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Cognitive radio technology is a new revolutionary communication paradigm

which allows flexible access to spectrum resources and leads to efficient spectrum

sharing. Recent studies have shown that cognitive radio is a promising approach

to improve efficiency of spectrum utilization, because wireless users are capable of

accessing the spectrum in an intelligent and adaptive manner. The theory of cogni-

tive radio is however still immature to fully understand its broader impacts on the

design of future wireless networks. This dissertation contributes to the advancement

of cognitive radio technology by analyzing wireless users’ interaction in a network

and developing game-theoretic frameworks to suppress selfish and malicious behav-

iors, with the goal to improve system performance by stimulating selfish users and

enhance network security against malicious users.

We first develop a cheat-proof repeated spectrum sharing game, which provides

the incentive for selfish users to cooperate with each other and reveal their private

information truthfully. We propose specific cooperation rules based on the maximum



total throughput and proportional fairness criteria, and investigate the impact of

spectrum sensing duration on system performance.

We also consider the situation where a group of selfish users collude for higher

payoffs. We propose a novel multi-winner spectrum auction framework which did

not exist in auction literature, and develop collusion-resistant auction mechanisms

to suppress collusive behavior. In addition, we apply the semi-definite programming

relaxation to significantly reduce the complexity of algorithms.

When malicious users are taken into consideration, we apply game-theoretic

tools to suppress potential malicious behavior in cognitive radio networks. Specifi-

cally, we model the anti-jamming defense as a zero-sum game, and derive the optimal

strategy for secondary users to execute in face of jamming threats. Moreover, we

propose learning schemes for secondary users to gain knowledge of adversaries.

Finally, we consider security countermeasures against eavesdroppers, and pro-

pose a cooperative paradigm that primary users improve secrecy with the help of

trustworthy secondary users. We derive the achievable pair of primary users’ secrecy

rate and secondary users’ transmission rate under various circumstances, and model

the interaction between primary users and secondary users as a Stackelberg game.
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Chapter 1

Introduction

1.1 Motivation

With the emergence of new wireless applications and devices, the last decade

has witnessed a dramatic increase in the demand for radio spectrum, which has

forced the government agencies such as Federal Communications Commission (FCC)

to review their policies [1]. The traditional rigid allocation policies by FCC have

severely hindered the efficient utilization of scarce spectrum. Hence, dynamic spec-

trum access, with the aid of cognitive radio technology [2], has become a promising

approach by breaking the paradigm and enabling wireless devices to utilize the

spectrum adaptively and efficiently.

Depending on the regulation of spectrum bands in which they operate, cogni-

tive radio networks can be roughly classified into three categories. The first one is the

open sharing in the unlicensed band on which nobody owns the exclusive right. For

instance, the industrial, scientific, and medical (ISM) radio band, in which WLAN

networks, bluetooth systems, cordless phones, and other novel wireless devices coex-

ist, demonstrates success and importance of open sharing. Nevertheless, unlicensed

sharing without regulation usually leads to the overuse of the time/frequency/power

units, and in order to avoid such inefficient usage, as suggested in [3], basic open

access protocols/etiquettes have to be set by either government or industry stan-
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dardization. In [4], spectrum sharing in the unlicensed band with time-invariant

flat-fading channels was formed into a repeated game and the Pareto optimal fron-

tier was obtained. In [5], iterative waterfilling power allocation was proposed for

Gaussian interference channels with frequency-selective fading, and some practical

difficulties the method were circumvented in [6] by exchanging “interference price”

which took mutual interference into consideration.

The second category “the opportunistic dynamic spectrum access” has re-

ceived more research interest. In this case, licensed spectrum bands are owned by

legacy spectrum holders (a.k.a “primary users”), but unlicensed users (a.k.a “sec-

ondary users”) are allowed to access the bands as long as they do not interfere with

primary users. Secondary users have to frequently sense the radio environment to

detect the presence of primary users. Whenever finding a spectrum opportunity

when the primary user is absent, secondary users are allowed to occupy the spec-

trum; but they must immediately vacate the band when the primary user appears.

There were a lot of works on the opportunistic dynamic spectrum access. To name

a few, in [7], three ways to sense the presence of primary users, including matched

filtering, energy detection, and feature detection, have been investigated. [8] showed

that the detection time could be reduced and spectrum agility could be enhanced

through user cooperation in spectrum sensing. The authors in [9] proposed a pri-

mary prioritized Markov dynamic spectrum access scheme to optimally coordinate

secondary users’ spectrum access.

The last category, sometimes known as the “negotiation-based dynamic spec-

trum access”, has been intensively studied, too. This kind of the cognitive radio
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network also operates in the licensed band, but different from the previous ap-

proach, there is some cooperation between primary users and secondary users such

that spectrum opportunities are announced by primary users rather than discovered

by secondary users. Since primary users have the incentive to trade their temporar-

ily unused bands for monetary gains and secondary users want to lease some bands

for data transmission, they may negotiate the price for a short-term lease. For

example, [10] proposed a real-time spectrum auction framework where secondary

users submitted their price-demand curves and the primary user employed revenue-

maximizing auction clearing algorithms. In [11], distributed ascending clock auction

schemes were proposed for multimedia streaming over cognitive radio networks. In

[12], double auction mechanisms were used to efficiently allocate spectrum resources

when there were not only multiple secondary users but also multiple primary users.

A notable difference of a cognitive radio network from traditional wireless net-

works is that users need to be aware of the dynamic environment and adaptively

adjust their operating parameters based on the interactions with the environment

and other users in the network. Traditional spectrum sharing and management

approaches, however, generally assume that all network users cooperate uncondi-

tionally in a static environment, and thus they are not applicable to a cognitive

radio network. In a cognitive radio network, users are intelligent and have the abil-

ity to observe, learn, and act to optimize their performance. If they do not serve

a common goal or belong to a single authority, fully cooperative behaviors cannot

be taken for granted. Instead, users will only aim at maximizing their own pay-

offs. Therefore, game theory [13] has naturally become an important tool that is
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ideal and essential in studying, modeling, and analyzing the cognitive interaction

process, and designing efficient, self-enforcing, distributed and scalable algorithms

for cognitive radio networks [14].

The importance of studying cognitive radio networks in a game-theoretic

framework is multi-fold. First, by modeling dynamic spectrum sharing among net-

work users (primary and secondary users) as games, network users’ behaviors and

actions can be analyzed in a formalized game structure, by which the theoretical

achievements in game theory can be fully utilized. Second, game theory equips

us with various optimality criteria for the spectrum sharing problem. To be spe-

cific, the optimization of spectrum usage is generally a multi-objective optimization

problem, which is very difficult to analyze and solve. Game theory provides us with

well-defined equilibrium criteria to measure game optimality under various game

settings. Third, non-cooperative game theory, one of the most important branches

of game theory, enables us to derive efficient distributed approaches for dynamic

spectrum sharing using only local information. Such approaches become highly de-

sirable when centralized control is not available or flexible self-organized approaches

are necessary.

Although existing dynamic spectrum access schemes based on game theory

have successfully enhanced spectrum efficiency, some critical challenges have not

been fully addressed or understood. First, cooperation is usually helpful, but seems

incompatible with players’ selfish nature. Hence, enforcing cooperation in the net-

work consisting of selfish players is important. Second, many of the existing papers

do not consider the situation when selfish players reveal false private information

4



in order to achieve higher payoffs. Since a lot of games rely on private information

revealed by individuals, cheat-proof strategies are necessary to guarantee that the

network runs in good shape. Third, the collusive behavior of selfish users, which is a

prevalent threat to efficient spectrum utilization but has been generally overlooked,

has to be taken into consideration. Driven by their pursuit of higher payoffs, a clique

of players may cheat together and take away profits that should have been credited

to other players, which makes collusion-resistant strategies important.

Moreover, most of existing works have not taken security issues into consider-

ation, which may lead to a severe loss when a malicious user shows up. A malicious

user, who may be an enemy in the context of military communications or a business

rival in the context of civilian communications, aims at maximizing the damage

that he/she causes. In fact, cognitive radio networks are extremely vulnerable to

malicious attacks for the following reasons. First, secondary users do not own the

spectrum, and hence their opportunistic access cannot be enforced by law from ad-

versaries. Second, highly dynamic spectrum availability and often distributed net-

work structures make it difficult to implement effective security countermeasures.

Third, as cognitive radio networks benefit from technology evolution to be capable

of utilizing spectrum adaptively and intelligently, the same technologies can also

be exploited by malicious attackers to launch more complicated and unpredictable

attacks with even greater damage. Therefore, ensuring security is of critical im-

portance to the successful deployment of cognitive radio networks. However, it was

not until recent years that security issues began to receive research interest. For

instance, in [15], the primary user emulation attack was described and a transmitter
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verification scheme was proposed to distinguish a primary user from other sources;

the authors of [16] discussed the attack where malicious users attempted to mislead

the learning process of secondary users; denial-of-service attacks were considered

and potential protection remedies were discussed in [17]; in [18], a malicious user

reporting false sensing results would be found and excluded from the collaborative

spectrum sensing when the calculated “suspicious” level was high.

In a nutshell, cognitive radio is a promising and revolutionary communication

paradigm that enables more efficient and intelligent usage of the spectrum resources,

but its successful deployment is loomed by selfish users and threatened by potential

malicious users. Therefore, in this dissertation, we want to develop a game-theoretic

framework for cognitive radio networks to suppress selfish and malicious behaviors,

in order to make the network more efficient and robust.

1.2 Dissertation Outline

From the discussion above, cognitive radio technology is a new communica-

tion paradigm, which allows wireless users to share the spectrum in an adaptive

and intelligent manner, and improves the efficiency of spectrum utilization. This

dissertation develops game-theoretic frameworks to suppress selfish and malicious

behaviors in cognitive radio networks with the goal to improve system performance

and enhance network security. The rest of the dissertation is organized as follows.
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1.2.1 An Overview of Game Theory (Chapter 2)

Since game theory has been recognized as an important tool in studying, mod-

eling, and analyzing the cognitive interaction process, in this chapter, we present

an overview of the most fundamental concepts of game theory and explain in detail

how these concepts can be leveraged in designing spectrum sharing protocols, with

an emphasis on state-of-the-art research contributions in cognitive radio networking.

We hope this will aid the design of efficient, self-enforcing, and distributed spectrum

sharing schemes in future wireless networks [14].

1.2.2 Cheat-Proof Open Spectrum Sharing (Chapter 3)

In a cognitive radio network, wireless users usually compete with each other for

spectrum resources, and have no incentive to cooperate with each other. They may

even exchange false private information in order to get more access to the spectrum.

To combat such selfish behavior, we propose a repeated spectrum sharing game

with cheat-proof strategies. By using the punishment-based repeated game, users

get the incentive to share the spectrum in a cooperative way; through mechanism-

design-based and statistics-based approaches, user honesty is further enforced. We

propose specific cooperation rules based on the maximum total throughput and

proportional fairness criteria. Simulation results show that the proposed scheme

can greatly improve the spectrum efficiency by alleviating mutual interference [19].
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1.2.3 Collusion-Resistant Spectrum Auction (Chapter 4)

It is also of interest to know what happens when a group of selfish users collude

for higher payoffs. In this chapter, we focus on the collusion-resistant strategy in the

setting of a spectrum market. Because spectrum resources are interference-limited

rather than quantity-limited, we present a novel multi-winner spectrum auction

game not existing in auction literature in order to accommodate this special feature

in wireless communications. As secondary users may be selfish in nature and tend to

be dishonest in pursuit of higher profits, we develop effective mechanisms to suppress

their dishonest/collusive behaviors when secondary users distort their valuations

about spectrum resources and interference relationships. Moreover, the semi-definite

programming (SDP) relaxation is applied to significantly reduce the complexity [20].

1.2.4 Anti-Jamming Zero-Sum Game (Chapter 5)

We apply game-theoretic tools to suppress potential malicious behavior in cog-

nitive radio networks. In this chapter, we focus on defending against the jamming

attack, one of the major threats to cognitive radio networks. We investigate the

situation where a secondary user can access only one channel at a time and hop

among different channels, and model it as an anti-jamming game. We derive the

defense strategy through the Markov decision process approach, and then propose

two learning schemes to gain knowledge of adversaries. In addition, we extend to

the scenario where secondary users can access all available channels simultaneously,

and redefine the anti-jamming game with randomized power allocation as the de-
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fense strategy. We derive the Nash equilibrium for this Colonel Blotto game which

minimizes the worst-case damage [21].

1.2.5 Anti-Eavesdropping Information Secrecy Game (Chapter 6)

Besides the jamming attack, eavesdropping is another serious concern for net-

work security. In this chapter, we propose a new cooperative paradigm in cognitive

radio networks that primary users improve secrecy with the help of trustworthy

secondary users, in the presence of an intelligent and passive eavesdropper attempt-

ing to decode primary users’ messages. We derive the achievable pair of primary

users’ secrecy rate and secondary users’ transmission rate under various circum-

stances, and model the interaction between primary users and secondary users as

a Stackelberg game. Moreover, based on a 2-D representation of how achievable

rates depend on power-level regions, we apply equilibrium analysis to understand

the optimal strategy of primary and secondary users [22].
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Chapter 2

Game Theory in Cognitive Radio Networks: An Overview

Game theory [13] is a mathematical tool that analyzes the strategic interac-

tions among multiple decision makers. Its history dates back to the publication of

the 1944 book Theory of Games and Economic Behavior by J. von Neumann and O.

Morgenstern, which included the method for finding mutually consistent solutions

for two-person zero-sum games and laid the foundation of game theory. During the

late 1940s, cooperative game theory had come into being, which analyzes optimal

strategies for groups of individuals, assuming that they can enforce collaboration

between them so as to jointly improve their positions in a game. In early 1950s, J.

Nash developed a new criterion, known as Nash equilibrium, to characterize mutu-

ally consistent strategies of players. This concept is more general than the criterion

proposed by von Neumann and Morgenstern, since it is applicable to non-zero-sum

games, and marks a quantum leap forward in the development of non-cooperative

game theory. During the 1950s, many important concepts of game theory were de-

veloped, such as the concepts of the core, the extensive form games, repeated games,

and the Shapley value. Refinement of Nash equilibriums and the concepts of com-

plete information and Bayesian games were proposed in the 1960s. Application of

game theory to biology, i.e., the evolutionary game theory, was introduced by J. M.

Smith in the 1970s, during which time, the concepts of correlated equilibrium and
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common knowledge were introduced by R. Aumann. Starting from the 1960s, game

theorists have started to investigate a new branch of game theory, mechanism design

theory, focusing on the solution concepts for a class of private information games.

In nowadays, game theory has been widely recognized as an important tool in many

fields, such as social sciences, biology, engineering, political science, international re-

lations, and computer science, for understanding cooperation and conflict between

individuals. In this chapter, we will present a brief overview on fundamental game

theory and how game theory has been applied to various aspects of cognitive radio

networks.

2.1 Non-Cooperative Games and Nash Equilibrium

The majority of games applied to cognitive radio networks belong to the cate-

gory of non-cooperative games, since usually in cognitive radio networks users have

no incentive to cooperate with each other but instead aim at maximizing their own

payoffs. A strategic game 〈N, (Ai), (ui)〉 consists of three components: a set of play-

ers, denoted by N ; a set of actions, denoted by Ai for player i; and payoff functions,

denoted by ui : A → R for player i, where A = ×i∈NAi is the action set of all

players. For cognitive radio networks, players of the game may be secondary users,

primary users, and even malicious users; for example, a game can be played be-

tween one secondary user and another secondary user, between a primary user and

a secondary user, between a secondary user and a malicious users, or between two

groups of users. Usually, the possible actions include sensing the spectrum, allocat-
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ing power, choosing spectrum bands, deciding ways of accessing spectrum and so on,

and depend on the specific application. Payoff functions can be chosen as channel

capacity, achievable throughput, quality-of-service (QoS) measures, monetary gains,

other user-defined metrics, or a combination of them. Note that one player’s payoff

depends on not only his/her own action, but also other players’ actions, and hence

there is a strategic interaction between players.

Nash equilibrium is the key concept to understand non-cooperative game the-

ory, which, informally speaking, is an equilibrium where everyone plays the best

strategy when taking decision-making of others into account, i.e., a? is a Nash equi-

librium if for every player i ∈ N ,

ui(a
?
i , a

?
−i) ≥ ui(ai, a

?
−i), ∀ai ∈ Ai, (2.1)

where ai denotes the strategy of player i and a−i is a common notation in game

theory representing the strategies of all players other than player i. Therefore, Nash

equilibrium predicts the outcome of a game when all players are rational. Depending

on whether players choose a single action or randomize over a set of actions according

to some probability distribution, an equilibrium can be classified as the pure-strategy

Nash equilibrium or the mixed-strategy Nash equilibrium.

For a given game, it is natural to ask questions such as “Does a Nash equi-

librium exist?”, “Is it unique?”, “If there are multiple equilibria, which one(s) are

the best?”, “How can a system reach the equilibrium from scratch?”, and “Can we

go beyond the Nash equilibrium?”. These questions have been addressed in game

theory, and are also of critical importance in equilibrium analysis and performance
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enhancement of cognitive radio games, after a specific cognitive radio application

scenario is modeled as a game.

Based on the fixed point theorem, the existence of a Nash equilibrium is quite

general. It is well-known that every finite strategic game has a mixed-strategy

Nash equilibrium, and many games with a compact and convex action set have a

pure-strategy Nash equilibrium, as long as the payoff functions are continuous and

quasi-concave. The uniqueness of the equilibrium, however, has to be analyzed on

a case-by-case basis, unless the game presents some special structures.

When there are multiple equilibria, we want to choose the optimal one(s) in

some sense. Because game theory essentially solves a multi-objective optimization

problem, it is not straightforward to define the optimality in such scenarios. One

way is to compare the weighted sum of the individual payoffs, which reduces the

multi-dimension problem into a one-dimension one; a more popular alternative is the

Pareto optimality, which, informally speaking, is a point at which no single player

can improve his/her own payoff without hurting any other player. Specifically, let

u be a vector composed of payoffs in one particular game outcome. Then, u is

Pareto efficient if there is no u′ of another game outcome for which u′i > ui for

all i ∈ N ; u is strongly Pareto efficient if there is no u′ for which u′i ≥ ui for all

i ∈ N and u′i > ui for some i ∈ N . The Pareto frontier is defined as the set of all

u that are Pareto efficient. Besides the Pareto criterion which mainly focuses on

efficiency, other criteria may also be employed to select a desirable Nash equilibrium,

taking robustness into consideration. For instance, in a sequential game, incredible

threats about consequential actions or implausible beliefs of other players may result
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in unreasonable outcomes that should be excluded. This process is known as the

“equilibrium refinement” in game theory.

The remaining two questions, namely, “How can a system reach the equi-

librium from scratch?” and “Can we go beyond the Nash equilibrium?”, are of

particular interest in cognitive radio networks. A cognitive radio network often has

no pre-existing infrastructure, and wireless users may lack the global information

to predict the equilibrium directly. Instead, they may need to start from an arbi-

trary strategy and update their strategies according to certain rules, which hopefully

will converge to the equilibrium. Hence, a distributed implementation is preferred.

Moreover, the goal of cognitive radio networks is to improve the efficiency of spec-

trum utilization, but a Nash equilibrium often suffers from excessive competition

among selfish players in a non-cooperative game. Since the Nash equilibrium may

be inefficient, researchers are eager to know if there are some way to improve the sys-

tem performance. In what follows, we will address these two questions in cognitive

radio context.

2.1.1 Distributed Implementation

When a game has certain structures, its Nash equilibrium is unique and con-

vergence to the equilibrium is guaranteed. Two such examples are potential games

[23] and standard functions [24].

A game 〈N, (Ai), (ui)〉 is called a potential game if there is a potential function
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P : A → R such that

P (ai, a−i)− P (a′i, a−i) = ui(ai, a−i)− ui(a
′
i, a−i) (2.2)

for any i ∈ N, a ∈ A, and a′i ∈ Ai. Thanks to the potential function, every single

player’s individual interest is “aligned” with the group’s interest, and hence each

player choosing a “better” strategy given all other players’ current strategies will

necessarily lead to improvement in the value of potential function. A potential game

in which all players take better strategies sequentially will terminate in finite steps

to the Nash equilibrium that maximizes the potential function. Certain conditions

have been known to prove a game to be a potential game or guide the design of a

potential game; one example is that different users’ payoffs have certain symmetric

properties.

The concept of potential games was first applied to cognitive radio networks

in [25] and has been widely employed since then. For instance, in the waveform se-

lection game [26], players distributively choose their signature waveforms to reduce

correlation, and the payoff function is defined as a function of signal-to-interference-

and-noise ratio (SINR) minus some cost associated with the selected waveform. A

power control game [26] is similar except that the action space consists of all possible

power levels and the cost is associated with power levels. In a channel allocation

game [27], a player’s strategy is to select a channel from multiple channels for trans-

mission, and players in the same band interfere with each other. In order to reduce

mutual interference, the payoff function is constructed as the total interference not

only caused by other players but also causing to other players, which satisfies the
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symmetric condition of potential games.

The concept of standard functions is first introduced to aid power control in

cellular networks. A positive and monotonic function f(x) is a standard function if

it satisfies the scalability condition

αf(x) > f(αx), ∀α > 1. (2.3)

It is known that if the best response strategy is a standard function of the vari-

able that represents the user’s action, then the non-cooperative game has a unique

equilibrium [28], and moreover, the equilibrium can be obtained through iterative

updates until convergence.

The idea of standard function has been applied, for example, in [29] which

considers a cooperative cognitive radio network. Secondary users serve as coopera-

tive relays for primary users, so that they can have the opportunity to access the

wireless channel. Secondary users target at maximizing the utility defined as a func-

tion of their achievable rate minus the payment, by selecting the proper payment

in the non-cooperative game. By proving the best response payment is a standard

function, it is shown that the non-cooperative payment selection game has a unique

equilibrium.

Potential games and standard functions are two families of games that ensure

convergence of iterative procedures and enable the distributed implementation of

the algorithm. For other games, usually there is no universal approach to prove

convergence, but it is possible to analyze on a case-by-case basis. For instance,

the authors of [30] show that the iterative waterfilling algorithm will converge under
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certain conditions by proving that the distributed updating function is a contraction

map. In [31], convergence is discussed for a game where farsighted players use

iterative waterfilling according to their prediction of other players’ strategy, instead

of updating the strategy myopically in each iteration.

2.1.2 Performance Enhancement

From a network designer’s point of view, he/she would like to have a satisfy-

ing social welfare, which can be defined as maximizing the sum of all users’ payoffs;

however, due to the selfish nature of users and excessive competition, usually the

game outcome is much inefficient than the social optimum. In order to study the

optimality of the non-cooperative game outcomes, price of anarchy is an important

measure, which is the difference or ratio between a Nash equilibrium and the social

optimum that can be achieved when a central authority is available. Since the Nash

equilibrium is not always satisfying due to inefficiency, sometimes people want to

improve the system performance by reducing competition and/or introducing coop-

eration. We discuss three kinds of approaches applied to cognitive radio networks,

namely, pricing, repeated games, and correlated equilibrium.

To improve the efficiency, pricing can be introduced when designing the non-

cooperative game, since selfish network users will be guided to a more efficient

operating point [28]. Intuitively, pricing can be viewed as the cost of the services

or resources a network user receives, or the cost of harm the user imposes on other

users, in terms of performance degradation, revenue deduction, or interference. As
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selfish users only optimize their own performance, their aggressive behavior will

degrade the performance or QoS of all the other users in the network, and hence

deteriorate the system efficiency. By adopting an efficient pricing mechanism, selfish

users will be aware of the inefficiency, and encouraged to compete for the network

resources more moderately and efficiently. This brings more benefits for all users

and a higher revenue for the entire network.

Linear pricing which increases monotonically with the transmit power of a

user has been widely adopted, because of its implementation simplicity and a rea-

sonable physical meaning. In [32], for example, the service provider charges each

user a certain amount of payment for each unit of the transmitting power on the

uplink channel in wide-band cognitive radio networks for revenue maximization,

while ensuring incentive compatibility for the users. In [33], the authors further

point out that most existing pricing techniques, e.g., a linear pricing function with

a fixed pricing factor for all users, can usually improve the equilibrium by pushing

it closer to the Pareto optimal frontier. However, they may not be Pareto optimal,

and not suitable for distributed implementation, as they require global information.

Therefore, a user-dependent linear pricing function which drives the equilibrium

closer to the Pareto optimal frontier is proposed in [33], through analysis of the

Karush-Kuhn-Tucker conditions.

More sophisticated pricing functions (e.g., nonlinear functions) can also be

used, according to the specific problem setting and requirements. In an underlay

spectrum sharing problem [34] where secondary users transmit in the licensed spec-

trum concurrently with primary users, secondary users’ transmission is constrained

18



by the interference temperature limit. An exponential penalty of excessive interfer-

ence is introduced as a pricing factor, and efficient secondary spectrum sharing will

be achieved, with sufficient protection for primary transmission. In the spectrum

sharing problem considered in [35], each wireless transmitter selects a single channel

from multiple available channels and decides transmission power. To mitigate the

effects of interference externality, users should exchange information that can reflect

interference levels. Such information is defined by the so-called interference “price”,

which essentially indicates the marginal loss/increase in each user’s payoff if the

received interference is increased/decreased by one unit. It is shown [35] that the

proposed algorithm considering interference price always outperforms the heuristic

algorithm where each user only picks the best channel without exchanging interfer-

ence prices, and the iterative water-filling algorithm where users do not exchange

any information.

The second approach is to use the repeated game modeling. Because wire-

less users coexist in the same network for quite a long time, the spectrum sharing

game will be played for multiple times. In order to model and analyze long-term

interactions among players, the repeated game model is used. A repeated game is

a special form of an extensive-form game in which each stage is a repetition of the

same strategic-form game. The number of rounds may be finite or infinite, but usu-

ally the infinite case is more interesting. Because players care about not only the

current payoff but also the future payoffs, and a player’s current behavior can af-

fect the other players’ future behavior, cooperation and mutual trust among players

can be established. The most popular repeated game is the δ-discounted infinitely
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repeated game, where the payoff function for player i is defined as the discounted

average of immediate payoffs from each round of the repeated game, i.e.,

ūi(a
1, a2, . . . , at, . . .) = (1− δ)

∞∑
t=1

δt−1ui(a
t), (2.4)

where at is actions taken at time t, and δ is the discount factor that measures how

much the players value the future payoff over the current payoff. The larger the

value is, the more patient the players are.

In order to stimulate cooperation among selfish players, the so-called “grim

trigger” strategy is a common approach. In the beginning, all players are in the

cooperative stage, and they continue to cooperate with each other until someone

deviates from cooperation. Then, the game jumps to the punishment stage where

the deviating player will be punished by other peers, and there will be no coop-

eration forever. A less harsh alternative, also known as the “punish-and-forgive”

strategy, is similar except for the limited punishment where deviation is forgiven

and cooperation resumes after long enough punishment. Because cooperation is of-

ten more beneficial, the threat of punishment will prevent players from deviation,

and hence cooperation is maintained. This is formally established by folk theorems

[13], a family of theorems characterizing equilibria in repeated games, although the

statement of a folk theorem varies slightly depending on the type of the equilibrium

(the Nash equilibrium or the subgame perfect equilibrium), the length of punishment

(grim-trigger or punish-and-forgive), the punishment payoff (the Nash threat or the

minmax threat), and the criterion of the infinitely repeated game (δ-discounted or

others).
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Other than the grim trigger strategy and the punish-and-forgive strategy, “tit-

for-tat” and “fictitious play” are also popular strategies in a repeated game. Both

of them involve learning from opponents. When using the “tit-for-tat” strategy, a

player chooses an action based on the outcome of the very last stage of the game, for

example, he/she decides to cooperate only when all the other players cooperated in

the last time. If the “fictitious play” strategy is used, a player learns the empirical

frequency of each action of the other players from all history outcomes, and then

chooses the best strategy accordingly assuming the opponents are playing stationary

strategies.

