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Castro and Coen-Pirani (2008) document that aggregate skilled hours and

employment both became more volatile after the mid-1980s, in contrast to the si-

multaneous volatility decline of most aggregates, including overall hours and em-

ployment and unskilled hours and employment. In chapter 1, I propose that rising

efficiency in matching skilled workers to vacancies accounts for this change. The rise

of general-purpose information technology made the skills of well-educated workers

more transferable across firms and industries, and this increased the suitability of

unemployed skilled workers for a broader range of job vacancies. In turn this im-

plies a larger increase in the flow of skilled labor into employment during economic

booms. This causes skilled aggregates to be more volatile. I embed a simple search

and matching mechanism in a typical dynamic general equilibrium model to demon-

strate this idea.

The purpose of chapter 2 is to explore the contribution of capital-skill comple-

mentarity to short-run employment fluctuations. Given that such complementarity

is a leading explanation for long-run changes in the skill premium, it is interesting



to check its short-run implications for employment volatility. The numerical results

show that complementarity can make skilled employment more volatile than the

unskilled, but it can not improve standard DSGE models’ implications for overall

labor market’ volatility.
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Chapter 1

Matching Efficiency and Skilled Employment Volatility

1.1 Introduction

Conventional wisdom holds that skilled workers are less likely to be laid off

during recessions and that skilled employment should be less volatile than its un-

skilled counterpart.1 However, this was not the case in the U.S. beginning in the

mid-1980s. Castro and Coen-Pirani (2008) present evidence that aggregate skilled

hours and employment became at least as volatile as unskilled measures starting in

the mid-1980s. One striking fact in their paper is that the standard deviation of the

cyclical component of skilled aggregates increased in contrast to the simultaneous

volatility decline of most macroeconomic aggregates, including total hours and em-

ployment. Thus, what happened to skilled workers? Why didn’t skilled volatility

decline?

I propose that rising efficiency in the labor matching process for skilled workers

accounts for the change in relative volatility. Rising efficiency in the search process

means that more unemployed workers get out of unemployment per unit of time

for a given number of unemployed workers and vacancies. Specifically, in economic

1Following the labor literature’s convention, I proxy the concept of skill with education. Specif-

ically, a worker is counted as skilled if she has a college degree or higher. Otherwise, she is regarded

as unskilled.
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booms, increased matching efficiency leads to a larger number of vacancies filled,

and thus employment expands more than before. The adoption and implementa-

tion of Information and Communication Technology (ICT) is my explanation for

why search efficiency increased. One defining feature of ICT is that it lowers the

specificity of human capital. When ICT is widely implemented in various industries,

its standardization properties translate into a greater transferability of employee’s

skills across firms, industries and sectors of the economy.2 Given that recent tech-

nology advance has been skill-biased, ICT affects matching efficiencies of the skilled

and unskilled asymmetrically. ICT implies that skilled workers, when searching for

jobs, face more suitable positions to apply for than before, which is not true for

unskilled labor.

To make my idea clear, I embed a simple search and matching mechanism

in an otherwise typical dynamic general equilibrium model. Search frictions allow

vacancies and unemployment to co-exist. To capture the mechanism mentioned in

the previous paragraph, I assume that the skilled and unskilled go through separate

matching processes. To model matching efficiency in the labor market, I adopt a

labor-vacancy matching function derived from the classic urn-ball framework. I add

one feature to this standard scenario and enrich the matching function to embody

the fact that the proportion of unemployed workers suitable for a particular vacancy

2Kambourov and Manovskii (2008) document the rising trends in occupation and industry mo-

bility between 1968 and 1993. In addition to its impact on transferability of skills, the development

of ICT makes it easier for skilled employees to search for jobs nationwide, such that geographic

distance becomes a smaller factor when it comes to job application.
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can change over time. The intuition of this feature is simple. Prior to the spread

of ICT, human capital is firm-specific or job-specific. When firms post vacancies,

only a small portion of the unemployed meet the position’s requirements. This

causes low matching rates. However, matching efficiency increases following wide

implementation of ICT. ICT adoption causes the platform and working interface

to become standardized, so that most of a skilled worker’s existing knowledge con-

tinues to be effective in a new job. When a skilled worker is looking for job, her

previous expertise satisfies the requirements of more vacancies than before, which

dramatically increases the number of matches. Technically, for each type of worker,

the matching function has a parameter governing the fraction of workers suitable

for each associated vacancy. This parameter is related to matching efficiency and is

assumed to have increased over time for skilled workers.

Castro and Coen-Pirani (2008) show that changes in capital-skill complemen-

tarity can account for most of the changes in relative volatility in the labor market.

This paper identifies another mechanism that can explain the volatility increase in

skilled employment. Apparently, these two hypotheses are competing. Both hy-

potheses emphasize the impact of technology advance on the cyclical behavior of

employment. The Castro and Coen-Pirani (2008) explanation relies on the com-

parative advantage of skilled labor in adopting new technology. They argue that

the end of technology diffusion reduces capital-skill complementarity. Once new

equipment is widely used in the economy, skilled workers gradually lose their advan-

tage in implementing new technology. Thus, complementarity falls and volatility of

skilled employment rises. I argue, instead, that the general purpose feature of ICT
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expedites the standardization of production, making previously accumulated skills

more transferable over jobs, firms and industries. The growing relevance of skill

in the search process enlarges the possibility of matching workers with vacancies.

Thus, economic booms witness a bigger swing in employment. In my opinion, the

distinction between these hypotheses lies in the fact that Castro and Coen-Pirani

(2008) and I focus on different aspects of technology. It is likely that these two

mechanisms are complementary.

Broadly speaking, this paper is part of the literature on the relationship be-

tween technological change and the labor market. There is a growing literature on

technology and skill premia. The difference between this paper and others is that I

pay particular attention to the general-purpose nature of ICT. Bresnahan and Tra-

jtenberg (1995) coined the term ”General Purpose Technology” (GPT) to describe

widely used technologies that transform both household life and the ways that firms

conduct business. Examples are steam, electricity, internal combustion and ICT.3

The existing skill premia literature centers on skill-biased technological change as

an explanation for rising wage inequality due to changing wage differentials among

different education levels.4 Katz and Murphy (1992) and Acemoglu (1998,1999)

propose that new equipment goods have improved the productivity of workers with

3Jovanovic and Rousseau (2005) present various stylized facts of GPT.
4There are exceptions. For example, Di Nardo et al (1996) and Lee (1999) hold that institutional

changes, such as deunionization and the decline in the real minimum wage, play an important role

in explaining changes in the wage premium. Wood (1995) claims that rising inequality is partly

due to trade liberalization. For a comprehensive survey for this topic, see Acemoglu (2002) and

Autor, Katz and Kearney (2005).
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certain skills. Krusell, Ohanian, Rios-Rull and Violante (2000, henceforth KORV)

show that capital-skill complementarity can explain the upward trend of the skill

premium. Many economists argue that capital-embodied technology generates an

increase in demand of skilled labor because skilled workers have a comparative ad-

vantage in adopting new equipment. When there is an acceleration in the speed

of embodied technical change, the demand for skilled labor increases accordingly.

Galor and Tsiddon (1997), Greenwood and Yorukoglu (1997) and Galor and Moav

(2000) follow this argument. All these papers explore changes in relative prices of

labor from the perspective of skill-biased technological progress. Instead, I turn

attention to the quantity side of the labor market and analyze the implications

of the general-purpose nature of ICT for employment volatility of different worker

types. Aghion, Howitt and Violante (2002) have pointed out the importance of the

general-purpose nature of ICT for the labor market, although they emphasize its

implications for wage inequality rather than employment volatility.

This paper also draws on the labor search and matching literature. The search

and matching model has become the workhorse in macroeconomic theories of the

labor market. Mortensen and Pissarides (1994) provide an attractive mechanism

generating equilibrium unemployment, which has been adopted to study various

labor market issues. In this paper, I embed the search and matching process into

an otherwise classical dynamic general equilibrium model.5 I do not use the typical

5Shimer (2005) illustrates that the introduction of the search and matching function does not

magnify employment volatility in the benchmark DSGE model. Shimer (2009) redefines this issue

as the labor-wedge puzzle. My model also generates low volatilities for the labor market.
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Cobb-Douglas matching function although it has properties consistent with many

empirical results. The main reason is that the Cobb-Douglas matching function

lacks micro-foundations and therefore its parameters do not have direct economic

interpretations. I derive a simple matching function based on the urn-ball framework

in which parameters have direct economic meanings.6

The paper is organized as follows. Section 2 presents empirical evidence on

changes in employment volatility of skilled and unskilled workers in the U.S. Section

3 sets up the search and matching framework in a typical dynamic general equilib-

rium environment. Section 4 calibrates the parameters of the model and the analysis

of numerical results is in section 5. Section 6 discusses alternative explanations for

changes in the cyclical dynamics of the labor market, and section 7 summarizes the

paper.

1.2 Empirical Observations

In this section, I re-produce the two main stylized labor market facts presented

in Castro and Coen-Pirani (2008). First, the volatilities of skilled hours and em-

ployment increased beginning in the mid-1980s while those of the unskilled declined.

If we take into account the simultaneous change in overall economic volatility, the

pattern of relative employment volatility becomes quite remarkable. Secondly, the

volatility of hours worked is primarily driven by that of employment. This result

motivates my focus on the behavior of employment in my theoretical model.

6Other papers have also attemped to enrich the matching function by offering a micro-

foundation. A comprehensive survey is Petrongolo and Pissarides (2001).
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For the labor market measures, I rely on the CPS Merged Outgoing Rotation

Group (MORG) dataset. I also use real GDP from NIPA. Following Castro and

Coen-Pirani (2008), the time period of my sample is from 1979q1 to 2003q4. The

MORG dataset is compiled by the NBER from extracts of the monthly CPS and

contains data on weekly hours and earnings. Specifically, the original CPS outgoing

rotation group data are recorded each month, and the Bureau of Labor Statistics

extracts about 25,000 records of those outgoing households per month and assigns

each household a weight such that aggregate statistics are representative of the U.S.

population. One advantage of this dataset is that it contains comprehensive infor-

mation, including weekly earnings. Earnings can be used to calculate wage weights,

which are useful in controlling for composition effects when hours are aggregated

across different demographic groups.

I follow standard sample-selection criteria to handle missing observations and

coding errors and restrict attention to individuals in the labor force between 16 and

65 years of age that are not self-employed. I then convert monthly series into quar-

terly data. I have about 45,000 observations per quarter, of which on average about

11,000 hold at least a college degree. Variables constructed from the MORG data

include total hours in efficiency units, employment in efficiency units and employ-

ment. These statistics are computed for all workers, and for skilled and unskilled

labor respectively. To compute labor aggregates in efficiency units, real average

wages for each demographic group are used as weights when aggregating across 240

subgroups. This method is analogous to the efficiency units approach suggested by

Katz and Murphy (1992), KORV(2000), and Castro and Coen-Pirani (2008).
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The main variables of interest are constructed as follows:7

Hours Worked in Efficiency Units: Using the efficiency units approach to con-

trol for the counter-cyclical dynamics of labor force quality, I construct a set of

time-invariant weights for each demographic group. First, I divide the sample into

240 demographic groups based on age, sex, race and education. Second, I sum

up weekly earnings and hours worked in each subgroup assuming that individuals

within each subgroup are perfect substitutes. Next, a measure of the nominal wage

rate is created by dividing total income by total hours within each group. As in

Castro and Coen-Pirani (2008), I use the average real wages to weight hours worked

across different groups.8

Employment: Aggregate employment in any given quarter is the total number

of individuals, weighted with the CPS associated weights, who report being at work

that quarter.9 I compute this statistic for the entire labor force, and for skilled

and unskilled labor. For the whole sample period, the average employment rate is

94%; the average skilled employment rate—defined as the ratio of the level of skilled

employment to the entire labor force—is 23%; and the average unskilled rate, defined

in a parallel way, is 71%.

7See Appendix A for details.
8I use the “CPI index for all urban consumers” from the BLS as the denominator when com-

puting real wages.
9The MORG dataset contains several weights for different purposes. Following convention, I

use “earning weight for all races” to get nationwide statistics for workers of different education

levels. Notice that these CPS weights are not the same as the wage weights I construct to measure

variables in efficiency units.
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Employment in Efficiency Units: I use the same efficiency units approach dis-

cussed above for hours to construct employment efficiency unit aggregates.10

These time series from the MORG dataset display strong seasonality. Before

any further data analysis, I need to deseasonalize them. The conventional way is

to use the Census Bureau’s seasonal adjustment program X12. Castro and Coen-

Pirani (2008) claim that measurement errors also produce high frequency noise in

these series. Following their practice, I apply a centered five-quarter moving average

to these X12-adjusted series. I then log them and extract the cyclical component

using a Hodrick-Prescott filter with a parameter of 1600. Volatility or variability is

defined as the standard deviation of this cyclical component.

In Figure 1.1, I present the rolling standard deviations of GDP and hours in

efficiency units of the skilled and unskilled, while Figure 1.2 demonstrates those for

real GDP and skilled and unskilled employment.11 For quarter t, I compute the

standard deviation of the cyclical component of these variables using observations

from period t to t + 40. Figures 1.1 and 1.2 display roughly the same patterns for

hours and employment. Around the mid-1980s, the standard deviations of GDP

and unskilled hours and employment decline sharply. By contrast, the volatility

of skilled labor climbs over this period. A growing literature, reviewed by Stock

and Watson (2003), has documented that the volatilities of most macro aggregates

declined substantially starting in the mid-1980s. Clearly, skilled labor is one ex-

10In my calibration below, these weighted aggregates are used to compute the type-specific

production weights for each type of worker.
11Please note that employment in Figure 1.2 is not in efficiency units.
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ception. To display the differences between skilled and unskilled labor more clearly,

Figure 1.3 shows the rolling standard deviations of skilled and unskilled employment

relative to that of GDP. The ratio for the unskilled is roughly flat while the skilled

ratio increases. This graph conveys a strong message that something fundamental

in the labor market changed in the past three decades.

McConnell and Perez-Quiroz (2000) estimate the break date of aggregate

volatility to be 1984q1. Accordingly, I divide the sample into two sub-periods:

one from 1979q1 to 1983q4, and the other from 1984q1 to 2003q4.12 For each sub-

period, I compute the cyclical statistics of skilled and unskilled labor. Table 1.1

shows the same pattern as Figures 1.1 and 1.2. The standard deviations of skilled

and unskilled labor change in opposite directions. In addition, Table 1.2 illustrates

that a large proportion of fluctuations of hours results from employment regardless

of skill level and period. To prove that the increased volatility of skilled aggregates is

not an artifact of aggregation, Castro and Coen-Pirani (2008) rule out composition

effects from sector, occupation and gender as explanations for the changing relative

volatility of skilled and unskilled labor.

