
GWS Sensitivity of numcs 1On the Sensitivity ofNearly Uncoupled Markov ChainsG. W. Stewart1. IntroductionA nearly uncoupled Markov chain (numc) is a discrete chain whose matrix P oftransition probabilities is almost block diagonal. More precisely, the states of anumc with k blocks can be ordered so that its transition matrix assumes the formP = D+E � 0BBBB@ D11 E12 � � � E1kE21 D22 � � � E1k... ... ...Ek1 Ek2 � � � Dkk 1CCCCA ; (1:1)where the elements of the o�-diagonal blocks Eij are small. Chains of this kindare used to model systems in which certain groups of states are loosely coupledto one another. Since the system spends a relatively large amount of time in agroup before passing on to another, it seems natural that a numc would achievesteady states within groups rather quickly and a steady state between groups moreslowly. This behavior was �rst noted by Simon and Ando [10] and has been thesubject of much subsequent research (see, e.g., [2, 11, 1, 6]).One practical di�culty with numcs is that it is di�cult to determine theo�-diagonal elements accurately, at least empirically. This is because transitionsbetween blocks are rare events. Consequently, the behavior of the chain must beobserved over a long period to estimate the elements of E. It is therefore importantto have some idea of the sensitivity of �T to perturbation in the elements of P.The purpose of this paper is describe the factors that make �T sensitive to suchperturbation.In the next section we will review the perturbation theory for the left Perronvector1 of an irreducible Markov chain. The following section consists of a reviewthe theory of numcs. We will then apply the results of the two sections to deter-mine the sensitivity of �T to perturbations in P. This is principally an expository1We will use the term Perron vectors to refer to the positive eigenvectors, left and right, of anirreducible nonnegative matrix. Since a numc is a perforce aperiodic, it has only one eigenvalueof magnitude one and its left Perron vector is a steady-state vector.Draft October 6, 1989



GWS Sensitivity of numcs 2survey of the problem. Complete bounds with proofs will appear in a subsequentpaper.Throughout this paper, we will assume that P is an irreducible stochasticmatrix of order n, partitioned as in (1.1). For simplicity we will take k = 3in displayed formulas, the general case being an obvious extension. The vector�T will denote the unique positive left Perron vector of P normalized so thatits components sum to one. The corresponding right eigenvector of P, whoseelements are all one, will be written 1.The symbol k � k will denote the Euclidean vector norm and the subordinatematrix norm de�ned by kAk = maxkxk=1 kAxk:Since we will be concerned with the behavior of numcs as E approaches zero, wewill set � = kEk:2. Perturbation Theory for Irreducible Markov ChainsIn this section we will be concerned with the following problem. Let P be anirreducible stochastic matrix (here we do not assume that the associated chain isa numc) with left Perron vector �T. LeteP = P + Fbe an irreducible, stochastic matrix with left Perron vector e�T. The problem isto �nd a bound on ke�T � �Tk.The perturbation theory for the steady state vectors of markov chains wasinitiated by Schweitzer [9], and has been developed in various forms since (e.g.,see [5, 3, 4, 8]). Here we present it in a form that emphasizes its interaction withthe transient behavior of the chain.We begin with a decomposition of P.Theorem 2.1. The matrix P can be written in the formP = (1 U)diag(1;B) �TVT ! = 1�T +UBVT � S +T; (2:1)where (1 U)�1 =  �TVT !Draft October 6, 1989



GWS Sensitivity of numcs 3and none of the eigenvalues of the matrix B are one. Moreover, kVk = 1 andkUk � pn.The nonzero eigenvalues of T are the same as the eigenvalues of B. If thechain is aperiodic, these eigenvalues are all less than one in magnitude. Hencelim�!1 T� ! 0, and the rate at which it converges determines the rate at whichthe chain converges to the steady-state matrix S For this reason, we call T thetransient matrix of the system. Note that both S and T are independent of thechoice of U and V.This decomposition can be used to characterize the perturbed Perron vectore�T.Theorem 2.2. Let P have the decomposition (2.1) and leteB = VH ePU:Then I� eB is nonsingular ande�T = �T + �TFU(I� eB)�1VT: (2:2)Since VT1 = 0, the vector e�T de�ned by (2.2) is properly normalized. More-over, ke�T � �Tkk�Tk � kU(I� eB)�1VTkkFk:Now for F su�ciently small, (I� eB)�1 �= (I�B)�1. Hence if we setT\ = U(I�B)�1VT(Schweitzer [9] calls this the fundamental matrix ), we may assert thatThe condition of �T is kT\k.Another way of putting this result is to observe that if an eigenvalues of Tis near one, then T\ must be large. In other words, a slowly converging Markovchain is an ill-conditioned Markov chain. This means that we can expect troubleswith numcs, which can have very slow transients.Draft October 6, 1989



