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This dissertation proposes a nonparametric quasi-likelihood approach to es-

timate regression coefficients in the class of generalized linear regression models

for longitudinal data analysis, where the covariance matrices of the longitudi-

nal data are totally unknown but are smooth functions of means. This pro-

posed nonparametric quasi-likelihood approach is to replace the unknown covari-

ance matrix with a nonparametric estimator in the quasi-likelihood estimating

equations, which are used to estimate the regression coefficients for longitudi-

nal data analysis. Local polynomial regression techniques are used to get the

nonparametric estimator of the unknown covariance matrices in the proposed

nonparametric quasi-likelihood approach. Rates of convergence of the resulting

estimators are established. It is shown that the nonparametric quasi-likelihood

estimator is not only consistent but also has the same asymptotic distribution



as the quasi-likelihood estimator obtained with the true covariance matrix. The

results from simulation studies show that the performance of the nonparametric

quasi-likelihood estimator is comparable to other methods with given marginal

variance functions and correctly specified correlation structures. Moreover, the

results of the simulation studies show that nonparametric quasi-likelihood cor-

rects some shortcomings of Liang and Zeger’s GEE approach in longitudinal data

analysis.
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Chapter 1

Introduction

Nelder and Wedderburn introduced Generalized Linear Models (GLM) in 1972.

Let Y = (y1, y2, . . . , yn) be a vector of observations, assumed to be a realiza-

tion of a random variable Y and independently distributed with mean vector µ.

Let {x1,x2, . . . ,xp} be the n × 1 vectors of covariates. GLM consists of three

components:

(a) The random component: Each component of Y independently has a expo-

nential family distribution.

(b) The systematic component: Covariates x1,x2, · · · ,xp produce a linear pre-

dictor η given by

ηk =

p∑

1

xkjβj

where β1, β2, . . . , βp are unknown parameters.

(c) The link between the random and systematic components: There is a func-

tion g called the link function which relates the linear predictor vector η

and the expected value µ of Y, such that

η = g(µ).
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GLM extends linear models from the Gaussian case to a broad class of out-

comes. Because the distribution of observations can be specified as an exponential

family, one can construct a likelihood function, and therefore maximum likelihood

estimation is the principal method of estimation used for all generalized linear

models. The Gauss-Newton method is a well-known algorithm for calculating

maximum likelihood estimates for GLM. This method produces maximum likeli-

hood estimates by iterative weighted least squares.

Maximum likelihood estimation (MLE) has many good analytical properties.

For example, the estimators are consistent, asymptotically normal and asymp-

totically efficient under mild regularity conditions (McCullagh and Nelder, 1983).

However, the full distributions of observations have to be specified in order to

define a likelihood function.

Unfortunately, it is unclear how to specify the full distribution in many practi-

cal situations. Wedderburn (1974) proposed an important extension of likelihood

function, the quasi-likelihood function, for the situations where there is insuffi-

cient information to construct a likelihood function.

Suppose that we have independent observations zi (i = 1, 2, . . . , n) with ex-

pectations µi and variances Var (zi) ∝ V (µi), where µi is some known function

of a set of parameters β = {β1, β2, . . . , βp} and V (·) is some known function.

The quasi-likelihood function (in fact log quasi-likelihood function), is a function

K =
∑n

i=1 Ki such that

∂Ki (zi, µi)

∂µi

=
zi − µi

V (µi)
. (1.1)

Then K has statistical properties similar to those of a log-likelihood function.

For example, the expectation of the derivative of K with respect to µ equals

0; the expectation of the derivative of K with respect to βi equals 0 and the
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expectation of the square of the derivative of K with respect to the mean µ

equals the negative expectation of second derivative of K with respect to mean

µ, which is the reciprocal of the variance function.

Wedderburn’s introduction of quasi-likelihood greatly widened the scope of

generalized linear models by allowing the full distributional assumption about the

random component in the model to be replaced by a much weaker assumption in

which only the mean and a relation between the mean and the variance (variance

function) of observations need to be specified. A quasi-likelihood function then

can be used for estimation in the same way as a likelihood function for generalized

linear models. When certain mean-variance relationships are specified, the quasi-

likelihood function sometimes turns out to be a recognizable likelihood function.

For example, according to Wedderburn (1974), for a constant coefficient of varia-

tion the quasi-likelihood function is the same as the likelihood function obtained

by treating the observations as if they have a gamma distribution. Wedderburn

showed that the log likelihood function is identical to the log quasi-likelihood if

and only if this family of distributions is a one-parameter exponential family.

Wedderburn’s original quasi-likelihood model required knowing the variance

function up to a multiplicative constant. Since the variance function is an essen-

tial determinant of the quasi-likelihood, its specification is an important problem

in the quasi-likelihood approach. In many applications, it is a priori unclear how

the variance function should be specified. There are parametric and nonpara-

metric quasi-likelihood functions based on the methods of specification of the

unknown variance function.

Nelder and Pregibon (1987) proposed an extended parametric quasi-likelihood

function which replaces the unknown variance function by a family of functions
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indexed by an unknown parameter. They embedded the variance function into a

family of functions indexed by an unknown parameter θ, so that

Var (zi) = φVθ(µi) .

A useful family is obtained by considering powers of µ:

Vθ(µ) = µθ . (1.2)

Most common values of θ in (1.2) are the values 0, 1, 2, 3 which correspond to

variance functions associated with normal, Poisson, Gamma, and Inverse Gaus-

sian distributions respectively. It has been shown that an exponential family with

variance function

Vθ(µ) = µθ

exists for θ = 0 and θ ≥ 1. Another parametric approach is the pseudo-likelihood

method introduced by Carroll and Ruppert(1982).

A nonparametric quasi-likelihood approach was proposed by Chiou and Müller

(1999), who extended the quasi-likelihood approach to situations where the vari-

ance functions are unknown but can be assumed to be smooth. Their nonpara-

metric quasi-likelihood function is obtained by substituting a nonparametrically

estimated variance function in the place of the unknown true variance function

in the usual definition of the quasi-likelihood function (1.1). The nonparametric

variance function estimate which is used in the nonparametric quasi-likelihood

is obtained by smoothing squared residuals obtained from a preliminary model

fit. This approach consists of a two-stage iterative estimating procedure. The

regression parameters are first estimated by assuming V (µ) = 1 to obtain GLM

parameter estimates β̂0. Then a variance function is estimated nonparametrically,

treating the regression parameters as known to be β̂0. This procedure is iterated
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by using the updated model parameters in order to obtain new residuals and

estimated means and thus an updated nonparametric variance function estimate,

which then in turn can be used to obtain improved parameter estimates. They

showed that the asymptotic distribution of the nonparametric quasi-likelihood

estimator is the same as that of quasi-likelihood estimator under known variance

function,assuming that the unknown variance function is replaced by a consistent

nonparametric variance function estimates.

In Chiou and Müller’s nonparametric quasi-likelihood approach, they chose lo-

cal polynomial fitting regression by locally weighted least squares as their smooth-

ing method. Local polynomial regression was systematically studied by Stone

(1977, 1980, 1982) and Cleveland (1979). Cleveland (1979) introduced local

weighted polynomial regression using LOcally WEighted Scatterplot Smoothing

(Lowess) and Cleveland (1988) extended Lowess to multivariate settings. Lowess

is one of several nonparametric regression methods that can be used to estimate

the mean response profile as a function of some covariates. Fan (1992, 1993), Fan

and Gijbels (1992), and Ruppert and Wand (1994) published papers detailing the

advantages of local polynomial fitting. The book of Fan and Gijbels (1996) gave

a thorough study of local polynomial regression. There is extensive literature

on nonparametric variance function estimation. Carroll (1982) developed kernel

estimators in the context of linear regression. Müller and Stadtmüller (1987)

and Hall and Carroll (1989) proposed and analyzed kernel-type variance func-

tion estimators by assuming a nonparametric mean function. Fan and Gijbels

(1995) proposed a type of local polynomial variance function estimator as part of

their bandwidth selection procedure. Ruppert and Wand (1997) had some results

about local polynomial smoothers by using linear smoothing of squared residuals
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in estimation of variance functions under the assumption that both mean and

variance functions are smooth, but neither is assumed to be in a parametric fam-

ily. Wedderburn’s Quasi-likelihood, Nelder and Pregibon’s extended parametric

quasi-likelihood, Carroll and Ruppert’s pseudo-likelihood method and Chiou and

Müller’s nonparametric quasi-likelihood function are useful for independent ob-

servations.

McCullagh (1983) extended Wedderburn’s quasi-likelihood to multivariate

settings. Given the vector of random variables Y with length N mean vector

µ and covariance matrix σ2V(µ), the log quasi-likelihood L, a function of µ, will

be given by the system of partial differential equations

∂L
∂µ

= V−1(µ)(Y − µ).

According to McCullagh (1989), the statistical properties of quasi-likelihood func-

tions, in terms of score function, estimator of regression parameters β and the

distribution of the quasi-likelihood-ratio statistic, are very similar to those of or-

dinary likelihood functions except that the nuisance parameter, σ2, when it is

unknown, is treated separately from β and is not estimated by weighted least

squares. The quasi-likelihood score function

U(β) =
∂L
∂β

= DTV−1(Y − µ)

has zero mean and covariance matrix

σ2iβ = σ2DTV−1D

where −iβ is the expected derivative matrix of the log quasi-likelihood function

L(Y; µ). Under some weak conditions on the third derivative of the link function

and assuming that N−1iβ has a positive definite limit and that the third moments

6



of Y are finite, the
√

n-consistent quasi-likelihood estimator β̂ asymptotically fol-

lows a normal distribution with mean β and covariance matrix
(
Nσ2iβ

)−1

. The

quasi-likelihood approach is very useful in many situations by only using first and

second moment assumptions to avoid the complete specification of underlying dis-

tribution of the observations. For various analyses of independent observations,

generalized linear models (McCullagh and Nelder, 1983) and Quasi-likelihood

(Wedderburn, 1974) have recently unified regression methods for a variety of

discrete and continuous variables.

There are many situations where the dependence relationships among the

data are so significant that we can not ignore them. Longitudinal data are one

example of dependent data. Longitudinal data consist of repeated measurements

through time for each subject, and these repeated measurements are correlated

or exhibit variability that changes. They can be collected either prospectively

(such as clinical trial data), following subjects forward in time, or retrospectively,

by extracting multiple measurements on each subject from historical records.

The main interest in a longitudinal study is to determine the dependence of the

outcome variable on covariates, such as the dependence of the clinical outcome

on the treatment and other factors in clinical study. Since longitudinal data are

characterized by the fact that repeated measurements made on the same subject

are usually intercorrelated, the statistical analysis of longitudinal data requires

special methods to take the correlation structure into account to increase the

efficiency of estimators.

Liang and Zeger (1986) applied the quasi-likelihood approach to longitudinal

data analysis and proposed the generalized estimated equations (GEE) approach,

which is very useful for longitudinal data analysis. Suppose that there is a longi-
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tudinal data set {ykj,xkj} with mean µkj = E(ykj), and g (µkj) = xT
kjβ for k-th

subject at time point tkj, j = 1, 2, . . . , Tk and subjects k = 1, 2, . . . , n. Here ykj

is the response variable and xkj is a p × 1 vector of covariates at time point tkj.

Let Yk be the Tk ×1 vector (yk1, . . . , ykTk
), with mean vector µ = (µk1, . . . , µkTk

)

and and covariance matrix Σk = Cov(Yk), and let Xk be the Tk × p matrix

(xk1, . . . ,xkTk
)T for the k-th subject. Assuming that the form of the first two

marginal moments E(ykj) and Ak = diag [Var (yk1), Var (yk2), . . . , Var (ykTk
)] are

known, Liang and Zeger’s (1986) GEE approach used a working correlation ma-

trix R(α), which is assumed to be a matrix dependent on a parameter α, to replace

the covariance matrix V−1
k = A

1/2
k R(α)A

1/2
k in the following general estimating

equations,
n∑

k=1

DT
k V−1

k Sk = 0 (1.3)

where the matrix Dk = ∂µk/∂β and the vector Sk = Yk−µk. Given α, one solves

the equation (1.3) to obtain consistent estimators of regression parameters β in

the class of generalized linear models for repeated measures data. Liang and Zeger

also prove that the same results hold if α is replaced by α̂, a quantity estimated

from the data. In fact, the estimating equation (1.3) is the quasi-score equation

derived from McCullagh (1983), as Liang and Zeger pointed out (1986). In terms

of the method of specification of correlation structure, Liang and Zeger’s GEE is

an very important parametric approach to longitudinal data analysis, provided

one knows the marginal mean and variance functions. However, the GEE esti-

mators will be less efficient than the quasi-likelihood estimator when the working

correlation matrix is misspecified, even though they are still consistent (Liang

and Zeger (1986)). According to Crowder (1995), there may not even exist any

solution for α̂ for various possible reasons, so that the uncertainty of definition
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of the working correlation matrix can lead to a complete breakdown of the esti-

mation of regression parameters in some cases. Sutradhar and Das (1999) show

that even though the Liang-Zeger approach in many dependant data situations

yields consistent estimators for the regression parameters, in some cases, these

estimators are inefficient as compared to the regression estimators obtained by

using the independence estimating equation approach. Wang and Carey (2001)

provided two approaches to supplement and enhance GEE by constructing unbi-

ased estimating equations from general correlation models for irregularly timed

repeat measures.