12One concern is that the first subperiod is so short that it cannot illustrate clearly the cyclical

dynamics of the labor market. To correct this shortcoming of MORG dataset, Castro and Coen-

Pirani(2008) also present evidence from the March CPS dataset, which is annual data from 1963

to 2002.
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1.3 Model Set-up

Two types of economic agents co-exist in the model economy: one representa-

tive household, consisting of a continuum of infinitely-lived individuals who consume,

search for jobs and supply labor in order to maximize discounted expected utility;

and one representative firm, which uses labor and capital to maximize the expected

discounted value of profit. There are three types of factor inputs: capital, skilled and

unskilled labor. There are two technologies: one for matching unemployed workers

seeking new jobs to vacancies posted by firms, the other for producing consumption

goods using capital and labor inputs. Finally, the model economy contains one ex-

ogenous shock affecting total factor productivity. Time is discrete and is denoted

by t = 0, 1, 2, · · · .

1.3.1 Household

There is a representative household that includes a continuum of members

with measure 1. Individuals are divided into two types: skilled or unskilled. These

two types of workers go through different search and matching processes and enjoy

different consumption paths.13 The household acts as a social planner, maximizing

the aggregate household utility by optimally allocating consumption goods among

13In the model economy, skilled and unskilled workers have different consumption because of the

differences in their utility weights in the preference function. However, all workers of a given type

enjoy the same amount of consumption regardless of employment status. This assumption seems

realistic given that in the real economy consumption is different for workers of various education

levels.
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household members. The utility level depends on consumption and disutility from

employment. The aggregate utility function is the weighted sum of the utilities of

skilled and unskilled labor. The household optimally equalizes the marginal utility

of consumption within household members of the same type, and also equalizes the

weighted marginal utility of consumption across the two types of individuals. The

aggregate utility for the household is:

∞∑
t=0

βtE0

{
λs

[ ls(cst)1−σs

1− σs
− (nst)

1+ηs

1 + ηs

]
+ λu

[ lu(cut)1−σu

1− σu
− (nut)

1+ηu

1 + ηu

]}
(1.1)

where the subscript “s” is related to skilled labor, while “u” represents unskilled

workers. β is the subjective discount factor; λi, i ∈ {s, u} is the subjective utility

weight; li is the measure of each type of worker in the labor force, where ls+lu = 1;14

cit is consumption for type-i workers at period t; nit is the measure of employment for

each type of worker; and uit is the corresponding unemployment measure at period t,

where li = nit+uit. I assume that the household is able to insure its members against

all idiosyncratic shocks, mimicking the complete markets allocation. Because utility

is separable in consumption and leisure, all members of a given type of labor enjoy

the same consumption regardless of their employment status.

The household chooses consumption for its members subject to:

0 = Dt + wstnst + wutnut + ptqt − ptqt+1 − lscst − lucut

where Dt is the dividend received by the household at period t; wit is the state-

contingent wage rate for type-i workers in period t, which is determined by Nash

bargaining; pt is the price per share at period t; qt is the number of shares in

14I abstract from the labor-force participation decision in this paper.
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the representative firm held by the representative household at the end of period

t − 1 and qt+1 is the number of shares carried over to period t + 1. Due to the

representative-agent assumption, the household is the only owner of the firm, which

implies qt = qt+1 at the aggregate level. Accordingly, the above budget equation in

equilibrium becomes:

0 = Dt + wstnst + wutnut − lscst − lucut (1.2)

The two types of workers go through separate matching processes. The laws

of motion for labor flows are expressed as follows:

nst+1 = (1− χs)nst +Ms(ust, vst) (1.3)

nut+1 = (1− χu)nut +Mu(uut, vut) (1.4)

where χi, i ∈ {s, u} represents the type-specific separation rate; Mi is the matching

function for each type of worker; and vit is the type-specific vacancies posted by

firms at period t. In the model economy, there is involuntary unemployment due to

labor market frictions. Each period all unemployed workers search for new jobs, but

the amount of job creation is also dependent on the number of vacancies posted.

1.3.2 Firm

The representative firm has access to a production function using one type

of capital and two types of labor as inputs. I assume that the numbers of skilled

and unskilled workers in the population are exogenously determined and there is no

channel for an unskilled worker to upgrade her skill. The empirical labor literature,
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such as Katz and Autor (1999) and Autor, Katz and Krueger (1998), documents

that skilled and unskilled workers are not perfect substitutes and that the elasticity

of substitution between them is between 1 and 2, well short of infinity. Accordingly,

the production function is:

yt = eztkαt
[
(asnst)

σ + (aunut)
σ
] 1−α

σ (1.5)

where zt is the shock to general TFP; k is the capital stock; the elasticity of sub-

stitution between two types of workers is 1
1−σ ; and ai is the type-specific weight in

production. The firm is assumed to own capital, but has to employ labor from the

household. To hire labor, the firm posts vacancies and goes through the matching

process. The firm maximizes the discounted profit:15

∞∑
t=0

βtE0Λ0,tDt (1.6)

where Λ0,t =
∂ut
∂cit

/
∂u0

∂ci0

Dt = eztkαt
[
(asnst)

σ + (aunut)
σ
] 1−α

σ − wstnst − wutnut − fsvst − fuvut + (1− δ)kt − kt+1

Λ0,t is the stochastic discount factor of the household while Dt is the dividends. fi

is the unit cost of vacancy posting for type-i jobs, and δ is the depreciation rate of

15See Andolfatto (1996) for this type of set-up. In Appendix C, I derive an alternative set-up

following Shimer (2009). Notice that the optimality conditions imply ∂ut
∂cst

/
∂u0

∂cs0
= ∂ut

∂cut

/
∂u0

∂cu0
.
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capital. The recursive expression for the above problem is :

Jt(zt, kt, nst, nut) = max
{vst,vut,nst+1,
nut+1,kt+1}

{
eztkαt

[
(asnst)

σ + (aunut)
σ
] 1−α

σ − wstnst − wutnut

− fsvst − fuvut + (1− δ)kt − kt+1 + βEtΛt,t+1J(t+ 1|t)
}

(1.7)

Each period, the firm optimally decides how many vacancies to post for a given

type of labor and how much to invest in capital for future production. Because labor

supply, like capital, is determined one period in advance, the firm faces the labor-

matching constraints:

nst+1 = (1− χs)nst +Ms(ust, vst)

nut+1 = (1− χu)nut +Mu(uut, vut)

1.3.3 Matching Function

In this subsection, I derive a matching function based on an “urn-ball” frame-

work. The aggregate matching function encapsulates search and matching frictions.

The sources of frictions in the labor market are various, including co-ordination

failures, mismatch and limited mobility. One reason why the Cobb-Douglas match-

ing function is so popular is that its constant-returns-to-scale property is consistent

with empirical outcomes.16 However, this form of matching function looks like a

black box, which limits the interpretation of both empirical and theoretical results.

Moreover, this matching function is so abstract that certain features pertaining to

the labor market cannot be added easily.

16See Petrongolo and Pissarides (2001).
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Some existing research has attempted to establish micro-foundations for the

matching function, in hopes of gaining a better understanding of the nature of

matching frictions, and providing direct economic meanings for function parameters.

The exponential-type matching function was first employed in a market context by

Butters (1977), in which buyers and sellers contact each other in commodity markets.

In the typical static “urn-ball” scenario, unemployed workers each place a ball

(job application) randomly in an urn (job-vacancy), where each urn belongs to one

firm. Firms then pick one ball from their urn at random. In this model, matching

frictions come from co-ordination failure between workers. For example, some urns

may contain more than one ball while some others have nothing in them. The

possibility of a given urn having at least one ball is
(
1 − (1 − 1

v
)u
)
, where u is is

the number of balls and v is the number of urns. If the number of urns, v, goes to

infinity, the limiting form of the above expression turns into
(
1−e−u

v

)
. The expected

number of matches is expressed as:

M = v

(
1− e

−u
v

)
(1.8)

In fact, Hall (1980), Pissarides (1979) and Peter (1984) all obtain similar forms for

the matching process. The continuous-time version of the above equation is:

M = v

(
1− e

−u
v
dt

)
(1.9)

which represents the expected number of urns (vacancies) receiving at least one

application in a time period of length dt.17

17Mortensen and Pissarides (1999) enrich the continuous-time version by incorporating simulta-
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Equation (1.8) satisfies intuitive properties of the matching function. For ex-

ample, the number of matches is increasing in both arguments; M(0, v) = M(u, 0) =

0; and returns to scale are constant. Furthermore, the urn-ball framework can eas-

ily accomadate additional features, making the matching function more flexible and

meaningful. Moreover, there are several papers, such as Montgomery (1991), Cao

and Shi (2000), Julien et al (2000) and Burdett et al (2001), which model a trade-off

facing agents between high match payoffs and the risk of not matching and generate

an exponential equilibrium matching function in the limit.

To adapt the urn-ball scenario to my model economy, I assume that only a

fraction αi of unemployed workers of type i are qualified for a given vacancy.18 As

mentioned before, I assume that skilled and unskilled workers go through different

search processes. Specifically, I assume that there are two labor markets, one for

the skilled and the other for the unskilled. Each urn accepts only one type of

application and is placed at the associated marketplace. Each type of worker goes

to the corresponding labor market and tries her luck. Workers randomly put their

balls in one urn without knowledge about their qualification for that particular urn.

Firms can’t identify ex ante which workers in the market are qualified when workers

place balls, but firms know the fraction of unemployed workers in the market that are

suitable, and this is constant over vacancies within a given market. Therefore, the

neous search on both sides of the labor market. The limiting form of their matching function is:

M = lim
dt→0

(
v(1− e

−fu
v dt) + u(1− e

−gv
u dt)

) /
dt = fu+ gv, where f, g are parameters.

18For notation, I use αi in this subsection and i ∈ {s, u}. In the subsequent subsections, αs

and αu are used to represent the suitability of each type of worker to the associated vacancy,

respectively.
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associated probability of each urn having at least one suitable ball is
(
1−(1− 1

vi
)αiui

)
.

If we take the limit operation, then the expression becomes
(
1 − e

−αiui
vi

)
and the

corresponding matching function turns into:

Mi = vi

(
1− e

−αiui
vi

)
(1.10)

Based on this argument, it follows that the value of αi is expected to fall between 0

and 1 in the discrete time formulation. In this paper, equation (1.10) is adopted as

the matching function.

I can derive the same matching function in the continuous-time context. I

assume that λi, the arrival rate of the Poisson process, is positively related to αiui,

the number of unemployed workers of type i who are qualified for the job, and is

negatively related to vi, the number of vacancies of type i in this market. That is,

λi = αiui
vi

. Therefore, the number of urns having at least one ball per unit of time

is: vi
(
1− e−λidt

)
or vi

(
1− e

−αiui
vi

dt)
, where dt = 1.

1.3.4 Maximization Problem

For the household, the maximization problem can be expressed as:

Vt(zt, qt) = max
{cst,cut,qt+1}

{
λs

[ ls(cst)1−σs

1− σs
−(nst)

1+ηs

1 + ηs

]
+λu

[ lu(cut)1−σu

1− σu
−(nut)

1+ηu

1 + ηu

]
+βEtV (t+1|t)

}
(P.1)

s.t.

0 = Dt + wstnst + wutnut + ptqt − ptqt+1 − lscst − lucut (1.11)

Following the conventional procedure, I get the optimality condition:

λsc
−σs
st = λuc

−σu
ut (1.12)
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Equation (1.12) shows that the household equalizes weighted marginal utilities of

consumption across skilled and unskilled labor.

For the firm, the profit-maximizing problem is characterized as:

Jt(zt, kt, nst, nut) = max
{vst,vut,nst+1,
nut+1,kt+1}

{
eztkαt

[
(asnst)

σ + (aunut)
σ
] 1−α

σ − wstnst − wutnut

− fsvst − fuvut + (1− δ)kt − kt+1 + βEtΛt,t+1J(t+ 1|t)
}

(P.2)

s.t. nst+1 = (1− χs)nst + vst
(
1− e

−αsust
vst

)
(1.13)

nut+1 = (1− χu)nut + vut
(
1− e

−αuuut
vut

)
(1.14)

The optimality condition for capital is:

1 = βEtΛt,t+1

{
αezt+1

(
kt+1

)α−1[
(asnst+1)σ + (aunut+1)σ

] 1−α
σ + 1− δ

}
In equilibrium, the cost of investing one unit of capital this period is equal to the

expected value of the marginal product and the undepreciated portion of the capital

next period.

These two agents interact with each other through two channels. One is

through the labor market where the firm hires household members and pays wages

for their work. The other is through the securities market. Household members

hold the securities issued by the firm and receive dividends contingent on the state

of the economy. In the model economy, wage rates are decided by axiomatic Nash

Bargaining.
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1.3.5 Nash Bargaining

At the start of each period, the household and firm bargain with one another

over the skilled and unskilled wage rates after the productivity shock is realized. I

assume that agents implement the axiomatic Nash bargaining solution from Nash

(1953). I follow Shimer (2009) to set up the Nash bargaining problem as:19

max
w̃i

{
Ṽ φi
it J̃

1−φi
it

}
(1.15)

where i ∈ {s, u} indicates skilled or unskilled workers. Following Shimer (2009), Ṽit

represents the marginal utility to the household of having one more type-i worker

employed at a wage w̃i in period t rather than unemployed, evaluated at the equi-

librium levels of assets and employment.20 Meanwhile, J̃it is the marginal profit to

the firm of hiring one more type-i worker at a wage w̃i in period t, and φi is the

bargaining weight of type-i workers vis-a-vis the firm.

The equilibrium wage rate w̃i solves the weighted geometric average of the

gains from bargaining:

w̃i = arg max

{
Ṽ φi
it J̃

1−φi
it

}
The first-order condition is:

0 = φiJ̃it(·)
∂Ṽit
∂w̃i

+ (1− φi)Ṽit(·)
∂J̃it
∂w̃i

(1.16)

19w̃i is the type-specific arbitrary wage rate in the Nash bargaining context at period t. To

simplify notation, I suppress the time-subscript ‘t’. In equilibrium, w̃i = wit.
20Some papers also incorporate rigid wages. If rigid wages are added to this bargaining frame-

work, as in Hall (2005), wages will be the weighted sum of the current Nash-Bargaining solution

and previous wages. This mechanism is designed to dampen the cyclical fluctuations of wages and

to increase the volatility of employment.
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After plugging in the expressions for J̃it(·), Ṽit(·), ∂J̃it
∂w̃i

, ∂Ṽit
∂w̃i

and manipulating,21 I

find that the skilled and unskilled wages satisfy:

wst = φs(1−α)eztkαt

[
(asnst)

σ+(aunut)
σ

] 1−α−σ
σ

aσs (nst)
σ−1 +(1−φs)cσsst (nst)ηs (1.17)

wut = φu(1−α)eztkαt

[
(asnst)

σ+(aunut)
σ

] 1−α−σ
σ

aσu(nut)
σ−1+(1−φu)cσuut (nut)ηu (1.18)

The wage formula is a linear combination of the marginal product of labor (MPL)

and the marginal rate of substitution (MRS) between consumption and employment

from the perspective of the household. The combination weights are the associated

bargaining powers. Because MPL and MRS are both pro-cyclical, the wage rates

are pro-cyclical and thus absorb most of the fluctuations of the exogenous shocks.