Examples of cooperation enforcement and adaptive learning in repeated games

can be found in context of cognitive radio networks. For instance, it is shown in

[4] that any achievable rate in a Gaussian interference channel, in which multiple

unlicensed users share the same band, can be obtained by piece-wise constant power

allocations in that band with the number of segments at most twice of the number

of users. The paper also shows that only the pure-strategy Nash equilibria exist,

and under certain circumstances, spreading power evenly over the whole band is

the unique Nash equilibrium that is often inefficient. Then, a set of Pareto optimal

operating points are made possible by repeated game modeling and punishment-

based strategies.

The last approach that we discuss is the correlated equilibrium. In deriving

the Nash equilibrium of a game, players are assumed to take their strategies inde-

pendent of the others’ decisions. When they no longer do so, for instance, following

the recommendation of a third party, the efficiency of the game outcome can be
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significantly improved. Correlated equilibrium is a more general equilibrium con-

cept than the Nash equilibrium, where players can observe the value of a public

signal and choose their actions accordingly. When no player would deviate from the

recommended strategy, given that the others also adopt the recommendation, the

resulting outcome of the game is a correlated equilibrium.

In order to adjust their strategies and converge to the set of correlated equilib-

ria, players can track a set of “regret” values for strategy updates [36]. The regret

value is defined as

RT
i (ai, a

′
i) = max{ 1

T

∑
t≤T

[ut
i(a

′
i, a−i)− ut

i(ai, a−i)], 0}, (2.5)

where ut
i(a

′
i, a−i) represents the payoff of player i at time t by taking action a′i against

the other players taking action a−i. Therefore, the regret value characterizes the

average payoff that player i would have obtained, if he/she had adopted action a′i

every time in the past instead of action ai. If the regret value is smaller than 0,

meaning adopting action ai brings a higher average payoff, then there will be no

regret, and thus the regret value is lower bounded by 0. According to the regret

value, players can update their strategies by adjusting the probability of taking

different actions. For player i who takes action at
i at time t, the probability of

taking action ai at time t + 1 is updated by

pt+1
i (ai) =





1
µ
Rt

i(a
t
i, ai) if ai 6= at

i,

1−∑
a′i 6=ai

pt+1
i (a′i) if ai = at

i,

(2.6)

with µ being a large enough parameter that adjusts the learning rate. If all players

learn their strategies according to (2.6), as time goes to infinity, their strategies will
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converge to the set of correlated equilibria almost surely [36].

The concept of correlated equilibrium and regret learning has been used to

design dynamic spectrum access protocols [37], where a group of secondary users

compete for the access of spectrum white space. Users’ utility function is defined as

the average throughput and an additional term representing performance degrada-

tion due to excess access and collisions. Since the common history observed by all

users can serve as a natural coordination device, users can pick their actions based

on the observation about the past actions and payoff values, and achieve better

coordination with a higher performance.

2.2 Economic Games and Auctions

As game theory studies interaction between rational and intelligent players,

it can be applied to the economic world to deal with how people interact with

each other in the market. The marriage of game theory and economic models

yields interesting games and fruitful theoretic results in microeconomics and auction

theory. On one hand, they can be regarded as applied branches of game theory which

builds on top of key game-theoretic concepts such as rationality and equilibria.

Often, players are sellers and buyers in the market (e.g., firms, individuals, and

so on), payoff functions are defined as the utility or revenue that players want to

maximize, and equilibrium strategies are of considerable interest. On the other hand,

they are distinguished from fundamental game theory, not only because additional

market constraints such as supply and demand curves and auction rules give insight
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on market structures, but also because they are fully-developed with their own

research concerns. Hence, we make a separate section to address those economic

games, so as to respect the distinction of these games and to highlight their intensive

use in cognitive radio networks.

The application of games in economy into cognitive radio networks has the fol-

lowing reasons. First, economic models are suitable for the scenario of the secondary

spectrum market where primary users are allowed to sell unused spectrum rights to

secondary users. Primary users, as sellers, have the incentive to trade temporarily

unused spectrum for monetary gains, while secondary users, as buyers, may want

to pay for spectrum resources for data transmissions. The deal is made through

pricing, auctions, or other means. Second, these games in economy do not confine

themselves to the scenario with explicit buyers and sellers, and the ideas behind can

be extended to some cognitive radio scenarios other than secondary spectrum mar-

kets. One example is that the Stackelberg game, originally describing an economic

model, has been generalized to a strategic game consisting of a leader and a follower.

Third, as cognitive radio goes far beyond technology and its success will highly rely

on the combination of technology, policy, and markets, it is of extreme importance

to understand cognitive radio networks from the economic perspective and develop

effective procedures (e.g., auction mechanisms) to regulate the spectrum market.
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2.2.1 Oligopolistic Competition

When the market is fully competitive, the market equilibrium is the intersec-

tion of the demand curve and the supply curve; the other extreme is monopoly,

when only one firm controls all over the market of one product. Lying between the

full competition and no competition (monopoly), oligopoly is more complicated and

interesting, which is defined as a market with only a few firms and with substantial

barriers to entry in economics. Because the number of firms is limited, each one

can influence the price and hence affect other firms; for example, their strategies

are to decide the quantity or price of goods supplied to the market. The interac-

tion and competition between different firms can be well modelled by game theory,

and several models have been proposed long before. These models share common

attributes including price-quantity relations, profit-maximizing goals, and the first-

order optimality, but they are different in actions (quantities vs. prices), structures

(simultaneous moves vs. sequential moves), or forms (competition vs. cooperation).

In the Cournot game, oligopoly firms choose their quantities independently

and simultaneously. Because the market price depends on the total quantity of

the product, each firm’s action directly affects others’ profits. Assume the cost is

associated with the production quantity, the payoff function of each firm is revenue

minus cost. Hence, the equilibrium of this game is the solution to a set of equations

derived from the first-order condition that maximizes the payoff of each firm.

In the Bertrand game, firms also decide their actions independently and simul-

taneously, but their decisions are prices rather than quantities, and their produce
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capacity is unlimited. Although it looks like the Cournot game, the outcome is

significantly different. Since the firm with the lower price will occupy the entire

market, firms will try to reduce their price until hitting the bottom line with zero

profit. Hence, the equilibrium of this game is trivial. A modification of the game

is to assume each firm produces a somewhat differentiated product. The demand

function of one particular product is a decreasing function of its price but often an

increasing function of prices of alternating products from other providers. With the

model established, the payoffs can be written down explicitly, and the equilibrium

price can be found through the first-order conditions that maximize the profit.

In the Stackelberg game, firms still choose their quantities as in the Cournot

game, but the two firms make decisions sequentially rather than simultaneously. The

firm that moves first is called the leader, and the other is called the follower. Because

the follower takes action after the leader announces his/her production quantity, the

best response of the follower would depend on the leader’s action. Predicting that

the follower will choose the best response corresponding to each possible action of

the leader, the leader can maximize the profit by choosing a proper action. This

process is known as the backward induction. If the leader chooses the Cournot

equilibrium quantity, the best response of the follower will also be the Cournot

equilibrium quantity. This implies that the leader guarantees at least the Cournot

payoff, and takes an advantage from the asymmetric structure.

In the Cartel maintenance game, things are quite different because firms no

longer compete with each other but cooperate with each other. In general, they can

reduce the output, which leads to higher prices and higher profits for each firm. One
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example is the Organization of the Petroleum Exporting Countries (OPEC) that

manipulates the stability of international oil price. In order to enforce cooperation

among selfish firms, the Cartel maintenance can be modelled as a repeated game.

From the firms’ perspective, cooperation in the form of Cartel reduces competition

and improves their profits, but in reality, it is harmful to economic systems and

hence is forbidden by antitrust laws in many countries.

In what follows, we will show some examples on how these microeconomic

concepts inspire research in cognitive radio networks. Depending on the assumptions

and structures of spectrum markets, different models can be applied.

The spectrum market in [38] consists of one primary user and multiple sec-

ondary users who compete for spectrum resources. This is essentially a Cournot

game, but the players in the game are buyers instead of sellers in the original set-

ting. In this game, secondary user i requests a quantity qi for the allocated spectrum

size, and the price is determined by an inverse supply function

S−1

(∑
i∈N

qi

)
= c1 + c2

(∑
i∈N

qi

)c3

, (2.7)

where c1, c2, c3 are non-negative constants and c3 ≥ 1. Then, the payoff is defined

as

ui(qi) = u0
i qi − qi

(
c1 + c2

(∑
j∈N

qj

)c3)
, (2.8)

where u0
i is the effective revenue per unit bandwidth for user i, and the equilibrium

follows from the first-order condition.

Another spectrum market proposed in [39] consists of multiple competing pri-

mary users and one secondary user network. This game falls into the category
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of Bertrand games, as primary users adjust the price of spectrum resources. The

authors adopt a linear demand function

D(p) =
(1 + (N − 2)ν)(u0

i − pi)− ν
∑

i 6=j(u
0
j − pj)

(1− ν)(1 + (N − 1)ν)
, (2.9)

where pi and qi are the price and quantity purchased from primary user i, u0
i is the

effective revenue per unit bandwidth, and the parameter ν(−1 ≤ ν ≤ 1) reflects the

cross elasticity of demand among different spectrum resources. Specifically, ν > 0

implies substitute products, that is, one spectrum band can be used in place of

another, while ν < 0 implies complementary products, that is, one band has to be

used together with another (like uplink and downlink). The value of ν measures the

degrees of substitution or complement. In this model, the revenue is defined as the

sum of monetary gains collected from the secondary network and the transmission

gains of primary services, whereas the cost is defined as the performance loss to

primary services due to spectrum transactions. Then, the equilibrium pricing is

derived from the first-order condition.

The structure of spectrum markets could be more complicated. For instance,

[40] proposes a hierarchical model in which there are two levels of markets: in the

upper level, a few wireless service providers buy some spectrum bands from spectrum

holders, and in the lower level, they sell these bands to end users. Wireless service

providers are the players in this game who not only decide the quantity bought

from spectrum holders but also the price charged to end users, and therefore, it is

actually a combination of the Cournot game in the upper level and the Bertrand

game in the lower level. The two levels are coupled in that the quantity sold to end
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users cannot exceed the quantity bought from license holders. The authors discuss

four possible cases in the lower-level game due to quantity limitation, and conclude

that only one equilibrium exists in the whole game. Another hierarchical market is

proposed in [41] which considers both channel allocation and power allocation. In

this model, the spectrum holder takes control of the upper-level market and hence

the market fits in the monopoly model. In the lower-level game, service providers

adjust the price of resources in the market, but the demand from end users comes

from the equilibrium of a non-cooperative power-control game.

Just like other non-cooperative games, the Nash equilibria in these games

are often inefficient due to competition among players. The price of anarchy for

the proposed spectrum market has been analyzed through theoretical derivation or

demonstrated by simulation results in [38] [39] and [40]. In addition, [39] [42] shows

that the efficiency can be improved by enforcing cooperation among users, that is,

establishing a Cartel.

In game models, it is common to assume all players have full knowledge about

each other. However, it is not always true in realistic setting such as in a cognitive

radio network. For instance, one player may know nothing about other players’

profits or current strategies. Therefore, to make those games implementable in

spectrum markets, it is crucial to involve learning processes. The learning processes

in [38] [39] [40] and [41] can be roughly classified into two categories. When the

information of strategies is available, players always update their strategies with the
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best response against other players’ current strategies

ai(t + 1) = B(a−i(t)), (2.10)

where action a may refer to the quantity or the price depending on the market

model, and B(·) is the best response. When only local information is available, a

gradient-based update rule can be applied, i.e.,

ai(t + 1) = ai(t) + ε
∂ui(a(t))

∂ai

, (2.11)

where ε is the learning rate and the partial derivative can be approximated by local

observations. The convergence of the learning process has been analyzed using the

Jacobian matrix, e.g., see [39].

Although originally a game between two firms of the same product, the Stack-

elberg game in a broad sense can refer to any two-stage game where one player

moves after the other has made a decision. The problem can be formulated as

max
a1∈A1,a2∈A2

u1(a1, a2),

s.t. a2 ∈ arg max
a′2∈A2

u2(a1, a
′
2).

(2.12)

Similar to the Stackelberg game in an oligopoly market, the general Stackelberg

game can also be solved using the backward induction. In [43], the Stackelberg

game is employed to model and analyze the cooperation between a primary user

and several secondary users where the primary user trade some spectrum usage to

some secondary users for cooperative communications. Specifically, the primary user

can choose to transmit the entire time slot on its own, or choose to ask for secondary

users’ cooperation by dividing one time slot to three fractions with two parameters
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τ1, τ2(0 ≤ τ1, τ2 ≤ 1). In the first (1− τ1) fraction of the slot, the primary transmit-

ter sends data to secondary users, and then they form a distributive antenna array

and cooperatively transmit information to the primary receiver in the following τ1τ2

fraction of the slot. As rewards, the secondary users involved in the cooperative

communications are granted with the spectrum rights in the rest τ1(1− τ2) fraction

of the slot. The primary user chooses the strategy including τ1, τ2, and the set of

secondary users for cooperation, and then the selected secondary users will choose

powers for transmission according to the primary user’s strategy. As the leader of

the game, the primary user is aware of secondary users’ best response to any given

strategy, and hence is able to choose the optimal strategy that maximizes the payoff.

The cooperation structure in [29] is similar, where the major difference is that the

secondary users pay for spectrum opportunities in addition to cooperative trans-

missions for the primary user. The implementation protocol and utility functions

change, but the underlying Stackelberg game remains the same.

2.2.2 Auction Games

Auction theory [44] is an applied branch of game theory which analyzes inter-

actions in auction markets and researches the game-theoretic properties of auction

markets. An auction, conducted by an auctioneer, is a process of buying and selling

products by eliciting bids from potential buyers (i.e., bidders) and deciding the auc-

tion outcome based on the bids and auction rules. The rules of auction, or auction

mechanisms, determine whom the goods are allocated to (i.e., the allocation rule)
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and how much price they have to pay (i.e., the payment rule).

As efficient and important means of resource allocation, auctions have quite a

long history and have been widely used for a variety of objects, including antiques,

real properties, bonds, spectrum resources, and so on. For example, the Federal

Communications Commission (FCC) has used auctions to award spectrum since

1994, and the United States 700MHz FCC wireless spectrum auction held in 2008,

also known as Auction 73, generated 19.1 billion dollars in revenue by selling licenses

in the 698–806 MHz band [45]. The spectrum allocation problem in cognitive radio

networks, although micro-scaled and short-termed compared with the FCC auctions,

can also be settled by auctions.

Auctions are used precisely because the seller is uncertain about the values that

bidders attach to the product. Depending on the scenario, the values of different

bidders to the same product may be independent (the private values model) or

dependent (the interdependent values model). Almost all the existing literature

on auctions in cognitive radio networks assumes private values. Moreover, if the

distribution of values is identical to all bidders, the bidders are symmetric. Last, it

is common to assume a risk neutral model, where the bidders only care about the

expected payoff, regardless of the variance (risk) of the payoff.

The well-known four basic forms of auctions are: English auction, a sequential

auction where price increases round by round from a low starting price until only

one bidder is left, who wins the product and pays his/her bid; Dutch auction, a

sequential auction where price decreases round by round from a high starting price

until one bidder accepts the price, who wins the product and pays the price at
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acceptance; Second-price (sealed-bid) auction, an auction where each bidder submits

a bid in a sealed envelope simultaneously, and the highest bidder wins the product

with payment equal to the second highest bid; First-price (sealed-bid) auction, an

auction where each bidder submits a bid in a sealed envelope simultaneously, and

the highest bidder wins the product with payment equal to his/her own bid.

Interestingly, the four simple auctions, albeit quite different at first glance, are

indeed equivalent in some sense under certain conditions. The main idea was estab-

lished in the seminal work [46] by William Vickrey, a Nobel laureate in Economics.

In a nutshell, the Dutch auction is equivalent to the first-price sealed-bid auction,

because for every strategy in the first-price auction, there is an equivalent strategy

in the Dutch auction, and vice versa; the English auction is equivalent to the second-

price sealed-bid auction under the private values model; and all four auctions yield

the same expected revenue of the seller, given symmetric and risk-neutral bidders

and private values. Thanks to the equivalence under mild conditions, it will suffice

to study or adopt only one kind of auction out of the four basic forms. Usually,

the second-price auction is a favorite candidate, because the procedure is simple,

and more importantly, the mechanism makes bidders bid their true values in a self-

enforced manner. Mathematically, in a second-price auction, bidder i whose value

of the product is vi submits a sealed bid bi to the auctioneer. Then, the winner of

the auction is arg maxj∈N bj, and payoffs are

ui =





vi −maxj 6=i bj, if i = arg maxj∈N bj;

0, otherwise.

(2.13)

In a second-price sealed-bid auction, it is a weakly dominant strategy to bid truth-

33



fully, i.e., bi = vi for all i ∈ N .

The seller plays a passive role in the auctions so far, because his/her benefit

has not been taken into consideration. When the seller wants to design an auction

game that has the Nash equilibrium with the highest possible expected revenue, it

is called the optimal auction [47]. Assume that all bidders’ values of the product are

drawn from i. i. d. random variables with the same probability distribution, whose

probability density function and probability distribution function are denoted by

f(v) and F (v), respectively. Then, an optimal auction may be constructed by

adding a reserve price on top of a second-price auction. In this case, the seller

reserves the right not to sell the product to any bidder if the highest bid is lower

than the reserve price b0 = T−1(v0), where v0 is the seller’s value of the product, and

T−1(·) is the inverse function of T (v) = v − 1−F (v)
f(v)

. In addition, setting a reserve

price is also an effective measure against bidding ring collusion, where some or even

all of the bidders collude not to overbid each other and hence the price is kept low.

An auction becomes more involved when more than one item are simultane-

ously sold and bidders bid for “packages” of products instead of individual products.

This is known as the combinatorial auction [48]. The second-price mechanism can

be generalized to the Vickrey-Clarke-Groves (VCG) mechanism, which maintains

the incentive to bid truthfully. The basic idea is that the allocation of products

maximizes the social welfare and each winner in the auction pays the opportunity

cost that their presence introduces to all the other bidders.

Beyond the basic types of auctions, there are other forms of auctions such as

the clock auction, the proxy auction, the double auction, and so on. Furthermore,
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there are a lot of practical concerns and variants in the real-world auctions. We will

not go into the details of these issues; instead, we will focus on the auction games

in cognitive radio networks in what follows.

In [49], SINR auctions and power auction mechanisms are studied subjected

to a constraint on the accumulated interference power, or the so-called “interference

temperature”, at a measurement point, which must be below the tolerable amount

of the primary system. In this auction game, the resource to sell is not the spectrum

band; instead, users compete for the portion of interference that they may cause to

the primary system, because the interference is the “limited resources” in this auc-

tion. Another kind of auctions has been used in [50], where spectrum sensing effort,

rather than monetary payment, is the price to pay for the spectrum opportunities.

The auction still follows the form of first-price and second-price sealed-bid auctions.

In the auction framework proposed in [10], users bid for a fraction of the band

and the auction outcome has to satisfy the interference constraint. In this auction,

each user has a piece-wise linear demand curve, and it is assumed that all users reveal

demand curves to the auctioneer truthfully. Because the corresponding revenue is a

piece-wise quadratic function, the auctioneer can find the revenue-maximizing point

under the constraint that the allocation is conflict-free.

The cheat-proof property is a major concern in auction design, and we have

mentioned that the VCG mechanism is capable of enforcing truth-telling. However,

the VCG mechanism sometimes suffers from high complexity and vulnerability to

collusive attacks. In [51] and [52], system efficiency is traded for low complexity

using the greedy algorithm, while the authors carefully design the mechanism to
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guarantee that truth-telling is still a dominant strategy in this auction game.

When there are multiple sellers who also compete in selling the spectrum,

the scenario can be modeled as a double auction. A truth-telling enforced double

auction mechanism has been proposed in [53], and an anti-collusion double auction

mechanism has been developed in [12] where history observations are employed to

estimate users’ private values.

2.2.3 Mechanism Design

Auction is one of the many possible ways of selling products. If striping off

any particular selling format (e.g., an auction format), we arrive at a fundamental

question: what is the best way to allocate a product? This generalized allocation

problem falls into the category of mechanism design, a field of game theory on a

class of private information games. The 2007 Nobel Memorial Prize in Economic

Sciences was awarded to Leonid Hurwicz, Eric Maskin, and Roger Myerson as the

founders of mechanism design theory.

The distinguishing feature of mechanism design is that the game structure is

“designed” by a game designer called a “principal” who wants to choose a mecha-

nism for his/her own interest. Like in an auction, the players, called the “agents”,

hold some information that is not known by the others, and the principal asks the

agents for some messages (like the bids in an auction) to elicit the private informa-

tion. Hence, this is a game of incomplete information where each agent’s private

information, formally known as the “type”, is denoted by θi, a value drawn from a set
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Θi, for i ∈ N . Based on the messages from agents, the principal makes an allocation

decision d ∈ D, where D is the set of all potential decisions on how resources are

allocated. Because agents are not necessarily honest, incentives have to be given in

terms of monetary gains, known as transfers. The transfer may be negative values

(as if paying tax) or positive values (as if receiving compensation). Then, agent

i’s utility is the benefit from the decision d plus a transfer, i.e., ui = vi(d, θi) + ti,

which may provide agents with incentives to reveal the information truthfully. In

summary, the basic insight of mechanism design is that both resource constraints

and incentive constraints are coequally considered in an allocation problem with

private information [54].

For a given mechanism, the agents’ strategy is mapping the individual type

to a message, i.e., m : Θi → Mi, being aware that their own utilities depend

on all the reported messages. Because there are unlimited possibilities of choosing

message spaces and allocation functions, analyzing the equilibrium and designing the

mechanism seem to be extremely challenging. However, thanks to the equivalence

established in the revelation principle [55], we can restrict attention to only “direct”

mechanisms in which the message space coincides with the type space, i.e., Mi = Θi,

and all agents will truthfully announce their types.

In [56], mechanism design has been applied to multimedia resource alloca-

tion problems in cognitive radio networks. For the multimedia transmission, the

utility function is defined as the expected distortion reduction resulting from us-

ing the channels. Since the system designer wants to maximize the system utility,

mechanism-based resource allocation is used to enforce users to represent their pri-
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vate parameters truthfully. A cheat-proof strategy for open spectrum sharing has

been proposed based on the Bayesian mechanism design [57]. In this work, a co-

operative sharing is maintained by repeated game modeling, and users share the

spectrum based on their channel state information. In order to provide users an

incentive to reveal their private information honestly, mechanism design has been

employed to determine proper transfer functions.

2.3 Cooperative Games

In cognitive radio network, sometimes it is possible that users cooperate with

each other. We discuss two important types of cooperative spectrum sharing games,

bargaining games and coalitional games, where network users have an agreement on

how to fairly and efficiently share the available spectrum resources.

2.3.1 Bargaining Games

The bargaining game is one interesting kind of cooperative games in which

individuals have the opportunity to reach a mutually beneficial agreement. In this

game, individual players have conflicts of interest, and no agreement may be imposed

on any individual without his/her approval. Despite there are other models such

as the strategic approach, we will focus on Nash’s axiomatic model which has been

established in Nash’s seminal paper [58], because it has been widely applied to

cognitive radio networks.

For convenience, we consider the two-player bargaining game N = {1, 2},
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which can be extended to more players straightforwardly. For a certain agreement,

player 1 receives utility u1 and player 2 receives utility u2. If players fail to reach

any agreement, they receive utilities u0
1 and u0

2, respectively. The set of all possible

utility pairs is the feasible set denoted by U .

A set of axioms [59] imposed on the bargaining solution (u∗1, u
∗
2) = f(U, u0

1, u
0
2)

are listed as follows: (1) Individual Rationality. u∗1 > u0
1 and u∗2 > u0

2. (2) Feasibility.

(u∗1, u
∗
2) ∈ U . (3) Pareto Efficiency. If (u1, u2), (u

′
1, u

′
2) ∈ U , u1 < u′1, and u2 <

u′2, then f(U, u0
1, u

0
2) 6= (u1, u2). (4) Symmetry. Suppose a bargaining problem is

symmetric, i.e., (u1, u2) ∈ S ⇐⇒ (u2, u1) ∈ S and u0
1 = u0

2. Then, u∗1 = u∗2. (5)

Independence of Irrelevant Alternatives. If (u∗1, u
∗
2) ∈ U ′ ⊂ U , then f(U ′, u0

1, u
0
2) =

f(U, u0
1, u

0
2) = (u∗1, u

∗
2). (6) Independence of Linear Transformations. Let U ′ be

obtained from U by the linear transformation u′1 = c1u1 + c2 and u′2 = c3u2 + c4

with c1, c3 > 0. Then, f(U ′, c1u
0
1 + c2, c3u

0
2 + c4) = (c1u

∗
1 + c2, c3u

∗
2 + c4).

There is a unique bargaining solution satisfying all the axioms above, which

is called the Nash bargaining solution (NBS), given by

(u∗1, u
∗
2) = argmax

(u1,u2)∈U,u1>u0
1,u2>u0

2

(u1 − u0
1)(u2 − u0

2). (2.14)

When there are more than two players, the NBS has a generalized form,

argmax
(u1,u2,...)∈U, uk>u0

k,∀k∈N

∏

k∈N

(
uk − u0

k

)
. (2.15)

When u0
k = 0, ∀k ∈ N , the NBS coincides with the proportional fairness

resource allocation criterion. This suggests that the NBS achieves some degree of

fairness among cooperative players through bargaining. In [60], the NBS is directly
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applied to allocate frequency-time units in an efficient and fair way, after a learning

process is first applied to find the payoffs with disagreement.

The symmetry axiom implies that all players are equal in the bargaining game;

however, sometimes it is not true because some players have priority over others. To

accommodate this situation, a variant of the NBS is to offset the disagreement point

to some other payoff vectors that implicitly incorporate the asymmetry among play-

ers. An alternative approach is to modify the objective function to
∏

k∈N (uk − u0
k)

wk

with weights wk reflecting the priority of players. For instance, in the power alloca-

tion game consisting of primary users and secondary users [61], different values of u0
k

are set to primary users and secondary users because primary users have the priority

to use spectrum resources in cognitive radio networks. In [62] with heterogenous

wireless users, the disagreement point in the NBS objective function is replaced by

the threat made by individual players.

Moreover, finding the NBS needs global information which is not always avail-

able. A distributed implementation is proposed in [63] where users adapt their

spectrum assignment to approximate the optimal assignment through bargaining

within local groups. Although not explicitly stated, it actually falls into the cat-

egory of the NBS, because the objective is to maximize the total logarithmic user

throughput which is equivalent to maximizing the product of user payoffs. In this

work, neighboring players adjust spectrum band assignment for better system per-

formance through one-to-one or one-to-many bargaining. In addition, a theoretic

lower bound is derived to guide the bargaining process.

