share. In addition to facilitating the grasp of line-angle 

interdependencies, dynamic aspectual imagery will serve to mediate among 

alternative groupings of angles. For instance, the angle ∠ACB will need to be seen 

alternately as belonging to the group of interior angles of the triangles, and then as 

belonging to the group of angles about point C, which fill the space on the upper side 

of line BD. 

 Dynamic aspectual imagery can also operate at a higher level, when applied in 

reference to a figure already animated by dynamic transformational imagery. In this 

case, the spatial dynamics of an imagined transformation can be interpreted in 

alternative ways, in such a way that the alternative interpretations are mapped to each 

other. For a concrete example, consider the rotating helixes traditionally found 

outside barbershops. The movement of the helical lines can be seen in the ‘veridical’ 

manner, as a horizontal rotation about the axis, but the lines are also easily interpreted 
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as moving in a vertical direction. By progressively switching back and forth between 

these alternate ‘takes’ on the helical movement, one is able to arrive at an 

appreciation of the manner in which the perceived form supports both interpretations. 

This ‘higher-level’ use of dynamical aspectual imagery will be important for grasping 

the general truth of the angle-sum theorem. 

 Dynamic transformational imagery is the crucial component for explaining 

how one can grasp that the basis of truth in the special case extends to the other cases 

not depicted by the static diagram. The basic idea here is that one imagines 

continuous spatial transformations that would map the perceived figure onto the full 

range of its counterparts, which collectively realize the totality of figures that can be 

drawn in accordance with the relevant construction procedure. It is crucial that as one 

imagines this range of transformation, one simultaneously attend to the spatial basis 

for the theorem’s truth in the case depicted. Since attending to the full set of relations 

can be taxing for visual attention, it is helpful that the different components that 

constitute this basis can be considered separately. The intuitive apprehension that the 

relation will generalize appropriately consists in each case in the recognition that as 

the figure is gradually transformed, the spatial features that constitute the reason why, 

for instance, one angle is equal to another will remain constant. In general, this 

‘reason why’ (in the special case alone) may itself be grasped only by virtue of the 

combined use of both kinds of dynamic imagery. 

 As that comment implies, dynamic transformational imagery has an important 

role to play before the question of generalizing from the special case even arises. In 
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the case of the angle-sum theorem, its specific use in this capacity concerns the 

perception of lines AB and CE as parallel. According to the dynamic imagery 

account, one important way in which we can see two lines as parallel consists in our 

imagining the rigid translation of one onto the other. Given that the line CE is 

stipulated to be parallel to AB in the construction phase of Euclid’s proof, this use of 

dynamic transformational imagery will be implicated in our understanding of the 

constructed figure from the outset. In seeing CE as parallel to AB, we will be poised 

to imagine AB as ‘sliding’ along the line BC (which functions somewhat like a rail), 

until it coincides with CE. In addition, repeatedly enacting this translation in 

imagination will form the basis for our grasp of both of the crucial angle equalities. 

 

6 A novel solution 

To a significant degree, our diagram-based grasp of the general truth of the angle-sum 

theorem rests on a prior grasp of the general truth of two preliminary results (proved 

by Euclid in Propositions 13 and 15 of Book I). Therefore, a complete account of our 

diagram-based knowledge of the general angle-sum theorem will begin by addressing 

these preliminary results. 

First is the theorem that the sum of the angles that fill a straight line (without 

remainder) about a point is equal to two right angles. This theorem is a trivial 

generalization from the claim that any straight line set up on a given horizontal will 

form angles equal to two right angles. In order to grasp this result, it suffices to 
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consider the diagram in Figure 5.2, which depicts a line placed upright on a straight 

line so that it is perpendicular. 