As a result, the volatility of employment is quite low compared to output, as in

most similar search models. Given that this paper does not focus on the solution to

the Shimer (2005) puzzle, I abstract from this issue and concentrate on the relative

volatilities of skilled and unskilled employment in the model.

1.3.6 Competitive Equilibrium

The competitive equilibrium is now formulated. The equilibrium results from

the combination of the household’s utility-maximizing and the firm’s profit-optimizing

problems. That is, the household solves problem (P.1) and the firm chooses optimal

strategies for problem (P.2).

The aggregate state of the model economy is SSt = {zt, kt, nst, nut} for period

t. In equilibrium, the wages wst and wut are functions of the state of the economy:

21Please check Appendix B for the detailed derivation.
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wst = Ws(SSt), wut = Wu(SSt). While skilled and unskilled employment and capital

evolve according to nst+1 = Ns(SSt), nut+1 = Nu(SSt), kt+1 = K(SSt).

A competitive equilibrium is a set of allocation rules, prices and aggregate

laws of motion for the state variables that satisfy:

1. The household maximizes (P.1), taking as given the aggregate state SSt and

the pricing functions, Ws, and Wu. The household’s solution is: cst = Cs(SSt),

cut = Cu(SSt);

2. The firm solves (P.2), given SSt, Ws, and Wu. Its solution is: nst+1 = Ns(SSt),

nut+1 = Nu(SSt), kt+1 = K(SSt), vst = Vs(SSt), vut = Vu(SSt);

3. The economy-wide resource constraint is satisfied:

eztkαt
[
(asnst)

σ + (aunut)
σ
] 1−α

σ + kt(1− δ) = kt+1 + lscst + lucut + fsvst + fuvut

1.4 Calibration

To proceed further, I calibrate the model economy in this section. First, some

structural parameters are assigned values according to previous literature. Then,

given these borrowed parameters, all other parameters are set so that the model

matches certain stylized facts in the U.S. data. These unknown parameters govern

the utility function, production sector, search and matching process, and exogenous

technology process.
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1.4.1 Parameters in the Utility Function: β, σs, σu, ηs, ηu, λs, λu, ls, lu

The subjective discount factor is set to match an annual rate of return of 5

percent. Given that the time period is set to one month, β is equal to 0.996.

The coefficient of relative risk-aversion, σi, i ∈ {s, u}, displays a wide range of

estimates in existing literature. For example, using durable and non-durable goods,

Rotemberg and Woodford (1997) estimate σi to be 0.16. Hall (1988) and Attanasio

and Weber (1993) find σi to be around 3 using aggregate consumption data. Fuhrer

(2000) estimates σi to be about 6 assuming habit formation in consumption. All

these estimates regard individuals as identical while I have divided labor into two

subgroups. I set σs = σu = 1, which is within the range of existing estimates. Thus,

the consumption part of the utility function takes the log form.

ηs and ηu index the marginal disutilities for the representative household of

skilled and unskilled employment, respectively. If I assume that each type of worker

works a fixed number of hours per period, then ηs and ηu also govern the Frisch

elasticities for the household of skilled and unskilled hours. Empirical estimates of

this elasticity for the entire labor force have a wide range. MaCurdy (1981), Altonji

(1986) and Browning, Deaton and Irish (1985) find elasticities between 0 and 0.5.

Browning, Hansen and Heckman (1999) report estimates ranging from 0.5 to 1.6.

Imai and Keane (2004) provide a high estimate of 3.8. In the benchmark version

of my model, I set the elasticity to 0.5, implying ηs = ηu = 2, to make sure that

the marginal disutilities of skilled and unskilled employment fall within a reasonable

range. Again, I abstract from differences in this elasticity between the two types of

23



workers. I check the robustness of numerical results to the values of ηs and ηu.

λs and λu are subjective weights of skilled and unskilled workers in the house-

hold utility. I set λs and λu to make sure that the steady state consumption ratio

between skilled and unskilled labor is consistent with its empirical counterpart.22

The Consumer Expenditure Survey (CES) dataset collects “total average annual

expenditure” by education level since 1996. The average consumption ratio in the

data is 1.67.

ls and lu are set to match the labor force shares of skilled and unskilled workers.

Both of them are treated as exogenous values in my paper. For simulation II, these

two values vary between two sub-periods.

1.4.2 Parameters for the Production Sector: α, σ, δ, as, au, fs, fu

α is the capital share of total income. I follow convention and set α to 0.35.

σ governs the elasticity of substitution between two types of workers, for which the

existing literature has a wide range of estimates. Autor, Katz and Krueger (1998)

conclude that the elasticity of substitution is likely to fall into the interval between

1 and 2. Katz and Murphy (1992) estimate the elasticity as 1.4. In the benchmark

version, I set σ = 0.29, corresponding to an elasticity 1
1−σ = 1.4. In subsequent

sections, I check the robustness of numerical results to other values of σ.

For the depreciation rate, I follow Shimer (2009) and use data from the Bureau

of Economic Analysis. BEA’s Fixed Asset Table reports the current cost net stock

22In the model economy, all workers of a given type optimallly consume the same amount.

However, different type workers can consume different amounts at an optimum.
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of fixed assets and consumer durables, which is used as a measure of the nominal

capital stock. I get nominal GDP from NIPA. The annual average capital-output

ratio in the US is 3.2, which implies that the ratio of capital to monthly output

is 38.3. The depreciation rate is set to 0.0055 in order to be consistent with this

ratio.23 This way of fixing the depreciation rate allows me to abstract from issues

such as the distinction between physical depreciation and economic depreciation.

as and au are type-specific production weights. The two types of workers

are neither perfect substitutes nor equally productive in production. Hence, as

and au are set to match the observed ratios of employment in efficiency units to

employment for both types of workers. For the whole sample period of 1979-2003,

the production weight for skilled workers is 12.58 while that for unskilled workers

7.28. In the following section, I normalize au to be 1 and set as = 12.58/7.28.

fs and fu are vacancy-posting costs, which are set to make sure that the steady-

state values of ns and nu are equal to their empirical counterparts, as described

further in section 1.5.

1.4.3 Parameters for the Matching process: χs, χu, φs, φu, αs, αu

To estimate the separation rates for skilled and unskilled workers, I follow

the method used in Shimer (2005) by inferring the job-finding rate first and then

23Alternatively, I can set the monthly depreciation rate to match the empirical counterpart and

then derive the associated capital stock. Although the steady-state values of the capital stock

obtained through these two approaches are different, they have quite negligible effects on the

cyclical dynamics of the model.
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computing the associated separation rate. The data are the basic monthly CPS

from 1994 to 2006. I choose January 1994 as the starting period because the CPS

survey switched to dependent interviewing at that time. Starting in 1994, respon-

dents who have been laid off in successive months were not asked for the duration

of their unemployment in the second month. This switch in survey methodology

reduced measures of short-term unemployment.24 In this paper, I first compute

the separation rates without any modification to the data. I get χs = 0.0108 and

χu = 0.0201. Next I scale separation rates up to match the separation rate of the

entire labor force in Shimer (2005) who adjusts his measure for the 1994 switch in

CPS survey methdology. The scaled-up estimates are χs = 0.0198 and χu = 0.0369.

I set χs = 0.0108 and χu = 0.0201 for the benchmark model in simulation I. For

robustness, I substitute the scaled-up separation rates and compute the associated

numerical results. Simulated results are robust to this change.

Hall (2005) shows that separation rates can be estimated through the Job

Openings and Labor Turnover Survey (JOLTS), or directly from flows in the CPS.

Gottschalk and Moffitt (1998) directly compute separation rates from the Survey

of Income and Program Participation (SIPP). All these estimates demonstrate that

the separation rate is roughly constant over time and that recessions involve no

significant increases in the rate of departure from jobs. In sum, it is reasonable to

estimate the separation rate based on my abbreviated sample period and to keep

the separation rate fixed over time in the model economy.

Existing literature adopts different values for the bargaining power, φ. Shimer

24See Abraham and Shimer (2001).
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(2005) sets φ to 0.72 based on the Hosios’s (1990) efficiency condition, while Hage-

dorn and Manovskii (2008) use bargaining power along with other structural param-

eters to match the volatility of labor market quantities and find φ to be 0.05. In this

paper, I assume symmetric Nash-Bargaining power for both the skilled and unskilled,

namely φs = φu = 0.5. In fact, the wage rates in my model are a bargaining-power

weighted combination of MPL and MRS, both of which are pro-cyclical. As I show

later, my results are robust to different values of φs and φu.

The parameters αs and αu govern matching efficiency for skilled and unskilled

workers. These are key parameters in my model, and I discuss how I set them in

section 1.5.

1.4.4 Parameters for the Exogenous Process: ρz, σz

Shimer (2009) estimates the productivity shock’s properties by using the BLS

annual data on multifactor productivity growth, first calculating the average annual

growth rate, the unconditional standard deviation of annual productivity growth

and the annual autocorrelation, then deriving the implied monthly parameters. I

assume that the productivity shock has a deterministic trend and borrow ρz = 0.98

and σz = 0.005 from Shimer (2009).

Parameter values are listed in Table 1.3.
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1.5 Numerical Results

In this section, I solve the dynamic model numerically. I take first-order linear

approximations of optimal policy functions around steady-state values. To illustrate

my main mechanism in the model economy, I carry out two experimental simulations.

The first simulation aims to show the potential importance of matching efficiency

for employment volatility. Specifically, I use prior research or data moments to pin

down all parameter values except for αs, αu, fs, and fu, as described in the previous

section. I regard αs as a free parameter and allow its value to increase within a

reasonable range to represent improvement in matching efficiency for skilled workers

due to the spread of ICT. I assume αu to be 0.35 while fs and fu are adjusted in

response to changes in αs to guarantee that steady-state values of ns and nu are

consistent with the data. This experiment gives us a direct idea of the mechanism

at work in the model. Next, I undertake a disciplined exercise of simulating the

effects of changes in matching technology between two periods, 1979-1983 and 1984-

2003. I pin down parameters for each period using moments not related to skilled

employment volatility. I then show that the model can generate increased volatility

of skilled employment in the second period.

To obtain the summary statistics of interest, I simulate the model 3000 times

for each set of structural parameters. For each simulation, I set the number of

periods to be 360, corresponding to thirty years. I convert simulated monthly series

to quarterly data using 3-month averages. Finally, I calculate the standard deviation

of these percentage deviations from the steady state for variables of interest.
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1.5.1 Simulation I

In this paper, I propose that rising matching efficiency can account for the

increased volatility of skilled employment. In the model, the key parameter to this

mechanism is αs, governing the fraction of skilled unemployed workers suitable for

a given vacancy. My first simulation illustrates the positive relationship between

matching efficiency and employment volatility. To isolate this relationship from

others, I fix all parameters except for αs, fs and fu. In particular, I set αu to be

0.35 and assume it to be constant.25 My procedure is as follows: I choose a value

for αs, pin down fs and fu to make sure that ns and nu are consistent with their

empirical counterparts, simulate my model for this set of parameters and record

the volatilities of variables of interest. I repeat this process for a range of values

for αs. Results are shown in Figures 1.4 and 1.5. As αs increases, the volatility

of skilled employment rises relative to that of output, while the relative volatility

of unskilled employment remains flat. Other factors being controlled for, a more

efficient matching process makes skilled employment more volatile. Intuitively, rising

matching efficiency increases the number of matches in booms for a given number

of unemployed workers and vacancies. Therefore, skilled unemployed workers have

a higher job-finding rate, worker flows out of unemployment rise and employment

fluctuates more than before. Meanwhile, Figure 1.5 shows the impact of changes in

αs on the skill premium, defined as the average ratio of skilled to unskilled wages

implied by the model. The figure shows that increases in matching efficiency for

25The volatility pattern is robust to the value of αu.
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skilled workers generate a modest increase in the skill premium.

Several structural parameters calibrated above have a wide range of plausible

estimates. I check the robustness of numerical results to these parameters. I re-do

the exercise plotted in Figure 1.4 for values of the reverse labor supply elasticity,

ηs and ηu, ranging from 0.25 to 3; for values of σ, where 1
1−σ is the substitution

elasticity in production, ranging from 0.1 to 0.5; and for scaled-up separation rates,

namely χs = 0.0198 and χu = 0.369. The volatility pattern shown in Figure 1.4

is robust to these tests. I also explore robustness to alternative values of φs and

φu, which represent both the bargaining power and weights for wage determination.

Specifically, φi is the weight on the marginal product of type-i labor in wage deter-

mination, while 1−φi is the weight on the MRS between consumption and labor. In

the model economy, the volatility of the MRS is less than that of the MPL. When

the value of φi declines, wage fluctuations diminish accordingly. As a result, em-

ployment becomes more volatile. However, this does not affect the impact of αs on

the relative volatilities of skilled and unskilled employment.

1.5.2 Simulation II

Now that I have established that increased matching efficiency can potentially

explain higher volatility for skilled workers, the next step is to assess whether this

mechanism can potentially explain the observed rise in skilled volatility quantita-

tively. I calibrate the model to two subperiods, 1979-1983 and 1984-2003. Table 1.4

presents summary statistics on the labor market for these subperiods. Over time,
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the skilled share of the labor force increased at the expense of the unskilled share,

and the wage ratio between skilled and unskilled workers rose. I use these changes

to pin down parameters, and then examine the extent to which my calibrated model

reproduces the observed volatility changes between periods.

Specifically, for each period I allow αs, αu, fs, fu, λs, and λu to vary while all

other parameters are fixed at their values from simulation I. Note that αs and

αu govern matching efficiency for skilled and unskilled workers while fs and fu are

vacancy-posting costs. The first four parameters are set in each period to ensure that

the model economy matches the observed long-run averages of the skilled labor share

ls, skilled employment share ns, unskilled employment share nu, and wage ratio ws
wu

,

whose values for two subperiods are listed in Table 1.4.26 The last two parameters,

λs and λu, are subjective utility weights for skilled and unskilled workers, which are

set to guarantee that the consumption ratio is valid over changing periods.

Table 1.5 presents calibrated parameter values for each subperiod while Table

1.6 shows the simulated volatilities. Table 1.7 summarizes the volatility ratios of

skilled and unskilled employment relative to output implied by the simulation II and

compares them with the data. The last column of Table 1.7 shows that the model

economy generates a 50% rise in relative volatility of skilled employment, compared

to the 217% increase observed in the data.