Besides GEE, semiparametric regression modeling is also useful for longitudi-

nal data analysis. Fan and Li (2004) proposed two new approaches for estimating

the regression coefficients in the following semiparametric model for longitudinal

data analysis:

y(t) = α(t) + βTx(t) + ǫ(t),

where y(t) is the response variable and x is a covariate vector at time t, α(t) is

an unspecified baseline function of t, β is a vector of unknown regression coeffi-

cients, and ǫ(t) is a mean-0 stochastic process. Fan and Li used local polynomial

regression to estimate the baseline function α(t), given a so called difference-based

estimator (DBE) of β.

Similar to Wedderburn’s quasi-likelihood approach, Liang and Zeger’s GEE

requires knowing marginal variance functions. It is unclear how to specify both

the marginal variance function and the correlation structure in some longitudinal

studies. Nonparametric procedures let the data speak for themselves, instead of

picking one matrix arbitrarily as a working correlation matrix when we have no

idea about the data correlation structure. Modern computer technology makes
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nonparametric techniques much more feasible than they used to be since it is

much easier to perform extensive computation on datasets.

A nonparametric quasi-likelihood approach will be proposed in this disserta-

tion to estimate parameters in the class of generalized linear regression models for

longitudinal data analysis where the covariance structures (i.e. marginal variance

functions and correlation structure) are unknown. This proposed extended non-

parametric quasi-likelihood approach is to estimate regression model parameters

β in the class of generalized linear models for longitudinal data analysis where

the covariance matrix is totally unknown but its elements are smooth functions of

the means. Since this proposed nonparametric quasi-likelihood approach can be

used for longitudinal data (dependent data) analysis and does not need to spec-

ify the marginal variance functions, it is a multivariate extension of Chiou and

Müller’s nonparametric quasi-likelihood approach and also is a generalization of

Liang and Zeger’s GEE. The proposed nonparametric quasi-likelihood approach

for longitudinal data consists of following two major procedures.

First Procedure: Initially set a value as the initial estimate β̂0 for the regres-

sion parameters. Obtain the nonparametric estimator of the covariance

matrix by smoothing squares of residuals and cross terms of residuals gen-

erated from the previous model fit (obtained by substituting β̂0 into the

quasi-likelihood model).

Second Procedure: Obtain the nonparametric quasi-likelihood function by re-

placing the unknown true covariance matrix in quasi-likelihood function

score equation with the nonparametric estimator of the covariance ma-

trix obtained from the first procedure, and solve this nonparametric quasi-

likelihood score equation to obtain the updated estimator of model param-
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eters.

The proposed nonparametric quasi-likelihood approach is achieved by iterating

those two procedures until a convergence criterion is satisfied. The updated non-

parametric estimator of the covariance matrix is obtained by smoothing resid-

uals generated from the previous model fit. The quasi-likelihood estimator for

the parameter in the generalized linear model is in turn updated by solving the

nonparametric quasi-likelihood score equation with the updated nonparametric

estimator of the covariance matrix. In this proposed extended nonparametric

quasi-likelihood approach, local polynomial smoothing in multivariate settings

by locally weighted least squares is chosen as the smoothing method. Some defi-

nitions and properties of local polynomial smoothers will be discussed in Chapter

2. The quasi-likelihood functions with true covariance matrix and unknown co-

variance matrix for longitudinal data will be introduced in Chapter 3.

In Chapter 4, the model assumptions of nonparametric quasi-likelihood for

longitudinal data will be introduced and the nonparametric estimator for un-

known covariance matrix will be defined.

The consistency and the rate of convergence of the nonparametric estimator of

covariance matrix will be established in Chapter 5. The asymptotic properties of

the nonparametric quasi-likelihood estimator of β will be established under cer-

tain regularity conditions in Chapter 5. It will be shown that when the unknown

covariance matrix is replaced with the consistent nonparametric covariance ma-

trix estimate, the
√

n-consistency and the asymptotic normality properties of the

nonparametric quasi-likelihood estimator β̂
∗
of the regression parameter β are

the same as those for the quasi-likelihood estimator β̂ of β obtained from the

quasi-likelihood score equation with the true covariance matrix.

11



Finite sample behaviors are examined by simulation in Chaper 6. All proofs

and auxiliary results will be compiled in Chapter 7. Some conclusions and future

research will be discussed in Chapter 8.
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Chapter 2

Local Polynomial Regression

2.1 Local Polynomial Regression with a

Univariate Explanatory Variable

Consider the bivariate data (X1, Y1), . . . , (Xn, Yn), which form an i.i.d sample

from a population (X,Y ) . We would like to estimate the regression function

m(x0) = E(Y |X = x0) and its derivates m′(x0),m
′′(x0), · · · ,m(p)(x0).

Suppose that the data satisfy the following model:

Y = m(X) + σ(X)ǫ

where E(ǫ) = 0, Var (ǫ) = 1, and X and ǫ are independent. Assume that the

(p+1)th derivative of m(x) at the point x0 exists. We approximate the unknown

regression function m(x) locally by a polynomial of order p. A Taylor expansion

gives, for x in a neighborhood of x0,

m(x) ≈ m(x0) + m′(x0) +
m′′(x0)

2!
(x − x0)

2 + · · · + m(p)(x0)

p!
(x − x0)

p. (2.1)

This polynomial is fitted locally at x0 by weighted least squares regression: min-

13



imize

n∑

k=1

{
Yk −

p∑

j=0

βj(Xk − x0)
j

}2

Kh(Xk − x0) (2.2)

where h is a bandwidth, K is a kernel function, and Kh(·) = K(·/h)/h assigns

weights to each data point.

Denote by β̂j, j = 0, 1, · · · , p, the solution to the least squares problem (2.2).

From the Taylor expansion in (2.1) one sees that m̂ν(x0) = ν!β̂ν is an estimator

for m(ν)(x0), ν = 0, 1, · · · , p.

Let X be the design matrix of problem (2.2):




1 (X1 − x0) . . . (X1 − x0)
p

1 (X2 − x0) . . . (X2 − x0)
p

...
... . . .

...

1 (Xn − x0) . . . (Xn − x0)
p




,

and let

Y =




y1

y2

...

yn




, β =




β0

β1

...

βp




.

Also, let W = diag {Kh(Xk − x0)}n
k=1 . Then the weighted least squares prob-

lem (2.2) can be written as:

β̂ = arg min
β

(y − Xβ)TW(y − Xβ).

with β = (β0, . . . , βp)
T . The solution vector is provided by the weighted least

squares method and is given by

β̂ = (XTWX)−1XTWY.

14



Take p = 1. Then we have the locally weighted linear regression estimator of

m(x), m̂(x0).

2.2 Local Linear Regression in the Multivariate

Setting

Given d-dimensional covariates X and a response variable Y, we want to estimate

the mean regression function

m(x) = E(Y |X = x).

Let K be a d-variate nonnegative kernel function. For simplicity, we assume that

K is a multivariate probability density function, such that (a)
∫

K(u)du = 1 and
∫

uK(u)du = 0; (b) K has compact support and (c)

∫
ukujK(u)du = δkjm2(K),

with m2(K) =
∫

u2
kK(u)du ≥ 0. and δkj is the Kronecker delta.

Define KB(u) = |B|−1K(B−1u), where B is a nonsingular d × d matrix, the

bandwidth matrix, and |B| denotes its determinant.

Suppose that there are observations
{(

XT
k , Yk

)
: k = 1, 2, · · · , n

}
, with vec-

tor Xk = (Xk1, · · · , Xkd)
T . Let x = (x1, x2, · · · , xd) be a point in Rd. Using a

local linear approximation (take p = 1 in problem (2.2)), we have the multivariate

version of the weighted least squares problem (2.2): minimize

n∑

k=1

{
Yk − β0 −

d∑

j=1

βj(Xkj − xj)

}2

KB(Xk − x), (2.3)

with respect to β = (β0, β1, · · · , βd)
T , where β0 = m(x) , βj = (∂m/∂xj)(x), and

j = 1, 2, · · · , d.

15



Let β̂ = (β̂0, β̂2, · · · , β̂d)
T denote the estimator of β = (β0, β2, · · · , βd)

T re-

sulting from problem (2.3).

Let

XD =




1 (X11 − x1) . . . (X1d − xd)

1 (X21 − x1) . . . (X2d − xd)

...
... . . .

...

1 (Xn1 − x1) . . . (Xnd − xd)




, Y =




y1

y2

...

yn




,

and W = diag {KB(Xk − x)}n
k=1 .

Then the weighted least squares problem (2.3) can be written with matrix

notation as :

β̂ = min
β

(y − Xβ)TW(y − Xβ).

The solution to this weighted least regression problem is

β̂ = (XT
DWXD)−1XT

DWY.

The estimates of m(x) and its partial derivatives are given by

m̂(x) = β̂0, (∂̂m/∂xj)(x) = β̂j; j = 1, 2, · · · , d

We consider a special case with d = 2. We have

XT
D =




1 1 . . . 1

(X11 − x1) (X21 − x1) . . . (Xn1 − x1)

(X12 − x2) (X22 − x2) . . . (Xn2 − x2)




and W = diag (KB(X1 − x), KB(X2 − x), . . . , KB(Xn − x)) . Then

(XT
DW)Y =




∑n
k=1 KB(Xk − x)Yk

∑n
k=1 KB(Xk − x)(Xk1 − x1)Yk

∑n
k=1 KB(Xk − x)(Xk2 − x2)Yk




=




Gn0

Gn1

Gn2



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where Gn0 =
∑n

k=1 KB(Xk − x)Yk and

Gnj =
n∑

k=1

KB(Xk − x)(Xkj − xk)Yk, j = 1, 2.

Let

Nnpq =
n∑

k=1

KB(Xk − x)(Xk1 − x1)
p(Xk2 − x2)

q

where

0 ≤ p, q ≤ 2, 0 ≤ p + q ≤ 2.

Then

(XT
DW)XD =




Nn00 Nn10 Nn01

Nn10 Nn20 Nn11

Nn01 Nn11 Nn02




.

Therefore,

β̂ = (XT
DWXD)−1(XT

DWY) =




Nn00 Nn10 Nn01

Nn10 Nn20 Nn11

Nn01 Nn11 Nn02




−1


Gn0

Gn1

Gn2




;

that is,

β =




β0

β1

...

βp




=




Nn00 Nn10 Nn01

Nn10 Nn20 Nn11

Nn01 Nn11 Nn02




−1


Gn0

Gn1

Gn2




.
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Hence,

β̂0 =
1

detN

[
(Nn20Nn02 − N2

n11)Gn0 − (Nn10Nn02 − Nn01Nn11)Gn01

+ (Nn10Nn11 − Nn01Nn20)Gn2]

=
1

detN

n∑

k=1

KB(Xk − x)
[
(Nn20Nn02 − N2

n11)

− (Xk1 − x1) × (Nn10Nn02 − Nn01Nn11)

+ (Xk2 − x2) × (Nn10Nn11 − Nn01Nn20)] Yk

=
n∑

k=1

WnkYk

where N is 3 × 3 matrix and Wnk is a weight function defined as follows:

Wnk =
1

detN
KB(Xk − x)

×
[(

Nn20Nn02 − N2
n11

)
− (Nn10Nn02 − Nn01Nn11)

+ (Nn10Nn11 − Nn01Nn20)] .

Define Fnpq = (1/n2) Nnpq. Then

Wnk =
n4

detN
KB(Xk − x)

[
(Fn20Fn02 − F 2

n11)

−(Xk1 − x1)(Fn10Fn02 − Fn01Fn11) (2.4)

+ (Xk2 − x2)(Fn10Fn11 − Fn01Fn20)]

=
1

n2
KB(Xk − x)

FN

FD

(2.5)

with

FN = (Fn20Fn02 − F 2
n11) − (Xk1 − x1)(Fn10Fn02 − Fn01Fn11)

+(Xk2 − x2)(Fn10Fn11 − Fn01Fn20),

FD = Fn00Fn20Fn02 + 2Fn10Fn01Fn11

−F 2
n01Fn20 − F 2

n10Fn02 − F 2
n11Fn00.

The following lemma states one of the properties of the weight function.
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Lemma 2.1 Let Wnk be defined as in (2.5). Then

n∑

k=1

(Xkq − xq) Wnk =





1 if q=0;

0 if q=1,2.

In particular,
n∑

k=1

Wnk = 1.

We define Xkq − xq = 1 if q = 0.

Proof: Let eT
v+1 = (0, · · · , 0, 1, 0, · · · , 0) be a vector with 1 as its (v + 1)th

component and 0 otherwise. Also, let Sn = XT
DWXD. Then

β̂0 = eT
1 β̂

= eT
1

(
S−1

n XT
DWY

)

=
n∑

k=1

WnkYk

where

Wnk = eT
1 S−1

n {1, Xk1 − x1, Xk2 − x2}T KB (Xk − x) .