GWS Sensitivity of numcs 43. The Theory of numcsIn this section we shall consider an irreducible numcin the form (1.1). The basicfact about such chains is that the transient matrix can be decomposed into a fasttransient and a slow transient. To state the result precisely, we must introducesome notation.First, note that as � ! 0, the matrices Dii approach stochastic matrices.Hence each has an eigenvalue approaching one. We will de�ne the set Li be theset consisting of remaining eigenvalues of Dii.Second, let �T = (�T1 �T2 �T3 )where the partitioning is conformal with (1.1). Since �T > 0, none of the compo-nents in the above partitioning is zero. Hence we may set�T = (v1�T1 v2�T2 v3�T3 ): (3:1)where the vi are chosen so that the sums of the components of the �i are one.Note that v1+v2+v3 = 1. We will call the numbers vi the coupling coefficientsof the numc.We are now in a position to establish the fundamental result on numcsTheorem 3.1. Let P be an irreducible numc and suppose that as �! 0:1. The coupling coe�cients vi are uniformly bounded away fromzero.2. The sets Li are uniformly bounded away from one.Then there are matrices X = (1 Xs Xf)and YT = 0B@ �TYTsYTf 1CAwith X�1 = YT such that YTPX = diag(1;Bs;Bf)or equivalently P = 1�T +XsBsYTs +XfBfYTf � S +Ts +Tf:Draft October 6, 1989



GWS Sensitivity of numcs 5Moreover the eigenvalues of Bs are bounded below by 1�O(�) and the eigenvaluesof Bf are uniformly bounded away from one.It is easy to see thatP� = 1�T +XsB�sYTs +XfB�fYTf = S+T�s +T�f :Since the nonzero eigenvalues of Ts are near one while the eigenvalues of Tf arebounded away from one, T�s approaches zero more slowly than T�f . Hence theydecompose the chain into slow and fast transients. The matrix T = Ts + Tf isthe transient matrix introduced in the last section.It will turn out that it is the slow transient that will control the sensitivity ofthe steady state vector. Consequently, we must have some way of approximatingthe matrix Bs. The following procedure gives a good approximation.Let Q = 0B@ 1 0 00 1 00 0 1 1CAand RT = 0B@ �T1 0T 0T0T �T2 0T0T 0T �T3 1CA ; (3:2)Then it is easy to verify that 1: 1 = Q1;2: �T = vTRT:These two equations are the expressions for the right and left eigenvectors of P.Let us now produce an approximation for the slow transient. To do this, weintroduce the coupling matrixC = RTPQ = 0B@ �T1D111 �T1E121 �T1E131�T2E211 �T2D221 �T2E231�T3E311 �T3E321 �T3D331 1CA : (3:3)It is easy to see that C is stochastic:C1 = RTPQ1 = RTP1 = RT1 = 1;Draft October 6, 1989



GWS Sensitivity of numcs 6Moreover, its steady-state vector is vT (the vector of coupling coe�cients):vTC = vTRTPQ = �TPQ = �TQ = vT:By Theorem 2.1, we can �nd matrices U, V, and eBs such that(1 U)�1 =  vTVT !and C = (1 U)diag(1; eBs) vTVT ! = 1vT +U eBsVT:Since C is stochastic and by (3.3) its o�-diagonal elements are O(�), we haveC = I+O(�). Since VTU = I and eBs = VTCU, it follows from the boundednessof U and V that eBs = I+O(�). Thus the eigenvalues of eBs behave as we wouldexpect those of a slow transient to behave. In fact, it is essentially the slowtransient.Theorem 3.2. Under the hypotheses of Theorem 3.1Bs = eBs +O(�2):4. The Perturbation of numcsWe are now ready to combine the results from the last two sections. Speci�cally,let eP = P + F be a perturbation of a numc that satis�es regularity conditionsone and two. From equation (2.2), we see that the problem of assessing the e�ectsof F on the steady state vector amounts to �nding the matrix T\.We have seen that for a typical numc the transient matrix decomposes into aslow transient and a fast transient. Speci�cally, the transient matrix T is givenby T = Ts +Tf:Moreover, it is easily veri�ed from the de�nitions of Ts and Tf that if we setT\i = Xi(I�Ti)�1Yi; i = s; fthen T\ = T\s +T\fDraft October 6, 1989



GWS Sensitivity of numcs 7Consequently the condition of �H is given bykT\k � kT\sk+ kT\fk: (4:1)Since Tf is bounded and its eigenvalues are bounded away from one, the secondterm in (4.1) is bounded as �! 0.The �rst term is another story. It is equal to kXs(I�Bs)�1YTs k. Now we havenoted in the last section that Bs is equal to I+O(�). It follows thatkT\sk � O(��1):In other words,the condition of �T increases at least in inverse proportion to the sizeof E.This negative result is perhaps disappointing, but it accords with common sense.If the condition were bounded, we could �nd a value of kFk for which �T issatisfactorily accurate no matter what the value of �. In particular if � were lessthan this value of kFk, we could set E to zero and still get an accurate steadystate vector|which is obvious nonsense.It should be stressed that the perturbations introduced by the slow transientare by no means arbitrary. A more detailed analysis shows the vectors �T1 arequite stable, whereas the coupling coe�cients vi are sensitive to perturbations inP. Again this accords with our intuition about numcs.The numerical assessment of the condition of �T is not di�cult. Most ag-gregation procedures require one to compute and approximation to the couplingmatrix C and the coupling coe�cients. From there it is a small step to computean approximation to the matrix Bs and estimate the norm of (I �Bs)�1, whichcan be done by any of a number of well known techniques [7].References[1] W. L. Cao and W. J. Stewart (1985). \Iterative Aggregation/DisaggregationTechniques for Nearly UncoupledMarkov Chains." Journal of the Associationfor Computing Machinery, 32, 702{719.[2] P. J. Courtois (1977). Decomposability. Academic Press, New York.Draft October 6, 1989
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