Tables 1.5 and 1.6 show that the calibrated value of αs increases between peri-

26Note that lu = 1 − ls, us = ls − ns, uu = lu − nu. The values of ls and lu are directly

determined by the associated measures of skilled and unskilled labor. Also, both are treated as

exogenous parameters in the models.
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ods, representing a rise in matching efficiency for skilled workers; and that consistent

with the previous numerical results, employment volatility of the skilled goes up in

the later period. However, Table 1.5 also shows that the calibrated αu increases,

while Table 1.6 displays a negligible change in unskilled volatility. This seems to be

a challenge to my hypothesis: why does unskilled volatility not increase substan-

tially when αu goes up? My explanation is that there is a decline in the number

of unemployed unskilled workers in the labor force between periods. Note that the

number of matches of type-i workers is dependent on not only vacancies, vi, and

matching efficiency, αi, but also the amount of unemployment, ui. The increased

αi pushes the number of matches upward while the drop in ui pulls this number

down. On net, fewer unemployed unskilled workers get jobs in booms and unskilled

employment expands less in the later period. One might worry that this argument

concerns level changes while volatility depends on percentage deviations. Given the

accompanying decline in the share of the unskilled in the labor force, it is not clear

whether the decline in the level of unskilled unemployment is sufficient to prevent a

rise in unskilled volatility driven by rising matching efficiency. To clarify this issue, I

derive an approximate expression for employment volatility for type-i workers from

the law of motion for employment, which is a function of αi, the matching efficiency

of type i workers and the steady-state values of unemployment ūi, employment n̄i,

and vacancies v̄i. For workers of type i, we have:27

var(ni) = Fi
(αiūi
v̄i

,
ūi
n̄i
, ·
)

(1.19)

27See Appendix D for the detailed derivation.
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where Fi1 and Fi2 are both positive, so that employment volatility is increasing

in both αiūi
v̄i

and ūi
n̄i

. In contrast to unskilled workers, the steady-state number of

unemployed skilled workers, ūs, remains roughly constant between periods while

matching efficiency of skilled workers increases. Therefore, the product of αsūs

increases substantially, leading to a volatility rise in skilled employment. In contrast,

unskilled workers have a decline in ūu, which offsets the effect of the rise of ᾱu.

Taking into account all relevant factors, these competing parameter changes for the

unskilled parameters roughly cancel each other out and the overall effect on unskilled

employment volatility is negligible.

Table 1.6 also documents the volatility of job-finding rates for skilled labor,

unskilled labor and the overall labor force in the two subperiods. The volatility of

the job-finding rate for skilled labor has a higher percentage increase in the second

period than that for unskilled labor.28

Next, I plot impulse responses to a favorable TFP shock to compare model

dynamics between the two periods. Each quadrant of Figure 1.6 contains two sets

of responses for a given variable, with the impulse responses for the second period

marked with crosses (“x”). In both periods, when the economy has a positive shock

to TFP, vacancies, job-finding rates and employment jump up for both types of

workers, which leads to a drop in unemployment. The response of vacancies is

28Elsby, Michaels and Solon (2009) study outflow rates from unemployment since WWII using

CPS data. They estimate job-finding rates using a variety of different methods. Their estimated

rates do not show an upward or downward trend. They do not study trends in volatility in these

rates, and they look at the overall labor force rather than skilled and unskilled workers separately.
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smaller in the second period than in the first period following a good shock, due to

the increased vacancy-posting cost. For skilled workers, the increase in matching

efficiency dominates the effect of lower vacancies, so skilled workers have a much

higher job finding rate in the later period, resulting in a larger percentage increase

in employment. For unskilled workers, the increase in the job-finding rate is only

slightly higher in the second period, because the lower vacancies almost completely

offset the increase in matching efficiency, and consequently the initial response of

unskilled employment is only slightly higher in the second period compared to the

early period.

Under my first order approximation, impulse responses to negative TFP shocks

are just the inverse of Figure 1.6, which implies skilled employment falls more than

unskilled employment during downturns. Intuitively, this is because the model econ-

omy has a higher vacancy posting cost for skilled than for unskilled positions. In

recessions, firms post fewer vacancies for skilled workers due to this higher cost, and

the outflow from unemployment drops accordingly.

1.6 Discussion

In this section, I discuss several alternative explanations for changes in the

cyclical dynamics of skilled and unskilled employment. These potential candidates

include deunionization, international trade, changing age composition of the labor

force, and tax cuts.

DiNardo et al (1996) and Lee (1999) provide evidence that the large decline
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in unionization in recent decades has made labor markets more competitive and

increased wage dispersion.29 Can deunionization explain rising instability of skilled

employment relative to unskilled? A priori, we would expect that labor unions

aim to stabilize wage rates and employment. Considering the strong bargaining

power of labor unions, one might expect employment of union members to be more

stable than that of non-union members. If so, deunionization would be expected

to increase employment volatility, especially for unskilled workers who are likely to

be unionized. Even if at the aggregate level labor unions make employment more

sensitive to various shocks by increasing wage stickiness, it is still hard to argue that

deunionization contributes a lot to the observed patterns of employment volatility,

because of timing. The US deunionization started in the 1950’s. We did not observe

a decline in relative unskilled employment volatility until the 1980s.

Globalization has transformed international economic activities substantially

in recent decades. Is it possible that globalization plays an important role in changes

in employment volatility? Existing empirical and theoretical literature generates di-

verging results. Intuitively, material offshoring may make labor demand more elastic

since firms can easily replace domestic workers and force unskilled workers to move

to low-wage industries. Empirical studies by Slaughter (2001) and Senses (2007) are

consistent with this intuition. This implies that workers in industries with foreign

competition may have more risk of being displaced by material offshoring. However,

other papers present conflicting results. Munch (2005), using a panel of Danish

29One side effect of unionization is to hinder employment growth, as discussed in Leonard (1992),

and Bronars, Deere and Tracy (1994).
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workers, finds that the impact of offshoring on the probability of displacement is

modest while Geishecker (2008) documents a large effect for Germany. Meanwhile,

Bergin, Feenstra and Hanson (2007) find that outsourcing makes employment more

volatile overseas, but reduces employment fluctuations in the US. In my opinion,

this channel may be helpful in explaining the volatility decline in the overall and

unskilled employment, but is unlikely to explain the increasing relative volatility of

skilled employment. Mankiw and Swagel (2006) show that service offshoring exerts

a positive influence on US total employment. However, the level rise in US total em-

ployment should not have any direct implication for relative volatility of skilled and

unskilled workers. If material or service outsouring is an important factor affecting

employment volatility, it should have more influence in industries with high levels of

imports and outports. However, Castro and Coen-Pirani (2008) check sector effects

and find that the increase in relative skilled employment volatility affects all sectors

of the economy.

Changes in the demographic composition of the workforce can lead to variation

in business cycle volatility. Clark and Summers (1981), Rios-Rull (1996), Gomme et

al (2005) and Jaimovich and Siu (2009) show that the cyclical volatilities of employ-

ment and hours are U-shaped as a function of age. Is it possible that demographic

changes in the labor force account for changes in the cyclical dynamics of employ-

ment? The answer appears to be negative. Jaimovich and Siu (2009) claim that the

associated demographic effects of the US baby boom and baby bust contribute to

the Great Moderation. That is, changes in the age composition have dampened the

volatility of labor in recent years rather than increasing it. Thus, the demographic
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change may be helpful in understanding the changing cyclical volatility of overall

employment, but can not explain the rising volatility of skilled labor.

As for the significant tax cuts in 1981 and 1986, Castro and Coen-Pirani (2008)

have already analyzed their potential effect on employment volatility. They assert

that tax cuts may induce already employed workers to work more, but have a small

effect on the decision of whether to work or not. Given that a large fraction of the

volatility of hours worked comes from that of employment, tax cuts do not seem to

an important factor. Tax cuts may have a larger impact on employment decisions for

women than for men. Castro and Coen-Pirani (2008) narrow down the observations

to white male workers and find the same volatility pattern.

1.7 Conclusion

I propose that rising matching efficiency helps explain the recent increase in

employment volatility of skilled workers. Although there are various potential fac-

tors affecting the cyclical behavior of the labor market, such as institutions, fiscal

policy and demographic composition, it is not clear that any of these factors can

explain the rising volatility of skilled labor. While other factors may also contribute

to changing labor market dynamics, I assert that technology advance in matching

plays an important role.
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Chapter 2

Capital-Skill Complementarity and Employment Volatility

Over the Business Cycle

2.1 Introduction

The purpose of this paper is to explore the contribution of capital-skill com-

plementarity to short-run employment fluctuations. In general, the quantities and

prices of labor inputs are both key variables of interest in evaluating macroeconomic

models. Given that capital-skill complementarity is a leading explanation for long-

run changes in the skill premium, it is interesting to check its short-run implications

for employment volatility. Does complementarity cause skilled employment to be

more volatile than unskilled employment? Does allowing for complementarity im-

prove upon existing DSGE models’ implications for labor market volatility? Does

investment-specific technological change matter when complementarity is present?

The answer to the first question is yes; to the second, no; to the third, yes.

The concrete definition of complementarity used in this paper is borrowed from

Krusell, Ohanian, Rios-Rull and Violante (2000, henceforth KORV (2000)). Their

contribution is to use observable variables to capture unobservable skill-biased tech-

nology changes and to choose parameter values that allow the model to match the

observed secular trend in the skill premium. In their framework, complementar-
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ity first means that the elasticity of substitution between unskilled labor and the

equipment-skill composite is larger than that between skilled labor and equipment.

Loosely speaking, equipment is complementary to skilled labor and is a substitute

for unskilled labor.

Another interesting implication of complementarity in KORV is that the rel-

ative marginal product of skilled to unskilled employment is an increasing function

of the equipment-skill ratio. Thus, changes in the equipment-skill ratio affect the

relative volatility of skilled and unskilled employment. The second implication is

also the main intuition of this paper. Without complmentarity, the standard DSGE

model implies that the relative labor demand curve is only determined by the rel-

ative wage. With complementarity, the relative labor demand also depends on the

equipment-skill ratio. If there is a positive shock and the equipment-skill ratio in-

creases, then the relative demand for skilled labor increases. As a result, skilled

employment has a higher percentage change than unskilled employment.1 There-

fore, complementarity can make skilled employment more volatile in DSGE models.

This mechanism presumes that the equipment-skill ratio varies over the business

cycle. In fact, Lindquist (2004) documents that this ratio is procyclical and lags

output over the cycle in the data.

To check the short-run effect of complementarity for employment, I set up a

benchmark model in which capital is divided into structures and equipment and pro-

duction features equipment-skill complementarity. For comparison purposes, I also

set up a traditional model and an extended model. The traditional model features

1Please check Figure 2.1.
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a CES production function without complementarity while the extended one has

an additional exogenous shock, namely a shock to investment-specific technology

change. Comparing the traditional and benchmark models, we realize the contri-

bution of complementarity. Moreover, Greenwood, Hercowitiz and Krusell (1997,

henceforth GHK (1997)) and (2000) argue for the importance of investment-specific

change at both long-run and short-run horizons. The extended model explores the

combined effect of complementarity and investment shocks.

The paper is related to several lines of economic literature. First, this paper is

connected with the literature on labor market volatility. Real business cycle theories

have been criticized for failing to duplicate some significant facts regarding the labor

market, such as the fluctuations of labor hours. Initially, RBC models relied on high

degrees of labor supply elasticity to generate realistic labor market volatility. Indi-

visible labor, introduced by Rogerson (1984) and Hansen (1985), helps reconcile the

low degree of the intertemporal elasticity implied by micro evidence with observed

fluctuations in the labor market, as indivisible labor transforms an individual utility

function with a low degree of intertemporal elasticity into a representative agent’s

utility with an infinite elasticity. In this paper, I examine if complementarity can

improve on the ability of RBC models to match observed labor market volatility.

Second, a growing literature has documented and discussed secular changes

in the labor market. In order to explain the behavior of the skill premium, KORV

(2000) use a partial equilibrium approach and asks whether a model with comple-

mentarity and the given capital stock series can reproduce the observed annual fluc-

tuations of the skill premium. By relying on the same partial equilibrium method,
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Castro and Coen-Pirani (2008) try to explain the increasing volatility of skilled em-

ployment since the mid-1980’s. As explained earlier, my paper adopts a dynamic

general equilibrium model, instead of partial equilibrium, to examine the impli-

cations of complementarity for labor quantity dynamics by skill. Lindquist (2004)

constructs a dynamic general equilibrium model mainly to explain why the skill pre-

mium is acyclical over the business cycle. When constructing the model, Lindquist

(2004) assumes that skilled workers and unskilled workers constitute one unit of

measure, abstracting from the issue of unemployment. I abstract from skill accu-

mulation for the sake of simplicity while I allow for voluntary unemployment within

the household in the model.

I construct models with fluctuations in employment instead of total hours

worked. In the data, the fluctuation of total hours worked comes from both em-

ployment and average hours per worker. However, the fluctuation of employment is

responsible for more than 80% of that of total hours. Thus, it is natural to model

the cyclical dynamics of employment and allow for the presence of unemployment.

The paper is organized as follows. Section 2 documents empirical evidence for

variables of interest and presents the cyclical properties of the US economy. Section

3 constructs the benchmark model with complementarity that contains two types

of capital, equipment and structures. Section 4 calibrates the model. Section 5 sets

up two control models, which help identify the exact impact of complementarity.

Section 6 summarizes the paper.
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2.2 Empirical Observations

In this section, I present the business cycle dynamics of employment, output,

consumption, and investment in the US data. I log these variables and apply the

widely-used Hodrick-Prescott filter to extract the cyclical components. Volatilities

are calculated based on these cyclical components. Labor market variables are com-

puted using the CPS Merged Outgoing Rotation Groups (MORG) dataset from

1984q1 through 2006q4. Output, consumption and investment are seasonally ad-

justed quarterly data from NIPA accounts over the same period. I document these

statistics as a standard to judge how well the model with capital-skill complemen-

tarity performs. The volatility ratios of employment to GDP and skilled to unskilled

employment are the main indicators I use to assess the models’ performance.

2.2.1 MORG dataset

The MORG dataset is compiled by the NBER from extracts of the CPS An-

nual Earnings file and contains monthly data on weekly hours and earnings. The

original CPS outgoing rotation group data are recorded each month. The Bureau

of Labor Statistics extracts about 25,000 records of those outgoing households per

month and assigns each household an earnings weight such that aggregate statistics

are representative of the U.S. population. I follow the BLS’s suggestion and use

the earnings weights to aggregate individual observations. I aggregate the original

monthly data into a quarterly series of 92 observations for the variables of interest.

I apply standard sample selection criteria to handle missing observations and
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coding errors.2 After applying these criteria, I get about 45,000 individuals per

quarter, of which on average about 10,600 hold at least a college degree. I restrict

attention to individuals in the labor force between 16 and 65 years of age that are

not self-employed.

The variables constructed from the MORG data include employment, total

hours in efficiency units, total usual hours, average hours per worker and average

wage rates. These statistics are calculated for the entire labor force, and for the

skilled and unskilled workers respectively. The MORG variables used to construct

these statistics include employment status, class status,3 usual weekly earnings (in-

cluding overtime, tips and commissions), usual weekly hours worked, and a set of

demographic variables including age, sex, race and education. Weekly earnings are

top-coded in the CPS. I follow Castro and Coen-Pirani (2008) to adjust these top-

coded earnings. They suggest that top-coded earnings be multiplied by 1.3 to ensure

that average earnings in the top decile remain constant from December 1988 to Jan-

uary 1989. In addition, I follow Castro and Coen-Pirani (2008) and compute real

weekly earnings by dividing nominal weekly earnings by the Consumer Price Index

(CPI).