Observe that

n∑

k=1

(Xkq − xq) Wnk

=
n∑

k=1

(Xkq − xq) eT
1 S−1

n {1, Xk1 − x1, Xk2 − x2}T KB (Xk − x)

=
n∑

k=1

(Xkq − xq) eT
1 S−1

n




1

Xk1 − x1

Xk2 − x2




KB (Xk − x)

= eT
1 S−1

n

(
S−1

n eq+1

)
=





1 if q = 0;

0 if q = 1, 2.
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In particular,

n∑

k=1

Wnk =
n∑

k=1

(X0 − x0)Wnk = 1.
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Chapter 3

Quasi-likelihood Function for Longitudinal Data

3.1 Quasi-likelihood Function with Known

Covariance Matrix

Suppose that there are longitudinal observations {ykj,xkj} taken at times tkj,

j = 1, 2, · · · , Tk and subjects k = 1, 2, · · · , n. Here ykj is the response variable

and xkj is a p × 1 vector of covariates at time point tkj.

Let Yk be the Tk×1 vector (yk1, · · · , ykTk
) with mean vector µk = E(Yk), co-

variance matrix Σk = Cov(Yk) and Xk be the Tk × p matrix (xk1, · · · ,xkTk
)T for

the kth subject. The main interest of longitudinal data analysis is to investigate

the dependence of the outcome variable on the covariate variables. A generalized

linear model will be established for this purpose. The framework for generalized

linear models and maximum quasi-likelihood estimation, derived from the multi-

variate settings in McCullagh (1983) and McCullagh and Nelder (1983), can be

set out as two main components:

i) Model specifications for the mean vector µk = (µk1, · · · , µkTk
) and covariance
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matrix Σk, with

µkj = g(ηkj), ηkj = xT
kjβ, Σk = φV(µk)

where j = 1, 2, · · · , Tk; k = 1, 2, · · · , n and g is a known link function having

bounded third derivatives. Notice that g(·) is often referred as the inverse

link function in the literature on generalized linear models. The p×1 vector

β consists of regression parameters, V(·) is a symmetric positive definite

matrix of known variance and covariance functions, and φ > 0 is a scale

factor, either a known constant or an unknown parameter.

ii) The log quasi-likelihood function is given by the following system of partial

differential equations

∂L(µ,Y)

∂µ
=

n∑

k=1

V−1(µk) (Yk − µk) /φ. (3.1)

Estimation of the regression model parameter β is based on the quasi-score func-

tion:

U(β) =
∂L(µ,Y)

∂β
(3.2)

=
n∑

k=1

DT
k V−1(µk)(Yk − µk)/φ (3.3)

where Dk is a p × Tk matrix with (j, l)th element (∂/∂βl)µkj and Dk has rank

p for all β. (This would imply that distinct β’s imply distinct µ’s). The quasi-

score function has the following properties according to the results of McCullagh

(1983) and McCullagh and Nelder (1983):

(i)

E (U(β)) = 0,
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(ii)

Cov (U(β)) =
n∑

k=1

DT
k V(µk)

−1Dk/φ = iβ,

(iii)

−E (∂ (U(β)) /∂β) =
n∑

k=1

DT
k V (µk)

−1 Dk/φ = Cov (U(β)) = iβ,

where −iβ is the expected second derivative matrix of the log quasi-likelihood

function L(µ,Y).

By the results in McCullagh (1983), we also have following facts:

1. U(β) = Op(n);

2. Iβ = − (∂2/∂βrβs) (U(β)) = Op(n);

3. Iβ − iβ = Op(n
1/2);

4. There exists β̂, a solution of U(β) = 0, such that β̂ − β = Op(n
1/2).

Furthermore, the maximum quasi-likelihood estimator β̂, a solution of the quasi-

likelihood equation U(β) = 0, satisfies:

(i) Consistency:

β̂ − β = Op

(
n−1
)

as n → ∞

(ii) Asymptotic Normality:

√
n
(
β̂ − β

)
→ N

(
0, nVβ

)
asn → ∞

where

Vβ = φ

[
n∑

k=1

DT
k V(µk)

−1Dk

]−1

= i−1
β ,

and the covariance matrix of estimator β̂ is Vβ, provided that the eigenvalues λ

of iβ satisfy 0 < c1 < λ < c2 < ∞ for sufficiently large n (Weddernburn 1974).
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3.2 Nonparametric Quasi-likelihood Function with

Unknown Covariance Matrix

When the covariance matrix V(µ) is unknown, an extended nonparametric ap-

proach is proposed in this dissertation by replacing V(µ) in (3.1) with a consistent

nonparametric estimator V̂n(µ̂) to construct a nonparametric quasi-likelihood

function L∗(µ,Y). The nonparametric quasi-likelihood function L∗(µ,Y) will

be given as follows:

∂L∗(µ,Y)

∂µ
=

n∑

k=1

V̂−1
n (µk) (Yk − µk) /φ. (3.4)

Then we have the nonparametric quasi-likelihood score function:

U∗(β) =
∂L∗(µ,Y)

∂β

=
n∑

k=1

DT
k V̂−1

n (µk)(Yk − µk)/φ.

In Chapter 5, we will show that the maximum nonparametric quasi-likelihood

estimator β̂
∗
, a solution of the nonparametric quasi-likelihood score equation:

U∗(β) = 0, (3.5)

is still consistent and has asymptotically normal distribution N(β,Vβ), with

Vβ = φ

[
n∑

k=1

DT
k V(µk)

−1Dk

]−1

,

the same asymptotic distribution as the quasi-likelihood estimator β̂ obtained

with known covariance matrix. We will discuss this approach in detail in Chapter

4 and Chapter 5.
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Chapter 4

Nonparametric Quasi-likelihood Model for Longitudinal

Data

Suppose that there are longitudinal observations {ykj,xkj} for times tkj, j =

1, 2, . . . , Tk, and subjects k = 1, 2, . . . , n. Here ykj is the response variable and

xkj is a q × 1 vector of covariates at time point tkj.

Let Yk be the Tk × 1 vector (yk1, . . . , ykTk
)T with mean vector µk = E(Yk)

and unknown covariance matrix Σk = Cov(Yk), and let Xk be the Tk × p ma-

trix (xk1, . . . ,xkTk
)T for the kth subject. The vectors Yk, k = 1, 2, . . . , n are

independent. For simplicity, we assume that Tk = T for each k and φ = 1.

The following assumptions about the proposed nonparametric quasi-likelihood

model for longitudinal data will be used throughout the remainder of the thesis.

(N1) Model specifications for response variable ykj and mean µkj :

ykj = g(ηkj) + ǫkj;

µkj = g(xT
kjβ);

ηkj = xT
kjβ;

k = 1, . . . , n; j = 1, . . . , T ;

where g(·) is a known function, and called the link function. Notice that g(·)
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is often called as the inverse link function in the literature on generalized

linear models. Suppose that xkj is the nonrandom p-dimensional predictor

variable vector corresponding to the observation ykj for the subject at time

point j. The error vector εk = (ǫk1, . . . , ǫkT ) satisfies

E(εk) = 0, E(εkεl) < ∞

for any 1 ≤ l, k ≤ n, and 1 ≤ j ≤ T.

(N2) There exists a positive definite matrix of covariance functions (depending

on the means) V (µ) = (σst(µks, µkt))T×T , 1 ≤ s, t ≤ T, where ‖V−1‖∞ ≥ r

for some r > 0, such that

E(ǫksǫkt) = Cov(ǫks, ǫkt)

= Cov(yks, ykt)

= σst(µks, µkt).

Here {σst(us, ut)}1≤s,t,≤T is an array of covariance functions (depending on

the unknown means) and ‖·‖∞ is the matrix L∞ -norm. That is, if A = (aij)

is a n × n matrix, then ‖A‖∞ = max1≤i≤m

∑n
j=1 |aij|. Assume this matrix

V(µ) of variance functions is the unknown covariance matrix Cov(Yk) and

is going to be estimated by the proposed nonparametric approach. The

dispersion parameter φ is a known constant. For simplicity, assume that

φ = 1.

(N3) There exists a constant M > 0 such that max1≤k≤n ‖xkj‖∞ ≤ M < ∞, for

all 1 ≤ k ≤ n and 1 ≤ j ≤ T . Let Xk = (xk1, . . . ,xkT ) be a matrix for any

k with 1 ≤ k ≤ n.
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Condition (N3) implies that the predictor variable vectors are bounded,

since the covariate vector xkj at time j is fixed.

(N4) Given the link function g and the generalized linear model parameter vector

β, we assume that {X1, . . . ,Xn} form a sequence of matrices such that the

mean vectors µk or µkj = g(xT
kjβ) are generated by a design density fµ(u)

which is assumed to satisfy the following conditions:

Let C ⊆ RT be a subspace with a design measure such that all 2-dimensional

marginals are absolutely continuous with respect to Lebesgue measure. This

design measure has a T -dimensional density, positive everywhere in C. Let

f(x) be a T dimensional density, so that
∫
Cf(x) dx = 1. The support of

f(x) is a compact set D in C and D must contain a t-dimensional rectan-

gle (1 ≤ t ≤ T ). The function f(x) is twice conditionally differentiable,

exchangeably differentiable and has other regular analytical properties.

Also f(x) satisfies 0 ≤ inf f(x) ≤ sup f(x) < ∞. The design matrices

(X1, . . . ,Xn) are chosen in such way that the mean values µkt = g
(
xT

ktβ
)

satisfy ∫ ∞

−∞
· · ·
∫ µkt

−∞
· · ·
∫ ∞

−∞
f(x)dx =

k − 1

n − 1

for any 1 ≤ k ≤ n and 1 ≤ t ≤ T.

Let fst be the two-dimensional marginal density of f(x) for any pair (s, t),

1 ≤ s, t ≤ T, and let Dst be the support of fst such that

Dst = {(us, ut)|(u1, . . . , us, . . . , ut, . . . , uT ) ∈ D}

For simplicity, let fst(x, y) be the marginal density of (Xs,Xt) for a pair

(s, t), 1 ≤ s, t ≤ T.
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(N5) For any 1 ≤ s, t ≤ T, there is a constant c such that

E(ǫ2
ksǫ

2
kt) ≤ c.

(N6) The link function g(·) is three times and the variance functions {σst(·)}

in the covariance matrix V(·) are twice continuously differentiable with

bounded derivatives, for any pair (s, t).

(N7) There is a positive definite matrix Σ, such that

1

n

n∑

k=1

DT
k V −1(µk)Dk → Σ as n → ∞

where Dk is a T × p matrix with (j, l)th element (∂/∂βl)µkj.

Given the known covariance matrix V(·), the log quasi-likelihood function

will be given as the same as in (3.1):

∂L(µ,Y)

∂µ
=

n∑

k=1

V−1(µk) (Yk − µk) (4.1)

and the estimators of the regression parameters will be given by solving the

quasi-likelihood score equation

U(β) = 0

where

U(β) =
∂L(µ,Y)

∂β
(4.2)

=
n∑

k=1

DT
k V−1 (µk) (Yk − µk).

If the covariance matrix V(·) is unknown, then we will obtain the nonparametric

log quasi-likelihood function L∗(µk,Y) by substituting the nonparametric es-

timator Vn(µ) = (σnst(µks, µkt))T×T for the covariance matrix V(·) in the log
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quasi-likelihood function L(µ,Y) in (4.1) as follows:

∂L∗(µ,Y)

∂µ
=

n∑

k=1

V−1
n (µk) (Yk − µk) , (4.3)

and the nonparametric quasi-score function U∗(β) for this nonparametric quasi-

likelihood is

U∗(β) =
n∑

k=1

DT
k V−1

n (µk) (Yk − µk) (4.4)

where Dk is a T × p matrix with (j, l)th element (∂/∂βl)µkj; Vn(·) = (σnst(·))

is a T × T matrix of variance functions. The nonparametric quasi-likelihood

estimator (NQLE) β̂
∗

of β is a solution of the nonparametric quasi-likelihood

scoring equation

U∗(β) = 0. (4.5)

Assume the bandwidth matrix B is a nonsingular symmetric 2 × 2 matrix

and K is a 2-variate probability density function which satisfies the following

conditions:

(K1)
∫

K(u)d(u) = 1,
∫

uK(u)du = 0.

(K2) K has support [−1, 1] × [−1, 1] and that

∫
ukujK(u)d(u) = δkjm2(K)

where m2(K) =
∫

u2
kK(u)du ≤ 0 and δkj is kronecker delta. Moreover K

is continuously differentiable on [−1, 1] × [−1, 1] and

K(−u,−v) = K(u, v), K(u, v) ≥ 0.

In other words, the mean of the density function K(·) is zero and the

covariance matrix of K is m2(K)I2, with I2 the 2 × 2 identity matrix.
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Further we assume that K is Lipschitz. This means that for any small

number ǫ > 0, if ‖x1 − x2‖ ≤ ǫ then there is a constant k, such that

‖K(x1) − K(x2)‖ ≤ k‖x1 − x2‖.

Define

KB(u) =
1

|B|K
(
B−1u

)

where |B| denotes the determinant of B. From (K2), we have

∫∫
upvqK(u, v) dudv = 0 if p + q is odd;

∫ ∫
upvqK(u, v) dudv < ∞ if p + q is even.

Let

αpq =

∫ ∫
upvqK(u, v) dudv < ∞ if p + q is even.

It is clear that

α00 = 1.

(K3) The sequence of bandwidth matrices B = B(n) = diag {hs(n), ht(n)} sat-

isfies:

1. hs = hs(n) > 0, and ht = ht(n) > 0;

2. hs → 0 and ht → 0 as n → ∞;

3. hs/ht = O(1) as n → ∞;

4. nh2
s → ∞ and nh2

t → ∞ as n → ∞.