A similar approach is conducted in [64] which iteratively updates the power
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allocation strategy using only local information. In this game, players allocate power

to channels and their payoffs are the corresponding capacity. Given the assumption

that players far away from each other have negligible interference, from a particular

player’s perspective, the global objective is detached to two parts: the product of

faraway players’ payoffs and the product of neighboring players’ payoffs. Because

the player’s power allocation strategy only affects the second term, maximizing the

second term is equivalent to maximizing the global objective. Each player sequen-

tially adjusts the strategy, and it is proved that the iterative process is convergent.

Although it is not sure whether it converges to the NBS, simulation results show

that the convergence point is close to the true NBS.

2.3.2 Coalitional Games

The coalitional game is another type of cooperative game. It describes how

a set of players can cooperate with others by forming cooperating groups and thus

improve their payoff in a game.

A coalition S is a nonempty subset of N , the set of all players. Since the

players in coalition S have agreed to cooperate together, they can be viewed as one

entity and is associated with a value v(S) which represents the worth of coalition

S. Then, a coalitional game is determined by N and v(S). When the value v(S) is

the total payoff that can be distributed in any way among the members of S, e.g.,

using an appropriate fairness rule, this kind of coalitional games is known as games

with transferrable payoff. However, in some coalitional games, rigid restrictions exist
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on the allocation of the payoff. These games fall into the other category known as

games without transferrable payoff.

In coalitional games with or without transferrable payoff values, the value of

a coalition S only depends on the members of S, while not affected by how the

players outside coalition S are partitioned. We call these coalition games are in

characteristic function form. Sometimes, the value of S is also affected by how the

players in N \S are partitioned into various coalitions, and we call those coalitional

games are of the partition function form [65].

In characteristic function form coalitional games, often cooperation by forming

larger coalitions is beneficial for players in terms of a higher payoff. This property

is referred to as superadditivity. For instance in games with transferrable payoff,

superadditivity means

v
(
S1

⋃
S2

)
≥ v(S1) + v(S2), ∀S1, S2 ⊂ N, S1

⋂
S2 = ∅. (2.16)

Therefore, forming larger coalitions from disjoint smaller coalitions can bring at

least a payoff that can be obtained from the disjoint coalitions individually. Due to

this property, it is always beneficial for players in a superadditive game to form a

coalition that contains all the players, i.e., the grand coalition.

As the grand coalition provides the highest total payoff for the players, it is the

optimal solution that is preferred by rational players. Naturally, one may wonder:

is the grand coalition always achievable and stable? To answer this question, the

core [13] of the coalitional game is defined as the set of feasible payoff profiles,

C =

{
(xi) :

∑
i∈N

xi = v(N), and
∑
i∈S

xi ≥ v(S), ∀S ⊆ N

}
. (2.17)
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The idea behind the core is similar to that behind a Nash equilibrium of a non-

cooperative game: a strategy profile where no player would deviate unilaterally to

obtain a higher payoff. In a coalitional game, no coalition S ⊂ N has an incentive to

reject the proposed payoff profile in the core, deviate from the grand coalition, and

form coalition S instead. As long as one can find a payoff allocation (xi) that lies

in the core, the grand coalition is a stable and optimal solution for the coalitional

game.

It can be seen that the core is the set of payoff profiles that satisfy a system

of weak linear inequalities, and thus is closed and convex. The existence of the

core depends on the feasibility of the linear program and is related to the balanced

property of a game. A coalitional game with transferrable payoff is called balanced

if and only if the following inequality,

∑
S⊆N

λSv(S) ≤ v(N), (2.18)

holds for all non-negative weight collections λ = (λS)S⊆N , where the collection

(λS)S∈S of numbers in [0, 1] denotes a balanced collection of weights, and the sum

of λS over all the coalitions that contain player i is
∑

S⊇i λS = 1. It is known that

a coalitional game with transferrable payoff has a nonempty core if and only if it is

balanced.

If the balanced property of a game does not hold, the core will be empty, and

one will have trouble in finding a suitable solution of a coalitional game. Thus,

an alternative solution concept that always exists in a coalitional game is in need.

Shapley proposed a solution concept, known as the Shapley value ψ, to assign a
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unique payoff value to each player in the game. Similar to the NBS, it also takes

the axiomatic approach. The axioms are: (1) Symmetry. If player i and player j are

interchangeable in v, i.e., v(S
⋃{i}) = v(S

⋃{j}) for every coalition S that does not

contain player i or j, then ψi(v) = ψj(v). (2) Dummy player. If player i is a dummy

in v, i.e., v(S) = v(S
⋃{i}) for every coalition S, then ψi(v) = 0. (3) Additivity. For

any two games u and v, define the game u + v by (u + v)(S) = u(S) + v(S), then

ψi(u + v) = ψi(u) + ψi(v), for all i ∈ N . (4) Efficiency.
∑

i∈N ψi(v) = v(N). The

Shapley value is the only solution that satisfies all the above axioms, and it has the

following form,

ψi(v) =
∑

S⊆|N |\{i}

|S|!(|N | − |S| − 1)!

|N |! [v(S ∪ {i})− v(S)], (2.19)

which can be interpreted as the expected marginal contribution of player i when

joining the grand coalition.

In a cognitive radio network, cooperation among rational users can generally

improve the network performance due to the multiuser diversity and spatial diversity

in a wireless environment. Thus, coalitional game theory has been used to study

user cooperation and design optimal, fair, and efficient collaboration strategies. In

[66], spectrum sharing through receiver cooperation is studied under a coalitional

game framework. The authors model the receiver cooperation in a Gaussian in-

terference channel as a coalitional game with transferrable payoff, where the value

of the game is defined as the sum-rate achieved by jointly decoding all users in the

coalition. It is shown that the grand coalition that maximizes the sum-rate is stable,

and the rate allocation to members of a coalition is solved by a bargaining game
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modeling. Receiver cooperation by forming a linear multiuser detector is modeled as

a game without transferrable payoff, where the payoff of each player is the received

SINR. At high SINR regime, the grand coalition is proved to be stable and sum-rate

maximizing. The work in [67] has modeled cooperative spectrum sensing among

secondary users as a coalition game without transferrable payoff, and a distributed

algorithm is proposed for coalition formation through merge and split. It is shown

that the secondary users can self-organize into disjoint independent coalitions, and

the detection probability is maximized while maintaining a certain false alarm level.

2.4 Stochastic Games

We have discussed various games, but generally speaking, players are assumed

to face the same stage game at each time, meaning the game and the players’

strategies are not depending on the current state of the network. However, this

is not true for a cognitive radio network where the spectrum opportunities and

the surrounding radio environment keep changing over time. In order to study the

cooperation and competition behaviors of cognitive users in a dynamic environment,

the theory of stochastic games might be a better fit.

A stochastic game [68] is an extension of Markov decision process (MDP) [69]

by considering the interactive competition among different agents. In a stochas-

tic game, there is a set of states, denoted by S, and a collection of action sets,

A1, · · · , A|N |, one for each player in the game. The game is played in a sequence

of stages. At the beginning of each stage the game is in a certain state. After the
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players select and execute their actions, the game then moves to a new random

state with some transition probability determined by the current state and actions

from all players: T : S × A1 × · · · × A|N | 7→ PD(S). Meanwhile, at each stage

each player receives a payoff ui : S × A1 × · · · × A|N | 7→ R, which also depends on

the current state and all the chosen actions. The game is played continually for a

number of stages, and each player attempts to maximize an objective function. Like

in the repeated game, the overall payoff function is defined as the expected sum of

discounted intermediate payoffs.

The solution, also called a policy of a stochastic game is defined as a probability

distribution over the action set at any state, πi : S → PD(Ai), for all i ∈ N . Given

the current state st at time t, if player i’s policy πt
i at time t is independent of the

states and actions in all previous time slots, the policy πi is said to be Markov. If

the policy is further independent of time, it is said to be stationary.

The stationary policy of the players in a stochastic game, i.e., their optimal

strategies, can be obtained by value iteration according to Bellman’s optimality

condition. For example, in a two-player stochastic game with opposite objectives,

let us denote V (s) as the expected reward (of player 1) for the optimal policy starting

from state s, and Q(s, a1, a2) as the expected reward of player 1 for taking action a1

against player 2 who takes action a2 from state s and continuing optimally thereafter

[70]. Then, the optimal strategy for player 1 can be obtained from the following

iterations,

V (s) = max
π

min
a2∈A2

∑
a1∈A1

Q(s, a1, a2)πa1 , (2.20)
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Q(s, a1, a2) = u1(s, a1, a2) + δ
∑

s′∈S
T (s, a1, a2, s

′)V (s′), (2.21)

where πa1 denotes player 1’s strategy profile, and T (s, a1, a2, s
′) denotes the transi-

tion probability from state s to s′ when player 1 takes a1 and player 2 takes a2.

Cognitive attackers may exist in a cognitive radio network, who can adapt

their attacking strategy to the time-varying spectrum opportunities and secondary

users’ strategy. To alleviate the damage caused by cognitive attackers, a dynamic

security mechanism is investigated in [71] by a stochastic game modeling. The state

of the anti-jamming game includes the spectrum availability, channel quality, and

the status of jammed channels observed at the current time slot. The action of the

secondary users reflects how many channels they should reserve for transmitting

control and data messages and how to switch between the different channels. Since

secondary users and attackers have opposite objectives, the anti-jamming game is

a zero-sum game, and the optimal policy of secondary users is obtained by the

minimax-Q learning algorithm based on (2.20) and (2.21).

In [72], stochastic games are used for spectrum auctions. At each time slot,

a central spectrum moderator auctions the currently available spectrum resources,

and a set of secondary users strategically bid for the resources. As secondary users

need to cope with uncertainties from both the environment (e.g., channel availabil-

ity and quality variations, packet arrivals from the source) and interactions with

the other secondary users (e.g., resource allocation from the auction), the state of

the stochastic game is composed of the buffer state and channel state, where the

buffer state is dependent on the current spectrum allocation status. The transition
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probability of the game can be derived, since the packet arrival is assumed to be

a Poisson process and the channel state transition is modeled as a Markov chain.

Strategic secondary users want to maximize the number of transmitted packets by

choosing the optimal bidding strategy. To this end, an interactive learning algorithm

is proposed, where the high dimensional state space is decomposed and reduced to

a simpler expression, based on the conjecture from previous spectrum allocations,

and state transition probabilities are further estimated using past observations on

transitions between different states. In this way, secondary users can approximate

the future reward and approach the optimal policy through iterations.
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Chapter 3

Cheat-Proof Repeated Open Spectrum Sharing Games

As discussed in Chapter 1 and 2, cognitive radio technology has become a

promising approach by breaking the paradigm and enabling wireless devices to utilize

the spectrum adaptively and efficiently, and game theory is a proper and flexible

tool to analyze the interactions among selfish users. Because unlicensed sharing

without regulation usually leads to overuse of time/frequency/power units, or the

so-called “tragedy of the commons” phenomenon [73], in this chapter, we focus

on developing spectrum access schemes for open spectrum bands to improve the

efficiency of spectrum utilization.

Although existing dynamic spectrum access schemes based on game theory

have successfully enhanced spectrum efficiency, in order to achieve more flexible

spectrum access in long-run scenarios, some basic questions still remain unanswered.

First, the spectrum environment is constantly changing and there is no central

authority to coordinate the spectrum access of different users. Thus, the spectrum

access scheme should be able to distributively adapt to the spectrum dynamics, e.g.,

channel variations, with only local observations. Moreover, users competing for the

open spectrum may have no incentive to cooperate with each other, and they may

even exchange false private information about their channel conditions in order to

get more access to the spectrum. Therefore, cheat-proof spectrum sharing schemes
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should be developed to maintain the efficiency of the spectrum usage.

In this chapter we propose a cheat-proof etiquette for unlicensed spectrum

sharing by modeling the distributed spectrum access as a repeated game. In the

proposed game, punishment will be triggered if any user deviates from cooperation,

and hence users are enforced to access the spectrum cooperatively. We propose two

sharing rules based on the maximum total throughput and proportional fairness

criteria, respectively; accordingly, two cheat-proof strategies are developed: one

provides players with the incentive to be honest based on mechanism design theory

[55], and the other makes cheating nearly unprofitable by statistical approaches.

Therefore, the competing users are enforced to cooperate with each other honestly.

Simulation results show that the proposed scheme can greatly improve the efficiency

of spectrum utilization under mutual interference.

3.1 System Model

We consider a situation where K groups of unlicensed users coexist in the same

area and compete for the same unlicensed spectrum band, as shown in Fig. 3.1.

The users within the same group attempt to communicate with each other, whose

usage of the spectrum will introduce interference to other groups. For simplicity,

we assume that each group consists of a single transmitter-receiver pair, and that

all the pairs are fully loaded, i.e., they always have data to transmit. At time slot

n, all pairs are trying to occupy the spectrum, and the received signal at the ith
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Figure 3.1: Illustration of open spectrum sharing.

receiver yi[n] can be expressed as

yi[n] =
K∑

j=1

hji[n]xj[n] + wi[n], i = 1, 2, . . . , K, (3.1)

where xj[n] is the transmitted information of the jth pair, hji[n](j = 1, 2, . . . , K; i =

1, 2, . . . , K) represents the channel gain from the jth transmitter to the ith receiver,

and wi[n] is the white noise at the ith receiver. In the rest of the chapter, the

time index n will be omitted wherever no ambiguity is caused. We assume the

channels are Rayleigh fading, i.e., hji ∼ CN (0, σ2
ji), and distinct hji’s are statistically

independent. The channels are assumed to remain constant during one time slot,

and change independently from slot to slot. The noise is independently identically

distributed (i.i.d.) with wi ∼ CN (0, N0), where N0 is the noise power. Limited by

the instrumental capability, the transmission power of the ith user cannot exceed

his/her own peak power constraint PM
i , i.e., |xi[n]|2 ≤ PM

i at any time slot n.

Usually, there is no powerful central unit to coordinate the spectrum access in

the unlicensed band, and different coexisting systems do not share a common goal
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to help each other voluntarily. It is reasonable to assume that each transmitter-

receiver pair is selfish: pursuing higher self-interest is the only goal for the wireless

users. Such selfish behaviors can be well analyzed by game theory. Therefore, we

can model the open spectrum sharing problem as a game specified in Table 3.1.

Table 3.1: The game model of open spectrum sharing.

Players The K transmitter-receiver pairs

Actions Each player can choose the transmission power level pi in [0, PM
i ]

Payoffs Ri(p1, p2, . . . , pK), the gain of transmission achieved by the ith player.

In general, the gain of transmission Ri(p1, p2, . . . , pK) is a non-negative in-

creasing function of data throughput which depends on all players’ power levels.

For simplicity, we assume that all the players share the same valuation model that

the gain of transmission equals data throughput, which can be easily extended to

cases with different valuation models. The averaged payoff of the ith player can be

approximated by

Ri(p1, p2, . . . , pK) = log2

(
1+

pi|hii|2
N0+

∑
j 6=i pj|hji|2

)
, (3.2)

when mutual interference is treated as Gaussian noise, e.g., when the code division

multiple access (CDMA) technique is employed.

3.2 Repeated Spectrum Sharing Game

In this section, we find the equilibria of the proposed spectrum sharing game.

We assume that all the players are selfish and none is malicious. In other words,

players aim to maximize their own interest, but will not harm others at their own
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cost. Because all the selfish players try to access the unlicensed spectrum as much

as possible, severe competition often leads to strong mutual interference and low

spectrum efficiency. However, since wireless systems coexist over a long period of

time, the spectrum sharing game will be played for multiple times, in which the

undue competition could be resolved by mutual trust and cooperation. We propose

a punishment-based repeated game to boost cooperation among competing players.

3.2.1 One-shot game

First, we look into the one-shot game where players are myopic and only care

for the current payoff. The Nash equilibrium of the game is a vector of power

levels (p?
1, p

?
2, . . . , p

?
K) from which no individual would have the incentive to deviate.

Proposition 1 implies that every transmitter will use the peak power level at the

equilibrium.

Proposition 1 The unique Nash equilibrium for this game is
(
PM

1 , PM
2 , . . . , PM

K

)
.

Proof : First, we show that
(
PM

1 , PM
2 , . . . , PM

K

)
is a Nash equilibrium. According

to the definition of the payoff (3.2), when p1, p2, . . . , pi−1, pi+1, . . . , pK are fixed, and

hence the interference power is fixed, the ith player’s payoff Ri(p1, p2, . . . , pK) grows

as the power level pi increases. Therefore, for any player i, deviating from PM
i to

any lower value will decrease the payoff, which makes
(
PM

1 , PM
2 , . . . , PM

K

)
a Nash

equilibrium.

Then, we show by contradiction that no other equilibria exist. Assume that

(p?
1, p

?
2, . . . , p

?
K) is any equilibrium other than

(
PM

1 , PM
2 , . . . , PM

K

)
, which means at
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least one entry is different, say p?
i 6= PM

i . However, this player can always be better

off by deviating from p?
i to PM

i , which violates the definition of a Nash equilibrium.

When channel states are fixed, substituting the equilibrium strategy pi = PM
i

for all i into (3.2) yields

RS
i (h1i, h2i, . . . , hKi) = log2

(
1 +

PM
i |hii|2

N0 +
∑

j 6=i P
M
j |hji|2

)
, (3.3)

where the superscript ‘S’ stands for “selfish”. This is indeed the only possible

outcome of the one-shot game with selfish players. Furthermore, when channel

fading is taken into account, the expected payoff can be calculated by averaging

over all channel realizations,

rS
i = E{hji,j=1,...,K}

[
RS

i (h1i, h2i, . . . , hKi)
]
. (3.4)

In this chapter, the payoff represented by upper-case letters is the utility under a

specific channel realization, whereas the payoff in lower-case letters is the utility

averaged over all channel realizations.

Proposition 1 implies that the common open spectrum is excessively exploited

owing to lack of cooperation among selfish players. In order to maximize their own

payoffs, all the players always occupy the spectrum with maximum transmission

power, which, in turn, makes everyone suffer from strong mutual interference. If

players can somehow share the spectrum in a more cooperative and regulated fash-

ion, everyone will be better off because interference has been greatly reduced. Since

spectrum sharing lasts over quite a long period of time, it can be seen as a game
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played for numerous rounds, in which cooperation is made possible by established

individual reputation and mutual trust.

3.2.2 Repeated game

In open spectrum sharing, players cannot be “forced” to cooperate with each

other; instead, they must be self-enforced to participate in cooperation. We pro-

pose a punishment-based repeated game to provide players with the incentive for

cooperation.

As introduced in Chapter 2, the payoff of a repeated game is defined as the

sum of discounted payoffs discounted over time,

Ui = (1− δ)
+∞∑
n=0

δnRi[n], (3.5)

where Ri[n] is player i’s immediate payoff at the nth time slot, and δ (0 < δ < 1)

is the discount factor. When δ is closer to 1, the player is more patient. Because

players value not only the current payoff but also rewards in the future, they have

to constrain behavior in the present to keep a good credit history; otherwise, a bad

reputation may cost even more in the future.

In general, if players do not cooperate with each other, the only reasonable

choice is the one-shot game Nash equilibrium with the expected payoff rS
i given

in (3.4). However, if all the players follow some predetermined rules to share the

spectrum, higher expected one-slot payoffs rC
i (‘C’ stands for “cooperation”) may

be achieved, i.e., rC
i > rS

i for i = 1, 2, . . . , K. For example, the cooperation rule

may require only several players access the spectrum simultaneously, and hence mu-
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tual interference is greatly reduced. Nevertheless, without any commitment, selfish

players always want to deviate from cooperation. One player can take advantage of

others by transmitting in the time slots which he/she is not supposed to, and the

instantaneous payoff at one specific slot is a random variable denoted by RD
i (‘D’

stands for “deviation”).

Although it is not a stable equilibrium in the one-shot game, cooperation is an

equilibrium in the repeated game enforced by the threat of punishment. Specifically,

every player states the threat to others: if anyone deviates from cooperation, there

will be no more cooperation forever. Such a threat, also known as the “trigger”

punishment [13], deters deviation and helps maintain cooperation. For example,

assume that player i hesitates whether to deviate or not. Denote the discounted

payoff with deviation as UD
i , and that without deviation as UC

i . Proposition 2 shows

that the payoffs strongly converge to constants regardless of the channel realizations.

Then, for the sake of the player’s own benefit, it is better not to deviate as long as

rC
i > rS

i .

Proposition 2 As δ → 1, UD
i converges to rS

i almost surely, and UC
i converges to

rC
i almost surely.

Proof : First, we show that as δ → 1, the discounted payoff defined in (3.5) is

asymptotically equivalent to the average of the one-time payoffs. By switching the
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order of operations, we have

lim
δ→1

Ui = lim
δ→1

lim
N→+∞

1− δ

1− δN+1

N∑
n=0

δnRi[n]

= lim
N→+∞

N∑
n=0

(
lim
δ→1

δn − δn+1

1− δN+1

)
Ri[n]

= lim
N→+∞

1

N + 1

N∑
n=0

Ri[n],

(3.6)

where the last equality holds according to L’hospital’s rule.

Assume that player i deviates at time slot T0. Then, the payoffs {Ri[n], n =

0, 1, . . . , T0−1} are i.i.d. random variables with mean rC
i , whose randomness comes

from the i.i.d. channel variations. Similarly, the payoffs {Ri[n], n = T0+1, T0+2, . . .}

are i.i.d. random variables with mean rS
i . Deviating only affects the payoff at time

slot T0. According to the strong law of large numbers [74], the payoff UD
i converges

to its mean rS
i almost surely. On the other hand, if no deviation ever happens, the

repeated game always stays in the cooperative stage. By using the same argument,

UC
i converges to rC

i almost surely.

Because selfish players always choose the strategy that maximizes their own

payoffs, they will keep cooperation if UC
i (= rC

i ) > UD
i (= rS

i ), that is, all players

are self-enforced to cooperate in the repeated spectrum sharing game because of

punishment after any deviation.

Nevertheless, such a harsh threat is neither efficient nor necessary. Note that

not only the deviating player gets punished, but the other “good” players also

suffer from the punishment. For example, if one player deviates by mistake or

punishment is triggered by mistake, there will be no cooperation due to punishment,

which results in lower efficiency for all players. We have to review the purpose of
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the punishment. The aim of punishment is more like “preventing” the deviating

behaviors from happening rather than punishing for revenge after deviation. As long

as the punishment is long enough to negate the reward from a one-time deviation, no

player has an incentive to deviate. The new strategy, called “punish-and-forgive”,

is stated as follows: the game starts from the cooperative stage, and will stay in

the cooperative stage until some deviation happens. Then, the game jumps into the

punishment stage for the next T−1 time slots before the misbehavior is forgiven and

cooperation resumes from the T th time slot. T is called the duration of punishment.

In the cooperative stage, every player shares the spectrum in a cooperative way

according to their agreement; while in the punishment stage, players occupy the

spectrum non-cooperatively as they would do in the one-shot game. Using folk

theorems we have introduced in Chapter 2, we show that cooperation is a subgame

perfect equilibrium that ensures the Nash optimality for subgames starting from any

round of the whole game.

Proposition 3 Provided rC
i > rS

i for all i = 1, 2, . . . , K, there is δ̄ < 1, such

that for a sufficiently large discount factor δ > δ̄, the game has a subgame perfect

equilibrium with discounted utility rC
i , if all players adopt the “punish-and-forgive”

strategy.

The parameter T can be determined by analyzing the incentive of the players.

For example, we investigate under what condition player i will lose the motivation

to deviate at time slot T0. Although cooperation guarantees an average payoff rC
i

at each time slot, the worst-case instantaneous payoff could be 0. On the contrary,
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deviation will boost the instantaneous payoff at that slot. Assume the maximal profit

obtained from deviation is RD
i . If player i chooses to deviate, punishment stage will

last for the next T−1 slots; otherwise, cooperation will always be maintained. Thus,

the expected payoffs with and without deviation are bounded by

uD
i

4
= E[UD

i ] ≤ (1− δ) ·
(

T0−1∑
n=0

δnrC
i + δT0RD

i +

T0+T−1∑
n=T0+1

δnrS
i +

+∞∑
n=T0+T

δnrC
i

)
, (3.7)

and

uC
i

4
= E[UC

i ] ≥ (1− δ) ·
(

T0−1∑
n=0

δnrC
i + 0 +

+∞∑
n=T0+1

δnrC
i

)
, (3.8)

respectively. In order to deter players from deviating, T should be large enough

such that uC
i > uD

i for all i = 1, 2, . . . , K, i.e.,

T > max
i

log

(
δ − (1−δ)RD

i

rC
i −rS

i

)

log δ
, (3.9)

which can be further approximated by

T > max
i

RD
i

rC
i − rS

i

+ 1, (3.10)

by L’Hopital’s rule when δ is close to 1. If the tendency to deviate is stronger

(i.e., RD
i /(rC

i − rS
i ) is larger), the punishment should be harsher (longer duration of

punishment) to prevent the deviating behavior.

3.3 Cooperation with Optimal Detection Duration

In this section, we will discuss the specific design of the cooperation rules

for spectrum sharing, as well as the method to detect deviation. When designing

the rules, we assume that players can exchange information over a common control

59



channel. Based on the information, each individual can independently determine

who is eligible to transmit in the current time slot according to the cooperation rule,

and thus the proposed scheme does not require a central management unit.

Cooperative spectrum sharing can be designed in the following way: in one

time slot, only a few players with small mutual interference can access the spectrum

simultaneously. In the extreme case, only one player is allowed to occupy the spec-

trum at one time slot, and the mutual interference can be completely prevented. We

consider such orthogonal channel allocation because it is simple and requires only a

little overhead.

The slot structure for the spectrum sharing is shown in Fig. 3.2. Every slot

is divided into three phases: in the first phase, each player broadcasts information

to others, such as channel gains; in the second phase, each player collects all the

necessary information and decides whether to access the spectrum or not, according

to the cooperation rule; then the eligible player will occupy the spectrum in the

third phase of the slot. If the channel does not change too rapidly, the length of a

slot can be designed long enough to make the overhead (the first and second phases)

negligible. Since it is necessary to detect the potential deviating behavior and punish

correspondingly, the eligible player cannot transmit all the time during the third

phase. Instead, the player has to suspend his/her own transmission sometimes and

listens to the channel to catch the deviators. The eligible player transmits and

detects during the third phase: a portion of time is reserved for detection, while

the rest can be used for transmission. When to perform detection during the slot

is kept secret by individuals; otherwise, the other players may take advantage by
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Figure 3.2: Proposed slot structure for spectrum sharing. Phase I: ex-
change information; phase II: make decision; phase III: transmit and
detect.

deviating when the detector is not operating. Finally, if detection shows someone is

deviating, an alert message will be delivered in the first phase of the next time slot.

3.3.1 Cooperation Criteria

There are numerous cooperation rules to decide which players can have ex-

clusive priority to access the channel, such as the time division multiple access

(TDMA). Out of many possible choices, the cooperation rules must be reasonable

and optimal under some criteria, such as the maximum total throughput criterion

[75] and the proportional fairness criterion [76].