 

Figure 5.2: Demonstration of Euclid’s Proposition I.13 

 

 

By Euclid’s definition, the angles that arise on either side of this line in virtue of its 

placement will both be right angles. In order to grasp that an arbitrary line set up on a 

given straight line will form angles equal to two right angles, one must first employ 

dynamic transformational imagery in order to imagine the rotation of the initial 

(perpendicular) line about the point at which it meets the horizontal line. (It is easy to 

see that extensions and contractions of the line are irrelevant, since imagining these 

transformations leaves the angles visibly the same.) One then has to recognize that the 

full range of this rotation is adequate to capture the full range of possibilities 

permitted by the construction procedure. Now, as one imaginatively enacts this 
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rotation, one concurrently employs dynamic aspectual imagery, alternating between 

parsing the figure as a line rotating through the empty space above the horizontal line, 

and parsing the figure as two angles that continuously change in size, with one 

dilating and the other contracting, depending on the direction of imagined rotation. 

On the former parsing, it is obvious that the total space within which the line is 

rotating (the ‘straight-angled’ region about the meeting point on the top of the 

horizontal) remains invariant throughout; on the latter parsing, it is not immediately 

clear how the sum of the two angles might change across the visualized 

transformation. The crucial insight occurs when one maps these two alternative 

interpretations onto each other, thereby mapping the total space within which the line 

rotates onto the sum of the two angles. Immediately, one grasps that throughout the 

course of transformation, the sum of the two angles remains equal to the angle of the 

total space within which the line is rotating. Since in the initial placement of the line, 

the two angles are both right, it follows that the angles formed by any line set up on a 

horizontal are together equal to two right angles. 

Second, the proof of the angle-sum theorem presupposes the result that in any 

intersection of two straight lines, the opposite (or ‘vertical’) angles will be equal. 

Here let’s begin with the special case depicted in Figure 5.3. 
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Figure 5.3: Demonstration of Euclid’s Proposition I.15 

 

 

 

We want to show that angles A and C are equal. One way to achieve this (which 

corresponds to Euclid’s own proof) is by means of dynamic aspectual imagery. First 

we consider the grouping of angles A and B, noting that together they fill a straight 

line (and hence, by the previous result, are together equal to two right angles). Then 

we regroup, considering angles B and C together. Again, these angles together fill a 

straight line. By mapping these alternate parsing schemes to each other, and noting 

the occurrence of B in both groupings, we immediately see that A and C are equal in 

the depicted case. We now use dynamic transformational imagery to rotate one of the 

intersecting lines (it doesn’t matter which one), confirming that the full range of 

rotation indeed yields the total set of figures that can be constructed under the 

description ‘intersecting straight lines’. As we rotate the line, we continue to track our 

alternative groupings, and notice that across this range of transformation, the spatial 

relations that underwrite our conclusion in the special case continue to obtain. In 

particular, even as the angles dilate and contract, angle B continues to fill a straight 
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line with both angles A and C, for the reason that the intersecting lines remain straight 

throughout rotation. Again, by employing the two varieties of dynamic imagery in 

concert, a general theorem is grasped. 

Now we are in a position to tackle the angle-sum theorem itself. It is best to 

begin by considering the special case depicted in Figure 5.1. As indicated previously, 

there are four separate spatial relations that one must attend to. In order to genuinely 

perceive the truth of the special case, one must cyclically consider these relations in 

turn, progressively mastering their interconnections, until one is able to grasp their 

combined force in (something approaching) a single intuition. I’ll consider them in 

increasing order of difficulty. First, we must grasp that the three angles about point C 

on the upper side of line BD sum to two right angles. Once one has internalized the 

first preliminary result discussed above, this becomes perceptually obvious, since it is 

obvious that these three angles fill the space about a point on a straight line without 

remainder. Second, we must grasp that ∠ACB remains an element across both of the 

relevant groupings of angles: the interior angles of the triangle ABC, on the one hand, 

and the angles that fill the space above the straight line BD about point C, on the 

other. This is accomplished by means of a relatively trivial application of dynamic 

aspectual imagery. 