In order to compute skilled and unskilled aggregates, I follow the efficiency-

units method suggested by Katz and Murphy (1992), KORV (2000) and Castro

and Coen-Pirani (2008). A skilled worker is defined as one with at least a four-

year college degree and an unskilled worker is an individual with less than 16 years

2These criteria are conventional. Please check Wu (2010) for details.
3Class status refers to whether the worker’s job is private, government, or self-employed.
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of education. To compute aggregate hours in a way that controls for composition

effects, I use the real average wages as weights when aggregating the hours worked

by individuals in 240 demographic groups.

Now I briefly summarize some variables of interest as follows:

Employment: Aggregate employment in any given quarter is the total number

of individuals, weighted with their CPS earnings weight, who report being at work

that quarter. For the sake of comparison, I calculate this statistic for total employ-

ment, skilled employment and unskilled employment. For the whole sample period,

the average total employment rate is 94%, the average skilled employment rate4 is

23% and the average unskilled employment rate5 is 71%.

Hours Worked in Efficiency Units: I use the efficiency-units approach to com-

pute the total hours worked. These statistics are used to calculate the volatility

ratio of employment to hours. To aggregate workers in different groups, I construct

time-invariant weights for each demographic group. I use the average wages for each

group as weights to aggregate total hours worked across different subgroups as in

Castro and Coen-Pirani (2008).

Total Usual Hours Worked: This is defined as the simple aggregation of hours

worked across 240 subgroups without weights. This statistic is computed for refer-

ence.

4The skilled employment rate is defined as the ratio of skilled employment to the entire labor

force.
5The unskilled employment rate is defined as the ratio of unskilled employment to the entire

labor force.
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Average Hours Worked: This is defined as total hours in efficiency units di-

vided by employment.

Average Wage Rates: This is defined as total earnings divided by employment.

These variables constructed from the MORG dataset display strong seasonal

components. Thus, before any further data analysis, I have to deseasonlize these

series. I use three methods to adjust the raw series: regressing raw series on quarter

dummies, the Census Bureau’s X12-ARIMA and the combination of X12-ARIMA

and centered five quarters MA6 suggested by Castro and Coen-Pirani (2008). Then

I apply the Hodrick-Prescott filter with parameter 1600 to these seasonally adjusted

series.

Tables 2.1, 2.2 and 2.3 shows the standard deviations of these variables from

these three different methods. Table 2.1 is used to compare with my model economies.

2.2.2 NIPA data

I take other time series from NIPA accounts. These variables include output,

consumption and investment. I apply the Hodrick-Prescott filter to real quarterly

logs of GDP, consumption and investment and calculate standard deviations for their

variabilities. These moments are used to evaluate the model’s performance. Follow-

ing GHK (1997), I also construct logs of real GDP, consumption and investment in

6Castro and Coen-Pirani (2008) suggest applying a centered 5 quarters moving average filter

to the seasonally adjusted series to remove high frequency variations. Comparing these computed

aggregates, the results using quarter dummies and X12-ARIMA are similar while the results from

the combined method of X12 and MA5 reduce the labor market fluctuations significantly.
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consumption units. That is, I divide the nominal macro series by the price deflator

of nondurable consumption goods and services. Then I apply the Hodrick-Prescott

filter to get the associated cyclical statistics. I use this procedure to guarantee that

the statistics in the data are consistent with their counterparts in the model with

investment shocks.

Table 2.4 summarizes the key moments computed from the MORG and NIPA

data.

2.3 The Benchmark Model

This section outlines a dynamic stochastic general equilibrium model. The

model economy contains two types of economic agents: one representative house-

hold, consisting of a continuum of infinitely-lived individuals, and one representa-

tive firm, which uses labor and capital to maximize the expected discounted value

of profit. The production function uses four types of factor inputs: capital struc-

tures, capital equipment, skilled and unskilled labor. The production function fea-

tures capital-skill complementarity. Finally, the model economy includes one exoge-

nous shock affecting total factor productivity. Time is discrete and is denoted by

t = 0, 1, 2, · · · .

46



2.3.1 The Household

There is a representative household that includes a continuum of members

with measure 1. Individuals are divided into two types: skilled or unskilled.7 In this

paper, I focus on the extensive margin of the labor market. One reason for this is that

more than three quarters of total hours fluctuations stem from the extensive margin.

In addition, policymakers and the public pay more attention to the employment rate

than to total hours worked. By concentrating on employment, the model can be

regarded as an attempt to enrich general equilibrium models with unemployment.

RBC models characterize agents as continuously adjusting their hours, while the

indivisible labor hypothesis of Hansen (1985) highlights the extensive margin of

the labor market. A variant of standard RBC models is proposed by Cho and

Cooley (1994) who allow representative agents to choose both margins. In my model,

the household maximizes the aggregate utility by optimally supplying labor and

allocating consumption goods among household members. The utility level depends

on consumption and dis-utility from employment. The aggregate utility function

is the weighted sum of the utilities of skilled and unskilled labor. The household

optimally equalizes the marginal utility of consumption within household members

of the same type, and also equalizes the weighted marginal utility of consumption

7In the model economy, skilled and unskilled workers have different consumption because of the

differences in their utility weights in the preference function. However, the same type of workers

enjoy the same amount of consumption regardless of employment status. This kind of assumption

seems realistic given that in the real economy consumption is different for workers of various

education levels.
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across the two types of individuals. The aggregate utility for the household is:

∞∑
t=0

βtE0

{
λs

[ ls(cst)1−σs

1− σs
− χs(nst)

1+ηs

1 + ηs

]
+ λu

[ lu(cut)1−σu

1− σu
− χu(nut)

1+ηu

1 + ηu

]}
(2.1)

where the subscript “s” is related to skilled labor, while “u” represents unskilled

workers. β is the subjective discount factor; λi, i ∈ {s, u} is the subjective weight

that the household places on the utility of the two types; χi, i ∈ {s, u} governs the

disutility of labor supply; li is the measure of each type of worker in the labor force,

where ls+ lu = 1; cit is consumption for type-i workers at period t; nit is the measure

of employment for each type of worker; and uit is the corresponding unemployment

measure at period t, where li = nit + uit. I assume that the household is able to

insure its members against all idiosyncratic shocks, mimicking the complete markets

allocation. Because utility is separable in consumption and leisure, all members of

a given type of labor enjoy the same consumption regardless of their employment

status.

In the model, the household makes decisions regarding not only the supply of

two kinds of labor, but also the accumulation of two kinds of capital. Why distin-

guish capital equipment from capital structures? The intuition is that capital equip-

ment is more connected to technological change and thus more complementary with

skilled employment than capital structures. In addition, these two types of capital

have quite different accumulation patterns in the data. GHK (1997) demonstrate

the important role of investment-specific technological change. Supporting evidence

includes the continuously falling price of equipment and faster means of communi-

cation and transportation. Based on these observations, GHK (1997) divide capital
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into two categories. Capital equipment is subject to increasing efficiency in its pro-

duction, while capital structures keep a roughly constant production efficiency over

time. In an extension below, I add investment shocks into the benchmark model.

At the beginning of each period, an exogenous neutral technology shock is

realized. Based on the technological state and capital stock, the household decides

how many skilled and unskilled workers to supply. Given that the measure of the

labor force in the model economy is unity,8 the employment rate is equal to the

sum of the measures of skilled and unskilled employees. Moreover, the household

owns capital structures and equipment and rents them out to the firm. At the

end of the period, household members receive wage payments and capital returns

from the firm. As the firm owners, household members get corporate profits. At this

stage, the household decides how much to consume for instantaneous utility and how

much to invest for next period’s capital stock. That is, they allocate their resources

between consumption, structures and equipment investment. The aggregate budget

constraint from the household’s perspective can be expressed as:

0 = πt + wstnst + wutnut + rstkst + retket − lscst − lucut − ist − iet (2.2)

where πt is the profit received by the household at period t; wit is the state-contingent

wage rate for type-i workers in period t; rst and ret are the return rates for capital

structures and equipment at period t, respectively; kst and ket are the stocks for

8I abstract from fluctuations in the labor participation rate. According to the MORG dataset,

the mean participation rate over the sample period is around 60%. This rate is determined not

only by economic factors, but also by other non-economic concerns, such as health. Therefore,

macroeconomic models usually step away from modeling labor force participation.
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capital structures and equipment at period t; and ist and iet are investment in

capital structures and equipment at period t, respectively.

For capital structures and equipment, the laws of motion take the conventional

form:9

0 = ks,t+1 − (1− δs)kst − ist (2.3)

0 = ke,t+1 − (1− δe)ket − iet (2.4)

where δs and δe are depreciation rates for capital structures and equipment.

2.3.2 The Firm

The firm in the model uses a production technology with capital-skill comple-

mentarity. The firm rents capital structures and equipment and hires two types of

workers from the household. At the end of the period, the firm pays wages and cap-

ital rents. The input prices are determined in perfectly competitive factor markets.

I borrow the production function from KORV (2000):

yt = eztkαksst

{
(aunut)

θ1 +
[
kθ2et + (asnst)

θ2
] θ1
θ2

} 1−αks
θ1

(2.5)

zt = ρzzt−1 + εzt, εzt ∼ N(0, σ2
z) (2.6)

where zt is the shock to general TFP; and ai is the type-specific weight in pro-

duction. KORV (2000) uses the above function to capture the idea that capital

equipment is more complementary to skilled employees than unskilled employees.

9There is no capital adjustment cost in the model. One reason is that calibrating the adjustment

cost parameters is problematic in this type of model, as discussed in GHH (2000).
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Technically, this requires that the substitution elasticity between unskilled employ-

ment and the skill-equipment composite, 1
1−θ1 , is larger than that between skilled

employment and equipment, 1
1−θ2 . In turn, this requires θ1 > θ2. Implicitly, this

production specification assumes that the substitution elasticity between unskilled

workers and capital is identical to that between unskilled and skilled workers, which

is supported by the evidence in Johnson (1997). Capital equipment and structures

have asymmetric positions in production because they have different substitution

possibilities with labor and are not perfect substitutes for each other.

Capital-skill complementarity is also reflected in the marginal product ratio of

skilled to unskilled labor. Specifically, when θ1 > θ2, the relative marginal product

of skilled workers is an increasing function of capital equipment. The more capital

is accumulated, the more productive skilled workers are relative to unskilled on the

margin. The marginal product ratio of skilled and unskilled labor is:

MPLs
MPLu

=
(as
au

)θ1(nut
nst

)1−θ1[( ket
asnst

)θ2 + 1
] θ1−θ2

θ2 (2.7)

where as
au

is referred to as the relative efficiency effect, nut
nst

is the relative quantity

effect, and ket
asnst

is the capital-skill complementarity effect.

The factor input markets are perfectly competitive. The rents of factor inputs

are determined solely by their marginal contribution to production. Firms, as price

takers, maximize the current profit:10

πt = max
{nst,nut,
kst,ket}

{
yt − wstnst − wutnut − rstkst − retket

}
(2.8)

10Note that perfect competition in factor markets and constant returns to scale jointly guarantee

that the profit is zero in equilibrium.
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s.t. yt = eztkαksst

{
(aunut)

θ1 +
[
kθ2et + (asnst)

θ2
] θ1
θ2

} 1−αks
θ1

(2.9)

2.3.3 Competitive Equilibrium

The competitive equilibrium is now formulated. This equilibrium is the com-

bined outcome of the household’s utility-maximizing and the firm’s profit-optimizing

problems. The dynamic programming problem facing the representative household

is:

V (zt) = max
{cst,cut,

ks,t+1,ke,t+1}

{
λs

[ ls(cst)1−σs

1− σs
− χs(nst)

1+ηs

1 + ηs

]
+λu

[ lu(cut)1−σu

1− σu
− χu(nut)

1+ηu

1 + ηu

]

+ βEtV (t+ 1|t)
}

(P.1)

s.t. 0 = πt + wstnst + wutnut + rstkst + retket − lscst − lucut − ist − iet (2.10)

0 = ks,t+1 − (1− δs)kst − ist (2.11)

0 = ke,t+1 − (1− δe)ket − iet (2.12)

The maximization problem of the firm is:

πt = max
{nst,nut,
kst,ket}

{
yt − wstnst − wutnut − rstkst − retket

}
(P.2)

s.t. yt = eztkαksst

{
(aunut)

θ1 +
[
kθ2et + (asnst)

θ2
] θ1
θ2

} 1−αks
θ1

(2.13)

The aggregate state of the model economy is SSt = {kst, ket, zt} for period

t. Assume that the equilibrium wages and rents are functions of the state of the

economy: wst = Ws(SSt), wut = Wu(SSt), rst = Rs(SSt), ret = Re(SSt). Suppose
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that capital structures and equipment evolve according to ks,t+1 = Ks(SSt), ke,t+1 =

Ku(SSt).

A competitive equilibrium is defined based on the above assumptions. Specif-

ically, equilibrium is a set of allocation rules, prices and transfer functions and an

aggregate law of motion for the state variables that satisfy:

1. The household maximizes (P.1), taking as given the aggregate state SSt and

the pricing and transfer functions, Ws, Wu, Rs and Ru. The household’s

solution is:

cst = Cs(SSt), cut = Cu(SSt), nst = Ns(SSt), nut = Nu(SSt), kst+1 = Ks(SSt),

ket+1 = Ku(SSt);

2. The firm solves (P.2), given SSt, Ws, Wu, Rs and Ru. Its solution can be char-

acterized as: ñst = Ñs(SSt), ñut = Ñu(SSt), k̃st = K̃s(SSt), k̃et = K̃e(SSt);

3. The economy-wide resource constraint is satisfied:

eztkαksst

{
(aunut)

θ1 +
[
kθ2et + (asnst)

θ2
] θ1
θ2

} 1−αks
θ1

+ kst(1− δs) + ket(1− δe)

= ks,t+1 + ke,t+1 + lscst + lucut;

4. All markets clear: ñst = nst, ñut = nut, k̃st = kst, k̃et = ket.

2.4 Calibration

Before solving the competitive equilibrium numerically, it is necessary to assign

values to structural parameters. In this section, I follow conventional procedures.
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First, some structural parameters are assigned values according to widely accepted

RBC literature. Then given these borrowed parameters, all other parameters are

set in such a way that the model matches certain stylized facts in the U.S. data.

These unknown parameters govern the utility function, production function and the

exogenous processes.

2.4.1 Parameters in the Utility Function: β, σs, σu, ηs, ηu, λs, λu, χs, χu,

ls, lu

The subjective discount factor, β, is the inverse of the time-discount rate,

which in equilibrium equals the steady state return on capital. In standard RBC

models, it is conventional to assume that the steady state annual rate of return on

capital is about 5 percent. Thus, the corresponding quarterly subjective discount

factor, β, is equal to 0.987.