Given a cooperation rule d, player i would have an expected discounted payoff

rCd
i . Denote D as the set of all possible cooperation rules. The maximum total

throughput criterion aims to improve the overall system performance by maximizing

the sum of individual payoffs,

dMAX = argmax
d∈D

K∑
i=1

rCd
i , (3.11)
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whereas the proportional fairness criterion is known to maximize their product,

dPF = argmax
d∈D

K∏
i=1

rCd
i . (3.12)

The rule based on the maximum total throughput criterion (MTT) is quite

straightforward. In order to maximize the total throughput, each time slot should

be assigned to the player that makes best use of it. Denote gi[n] = PM
i |hii[n]|2 as

the instantaneous received signal power of the ith player at time slot n, and {gi[n]}

are i.i.d. exponentially-distributed random variables with mean PM
i σ2

ii according to

the assumption about {hii[n]}. The allocation rule is to assign the channel to the

player with the highest instantaneous received signal power, i.e.,

d1(g1, g2, . . . , gK) = argmax
i

gi. (3.13)

Since only the information of the current time slot is necessary and the same rule

applies to every time slot, the time index n has been omitted. The expected payoff

is

rC1
i =

∫ +∞

0

log2

(
1 +

gi

N0

)
Pr(gi >maxj 6=igj)f(gi)dgi, (3.14)

where f(gi) = 1
P M

i σ2
ii

exp(− gi

P M
i σ2

ii
) is the probability density function of the ran-

dom variable gi, and Pr(·) denotes the probability that the statement within the

parenthesis holds true.

The maximum total throughput criterion is optimal from the system designer’s

perspective; however, in a heterogeneous situation where some players always have

better channels than others, the players under poor channel conditions may have

little chance to access the spectrum. To address the fairness problem, another rule
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is proposed which allocates the spectrum according to the normalized channel gain

ḡi = gi/E[gi] instead of the absolute values,

d2(ḡ1, ḡ2, . . . , ḡK) = argmax
i

ḡi. (3.15)

Note that all {ḡi, i = 1, 2, . . . , K} are exponentially-distributed random variables

with mean 1, the symmetry of which implies that every player will have an equal

chance (1/K) to access the spectrum.

Proposition 4 The closed-form payoff with the proposed rule (3.15) used can be

shown as follows

rC2
i =

∫ +∞

0

log2

(
1 +

PM
i σ2

iiḡ

N0

)
exp(−ḡ) (1−exp(−ḡ))K−1 dḡ. (3.16)

Proof : The probability distribution function of each ḡi is F (ḡi) = 1 − exp(−ḡi).

Using order statistics [77], we can write the distribution function of max{ḡi, i =

1, 2, . . . , K} as FM(ḡ) = (1− exp(−ḡ))K . Since each player can be the one with the

largest ḡi with probability 1/K due to symmetry, the expected payoff is

rC2
i =

∫ +∞

0

log2

(
1 +

PM
i σ2

iiḡ

N0

)
1

K
dFM(ḡ). (3.17)

Substituting FM(ḡ) yields the form of the payoff in (3.16).

The proposed rule (3.15) can be seen as an approximation to the proportional

fairness criterion (3.12). gi can be decomposed into a fixed component E[gi] and a

fading component ḡi. When the channel is constant without fading, i.e., gi = E[gi],

the proportional fairness problem becomes

max
{ωi}

K∏
i=1

ωi log2

(
1 +

E[gi]

N0

)

s.t.
K∑

i=1

ωi ≤ 1,

(3.18)
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where ωi is the probability that the ith player should occupy the channel. The opti-

mal solution is ωi = 1/K for any i, which means an equal share is proportionally fair.

On the other hand, when only the fading part is considered, since ḡi is completely

symmetric for all players, assigning resources to the player with the largest ḡi will

maximize the product of payoffs. The two aspects suggest that rule (3.15) is a good

approximation which requires only the information of the current time slot, and we

will refer to it as the APF. In addition, it can be extended to a more general case

which allocates the band according to weighted normalized channel gain πiḡi, where

πi is a weight factor reflecting a player’s priority for heterogeneous applications.

3.3.2 Optimal detection

The punishment-based spectrum sharing game can provide all players with the

incentive to obey the rules, since deviation is deterred by the threat of punishment.

Detection of the deviating behavior is necessary to ensure the threat to be credible;

otherwise, selfish players will tend to deviate knowing their misbehavior will not

be caught. Because only one player can occupy the spectrum at one time slot

according to the proposed cooperation rules, if that player finds that any other

player is deviating, the system will be alerted into the punishment phase. There are

several ways to detect whether the spectrum resources are occupied by others, e.g.,

an energy detector [78].

The detectors are generally imperfect, and some detection errors are inevitable.

There is the possibility that the detector believes someone else is using the channel
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although in fact nobody is. Triggering the game into punishment phase by mistake,

this false alarm event reduces the system efficiency, and hence the probability of false

alarm should be kept as low as possible. Generally speaking, the performance of the

detector can be improved by increasing the detection time. Nevertheless, the player

cannot transmit and detect at the same time because one cannot easily distinguish

one’s own signal from other players’ signal in the same spectrum. Therefore, there

is a tradeoff between transmission and detection: the more time one spends on the

detection, the less time one reserves for data transmission.

Assume all the other parameters have been fixed, such as the length of one time

slot. Then, the question is how much time in a slot should be used for detection.

Let α denote the ratio of time for detection, Ts the length of one slot, Ws the

bandwidth, and assume an energy detector with a threshold λ is used, then the

false alarm probability is [78]

ξ(α) =
Γ(αTsWs, αλ/2)

Γ(αTsWs)
, (3.19)

where Γ(·) and Γ(·, ·) are the gamma function and incomplete gamma function,

respectively.

We have shown that the expected discounted payoff ui equals rC
i without

considering the detection error. When the imperfect detector is taken into account,

the modified discounted payoff, denoted by ǔi(α), will depend on α. The expected

throughput from the current time slot is (1 − α)rC
i , since only the remaining (1 −

α) part of the duration can be employed for transmission. The system will jump

into the punishment stage with probability ξ(α) due to the false alarm event, and
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stay in the cooperative stage with probability 1 − ξ(α). If the system stays in the

cooperative stage, the expected payoff in the future is ǔi(α) discounted by one time

unit; otherwise, the expected throughput in each time slot is rS
i until cooperation

resumes from the T th slot, which yields the payoff ǔi(α) discounted by T time units.

Overall, the modified discount utility should satisfy the following equation,

ǔi(α) =(1− δ)(1− α)rC
i + (1− ξ(α))δǔi(α)

+ξ(α)

(
(1− δ)

T−1∑
n=1

δnrS
i + δT ǔi(α)

)
,

(3.20)

from which ǔi(α) can be solved as

ǔi(α) =
(1− δ)(1− α)rC

i + (δ − δT )ξ(α)rS
i

1− δ + (δ − δT )ξ(α)
. (3.21)

Note that the discounted payoff ǔi(α) is a convex combination of (1−α)rC
i and rS

i ,

and thus rS
i < ǔi(α) < rC

i for all 0 < α < 1 − rS
i /rC

i . Therefore, the imperfect

detector will reduce the utility from rC
i to a smaller value ǔi(α). However, ǔi(α) is

always larger than rS
i , which means that the players still have the incentive to join

in this repeated game and cooperate.

Similar to [42], the optimal α∗ that maximizes the modified discounted payoff

(3.21) can be found by the first-order condition

∂ǔi(α)

∂α
= 0. (3.22)

Or equivalently, α∗ is the solution to the following equation

(1− δ + (δ − δT ))rC
i + ((1− α)rC

i − rS
i )(δ − δT )

ξ′(α)

ξ(α)
= 0, (3.23)

where ξ′(α) is the derivative of ξ(α) with respect to α. Note that by replacing rC
i
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with ǔi(α
∗), the impact of imperfect detection is incorporated into the game, and

requires no further considerations.

3.4 Cheat-Proof Strategies

The repeated game discussed so far is based on the assumption of complete

and perfect information. Nevertheless, information, such as the power constraints

and channel gains, is actually private information of each individual player, and thus

there is no guarantee that players will reveal their private information honestly to

others. If cheating is profitable, selfish players will cheat in order to get a higher

payoff. As the proposed cooperation rules always favor the player with good channel

conditions, selfish players will tend to exaggerate their situations in order to acquire

more opportunities to occupy the spectrum. Therefore, enforcing truth-telling is a

crucial problem, since distorted information would undermine the repeated game.

In [4], a delicate scheme is designed to testify whether the information provided

by an individual player has been revealed honestly. However, the method is complex

and difficult to implement, especially under time-varying channels. In our proposed

allocation rules, much easier strategies can be employed to induce truth-telling.

When the MTT rule is used for spectrum sharing, we design a mechanism to make

players self-enforced to reveal their true private information, and when the APF

rule is adopted, a scheme based on statistical properties is proposed to discourage

players from cheating.
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3.4.1 Mechanism-design-based strategy

Since the MTT sharing rule assigns the spectrum resources to the player who

claims the highest instantaneous received signal power, players tend to exaggerate

their claimed values. To circumvent the difficulty to tell whether the exchanged

information has been distorted or not, a better way is to make players self-enforced

to tell the truth.

Mechanism design is employed to provide players with incentives to be honest.

To be specific, the players claiming high values are asked to pay a tax, and the

amount of the tax will increase as the claimed value increases, whereas the players

reporting low values will get some monetary compensation. Because players care

for not only the gain of data transmission but also their monetary balance, the

overall payoff is gain of transmission plus the transfer (tax or compensation). In

other words, after introducing transfer functions, the spectrum sharing game actu-

ally becomes a new game with original payoffs replaced by the overall payoffs. By

appropriately designing the transfer function, the players can get the highest payoff

only when they claim their true private values.

In the game, the private information {g1, g2, . . . , gK} has to be exchanged

among players. Assume at one time slot, {g̃1, g̃2, . . . , g̃K} is a realization of the

random variables {g1, g2, . . . , gK}. Observing his/her own private information, the

ith player will claim ĝi to others, which may not be necessarily the same as the true

value g̃i. All the players claim the information simultaneously. Since {ĝ1, ĝ2, . . . , ĝK}

is common knowledge but {g̃1, g̃2, . . . , g̃K} is not, the allocation decision and transfer
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calculation have to be based on the claimed rather than the true values. In the MTT

spectrum sharing game, the player with index d1(ĝ1, ĝ2, . . . , ĝK) defined in (3.13) can

access the channel, and thus data throughput at the current time slot can be written

in a compact form

Ri(g̃i, d1(ĝ1, ĝ2, . . . , ĝK)) =





log2(1 + g̃i

N0
) if d1(ĝ1, ĝ2, . . . , ĝK) = i;

0 otherwise.

(3.24)

The transfer of the ith player in the proposed cheat-proof strategy is defined as

ti(ĝ1, ĝ2, . . . , ĝK)
4
= Φi(ĝi)− 1

K − 1

K∑

j=1,j 6=i

Φj(ĝj), (3.25)

where

Φi(ĝi)
4
= E

[
K∑

j=1,j 6=i

Rj(gj, d1(g1, g2, . . . , gK))

∣∣∣∣gi = ĝi

]
. (3.26)

Note the expectation is taken over all realizations of {g1, g2, . . . , gK} except gi, since

the player has no knowledge about others of the current time slot when deciding

what to claim. Φi(ĝi) is the sum of all other players’ expected data throughput given

that player i claims a value ĝi. Intuitively, if user i claims a higher ĝi, he/she will gain

a greater chance to access the spectrum, and all the other players will have a smaller

spectrum share. However, higher payment may negate the additional gain from more

spectrum access through bragging the channel gain. On the contrary, if claiming a

smaller ĝi, user i will receive some compensation at the cost of less chance to occupy

the spectrum. Therefore, it is an equilibrium that each user reports his/her true

private information. A rigorous proof is provided in Proposition 5.

Proposition 5 In the proposed mechanism, it is an equilibrium that each player

reports his/her true private information, i.e., ĝi = g̃i, i = 1, 2, . . . , K.
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Proof : To prove the equilibrium, it suffices to show that for any i ∈ {1, 2, . . . , K},

if all players except player i reveal their private information without distortion, the

best response of player i is also to report the true private information. With-

out loss of generality, we assume player 2 through player K report true values

ĝi = g̃i, i = 2, 3, . . . , K.

Then, the expected overall payoff of player 1 is the expected data throughput

plus the transfer. The expectation is taken over all realizations of {g2, g3, . . . , gK}

throughout the proof. When claiming ĝ1, player 1 gets the expected overall payoff

rt
1(ĝ1)

4
= E [R1(g̃1, d1(ĝ1, g2, . . . , gK)] + t1(ĝ1, ĝ2, . . . , ĝK)

= E

[
R1(g̃1, d1(ĝ1, g2, . . . , gK)+

K∑
j=2

Rj(gj, d1(ĝ1, g2, . . . , gK))

]
− 1

K − 1

K∑
j=2

Φj(ĝj).

(3.27)

From analysis of incentive compatibility, player 1 will claim a distorted value ĝ1

instead of g̃1 if and only if reporting ĝ1 results in a higher payoff, i.e., rt
1(g̃1) < rt

1(ĝ1),

or equivalently,

E

[
R1(g̃1, d1(g̃1, g2, . . . , gK)+

K∑
j=2

Rj(gj, d1(g̃1, g2, . . . , gK))

]
<

E

[
R1(g̃1, d1(ĝ1, g2, . . . , gK)+

K∑
j=2

Rj(gj, d1(ĝ1, g2, . . . , gK))

]
.

(3.28)

Note that the MTT rule maximizes the total throughput, that is, for any

realization of {g2, g3, . . . , gK},
∑K

i=1 Ri(g̃i, d1(g̃1, g̃2, . . . , g̃K)) >
∑K

i=1 Ri(g̃i, d
o) for

any other possible allocation strategy do. After taking the expectation, we have

E

[
R1(g̃1, d(g̃1, g2, . . . , gK)+

K∑
j=2

Rj(gj, d(g̃1, g2, . . . , gK))

]
>

E

[
R1(g̃1, d

o) +
K∑

j=2

Rj(gj, d
o)

]
for any do,

(3.29)
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which contradicts (3.28). Therefore, player 1 is self-enforced to report the true

value, i.e., ĝ1 = g̃1. Hence, in the equilibrium, all players will reveal their true

private information.

Proposition 5 proves that by adopting the proposed mechanism-based strategy

with transfer function defined in (3.25), every player gets the incentive to reveal

true private information to others. For the homogenous case where PM
i = P , hii ∼

CN (0, 1) for all i, the transfer function can be further simplified into the following

form by order statistics

ti(ĝ1, ĝ2, . . . , ĝK) =
K∑

j=1

∫ ĝj/P

ĝi/P

log2

(
1 +

Pg

N0

)
exp(−g) (1− exp(−g))K−2 dg. (3.30)

Moreover, with the proposed transfer functions, all players’ payment/income

adds up to 0 at any time slot:

K∑
i=1

ti(ĝ1, ĝ2, . . . , ĝK) =
K∑

i=1

(
Φi(ĝi)− 1

K − 1

K∑

j=1,j 6=i

Φj(ĝj)

)
= 0. (3.31)

It means that the monetary transfer is exchanged only within the community of

cooperative players without either surplus or deficit at any time. This property is

very suitable for the open spectrum sharing scenario. Vickrey-Clark-Groves (VCG)

mechanism [46], another well-known mechanism, can also enforce truth-telling, but

it cannot keep the budget balanced. If the VCG mechanism is used, at each slot

some players will have to pay a third party outside the community (e.g., a spectrum

manager), which goes against the intention of the unlicensed band. Furthermore,

paying for the band may make players less willing to access the spectrum. Despite

that the VCG mechanism is a good choice for auctions in licensed spectrum, for

the unlicensed band, as our goal is increasing spectrum efficiency and enforcing
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truth-telling rather than making money out of the spectrum resources, the proposed

mechanism is more appropriate.

3.4.2 Statistics-based strategy

For the APF rule, every player reports the normalized channel gain, and the

player with the highest reported value will get access to the spectrum. Since the

normalized gains are all exponentially distributed with mean 1, if the true values

are reported, the symmetry will result in an equal share of the time slots in the long

run, i.e., each player will have 1/K fractional access to the spectrum.

If player i occupies the spectrum more than (1/K + ε) of the total time,

where ε is a pre-determined threshold, it is highly possible that he/she may have

cheated. Consequently, the selfish players, in order not to be caught as a cheater,

can only access up to (1/K +ε) of all the time slots even if they distort their private

information. Thus, the statistics-based cheat-proof strategy for the APF spectrum

sharing rule can be designed as follows. Everyone keeps a record of the spectral

usage in the past. If any player is found to overuse the spectrum, i.e., transmitting

for more than (1/K + ε) of the entire time, that player will be marked as a cheater

and get punished. In this way, the profit of cheating, defined as the ratio of the

extra usage over the normal usage, is greatly limited.

Proposition 6 The profit of cheating is bounded when the statistics-based strategy

is employed; furthermore, the profit approaches 0 as n →∞.

Proof : The worst case is that the cheater gets exactly (1/K+ε) portion of resources

72



without being caught. The profit of cheating is at most ε
1/K

= Kε, which is bounded.

Moreover, the threshold ε can shrink with time; to make it explicit, we use

ε[n] to denote the threshold at slot n. At one time slot, the event that a particular

player accesses the spectrum is a Bernoulli distributed random variable with mean

1/K. Then, the n-slot averaged access rate of a player is the average of n i.i.d.

Bernoulli random variables, since the channel fading is independent from slot to

slot. According to the central limit theorem [74], the average access rate converges

in distribution to a Gaussian random variable with mean 1/K, whose variance decays

with rate 1
n
. To keep the same false alarm rate, ε[n] can be chosen to decrease with

rate 1√
n
. Then, the upper bound of the cheating profit Kε[n] will decay to 0 as

n →∞.

Therefore, we can conclude from the proposition that the benefit to the cheater,

or equivalently speaking, the harm to the others, is quite limited. As a result, this

statistics-based strategy is cheat-proof.

3.5 Simulation Studies

In this section, we conducted numerical simulations to evaluate the proposed

spectrum sharing game with cheat-proof strategies.

We first look into the simplest case with two players (K = 2) to get some

insight. We assume the two players are homogeneous with PM
1 = PM

2 = P ,

{h11, h22} ∼ CN (0, 1), and {h12, h21} ∼ CN (0, γ), where γ = E[|h12|2]/E[|h11|2]

reflects the relative strength of interference over the desired signal powers, and we
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call it the interference level. The prerequisite for the players to join the game is that

each individual can obtain more profit by cooperation (rC
i > rS

i ); however, coopera-

tion is unnecessary in the extreme case when there is no mutual interference (γ = 0).

Therefore, we want to know under what interference level γ the proposed cooper-

ation is profitable. Fig. 3.3 shows the cooperation payoff rC
i and non-cooperation

payoff rS
i versus γ when the averaged SNR = P/N0 = 15dB. Since the two rules are

equivalent in the homogeneous case, only the MTT rule is demonstrated. Under co-

operative spectrum sharing, since only one player gets the transmission opportunity

in each time slot, the expected payoff is independent of the strength of interference,

and thus is a horizontal line in the figure. The non-cooperation payoff drops sig-

nificantly as interference strength increases. From the figure, we can see that the

payoff of cooperation is larger than that of non-cooperative for a wide range of the

interference level (γ > 0.15). Therefore, the proposed cooperation is profitable for

medium to high interference environment, which is typical for an urban area with

high user density.

In Fig. 3.4, we illustrate the idea of the punishment-based repeated game.

Assume player 1 deviates from cooperation at slot 150, and the duration of the

punishment stage is T = 150. According to the “punish-and-forgive” strategy, the

game will stay in the punishment stage from time slot 151 to 300. The figure shows

an averaged result over 100 independent runs. We can see that although the player

gets a high payoff at time slot 150 by deviation, the temporary profit will be negated

in the punishment stage. Hence, considering the consequence of deviation, players

have no incentive to deviate.
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Figure 3.5: Effect of detection duration on the discounted utility.

Now, we take imperfect detection into consideration. Fig. 3.5 shows how a

player’s discount utility ǔ(α) is affected by α when an energy detector with a fixed

detection threshold is employed. We can see that when the detection time is short,

the utility is quite low due to the high false alarm rate. On the other hand, when

the detection time is too long, a significant portion of the transmission opportunity

is wasted. Therefore, α should be carefully designed to achieve the optimal tradeoff

that maximizes the utility.

Next, we show the payoffs of proposed cooperation rules in a heterogeneous en-

vironment. By heterogeneity, we mean that different players may differ in power con-

straints, averaged direct-channel gains {hii, i = 1, 2, . . . , K}, averaged cross-channel

gains {hij, i 6= j}, or combination of them. Here we only illustrate the results when
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the power constraints are different, since other types of asymmetry have similar re-

sults. In the simulation, we fix the power constraint of player 1, and increase PM
2 ,

the power constraint of player 2. The payoffs with the MTT and APF rules are

demonstrated in Fig. 3.6, where ‘1’ and ‘2’ refer to the payoffs of player 1 and player

2, respectively. As benchmarks, the payoffs without cooperation and payoffs using

the max-min fairness criterion (another resource allocation criterion sacrificing effi-

ciency for absolute fairness, see [79]) are provided, denoted by “NOC” and “MMF”,

respectively. Since player 2 has more power to transmit data, he/she can be seen

as a strong player in this heterogeneous environment. As seen from the figure, both

the MTT and APF rules outperform the non-cooperation case, which means players

have the incentive to cooperate no matter which rule is used. Furthermore, the

MTT rule favors the strong player in order to maximize the system efficiency, and

the APF rule achieves a tradeoff between efficiency and fairness. The MMF curves

show that the strong user is inhibited in order to reach the absolute fairness, which

might conflict with selfish users’ interest.

We also conduct simulations for spectrum sharing with more than two users.

In Fig. 3.7, the cooperation gain, characterized by the ratio of rC
i /rS

i , is plotted

versus the number of the players K. We assume a homogeneous environment with a

fixed interference level γ = 1. Since the allocation rules can reap multiuser diversity

gains, the cooperation gain increases as more players are involved in the sharing

game.

Finally, we examine the proposed mechanism-design-based cheat-proof strat-

egy. We assume a 3-user spectrum sharing game with the MTT rule. At one specific

77



0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

P
2
M/P

1
M

P
ay

of
fs

 

 
NOC 1
NOC 2
MTT 1
MTT 2
APF 1
APF 2
MMF 1
MMF 2

Figure 3.6: The payoffs under a heterogeneous setting with different
cooperation rules.

2 4 6 8 10 12 14 16
1.5

2

2.5

3

3.5

4

4.5

Number of Players K

C
oo

pe
ra

tio
n 

G
ai

n 
r iC

/r
iS

Figure 3.7: The cooperation gain in a K-player spectrum sharing game.

78



0 0.5 1 1.5 2

0.8

1

1.2

1.4

1.6

1.8

2

E
xp

ec
te

d 
O

ve
ra

ll 
P

ay
of

fs

Claimed private values

 

 

Player 1, true value = 0.4
Player 2, true value = 0.8
Player 3, true value = 1.1

Figure 3.8: The expected overall payoffs versus different claimed values.

time slot, for example, the true private values are g̃1 = 0.4, g̃2 = 0.8, and g̃3 = 1.1. In

Fig. 3.8, the expected overall payoffs (throughput plus transfer) versus the claimed

values are shown for each player, given the other two are honest. From the figure,

we see that the payoff is maximized only if the player honestly claims his/her true

information. Therefore, players are self-enforced to tell the truth with the proposed

mechanism.
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Chapter 4

A Scalable Collusion-Resistant Multi-Winner Spectrum Auction

In the previous chapter, we investigate on selfish behavior in open spectrum

sharing and develop cheat-proof strategy to prevent a single player from lying about

his/her private value. It is also of interest to know what happens when a group of

selfish users collude for higher payoffs. In this chapter, we focus on the collusion-

resistant strategy in the setting of a spectrum market, where spectrum opportunities

are announced by primary users rather than discovered by secondary users. Since

primary users have the incentive to trade their temporarily unused bands for mone-

tary gains and secondary users want to lease some bands for data transmission, they

may negotiate the price for a short-term lease. There have been a lot of previous

efforts studying dynamic spectrum access via pricing and auction mechanisms, and

some of them have been introduced in Chapter 1. Although existing schemes have

enhanced spectrum allocation efficiency through market mechanisms, some critical

challenges still remain unanswered.

First, in most of the current auctions, one licensed band (or a collection of

multiple bands) is awarded to a unique winner just like traditional auctions studied

by economists [44]. However, the spectrum resource is quite different from other

commodities in that it is interference-limited rather than quantity-limited, because

it is reusable by wireless users geographically far apart. In this case, allowing mul-
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tiple winners to lease the band is an option consented by everyone: primary users

get higher revenue, secondary users get more chances to access the spectrum, and

spectrum usage efficiency gets boosted as well from the system designer’s perspec-

tive. To the best of our knowledge, such an auction does not exist in the literature,

and we coin the name multi-winner auction to highlight the special features of the

new auction game, in which auction outcomes (e.g., the number of winners) highly

depend on the geographical locations of the wireless users.

Second, although a few papers (e.g., [49][10]) have discussed spectrum auc-

tions under interference constraints, most of them are based on the assumption

that secondary users are truth-tellers, that is, they will honestly reveal their pri-

vate information such as the valuations and interference relationships. However,

since secondary users are selfish by nature, they may misrepresent their private in-

formation in order for a higher payoff. Therefore, proper mechanisms have to be

developed to provide incentives to reveal true private information. Although the

Vickrey-Clarke-Groves (VCG) mechanism is a possible choice enforcing that users

bid their true valuations [48], it is also well-known to suffer from several drawbacks

such as low revenue [80][81]. As auction rules significantly impact bidding strategies,

it is of essential importance to develop new auction mechanisms to overcome the

disadvantages.

Third, mechanisms to be developed should take into consideration the collusive

behavior of selfish users, which is a prevalent threat to efficient spectrum utilization

but has been generally overlooked [12]. Driven by their pursuit of higher payoffs, a

clique of secondary users may cheat together, and sometimes they may even have a
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more facilitated way to exchange information for collusion if they belong to the same

service provider. Furthermore, awarding the same band to multiple buyers simul-

taneously under interference constraints, the multi-winner auction makes possible

new kinds of collusion. Therefore, effective countermeasures have to be developed

against them.

Last but not least, it is much more meaningful to show the proposed scheme

can be applied in practice, where complexity issues come into the spotlight: the

mechanism should be easy to implement, and it should be scalable when more

and more users are incorporated into the auction game. However, the optimal re-

source allocation that maximizes the system utility in the auction is an NP-complete

problem [82] whose exact solution needs a processing time increasing exponentially

with the size of the problem, and hence the computational complexity becomes too

formidable to be practical when the number of users is large. By applying the semi-

definite programming (SDP) relaxation [83] to the original problem, a tight upper

bound can be obtained in polynomial time.

4.1 System Model

We consider a cognitive radio network where N secondary users coexist with

M primary users, and primary users seek to lease their unused bands to secondary

users for monetary gains. We model it as an auction where the sellers are the primary

users, the buyers are the secondary users, and the auctioneer is a spectrum broker

who helps coordinate the auction. Assume there is a common channel to exchange
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necessary information and a central bank to circulate money in the community.

For simplicity, we assume each primary user owns one band exclusively, and each

secondary user needs only one band. In this chapter, we first consider the auction

with a single band (M = 1), and later extend it to the multi-band auction.

The system designer determines a fixed leasing period T according to channel

dynamics and overhead considerations, that is, the duration should be short enough

to make spectrum access flexible but not too short since the overhead of the auction

would become problematic. At the beginning of each leasing period, if a primary user

decides not to use his/her own licensed band for the next duration of T , he/she will

notify the spectrum broker of the intention to sell the spectrum rights. Meanwhile,

the potential buyers simultaneously submit their sealed bids b = [b1, b2, . . . , bN ]T

to the spectrum broker, where bi is the bid made by user i. According to the bids

and channel availability, the broker decides both the allocation x = [x1, x2, . . . , xN ]T

and the prices p = [p1, p2, . . . , pN ]T , where xi = 1 means secondary user i wins some

band, xi = 0 otherwise, and pi is the price of the band for the ith secondary user.