5. (log n/nhs)
1/2 = o (1)

6. (log n/nht)
1/2 = o (1)
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7. ((log n)/ (n2hsht))
1/2

= o (1)

From (N1) and (N2), we have

ǫkj = ykj − µkj,

ǫksǫkt = (yks − µks)(ykt − µkt).

Then

E(ǫksǫkt) = E((yks − µks)(ykt − µkt))

= Cov(yks, ykt) (4.6)

= σst(µks, µkt) (4.7)

Therefore, we have the model:

ǫksǫkt = σst(µks, µkt) + δkst,

where δkst is an error term with Eδkst = 0 and k = 1, 2, . . . , n.

Let the positive definite matrix Vn = (σnst(us, ut)) be a nonparametric esti-

mator of the covariance matrix. Then we have

σnst(us, ut) =
n∑

k=1

Wnk(us, ut; µks, µkt)ǫksǫkt. (4.8)

Here Wnk(us, ut; µks, µkt) is a local linear weight function, defined as the same as

(2.5) in Chapter 2. That is,

Wnk(µks, µkt; us, ut) =
1

n2
KB ((µks, µkt) − (us, ut)) F (µks, µkt; us, ut) (4.9)

where

F (µks, µkt; us, ut) =
FN

FD
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and

FN = (Fn20Fn02 − F 2
n11) − (µks − us)(Fn10Fn02 − Fn01Fn11) (4.10)

−(µkt − ut)(Fn10Fn11 − Fn01Fn20)

FD = Fn00Fn20Fn02 + 2Fn10Fn01Fn11 − Fn20F
2
n01 (4.11)

−F 2
n10Fn02 − F 2

n11Fn00

where

Fnpq =
1

n2

n∑

k=1

KB ((µks, µkt) − (us, ut)) (µks − us)
p(µkt − ut)

q (4.12)

for 0 ≤ p, q ≤ 2; 0 ≤ p + q ≤ 2.

Since {µks, µkt; ǫks, ǫkt} are unknown in (4.8), we are unable to calculate

Wnk(us, ut; µks, µkt), nor can we calculate the element σnst(us, ut) in the proposed

nonparametric estimator of covariance matrix (σnst(us, ut))T×T . In other words,

Vn(·) is not a statistic.

Suppose that we are given an estimator β̂ of β. Then we have estimated

means and observed residuals {µ̂ks, µ̂kt; ǫ̂ks, ǫ̂kt} :

µ̂ks = gs(x
T
ksβ̂); (4.13)

µ̂kt = gt(x
T
ktβ̂); (4.14)

ǫ̂ks = yks − µ̂ks; (4.15)

ǫ̂kt = ykt − µ̂kt. (4.16)

so, we can compute

σ̂nst(us, ut) =
n∑

k=1

Ŵnk(us, ut; µks, µkt)ǫ̂ksǫ̂kt (4.17)
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where

Ŵnk(us, ut; µks, µkt)

= Wnk(us, ut; µ̂ks, µ̂kt)

=
1

n2
KB((µ̂ks, µ̂kt) − (us, ut))F̂ (us, ut; µ̂ks, µ̂kt), (4.18)

F̂ (us, ut; µ̂ks, µ̂kt) = F̂N

/
F̂D,

F̂N = (F̂n20F̂n02 − F̂ 2
n11) − (µ̂ks − us)I{|bµks−us|≤hs}(F̂n10F̂n02 − F̂n01F̂n11)

−(µ̂kt − ut)I{|bµkt−ut|≤ht}(F̂n10Fn11 − F̂n01F̂n20), (4.19)

F̂D = F̂n00F̂n20F̂n02 + 2F̂n10F̂n01F̂n11 − F̂n20F̂
2
n01

−F̂ 2
n10F̂n02 − F̂ 2

n11F̂n00, (4.20)

and

F̂npq =
1

n2

n∑

k=1

KB ((µ̂ks, µ̂kt) − (us, ut)) (µ̂ks − us)
p(µ̂kt − ut)

q (4.21)

where 0 ≤ p, q ≤ 2; 0 ≤ p + q ≤ 2. Unlike Vn, V̂n is a statistic which can be

computed from the observations.

In the following chapter, we will investigate the asymptotic properties of the

random matrices Vn = (σnst(us, ut)) and V̂n = (σ̂nst(us, ut)) , defined in (4.8)

and (4.17).

Since (4.5) is a nonlinear equation, the Newton-Raphson method will be ap-

plied to solve this equation. In order to obtain β̂
∗
, the solution of equation

(4.5), the following iterative formula resulting from applying the Newton-Raphson

method to the nonparametric quasi-likelihood scoring equation U∗(β) = 0 and

updating the nonparametric smoothing technique, will be applied iteratively until

a convergence criterion is satisfied:

33



β̂
∗
(j+1) = β̂

∗
(j) +

{
n∑

k=1

DT
k

(
β̂

∗
(j)

)
V̂−1

n (µ̂k)(j) Dk

(
β̂

∗
(j)

)}−1

×
{

n∑

k=1

DT
k

(
β̂

∗
(j)

)
V̂−1

n (µ̂k)(j) Sk

(
β̂

∗
(j)

)}
(4.22)

where

V̂−1
n (µ̂k)(j) = V̂−1

n

(
g
(
XT

k β̂
∗
(j)

))

Dk
T (β̂

∗
(j)) = Dk

T (β)
∣∣∣
β=

bβ
∗

j

and

Sk

(
β̂

∗
(j)

)
= Ykg

(
XT

k β̂
∗
(j)

)
.

The proposed method of obtaining the nonparametric covariance matrix estima-

tor V̂n(·) = (σ̂nst(·)) is as follows:

1. Assign a guess value as the initial estimator β̂
∗
(0) of β into regression model.

2. For any 1 ≤ s, t ≤ T, obtain the products of residuals {ǫ̂ksǫ̂kt} from a previ-

ously fitted model based on the estimated value β̂
∗
(0) of β from the last step

and smooth them by applying the local polynomial smoothing method with

{µ̂ks, µ̂kt} as the two predictors. The predicted value from smoothing will

be the element (σ̂nst(·)) of the nonparametric estimator V̂n(·) of covariance

matrix.

3. Repeat Step 1 and Step 2. In other words, substitute the updated nonpara-

metric estimator of covariance matrix V̂n(·) from step 2 into the nonpara-

metric quasi-likelihood score equation to get the updated estimator β̂
∗
(n) of

regression parameters β until convergence occurs.
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The estimation of the variance function by using the local polynomial fitting

of square residuals obtained from a nonparametric regression fit was studied in

detail by Ruppert, Wand, Holst and Hössjer (1997). Chou and Müller (1999)

used the nonparametric estimator of variance function obtained by smoothing

square residuals from a previous regression model for their nonparametric quasi-

likelihood. The main idea of the proposed nonparametric quasi-likelihood for

longitudinal data is to combine a nonparametric smoothing technique such as

local polynomial smoothing and quasi-likelihood estimation method to get the

estimate of regression parameter estimators. In other words, use local poly-

nomial smoothing to get the nonparametric covariance matrix estimator, and

then replace the unknown covariance matrix with this nonparametric covariance

matrix estimator in quasi-likelihood function in order to get the estimate the

regression parameters β. These two procedures will be used iteratively by updat-

ing regression parameters and obtaining new residuals and estimated means and

thus an updated nonparametric covariance matrix. The updated nonparametric

covariance matrix then can be in turn used to update the estimator of regression

parameters.
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Chapter 5

Asymptotic Properties of Nonparametric Quasi-likelihood

Estimator.

In the previous chapter, an extended nonparametric quasi-likelihood approach

for longitudinal data was proposed. When the covariance matrix is unknown in

a longitudinal data analysis, it can be replaced by an asymptotically consistent

nonparametric estimator in quasi-likelihood function to get the nonparametric

quasi-likelihood estimator for regression parameters. In this chapter, we will

discuss the convergence rates of the nonparametric covariance matrix estima-

tors based on the theoretical residuals {εk} , k = 1, 2, . . . , n and sample residu-

als {ε̂k} , k = 1, 2, . . . , n and of the asymptotic properties of the nonparametric

quasi-likelihood of regression coefficients obtained by replacing the unknown co-

variance matrix with the nonparametric estimator. The following theorems will

show that the nonparametric quasi-likelihood estimator β̂
∗

of regression parame-

ter β obtained from the nonparametric estimator of covariance matrix is not only

consistent but also has the same asymptotic distribution as the quasi-likelihood

estimator β̂, the solution of the quasi-score equation with known covariance ma-

trix.

The first theorem shows that the element in the nonparametric estimator of
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unknown covariance matrix defined in (4.8) is consistent when the true means µk

and the theoretical residuals ǫks(k = 1, 2, . . . , n and j = 1, 2, . . . , T ) are known.

This theorem also gives the sizes of mean square error and maximum of error of

this nonparametric estimator in terms of sample size and the bandwidth matrix.

As defined in (4.8) in Chapter 4, an element of the nonparametric estimator of

the (s, t) entry covariance matrix will be

σnst(us, ut) =
n∑

k=1

Wnk(us, ut; µks, µkt)ǫksǫkt.

Theorem 5.1 Under (N1) − (N7) and (K1) − (K3) of Chapter 4,

(i)

sup
(us,ut)∈Dst

|Eσnst(us, ut) − σst(us, ut)|

= O
(
h2

s

)
+ O

(
h2

t

)
;

(ii)

|σnst(us, ut) − Eσnst(us, ut)|

= Op

([
log n

n2hsht

]1/2
)

;

(iii)

sup
(us,ut)∈Dst

E
[
(σnst(us, ut) − σst(us, ut))

2]

= O

(
1

n2hsht

+ h2
sh

2
t + h4

s + h4
t

)
;

(iv)

sup
(us,ut)∈Dst

|σnst(us, ut) − σst(us, ut)|

= Op

([
log n

n2hsht

]1/2

+ h2
s + h2

t

)
.
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Since the definition of nonparametric estimator of unknown covariance ma-

trix in (4.8) depends on the values of {µk, εk} , we can not obtain σnst be-

cause we can not observe {µk, εk} . Instead of using the nonparametric covari-

ance matrix estimator Vn = (σnst) , V̂n = (σ̂nst)T×T , which is a statistic, will

be used as a nonparametric covariance matrix estimator. Does the estimator

V̂ = (σ̂nst)T×T behave like the estimator Vn = (σnst)T×T ? The next theorem

shows the nonparametric covariance matrix estimator V̂n = (σ̂nst)T×T , obtained

by smoothing observable {µ̂k, ε̂k} , converges uniformly to the true covariance

matrix V(·) = (σst(·))T×T , provided that the regression parameter estimator β̂

is consistent estimator of β.

Theorem 5.2 Under (N1) − (N7) and (K1) − (K3), if ‖β̂ − β‖ = Op (1/
√

n) ,

then for (us, ut) ∈ D,

sup
(us,ut)∈D

|σ̂nst − σst| = Op

([
log n

n2hsht

]1/2

+ h2
s + h2

t +
1√
nhs

+
1√
nht

)

Therefore,

V̂n
p−→ V as n → ∞

for any (us, ut) ∈ D.

The proof of this theorem will be presented in Chapter 7. By substituting the con-

sistent nonparametric covariance matrix V̂n for the unknown covariance matrix in

the quasi-likelihood score function, the nonparametric quasi-likelihood estimator

β̂
∗
, the solution of nonparametric quasi-likelihood score equation, is asymptoti-

cally normally distributed. The following theorem shows that this nonparametric

quasi-likelihood estimator β̂
∗

will have the same efficiency as the quasi-likelihood

estimator β̂, the solution of quasi-likelihood score equation with known covari-

ance matrix.
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Theorem 5.3 Assume that (N1)-(N7) and (K1)-(K3) are satisfied in the non-

parametric quasi-likelihood model. Assume that the covariance matrix V(·) is

estimated by a positive definite matrix V̂n(·) = (σ̂nst(·))T×T which satisfies

(K4) There is a constant c such that cond(V̂n), the condition number of V̂n

is bounded above by c, for all n.

In addition assume that for each σ̂nst, there is a sequence λn > 0 such that

|σ̂nst| > λn and as n → ∞,

(i) λn → 0;

(ii) hs/λn → 0, ht/λn → 0;

(iii) nh2
sλn

2 → ∞, nh2
t λn

2 → ∞;

(iv)
(
n2hshtλn

2
)
/log n → ∞.

Then the NQLE β̂
∗

in (3.5) has an asymptotically normal distribution such that,

as n → ∞,
√

n
(
β̂

∗ − β
)

d−→ N
(
0,Σ−1

)
. (5.1)

From (5.1) and the results in Chapter 3, we know that the nonparametric

quasi-likelihood estimator β̂
∗

has the same asymptotic distribution as the quasi-

likelihood estimator β̂, the solution of the quasi-likelihood score equation with

known covariance matrix. Also, an asymptotic test statistic can be derived from

following Corollary, which follows from Theorem 5.3.