Third, we must grasp that angle ∠ECD=∠ABC. In Euclid’s proof, this follows 

from a prior theorem (Proposition 29). However, it is possible to perceive this relation 

in the diagram for angle-sum by employing the two kinds of dynamic imagery in 

combination. First, recall that seeing lines AB and CE as parallel consists in 
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rehearsing the rigid translation of line AB onto CE, as it slides along the ‘rail’ of line 

BC. If we now apply dynamic aspectual imagery to this imagined translation, we can 

reappraise the translation of the line AB (onto CE as its ‘destination’) as a translation 

of the angle ∠ABC (onto the angle ∠ECD as its ‘destination’), by flipping figure and 

ground as we imaginatively enact this translation. Note that this does not involve 

‘eyeballing’ the two angles to see that they (approximately) correspond. Since it is 

stipulated (by construction) that lines AB and CE are parallel, we are justified in 

imagining the translation of the former into precise coincidence with the latter. The 

recognition that the angles correspond due to a corresponding rigid translation is 

parasitic on our confidence that the lines do; it is merely a result of reframing the 

initial translation of lines, and attending to the ‘negative space’. 

Finally, we must grasp that ∠ACE=∠BAC. Again, Euclid here appeals to 

Proposition 29 to establish this, but we can see that the relation holds just by 

considering the diagram for angle-sum, provided we have internalized the second of 

the preliminary results discussed above, so that opposite angles of intersections (of 

straight lines) have come to look equal, in a way that we feel confident trusting. 

Again, grasping the equality turns on our rehearsing the rigid translation of AB onto 

its parallel CE. In this case (in order to reduce ‘noise’), it will be useful to consider a 

diagram that displays just the relevant parts of the appropriately ‘animated’ figure 

(see Figure 5.4). 
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Figure 5.4: Animating the diagram for Euclid’s Proposition I.32 

 

 

The figure depicts the distinctive Z-shaped configuration formed by the parallel lines 

AB and CE, joined (at top and bottom, respectively) by the transversal AC. It also 

displays the translation of line AB onto CE, in virtue of which these lines as 

perceived as parallel. In order to grasp the relevant equality of angles, we can apply 

dynamic aspectual imagery to the range of ‘transitional’ figures that arise as the line 

AB, mid-translation, occupies intermediate positions at which it intersects with the 

transversal AC. If we attend to the angles formed around this intersection as the 

translation is imaginatively rehearsed, we see that the translation of the line AB along 

the ‘rail’ of BC can be reappraised as a translation of the angle ∠BAC along the ‘rail’ 

of AC. (It is this reappraisal that is reminiscent of the ambiguous movement of the 

barbershop poles.) Since this interpretation results merely from reframing the 

translation of the line AB, we can be sure that the angle-in-translation remains 

constant throughout. Moreover, we can see that as soon as the translation from AB to 

CE begins, an angle arises that is opposite to the angle-in-translation ∠BAC and 
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therefore (assuming the second preliminary result) equal to it. As the translation is 

enacted in visual imagination, this opposite angle remains entrained to ∠BAC, as the 

intersection as a whole translates along AC in the direction of point C. Finally, at the 

point where the translation is completed, and the intersection disappears into a 

coincidence with point C, the angle that was opposite the angle-in-translation ∠BAC 

is seen to slide into coincidence with ∠ACE. Once this is observed, it becomes clear 

that angles ∠BAC and ∠ACE are equal. 

Attending to these four relations in combination, then, is sufficient for 

grasping the truth of the angle-sum theorem for the special case depicted. In order to 

grasp that the result applies to the general case, one must consider the diagram of 

Figure 1 in light of the general construction procedure that gave rise to it. In order to 

capture the full range of figures that can be constructed according to this procedure, it 

suffices to imagine point A being moved freely throughout the space above line BC, 

while holding this line fixed. The resulting deformations of triangle ABC will yield a 

range of figures geometrically similar to all possible triangles. Since line CD is 

merely an extension of BC, which is held fixed, it too will remain stationary. Line 

CE, since it is stipulated to be parallel to AB, will ‘shadow’ the movements of the 

latter line as the entire figure undergoes deformations. In order to grasp that the result 

seen to hold for the special case is truly general, it will be necessary to attend to the 

structural bases for each of the four components that determine this result, as the 

range of deformations of triangle ABC is imagined by means of imagining the free 

movement of point A. In particular, one will need to observe that each of these 
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structural bases remains invariant across this range of deformation. Fortunately, it is 

perfectly acceptable to consider these piecemeal. 