Alternatively, we can define the set of winners as W ⊆ {1, 2, . . . , N}, where i ∈ W

if and only if xi = 1. Assume user i gains value vi from transmitting information in

the leased band, his/her reward is

ri = vixi − pi, i = 1, 2, . . . , N. (4.1)

Given all users’ valuations v = [v1, v2, . . . , vN ]T , the system utility, or the social

welfare can be represented by

Uv(x) =
N∑

i=1

vixi =
∑
i∈W

vi. (4.2)
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Figure 4.1: Illustration of the interference structure in a cognitive spec-
trum auction. (a) physical model; (b) graph representation; (c) matrix
representation.

Since the proposed multi-winner auction awards the band simultaneously to

several secondary users according to their mutual interference, interference plays an

important role in the auction. We first use the well-known protocol interference

model [84], where mutual interference in Fig. 4.1 (a) where N = 6 secondary cogni-

tive base stations compete for the spectrum lease can be well captured by a conflict

graph (Fig. 4.1 (b)), or equivalently, by an N×N adjacency matrix C (Fig. 4.1 (c)).

By collecting reports from secondary users about their locations or their neighbors,

the spectrum broker keeps the matrix C updated, even if the interference constraints

change from time to time because of the slow movement of secondary users. When

Cij = 1, user i and user j cannot access the same band simultaneously, and if they

do, neither of them gains due to collision. Therefore, the interference constraint is
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xi + xj ≤ 1 if Cij = 1.

Our method can be extended to the physical physical model [85] as well, which

describes interference in a more accurate but more complicated way. In this model,

only transmissions with the received signal-to-interference-and-noise ratio (SINR)

exceeding some threshold β are considered successful, i.e., giiP/
(∑

j 6=i gjiPxj + Zi

)
≥

β, where gji represents the channel gain from jth user’s transmitter to ith user’s

receiver, Zi is the noise at receiver i, and we assume all users use the same power P .

By neglecting the noise term when interference is the dominant factor in the sys-

tem, the condition for simultaneous transmissions when no individual is impaired

by mutual interference can be further reduced to
∑N

j=1 αjixj ≤ 0 if xi = 1, where

we define αii = −1 and αji = βgji/gii, i 6= j.

Notations: A ∈ Mm×n means A is a matrix with dimension m × n, and

b ∈ Mm×1 indicates b is a column vector with length m. Denote their entries as

Aij and bi, respectively. The trace of a matrix A is denoted by tr(A), and its

rank is denoted by rank(A). The 2-norm of a vector b is denoted by |b|2. The

all-zero, all-one, and identity matrices are denoted by O, 1, and I, respectively, and

their dimensions are given in the subscript when there is room for confusion. The

Kronecker product of two matrices A and B is denoted by A ⊗ B. S ∈ Sn means

S is an n× n real symmetric matrix, and S º O implies S is positive semi-definite.

Denote b−i = [b1, b2, . . . , bi−1, bi+1, . . . , bm]T as a new vector with the ith entry of

b excluded. Similarly, if W is a set of indices, b−W implies all the entries whose

indices fall in W are removed. |W | denotes the cardinality of a set W . For two sets

W1 and W2, the set difference is defined as W1 \W2 = {x|x ∈ W1 and x 6∈ W2}.

85



4.2 Collusion and Drawbacks of the VCG mechanism

Defining rules for winner determination and price determination, mechanism

design plays an important role in an auction, since it greatly affects the auction

outcome as well as user behavior. For example, the widely employed VCG mech-

anism, as discussed in Chapter 2, ensures the maximum system utility and en-

forces that all buyers bid their true valuations in the absence of collusion, i.e.,

bi = vi (i = 1, 2, . . . , N), and could be applied to the multi-winner auction; How-

ever, serious drawbacks make the VCG mechanism less attractive, and it is neces-

sary to develop suitable mechanisms for the multi-winner auction. In this section,

we present its drawbacks and emerging kinds of collusion through specific examples

in cognitive spectrum auctions.

In Fig. 4.2, several network topologies with user values are given, and the

VCG auction outcome (xi and pi) has been calculated and listed in tables. First,

the seller’s revenue may be low. As in Case (a) with the VCG prices, the total

payment collected by the primary user is p2 + p3 + p4 = 6, which is quite low

compared to the system utility. Furthermore, there is no guarantee that the primary

user’s revenue is bounded away from zero. In some unfavorable cases, for example,

v1 = v2 = v3 = v4 = 10, the primary user sells the spectrum for nothing according

to the VCG price.

Second, the losers may take advantage of the VCG pricing by colluding. For

example, in Case (b), secondary user 1 gets the spectrum lease, and user 2, 3, 4

are the losers in the VCG auction. However, if colluding and misrepresenting their
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Figure 4.2: Different network topologies with the VCG mechanism employed.
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valuations, they may become winners instead. For instance, they may collude to

mimic Case (a) by claiming the same valuations as in Case (a), whose outcome is

favorable since all colluders gain positive rewards, i.e., r2 = v2 − p2 = 1, r3 = 1,

and r4 = 2, respectively. The system efficiency is degraded because the spectrum

resources are not assigned to the users who value them most. We name this kind of

collusion as loser collusion.

Third, colluders may extract some profits from the seller by sublease collusion.

In this Case (c), user 3 and user 4 may now collude with user 5 by subleasing the

band at price p5 = 7, and the income is split between them as 6 and 1. Then,

both user 3 and 4 make extra profit by subleasing the band at higher prices than

their leasing prices, and user 5 also benefits from subleasing since the reward is

v5 − p5 = 1. Such collusion impairs the spectrum efficiency as well as the primary

user’s revenue, and we name it sublease collusion.

In addition to these two kinds of collusion, kick-out collusion is another pos-

sible collusion form when a group of users reveal wrong interference relation with

others. For example, when several users belonging to the same group of interests,

they may kick out a winner by saying they have mutual interference, and welcome

their ally to join in the winner set instead.

4.3 One-Band Multi-Winner Auction

In this section, we develop suitable mechanisms for the multi-winner auction

which guarantee system efficiency, yield high revenue, prevent potential collusion,
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and are of low complexity.

4.3.1 The Optimal Allocation

Because the goal of dynamic spectrum access is to improve the efficiency of

spectrum utilization, the auction mechanisms should be designed such that the social

welfare is maximized, that is, the band is awarded to the secondary users who value

them most.

In a cognitive spectrum auction, only those without mutual interference can be

awarded the band simultaneously, and we group them together as virtual bidders,

whose valuations equal the sum of the individual valuations. Take Fig. 4.1 for

example, there are seventeen virtual bidders, such as {1}, {1, 5}, {4, 5, 6} and so

on; on the other hand, combinations like {1, 3} and {2, 5, 6} are not virtual bidders

due to interference. In order to achieve full efficiency, the virtual bidder with the

highest bid will win the band. It is unnecessary to list all virtual bidders explicitly;

instead, the optimal allocation x can be determined by the following N -variable

binary integer programming (BIP) problem,

U∗
v = max

x∈{0,1}N

N∑
i=1

vixi,

s.t. xi + xj ≤ 1, ∀i, j if Cij = 1, (interference constraints)

(4.3)

where interference constraints require that secondary users with mutual interference

should not be assigned the band simultaneously.
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4.3.2 Collusion-Resistant Pricing Strategies

After introducing the concept of virtual bidders, the multi-winner spectrum

auction becomes similar to the single-winner auction, and hence it is possible to

employ the second-price strategy which enforces truthful bidding. By applying the

second-price mechanism to the auction consisting of virtual bidders, the virtual

bidder with the highest bid wins the band (ties are broken randomly if two virtual

bidders have the same valuation), and pays the highest bid made by the virtual

bidder only consisting of losers. This can be done by solving two optimal allocation

problems in succession. First, we solve (4.3) to determine the set of winners W , or

the virtual winner. Then, we remove all the winners W from the system, and solve

the optimization problem again to calculate the maximum utility, denoted by U∗
v−W ,

which is the amount of money that the virtual winner has to pay.

We have to point out that the new pricing strategy sacrifices the enforcement

of truth-telling a little bit for higher revenue and more robustness against collusion;

however, since the proposed pricing strategy is quite similar to the second-price

mechanism where users bid their true valuations, we expect users will not shade their

bids too much from their true valuations. Thus, we neglect the difference between

bi and vi in the following analysis to focus on revenue and robustness aspects of the

new mechanisms.

The remaining problem is splitting the payment U∗
v−W among the secondary

users within the virtual winner. This is quite similar to a Nash bargaining game

[13] where each selfish player proposes his/her own payment during a bargaining
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process such that the total payment equals U∗
v−W , and it is well-known that the Nash

bargaining solution (NBS), which maximizes the product of individual payoffs, is

an equilibrium [13]. In the proposed auction, no individual bargaining is necessary;

instead, the spectrum broker directly sets the NBS prices for each winner, and

everyone is ready to accept them since they are equilibrium prices. The pricing

strategy is the solution to the following optimization problem,

max
{pi∈[0,vi], i∈W}

∏
i∈W

(vi − pi),

s.t.
∑
i∈W

pi = U∗
v−W .

(4.4)

Proposition 7 User i has to pay the price pi = max {vi − ρ, 0} , for i ∈ W, where

ρ is chosen such that
∑

i∈W pi = U∗
v−W . In particular, if p̂i

4
= vi −

U∗v−U∗v−W
|W | ≥ 0 for

any i, pi = p̂i will be the solution.

Proposition 7 can be proved using the Lagrangian method and the KarushKuh-

nTucker (KKT) condition, the detail of which can be found in [20]. It implies that

the payment is split in such a way that the profits are shared among the winners as

equally as possible. Different from the VCG pricing strategy which sometimes may

yield low revenue or even zero revenue, such a pricing strategy always guarantees

that the seller receives revenue as much as U∗
v−W . Moreover, if some losers collude

to beat the winners by raising their bids, they will have to pay more than U∗
v−W ;

however, the payment is already beyond what the band is actually worth to them,

and as a result, loser collusion is completely eliminated. Nevertheless, users can still

benefit from the sublease collusion, and hence we call the pricing strategy in (4.4)

the partially collusion-resistant pricing strategy.
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In order to find a fully collusion-resistant pricing strategy, we have to analyze

how sublease collusion takes place, and add more constraints accordingly. It happens

when a subset of the winners WC ⊆ W subleases the band to a subset of the losers

LC ⊆ L, where L = {1, 2, . . . , N} \W denotes the set of all losers. The necessary

condition for the sublease collusion is
∑

i∈WC
pi <

∑
i∈LC

vi, so that they can find

a sublease price in between acceptable to both parties. Given any colluding-winner

subset WC ⊆ W , the potential users who may be interested in subleasing the band

should have no mutual interference with the remaining winners W \WC ; otherwise,

the band turns out to be unusable. Denote the set of all such potential users by

L(W \ WC), i.e., L(W \ WC)
4
= {i ∈ L|Cij = 0,∀j ∈ W \ WC}. Therefore, as

long as prices are set such that
∑

i∈WC
pi ≥ maxLC∈L(W\WC)

∑
i∈LC

vi, there will be

no sublease collusion. Note that maxLC∈L(W\WC)

∑
i∈LC

vi is the maximum system

utility U∗
vL(W\WC )

which can be obtained by solving the optimal allocation problem

within the user set L(W \WC), thus the optimum collusion-resistant pricing strategy

is the solution to the following problem,

max
{pi∈[0,vi], i∈W}

∏
i∈W

(vi − pi),

s.t.
∑

i∈WC

pi ≥ U∗
vL(W\WC )

,∀WC ⊆ W.

(4.5)

When WC = W , the constraint reduces to
∑

i∈W pi ≥ U∗
v−W , which incorporates the

constraint in (4.4) as a special case. There are 2|W | − 1 constraints in total because

each of them corresponds to a subset WC ⊆ W except WC = ∅. From another

perspective, this actually takes into consideration of virtual bidders consisting of

both winners and losers, in contrast to the previous pricing strategy where only
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those consisting of losers are considered.

4.3.3 Interference Matrix Disclosure

So far, our auction mechanism is based on the assumption that the underlying

interference matrix C reflects the true mutual interference relationships between

secondary users. However, since C comes from secondary users’ own reports, it is

quite possible that the selfish users manipulate this information just as what they

may do with their bids. If cheating could help a loser become a winner, or help

a winner pay less, the selfish users would have incentives to do so, which would

compromise the efficiency of the spectrum auction. Also, the cheating behavior may

happen individually or in a collusive way. Therefore, we have to carefully consider

whether they have such an incentive to deviate, and if so, how to fix the potential

problem.

In order to obtain the matrix C, the spectrum broker has to collect information

from secondary users. Secondary users may report their locations in terms of coor-

dinates, and the spectrum broker calculates the matrix according to their distances.

In this way, secondary users do not have much freedom to fake an interference rela-

tionship in favor of themselves. Alternatively, secondary users may directly inform

the spectrum broker about who are their neighbors, and hence they are able to

manipulate the matrix, either by concealing an existing interference relationship or

by fabricating an interference relationship that actually does not exist.

When secondary users have little information about others, they will misrep-
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resent the interference relationships only if they do not get punished, even in the

worst case. Assume user j lies about Cjk. When users j and k do not mutually

interfere, i.e., Cjk = 0, but user j claims Ĉjk = 1, he/she may lose an opportunity

of being a winner since an extra interference constraint is added; on the other hand,

if Cjk = 1 but user j claims Ĉjk = 0, user j may end up winning the band together

with user k, but the band cannot be used at all due to strong interference. In short,

the worst-case analysis suggests secondary users have no incentive to cheat whenever

information is limited.

When secondary users somehow have more information about others, they

may distort the information in a more intelligent way, that is, they can choose when

to cheat and how to cheat. Nevertheless, by investigating whether user j is better off

by misrepresenting Cjk, we show that truth-telling is an equilibrium from which no

individual would have the incentive to deviate unilaterally. We discuss all possible

situations in what follows.

1. Under the condition that user j is supposed to be a loser.

1a. Claim Ĉjk = 1 against the truth Cjk = 0. By doing this, user j actually

introduces an additional interference constraint to himself/herself, but since

user j is already a loser, nothing would change.

1b. Claim Ĉjk = 0 against the truth Cjk = 1. Removing a constraint possibly

helps user j to become a winner, but in the case, user k is also one of the

winners. Then, user j has to pay a band that turns out to be unusable due to

strong mutual interference with user k. This is unacceptable to user j.

2. Under the condition that user j is supposed to be a winner.
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2a. Claim Ĉjk = 0 against the truth Cjk = 1. If user j is the only one among

the winners that has interference with user k, it would take user k into the

winner set, which would in turn make user j suffer from mutual interference.

2b. Claim Ĉjk = 1 against the truth Cjk = 0. If user k is not a winner, doing

this would change nothing. If user k is indeed a winner, user j takes the risk

of throwing himself/herself out of the winner set. Even if user j has enough

information to secure he/she can still be a winner, kicking out user k does not

necessarily make user j pay less.

Similar analysis can be applied to the situation where a group of secondary

users are able to distort the information collusively, and we find that kick-out col-

lusion is the only way that colluders gain an advantage. If channels are symmetric,

i.e., Cjk = Ckj always holds, we can apply the following conservative rule: the spec-

trum broker sets Cjk to 1 only when both users j and k confirm they have mutual

interference. Colluding users cannot unilaterally fabricate an interference relation-

ship to an innocent user who is honest, and they will lose their incentives to cheat

because their efforts are in vain.

4.3.4 Complexity Issues

We have to examine the complexity of the proposed mechanism to see whether

it is scalable when more users are involved in the auction game. Since the fully

collusion-resistant pricing is a convex optimization problem when linear inequality

constraints are known, they can be efficiently solved by numerical methods such as

the interior point method [86]. However, one optimal allocation problem has to be
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solved to find the set of winners W , and another 2|W |−1 problems have to be solved

to obtain U∗
vL(W\WC )

used in the constraints. Unfortunately, the optimal allocation

problem can be seen as the maximal weighted independent set problem [87] in graph

theory, which is known to be NP-complete in general, even for the simplest case with

vi = 1 for all i [82]. As the computational complexity becomes formidable when

the number of users N is large, the proposed auction mechanism seems unscalable.

Therefore, near-optimal approximations with polynomial complexity are of great

interest.

Proposition 8 Define µv = [
√

v1,
√

v2, . . . ,
√

vN ]T , the optimal allocation problem

(4.3) with x∗ as its optimizer is equivalent to the following optimization problem,

Ũ∗
v = max

y

(
µT

vy
)2

,

s.t. yiyj = 0, ∀i, j if Cij = 1,

|y|2 = 1,

(4.6)

whose optimizer y∗ is given by y∗i = c
√

vix
∗
i where c is a normalization constant

such that |y∗|2 = 1.

According to Proposition 8 whose proof can be found in [20], the optimal

allocation is no longer an integer programming problem, but still difficult to solve

because of the non-convex feasible set. To make it numerically solvable in polynomial

time, the SDP relaxation can be applied, which enlarges the feasible set to a cone of

positive semi-definite matrices (which is a convex set) by removing some constraints

[83]. To this end, let S = yyT , i.e., Sij = yiyj. The objective function in (4.6)

becomes µT
vSµv, and the two constraints turn out to be Sij = 0, ∀i, j if Cij = 1
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and tr(S) = 1, respectively. The problem has to be optimized over {S ∈ SN |S =

yyT ,y ∈ MN×1}, or equivalently, {S ∈ SN |S º O, rank(S) = 1}. Discarding the

rank requirement while only keeping the positive semi-definite constraint, we arrive

at the following convex optimization problem,

ϑ(C,v) = max
SºO

µT
vSµv

s.t. tr(S) = 1,

Sij = 0, ∀i, j if Cij = 1,

(4.7)

which is also known as the theta number [88] in graph theory.

With the feasible set enlarged by relaxing a constraint to its necessary condi-

tion, the new optimization problem provides an upper bound to the original one:

if the optimizer S∗ can be decomposed as S∗ = y∗y∗T which means S∗ falls into

the original feasible set, y∗ will be the exact solution to (4.6); otherwise, ϑ(C,v)

is an upper bound that is unattainable. Fortunately, we verify by simulation that

the near-optimal algorithm with relaxation performs well: in our problem setting, it

gives the exact solution most of the time (> 90%), and even for those unattainable

cases, the bound is considerably tight since the average gap is within 5%.

4.3.5 Physical Interference Model

In this subsection, we extend our auction mechanism to the situation where the

physical model is employed to describe mutual interference. Now, the optimal allo-
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cation becomes social welfare maximization under physical interference constraints,

U∗
v = max

x∈{0,1}N

N∑
i=1

vixi,

s.t.
N∑

j=1

αjixj ≤ 0, if xi = 1.

(4.8)

Recall that those α’s have been defined as αii = −1 and αji = βgji/gii, i 6= j,

which basically depend on channel gains. Thus, the optimal allocation remains

much the same except that protocol interference constraints are replaced by physical

interference constraints. Pricing strategies are similar, too.

Nevertheless, the SDP relaxation is a bit difficult because the constraints are

much more complicated than constraints exerted by the protocol model. First, we

replace the constraint “
∑N

j=1 αjixj ≤ 0 if xi = 1” by an equivalent but compact form

xi

(∑N
j=1 αjixj

)
≤ 0, because xi is a binary integer variable. Then, we can apply

similar approaches, i.e., yi = c
√

vixi and Sji = yjyi, and finally get the following

relaxed optimization problem,

max
SºO

µT
vSµv

s.t. tr(S) = 1,

Sji = 0, ∀i, j if αji > 1,

N∑
j=1

αji√
vjvi

Sji ≤ 0, i = 1, 2, . . . , N.

(4.9)

Note that when αji > 1, i.e., user j has strong interference on user i, user i

cannot transmit simultaneously with user j, because if xi = xj = 1, we have

∑N
j=1 αjixj ≥ αjixj+αiixi = αji−1 > 0 which will violate the constraint. Hence, the

corresponding constraint is quite similar to that under the protocol model. More-
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over, compared with (4.7), the SDP relaxation under the physical model (4.9) in-

corporates additional constraints reflecting the accumulation of interference power.

4.4 Multi-Band Multi-Winner Auction

In this section, we study the case when M primary users want to lease their

unused bands or a single primary user divides the band into M sub-bands for lease.

In other words, there are M bands (M > 1) available for secondary users to lease.

Since usually there are a lot of secondary users competing for the spectrum

resources, it is unfair if some users can access several bands while others are starved.

In addition, if each secondary user is equipped with a single radio, the physical

limitation will make it impossible to access several bands simultaneously. Therefore,

we require each user should lease at most one band, and we further assume secondary

users do not care which band they get, i.e., any band’s value is vi to user i.

Extending the one-band auction to a more general multi-band one, we have to

find the counterpart of the auction mechanism including the optimal allocation and

pricing strategies. As there are M sets of winners W 1,W 2, . . . , WM , we define M

vectors x1,x2, . . . ,xM correspondingly, where xm
i = 1 indicates user i wins the mth

band. Including the additional constraint that each user cannot lease more than
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one band, we have the M -band optimal allocation as follows,

U∗
v = max

x1,x2,...,xM

M∑
m=1

N∑
i=1

vix
m
i ,

s.t. xm
i + xm

j ≤ 1, ∀i, j if Cij = 1, ∀m,

M∑
m=1

xm
i ≤ 1, ∀i,

xm
i = 0 or 1, i = 1, 2, . . . , N ; m = 1, 2, . . . , M.

(4.10)

In the multi-band auction, the set of losers becomes L = {1, 2, . . . , N} \
⋃M

j=1 W j instead. Similar to the single-band partially collusion-resistant pricing

strategy, the winners of the mth band have to pay the highest rejected bid from the

losers, and the payment is split according to the NBS equilibrium,

max
{pi∈[0,vi], i∈W m}

∏
i∈W m

(vi − pi),

s.t.
∑

i∈W m

pi = U∗
v−(⋃M

j=1
Wj)

.

(4.11)

The single-band fully collusion-resistant pricing strategy can be generalized too; for

instance, the prices for the mth band are determined by

max
{pi∈[0,vi], i∈W m}

∏
i∈W m

(vi − pi),

s.t.
∑

i∈WC

pi ≥ U∗
vL(Wm\WC )

,∀WC ⊆ Wm.

(4.12)

When M = 1, the two pricing strategies reduce to the single-band case.

It is not difficult to convert the multi-band auction to an equivalent single-band

auction with MN bidders, and the SDP relaxation can be directly applied. However,

Proposition 9 provides a better solution which takes advantage of the symmetric

structure of the problem. As the new optimization problem is optimized over two
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symmetric matrices SD,SF ∈ SN , the total number of degrees of freedom is N(N+1),

which is significantly smaller than that of direct relaxation 1
2
MN(MN+1). Roughly

speaking, degrees of freedom, as an important factor affecting the computational

complexity, are reduced from O(M2N2) to O(N2). The proof of Proposition 9 can

be found in [20].

Proposition 9 The multi-band optimal allocation (4.10) can be relaxed by the fol-

lowing optimization problem,

max
SD,SF

µT
v (SD + (M − 1)SF )µv

s.t. tr(SD) = 1, (SD)ij = 0, ∀i, j if Cij = 1,

(SF )ii = 0, ∀i,

SD º O, SD − SF º O,SD + (M − 1)SF º O.

(4.13)

4.5 Simulation Studies

In this section, we evaluate the performance of the proposed collusion-resistant

multi-winner spectrum auction mechanisms by computer experiments. Consider a

1000×1000 m2 area, in which N secondary users are uniformly distributed. Assume

each secondary user is a cognitive base station with RI-meter coverage radius, and

according to the protocol model, two users at least 2RI meters away can share

the same band without mutual interference. We use two values for RI : RI = 150

for a light-interference network, and RI = 350 for a heavy-interference network.

The valuations of different users {v1, v2, . . . , vN} are assumed to be i.i.d. random

variables uniformly distributed in [20, 30].
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Figure 4.3: Seller’s revenue when different auction mechanisms are employed.

We consider the one-band auction, i.e., M = 1. Fig. 4.3 shows the seller’s

revenue versus the number of secondary users when different auction mechanisms

are employed. The result is averaged over 100 independent runs, in which the loca-

tions and valuations of the N secondary users are generated randomly with uniform

distribution. As shown in the figure, directly applying the second-price scheme

under-utilizes spectrum resources, and the VCG mechanism also suffers from low

revenue. The proposed collusion-resistant methods, however, significantly improve

the primary user’s revenue, e.g., nearly 15% increase compared to the VCG outcome

when RI = 350, and 30% increase when RI = 150. This means the proposed algo-

rithms have better performance when more secondary users are admitted to lease

the band simultaneously.
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Figure 4.4: Normalized collusion gains under different auction mech-
anisms versus the percentage of colluders in a spectrum auction with
N = 20 secondary users.

Moreover, the proposed auction mechanisms can effectively combat user col-

lusion. We use the percentage of the system utility taken away by colluders to

represent the vulnerability to sublease colluding attacks. Fig. 4.4 demonstrates the

results from 100 independent runs. For example, when RI = 150 and there are

20% colluders, colluders may steal away up to 10% of the system utility with the

VCG pricing mechanism, and much more profits could be taken away by colluders

if more secondary users become colluders. To protect the primary user’s benefit,

collusion-resistant mechanisms can be applied. As show in the figure, the partially

collusion-resistant pricing strategy may be not as good as the VCG mechanism on

average under some circumstances because it cannot completely remove sublease col-

lusion, but it makes the worst-case colluding gains drop considerably; for instance,
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when RI = 150 and all users are able to collude, more than half of the system utility

could be taken away if the VCG pricing is used, but only 22% with the partially

collusion-resistant pricing method. The fully collusion-resistant pricing strategy, as

expected, completely eliminates collusion, and hence is an ideal choice when there

is a risk of sublease collusion.

The performance of the near-optimal algorithm is presented in Fig. 4.5. As

shown by the simulation results, the near-optimal algorithm can yield the exact

solution in more than 90% of the total runs. Even for those that the near-optimal

algorithm fails to return the exact solution, it can still yield a tight upper bound

with the average difference less than 5%; to show the robustness of the algorithm,

we further provide the 90% confidence intervals (i.e., the range that 90% of the data

fall in), which show that the gap between the near-optimal solution and the exact

solution is within 10%.

Finally, we show the reduction of complexity in terms of the processing time

when optimization is done in MATLAB. In Fig. 4.6, the processing time of solving

the optimal allocation problem is compared with that of solving the near-optimal

allocation problem in 100 independent runs, when RI = 350 and the number of

users is N =20, 30, and 40, respectively. With N increasing, the time to find the

optimal solution increases dramatically, whereas the time to find an near-optimal

solution using the SDP relaxation only increases slightly. Moreover, the processing

time of the optimal algorithm fluctuates considerably in different realizations, but

the processing time with the SDP relaxation shows small variation.
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Figure 4.5: The percentage of total trials that the near-optimal algo-
rithm yields the exact solution (upper), and the average gap with 90%
confidence intervals between the near-optimal solution and the exact so-
lution for those failed trials (middle and lower, for RI = 150 and 350,
respectively).
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Chapter 5

Anti-Jamming Games in Multi-Channel Cognitive Radio Networks

In previous chapters, we have shown how to apply game-theoretic tools to

suppress the selfish behavior in cognitive radio networks consisting of selfish users.