The coefficient of relative risk-aversion, σi, i ∈ {s, u}, governs the curvature

of utility with respect to consumption. Estimates of σ display a certain degree of

divergence in the empirical literature. For example, to make their model replicate

the impulse responses implied by a VAR estimated using U.S. data, Rotemberg

and Woodford (1997) set σ to 0.16. Hall (1988) and Attanasio and Weber (1993)

estimate σ to be around 3, using aggregate consumption data. Fuhrer (2000) finds σ

to be about 6, assuming habit formation in consumption. All these estimates regard

individuals as identical while my model has divided labor into two subgroups. To

follow the RBC convention, I set σs = σu = 1 so that the consumption part of the
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utility function takes the log form.

ηs and ηu are the marginal disutilities for skilled and unskilled labor. If I

assume that each type of worker works a fixed number of hours per period, then ηs

and ηu also govern the Frisch elasticities for the household of skilled and unskilled

hours. Traditional RBC models take the log-log utility function or

(
cα(1−h)1−α

)1−η
−1

1−η ,

use total hours worked as the measure of labor input, and assume that the steady

state value of labor supply is one third of non-sleeping time. This implies that

the Frisch elasticity is 2.11 However, empirical estimates of the Frisch elasticity

are quite different. Studies such as MaCurdy (1981), Altonji (1986) and Browning,

Deaton and Irish (1985) find elasticities between 0 and 0.5. More recently, Browning,

Hansen and Heckman (1999) report estimates ranging from 0.5 to 1.6. Imai and

Keane (2004) provide a relatively high estimate of 3.8. In the benchmark version

of my model, I set the elasticity to 0.5, implying ηs = ηu = 2, to make sure that

the marginal disutilities of skilled and unskilled employment fall within a reasonable

range. Again, I abstract from differences in this elasticity between the two types of

workers.

λs and λu are subjective weights of skilled and unskilled workers in the house-

hold utility. I set λs and λu to make sure that the steady state consumption ratio

between skilled and unskilled labor is consistent with its empirical counterpart.12

11The Frisch elasticity is defined as dlog(h)
dlog(w)

∣∣∣
c
, where h is labor hours, w is wage rate, and c is

consumption. For log-log utility form or

(
cα(1−h)1−α

)1−η
−1

1−η , the Frisch elasticity is 1−h
h . If we

assume that h = 0.33, then the elasticity is 2.
12In the model economy, the social planner guarantees only that workers of the same type have

the same amount of consumption.
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The Consumer Expenditure Survey (CES) dataset collects “total average annual ex-

penditure” by education level since 1996. I find the mean value of the consumption

ratio to be 1.67.

χs and χu are free parameters which are used to guarantee that the steady state

levels of skilled and unskilled employment are consistent with the long-run means

implied by MORG data. Finally, ls and lu are the shares of skilled and unskilled

workers in the labor force, which are estimated directly from MORG statistics.

2.4.2 Parameters for the Production Sector: αks, θ1, θ2, as, au, δs, δe

αks is capital structures’ share of output. GHK (2000) set αks to 0.13 while

assuming that the overall capital share of output is 0.35. I follow their practice and

choose the same value.

θ1 is directly related to the substitution elasticity between unskilled employ-

ment and the capital-skill composite. The empirical literature offers a wide range of

estimates. Based on different specifications of functional form, estimation technique

and data, estimates of the substitution elasticity range from 0.5 to 3, which implies

θ1 between -1 and 0.667. A good summary is provided by Hamermesh (1993). I

take the value from KORV (2000), θ1 = 0.401.

θ2 is associated with the substitution elasticity between skilled employment

and capital. Empirical work finds that this parameter is generally less than 1.2. To

keep my production function as standard as possible, I borrow its value from KORV

(2000). That is, θ2 = −0.491.
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as and au are type-specific production weights. The two types of workers are

neither perfect substitutes nor equally productive in production. Hence, as and au

are set to match the observed ratios of employment in efficiency units to employment

for both types of workers. For the whole sample period, the production weight for

skilled workers is 12.58 while that for unskilled workers 7.28. Here, I normalize au

to be 1 and set as to 12.58/7.28.

δs and δe are the depreciation rates for capital structures and equipment.

GHK (2000) set the annual depreciation rates of capital structures and equipment

to 0.056 and 0.124. The corresponding quarterly depreciation rates are 0.014 and

0.031, respectively. Therefore, I set δs = 0.014 and δe = 0.031.

2.4.3 Parameters for the Exogenous Process: ρz, σz

I follow the standard RBC literature to assume that the neutral technology

shock is an AR(1) process. Specifically, zt = ρzzt−1 + εzt, εzt ∼ N(0, σ2
z). The

associated parameter values are borrowed from Cooley and Hansen (1995).

2.4.4 Parameters for Control Models: αk, θ3, δ, ρq, σq

Given that the purpose of this paper is to explore the short-run implications of

capital-skill complementarity, it is necessary to set up and examine control models

for comparison purposes. This paper has two control models, namely the traditional

and extended models.13 In the traditional model, I allow two types of labor inputs,

namely skilled and unskilled workers, as in my benchmark model. However, there

13Table 2.5 lists the features of these three models.
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is no complementarity and only one type of capital in production. According to

Autor, Katz and Krueger (1998), the elasticity of substitution between skilled and

unskilled workers falls into the interval between 1 and 2. Katz and Murphy (1992)

estimate the elasticity as 1.4. In the traditional model, I use a CES function to

combine skilled and unskilled labor inputs and set the elasticity of substitution to

1.4. Specifically, the production function is;

yt = eztkαkt
[
(aunu)

θ3 + (asns)
θ3
] 1−αk

θ3 (2.14)

The output share of capital, αk, is set to 0.35, and the monthly depreciation rate, δ

is set to 0.025, according to classic RBC literature.

The extended version of the model includes shocks to investment-specific tech-

nology. One reason to do this is that GHK (1997) document that investment shocks

have significant impacts both on long-run growth and on the business cycle. Fisher

(2006) and Justinian et al (2009) confirm the importance of investment shocks in

high-frequency cycles. The other reason is that the investment shock is highly asso-

ciated with capital equipment, which also plays a key role distinct from structures

in my model with capital-skill complementarity. The extended model is identical to

the benchmark model except for the law of motion of capital equipment:

0 = ket+1 − (1− δe)ket − eqtit (2.15)

where qt = ρqqt−1 + εqt, εqt ∼ N(0, σ2
q ) (2.16)

qt is also assumed to be independent of the neutral technology shocks. I borrow

the associated parameter values from GHH (2000) and convert them into monthly

frequency.
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Table 2.6 summarizes parameter values for the benchmark and extended mod-

els while Table 2.7 presents calibration results for the traditional model.

2.5 Numerical Results

The cyclical behavior of the benchmark model is evaluated and discussed in

this section. For comparison purposes, I also set up a traditional version of the

DSGE model and an extended model with investment shocks. The main conclu-

sions are listed below. First, capital-skill complementarity helps the model explain

the observed volatility ratio of skilled to unskilled employment; Second, this com-

plementarity does not improve upon the DSGE model’s performance on overall

employment volatility; Third, the investment shock is dominated by the neutral

shock in such a way that their joint effect on the model economy is not significantly

different from the case of having only the neutral shock.

I solve my DSGE models numerically. Given that the purpose of this paper

is not to compare the welfare properties of different model economies, I apply the

first-order perturbation method. To obtain the summary statistics of interest from

the model, I simulate the model repeatedly to get 300 samples of artificial time

series. For each sample, I keep the same number of periods as the corresponding

time length in the data. After the raw series are generated, I transform them back

to levels, extract the cyclical components, and calculate the corresponding standard

deviations.
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2.5.1 Volatility Ratio of Skilled and Unskilled Employment

As Tables 2.8 and 2.9 show, the benchmark model generates skilled employ-

ment that is more volatile than unskilled employment, while the traditional model

implies that both have the same volatility.14 Capital-skill complementarity con-

tributes much to this result. Intuitively speaking, complementarity puts the two

types of labor in asymmetric positions in the production function. Remember that

the relative marginal product of skilled employment is identical to the relative de-

mand of skilled labor, and complementarity adds the capital-skill ratio, ket
asnst

, into

the demand function. The impact of capital equipment on the relative demand, via

the capital-skill-ratio mechanism, makes it possible for skilled employment to fluc-

tuate more than unskilled employment. When there is a positive technology shock,

equipment investment drives up the stock of capital equipment, which shifts up-

ward the relative demand curve for skilled labor as Figure 2.1 shows. Keeping other

factors constant, it is clear that skilled employment has a larger percentage change

than unskilled labor under complementarity. Lindquist (2004) documents that the

capital-skill ratio has a standard deviation 1.3 times that of output, is weakly pro-

cyclical and lags output over the cycle.15 On the contrary, the traditional model

can not produce this result due to its assumptions on the production function. The

relative marginal product in the traditional model is a function only of the two

14The first row of Table 2.9 shows that complementarity causes the volatility ratio between

skilled and unskilled employment to be larger than 1 while the traditional model makes the ratio

to be 1.
15Please check Tables 1 and 2 in Lindquist (2004).
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types of labor inputs. In turn, this implies that the employment ratio of skilled and

unskilled is constant. It follows that both types have the same fluctuation in the

traditional model.

In the benchmark model, the relative volatility is not sensitive to the degree of

complementarity. This is contrary to what Castro and Coen-Pirani (2008) advocate.

They argue that changes in the degree of complementarity in the US in recent years

explain a large part of the recent volatility change in skilled hours. They estimate

θ2 to increase from -2.2 to -0.4 at the 1979-2003 period. I simulate the benchmark

model for both values and record the results in Table 2.10. Castro and Coen-Pirani

(2008) use a partial equilibrium framework to study relative labor demand by skill.

By making the relative marginal product consistent with the long-run behavior of

the skill premium, they pin down the long run change in the substitution elasticity.

They then use the implied relative demand curve to back out a series of skilled hours,

and explore this series’ cyclical properties. However, in the DSGE framework, the

volatility ratio is closely related to the cyclical movement of ket
asnst

. When the capital-

skill ratio increases in response to a positive shock, the relative demand for skilled

labor increases, and the volatility of skilled employment becomes larger than that

of unskilled employment. This is also why the benchmark model has a hard time

generating a volatility ratio less than one. To produce a volatility ratio below one in

the model with complementarity, the capital-skill ratio must be countercyclical. One

way to accomplish this is to set ηs = ηu = 0, which makes the labor supply elasticity

of both types infinite, dramatically increasing employment variability. In this case,

then the economy has a positive shock, skilled employment immediately jumps up
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a lot, which dominates the movement of the capital-skill ratio and pulls down the

relative demand curve. As a result, the benchmark model has skilled employment

less volatile than unskilled employment. However, please note that the correlation

between the capital-skill ratio and output becomes -0.391, which is contradictory to

empirical evidence.

The impulse responses are illustrative in understanding the mechanics of the

model economy. Figure 2.2 presents the responses of output, consumption, employ-

ment and investment to a neutral technology shock of one standard deviation. With

a favorable neutral shock, all variables jump up. Following a positive response of

equipment investment, the resulting increase of the equipment stock drives up the

relative demand for skilled employment. One interesting fact is that the percentage

increase of equipment investment is higher than that of structures investment. The

main reason is their asymmetric positions in the production function. If ks and ke

have symmetric positions in the production function, such as y = ezkα̃s k
α̃
e F (ns, nu),

and have the same depreciation rates, these two types of capitals have the same

investment pattern. Another determinant is the depreciation rate. Keeping other

factors constant, investment in a given type of capital is lower when it has a high

depreciation rate than when it has a low depreciation rate.

2.5.2 Volatility Ratio of Employment to Output

Capital-skill complementarity does not improve the ability of the DSGE model

to explain the observed volatility ratio of employment to output compared with the
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traditional RBC model, as displayed by the second row of Table 2.9. One clever

way to overcome this weakness is proposed by Rogerson (1984) and Hansen (1985).

Although complementarity has a direct impact on the volatility ratio of skilled to

unskilled labor, its influence on the volatility ratio of employment to output is

ambiguous. Consider Figure 2.1. When a positive shock hits the economy, the

increased equipment stock shifts up the relative demand curve, resulting in a higher

ratio of skilled to unskilled employment. Given that skilled workers are more efficient

and require higher wages, firms who hire more skilled workers choose to employ fewer

unskilled workers. Thus, unskilled workers have a smaller percentage increase, which

decreases the volatility of unskilled labor and consequently pulls down the volatility

for total employment relative to output.

2.5.3 Investment-Specific Shocks

Investment-specific shocks have been identified by GHH (1997) and others as

an important source of economic fluctuations. I examine the impact of investment

shocks in the extended model and find that they can increase the volatility of skilled

employment by 36% when co-existing with neutral technology shocks. Tables 2.11

and 2.12 record these results. Intuitively, when a positive investment shock ap-

pears, a given amount of output can be transformed to a larger amount of capital

equipment. Firms have incentives to extend production and invest more in capital

equipment. Thus, firms want to hire more workers. Since complementarity implies

that equipment is favorably biased towards skill, it follows that skilled employment
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experiences a larger percentage change. Table 2.12 shows that when the economy has

only investment shocks, the volatility ratio of skilled to unskilled employment is 7.5.

Meanwhile, this model generates only about 15% of the observed output volatility.

Adding investment shocks to neutral technology shocks causes the volatility ratio

between skilled and unskilled labor to jump by 36%. However, overall output and

employment volatility in the extended model is only slightly higher than in the

benchmark model.

2.6 Conclusion

This paper examines the short-run implications of capital-skill complementar-

ity for the labor market’s volatility. Within the DSGE framework, complementarity

can make skilled employment more volatile than unskilled employment. However,

complementarity does not increase the volatility of total employment. In addition,

investment specific shocks increase the relative volatility of skilled employment but

not overall volatility.
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Table 1.1: Volatilities of Employment, Hours and GDP 
 GDP Employment Skilled 

Employment

Unskilled 

Employment

Hours Skilled 

Hours 

Unskilled 

Hours 

1979-2003 0.0132 0.0081 0.0068 0.0092 0.0091 0.0085 0.0108 
1979-1983 0.0218 0.0126 0.0051  

(0.234)    
0.0153 
(0.702) 

0.0143 0.0072  0.0183 

1984-2003 0.0097 0.0065 0.0072 
(0.742)     

0.0067 
(0.691) 

0.0071 0.0088  0.0077 

Notes:  
1. Data on employment and hours are from MORG of CPS, and GDP is from NIPA.  
2. All data are first converted to quarterly series，then are logged and detrended using the H-P filter 
with a smoothing parameter of 1600. 
3. I use the Census Bureau’s X12 program to remove seasonality from each series. Given that the 
CPS data contains high-frequency measurement errors, I also apply a centered 5-quarter moving 
average to the seasonally adjusted series from MORG.  
4. Variables related to hours refer to aggregate hours in efficiency units. 
5. Values in parentheses are the volatility ratios of the associated variables relative to GDP. 
 