Corollary 5.1 Let β̂
∗

be the nonparametric quasi-likelihood estimator, the solu-

tion of (3.5), and let

Σ̂
−1

=
1

n

(
n∑

k=1

D̂T
k V̂nD̂k

)−1

,
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where D̂k is a T × p matrix with (j, l)th element (∂/∂βl)µkj and

V̂n = (σ̂nst(µ̂ks, µ̂kt))

with µ̂ks = g
(
xT

ksβ̂
∗)

and µ̂kt = g
(
xT

ktβ̂
∗)

. Then we have

Σ̂
−1 p−→ Σ−1, (5.2)

and [
n∑

k=1

D̂T
k V̂nD̂k

]−1/2 (
β̂

∗ − β
)

d−→ N (0, I) (5.3)

Since we know the asymptotic distribution of the nonparametric quasi-likelihood

estimator β̂
∗

and can estimate its covariance matrix, we can develop an asymp-

totic test statistic for a class of hypotheses:

H0 : Aβ = c0 versus H1n : Aβ = c1n (5.4)

where A is an m × n matrix with rank m and c0 and c1n are vectors.

By this result (McCullagh (1983)), we know the test statistic

Tn = n (Aβ − c0)
T
(
AΣ̂

−1
AT
)−1

(Aβ − c0) (5.5)

has an asymptotic χ2
m distribution under the null hypothesis H0. Here χ2

m de-

notes a central χ2 distribution with m degrees of freedom. Under the alternative

hypothesis H1n, Tn has an asymptotic χ2
m(ν2) distribution, where χ2

m(ν2) is a

noncentral χ2 distribution with m degrees of freedom and the noncentrality pa-

rameter ν2 is a fixed real constant such that

n (x1n − x0)
T
(
AΣ̂−1AT

)−1

(x1n − x0) −→ ν2.

If Tn > χ2
m;α, then the null hypothesis H0 in (5.4) will be rejected at level α. Here

χ2
m;α is the 100(1−α)% quantile of the central to χ2 distribution with m degrees
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of freedom. Furthermore, a 100(1 − α)% confidence region for β is given by

{
β : n

(
β̂

∗ − β
)T

Σ̂
−1
(
β̂

∗ − β
)
≤ χ2

ν;1−α

}
.
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Chapter 6

Simulations

In order to examine the efficiency of the nonparametric estimator of covariance

matrix in quasi-likelihood model estimation, four simulation studies were run

with a univariate predictor variable.

Let V̂n(·) = (σ̂nst(·))T×T be the nonparametric estimator of unknown covari-

ance matrix and (µ̂ks, µ̂kt)Bst
be the estimated value of (µks, µkt) , where the non-

parametric estimator of the covariance matrix was obtained by using bandwidth

matrix Bst. Define

G
(
Bst, (µ̂ks, µ̂kt)Bst

, σ̂nst (µ̂ks, µ̂kt)Bst

)

=

∣∣∣∣∣
n∑

k=1

(yks − µ̂ks)(ykt − µ̂kt)

σ̂nst (µ̂ks, µ̂kt)
− (n − p)

∣∣∣∣∣ .

The optimal bandwidth is B∗
st, the minimizer of

G
(
Bst, (µ̂ks, µ̂kt)Bst

, σ̂nst (µ̂ks, µ̂kt)Bst

)
. (6.1)

This bandwidth selection generalizes Chiou and Müller’s (1999) bandwidth

selection and was developed for this problem. The selections of bandwidth in

nonparametric quasi-likelihood in following four simulation studies were auto-

matically based on the bandwidth selector (6.1).

42



In the first three simulations, we considered the examples which had the same

marginal expectations as examples in Liang and Zeger (1986) and Sutradhar and

Das (1999), satisfying µkj = β0 + β1xkj with xkj = j/T for k = 1, 2, · · · , n, with

β0 = 1, β1 = 1, n = 200 and a total of T time points. The fourth simulation

study uses longitudinal over-dispersed Poisson data. One thousand Monte Carlo

simulations were run for each study to compare methods from following meth-

ods in regression estimation in terms of the bias, sample standard error (S.E.),

relative efficiency (Rel. Efficiency, ratio of true sample variance of QLE to the

compared method), mean square error (MSE) and relative MSE. The following

abbreviations appear in the tables.

QLE The quasi-likelihood method with true covariance matrix.

NQLE The nonparametric quasi-likelihood method with unknown but smooth

covariance matrix replaced by nonparametric covariance matrix estimator.

GEEar(1) The Liang-Zeger GEE method with known marginal variance func-

tions and working correlation matrix A(α) = (akj)T×T specified as AR(1)

structure, akk = 1, akj = α|k−j| for k, j = 1, 2, · · · , T.

GEEma(1) The Liang-Zeger GEE method with known marginal variance func-

tions and working correlation matrix A(α) = (akj)T×T specified as MA(1)

structure, akk = 1, akj = α if |k − j| = 1 for k, j = 1, 2, · · · , T ; otherwise

akj = 0.

GEEexch The Liang-Zeger GEE method with known marginal variance func-

tions and working correlation matrix A(α) = (akj)T×T specified as ex-

changeable structure, akj = α if k 6= j for k, j = 1, 2, · · · , T.
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GEEunst The Liang-Zeger GEE method with known marginal variance func-

tions and working correlation structure specified as unstructured when one

has no idea about correlation structure of data.

GEEfix The Liang-Zeger GEE method with known marginal variance functions

and working correlation structure specified as fixed structure R.wrong,

where R.wrong is a matrix defined as follows:



1 0 −0.98

0 1 0

−0.98 0 1




.

Indp The GLM method or GEE with known marginal variance functions and

working correlation matrix specified as independent structure.

In the first simulation study, 1000 Monte Carlo runs were created where

the data had the same marginal expectations as Zeger and Liang’s example

(1986), satisfying ηkj = β0 + β1xkj with xkj = j/T for k = 1, 2, · · · , n, with

Var (Ykj) = µ2
kj + µkj + 1, true correlation matrix A(α) = (akj)T×T having AR(1)

structure with α = −0.7 and total time points T = 5. According to Sutradhar

and Das (1999), the efficiencies of the GEE estimators β̂0G, and β̂1G specifying the

incorrect working correlation structure, such as exchangeable correlation struc-

ture, were the same as the efficiencies of the estimators β̂0I , and β̂1I specifying

the independent structure as working correlation structure. They were 71% and

73% of the efficiencies of the estimators with the correctly specified correlation

structure.

Table 6.1 displays the results of comparison of four methods of covariance/correlation

matrix estimation/specifications in terms of sample standard error, bias and mean

square error etc.
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Table 6.1: Simulation Results of the Estimated Regression Parameters for ηkj =

β0 + β1xkj with xkj = j/T, (β0, β1) = (1, 1), T = 5, n = 200 and AR(1) as True

Correlation Structure.

Method Bias S.E. Rel. Efficiency MSE Relative MSE

Estimation of Intercept (β0 = 1)

QLE -0.00795 0.08277 1.00000 0.00691 1.00000

NQLE -0.00779 0.08509 0.94611 0.00729 1.05606

GEEar(1) -0.00782 0.08498 0.94853 0.00728 1.05346

Indp -0.01118 0.09840 0.70755 0.00980 1.41846

Estimation of Slope (β1 = 1)

QLE 0.01489 0.13872 1.00000 0.01945 1.00000

NQLE 0.01519 0.1413 0.96378 0.02018 1.03761

GEEar(1) 0.01468 0.14211 0.95279 0.02039 1.04867

Indp 0.01815 0.17193 0.65096 0.02986 1.53562

The results in Table 6.1 show that compared to QLE, NQL performed as

well as GEEar(1) in the regression parameter estimation, even though GEEar(1)

has the advantage of estimating with known marginal distribution and specifying

the right working correlation structure. Also, NQL did better than method Indp,

which had the same efficiency as GEEexch with specifying exchangable as a wrong

working correlation structure (Sutradhar and Das (1999)). The relative efficiency

of NQLE are about 95% and 96% for β0 and β1, respectively, compared to 70%

and 65% for Indp, which confirms the results in Sutradhar and Das (1999).

Table 6.2 compares confidence intervals obtained from these estimation meth-

ods. The intervals were based on estimated asymptotic standard errors. The
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empirical coverage frequencies and average lengths for 90% and 95% intervals for

each regression parameter derived from (5.1) are listed in Table 6.2. From Table

6.2, one can see that three methods QLE, NQLE and GEEar(1) performed well

and their performances are pretty similar, while Indp method performed rather

poorly, especially on estimating β1.

In the second simulation study, we again considered the same example as

the first simulation, but chose exchangeable as the true correlation structure,

with α = 0.49 and time points t = 1, · · · , 10. The results of methods NQLE,

GEEma(1) and GEEexch are in Table 6.2. In this simulation study, 30 out of

1000 Monte Carlo runs were not convergent when MA(1) was specified as the

working correlation structure, while NQL and GEEexch did converge to reason-

able values in all runs. Excluding the 30 runs, we have the results of GEEma(1) in

Table 6.3. Table 6.3 shows that the efficiency of specifying the wrong working cor-

relation structure, such as MA(1) correlation structure, is worse than specifying

the correlation structure as independent. The efficiencies of regression estimators

were only 75% and 51% for intercept and slope, respectively. Table 6.3 presents

the efficiencies of regression estimation of the three following methods of covari-

ance/correlation matrix specifications in terms of sample standard error, bias,

mean square error etc.

Table 6.3 shows that the performance of NQLE is almost as good as GEE-

exch, given that GEEexch uses the correct marginal variance functions and spec-

ifies right correlation structure as working correlation structure. GEEma(1) did

poorly since it specified the wrong correlation structure MA(1), while exchange-

able is true correlation structure.

From Table 6.4, we also can see that the two methods NQLE and GEEexch
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Table 6.2: Coverage of Confidence Intervals for ηkj = β0 + β1xkj with xkj = j/T,

True Value (β0, β1) = (1, 1), T = 5, n = 200 and AR(1) as True Correlation

Structure

90 % Confidence Interval 95 % Confidence Interval

% Miss % Miss

Method Left Right Length Left Right Length

Estimation of Intercept (β0 = 1)

QLE 4.85 5.35 0.27148 1.58 2.08 0.32445

NQLE 5.25 4.75 0.27910 1.58 2.28 0.33356

GEEar(1) 5.35 4.85 0.27875 1.68 2.48 0.33314

GEEindp 5.54 5.74 0.32274 2.08 2.08 0.38572

Estimation of Slope (β1 = 1)

QLE 4.85 5.35 0.45499 2.67 2.28 0.54377

NQLE 4.95 5.54 0.46346 2.08 2.67 0.55389

GEEar(1) 3.96 5.35 0.46613 2.18 2.28 0.55708

GEEindp 3.66 7.82 0.56393 1.39 1.78 0.67397
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Table 6.3: Simulation Results of the Estimated Regression Parameters for ηkj =

β0 + β1xkj with xkj = j/T, True Value (β0, β1) = (1, 1), T = 10, n = 200 and

Exchangeable as True Correlation Structure.

Method Bias S.E. Rel. Efficiency MSE Relative MSE

Estimation of Intercept (β0 = 1)

NQLE -0.00137 0.11936 0.89073 0.01423 1.12252

GEEma(1) -0.00469 0.15755 0.51124 0.02482 1.95738

GEEexch -0.00189 0.11265 1.00000 0.01268 1.00000

Estimation of Slope (β1 = 1)

NQLE 0.00896 0.13837 0.92000 0.01921 1.08900

GEEma(1) 0.01192 0.23265 0.32544 0.05421 3.07313

GEEexch 0.00669 0.13272 1.00000 0.01764 1.00000
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Table 6.4: Coverage of Confidence Intervals for ηkj = β0 + β1xkj with xkj = j/T,

True Value (β0, β1) = (1, 1), T = 5, n = 200 and Exchangable as True Correlation

Structure

90 % Confidence Interval 95 % Confidence Interval

% Miss % Miss

Method Left Right Length Left Right Length

Estimation of Intercept (β0 = 1)

NQLE 5.1 4.8 0.39149 2.4 2.6 0.46788

GEEma(1) 4.8 4.4 0.51678 2.4 3.2 0.61761

GEEexch 4.8 4.4 0.36948 2.3 2.3 0.44157

Estimation of Slope (β1 = 1)

NQLE 6.1 5.2 0.45385 2.5 2.8 0.54241

GEEma(1) 4.3 4.1 0.76309 2.8 2.5 0.91198

GEEexch 6.2 4.6 0.43533 2.9 2.0 0.52027

had good performance in inference.

The following tables display the results of the third simulation study. In this

simulation study, we increased the sample size from n = 200 in last simulation

study to n = 800.
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Table 6.5: Simulation Results of the Estimated Regression Parameters for ηkj =

β0 + β1xkj with xkj = j/T, True Value (β0, β1) = (1, 1), T = 10, n = 800 and

Exchangeable as True Correlation Structure.

