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ON THE SENSITIVITY OF
NEARLY UNCOUPLED MARKOV CHAINS
G. W. STEWART

1. Introduction

A nearly uncoupled Markov chain (NUMC) is a discrete chain whose matrix P of
transition probabilities is almost block diagonal. More precisely, the states of a
NUMC with & blocks can be ordered so that its transition matrix assumes the form

Dll E12 te Elk
E. D, --- E

P=D+E=| - ° o, (1.1)
Epi Epe - D

where the elements of the off-diagonal blocks E;; are small. Chains of this kind
are used to model systems in which certain groups of states are loosely coupled
to one another. Since the system spends a relatively large amount of time in a
group before passing on to another, it seems natural that a NUMC would achieve
steady states within groups rather quickly and a steady state between groups more
slowly. This behavior was first noted by Simon and Ando [10] and has been the
subject of much subsequent research (see, e.g., [2, 11, 1, 6]).

One practical difficulty with NUMCs is that it is difficult to determine the
off-diagonal elements accurately, at least empirically. This is because transitions
between blocks are rare events. Consequently, the behavior of the chain must be
observed over a long period to estimate the elements of E. It is therefore important
to have some idea of the sensitivity of &' to perturbation in the elements of P.
The purpose of this paper is describe the factors that make &' sensitive to such
perturbation.

In the next section we will review the perturbation theory for the left Perron
vector! of an irreducible Markov chain. The following section consists of a review
the theory of NUMCs. We will then apply the results of the two sections to deter-
mine the sensitivity of ' to perturbations in P. This is principally an expository

"'We will use the term Perron vectors to refer to the positive eigenvectors, left and right, of an
irreducible nonnegative matrix. Since a NUMC is a perforce aperiodic, it has only one eigenvalue
of magnitude one and its left Perron vector is a steady-state vector.
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survey of the problem. Complete bounds with proofs will appear in a subsequent
paper.

Throughout this paper, we will assume that P is an irreducible stochastic
matrix of order n, partitioned as in (1.1). For simplicity we will take k& = 3
in displayed formulas, the general case being an obvious extension. The vector
7" will denote the unique positive left Perron vector of P normalized so that
its components sum to one. The corresponding right eigenvector of P, whose
elements are all one, will be written 1.

The symbol || - || will denote the Euclidean vector norm and the subordinate
matrix norm defined by
JA] = max [|Ax]|.
[Ix[|=1

Since we will be concerned with the behavior of NUMCs as E approaches zero, we
will set

€ = [|E].

2. Perturbation Theory for Irreducible Markov Chains

In this section we will be concerned with the following problem. Let P be an
irreducible stochastic matrix (here we do not assume that the associated chain is
a NUMC) with left Perron vector 7l Let

P=P4+F

be an irreducible, stochastic matrix with left Perron vector #1. The problem is
to find a bound on |71 — &T|.

The perturbation theory for the steady state vectors of markov chains was
initiated by Schweitzer [9], and has been developed in various forms since (e.g.,
see [5, 3, 4, 8]). Here we present it in a form that emphasizes its interaction with
the transient behavior of the chain.

We begin with a decomposition of P.

Theorem 2.1. The matrix P can be written in the form
T
P:utmmgym(gT):1#4imVTzs+1 (2.1)

where
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and none of the eigenvalues of the matrix B are one. Moreover, |V|| = 1 and

U] < v/,

The nonzero eigenvalues of T are the same as the eigenvalues of B. If the
chain is aperiodic, these eigenvalues are all less than one in magnitude. Hence
lim,_., T? — 0, and the rate at which it converges determines the rate at which
the chain converges to the STEADY-STATE MATRIX S For this reason, we call T the
TRANSIENT MATRIX of the system. Note that both S and T are independent of the
choice of U and V.

This decomposition can be used to characterize the perturbed Perron vector

al.

Theorem 2.2. Let P have the decomposition (2.1) and let
B = VIPU.
Then I — B is nonsingular and
#l =7+ x'FUI-B) 'V (2.2)

Since VI1 = 0, the vector &' defined by (2.2) is properly normalized. More-

over,

17" — =" B -
T S IO —B)~"VI[|F].

Now for F sufficiently small, (I — B)™' = (I — B)~'. Hence if we set

T =U(I-B)"'V!

(Schweitzer [9] calls this the fundamental matriz), we may assert that

The condition of w7 is HThH

Another way of putting this result is to observe that if an eigenvalues of T
is near one, then T' must be large. In other words, a slowly converging Markov
chain is an ill-conditioned Markov chain. This means that we can expect troubles
with NUMCs, which can have very slow transients.
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3. The Theory of NUMCs

In this section we shall consider an irreducible NUMCin the form (1.1). The basic
fact about such chains is that the transient matrix can be decomposed into a fast
transient and a slow transient. To state the result precisely, we must introduce
some notation.

First, note that as ¢ — 0, the matrices D;; approach stochastic matrices.
Hence each has an eigenvalue approaching one. We will define the set £; be the
set consisting of remaining eigenvalues of Dy;.