Observing that the first two relations hold across the relevant range of 

deformations is actually fairly trivial, since it suffices to observe that the overall 

structural topology of the figure remains invariant. In order to grasp the constancy of 

the first relation (the three angles filling the space above the horizontal line BD about 

point C), it suffices to observe that the line BD remains straight (which is trivial, 

since it is unaffected by the deformation), and that lines AC and CE continue to 

divide the space above BD into three separate angles. As one plays with the available 

positions of point A, noting the effect this has on the shape of the overall figure, it 

becomes clear that this latter condition only becomes threatened when point A 

approaches the axis along which lies line BC. As point A approaches this axis on the 

left side of point C, angle ∠ACB threatens to disappear; as it approaches the axis on 

the right side of point C, angles ∠ACE and ∠ECD threaten to disappear. But since the 

construction procedure does not permit point A to meet this axis, the condition 

remains secure. This observation, in conjunction with the necessary (stipulated) 

persistence of triangle ABC across deformation, is similarly sufficient to guarantee 

that ∠ACB remains available to be grouped alternately with this same set of angles, 

as well as with the interior angles of triangle ABC, so the second condition holds too. 

The third relation, the equality of ∠ECD and ∠ABC, can also be seen to 

persist across deformation, because it is grasped in the first place as a side-effect of 

the available translation of AB onto CE, along the ‘rail’ of BC. Now, BC remains 
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unaffected by deformation, as does the parallelism between AB and CE (since CE 

‘shadows’ the movements of AB across the available deformations). The final 

relation is the equality of ∠ACE and ∠BAC. As we saw above, this equality is 

grasped in virtue of observing the manner in which the translation of AB onto CE can 

be reappraised as the translation of an intersection, between the line-in-translation AB 

and the transversal AC, along the ‘rail’ of line AC in the direction of C—an 

intersection that resolves into the points A and C at the opposite resting points of the 

translation. If one repeatedly rehearses this translation in imagination (attending to the 

mapping between the alternative appraisals), it is not difficult to perceive that the 

successful ‘passing’ of one angle onto the other (via ‘reflection’ onto its opposing 

angle in mid-translation) rests on the structural feature of the Z-shaped configuration 

formed by parallel lines AB and CE, connected by the transversal AC, which meets 

AB at its top and CE at its bottom. For it is this Z-shaped configuration that underlies 

the passage of the intersection from points A to C as AB is translated to CE. By 

imaginatively playing with the position of point A, and observing how this deforms 

the configuration of lines AB, AC, and CE, it becomes clear that the Z-shape remains 

constant across the available range of deformation, since the lines AB and CE remain 

entrained in parallelism throughout, and also remain joined to the (shifting) 

transversal AC at the same endpoints (A, which is mobile, and C, which remains 

fixed). However this configuration is deformed, it can be seen to support the same 

intersection-based reappraisal of the translation of AB onto CE, which remains 

constantly available due to the ‘shadowing’ of AB by CE. 
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 By attending to the way that these four spatial relations, whose joint 

appreciation is sufficient to grasp the truth of the angle-sum theorem in the special 

case, remain invariant across the range of deformation sufficient to capture all the 

possible triangles that can be depicted by figures drawn in accordance with the 

construction procedure, it is thereby possible to perceptually apprehend that the 

angle-sum theorem holds for all triangles, merely by a concerted deployment of the 

two kinds of dynamic imagery posited by our account, in relation to the diagram that 

lies at the core of Euclid’s proof. I conclude that, by appealing to the imagistic 

resources of the dynamic imagery account, it is possible to explain how the generality 

problem can be solved for Euclid’s angle-sum theorem. 
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