However, as we pointed out in Chapter 1, security issues are very important to the

deployment of cognitive radio networks which are extremely vulnerable to malicious

attacks. In this chapter, we mainly focus on jamming attacks, one of the major

threats to cognitive radio networks, where several malicious attackers intend to

interrupt the communications of a secondary user by injecting interference. Because

cognitive radio technology enables flexible access to different channels, secondary

users are able to transmit information over multiple channels, and may exploit such

flexibility as a way to hide from attackers. On the other hand, attackers are also

intelligent such that they can come up with efficient attack strategies. Therefore,

this scenario is modeled as a zero-sum anti-jamming game, in which the two players,

namely, secondary users and attackers, have opposite objectives.

There have been quite a few papers on jamming attacks in wireless ad hoc

networks, such as [89] and [90]. A jamming game with transmission costs was

formulated in [89], and the blocking probability was analyzed for different kinds

of attack strategies and defense strategies in [90]. However, the problem becomes

more complicated in a cognitive radio network where primary users’ access has to
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be taken into consideration.

In the context of cognitive radio networks, channel hopping was considered as

a defense strategy in [91] which derived the Nash equilibrium in a one shot game and

applied this equilibrium strategy to a multi-stage game. However, this is different

from our approaches. In our work, we explicitly model transitions in time as Markov

chains, take the cost and damage into account in addition to communication gains,

and further develop a learning process to estimate unknown parameters.

5.1 System Model

We consider the situation where a secondary user (e.g., a base station for a

secondary network) opportunistically accesses the spectrum bands. Assume there

are M licensed channels in total, each licensed channel is time-slotted, and the

access pattern of primary users can be characterized by an ON-OFF model [92]. As

shown in Fig. 5.1, one channel can either be busy (ON) or idle (OFF) in one time

slot, and the state can be switched from ON to OFF (or from OFF to ON) with a

transition probability α (or β). We assume all channels share the same model and

parameters, but different channels are used by different primary users whose accesses

are independent. In order to avoid interference to primary users, a secondary user

has to synchronize with the primary network and detect the presence of the primary

user at the beginning of each time slot. It is only when the primary user is absent

that the secondary user is allowed to access the channel, which is also known as the

“listen-before-talk” rule. Meanwhile, there are m malicious attackers intending to

108



Figure 5.1: An ON-OFF model for primary users’ spectrum usage.

jam the secondary user’s communications, and they coordinate with each other to

maximize the damage.

With attackers jamming interference into spectrum bands, it is possible that

the signal-to-interference-and-noise ratio (SINR) at the secondary user’s receiver

will be dragged down, and when the SINR drops below a certain threshold β, the

communication fails (e.g., packets cannot be decoded correctly). We assume that a

secondary user has a power constraint pB, and an attacker has a power constraint iB.

All channel gains are assumed to be 1 because they can be absorbed into the power

constraint term. Furthermore, it is of interest to consider the case that the attacker

is stronger than the secondary user, and we limit ourselves to the case pB ≤ βiB.

For example, when both users allocate all power to the same band, the secondary

user always fails to communicate due to the poor SINR pB/(iB + σ2) < β.

In different application scenarios, secondary users may have different capabili-

ties. For example, a secondary user may be equipped with a single radio or multiple

radios. Attackers are assumed to be comparable with the secondary user, that is,

equipped with a single radio in the first case, and with multiple radios in the sec-
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ond case. In order to improve throughput, in the single-radio case, it is best for

the secondary user to pour all power to a single band, and channel hopping is the

defense strategy. For the multi-radio case, the secondary user could allocate power

to several bands, and the defense can be fortified via optimal power allocation. In

this attack-and-defense game, attack and defense should be randomized; otherwise,

a fixed pattern of one player will be taken advantage of by the other player.

5.2 Channel Hopping Anti-Jamming Games

When the secondary user is equipped with a single radio, he/she can only sense

and access one channel at one time slot, and could hop among multiple channels

to make it difficult for attackers to find. Meanwhile, attackers search over multiple

channels in order to catch and jam the secondary user.

5.2.1 Game Formation

A secondary user receives a communication gain R whenever there is a suc-

cessful transmission. The cost associated with channel hopping is denoted by C,

and a significant loss L is occurred when jammed, since normal communication is

interrupted and considerable effort is needed to reestablish the link. At the end of

each time slot, the secondary user decides either to stay or to hop for the next time

slot, based on the observation of the current and past slots. The secondary user

receives an immediate payoff U(n) in the nth time slot, which is the communication

gain minus the cost and damage. Because an employed strategy not only affects the
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current state but also has impact on the future, the payoff of this game U , which

the secondary user wants to maximize but malicious attackers want to minimize, is

a δ-discounted sum of payoffs,

U =
∞∑

n=1

δnU(n). (5.1)

For this game, it is desirable to know what could be possible attack strategies

and what should be the optimal defense strategy. However, an attack-and-defense

problem is often like an arms race: when an attacker updates the attack strategy,

it is possible for the defender to come up with a new defense strategy that best

defeats the new attack strategy, and vice versa. We focus on the “first round”, that

is, what is the best attack strategy when there is no defense at all, and then what

is the optimal defense strategy against such an attack strategy.

Without considering the jamming threats, the secondary user tends to stay

in a fallow licensed channel as long as possible until the primary user reappears,

in order to avoid the hopping cost. Then, from attackers’ perspective, they want

to find and jam the secondary user as soon as possible. It is inefficient if several

malicious attackers tune their radios to the same channel to detect the secondary

user, and they should coordinate not to overlap, detecting m channels in each time

slot. A random scanning attack strategy performs best to find the secondary user

remaining in an unknown channel, that is, attackers coordinately tune their radios

randomly to m undetected channels in each time slot, until this process starts over

when either all channels have been sensed or the secondary user has been found

and jammed. Since attackers start a new random scanning cycle after a successful
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jamming, the secondary user has no clue about which channel will be detected by

attackers next.

We assume attackers stick to this random scanning strategy and derive the

optimal strategy that a secondary user should adopt. In the presence of attackers,

the longer the secondary user stays in a channel, the higher the risk of exposure to

attackers. As a result, proactive hopping to another channel may help to hide from

attackers. With the random scanning attack strategy, the anti-jamming game boils

down to a Markov decision process (MDP).

5.2.2 Markov Models

At the end of the nth time slot, the secondary user observes the state of the

current time slot Sn, and chooses an action an, that is, whether to tune the radio to a

new channel or not, which takes effect at the beginning of the next time slot. To set

a clear distinction, states are denoted by upper-case letters while actions are denoted

by lower-case letters. If the primary user occupied the channel or the secondary user

was jammed in the nth time slot, denoted by Sn = P and Sn = J , respectively, the

secondary user has to hop to a new channel, i.e., an = h; otherwise, the secondary

user has transmitted a packet successfully in the time slot, and possible actions are

‘to hop’ (an = h) and ‘to stay’ (an = s). If this is the Kth consecutive slot with

successful transmission in the same channel, the state is denoted by Sn = K. For

brevity, we will drop the time index n wherever there is no room for ambiguity. The
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(a) Transition of states when taking the action
‘hop’.

(b) Transition of states when taking the action
‘stay’.

Figure 5.2: Markov chains of state transitions when different actions are taken.

immediate payoff function depends on both the state and the action, i.e.,

U (S, a) =





R, if S ∈ {1, 2, 3, . . . , }, a = s;

R− C, if S ∈ {1, 2, 3, . . . , }, a = h;

−L− C, if S = J ;

−C, if S = P.

(5.2)

The transition of states can be described by Markov chains, as shown in

Fig. 5.2, where transition probabilities depend on which action has been taken.

Hence, we use p(S ′|S, h) and p(S ′|S, s) to represent the transition probability from

an old state S to a new state S ′ when taking action h and action s, respectively.

If the secondary user hops to a new channel, transition probabilities do not

depend on the old state, and furthermore, the only possible new states are P (the

new channel is occupied by the primary user), J (transmission in the new channel is

detected by an attacker), and 1 (successful transmission begins in the new channel).

When the total number of channels M is large, i.e., M À 1, we can assume that the

probability of primary user’s presence in the new channel equals the steady-state

probability of the ON-OFF model in Fig. 5.1, neglecting the case that the secondary
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user hops back to some channel in very short time, and we have

p(P |S, h) =
β

α + β

4
= γ, ∀S ∈ {P, J, 1, 2, 3, . . . , }. (5.3)

Provided that the new channel is available, the secondary user will be jammed with

the probability m/M , since each attacker detects one channel without overlapping.

As a result, transition probabilities are

p(J |S, h) = (1− γ)
m

M
, ∀S ∈ {P, J, 1, 2, 3, . . . , };

p(1|S, h) = (1− γ)
M −m

M
, ∀S ∈ {P, J, 1, 2, 3, . . . , }.

(5.4)

On the other hand, if the secondary user stays in the same channel, the primary

user may reclaim the channel with probability β given by the ON-OFF model. With

the primary user absent, the state will go to J if the transmission is jammed, and

will increase by 1 otherwise. Note that s is not a feasible action when the state

is in J or P . At state K, only max(M −Km, 0) channels have yet been detected

by attackers, but another m channels will be detected in the upcoming time slot;

therefore, the probability of jamming conditioned on the absence of a primary user

is given by

fJ(K) =





m
M−Km

, if K < M
m
− 1;

1, otherwise.

(5.5)

To sum up, transition probabilities associated with action s are as follows: ∀K ∈

{1, 2, 3, . . .},

p(P |K, s) = β,

p(J |K, s) = (1− β)fJ(K),

p(K + 1|K, s) = (1− β)(1− fJ(K)).

(5.6)
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5.2.3 Markov Decision Process

If the secondary user stays in the same channel for too long, he/she will

eventually be found by an attacker, as it can be seen from (5.5) and (5.6) that

p(K + 1|K, s) = 0 if K > M/m− 1. Therefore, we can limit the state S to a finite

set {P, J, 1, 2, 3, . . . , K̄}, where K̄ = bM/m− 1c and the floor function bxc returns

the largest integer not greater than x.

An MDP consists of four important components, namely, a finite set of states,

a finite set of actions, transition probabilities, and immediate payoffs. As we have

already specified all of them, the defense problem is modeled by an MDP, and the

optimal defense strategy can be obtained by solving the MDP.

For an MDP, a policy is defined as a mapping from a state to an action, i.e.,

π : Sn → an. In other words, a policy π specifies an action π(S) to take whenever

the user is in state S. Among all possible policies, the optimal policy is the one that

maximizes the expected total discounted payoffs. The value of a state S is defined

as the highest expected payoff given the MDP starts from state S, i.e.,

V ∗(S) = max
π

E

( ∞∑
n=1

δnU(n)

∣∣∣∣S1 = S

)
, (5.7)

where the optimal policy is the optimizer π∗. It is also the optimal defense strategy

that the secondary user should adopt since it maximizes the expected payoff. For

example, when the secondary user observes the state is S, the action π∗(S) should

be taken in order to maximize the payoff.

An important but straightforward idea is that after a first move the remaining

part of an optimal policy should still be optimal. Hence, the first move should
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maximize the sum of immediate payoff and expected payoff conditioned on the

current action. This is the well-known Bellman equation [69],

Q(S, a) = U(S, a) + δ
∑

S′
p(S ′|S, a)V ∗(S ′),

V ∗(S) = max
a∈{h,s}

Q(S, a).

(5.8)

The values of states can be calculated from a standard procedure called value itera-

tion [69], which updates the value of every state iteratively according to the Bellman

equation, and this iteration is guaranteed to converge to the true value of states.

The specific algorithm is summarized in Table 5.1. After obtaining these values, the

optimal policy π∗(S) is the maximizer to the Bellman equation (5.8).

Table 5.1: Value iteration of the MDP.

Initialize V (S) arbitrarily. Set a small ε as the stopping criterion.
For n = 1, 2, 3, . . .

For every state S ∈ {P, J, 1, 2, 3, . . . , K̄}
Q(S, a) = U(S, a) + δ

∑
S′ p(S ′|S, a)Vn(S ′), a ∈ {s, h}

Vn+1(S) = max (Q(S, h), Q(S, s)) .
End For
If |Vn+1(S)− Vn(S)| < ε for all states

The outer loop is terminated.
End if

End For
Return Vn(S) as the value of states.

As seen from (5.3) and (5.4), the transition probabilities associated with action

h are independent of the old state. Thanks to the special feature of the MDP, its

solution has a simple structure stated in Proposition 10.

Proposition 10 The optimal policy can be characterized by a single number K∗ ∈
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{0, 1, . . . , K̄}, i.e.,

a∗ = π∗(S) =





s, if S ≤ K∗;

h, otherwise.

(5.9)

Proof : Using transition probabilities (5.3) (5.4) and the definition of Q(S, a)

in (5.8), it is easy to show that Q(1, h) = Q(2, h) = · · · = Q(K̄, h)
4
= Q, and

Q(J, h) = Q−R− L, Q(P, h) = Q−R. Since h is the only action for states J and

P , we have V ∗(J) = Q(J, h) and V ∗(P ) = Q(P, h).

According to (5.6) and (5.8), Q(K̄, s) − Q(K̄ − 1, s) = δ(1 − β)(1 − fJ(K̄ −

1))(V ∗(J) − V ∗(K̄)). Notice that V ∗(K̄) = max(Q(K̄, h), Q(K̄, s)) ≥ Q(K̄, h) =

Q > V ∗(J), and all the other factors are positive. Hence, Q(K̄, s) < Q(K̄−1, s) and

V ∗(K̄) = max(Q(K̄, h), Q(K̄, s)) ≤ max(Q(K̄ − 1, h), Q(K̄ − 1, s)) = V ∗(K̄ − 1).

Similarly, we can show Q(K̄ − 1, s) − Q(K̄ − 2, s) = δ(1 − β)[(fJ(K̄ − 1) −

fJ(K̄ − 2))(V ∗(J)− V ∗(K̄ − 1)) + (1− fJ(K̄ − 1))(V ∗(K̄)− V ∗(K̄ − 1))] < 0, and

V ∗(K̄−1) ≤ V ∗(K̄−2) follows. The process can go all the way up to K = 1, leading

to a conclusion that Q(K, s) is a strictly decreasing function of K ∈ {1, 2, . . . , K̄}.

Notice that the optimal action at state K is s if Q(K, s) ≥ Q(K,h), and h

if Q(K, s) < Q(K,h). Since Q(K, s) is decreasing and Q(K, h) is a constant Q,

there must exist a K∗ ∈ {1, 2, . . . , K̄ − 1} such that Q(K∗, s) ≥ Q > Q(K∗ + 1, s)

except two extreme cases. One is Q(K̄, s) ≥ Q where K∗ = K̄, and the other is

Q(1, s) < Q where we can simply set K∗ = 0 in (5.9). This concludes the proof.

Intuitively, since the probability of being jammed increases when the secondary

user stays in the same channel for a longer time, K∗ will be the critical state beyond

which the damage overwhelms the hopping cost. If the secondary user stays in the
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same channel for a short period (≤ K∗ time slots), he/she should stay to exploit

more; otherwise, he/she should proactively hop to another channel since the risk

of being jammed becomes significant. The exact value of K∗, however, has to be

solved using the approach in Table 5.1.

5.2.4 The Learning Process

The MDP-based optimal strategy requires perfect knowledge. However, in

practice, the information is generally not directly available, since the secondary

user cannot expect reliable information from adversaries. Both overestimating and

underestimating the threat may result in inappropriate degrees of protection. In

the following, we propose two learning schemes for the secondary user to learn from

environment, the maximum likelihood estimation (MLE) and Q-learning [93].

For the MLE-based learning, the secondary user has to first go through a

learning process to obtain estimates of the parameters, such as the number of at-

tackers m. After the learning period, the secondary user gains knowledge of the

environment, and updates the critical state K∗ accordingly. During the learning

period, the secondary user simply sets a value K̂∗ as an initial guess of the optimal

critical state K∗, and follows the strategy (5.9) with K̂∗. This guess needs not to

be accurate, as the goal is merely to observe transitions during the learning period

that can be used for estimation of parameters.

With full history available including states and actions, the secondary user

is able to count the occurrences of transitions given either action. For example,
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the notation N
(h)
S,S′ gives the total number of transitions from S to S ′ with action

h taken, whereas N
(s)
S,S′ is the total number of transitions with action s taken. We

define KL
4
= max{K : N

(s)
K,K+1 > 0}, H 4

= {P, J,KL + 1}, and S 4
= {1, 2, . . . , KL}.

Given the sequence of transitions in history, the likelihood that such a sequence has

occurred can be written as a product over all feasible transition tuples (S, a, S ′) ∈

{P, J, 1, 2, 3, . . . , KL + 1} × {s, h} × {P, J, 1, 2, 3, . . . , KL + 1},

Λ =
∏

(S,a,S′) : p(S′|S,a)>0

(p(S ′|S, a))
N

(a)

S,S′ . (5.10)

Moreover, if we define ρ
4
= m/M and relax it to any real number, Proposition

11 gives the MLE of the parameters β, γ, and ρ. After the learning period, the

secondary user rounds M · ρML to the nearest integer as an estimate of m, and

calculate the optimal strategy using the MDP approach.

Proposition 11 Given N
(h)
S,S′ , S ∈ H and N

(s)
S,S′ , S ∈ S counted from history of

transitions, the MLE of primary users’ parameters are

βML =

∑
K∈SN

(s)
K,P∑

K∈S
(
N

(s)
K,P + N

(s)
K,J + N

(s)
K,K+1

) , (5.11)

γML =

∑
S∈HN

(h)
S,P∑

S∈H
(
N

(h)
S,P + N

(h)
S,J + N

(h)
S,1

) , (5.12)

and the MLE of attackers’ parameters ρML is the unique root within an interval

(0, 1/(KL + 1)) of the following (KL + 1)-order polynomial of ρ,

1

ρ

(∑

S∈H
N

(h)
S,J +

∑

K∈S
N

(s)
K,J

)
=

∑

K∈S

N
(s)
K,P

1
K
− ρ

+
N

(s)
KL,KL+1

1
KL+1

− ρ
. (5.13)

The outline of proof is as follows. First, we show that the likelihood of the

observed sequence of transitions can be decoupled into a product of three terms,
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and each term only contains one unknown parameter. By taking derivative of their

logarithms, we obtain the closed-form solution in the Proposition. Finally, we have

to show that out of multiple roots of (5.13), there is a unique one in the feasible

interval that guarantees a positive likelihood. Details can be found in [21].

An alternative approach is to learn the optimal policy without explicitly know-

ing the model, which is known as Q-learning in the reinforcement learning literature.

The intuition behind Q-learning is to approximate the unknown transition proba-

bility in (5.8) by the empirical distribution of states that have been reached as the

game unfolds. Specifically, (5.8) is replaced by an iterative process

Qn(S, a) = (1−µn)Qn−1(S, a) + µn(U(S, a)+δVn(S ′)),

Vn+1(S) = max
a∈{h,s}

Qn(S, a),

(5.14)

where the Q-value of a state-action pair (S, a) is updated based on the observed

new state S ′, the frequency of which represents the empirical distribution of the

transition from state S with action a. µn is the learning rate decreasing in time,

and we set

µn =
1

1 + number of updates for Q(S, a)
, (5.15)

which results in a proved convergence.

Proposition 12 Q-learning converges to the optimal policy with probability 1, pro-

vided that each state-action pair is encountered infinitively, and the learning rate

obeys 0 ≤ µn < 1,
∑+∞

n=1 µn = ∞, and
∑+∞

n=1 µ2
n < ∞.

One may choose an = π(Sn), but the problem is π(S) during learning may

not be the true optimal policy, and always following an = π(Sn) may enhance the

120



false impression and prevent the truth from being discovered. Thus, the secondary

user should deviate from π(Sn) with a small probability η to exploit the state-action

pairs that have been rarely visited.

5.3 Power Allocation Anti-Jamming Games

In this section, we extend the anti-jamming game to the scenario where a

secondary user is equipped with multiple radios and is able to access all the available

channels simultaneously with a limited power budget. Each attacker is also assumed

to be able to inject interference to all channels, and thus all attackers can be viewed

as a single attacker whose power budget is the sum of individual budgets.

5.3.1 Game Reformulation

In this case, the defense strategy is not to hop between channels, but to ran-

domly allocate power in different channels. Whether the attackers can successfully

jam communications in one particular channel will depend on how much power

the secondary user and attackers allocate on that channel. Therefore, we have to

redefine the game to reflect the changes.

The secondary user still adopts the “listen-before-talk” rule, that is, sensing for

spectrum opportunities at the beginning of a time slot. Recall that transmitters have

power constraints. On finding M0 available channels out of the M total channels, the

secondary user allocates power pk to the kth available channel such that
∑M0

k=1 pk =

pB. At the same time, the attacker injects ik to the kth available channel such
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that
∑M0

k=1 ik = iB. The power allocation vectors p = (p1, p2, . . . , pM0) and i =

(i1, i2, . . . , iM0) are actions. If the received SINR exceeds the minimum requirement

β, i.e.,

pk

ik + σ2
k

≥ β, (5.16)

packets can be transmitted successfully on that channel. σ2
k is the noise variance of

channel k, which we assume is the same for all channels, i.e., σ2
k = σ2. Because each

successful transmission yields a communication gain R, the secondary user’s payoff

is defined as the number of successful transmissions, i.e.,

U(p, i) =

M0∑

k=1

1

(
pk

ik + σ2
≥ β

)
, (5.17)

where 1(·) is the indicator function. Attackers’ payoff is the opposite. In order to

hide the allocation strategy from attackers, the secondary user has to randomize

the power allocation, and the strategy is characterized by a probability distribution

function F (p). Similarly, attackers will employ a random strategy characterized by

H(i). The expected payoff is to average (5.17) over the distribution of F (p) and

H(i), i.e., Ū(F (p), H(i)) =
∫∫

U(p, i) dF (p) dH(i).

Different from the single-radio case, we do not need to consider the arms race

in this multi-radio case. Assuming perfect knowledge, we are able to derive the Nash

equilibrium of this game, which is the best response given the other player sticks

to the equilibrium strategy. Furthermore, since it is a zero-sum game, the Nash

equilibrium (F ∗(p), H∗(i)) also provides the minimax strategy [13] such that F ∗(p)

is a maximizer to minH Ū(F (p), H(i)). This property is of great interest. If capable

of learning the secondary user’s strategy F (p), attackers can always come up with
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a strategy H(i) tailored to F (p), which minimizes the secondary user’s expected

payoff and maximizes the damage. Therefore, the secondary user should choose the

strategy F ∗(p) to maximize the worst-case expected payoff.

To simplify the game, we define jk = β(ik +σ2) with the constraint
∑M0

k=1 jk =

β(iB + M0σ
2)

4
= jB. Then, the condition of a successful transmission becomes pk ≥

jk. This game falls into the category of Colonel Blotto games where two opponents

distribute limited resources over a number of battlefields with a payoff equal to the

sum of outcomes from individual battlefields [94]. However, the difference is that

jk has to be lower bounded by βσ2, since attackers only have control over the ik

part. In this new game, the attackers’ strategy is also given by a joint distribution

function, denoted by G(j).

5.3.2 Nash Equilibrium

We first derive the necessary condition of the Nash equilibrium (NE) in terms of

marginal distribution functions F1(p1), F2(p2), . . . , FM0(pM0), G1(j1), . . . , GM0(jM0).

Notice that the probability of a successful transmission is Pr(pk ≥ jk) = Gk(pk),

and the payoff of the secondary user is
∑M0

k=1 Gk(pk) when he/she fixes the power

allocation as (p1, p2, . . . , pM0). When the player employs a randomized strategy, the

expected payoff becomes
M0∑

k=1

∫ ∞

0

Gk(pk)dFk(pk), (5.18)

and the necessary condition of the total power constraint becomes

pB = E

(
M0∑

k=1

pk

)
=

M0∑

k=1

∫ ∞

0

pkdFk(pk). (5.19)
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If we introduce a Lagrangian multiplier λP , the optimization problem of the sec-

ondary user can be formulated as

max
{Fk(pk)}

M0∑

k=1

∫ ∞

0

(Gk(pk)− λP pk) dFk(pk) + λP pB. (5.20)

Similarly, we can derive the optimization problem for attackers who attempt

to maximize
∑M0

k=1 1(pk < jk). As shown later in Proposition 13, at the equilibrium

the amount of power allocated in the kth channel pk is a random variable with a

discrete part at 0 and a continuous part elsewhere. Hence, the event pk = jk happens

with probability 0, and Pr(pk < jk) = Pr(pk ≤ jk) = Fk(jk). Therefore, from the

attackers’ point of view, the optimization problem is

max
{Gk(jk)}

M0∑

k=1

∫ ∞

βσ2

(Fk(jk)− λJjk) dGk(jk) + λJjB, (5.21)

where λJ is the Lagrangian multiplier for attackers.

For the secondary user, he/she can either decide not to access channel k (i.e.,

pk = 0) or decide to access that channel with some power lower bounded by p
k

and upper bounded by p̄k (i.e., pk ∈ [p
k
, p̄k]). Apparently, p

k
≥ βσ2, because if pk

is chosen in the open interval (0, βσ2), the secondary user will always fail in that

channel, and it is better not to allocate power at all. When the equilibrium strategy

is a mixed strategy over the domain 0∪ [p
k
, p̄k], according to game theory, the player

must be indifferent among these values [13], namely, Gk(pk)− λP pk = constant for

p ∈ 0 ∪ [p
k
, p̄k]. In particular, since Gk(0) = 0, we can further have

Gk(pk)− λP pk = 0, for pk ∈ 0 ∪ [p
k
, p̄k]. (5.22)

The similar argument can be applied to attackers who allocate power jk ∈ [j
k
, j̄k]
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and has to be indifferent among the values, namely,

Fk(jk)− λJjk = constant, for jk ∈ [j
k
, j̄k]. (5.23)

Proposition 13 For the NE strategy, bounds are determined as p̄k = j̄k = min( 1
λP

, 1
λJ

),

and p
k

= j
k

= βσ2. Moreover, Pr(jk = βσ2) = λP βσ2, and Pr(pk = βσ2) = 0; the

probability distribution function Fk(pk) is continuous in the range (βσ2, p̄k], and so

is Gk(jk).

Proof : According to the definition of the NE, no single player can be better

off by deviating unilaterally from the NE strategy. In what follows, we give a proof

mainly by contradiction.

From optimization problems (5.20) and (5.21), it is clear that pk ≤ 1/λP and

jk ≤ 1/λJ have to be satisfied to avoid negative payoffs. p̄k = j̄k can be proved

by contradiction. If p̄k 6= j̄k, say p̄k < j̄k, attackers are better off by moving j̄k to

(p̄k + j̄k)/2, as Fk(j̄k) − λJ j̄k = 1 − λJ j̄k < 1 − λJ(p̄k + j̄k)/2 = Fk ((p̄k + j̄k)/2) −

λJ(p̄k + j̄k)/2. The analysis is similar for the case p̄k > j̄k.

Next, we prove p
k

= j
k

by contradiction. If p
k
6= j

k
, say p

k
< j

k
, the secondary

user is better off by moving (p
k

+ j
k
)/2 to p

k
, since power can be saved without

affecting the winning probability. The analysis is similar for the case p
k

> j
k
.