 
 
Table 1.2: Volatility Comparison between Employment and Hours 
 Period of Time Employment Hours Ratio 

1979-2003 0.0081 0.0091 0.89  
1979-1983 0.0126 0.0143 0.88  

All Workers 

1984-2003 0.0065 0.0071 0.92  
1979-2003 0.0068 0.0085 0.80  
1979-1983 0.0051      0.0072  0.71  

Skilled Workers 

1984-2003 0.0072      0.0088   0.82  
1979-2003 0.0092 0.0108 0.85  
1979-1983 0.0153 0.0183 0.84  

Unskilled Workers 

1984-2003 0.0067 0.0077 0.87  
Notes:  
1. Data on employment and hours are from MORG of CPS, and GDP is from NIPA.  
2. All data are first converted to quarterly series, then are logged and detrended using the H-P filter 
with a smoothing parameter of 1600. 
3. I use the Census Bureau’s X12 program to remove seasonality from each series. Given that the 
CPS data contain high-frequency measurement errors, I also apply a centered 5-quarter moving 
average to the seasonally adjusted series from MORG.  
4. Variables related to hours refer to the total hours in efficiency units. 
5. The column labeled “Ratio” refers to the volatility ratio of “Employment” to “Hours”. 
 



 
Table 1.3: Calibration Results for Simulation I 

Subjective discount factor β 0.996 

CRRA: skilled
sσ 1 

CRRA: unskilled
uσ 1 

Coefficient governing employment disutility: skilled
sη 2 

Coefficient governing employment disutility: unskilled
uη 2 

Utility weight: skilled
sλ 0.626 

Utility weight: unskilled
uλ 0.374 

Labor force share: skilled
sl 0.2295 

Labor force share: unskilled
ul 0.7702 

Capital share of output α 0.35 

Coefficient governing elasticity of substitution σ 0.29 

Depreciation rate of capital δ 0.0055 

Production weight: skilled
sa 12.58/7.28 

Production weight: unskilled
ua 1 

Vacancy-posting cost: skilled
sf -- 

Vacancy-posting cost: unskilled
uf -- 

Separation rate: skilled
sχ 0.0108 

Separation rate: unskilled
uχ 0.0201 

Bargaining power: skilled
sφ 0.5 

Bargaining power: unskilled
uφ 0.5 

Matching efficiency: skilled
sα -- 

Matching efficiency: unskilled
uα 0.35 

Autocorrelation of productivity shocks
zρ 0.98 

Standard deviation of productivity shocks
zσ 0.005 

Notes: sα varies between 0.25 and 0.65; sf and uf are set to guarantee that the 
share of each type of labor in total employment is consistent with the data. 

 



 
 

Table 1.4: Summary Statistics of Labor Market for 1979-1983, 1984-2003 and 1979-2003 
 1979-1983 1984-2003 1979-2003
Skilled share of labor force 0.1840 0.2389 0.2295 

Ratio of skilled employment to labor force 0.1780 0.2325 0.2231 

Ratio of skilled unemployment to labor force 0.0060 0.0064 0.0063 

Unskilled share of labor force 0.8157 0.7608 0.7702 

Ratio of unskilled employment to labor force 0.7434 0.7040 0.7158 

Ratio of unskilled unemployment to labor force 0.0723 0.0507 0.0544 

Wage ratio of skilled to unskilled labor 1.66 1.87 1.82 

 



 
Table 1.5: Calibration Results for Simulation II 
  First Period  

(1979-1983) 
Second Period 
(1984-2003) 

Subjective discount factor β 0.996 0.996 

CRRA: skilled
sσ 1 1 

CRRA: unskilled
uσ 1 1 

Coefficient governing employment disutility: skilled
sη 2 2 

Coefficient governing employment disutility: unskilled
uη 2 2 

Utility weight: skilled
sλ 0.808 0.873 

Utility weight: unskilled
uλ 0.191 0.127 

Labor force share: skilled
sl 0.1840 0.2389 

Labor force share: unskilled
ul 0.8157 0.7608 

Capital share of output α 0.35 0.35 

Coefficient governing elasticity of substitution σ 0.29 0.29 

Depreciation rate of capital δ 0.0055 0.0055 

Production weight: skilled
sa 12.58/7.28 12.58/7.28 

Production weight: unskilled
ua 1 1 

Vacancy-posting cost: skilled
sf 6.25 17.17 

Vacancy-posting cost: unskilled
uf 2.23 4.08 

Separation rate: skilled
sχ 0.0198 0.0198 

Separation rate: unskilled
uχ 0.0369 0.0369 

Bargaining power: skilled
sφ 0.5 0.5 

Bargaining power: unskilled
uφ 0.5 0.5 

Matching efficiency: skilled
sα 0.72 0.94 

Matching efficiency: unskilled
uα 0.48 0.61 

Autocorrelation of productivity shocks
zρ 0.98 0.98 

Standard deviation of productivity shocks
zσ 0.005 0.005 

Notes: Five parameters are re-calibrated at second stage, corresponding to the period of 
1984-2003. 

 



 
Table 1.6: Volatility Results of Simulation II 
 First Period  

(1979-1983) 
Second Period  
(1984-2003) 

Output 0.030928  0.030954  
Consumption 0.021462  0.021581  
Skilled Employment 0.000061  

(0.0020) 
0.000093 
(0.0031)  

Unskilled Employment 0.000186 
(0.0061)  

0.000191 
(0.0062)  

Vacancies for the skilled 0.007598  0.005885  
Vacancies for the unskilled 0.007795  0.007065  
Skilled Unemployment 0.001797  0.003068  
Unskilled Unemployment 0.001921  0.002357  
Job-finding rate for the skilled 0.001865  0.003086  
Job-finding rate for the unskilled 0.002150  0.002566  
Overall Job-finding rate 0.002120  0.002626  
Note: Values in parentheses are the volatility ratios of variables of 

interest relative to output. 
 
 
 
 

Table 1.7: Volatility Comparison between the Data and Simulation II 
Relative to output 
Volatility  

First Period 
(1979-1983) 

Second Period 
(1984-2003) 

Percentage 
Change 

Skilled Employment 
 
 

Model:
Data:

0.0020  
0.234 

Model:
Data:

0.0031 
0.742 

Model: 
Data: 

50% 
217% 

Unskilled Employment 
 
 

Model:
Data:

0.0061 
0.702 

Model:
Data:

0.0062 
0.691 

Model: 
Data: 

2% 
-2% 

Notes: Relative volatilities refer to the volatility ratios between variables of 
interest to output or GDP; the last column labeled “Percentage Change” is the 
change of the relative volatilities between these two periods.  



 
Figure 1.1: Rolling standard deviation (40 quarters ahead) of real GDP, Unskilled and Skilled Hours 
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Figure 1.2: Rolling standard deviation (40 quarters ahead) of real GDP, Unskilled and Skilled 
Employment 
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Figure 1.3: Ratio of rolling standard deviations (40 quarters ahead) of Unskilled and Skilled 
Employment to real GDP 
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Figure 1.4: Volatility Ratios from Simulation I 
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Figure 1.5: Skill Premium from Simulation I 
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Figure 1.6: Impulse Responses from Simulation II 
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Table 2.1: Volatility of Employment, Hours and Wages: Seasonal Dummies 

 
Employment Total Hours in 

Efficiency units 
Total Usual 
Hours 

Weekly Hours 
per Worker 

Wage Rates 
per worker 

All Workers 0.0077  0.0085  0.0099  0.0038  0.0087  
Skilled labor 0.0108  0.0122  0.0119  0.0047  0.0128  
Unskilled labor 0.0092  0.0105  0.0111  0.0034  0.0075  
Note: The values in this table are computed using HP-filtered data that has been seasonally adjusted by 
regressing raw data on four quarterly dummies. 
 
 
 

Table 2.2: Volatility of Employment, Hours and Wages: X12-ARIMA 

 
Employment Total Hours in 

Efficiency units 
Total Usual 
Hours 

Weekly Hours 
per Worker 

Wage Rates 
per worker 

All Workers 0.0075  0.0085  0.0095  0.0035  0.0084  
Skilled labor 0.0102  0.0114  0.0112  0.0043  0.0121  
Unskilled labor 0.0085  0.0097  0.0103  0.0032  0.0072  
Note: The values in this table are computed using HP-filtered data that has been seasonally adjusted by 
using the X-12 ARIMA method. 

 
 
 
 

Table 2.3: Volatility of Employment, Hours and Wages: Castro and Coen-Pirani (2008) 

 
Employment Total Hours in 

Efficiency units 
Total Usual 
Hours 

Weekly Hours 
per Worker 

Wage Rates 
per worker 

All Workers 0.0066  0.0071  0.0083  0.0016  0.0066  
Skilled labor 0.0067  0.0082  0.0078  0.0021  0.0092  
Unskilled labor 0.0070  0.0081  0.0089  0.0021  0.0053  
Note: The values in this table are computed using HP-filtered data that has been seasonally adjusted by 
following Castro and Coen-Pirani. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 2.4: Volatility and Cross-Correlation: Data  
 Volatility Cross-correlation Volatility (2) Cross-correlation (2) 
GDP 0.0093  1 0.0097  1  
Consumption 0.0074  0.8222  0.0080  0.8458  
Investment 0.0426  0.8358  0.0419  0.7325  
Structures 
Investment 

0.0522  0.5686  0.0574  0.4274  

Equipment 
Investment 

0.0432  0.8708  0.0412  0.8090  

Aggregate 
Employment 

0.0077  0.7022  0.0077  0.6306  

Skilled 
Employment 

0.0108  0.4538  0.0108  0.4091  

Unskilled 
Employment 

0.0092  0.5948  0.0092  0.5256  

Skilled Wage 0.0128  0.2831  0.0128  0.3313  
Unskilled 
Wage 

0.0075  0.2187  0.0075  0.3565  

Notes: 1. The second and third columns show the volatilities and cross-correlation of real variables 
divided by the GDP deflator; 

      2. The fourth and fifth columns present the volatilities and cross-correlation of real variables 
divided by the price deflator of nondurable consumption and services; 

      3. Variables related to employment are de-seasonalized through regression on quarterly 
dummies; 

      4. Investment is defined as Private Gross Domestic Investment minus Residential investment, 
Equipment investment is investment on equipment and software while Structure investment 
is investment on nonresidential structures; 

      5. The data covers the period of 1984q1 to 2006q4. 
 
 



 
Table 2.5: Comparison of Model Set-up 
 Capital-Skill 

Complementarity
Two Types of 
Labor 

Two Types of 
Capital 

Neutral Tech 
Shocks 

Investment 
Shocks 

Benchmark Version      
Traditional Version      
Extended Version      
 
 

Table 2.6 : Calibration Results for the Benchmark and Extended Models  
Subjective discount factor β 0.987 

Utility weight: skilled
sλ 0.625 

Utility weight: unskilled
uλ 0.375 

CRRA: skilled
sσ 1 

CRRA: unskilled
uσ 1 

Coefficient governing employment disutility: skilled
sη 2 

Coefficient governing employment disutility: unskilled
uη 2 

Disutility weight of employment: skilled
sχ 10.2 

Disutility weight of employment: unskilled
uχ 2.02 

Labor share: skilled
sl 0.233 

Labor share: unskilled
ul 0.767 

Capital structure share of output
ksα 0.13 

Coefficient governing substitution elasticity of unskilled
employment and capital equipment 1θ

0.401 

Coefficient governing substitution elasticity of skilled
employment and capital equipment 2θ

-0.495 

Production weight: skilled
sa 12.58/7.28 

Production weight: unskilled
ua 1 

Depreciation rate of capital structures
sδ 0.014 

Depreciation rate of capital equipment
eδ 0.031 

Autocorrelation of neutral technology shocks
zρ 0.94 

Standard deviation of neutral technology shocks
zσ 0.007 

Autocorrelation of investment shocks
qρ 0.89 

Standard deviation of investment shocks
qσ 0.0273 

Note: Neutral Technology Shocks are used in the benchmark and extended 
models while investment shocks are only used in the extended model. 

 
 
 
 



 
 

Table 2.7 : Calibration Results for the Traditional Model  
Subjective discount factor β 0.987 

Utility weight: skilled
sλ 0.625 

Utility weight: unskilled
uλ 0.375 

CRRA: skilled
sσ 1 

CRRA: unskilled
uσ 1 

Coefficient governing employment disutility: skilled
sη 2 

Coefficient governing employment disutility: unskilled
uη 2 

Disutility weight of employment: skilled
sχ 23.1 

Disutility weight of employment: unskilled
uχ 1.47 

Labor share: skilled
sl 0.233 

Labor share: unskilled
ul 0.767 

Capital share of output kα 0.35 
Coefficient governing substitution elasticity of skilled

 and unskilled employment 3θ
0.29 

Production weight: skilled
sa 12.58/7.28 

Production weight: unskilled
ua 1 

Depreciation rate of capital δ 0.025 

Autocorrelation of neutral technology shocks
zρ 0.94 

Standard deviation of neutral technology shocks
zσ 0.007 

 

 
 



 
Table 2.8: Benchmark and Traditional Models -- Volatility and Correlation  
 U.S. Economy 

 
Model 

 1984q1 to 2006q4 Benchmark Model Traditional Model 
 Volatility Correlation Volatility Correlation Volatility Correlation 

GDP 0.0093  1 0.0109 1  0.0103  1  
Consumption 0.0074  0.8222 0.0046 0.9475 0.0034  0.8989  
Investment 0.0426  0.8358 0.0950 0.9745 0.0349  0.9891  
Structures 
Investment 

0.0522  0.5686 0.1014 0.9669 -- -- 

Equipment 
Investment 

0.0432  0.8708 0.1520 0.3115 -- -- 

Employment 0.0077  0.7022 0.0023 0.9758 0.0025  0.9792  
Skilled 
Employment 

0.0108  0.4538 0.0025 0.9690 0.0025  0.9792  

Unskilled 
Employment 

0.0092  0.5948 0.0022 0.9717 0.0025  0.9792  

Skilled Wage 0.0128  0.2831 0.0092 0.9933 0.0079  0.9980  
Unskilled Wage 0.0075  0.2187 0.0086 0.9983 0.0079  0.9980  

 
 

Table 2.9: Benchmark and Traditional Models -- Volatility Ratio 
 U.S. Economy Model 
 1984q1 to 2006q4 Benchmark Model Traditional Model 

Skilled Employment

Unskilled Employment
 

1.17 1.13 1 

Employment

GDP
 

0.83 0.215 0.243 

 
 
 
 

Table 2.10: Benchmark Model -- Volatility Ratio 
 U.S. Economy The Benchmark Model 
  

2 0.495θ = − 2 0.4θ = −  2 2.2θ = −  

Skilled Employment

Unskilled Employment
 

1.17 1.136 1.137 1.091 

Employment

GDP
 

0.83 0.215 0.210 0.207 

 
 
 
 
 
 
 
 
 
 
 