Method Bias S.E. Rel. Efficiency MSE Relative MSE

Estimation of Intercept (β0 = 1)

QLE 0.00196 0.05303 1.00000 0.00281 1.00000

NQLE 0.00205 0.05382 0.97092 0.00290 1.03004

GEEunst 0.00272 0.05505 0.92791 0.00304 1.07884

GEEma(1) 0.00247 0.07834 0.45824 0.00614 2.18142

GEEexch 0.00247 0.05343 0.98509 0.00286 1.01591

Estimation of Slope (β1 = 1)

QLE -0.00492 0.06712 1.00000 0.00452 1.00000

NQLE -0.00554 0.06799 0.97465 0.00465 1.02731

GEEunst -0.00691 0.07239 0.85972 0.00528 1.16749

GEEma(1) -0.00600 0.12911 0.27027 0.01669 3.68812

GEEexch -0.00591 0.06785 0.97872 0.00463 1.02400

Table 6.5 shows that the performance of NQLE is better as the sample size

increases compared to the results from last simulation study. In particular, as

the sample size increases by a factor of four, the efficiency relative to GEEexch

for estimating intercept increased from 89% to 98.6%, and from 92% to 99.6% for

estimating slope, even though GEEexch uses the true marginal variance functions

and specifies the right correlation structure as working correlation structure.
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Table 6.6: Coverage of Confidence Intervals for ηkj = β0 + β1xkj with xkj =

j/T, True Value (β0, β1) = (1, 1), T = 10, n = 800 and Exchangable as True

Correlation Structure

90 % Confidence Interval 95 % Confidence Interval

% Miss % Miss

Method Left Right Length Left Right Length

Estimation of Intercept (β0 = 1)

QLE 4.1 5.6 0.17395 2.5 3.3 0.20789

NQLE 4.3 5.7 0.17653 2.3 3.5 0.21098

GEEunst 3.8 6.0 0.18058 2.2 3.6 0.21581

GEEma(1) 3.1 3.9 0.25696 1.7 2.4 0.30710

GEEexch 3.5 5.7 0.17526 2.1 3.6 0.20945

Estimation of Slope (β1 = 1)

QLE 5.0 4.4 0.22015 2.5 2.7 0.26311

NQLE 4.7 4.2 0.22300 2.3 2.5 0.26651

GEEunst 4.9 4.6 0.23743 2.8 2.2 0.28376

GEEma(1) 3.3 3.1 0.42347 2.2 2.0 0.50610

GEEexch 5.2 4.4 0.22253 2.6 2.4 0.26595
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In the fourth simulation study, the underlying longitudinal data marginal

distributions were over-dispersed Poisson. In this simulation study, longitudinal

over-dispersed Poisson data {ykj, xkj} were generated via a Gamma-Poisson mix-

ture with sample size n = 300 and T = 3 time points as follows. Suppose that

Uk is Gamma distributed with expectation 1 and variance τ = 0.8 and that Uk

is independent of xkj, where k = 1, · · · , 300 and j = 1, 2, 3. The link function is

ηkj = log µkj, and ηkj = β0 + β1xkj with β0 = 1 and β1 = 0.5. Given Uk, ykj ∼

Poisson(Ukµkj). Therefore Var (ykj) = µkj(1 + τµkj) and Cov(yks, ykt) = τµksµkt.

The design points xkj were drawn from Dx = {Tp × n random numbers gener-

ated from unif(0, 0.5)} in the first run and then fixed for the remainder of runs,

k = 1, · · · , n = 300; j = 1, 2, 3.

The results of the fourth simulation study are displayed in following Table 6.7

and Table 6.8.

From Table 6.7, the NQLE performed better than GEEfix, and GEEfix per-

formed worse than NQLE and Indp. NQLE and Indp had almost same perfor-

mance in prediction of intercept and slope, given that Indp method was run using

the correct marginal variance function. But NQLE is best in terms of efficiency

(smallest S.E and MSE) compared to GEEfix and Indp. Because the working

correlation was misspecified, GEEfix is less efficient than NQLE and much worse

than Indp, which confirms the conclusions of Sutradhar and Das (1999).

Table 6 − 8 shows how well the asymptotic approximations made for the

inference obtained from different three estimate methods. The empirical coverage

frequencies and average lengths for 90% and 95% intervals for each regression

parameter are derived from (5.1).

From the table 6.8, one can see that NQLE did best in the inference while GEEfix
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Table 6.7: Simulation Results of the Estimated Regression Parameters for Lon-

gitudinal Over-dispersed Poisson Data with True Value (β0, β1) = (1, 0.5), T = 3

and n = 300

Method Bias S.E. Rel. Effeciency MSE Relative MSE

Estimation of Intercept (β0 = 1)

NQLE -0.00701 0.09096 1.00000 0.00830 1.00000

GEEfix 0.00977 0.14436 0.39702 0.02088 2.51538

Indp 0.00094 0.09391 0.93813 0.00880 1.05975

Estimation of Slope (β1 = 0.5)

NQLE -0.02785 0.20678 1.00000 0.04342 1.00000

GEEfix -0.05832 0.45428 0.20719 0.20924 4.81853

Indp -0.02301 0.27164 0.57948 0.07413 1.70708
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Table 6.8: Coverage of Confidence Intervals for Longitudinal Over-dispersed Pois-

son Data with True Value (β0, β1) = (1, 0.5), T = 3 and n = 300

90 % Confidence Interval 95 % Confidence Interval

% Miss % Miss

Method Left Right Length Left Right Length

Estimation of Intercept (β0 = 1)

NQLE 2.28 6.09 0.29836 1.52 2.79 0.35657

GEEfix 4.82 4.06 0.47352 2.54 2.28 0.56591

Indp 6.09 4.57 0.30804 2.79 1.02 0.36815

Estimation of Slope (β1 = 0.5)

NQLE 4.57 4.06 0.67824 2.54 1.02 0.81058

GEEfix 4.82 5.58 1.49003 2.03 2.03 1.78076

Indp 3.55 4.82 0.89097 1.52 2.28 1.06482
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did the worst in terms of the lengths of confidence intervals.
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Chapter 7

Proofs of Theorems.

This chapter contains detailed proofs of the asymptotic theorems which are

described in Chapter 5. Throughout, we refer the condition (N1) − (N7) and

(K1) − (K3) of Chapter 4 and (K4) in the statement of Theorem 5.3.

Let

Ft(t) =

∫ t

−∞

(∫ ∞

−∞
f(x, y) dx

)
dy

Fs(s) =

∫ s

−∞

(∫ ∞

−∞
f(x, y) dy

)
dx

where f is the same as in (N4) in Chapter 4. Then F−1
t , F−1

s exist, and the µkt

are chosen to satisfy

Ft (µkt) =

∫ µkt

−∞
(

∫ ∞

−∞
f(x, y)dx) dy =

k − 1

n − 1
,

Fs (µks) =

∫ µks

−∞
(

∫ ∞

−∞
f(x, y)dy) dx =

k − 1

n − 1
.

So then, we have

dFt

dt
= ft(t) =

∫ ∞

−∞
f(x, t)dx, (7.1)

dFs

ds
= fs(s) =

∫ ∞

−∞
f(s, y)dy; (7.2)
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and

F−1
t

(
k − 1

n − 1

)
= µkt,

F−1
s

(
k − 1

n − 1

)
= µks.

Throughout the rest of the Chapter, assume that we have the following con-

ditions.

1. The bandwidth matrix B = diag {hs, ht} satisfies (K3) in Chapter 4;

2. There exist two constants C1, C2, such that if

Cn(us, ut) =
n∑

k=1

I{|µks−us|≤hs,|µkt−ut|≤ht},

then

C1 ≤ Cn(us, ut)

n2hsht

≤ C2 (7.3)

for (us, ut) ∈ Dst.

By two dimensional Riemann sum approximation and (K1) − (K3), we have

Fnpq(us, ut)

=
1

n2

n∑

k=1

KB

(
(µks, µkt)

T − (us, ut)
T
)
(µks − us)

p(µkt − ut)
q

=
1

n2|B|
n∑

k=1

K
(
B−1((µks, µkt)

T − (us, ut)
T )
)
(µks − us)

p(µkt − ut)
q

=
1

n2hsht

n∑

k=1

K

(
µks − us

hs

,
µkt − ut

ht

)
(µks − us)

p (µkt − ut)
q

=
hp

sh
q
t

hsht

n∑

k=1

[
1

n2
K

(
F−1

s

(
k−1
n−1

)
− us

hs

,
F−1

t ( k−1
n−1

) − ut

ht

)

×
(

F−1
s

(
k−1
n−1

)
− us

hs

)p(
F−1

t

(
k−1
n−1

)
− ut

ht

)q]

= hp
sh

q
tFint
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where

Fint =

∫ 1

0

∫ 1

0

1

hsht

[
K

(
F−1

s (x) − us

hs

,
F−1

t (y) − ut

ht

)

×
(

F−1
s (x) − us

hs

)p(
F−1

t (y) − ut

ht

)q

dxdy

+O(1/n2)
]
.

Let

F−1
s (x) = u,

F−1
t (y) = v;

and

(
F−1

s (x) − us

)
/hs = ξ,

(
F−1

t (x) − ut

)
/ht = η.

Then

dx = F ′
s(u)du = fs(us + ξhs)hsdξ,

dy = F ′
t(v)dv = ft(ut + ηht)htdη.

Therefore,

Fint =

∫ ∞

−∞

∫ ∞

−∞

1

hsht

[K(ξ, η)ξpηqfs(us + ξhs)ft(ut + ηht)hshtdξdη

+ O(1/n2)
]

=

∫ ∫
K(ξ, η)ξpηq

[
fs(us) + ξhsf

′
s(us) + ξ2O(h2

s)
]

×
[
ft(ut) + ηhtf

′
t(ut) + η2O(h2

t )
]

dξdη + O

(
h−1

s h−1
t

n2

)

=

∫ ∫
K(ξ, η)ξpηq [(A1) + (A2) + (A3)] dξdη + O

(
h−1

s h−1
t

n2

)
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where

(A1) = fs(us)ft(ut) + ηhtf
′
t(ut)fs(us) + fs(us)η

2O(h2
t )

(A2) = ξhsf
′
s(us)ft(ut) + ξηhshtf

′
s(us)f

′
t(ut) + ξη2hsf

′
s(us)O(h2

t )

(A3) = ξ2O(h2
s)ft(ut) + ξ2O(h2

s)ηhtf
′
t(ut) + ξ2η2O(h2

sh
2
t )

By (K2), we have the following results:

1. If p + q is odd, then

Fint = αp,q+1fs(us)f
′
t(ut)ht + αp+1,qf

′
s(us)ft(ut)hs

+αp+1,q+2f
′
s(us)O(hsh

2
t ) + αp+2,q+1f

′
t(ut)O(h2

sht)

+O

(
h−1

s h−1
t

n2

)

2. If p + q is even, then

Fint = αp,qfs(us)ft(ut) + αp+1,q+1f
′
s(us)f

′
t(ut)hsht

+αp,q+2fs(us)O(h2
t ) + αp+2,qft(ut)O(h2

s)

+αp+2,q+2O(h2
sh

2
t ) + O

(
h−1

s h−1
t

n2

)

Hence, we have proved the following lemma.

Lemma 7.1 Under (K2),

(i) if p + q is odd,

Fnpq = αp,q+1fs(us)f
′
t(ut)h

p
sh

q+1
t + αp+1,qf

′
s(us)ft(ut)h

p+1
s hq

t

+O
(
hp+1

s hq+2
t

)
+ O

(
hp+2

s hq+1
t

)

+O

(
hp−1

s hq−1
t

n2

)
;
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(ii) if p + q is even,

Fnpq = αp,qfs(us)ft(ut)h
p
sh

q
t + αp+1,q+1f

′
s(us)f

′
t(ut)h

p+1
s hq+1

t

+O
(
hp

sh
q+2
t

)
+ O

(
hp+2

s hq
t

)

+O

(
hp−1

s hq−1
t

n2

)
,

where fs and ft are defined in (7.2) and 7.1.

Lemma 7.2 For (us, ut) ∈ Dst, FN , FD and Wnk have the following explicit

expressions:

FN = (α02α20 − α2
11)f

2
s f 2

t h2
sh

2
t + O(h2

sh
3
t ) + O(h3

sh
2
t );

FD = (α02α20 − α2
11)f

3
s f 3

t h2
sh

2
t + O(h3

sh
3
t ) + O(h2

sh
4
t ) + O(h4

sh
2
t );

Wnk =
1

n2hsht

K

(
µks − us

hs

,
µkt − ut

ht

)
1

fsft

+O

(
1

n2hs

)
+ O

(
1

n2ht

)
.

Proof: By Lemma 7.1, we have

Fn20Fn02 − F 2
n11

= (α02α20 − α2
11)f

2
s f 2

t h2
s + O(h3

sh
3
t ) + O(h2

sh
4
t ) + O(h4

sh
2
t )

Fn10Fn02 − Fn01Fn11 = O(h2
sh

3
t ) + O(h3

sh
2
t )

Fn10Fn11 − Fn01Fn20 = O(h2
sh

3
t ) + O(h3

sh
2
t ).

Then

FN = (α02α20 − α2
11)f

2
s f 2

t h2
sh

2
t + O(h2

sh
3
t ) + O(h3

sh
2
t ).

Similarly,

FD = (α02α20 − α2
11)f

3
s f 3

t h2
sh

2
t + O(h3

sh
3
t ) + O(h2

sh
4
t ) + O(h4

sh
2
t ).
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Therefore

Wnk =
1

n2hsht

K

(
µks − us

hs

,
µkt − ut

ht

)
FN

FD

=
1

n2hsht

K

(
µks − us

hs

,
µkt − ut

ht

)
/fsft

+O

(
1

n2hs

)
+ O

(
1

n2ht

)
.