According to (5.22), Pr(jk = j
k
) = G(j

k
) = λP j

k
. Because pk ≥ j

k
always holds

for pk ∈ [p
k
, p̄k], by contradiction, if j

k
> βσ2, attackers will be better off by moving

j
k

to βσ2. Therefore, p
k

= j
k

= βσ2, and Pr(jk = βσ2) = λP βσ2.

Then, if Pr(pk = βσ2) > 0, attackers can change the probability mass from

βσ2 to βσ2 + ε where ε is an arbitrary small number, and can increase the jamming
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probability by λP βσ2 · Pr(pk = βσ2) with only negligible power increase. This

cannot be an NE, and as a result, Pr(pk = βσ2) = 0.

Finally, we show that Fk(pk) cannot have discontinuous points in the interval

(βσ2, p̄k]. By contradiction, assume there is at least one discontinuous point, denoted

by po, and thus Pr(pk = po) > 0. Then, attackers can move the neighborhood

(po−ε, po) to (po, po+ε) to increase the jamming probability by Pr(pk = po)·Pr(jk ∈

(po−ε, po)) with only negligible power increase when ε is an arbitrary small number.

Similar arguments can be made to prove Gk(jk) cannot have discontinuous points

in the interval (βσ2, j̄k] either. This concludes the proof.

Based on Proposition 13 and necessary conditions (5.22)(5.23), in Proposition

14, we derive the marginal distribution of the NE.

Proposition 14 Under the condition pB ≤ βiB, there exists a unique Nash equi-

librium whose marginal distributions for the secondary user and attackers are given

by

F ∗
k (pk) =





0, pk < 0,

1− λJ/λP + λJβσ2, pk ∈ [0, βσ2),

1− λJ/λP + λJpk, pk ∈ [βσ2, 1/λP ],

(5.24)

and

H∗
k(ik) =





0, ik < 0,

λP β(σ2 + ik), ik ∈ [0, 1/(βλP )− σ2],

(5.25)

where λJ = M0p
B/((jB)2 − β2M0

2σ4 + jB
√

(jB)2 − β2M0
2σ4) and λP = M0/(j

B +

√
(jB)2 − β2M0

2σ4).

Proof : Define p̄k = j̄k = min(1/λP , 1/λJ)
4
= p̄ which is independent on k. Ac-
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cording to Proposition 13, Fk(pk) is continuous in the interval [βσ2, p̄], and therefore,

we can take the derivative of (5.23)

dFk(x) = λJdx, x ∈ [βσ2, p̄], (5.26)

and substitute it to the power constraint (5.19),

pB =

M0∑

k=1

∫ p̄

0

pkdFk(pk)=M0

∫ p̄

βσ2

λJpkdpk =
M0

2
λJ(p̄2 − β2σ4). (5.27)

Similar derivation can be applied to attackers’ power constraint except that Gk(jk)

is discontinuous at jk = βσ2,

jB = M0

(
βσ2(λP βσ2) +

1

2
λP (p̄2 − β2σ4)

)
. (5.28)

If 1/λP ≤ 1/λJ , then p̄ = 1/λP and (5.28) becomes a quadratic equation of

the variable 1/λP , two roots of which are given by

(
1

λP

)

1,2

=
1

M0

(
jB ±

√
(jB)2 − β2M0

2σ4

)
. (5.29)

However, only the root with the plus sign is valid since the other root is smaller

than βσ2. Then, 1/λJ can be solved from (5.27) accordingly,

1

λJ

=
(jB)2 − β2M0

2σ4 + jB
√

(jB)2 − β2M0
2σ4

M0pB
. (5.30)

When the condition pB ≤ βiB holds, it is easy to verify that 1/λP ≤ 1/λJ .

The pair of Lagrangian multipliers have been uniquely determined by (5.29)

and (5.30). Since at least one mixed-strategy NE exists in a game [13], we can

safely draw a conclusion that this characterizes the unique NE in the anti-jamming

game. With parameters known, it is straightforward to write down the marginal
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distribution. For instance, according to (5.22),

Gk(jk) =





0, jk < βσ2,

λP jk, jk ∈ [βσ2, 1/λP ],

(5.31)

which can be further mapped back to the original domain Hk(ik) (5.25) using jk =

β(ik + σ2). Similarly, marginal distribution Fk(pk) given by (5.24) can be derived

from (5.26).

So far, we have known the existence of the NE and the formula of marginal

distribution functions; however, it still remains a question to find the specific NE

strategy determined by the joint probability distribution function. We have followed

the procedure in [94] to construct one kind of joint distribution that matches desired

marginal distribution and meets the total power restriction. With this procedure,

we can finally characterize the NE strategy for the anti-jamming game.

5.4 Simulation Studies

In this section, we present some simulation results to evaluate the proposed

defense strategies against jamming attacks. We first consider the scenario with

the single-radio secondary user, whose defense strategy is proactive hopping among

multiple channels. In the simulation, we fix a set of parameters to gain some insight

of the defense strategy. The parameters are as follows: the communication gain

R = 5, the hopping cost C = 1, the total number of channels M = 60, the discount

factor δ = 0.95, and the primary users’ access pattern β = 0.01, γ = 0.1.

We show the critical state K∗ obtained from the value iteration of the MDP,
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Figure 5.3: The critical state K∗ with different attack strengths and damages.

when we change the value of damage L and the number of attackers m. We assume

that the secondary user has perfect knowledge of the environment. As shown in

Fig. 5.3, if the damage from each jamming L is fixed, say L = 10 for example, the

critical state K∗ decreases from 11 to 3 when the number of attackers m increases

from 2 to 6. Similarly, when the number of attackers m is fixed, the critical state

K∗ also decreases as the value of L increases. The reason is that the secondary

user should proactively hop more frequently (i.e., K∗ is smaller) to avoid being

jammed when the threat from attackers are more stronger (more attackers and/or

more severe damage if jammed).

In Fig. 5.4, we present the damage caused by attackers when the number of

attackers varies, in terms of percentages of payoff loss compared with a network
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without malicious attackers. The damage L is set to 20 in this simulation. Besides

the optimal strategy (5.9), another two naive strategies are simulated and compared.

We first consider the case where attackers stick to the “random scanning” attack

strategy, against which the defense strategy has been derived using the MDP ap-

proach. If the “always hopping” strategy is employed, the secondary user will hop

every time slot; if the “staying whenever possible” strategy is adopted, the secondary

user will always stay in the channel unless the primary user reclaims the channel

or the channel is jammed by attackers. When the number of attackers is small, it

is better to stay than to hop, but when the number of attackers is large, hopping

outperforms staying. The optimal strategy, however, beats both naive strategies in

the entire range, as shown by the smaller decrease in payoffs in the figure.

Moreover, we want to show how the defense strategy performs if attackers

adopt other strategies. One possible strategy for attackers is to randomly select

m bands to detect but the selection is independent from slot to slot. This differs

from the random scanning strategy in which the selection of channels depends on

the past, and we refer to this strategy as “random jamming”. In Fig. 5.4, the per-

centage of payoff decrease is also provided for the three defense strategies and the

“random jamming” attack strategy. It can be seen that for all three defense strate-

gies considered, attackers will prefer the random scanning strategy which results in

more damage to the secondary user, and the difference becomes significant when

the secondary user tends to remain in the same band. From the secondary user’s

perspective, although the “staying whenever possible” strategy slightly outperforms

the MDP strategy when attackers adopt the random jamming strategy, the MDP
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Figure 5.4: The percentage of payoff decrease due to jamming attacks
with different numbers of attackers.

strategy should be used because it suffers from smaller worst-case damage.

We evaluate the MLE learning algorithm by showing the variance of estimation

errors MρML − m from 100 independent simulation runs with certain lengths of

learning period. The learning curves are plotted in the upper figure of Fig. 5.5. As

the learning period lengthens, the variance decreases which means a more accurate

estimate. The accuracy degrades slightly when there are more attackers in the

network. Recall that the last step of learning is rounding MρML to the nearest

integer, which could further reduce the estimation errors. In the lower figure of

Fig. 5.5, we show the percentage of trials that the estimated number of attackers is

exactly the true value. From the figure, we can see the percentage of exact estimation
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Figure 5.5: Learning curves of the MLE learning process.

grows fast and approaches to one hundred percent with increasing learning periods.

The anti-jamming game with the multi-radio secondary user who employs

randomized power allocation strategy is also presented. In order to show that for

the secondary user, the NE strategy is a minimax strategy such that the worst

possible damage is minimized, we have run simulations with two other possible

strategies considered: one decides the number of channels to access according to

the NE strategy but allocates power equally, and the other allocates power based

on a naive assumption that the jammer would inject equal interference to each

channel. They are referred to as “NE-referred equal power allocation” and “naive

power allocation”, respectively. Fig. 5.6 provides the average number of channels

that meet the SINR requirement when the secondary user adopts these strategies.
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Figure 5.6: The average number of channels that meet the SINR require-
ment when different strategies are adopted by the secondary user.

When attackers are more powerful with a higher interference budget iB, fewer usable

channels can be expected for all three strategies. However, it is clear that the NE

strategy performs much better than the other two strategies, and the secondary user

has to choose it as the optimal power allocation strategy against malicious jamming

attacks.
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Chapter 6

An Information Secrecy Game in Cognitive Radio Networks

In the previous chapter, we discussed one particular threat from malicious users

— the jamming attack, and developed a game-theoretic framework for jamming

mitigation. As there are various kinds of attacks, in this chapter, we consider

one primary-user-oriented attack — a passive but intelligent eavesdropper [95] who

knows all channel state information (CSI) and codebooks. This malicious attacker

eavesdrops upon the communications of primary users and attempts to decode some

confidential messages.

In face of security threats, primary users may seek help from trustworthy sec-

ondary users, if such cooperation could potentially improve the secrecy level; in

return, secondary users are granted spectrum opportunities for their own transmis-

sion. In order to know the maximal data rate that can be adopted by primary

users without leaking any confidential information to the eavesdropper, we will in-

vestigate the information theoretic secrecy [96] in this cooperative cognitive radio

network with an eavesdropper.

The concept of information theoretic secrecy dates back to Wyner’s seminal

paper [96]. In that work, the secrecy capacity of a wire-tap channel was studied,

where a single source-destination communication was eavesdropped on via a de-

graded channel, that is, when the eavesdropper observed a degraded version of the
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signal received by the intended receiver. Later, this formulation was generalized to

non-degraded broadcast channels with confidential information in [97], and Gaus-

sian wire-tap channels were completely understood in [98]. Assume the transmitter

encoded a confidential message w into a codeword xn for broadcasting, and the in-

tended receiver and the eavesdropper received noisy versions yn and zn, respectively.

The level of ignorance that the eavesdropper had with respect to w given observa-

tion zn, i.e., the conditional entropy 1
n
h(w|zn), was defined as the equivocation rate.

When the equivocation rate was (asymptotically) equal to the information rate of

the message w, the eavesdropper hardly knew anything about the message, and this

was known as perfect secrecy. Just like the definition of channel capacity, a rate

was achievable if there existed a coding scheme guaranteeing an arbitrarily small

error probability for sufficiently long codewords, and the secrecy capacity was the

maximum achievable rate with perfect secrecy. For Gaussian wire-tap channels,

the secrecy capacity was the difference of mutual information of two channels, i.e.,

CS = max{I(X; Y ) − I(X; Z), 0}, and stochastic encoding could achieve perfect

secrecy [98].

Building on these fundamental ideas, information theoretic secrecy has gained

a renewed research interest in recent years, thanks to fast developing wireless com-

munications technologies. In this chapter, we study the information theoretic secrecy

in a cognitive radio network. We model and analyze the achievable secrecy for a

primary user, when secondary users potentially help to defeat eavesdropping while

acquiring spectrum opportunities. Moreover, we propose a game-theoretic frame-

work to understand how primary and secondary users optimize their transmission
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power for higher data rates, and discuss the Nash equilibrium for this information

secrecy game. Contributions are summarized as follows.

First, this work suggests a new cooperative paradigm for cognitive radio net-

works, where cooperative simultaneous transmissions yield mutual benefits in the

presence of an eavesdropper. In traditional opportunistic spectrum access, primary

users in general do not benefit from opening up the spectrum, and sometimes their

performance may degrade due to occasional collisions caused by secondary users’

imperfect spectrum sensing. Spectrum trading mechanisms do award primary users

monetary profits, but primary users have to give up short-term spectrum rights.

However, when information secrecy is a concern, primary users may benefit from

simultaneous transmissions of secondary users who need spectrum opportunities.

This lays the foundation of incentives to cooperate.

Second, the primary user’s secrecy is analyzed using the information theoretic

approach. Information theory has been applied to study cognitive radio networks,

for example, see [99] and references therein. Our work extends [95] to the cognitive

radio network scenario where secondary users serve as the helper; however, different

from [95] in which the helper simply transmits interfering coded signals bearing no

useful information, in our work, secondary users do transmit meaningful messages

for their receivers to decode.

Third, we describe a procedure of cooperation where the primary user has the

upper hand, and model the interaction between primary users and secondary users

as a Stackelberg game. In the proposed game, the players choose power levels to

maximize their payoffs, and we further show that payoff functions are piece-wise
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Figure 6.1: The model of a cognitive radio network with an eavesdropper.

defined so that the equilibrium can be easily found through a piece-by-piece search.

6.1 System Models

In this chapter, we consider a cognitive radio network consisting of a primary

user, a trustworthy secondary user, and an eavesdropping malicious user who at-

tempts to decode the primary user’s message, as shown in Fig. 6.1. The primary

user P wants to transmit some confidential messages from the transmitter to the

receiver. The secondary user S also wants to transmit some messages from the

transmitter to the receiver, but since he/she does not own the spectrum band, the

transmission has to be approved by P when P is active. The malicious user M ,

attempting to decode P ’s message, is a passive eavesdropper with only a receiver.

We further assume the malicious user is intelligent, in the sense that M knows P ’s

and S’s codebooks and all the CSI.

When P and S simultaneously transmit signals, denoted by xP,k and xS,k at
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time k, their receivers receives the superposition of signals from two transmitters,

yP,k = hP xP,k + hSP xS,k + vP,k,

yS,k = hSxS,k + hPSxP,k + vS,k.

(6.1)

This can be viewed essentially as an interference channel [100], where hP (or hS)

is the direct channel gain from P ’s (or S’s) transmitter to the intended receiver,

hSP is the cross channel gain from S’s transmitter to P ’s receiver, hPS is from P ’s

transmitter to S’s receiver, and vP,k (or vS,k) is the additive white Gaussian noise

at P ’s (or S’s) receiver. Similarly, the malicious user receives

yM,k = hPMxP,k + hSMxS,k + vM,k, (6.2)

where hPM (or hSM) is the channel gain from P ’s (or S’s) transmitter to the eaves-

dropping receiver, and vM,k is the Gaussian noise, too. For convenience, we assume

all noises have unit variances, i.e., vP,k, vS,k, vM,k ∼ N (0, 1). In addition, we de-

fine gP = |hP |2, gS = |hS|2, gPS = |hPS|2, gSP = |hSP |2, gPM = |hPM |2, and

gSM = |hSM |2.

The primary user encodes a confidential message wP ∈ WP into a n-length

block codeword xn
P = (xP,1, xP,2, . . . , xP,n) with a rate QP , and the secondary user

encodes a message wS ∈ WS (wS is independent of wP ) into xn
S = (xS,1, xS,2, . . . , xS,n)

with a rate RS. The size of codebook WP is 2nQP , and the size of WS is 2nRS . Both

transmitters are power constrained, i.e.,

pP =
1

n

n∑

k=1

|xP,k|2 ≤ pM
P , pS =

1

n

n∑

k=1

|xS,k|2 ≤ pM
S . (6.3)

The primary user tries to recover wP from observation, and the secondary user

tries to recover wS; an error is declared if recovered messages differ from original
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messages, ŵP 6= wP or ŵS 6= wS. A joint encoding and decoding scheme of rate pair

(QP , RS) is desired such that QP can be made arbitrarily close to the equivocation

rate 1
n
h(wP |yn

M) and the average error probability can be made arbitrarily small, as

long as n is sufficiently large. The achievable rate pair (QP , RS) depends on power

levels pP and pS.

When the secondary user is absent, the scenario reduces to the classical Gaus-

sian wire-tap channel [98], the secrecy capacity of which is known as

CP (pM
P ) =

(
γ(gP pM

P )− γ(gPMpM
P )

)
+

, (6.4)

where γ(a)
4
= 1

2
log(1 + a) and (a)+

4
= max{a, 0}. Note that the secrecy capacity is

positive only if the eavesdropping channel has poorer quality, i.e., gPM < gP . With

the help of a secondary user, the primary user may have a higher secrecy rate, which

provides the incentive to share the spectrum band with the secondary user. The

secondary user, on the other hand, is willing to join in cooperation because he/she

needs such a spectrum opportunity to transmit information. This lays the incentive

foundation of cooperation.

The potential cooperation can be established in the following procedure. The

primary user first announces the power level pP , and the secondary user responds

by announcing his/her transmit power level pS. Since the secrecy rate CP (pM
P ) is

guaranteed without the secondary user’s help, the primary user agrees to cooperate

only when a higher secrecy rate is achievable. In this case, both users exchange

necessary information (e.g., codebooks) and begin cooperative transmissions. Oth-

erwise, the primary user rejects cooperation, and the secondary user is forbidden to
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use the spectrum band.

Since both users want to maximize rates of data transmission but the primary

user has secrecy concerns, the primary user aims at maximizing the information

secrecy rate QP and the secondary user aims at maximizing merely the information

rate RS. Moreover, because both users are able to manipulate transmit power

levels for higher payoffs, this scenario forms a game where P and S are players,

pP ∈ [0, pM
P ] and pS ∈ [0, pM

S ] are their actions, and achievable rates are their payoffs

which depend on actions. We call it an information secrecy game, and will analyze

it later.

6.2 Optimal Achievable Rates under Fixed Power

In this section, we derive the achievable rate pair (QP , RS) for fixed power

levels (pP , pS). We first describe the non-secrecy achievable rate region, and then

show that the achievable secrecy rate is the difference between Pareto frontiers of two

rate regions. Dividing the whole problem into four cases based on relative channel

strengths, we further derive the specific expression for the optimal rate pair for each

case under various conditions.

6.2.1 Pareto Frontiers of the Achievable Rate Region

We first consider the interference channel without secrecy concerns. Note that

the primary user can transmit with a higher rate RP because the secrecy is not taken

into account for the moment. The primary user receives the superposition of two
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transmitted signals, and is only interested in recovering his/her own messages. Be-

cause the primary user and the secondary user cooperate with each other and share

their codebooks, the primary user can apply a joint decoding to obtain both users’

messages, and then simply ignores the secondary user’s message. This constitutes a

multiple-access channel (MAC) [100], whose capacity region is

<[MAC]
P =





(RP , RS)

∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ RP ≤ γ(gP pP );

0 ≤ RS ≤ γ(gSP pS);

RP + RS ≤ γP .





, (6.5)

where γP
4
= γ(gP pP + gSP pS). When a rate RS is too high to decode, the primary

user can still attempt to decode wP by treating the secondary user’s signal as noise.

The achievable rate region for this separate decoding (SD) is

<[SD]
P =





(RP , RS)

∣∣∣∣∣∣∣∣

0 ≤ RP ≤ γ( gP pP

1+gSP pS
);

RS > γ(gSP pS).





. (6.6)

In sum, as long as the rate pair falls into either region, the primary user is able to

recover the message of interest.

Similar arguments apply to the secondary user, and the two regions are written

as

<[MAC]
S =





(RP , RS)

∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ RP ≤ γ(gPSpP );

0 ≤ RS ≤ γ(gSpS);

RP + RS ≤ γS.





, (6.7)

with γS
4
= γ(gPSpP + gSpS), and

<[SD]
S =





(RP , RS)

∣∣∣∣∣∣∣∣

RP > γ(gPSpP );

0 ≤ RS ≤ γ( gSpS

1+gPSpP
).





. (6.8)
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Therefore, for any rate pair (RP , RS) inside the region

<[COOP] = {<[MAC]
P ∪ <[SD]

P } ∩ {<[MAC]
S ∪ <[SD]

S }, (6.9)

both users are able to recover their own messages by either joint decoding or separate

decoding.

It is worth pointing out that (6.9) is not always the capacity of the interference

channel, but (6.9) can be achievable by simple encoding and decoding operations. A

straightforward enlargement of a non-convex rate region to its convex closure can be

done by time sharing, but we have prove in [22] that time sharing will not help when

secrecy is considered. Going beyond time sharing requires much more sophisticated

coding methods, and hence we will focus on the principal achievable region (6.9).

From the eavesdropper’s point of view, who is only interested in the primary

user’s message, the decodable rate pair also has to fall into either the MAC region,

<[MAC]
M =





(RP , RS)

∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ RP < γ(gPMpP );

0 ≤ RS < γ(gSMpS);

RP + RS < γM .





, (6.10)

where γM
4
= γ(gPMpP + gSMpS), or the separate decoding region,

<[SD]
M =





(RP , RS)

∣∣∣∣∣∣∣∣

0 ≤ RP < γ( gPMpP

1+gSMpS
);

RS > γ(gSMpS).





. (6.11)

In other words, correctly decoding messages with a rate pair outside the two regions

is beyond the eavesdropper’s capability.

Following [95], Proposition 15 provides a pair of achievable rates using stochas-

tic encoding. Informally speaking, the primary user splits the total rate RP into
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two parts, secret information QP and dummy information RPM . The eavesdropper

can only decode the dummy information at best. Details can be found in [22].

Proposition 15 The rate pair (QP , RS) is achievable if there exist rates RP >

RPM > 0 such that 



QP = RP −RPM ,

(RP , RS) ∈ <[COOP],

(RPM , RS) /∈ {<[MAC]
M ∪ <[SD]

M }.

(6.12)

Note that the achievable rate pairs given by Proposition 15 are not unique

in general, and we need to find the “optimal” one from all candidates. Because

the primary user has higher priority than the secondary user, it is reasonable to

satisfy the primary user first. Denote the set of all achievable rate pairs satisfying

constraints (6.12) as <[SEC], and the optimal secrecy rate of the primary user can

be found as

Q?
P = max{QP

∣∣(QP , RS) ∈ <[SEC]}. (6.13)

Given Q?
P for the primary user, the secondary user achieves the rate

R?
S = max{RS

∣∣(Q?
P , RS) ∈ <[SEC]}. (6.14)

Given a rate RS, maximizing QP means maximizing the difference between

RP and RPM (RP > RPM) according to (6.12). It requires moving RP upwards to

the Pareto frontier of the region <[COOP] and moving RPM downwards to approach

the frontier of {<[MAC]
M ∪ <[SD]

M }. As a result, when the rate region is plotted in

an RP –RS plane (RS is the x-axis), Q?
P can be viewed as the maximum vertical
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difference between these two frontiers, i.e., Q?
P = maxRS

QP (RS), and

QP (RS) = (fC(RS)− fM(RS))+ , (6.15)

where fM(RS) denotes the frontier of {<[MAC]
M ∪ <[SD]

M }, and fC(RS) denotes the

frontier of <[COOP].

It is easy to characterize fM(RS) as a function of RS,

fM(RS) =





γ(gPMpP ), if 0 ≤ RS < γ( gSMpS

1+gPMpP
);

γM −RS, if γ( gSMpS

1+gPMpP
)≤RS <γ(gSMpS);

γ( gPMpP

1+gSMpS
),if RS ≥ γ(gSMpS),

(6.16)

which is a linear function with f ′M(RS) = −1 in the central segment, and keeps

constant elsewhere. We use f ′(·) to denote the right derivative of f(·) throughout

the chapter. Similarly, the frontier of {<[MAC]
P ∪ <[SD]

P } is

fP (RS)=





γ(gP pP ), if 0 ≤ RS < γ( gSP pS

1+gP pP
);

γP−RS, if γ( gSP pS

1+gP pP
)≤RS <γ(gSP pS);

γ( gP pP

1+gSP pS
),if RS ≥ γ(gSP pS),

(6.17)

and the frontier of {<[MAC]
S ∪ <[SD]

S } is

fS(RS)=





+∞, if 0 ≤ RS ≤ γ( gSpS

1+gPSpP
);

γS−RS,if γ( gSpS

1+gPSpP
)<RS≤γ(gSpS);

0, if RS > γ(gSpS).

(6.18)

Since <[COOP] is the intersection of the two regions, fC(RS) equals min(fP (RS), fS(RS)),

and its domain can be limited to [0, γ(gSpS)] because fC(RS) = 0 when RS >

γ(gSpS). It is easy to see that fC(RS) is a non-increasing function with f ′C(RS) =
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0 or − 1 except discontinuous points; however, its specific form depends heavily

on the channel conditions. The results in [22] are summarized in Table 6.1, where

there are four cases divided by channel conditions, and the closed-form frontiers

are also provided. The segments that may be missing under certain conditions are

marked by “if*”. For all cases, fC(RS) is a non-increasing function of RS, and

fC(RS) is continuous within the interval [0, γ(gSpS)] except a discontinuous point

at RS = γ( gSpS

1+gPSpP
) in Case B and possibly Case D (when pS < (gP /gPS − 1)/gSP

or pS < pP (gP − gPS)/(gS − gSP )).

Table 6.1: Different cases and corresponding closed-form frontiers.

Case Condition Interpretation Closed-form frontier fC(RS)

A
gP ≤ gPS

gS ≤ gSP

Strong
interference

{
γ(gP pP ), if RS≤min(γP , γS)−γ(gP pP );

min(γP , γS)−RS ,if* RS >min(γP , γS)−γ(gP pP ).

B
gP > gPS

gS ≤ gSP

P is in the
better position





γ(gP pP ), if RS≤min(γ( gSP pS
1+gP pP

), γ( gSpS
1+gPSpP

));
γP −RS ,if* γ( gSP pS

1+gP pP
)<RS≤γ( gSpS

1+gPSpP
);

γS −RS , if RS >γ( gSpS
1+gPSpP

).

C
gP ≤ gPS

gS > gSP

S is in the
better position





γ(gP pP ), if RS <γ( gSP pS
1+gP pP

);
γP −RS , if γ( gSP pS

1+gP pP
)≤RS <γ(gSP pS);

γ( gP pP
1+gSP pS

),if γ(gSP pS)≤RS≤γS − γ( gP pP
1+gSP pS

);
γS −RS , if* RS >γS − γ( gP pP

1+gSP pS
).

D
gP > gPS

gS > gSP

Weak
interference





γ(gP pP ), if RS <γ( gSP pS
1+gP pP

);
γP −RS , if γ( gSP pS

1+gP pP
)≤RS

≤min(γ(gSP pS), γ( gSpS
1+gPSpP

));
γ( gP pP

1+gSP pS
),if* γ(gSP pS)≤RS≤

max(γ( gSpS
1+gPSpP

), γS−γ( gP pP
1+gSP pS

));
γS −RS , if RS >

max(γ( gSpS
1+gPSpP

), γS−γ( gP pP
1+gSP pS

)).

Fig. 6.2 illustrates the secrecy rate by an example of Case A, where the frontiers

fM(RS), fP (RS), fS(RS), and fC(RS) are plotted. The shaded regions are <[COOP]
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Figure 6.2: Illustration of Pareto frontiers and the achievable secrecy rate.

and {<[MAC]
M ∪ <[SD]

M }. Then, the gap between the two Pareto frontiers in bold lines

is the secrecy rate achievable by stochastic coding.