Second, let

m = (m w, m)
where the partitioning is conformal with (1.1). Since ' > 0, none of the compo-
nents in the above partitioning is zero. Hence we may set

7TT = (Ulf}‘ 1)2?’21‘ Ugfg). (31)

where the v; are chosen so that the sums of the components of the &; are one.
Note that v; +vs+vs = 1. We will call the numbers v; the COUPLING COEFFICIENTS
of the NUMC.

We are now in a position to establish the fundamental result on NUMCs

Theorem 3.1. Let P be an irreducible NUMC and suppose that as ¢ — 0:

1. The coupling coefficients v; are uniformly bounded away from
zero.

2. The sets L; are uniformly bounded away from one.

Then there are matrices

X = (1 X, Xi)
and
7.‘.T
YT _ YT
G

with X™' = Y such that
Y'PX = diag(1, B, By)
or equivalently

P=1x" + X.B,Y! + X;B;Y; =S + T, + T}.
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Moreover the eigenvalues of By are bounded below by 1 —O(¢) and the eigenvalues
of By are uniformly bounded away from one.

It is easy to see that
P’ =1x" + X.B°Y! + X;B{Y} =S +T7 + T}.

Since the nonzero eigenvalues of Ty are near one while the eigenvalues of Ty are
bounded away from one, T? approaches zero more slowly than Tf. Hence they
decompose the chain into slow and fast transients. The matrix T = T, + Ty is
the transient matrix introduced in the last section.

It will turn out that it is the slow transient that will control the sensitivity of
the steady state vector. Consequently, we must have some way of approximating
the matrix Bs. The following procedure gives a good approximation.

Let

1 0O
Q=|010
0 01
and =T aT T
® 0 O
R' = 0; f% 02 : (3.2)
o' ol =!I
Then it is easy to verify that
1. 1=0Q1,

2. ' =vIR".

These two equations are the expressions for the right and left eigenvectors of P.
Let us now produce an approximation for the slow transient. To do this, we
introduce the couPLING MATRIX

erI‘Dll]_ W}‘Elgl W}‘Elgl
C=R'PQ=| #]E;1l #]Dyl =w]Exl |. (3.3)
WgEgll W§E321 W§D331

It is easy to see that C is stochastic:

C1=R'PQ1=R'P1=RT1=1,
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Moreover, its steady-state vector is v’ (the vector of coupling coefficients):
vic=vIRTPQ=#x"PQ=7'Q =v" .

By Theorem 2.1, we can find matrices U, V, and By such that

1) = ( v )

and
T

C = (1 U)diag(1,B,) ( ‘va ) =1v' + UB,V".

Since C is stochastic and by (3.3) its off-diagonal elements are O(¢), we have
C =T140(e). Singe VU =17 and B, = VTCU, it followsfrom the boundedness
of U and V that By = I 4+ O(e). Thus the eigenvalues of B, behave as we would

expect those of a slow transient to behave. In fact, it is essentially the slow
transient.

Theorem 3.2. Under the hypotheses of Theorem 3.1

B. =B, + O(c?).

4. The Perturbation of NUMCs

We are now ready to combine the results from the last two sections. Specifically,
let P = P 4+ F be a perturbation of a NUMC that satisfies regularity conditions
one and two. From equation (2.2), we see that the problem of assessing the effects
of F on the steady state vector amounts to finding the matrix T".

We have seen that for a typical NUMC the transient matrix decomposes into a
slow transient and a fast transient. Specifically, the transient matrix T is given
by

T =T+ Ts.

Moreover, it is easily verified from the definitions of Ty and Ty that if we set
T =XI-T)7'Y:, i=s,f
then
T = T! + T}
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Consequently the condition of & is given by
1T < T+ 11T (4.1)

Since Ty is bounded and its eigenvalues are bounded away from one, the second
term in (4.1) is bounded as € — 0.

The first term is another story. It is equal to ||Xy(I—B,)~"Y7||. Now we have
noted in the last section that By is equal to I+ O(e). It follows that

ITE = O(e™).
In other words,

the condition of @' increases at least in inverse proportion to the size

of E.

This negative result is perhaps disappointing, but it accords with common sense.
If the condition were bounded, we could find a value of |F|| for which w71 is
satisfactorily accurate no matter what the value of ¢. In particular if ¢ were less
than this value of |F||, we could set E to zero and still get an accurate steady
state vector — which is obvious nonsense.

It should be stressed that the perturbations introduced by the slow transient
are by no means arbitrary. A more detailed analysis shows the vectors 71 are
quite stable, whereas the coupling coefficients v; are sensitive to perturbations in
P. Again this accords with our intuition about NUMCs.

The numerical assessment of the condition of wT is not difficult. Most ag-
gregation procedures require one to compute and approximation to the coupling
matrix C and the coupling coefficients. From there it is a small step to compute
an approximation to the matrix By and estimate the norm of (I — B)™!, which
can be done by any of a number of well known techniques [7].
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