As we mentioned in Chapter 4, the nonparametric covariance matrix estimator

V̂n = (σ̂(·))T×T rather than Vn = (σ(·))T×T must be used in practice, since we

can only observe {µ̂k; ε̂k} and not {µk; εk} . The following lemma will show the

relationship between those two nonparametric covariance matrix estimators.

Lemma 7.3 For (us, ut) ∈ Dst, let Fnpq and F̂npq be as defined in (4.12) and

(4.21). Under (K1)-(K3), if max1≤k≤n |µ̂ks − µks| = Op(1/
√

n) and

max1≤k≤n |µ̂kt − µkt| = Op(1/
√

n), then

F̂npq(us, ut) = Fnpq(us, ut) + Op

(
hp−1

s hq
t√

n

)
+ Op

(
hp

sh
q−1
t√
n

)

Proof : Let

h = µ̂ks − µks, k = µ̂kt − µkt,

and

G(x, y) = K

(
x − us

hs

,
y − ut

ht

)
(x − us)

p(y − ut)
q.
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Then by two dimensional Taylor expansions and the assumptions, we have

K

(
µ̂ks − us

hs

,
µ̂kt − ut

ht

)
(µ̂ks − us)

p (µ̂kt − ut)
q

−K

(
µks − us

hs

,
µkt − ut

ht

)
(µks − us)

p (µkt − ut)
q

=

(
h
∂G

∂x
+ k

∂G

∂y

)
(x̄, ȳ)

= h(ȳ − ut)
q

{
K ′̄

x−us
hs

(
x̄ − us

hs

,
ȳ − ut

ht

)
1

hs

(x̄ − us)
p

+ p(x̄ − us)
p−1K

(
x̄ − us

hs

,
ȳ − ut

ht

)}

+k(x̄ − us)
p

{
K ′̄

y−ut
ht

(
x̄ − us

hs

,
ȳ − ut

ht

)
1

ht

(ȳ − ut)
q

+ q(ȳ − ut)
q−1K

(
x̄ − us

hs

,
ȳ − ut

ht

)}

=

{
Op

(
1√
n

)
hq

t

[
hp−1

s + php−1
s O(1)

]
+ Op

(
1√
n

)
hp

s

[
hq−1

t + qhq−1
t O(1)

]}

×I{|bµks−us|≤hs,|bµkt−ut|≤ht}I{|µks−us|≤hs,|µkt−ut|≤ht}

= Op

(
1√
n

)[
O(hp−1

s hq
t ) + O(hp

sh
q−1
t )

]

×I{|bµks−us|≤hs,|bµkt−ut|≤ht}I{|µks−us|≤hs,|µkt−ut|≤ht}

where x̄ ∈ [µks, µ̂ks], and ȳ ∈ [µkt, µ̂kt].

Therefore, by ( 7.3 ) we have

F̂npq(us, ut) − Fnpq(us, ut)

=
1

n2hsht

n∑

k=1

[
K

(
µ̂ks − us

hs

,
µ̂kt − ut

ht

)
(µ̂ks − us)

p(µ̂kt − ut)
q

− K

(
µks − us

hs

,
µkt − ut

ht

)
(µks − us)

p(µkt − ut)
q

]

= Op

(
1√
n

)[
O(hp−1

s hq
t ) + O(hp

sh
q−1
t )

]

× 1

n2hsht

n∑

k=1

I{|bµks−us|≤hs,|bµkt−ut|≤ht}I{|µks−us|≤hs,|µkt−ut|≤ht}

= Op

(
hp−1

s hq
t√

n

)
+ Op

(
hp

sh
q−1
t√
n

)
.
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By the result of Lemma 7.3, we have following results about the relationships

among FN , FD and F̂N , F̂D.

Lemma 7.4 For (us, ut) ∈ Dst, Let FN and FD; F̂N and F̂D are as defined in

(4.11)and (4.12); (4.19)and (4.20). Under (K1)–(K3), if max1≤k≤n |µ̂ks −µks| =

Op(1/
√

n) and max1≤k≤n |µ̂kt − µkt| = Op(1/
√

n), then

F̂D = FD + Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)
,

F̂N = FN + Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)
.

Proof: By Lemma 7.3, we have

F̂n20 = Fn20 + Op

(
hs√
n

)
+ Op

(
h2

sh
−1
t√
n

)
,

F̂n11 = Fn11 + Op

(
ht√
n

)
+ Op

(
hs√
n

)
,

F̂n10 = Fn10 + Op

(
1√
n

)
+ Op

(
hsh

−1
t√
n

)
,

F̂n02 = Fn02 + Op

(
h−1

s h2
t√

n

)
+ Op

(
ht√
n

)
,

F̂n01 = Fn01 + Op

(
h−1

s ht√
n

)
+ Op

(
1√
n

)
,

F̂n00 = Fn00 + Op

(
h−1

s√
n

)
+ Op

(
h−1

t√
n

)
.
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After multiplications we have

F̂n00F̂n20F̂n02 = Fn00Fn20Fn02 + Op

(
hsh

2
t√

n

)
+

(
h2

sht√
n

)
,

F̂n10F̂n01F̂n11 = Fn10Fn01Fn11 + Op

(
hsh

3
t√

n

)
+ Op

(
h2

sh
2
t√

n

)

+Op

(
h3

sht√
n

)
+ Op

(
h2

t

n

)
+ Op

(
hsht

n

)
,

F̂ 2
n01F̂n20 = F 2

n01Fn20 + Op

(
hsh

3
t√

n

)
+ Op

(
h2

sh
2
t√

n

)
+ Op

(
h3

sht√
n

)

+Op

(
hsht

n

)
+ Op

(
h2

s

n

)
+ Op

(
h2

t

n

)
,

F̂ 2
n10F̂n02 = F 2

n10Fn02 + Op

(
hsh

3
t√

n

)
+ Op

(
h2

sh
2
t√

n

)
+ Op

(
h3

sht√
n

)

+Op

(
h2

s

n

)
+ Op

(
h2

t

n

)
+ Op

(
h3

sh
−1
t

n

)
,

F̂ 2
n11F̂n00 = F 2

n11Fn00 + Op

(
hsh

2
t√

n

)
+ Op

(
h2

sh
2
t√

n

)
,

F̂n20F̂n02 = Fn20Fn02 + Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)
,

F̂ 2
n11 = F 2

n11 + Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)
,

F̂n10F̂n02 = Fn10Fn02 + Op

(
hsht√

n

)
+ Op

(
h2

t√
n

)
,

F̂n01F̂n11 = Fn01Fn11 + Op

(
h2

t√
n

)
+ Op

(
hsht√

n

)
,

F̂n10F̂n11 = Fn10Fn11 + Op

(
h2

s√
n

)
+ Op

(
hsht√

n

)
,

F̂n01F̂n20 = Fn01Fn20 + Op

(
h2

s√
n

)
+ Op

(
hsht√

n

)
.

Moreover,

(µ̂ks − us)I{|bµks−us|≤hs}(F̂n10F̂n02 − F̂n01F̂n11)

= (µks − us)I{|µks−us|≤hs}(Fn10Fn02 − Fn01Fn11) + Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)
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(µ̂kt − ut)I{|bµkt−ut|≤ht}(F̂n10F̂n11 − F̂n01F̂n20)

= (µkt − ut)I{|µkt−ut|≤ht}(Fn10Fn11 − Fn01Fn20) + Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)

Hence,

F̂D = F̂n00F̂n20F̂n02 + 2F̂n10F̂n01F̂n11 − F̂n20F̂
2
n01

−F̂ 2
n10F̂n02 − F̂ 2

n11F̂n00

= FD + Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)

and

F̂N = (F̂n20F̂n02 − F̂ 2
n11) − (µ̂ks − us)I{|bµks−us|≤hs}(F̂n10F̂n02 − F̂n01F̂n11)

−(µ̂kt − ut)I{|bµkt−ut|≤ht}(F̂n10F̂n11 − F̂n01F̂n20)

= FN + Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)

Lemma 7.5 For (us, ut) ∈ Dst, let Wnk and Ŵnk are as defined as in (4.9) and

(4.18). Then

sup
(us,ut)∈D

max
1≤k≤n

∣∣∣Ŵnk − Wnk

∣∣∣ = Op

(
1

n2
√

nh2
sht

)
+ Op

(
1

n2
√

nhsh2
t

)

Proof: Let

HN = K

(
µks − us

hs

,
µkt − ut

ht

)
FN , ĤN = K

(
µ̂ks − us

hs

,
µ̂kt − ut

ht

)
F̂N .

Then,

ĤN − HN = K

(
µ̂ks − us

hs

,
µ̂kt − ut

ht

)
F̂N − K

(
µks − us

hs

,
µkt − ut

ht

)
FN

=

[
K

(
µks − us

hs

,
µkt − ut

ht

)
+ Op

(
1√
nhs

)
+ Op

(
1√
nht

)]

×
[
FN + Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)]

− K

(
µks − us

hs

,
µkt − ut

ht

)
FN

= Op

(
h2

sht√
n

)
+ Op

(
hsh

2
t√

n

)
.
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Therefore,

sup
(us,ut)∈D

max
1≤k≤n

∣∣∣Ŵnk − Wnk

∣∣∣ =

∣∣∣∣∣
1

n2hsht

K

(
µ̂ks − us

hs

,
µ̂kt − ut

ht

)
F̂N

F̂D

− 1

n2hsht

K

(
µks − us

hs

,
µkt − ut

ht

)
FN

FD

∣∣∣∣

=
1

n2hsht

∣∣∣∣∣
ĤN

F̂D

− HN

FD

∣∣∣∣∣

=
1

n2hsht

∣∣∣∣∣∣

HN + Op

(
h2

sht√
n

)
+ Op

(
hsh2

t√
n

)

FD + Op

(
h2

sht√
n

)
+ Op

(
hsh2

t√
n

) − HN

FD

∣∣∣∣∣∣

= Op

(
1

n2
√

nh2
sht

)
+ Op

(
1

n2
√

nhsh2
t

)

Lemma 7.6 Under (N1)− (N5), if β̂ is a
√

n -consistent estimator of β in the

sense that

‖β̂ − β‖ = Op

(
1√
n

)
,

then

max
1≤k≤n

|µ̂ks − µks| = Op

(
1√
n

)
,

and

max
1≤k≤n

|µ̂kt − µkt| = Op

(
1√
n

)
.

Proof: Since

µ̂ks = g
(
xT

ksβ̂
)

µks = g
(
xT

ksβ
)
, (7.4)

By the mean value theorem, we have

max
1≤k≤n

|µ̂ks − µks|

= |g
(
xT

ksβ̂
)
− g

(
xT

ksβ
)
|

= Op

(
|β̂ − β|

)

= Op

(
1√
n

)
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Similarly, we have

max
1≤k≤n

|µ̂kt − µkt| = Op

(
1√
n

)
.

The result of the following Lemma will be used in the proof of the asymptotic

theorems.

Lemma 7.7 Under (N1) − (N5),

sup
(us,ut)∈Dst

1

n2hsht

n∑

k=1

ǫksǫktI{|µks−us|≤hs,|µkt−ut|≤ht}

= Op

((
log n

n2hsht

)1/2
)

+ O(1);

Proof: Let

Sn

=

{
1

n2hsht

n∑

k=1

I{|µks−us|≤hs,|µkt−ut|≤ht} [ǫksǫkt − σst(µks, µkt)]

}/(
log n

n2hsht

)1/2

=

(
n2hsht

log n

)1/2 n∑

k=1

I{|µks−us|≤hs,|µkt−ut|≤ht} [ǫksǫkt − σst(µks, µkt)]

By (7.3) and (N1) we have

VarSn =

(
n2hsht

log n

)(
1

n2hsht

)2 n∑

k=1

I{|µks−us|≤hs,|µkt−ut|≤ht}Cov(ǫks, ǫkt)

= O

(
1

log n

)
→ 0 as n → ∞

By Chebyshev’s Inequality, for any M > 0

P [Sn > M ] ≤ 1

M2
VarSn → 0 as n → ∞

Therefore

1

n2hsht

n∑

k=1

I{|µks−us|≤hs,|µkt−ut|≤ht} [ǫksǫkt − σst(µks, µkt)]

= Op

((
log n

n2hsht

)1/2
)
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It is obvious that

1

n2hsht

n∑

k=1

I{|µks−us|≤hs,|µkt−ut|≤ht}σst(µks, µkt) = O (1)

Hence

sup
(us,ut)∈Dst

1

n2hsht

n∑

k=1

ǫksǫktI{|µks−us|≤hs,|µkt−ut|≤ht}

=
1

n2hsht

n∑

k=1

I{|µks−us|≤hs,|µkt−ut|≤ht} [ǫksǫkt − σst(µks, µkt)]

+
1

n2hsht

n∑

k=1

I{|µks−us|≤hs,|µkt−ut|≤ht}σst(µks, µkt)

= Op

((
log n

n2hsht

)1/2
)

+ O (1) .

Next, we are ready to prove the asymptotic theorems stated in Chapter 5.