6.2.2 Optimal Rate Pair

Recall that the primary user reserves the right not to cooperate with the

secondary user unless cooperation yields a higher secrecy rate than the bottom line

CP given in (6.4). Therefore, the overall achievable rate pair is

(QP , RS) =





(Q?
P , R?

S), if Q?
P > CP ;

(CP , 0), otherwise,

(6.19)

which is always bounded below by CP . We could relax the definition of QP without

affecting rates (QP , RS), e.g., by removing the non-negative constraint. Slightly

abusing the notations, we keep using the same notations after relaxation.

Proposition 16 Relaxing the definition of QP in (6.15) to QP (RS)
4
= fC(RS) −
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fM(RS) will not affect (QP , RS), where fM(RS) inherits from fM(RS) except extend-

ing the line segment γM − RS to the entire range [0, γ(gSMpS)]. Then, the optimal

rate pair (Q?
P , R?

S) defined in (6.13) and (6.14) is given by Q?
P = QP (R?

S) = QP (R†
S)

and R?
S = max{R|QP (R) = Q?

P}, where the auxiliary variable R†
S is,

R†
S =





γ(gSpS/(1 + gPSpP )), (C1);

min(γ(gSpS), γ(gSMpS)) otherwise;

with condition (C1) being that fC(RS) is discontinuous at γ(gSpS/(1 + gPSpP )) and

gS/(1+gPSpP ) ≤ gSM . Furthermore, R?
S differs from R†

S only when R†
S = γ(gSMpS)

and f ′C(γ(gSMpS)) = 0.

We omit the proof of Proposition 16, which can be found in [22]. (Q?
P , R?

S) is

first calculated from Proposition 16. If Q?
P ≤ CP , the primary user does not bother

to cooperate, receiving a bottom line secrecy rate CP ; otherwise, the primary user

has the incentive to cooperate, stochastically encoding using the scheme in Propo-

sition 15 with RP = fC(R?
S), RPM = fM(R?

S), and allowing the secondary user to

transmit with the rate R?
S. In the following, we will present a more specific expres-

sion of (Q?
P , R?

S) depending on numerous subcases and branches, because different

subcases may correspond to different shapes of the frontier fC(RS) even for the same

case. For convenience, some commonly used terms are listed in Table 6.2.

♦ Case A. gP ≤ gPS, gS ≤ gSP

Subcase A1. When pP ≤ (gSP /gS − 1)/gP and pS ≤ (gPS/gP − 1)/gS.

If gSM ≥ gS,

(Q?
P , R?

S) = (γQ5, γR2). (6.20)
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Table 6.2: A list of some commonly used expression for the achievable rate.

γQ1 = γ(gP pP )− γ (gPMpP /(1 + gSMpS)),
γQ2 = γ(gP pP + gSP pS)− γ(gPMpP + gSMpS),
γQ3 = γ(gPSpP + gSpS)− γ(gPMpP + gSMpS),
γQ4 = γ(gP pP /(1 + gSP pS))− γ(gPMpP /(1 + gSMpS)),
γQ5 = γ(gP pP ) + γ(gSpS)− γM ,
γQ6 = γ(gP pP ) + γ(gSpS/(1 + gPSpP ))− γM ,
γQ7 = γ(gSpS) + γ(gP pP /(1 + gSP pS))− γM ,
γQ8 = γ(gP pP /(1 + gSP pS)) + γ(gSpS/(1 + gPSpP ))− γM ;
γR1 = γ(gSMpS),
γR2 = γ(gSpS),
γR3 = γ(gSP pS/(1 + gP pP )),
γR4 = γ(gSpS/(1 + gPSpP )),
γR5 = γS − γ(gP pP /(1 + gSP pS)),
γR6 = γS − γ(gP pP ).

If gSM < gS,

(Q?
P , R?

S) = (γQ1, γR2). (6.21)

Subcase A2. When pP > (gSP /gS − 1)/gP and (gPS − gP )pP ≥ (gSP − gS)pS.

If pP ≤ (gSP /gSM − 1)/gP ,

(Q?
P , R?

S) = (γQ1, γR3). (6.22)

If pP > (gSP /gSM − 1)/gP ,

(Q?
P , R?

S) = (γQ2, min{γR1, γR2}). (6.23)

Subcase A3. When pS > (gPS/gP − 1)/gS and (gSP − gS)pS > (gPS − gP )pP .

If gSMpS + gP pP + gSMpSgP pP ≤ gSpS + gPSpP ,

(Q?
P , R?

S) = (γQ1, γR6). (6.24)

If gSMpS + gP pP + gSMpSgP pP > gSpS + gPSpP ,

(Q?
P , R?

S) = (γQ3, min{γR1, γR2}). (6.25)
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♦ Case B. gP > gPS, gS ≤ gSP

Subcase B1. When gS + gP gSpP ≤ gSP + gSP gPSpP .

If pP ≤ (gS/gSM − 1)/gPS,

(Q?
P , R?

S) = (γQ1, γR4). (6.26)

If pP > (gS/gSM − 1)/gPS,

(Q?
P , R?

S) = (γQ6, γR4). (6.27)

Subcase B2. When gS + gP gSpP > gSP + gSP gPSpP .

If pP ≤ (gSP /gSM − 1)/gP ,

(Q?
P , R?

S) = (γQ1, γR3). (6.28)

If pP > (gSP /gSM − 1)/gP ,

(Q?
P , R?

S) = (γQ2, min{γR1, γR4}). (6.29)

♦ Case C. gP ≤ gPS, gS > gSP

Subcase C1. When gP + gP gSpS ≤ gPS + gSP gPSpS.

If gSM < gSP and pP ≤ (gSP /gSM − 1)/gP ,

(Q?
P , R?

S) = (γQ1, γR3). (6.30)

If gSM < gSP and pP > (gSP /gSM − 1)/gP ,

(Q?
P , R?

S) = (γQ2, γR1). (6.31)

If gSP ≤ gSM ≤ gS,

(Q?
P , R?

S) = (γQ4, γR2). (6.32)
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If gSM > gS,

(Q?
P , R?

S) = (γQ7, γR2). (6.33)

Subcase C2. When gP + gP gSpS > gPS + gSP gPSpS.

If gSM < gSP and pP ≤ (gSP /gSM − 1)/gP , the same as (6.30).

If gSM < gSP and pP > (gSP /gSM − 1)/gP , the same as (6.31).

If gSM ≥ gSP and (1 + gSP pS)(gPSpP + gSpS − gSMpS) ≥ (1 + gSMpS)gP pP ,

(Q?
P , R?

S) = (γQ4, γR5). (6.34)

If gSM ≥ gSP and (1 + gSP pS)(gPSpP + gSpS − gSMpS) < (1 + gSMpS)gP pP ,

(Q?
P , R?

S) = (γQ3, min{γR1, γR2}). (6.35)

♦ Case D. gP > gPS, gS > gSP

Subcase D1. When pP < (gS/gSP − 1)/gPS and pS < (gP /gPS − 1)/gSP .

If gSM < gSP and pP ≤ (gSP /gSM − 1)/gP ,

(Q?
P , R?

S) = (γQ1, γR3). (6.36)

If gSM < gSP and pP > (gSP /gSM − 1)/gP ,

(Q?
P , R?

S) = (γQ2, γR1). (6.37)

If gSM ≥ gSP and pP ≤ (gS/gSM − 1)/gPS,

(Q?
P , R?

S) = (γQ4, γR4). (6.38)

If gSM ≥ gSP and pP > (gS/gSM − 1)/gPS,

(Q?
P , R?

S) = (γQ8, γR4). (6.39)
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Subcase D2. When pP ≥ (gS/gSP − 1)/gPS and (gP − gPS)pP > (gS − gSP )pS

If pP ≤ (gSP /gSM − 1)/gP , the same as (6.36).

If (gSP /gSM − 1)/gP < pP ≤ (gS/gSM − 1)/gPS, the same as (6.37).

If pP > (gS/gSM − 1)/gPS,

(Q?
P , R?

S) = (γQ2, γR4). (6.40)

Subcase D3. When pS ≥ (gP /gPS − 1)/gSP and (gS − gSP )pS ≥ (gP − gPS)pP .

If gSM < gSP and pP ≤ (gSP /gSM − 1)/gP , the same as (6.36).

If gSM < gSP and pP > (gSP /gSM − 1)/gP , the same as (6.37).

If gSM ≥ gSP and (1 + gSP pS)(gSpS + gPSpP − gSMpS) ≥ (1 + gSMpS)gP pP ,

(Q?
P , R?

S) = (γQ4, γR5). (6.41)

If gSM ≥ gSP and (1 + gSP pS)(gSpS + gPSpP − gSMpS) < (1 + gSMpS)gP pP ,

(Q?
P , R?

S) = (γQ3, min{γR1, γR2}). (6.42)

To sum up, R?
S takes one of the six candidate forms {γRk, k = 1, 2, . . . , 6}

depending on the cases and subcases. Let us take a closer look at these candidate

forms. γR1 = γ(gSMpS) is the critical rate that the malicious user could decode the

secondary user’s message in the ideal case; in general, transmitting a higher rate

than γR1 does not bring further difficulty to the eavesdropper’s decoding, but instead

affects the primary user’s achievable rate. γR2 = γ(gSpS) is the highest possible rate

for the secondary user, beyond which no message would be decodable even with

perfect interference cancellation. γR4 corresponds to condition (C1) in Proposition

16. The rest forms correspond to the situation where there are multiple RS’s that
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attains Q?
P , and thus the maximum RS is selected as R?

S according to (6.14), although

the specific form varies case by case. Q?
P is the difference of decodable rates of the

primary user and the eavesdropper, i.e., fC(R?
S)− fM(R?

S) according to Proposition

16. Therefore, it takes the form of rate differences, i.e., one of the possible forms

{γQk, k = 1, 2, . . . , 8} depending on the specific condition.

6.3 Information Secrecy Game

We have derived achievable (QP , RS) in the previous section given fixed power

levels pP and pS. However, both users have the freedom to select their power under

the power constraint pP ∈ [0, pM
P ] and pS ∈ [0, pM

S ], and they have the incentive to

manipulate power levels for a higher rate. We write down the achievable rates as

functions of power levels, e.g., QP (pP , pS) and RS(pP , pS), to emphasize the depen-

dence.

In this section, we first demonstrate how rate pairs depend on power levels

through a 2-D plane representation. Then, we model the cooperation between the

primary user and the secondary user as a Stackelberg game, and discuss the game

equilibrium in light of the 2-D representation. Finally, we extend the game to the

multi-user case.

6.3.1 2-D Representation

The payoff (QP (pP , pS), RS(pP , pS)) is closely related to (Q?
P (pP , pS), R?

S(pP , pS))

whose expressions seem rather involved because of numerous cases, subcases, and
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additional branches. Although varying power levels will not change which case it

belongs to (cases are divided purely by the CSI), different power combinations may

activate different subcases and/or branches. To circumvent the difficulty, we “trans-

late” the conditions of subcases and branches into the regions on a pP –pS plane, and

visually show how (Q?
P (pP , pS), R?

S(pP , pS)) depends on power levels. Discussing the

equilibrium on this 2-D plane is much easier.

For Case A, the pP –pS plane is divided into regions of different rate expressions,

as shown in Fig. 6.3, where the left one corresponds to the the scenario gSM ≥ gS,

and the right one is for gSM < gS. The equations of rate pair associated with each

region are: 1© ∼ (6.20); 2© ∼ (6.21); 3© ∼ (6.22); 4© ∼ (6.23); 5© ∼ (6.24); 6©

∼ (6.25). We use circled numbers to denote the regions. The boundaries in the

left figure are pP = (gSP /gS − 1)/gP (between 1© and 4©), pS = (gPS/gP − 1)/gS

(between 1© and 6©), and (gPS − gP )pP = (gSP − gS)pS (between 4© and 6©). Two

additional boundaries can be found in the right figure, pP = (gSP /gSM − 1)/gP

(between 3© and 4©) and gSMpS + gP pP + gSMpSgP pP = gSpS + gPSpP (between 5©

and 6©).

Fig. 6.4 shows the regions for Case B. The left figure holds when gSM >

(gP gS − gSP gPS)/(gP − gPS), and the right one holds otherwise. The corresponding

equations for each region are: 1©∼ (6.26); 2©∼ (6.27); 3©∼ (6.28); 4©∼ (6.29). The

boundaries are pP = (gSP −gS)/(gP gS−gSP gPS) (between 2© and 4©, or between 1©

and 3©), pP = (gS/gSM − 1)/gPS (between 1© and 2©), and pP = (gSP /gSM − 1)/gP

(between 3© and 4©). Note that under certain conditions some regions may not

exist and the corresponding boundaries are invalid (e.g., negative or infinity), and
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Figure 6.3: Illustration of rate-pair regions on the pP –pS plane for Case A.

Figure 6.4: Illustration of rate-pair regions on the pP –pS plane for Case B.

we mark such regions with a “*” in the figure.

Case C is illustrated in Fig. 6.5, where the mappings are 1© ∼ (6.30); 2©

∼ (6.31); 3© ∼ (6.32) when gSP ≤ gSM ≤ gS or (6.33) when gSM > gS; 4© ∼

(6.34); 5© ∼ (6.35). When gSM < gSP , the left figure applies, with the boundary

pP = (gSP /gSM − 1)/gP . Otherwise, the right figure applies, with the boundary

pS = (gPS−gP )/(gP gS−gSP gPS), but when gP gS ≤ gSP gPS, the boundary is invalid

and the entire plane is a single region. The boundary between 4© and 5©, when

existing, is (1 + gSP pS)(gPSpP + gSpS − gSMpS) = (1 + gSMpS)gP pP .
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Figure 6.5: Illustration of rate-pair regions on the pP –pS plane for Case C.

Finally, the regions for Case D are presented in Fig. 6.6 with corresponding

equations: 1© ∼ (6.36); 2© ∼ (6.37); 3© ∼ (6.38); 4© ∼ (6.39); 5© ∼ (6.40); 6© ∼

(6.41); 7© ∼ (6.42). The left figure corresponds to gSM < gSP whereas the right one

corresponds to gSM ≥ gSP . The boundaries are: pP = (gSP /gSM − 1)/gP (between

1© and 2©), (gP − gPS)pP = (gS − gSP )pS and pP = (gS/gSM − 1)/gPS (between 2©

and 5©), pP = (gS/gSM − 1)/gPS (between 3© and 4©), (1 + gSP pS)(gPSpP + gSpS −

gSMpS) = (1 + gSMpS)gP pP (between 6© and 7©), pP = (gS/gSP − 1)/gPS (between

4© and 5©), (gP−gPS)pP = (gS−gSP )pS (between 5© and 7©), pS = (gP /gPS−1)/gSP

(between 3© 4© and 6© 7©).

6.3.2 Stackelberg Game

The cooperation procedure can be modeled as a Stackelberg game with two

players : the primary user is the leader, while the secondary user is the follower.

Their payoffs are the secrecy rate QP (pP , pS) and the information rate RS(pP , pS),

respectively, which depend on their actions pP and pS. We discuss the Nash equi-
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Figure 6.6: Illustration of rate-pair regions on the pP –pS plane for Case D.

librium of this information secrecy game based on the 2-D representation.

For a given pP , a horizonal line segment can be drawn on the pP –pS plane

with pS ∈ [0, pM
S ], which may remain in a single region or cross several regions.

Depending on which regions have been passed through, R?
S(pP , pS) and Q?

P (pP , pS)

may be piece-wise defined functions. The optimal power level p?
S is a function of pP ,

p?
S(pP ) = argmax

pS∈[0,pM
S ]

R?
S(pP , pS),

s.t. Q?
P (pP , pS) > CP .

(6.43)

The constraint comes from that RS(pP , pS) = R?
S(pP , pS) only when the primary

user is willing to cooperate. Thanks to the monotonicity stated in Proposition 17,

(6.43) can be further reduced to,

p?
S(pP ) = max{pS ∈ [0, pM

S ]
∣∣Q?

P (pP , pS) > CP}. (6.44)

Searching for the maximum can be done piece by piece, and signs of the first-order

derivatives are given in Proposition 18, with a
s∼ b denoting that a and b have the

same sign. Detailed proofs can be found in [22].

156



Proposition 17 With pP fixed, R?
S(pP , pS) is a strictly increasing function with

regard to pS.

Proposition 18 With pP fixed, the signs of first-order partial derivatives are as

follows: ∂γQ1/∂pS > 0, and

∂γQ2/∂pS
s∼ gSP (1 + gPMpP )− gSM(1 + gP pP ),

∂γQ3/∂pS
s∼ ∂γQ6/∂pS

s∼ gS(1+gPMpP )−gSM(1+gPSpP ),

∂γQ5/∂pS
s∼ gS(1 + gPMpP )− gSM .

All the above functions are monotonic when pP is given. The rest functions share

the same quadratic form, for j = 4, 7, 8,

∂γQj

∂pS

s∼ Fp2
S + 2(AC −BD)pS + (AC −BD)(B + D)−BDF,

where F = B+D−A−C, A = (gP pP +1)/gSP , B = (gPMpP +1)/gSM , D = 1/gSP ,

and the parameter C is as follows: C = 1/gSM for γQ4, C = 1/gS for γQ7, and

C = (1 + gPSpP )/gS for γQ8.

Predicting that the secondary user will choose the optimal power p?
S(pP ) for

an announced power level pP , the primary user is able to maximize the payoff by

announce the power level p?
P such that

p?
P = argmax

pP∈[0,pM
P ]

Q?
P (pP , p?

S(pP )). (6.45)

Finally, (p?
P , p?

S(p?
P )) is the Nash equilibrium of the game.

In a cognitive radio network, usually there are more than one secondary users.

Intuitively, when there are more secondary users in the network, it is more likely
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that the primary user could find a secondary user in a good location to cooperate

with, and hence the secrecy rate may increase. In this case, the primary user plays

separate information secrecy games with each individual secondary user who needs

to transmit information at the moment, and chooses to cooperate with the “best”

secondary user who brings the highest secrecy rate. As expected, the achieved

secrecy rate will improve with increasing numbers of secondary users participating

in the game. We will show the performance through simulation results later.

6.4 Simulation Studies

In this section, some simulation results are presented. We first fix a channel

realization to get some insight of the proposed cooperative transmission scheme,

and then we show the average performance by generating thousands of independent

channel realizations.

For illustrative purposes, we fix the channel as one realization of Case A:

gP = gS = 1, gPS = 1.5, gSP = 1.3, gSM = 0.3, and gPM = 1.2. Note that under

this setting gP < gPM , the primary user cannot transmit in secrecy at all without

the secondary user’s help, because CP = 0 according to (6.4). In Fig. 6.7, we plot

the achievable secrecy rate Q?
P (pP , pS) when the transmit power levels take different

values from [0, 20]×[0, 20]. Some rates in the figure are negative, because Q?
P (pP , pS)

is the relaxed rate without considering the non-negative constraint (the overall rate

QP (pP , pS), however, is guaranteed to be non-negative). As shown by the figure, the

primary user does benefit from simultaneous transmissions of the secondary user.
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Figure 6.7: Achievable secrecy rate Q?
P (pP , pS) with varying power levels

pP and pS.

For example, within the power constraint, the primary user is able to reach a secrecy

rate of 0.64 bit when pP = 2.5 and pS = 20.0. Moreover, as shown in the figure,

it is not always beneficial to use full power; for example, when fixing pS = 20.0,

increasing pP beyond 2.5 will reduce the secrecy rate. The reason is that the secrecy

rate depends on the difference of the decoding capability of the primary receiver

and the eavesdropper. It is possible that the decodable rate to the primary receiver

grows with higher power but the eavesdropper may gain even more, which reduces

the secrecy rate.

Next, we vary gPM from 0.2 to 2, with all the other channel coefficients fixed

as above. In Fig. 6.8, we compare the bottom line secrecy rate without cooperation

and the optimal achievable secrecy rate at the Nash equilibrium of the proposed
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Stackelberg game, i.e., when users choose the optimal power levels according to

(6.45). As expected, as the channel between the primary transmitter and the eaves-

dropper becomes better, the eavesdropper is more capable of decoding the primary

user’s message, and hence the secrecy rate without cooperation becomes lower, and

further drops to zero when gPM > gP . When the primary user and the secondary

user cooperate with each other, however, the primary user may significantly enhance

the secrecy of confidential messages, as shown in the figure. When gPM is small, the

eavesdropper receives very weak signals from the primary user, and the gain from a

helper becomes limited.

In order to show the average performance of the proposed algorithm, we con-

sider a scenario where all the users lie in a circular area with a radius 1000 meters.

The primary transmitter locates at the center of the circle, while the primary user’s

receiver, the eavesdropper, and the secondary transmitters/receivers are uniformly

distributed in this circular area. We assume the channel gain merely depends on

the distance from a transmitter to a receiver d, i.e., g = g0d
−α, where the path loss

exponent α is set to be 2 in the simulation, and g0 is the channel gain at a reference

point one meter away. We choose pM
P , pM

S , and g0 in such a way that the signal-to-

noise ratio (SNR) without considering interference is 15dB when the distance is 300

meters and the transmitter uses the maximum power. In the simulation, we generate

5000 independent channel realizations. For each realization, we uniformly generate

the location of users, calculate channel gains based on the distance, and find the

equilibrium for this particular game. The results from all independent realizations

are plotted in the form of empirical cumulative distribution functions.
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In Fig. 6.9, we compare the proposed scheme with the benchmark situation

where there is no secondary user assisting the secrecy transmission, referred to as

“no cooperation”. Moreover, the scheme in [95] is also simulated, in which the

helping interferer unconditionally cooperates and does not transmit his/her own

useful information at all. Hence, we refer to this scheme as “altruistic helper”.

From the figure, it can be seen that the proposed game improves the information

secrecy rate of the primary user while enabling the simultaneous transmission of a

secondary user. The gap between our proposed game and the “altruistic helper”

scheme is somewhat like the so-called “price of anarchy” in noncooperative games.

Because in our scheme, the secondary user has his/her own interest and transmits

meaningful data to his/her own receiver, the game equilibrium takes both users’

benefit into consideration. Therefore, from the primary user’s point of view, the

performance is suboptimal to the unconditional cooperation situation, and the cost

is due to competition and compromise between two players in the game.

We have expected that the secrecy rate will improve when there are more

secondary users in the network, because the primary user could pick up the best

secondary user to cooperate with after playing a game with each individual sec-

ondary user separately. We verify this by simulation. In Fig. 6.10, the mean and

median values of secrecy rates are plotted versus different numbers of secondary

users, and when the number of secondary users equals zero, it actually reduces to

the “no cooperation” case. As illustrated by the two figures, secrecy rates are signifi-

cantly improved by the proposed cooperation scheme, and higher rates are expected

when there are more secondary users in the network.
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Figure 6.9: Cumulative distribution functions of secrecy rates in scenar-
ios with different levels of cooperation.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we have developed and analyzed game-theoretic frame-

works to suppress selfish and malicious behaviors in cognitive radio networks, in

order to improve the efficiency of spectrum utilization, boost cooperation in spec-

trum sharing, and protect cognitive radio users from adversaries. After an overview

of game theory and its application in cognitive radio networks in Chapter 2 as a

background for this dissertation, we have addressed the following problems.

In Chapter 3, we proposed a novel spectrum sharing scheme with cheat-proof

strategies to improve the efficiency of open spectrum sharing. The spectrum shar-

ing problem was modeled as a repeated game where any deviation from cooperation

would trigger the punishment. We proposed two cooperation rules with efficiency

and fairness considered, and optimized the detection time to alleviate the impact

due to imperfect detection of the selfish behavior. Moreover, two cheat-proof strate-

gies based on mechanism design and properties of channel statistics were proposed

to enforce that selfish users reported their true channel information. Simulation

results showed that the proposed scheme efficiently improved the spectrum usage

by alleviating the mutual interference.

In Chapter 4, we presented a novel multi-winner auction game for the spectrum
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auction scenario in a cognitive radio network, in which secondary users could lease

some temporarily unused bands from primary users. As this kind of auction had not

existed in the literature where commodities were usually quantity-limited, suitable

auction mechanisms were developed to guarantee full efficiency of the spectrum

utilization, yield higher revenue to primary users, and help eliminate user collusion.

To make the proposed scheme scalable, the SDP relaxation was applied to get a

near-optimal solution in polynomial time. Moreover, we extended the one-band

auction mechanism to the multi-band case. Simulation results were presented to

demonstrate performance and complexity of proposed auction mechanisms.

In Chapter 5, we investigated the anti-jamming defense in a cognitive radio

network with multiple available channels, by modeling the interaction between a sec-

ondary user and attackers as anti-jamming games and studying the optimal strategy

and the equilibrium of the games. In the scenario where both the secondary user

and attackers were equipped with a single radio and accessed only one channel at

any time, the secondary user hopped proactively between channels as the defense

strategy. The optimal defense strategy could be solved by finding the optimal pol-

icy in a Markov decision process, and learning schemes were proposed based on

the maximum likelihood estimation and Q-learning. Extending the anti-jamming

problem to the scenario where the multi-radio secondary user could access multiple

channels simultaneously, we redefined the game with randomized power allocation as

the defense strategy. The defense strategy obtained from the Nash equilibrium was

optimal in the sense that it minimized the worst-case damage caused by attackers.

In Chapter 6, we modeled the cooperative transmission in a cognitive radio
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network as a Stackelberg game, where a secondary user helped a primary user to

enhance secrecy against an intelligent and passive eavesdropper. Both the primary

user and the secondary user wanted to maximize rates of data transmission, but the

primary user had additional secrecy concerns. In order to learn the fundamental

limit for this system, we applied information theoretic approaches to derive the

secrecy rate for the primary user and the information rate for the secondary user.

In order to understand the incentive behind cooperation and predict the equilibrium

behavior, we applied game-theoretic approaches to characterize the Nash equilibrium

in terms of how much power should be used in cooperative transmissions. Simulation

results were presented to verify the performance.

7.2 Future Work

Since cognitive radio is an emerging communication paradigm that will have

great impacts on wireless devices and applications in the near future, there are

numerous interesting problems that would lead to fruitful research in the area.

In the dissertation, game-theoretic frameworks have been developed to combat

two specific security attacks, i.e., the jamming attack and eavesdropping attack, and

have been shown to effectively protect secondary users and primary users from those

malicious users. However, enabled by the technology evolution and depending on

application scenarios, a malicious user may launch a lot of different forms of attacks,

such as the denial-of-service attack, primary emulation attack, reputation/trust at-

tack, Byzantine attack, and so on. These security issues are of critical importance
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and must be taken care of before the successful deployment of cognitive radio net-

works. Although varying in forms, these attacks can be modeled and mitigated after

we capture their characteristics using game-theoretic modeling and carefully define

their payoff functions. Therefore, I will extend my dissertation work to model and

analyze various kinds of potential attacks and develop effective countermeasures. In

addition to game theory, other techniques such as coding, forensics, and dynamic

programming, can also be combined to further enhance robustness and efficiency of

the defense mechanism.

Furthermore, the concept of cognitive radio does not limit itself to a narrow

area in the communications; instead, the “cognitive network” can have a much

broader sense, referring to any network consisting of “cognitive” entities, or entities

with the capability of learning, reasoning, and adapting. Such candidates may in-

clude a peer-to-peer network, an ad hoc network, a multimedia network, an array

of devices, a group of vehicles, and so on. Although they may have different con-

cerns and focuses, the existence of selfish users and malicious uses is quite general

because of the “cognitive” feature. Therefore, game theory can also be applied to

suppress selfish and malicious behaviors in these networks to greatly enhance system

performance. This emerging area will be of critical interest to conduct research on.
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