 
Table 2.11: Benchmark and Extended Models -- Volatility and Correlation 
 U.S. Economy 

 
Model 

 1984q1 to 2006q4 Benchmark Model Extended Model 
 Volatility Correlation Volatility Correlation Volatility Correlation 

GDP 0.0093  1 0.0109 1  0.0110  1  
Consumption 0.0074  0.8222 0.0046 0.9475 0.0047  0.9431  
Investment 0.0426  0.8358 0.0950 0.9745 0.0977  0.9737  
Structures 
Investment 

0.0522  0.5686 0.1014 0.9669 0.1119 0.9278  

Equipment 
Investment 

0.0432  0.8708 0.1520 0.3115 0.3409  0.0932  

Employment 0.0077  0.7022 0.0023 0.9758 0.0023  0.9751  
Skilled 
Employment 

0.0108  0.4538 0.0025 0.9690 0.0029  0.8977  

Unskilled 
Employment 

0.0092  0.5948 0.0022 0.9717 0.0022  0.9617  

Skilled Wage 0.0128  0.2831 0.0092 0.9933 0.0099  0.9712  
Unskilled Wage 0.0075  0.2187 0.0086 0.9983 0.0087  0.9980  

 
 

Table 2.12: Extended Model: Different Shocks 

 U.S. Economy  The Extended Model 
 1984q1 to 2006q4 Two shocks Neutral Shock only Investment Shock only
 Volatility Correlation Volatility Correlation Volatility Correlation Volatility Correlation 

GDP 0.0097  1  0.0110 1  0.0109 1  0.0015  1  
Consumption 0.0080  0.8458  0.0047 0.9431 0.0046 0.9452  0.0005  0.7096  
Investment 0.0419  0.7325  0.0977 0.9737 0.0968 0.9724  0.0166  0.9688  
Structures 
Investment 

0.0574  0.4274  0.1119 0.9278 0.1037 0.9653  0.0420 0.7843  

Equipment 
Investment 

0.0412  0.8090  0.3409 0.0932 0.1499 0.3046  0.2703 -0.5402 

Employment 0.0077  0.6306  0.0023 0.9751 0.0023 0.9744  0.0005  0.9759  
Skilled 
Employment 

0.0108  0.4091  0.0029 0.8977 0.0025 0.9685  0.0015  0.9973 

Unskilled 
Employment 

0.0092  0.5256  0.0022 0.9617 0.0022 0.9703  0.0002  0.8227 

Skilled Wage 0.0128  0.3313  0.0099 0.9712 0.0094 0.9934  0.0033 0.9972  
Unskilled Wage 0.0075  0.3565  0.0087 0.9980 0.0088 0.9982  0.0007  0.9894  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 2.1: Relative Demand for Skilled Labor 
 

 
Note: The solid line is the initial relative demand curve of skilled labor. When there is a positive 

technology shock, the increase of capital stock pushes up the demand curve upward. The red 
dashed line is the new one.  

 
 
 
Figure 2.2: Extended Model: Impulse Responses to a Neutral Technology Shock 
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Notes: 1 One period is a quarter; 
      2 The unit of the vertical axis is percentage point. All variables are expressed as the 

percentage deviation from their steady state value; 
      3 The initial shock is equal to one standard deviation of the stochastic process. 
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Figure 2.3: Extended Model: Impulse Responses to an Investment Shock 
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Notes: 1 One period is a quarter; 
      2 The unit of the vertical axis is percentage point. All variables are expressed as the 

percentage deviation from their steady state value; 
      3 The initial shock is equal to one standard deviation of the stochastic process. 
 
 
 
 
 
 
 



Appendix A

MORG Data

This appendix presents a detailed explanation on how I construct labor market

variables used in this paper. I follow the method of Castro and Coen-Pirani (2008).

A.1 Sample Selection

I restrict attention to individuals who are between 16 and 65 years old, in the

labor force and not self-employed. For individuals who reported being employed, I

eliminate them if they have either zero or missing earnings, or have either zero or

missing values on both “usual hours worked” and “actual hours worked last week”.

I use the weekly usual hours as hours worked for each employee. From 1994 on, if

individuals who have zero or missing usual hours have actual hours of last week, I use

actual hours to represent usual hours. I make this adjustment because individuals

reporting “usual hours vary” are recorded as having missing usual hours since 1994.

A.2 Demographic Subgroups

I divide the sample into 240 demographic groups based on sex, race, age and

education level. First, each individual is either male or female. Second, I restrict

attention to three race categories, namely whites, blacks and others. Thirdly, I

create ten 5-year age groups for people from 16 to 65 years old. Finally, I construct
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four education groups: no high school diploma, or equivalently less than 12 years

of completed schooling; high school graduate, or equivalently 12 years of completed

schooling; between high school and college graduate, or equivalently between 13

and 15 years of completed schooling; college graduate and beyond, or equivalently

16 years of completed schooling or above.

Individuals are classified by their highest grade of school completed. Between

1979 and 1991, individuals report their highest grade of school attended rather than

completed. If one person reported 12 years of education but his/her 12th year of

schooling is still ongoing, I classify this individual as having no high school diploma.

From 1992 on, the BLS education classification switched from years of schooling to

educational categories, which was a consistent transformation and did not cause a

break in the series of education level. I assign education group with college degrees

or above to the skilled category and all the other three education groups to the

unskilled category.

A.3 Aggregation across Demographic Groups

In order to aggregate hours worked across different subgroups, time-invariant

weights for each subgroup are needed. Following Katz and Murphy (1992), KORV

(2000) and Castro and Coen-Pirani (2008), I use the average wage rate of each

subgroup over the whole sample as the weights.
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A.3.1 Aggregate Weights

First, I aggregate monthly data into quarterly series. After sample selection,

each subgroup contains individuals from 1979q1 to 2003q4. Assuming that individ-

uals within each group are perfect substitutes, I calculate the average wage rate for

each group by dividing the total income over the total hours worked:

wg =

∑
i∈g µi ∗ inci∑
i∈g µi ∗ hi

where g is the group index of each demographic group; inci is the individual i’s

real weekly income, which is computed by dividing reported nominal earnings over

the corresponding CPI; hi and µi are, respectively, the individual hours worked and

“earnings weight for all races”.

A.3.2 Hours in Efficiency Units

Based on the wage weights, hours in efficiency units are computed as follows.

For each quarter, I calculate the total usual hours worked for each demographic

group. Then, I use wage weights to aggregate these 240 values and get the hours in

efficiency units for each quarter.

Ht =
∑
g∈G

wg

(∑
i∈g

hitµit

)
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Appendix B

Derivation of Wage Rates Resulting from Nash-Bargaining

First, by definition, we get:

V NB(zt, nst, nut) = max
{εs,εu,
cst,cut}

{
λs

[ ls(cst)1−σs

1− σs
− (nst + εs)

1+ηs

1 + ηs

]
+ λu

[ lu(cut)1−σu

1− σu
− (nut + εu)

1+ηu

1 + ηu

]
(P.3)

+ βEtV (t+ 1|t)
}

s.t.

0 = Dt + wstnst + w̃sεs + wutnut + w̃uεu − lscst − lucut

0 = (1− χs)(nst + εs) + vst

(
1− e

−αs(ls−nst−εs)
vst

)
− nst+1

0 = (1− χu)(nut + εu) + vut

(
1− e

−αu(lu−nut−εu)
vut

)
− nut+1

Based on the above definition, I derive the following expressions:

Ṽst =
∂V NB(·)
∂εs

∣∣
εs=0

(B.1)

Ṽut =
∂V NB(·)
∂εu

∣∣
εu=0

(B.2)

Next, we get:

JNB(zt, kt, nst, nut) = max
{εs,εu,vst,vut,

nst+1,nnt+1,kt+1}

{
eztkαt

[
(asnst+asεs)

σ+(aunut+auεu)
σ
] 1−α

σ −wstnst−w̃sεs

− wutnut − w̃uεu − fsvst − fuvut + (1− δ)kt − kt+1 + βEtΛt,t+1J(t+ 1|t)
}

(P.4)
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s.t.

0 = (1− χs)(nst + εs) + vst

(
1− e

−αs(ls−nst−εs)
vst

)
− nst+1

0 = (1− χu)(nut + εu) + vut

(
1− e

−αu(lu−nut−εu)
vut

)
− nut+1

Then,

J̃st =
∂JNB(·)
∂εs

∣∣
εs=0

(B.3)

J̃ut =
∂JNB(·)
∂εu

∣∣
εu=0

(B.4)

The equilibrium wage rate wi solves the weighted geometric average of the

gains from bargaining:

w̃i = arg max
w̃i

{
Ṽ φi
it J̃

1−φi
it

}
The first-order condition is: 0 = φiJ̃it(·)∂Ṽit∂w̃i

+ (1− φi)Ṽit(·)∂J̃it∂w̃i

From (P.3), I get the following:

Ṽst(ws) = λsc
−σs
st (w̃s − wst) + Vnst

Vnst = −λs(nst)ηs + λsc
−σs
st wst + β(1− χs − αse

−αs(ls−nst)
vst )EtVnst+1

and Ṽut(wu) = λuc
−σu
ut (w̃u − wut) + Vnut

Vnut = −λu(nut)ηu + λuc
−σu
ut wut + β(1− χu − αue

−αu(nu−nut)
vut )EtVnut+1

From (P.4), I get:

J̃st(ws) =wst − ws + Jnst

Jnst =(1− α)eztkαt
[
(asnst)

σ + (aunut)
σ
] 1−α−σ

σ aσs (nst)
σ−1 − wst

+ β(1− χs − αse
−αs(ls−nst)

vst )EtΛt,t+1Jnst+1
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J̃ut(wu) =wut − w̃u + Jnut

Jnut =(1− α)eztkαt
[
(asnst)

σ + (aunut)
σ
] 1−α−σ

σ aσu(nut)
σ−1 − wut

+ β(1− χu − αue
−αu(lu−nut)

vut )EtΛt,t+1Jnut+1

Now, I solve the Nash-bargaining problem for the skilled wage rate.

∵ 0 = φiJ̃it(·)
∂Ṽit
∂w̃i

+ (1− φi)Ṽit(·)
∂J̃it
∂w̃i

∴ 0 = φsλsJnst − (1− φs)cσsst Vnst

When plugging Vnst , I get:

∴ φsλsJnst = (1−φs)cσsst
{
−λs(nst)ηs+λsc−σsst wst+β

(
1−χs−αse

−αs(ls−nst)
vst

)
EtVnst+1

}

Plugging Vnst+1 =
φsλsJnst+1

(1−φs)cσsst+1
into the above equation and taking some manip-

ulation, I get:

wst = φs(1− α)eztkαt

[
(asnst)

σ + (aunut)
σ

] 1−α−σ
σ

aσs (nst)
σ−1 + (1− φs)cσsst (nst)ηs

For the unskilled wage rate, I solve it in a parallel way and get the result:

wut = φu(1− α)eztkαt

[
(asnst)

σ + (aunut)
σ

] 1−α−σ
σ

aσu(nut)
σ−1 + (1− φu)cσuut (nut)ηu
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Appendix C

Equivalent Model Set-Up

In my paper, I adopt a complete-market structure following Andolfatto (1996).

Here, I show another way to set up the model, which follows Shimer (2009). Time

is discrete, which is denoted by t = 0, 1, 2, · · · . The state of the economy at time

t is denoted by st = {s0, s1, s2, · · · st}, which represents the history of the economy.

Π(st) represents the time-0 belief about the probability of observing a given history

st at time t.

For the household:

V
(
z(st), a(st)

)
= max
{cs(st),cu(st)}

{
λs

[ ls(cs(st))1−σs

1− σs
−(ns(s

t))1+ηs

1 + ηs

]
+λu

[ lu(cu(st))1−σu

1− σu
−(nu(s

t))1+ηu

1 + ηu

]
+ β

∑
st+1|st

Π(st+1)

Π(st)
V (st+1|st)

}

s.t. 0 = a(st)+ws(s
t)ns(s

t)+wu(s
t)nu(s

t)−lscs(st)−lucu(st)−
∑
st+1|st

qt(s
t+1)a(st+1)

where a(st) is the household’s assets; and qt(s
t+1) is the time-t price of a unit of con-

sumption over history st+1 paid in units of history-st consumption. The optimality

conditions are:

λs(cs(s
t))−σs = λu(cu(s

t))−σu

qt(s
t+1) = β

Π(st+1)(cs(s
t+1))−σs

Π(st)(cs(st))−σs
= β

Π(st+1)(cu(s
t+1))−σu

Π(st)(cu(st))−σu
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For the firm:

J
(
z(st), k(st), ns(s

t), nu(s
t)
)

= max
{vs(st),vu(st),ns(st+1),
nu(st+1),k(st+1)}

{
ez(s

t)(k(st))α
[
(asns(s

t))σ+(aunu(s
t))σ
] 1−α

σ

−ws(st)ns(st)−wu(st)nu(st)−fsvs(st)−fuvu(st)+(1−δ)k(st)−k(st+1)+
∑
st+1|st

qt(s
t+1)J(st+1|st)

}

s.t. ns(s
t+1) = (1− χs)ns(st) + vs(s

t)
(
1− e

−αsus(st)

vs(st)
)

nu(s
t+1) = (1− χu)nu(st) + vu(s

t)
(
1− e

−αuuu(st)

vu(st)
)
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Appendix D

Expression for Employment Volatility

In this section, I log-linearize the law of motion for employment to derive

an expression for employment volatility. To simplify the notation, I suppress the

type-specific subscript s or u.

Denote the steady state value of variable x by x̄, and denote the percentage

deviation from its steady-state value by x̂. That is, x̂ = x−x̄
x̄

For worker flow, the law of motion is: nt+1 = (1 − χ)nt + vt
(
1 − e

−αut
vt

)
.

Log-linearizing on the above equation, we get:

n̂t+1 = (1− χ)n̂t + χ
(
1−

αū
v̄

e
αū
v̄

)
v̂t +

χαū
v̄

e
αū
v̄ − 1

ût

Since l = nt + ut, we have: 0 = n̄n̂t + ūût, or ût = n̄n̂t
ū

. Replacing ût with n̄n̂t
ū

in the above equation, we find:

n̂t+1 = Φnnn̂t + Φnvv̂t (D.1)

where Φnn

(αū
v̄
,
ū

n̄

)
= 1− χ−

χαū
v̄

e
αū
v̄ − 1

n̄

ū
, Φnn > 0,

∂Φnn

∂ αū
v̄

> 0, and
∂Φnn

∂ ū
n̄

> 0

Φnv

(αū
v̄

)
= 1−

αū
v̄

e
αū
v̄ − 1

, Φnv > 0, and
∂Φnv

∂ αū
v̄

> 0

Finally, we have var(n) = Φ2
nnvar(n) + Φ2

nvvar(v) + 2ΦnnΦnvcov(n, v), which

implies:

var(n) = var(v)
Φ2
nv

1− Φ2
nn

+ 2cov(n, v)
ΦnnΦnv

1− Φ2
nn

(D.2)
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