Proof of Theorem 5.1: To prove (i), we use Taylor expansion as follows:

[σst(µks, µkt) − σst(us, ut)]

=
∂σst

∂us

(us, ut)(µks − us) +
∂σst

∂ut

(us, ut)(µkt − ut)

+(µks − us)
2∂2σst

∂us
2
(ξk, ηk)

+2(µks − us)(µkt − ut)
∂2σst

∂us∂ut

(ξk, ηk)

+(µkt − ut)
2∂2σst

∂ut
2

(ξk, ηk).
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Then

|Eσnst(us, ut) − σst(us, ut)|

=

∣∣∣∣∣E
(

n∑

k=1

Wnk(us, ut)ǫksǫkt

)
− σst(us, ut)

∣∣∣∣∣

=

∣∣∣∣∣
n∑

k=1

Wnk(us, ut)E (ǫksǫkt) − σst(us, ut)

∣∣∣∣∣

=

∣∣∣∣∣
n∑

k=1

Wnk(us, ut) [σst(µks, µkt) − σst(us, ut)]

∣∣∣∣∣

≤
n∑

k=1

|Wnk(us, ut)|

×
∣∣∣∣
[

∂2σ

∂us
2
(ξk, ηk) −

∂2σ

∂us
2
(us, ut)

]
(µks − us)

2 + O(h2
s)

∣∣∣∣

+
n∑

k=1

|Wnk(us, ut)|

×
∣∣∣∣
[

∂2σ

∂ut
2
(ξk, ηk) −

∂2σ

∂ut
2
(us, ut)

]
(µkt − ut)

2 + O(h2
t )

∣∣∣∣
= O(h2

s) + O(h2
t ).

Therefore, we have

sup
(us,ut)∈Dst

|Eσnst(us, ut) − σst(us, ut)| = O
(
h2

s

)
+ O

(
h2

t

)
.

Notice that

Var (σnst) =
n∑

k=1

W 2
nkCov (ǫksǫkt)

=
n∑

k=1

W 2
nkσst(µks, µkt)

=
n∑

k=1

{[
1

n2hsht

K

(
µks − us

hs

,
µkt − ut

ht

)
I{|µks−us|≤hs,|µkt−ut|≤ht}/fsft

+ O

(
1

n2hs

)
+ O

(
1

n2ht

)]2

σst(µks, µkt)

}

= O

(
1

n2hsht

)
.
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By (K1)-(K2) and using the same process as in the proof in Lemma 7.7, we

can prove (ii).

From (i), we can prove (iii) as follows:

E((σnst − σst)
2) = E

(
σ2

nst − 2σnstσst + σ2
st

)

= Eσ2
nst − 2σstEσnst + σ2

st

= O

(
1

n2hsht

+ h2
sh

2
t + h4

s + h4
t

)
.

Using (i) and (ii), it follows that

sup
(us,ut)∈Dst

|σnst − σst|

≤ sup
(us,ut)∈Dst

|σnst − Eσnst| + sup
(us,ut)∈Dst

|Eσnst − σst|

≤ sup
(us,ut)∈Dst

|
n∑

k=1

Wnk (ǫksǫkt − E(ǫksǫkt)) | + O
(
h2

t

)

= Op

([
log n

n2hsht

]1/2

+ h2
s + h2

t

)
.
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Proof of Theorem 5.2: First we have:

sup
(us,ut)∈Dst

|σ̂nst − σnst|

= sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

[
Wnk −

(
Ŵnk − Wnk

)]
[ǫks + (ǫ̂ks − ǫks)] [ǫkt + (ǫ̂kt − ǫkt)]

− σnst|

≤ sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

(
Ŵnk − Wnk

)
ǫksǫkt

∣∣∣∣∣+ sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

Wnk (ǫ̂ks − ǫks) ǫkt

∣∣∣∣∣

+ sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

(
Ŵnk − Wnk

)
(ǫ̂ks − ǫks) ǫkt

∣∣∣∣∣

+ sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

Wnk (ǫ̂kt − ǫkt) ǫks

∣∣∣∣∣

+ sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

(
Ŵnk − Wnk

)
(ǫ̂kt − ǫkt) ǫks

∣∣∣∣∣

+ sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

Wnk (ǫ̂ks − ǫks) (ǫ̂kt − ǫkt)

∣∣∣∣∣

+ sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

(
Ŵnk − Wnk

)
(ǫ̂ks − ǫks) (ǫ̂kt − ǫkt)

∣∣∣∣∣

= I + II + III + IV + V + V I + V II.

By (K3) and (7.3), we have

n∑

k=1

|Wnk|

=
n∑

k=1

1

n2hsht

∣∣∣∣K
(

µks − us

hs

,
µkt − ut

ht

)
I{|µks−us|≤hs,|µkt−ut|≤ht}/fsft

+ O

(
1

n2hs

)
+ O

(
1

n2ht

)∣∣∣∣
= O (1) .
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Since

ǫ̂ks − ǫks = yks − µ̂ks − (yks − µks)

= µks − µ̂ks,

then

|ǫ̂ks − ǫks| = Op

(
1√
n

)

and

|ǫ̂kt − ǫkt| = Op

(
1√
n

)
.

By (K4) and Lemma 7.7,

I = sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

(
Ŵnk − Wnk

)
ǫksǫkt

∣∣∣∣∣

≤ sup
(us,ut)∈Dst

max
1≤k≤n

∣∣∣Ŵnk − Wnk

∣∣∣
∣∣∣∣∣

n∑

k=1

ǫksǫktI{|µks−us|≤hs,|µkt−ut|≤ht}

∣∣∣∣∣

= O

(
1√
nhs

+
1√
nht

)[
O

((
log n

n2hsht

))
+ O (1)

]

= O

(
1√
nhs

+
1√
nht

)
.

Let W+
nk = max {0,Wnk} and W−

nk = max1≤k≤n {0,−Wnk} . Then Wnk =

W+
nk + W−

nk.
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By using the Cauchy-Schwarz Inequality, we have

II = sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

Wnk (ǫ̂ks − ǫks) ǫkt

∣∣∣∣∣

= sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

(
W+

nk + W−
nk

)
(ǫ̂ks − ǫks) ǫkt

∣∣∣∣∣

≤ sup
(us,ut)∈Dst

(
n∑

k=1

W+
nk (ǫ̂ks − ǫks)

2

)1/2

sup
(us,ut)∈Dst

(
n∑

k=1

W+
nkǫkt

2

)1/2

+ sup
(us,ut)∈Dst

(
n∑

k=1

W−
nk (ǫ̂ks − ǫks)

2

)1/2

sup
(us,ut)∈Dst

(
n∑

k=1

W−
nkǫkt

2

)1/2

≤ max
(
|ǫ̂ks − ǫks|2

)1/2
sup

(us,ut)∈Dst

(
n∑

k=1

W+
nkI{|µks−us|≤hs,|µkt−ut|≤ht}

)1/2

× sup
(us,ut)∈Dst

(
max
1≤k≤n

W+
nk

)1/2

sup
(us,ut)∈Dst

(
n∑

k=1

ǫkt
2I{|µkt−ut|≤ht}

)1/2

+ max
(
|ǫ̂ks − ǫks|2

)1/2
sup

(us,ut)∈Dst

(
n∑

k=1

W−
nkI{|µks−us|≤hs,|µkt−ut|≤ht}

)1/2

× sup
(us,ut)∈Dst

(
max
1≤k≤n

W−
nk

)1/2

sup
(us,ut)∈Dst

(
n∑

k=1

ǫkt
2I{|µkt−ut|≤ht}

)1/2

= Op

(
1√
n

)
sup

(us,ut)∈Dst

(
max
1≤k≤n

W+
nk

)1/2

sup
(us,ut)∈Dst

(
n∑

k=1

ǫkt
2I{|µkt−ut|≤ht}

)1/2

+Op

(
1√
n

)
sup

(us,ut)∈D

(
max
1≤k≤n

W−
nk

)1/2

sup
(us,ut)∈Dst

(
n∑

k=1

ǫkt
2I{|µkt−ut|≤ht}

)1/2

= Op

(
1

n
√

ht

)
.

Similarly,

IV = Op

(
1

n
√

hs

)
,

since IV has the same structure as II.
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By Lemma 7.6, we have

V I = sup
(us,ut)∈Dst

∣∣∣∣∣
n∑

k=1

Wnk (ǫ̂ks − ǫks) (ǫ̂kt − ǫkt)

∣∣∣∣∣

≤ max
1≤k

(|ǫ̂ks − ǫks| |ǫ̂kt − ǫkt|) sup
(us,ut)∈D

n∑

k=1

|Wnk|

= Op

(
1

n

)
.

By Lemma 7.5, Lemma 7.7 and (7.3),

V II ≤ sup
(us,ut)∈Dst

n∑

k=1

∣∣∣Ŵnk − Wnk

∣∣∣ |ǫ̂ks − ǫks| |ǫ̂kt − ǫkt|

≤ sup
(us,ut)∈Dst

∣∣∣Ŵnk − Wnk

∣∣∣Op

(
1

n

)
sup

(us,ut)∈Dst

n∑

k=1

I{|µks−us|≤hs,|µkt−ut|≤ht}

= Op

(
1

n
√

nhs

+
1

n
√

nht

)
.
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By Lemma 7.5 and Lemma 7.7 and Chebyshev’s Inequality,

III = sup
(us,ut)∈Dst

n∑

k=1

∣∣∣Ŵnk − Wnk

∣∣∣ |(ǫ̂ks − ǫks) ǫkt|

≤ sup
(us,ut)∈Dst

(
n∑

k=1

(
Ŵnk − Wnk

)+

(ǫ̂ks − ǫks)
2

)1/2

× sup
(us,ut)∈Dst

(
n∑

k=1

(
Ŵnk − Wnk

)+

ǫ2
kt

)1/2

+ sup
(us,ut)∈Dst

(
n∑

k=1

(
Ŵnk − Wnk

)−
(ǫ̂ks − ǫks)

2

)1/2

× sup
(us,ut)∈Dst

(
n∑

k=1

(
Ŵnk − Wnk

)−
ǫ2
kt

)1/2

≤ sup
(us,ut)∈Dst

max
1≤k≤n

(
|ǫ̂ks − ǫks|2

)1/2
sup

(us,ut)∈Dst

(
n∑

k=1

(
Ŵnk − Wnk

)+

× I{|µks−us|≤hs,|µkt−ut|≤ht}
)1/2

sup
(us,ut)∈Dst

max
1≤k≤n

∣∣∣∣
(
Ŵnk − Wnk

)+
∣∣∣∣
1/2
(

n∑

k=1

ǫkt
2I{|µkt−ut|≤ht}

)1/2

+ max
1≤k≤n

(
|ǫ̂ks − ǫks|2

)1/2
sup

(us,ut)∈Dst

(
n∑

k=1

(
Ŵnk − Wnk

)−

× I{|µks−us|≤hs,|µkt−ut|≤ht}
)1/2

sup
(us,ut)∈Dst

max
1≤k≤n

∣∣∣∣
(
Ŵnk − Wnk

)−∣∣∣∣
1/2
(

n∑

k=1

ǫkt
2I{|µkt−ut|≤ht}

)1/2

= Op

(
1√
n

)
Op

(
1

nhs

√
hs

+
1

n
√

hsht

)

≤ Op

(
1

nhs

+
1

nht

)
.

Similarly,

V = Op

(
1

nhs

+
1

nht

)
,

since V has the same structure as III.
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Therefore,

sup
(us,ut)∈Dst

|σ̂nst − σnst| = Op

(
1√
nhs

+
1√
nht

)
.

Hence,

sup
(us,ut)∈Dst

|σ̂nst − σst| ≤ sup
(us,ut)∈Dst

|σ̂nst − σnst| + sup
(us,ut)∈Dst

|σnst − σst|

= Op

([
log n

n2hsht

]1/2

+ h2
s + h2

t +
1√
nhs

+
1√
nht

)
.

Proof of Theorem 5.3.

Let L(µ;Y) and U(β) be the log quasi-likelihood function and quasi-score

function with known covariance matrix defined as in Chapter 3. Also, suppose

that Iβ is the “observed” quasi-information matrix of β with known covariance

matrix V(·) and iβ is the expected value of Iβ. Then we have

U(β) =
∂L(µ;Y)

∂β
=

n∑

k=1

V −1(µk)(Yk − µk)(g
′(η̄k))

TX, (7.5)

and

Iβ = −
{

∂2L(µ;Y)

∂β2

}
= −

{
∂U (β)

∂β

}

= −
{

∂U

∂η

∂η

∂β

}

=
n∑

k=1

XkV
−1 (µk) (g′(ηk))

2
XT

k +
n∑

k=1

Xk

{(
V−1 (µk)

)2
(V (µk))

′ (g′(ηk))
2

− g′′(ηk)V
−1 (µk)

}
(Yk − µk)X

T
k

=
n∑

k=1

Xk

{(
V−1 (µk) (g′(ηk))

)2
+
[(

V−1 (µk)
)2

(V (µk))
′ (g′(ηk))

2

− g′′(ηk)V
−1 (µk)

]
(Yk − µk)

}
XT

k .

Therefore,

iβ = E (Iβ) =
n∑

k=1

DT
k V−1(µk)Dk.
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Suppose that β̂ is a quasi-likelihood estimator of β. Then β̂ satisfies

U(β̂) = 0.

Here U(β) is quasi-score equation with known covariance matrix V(·), which

defined in Chapter 3.

By Taylor expansion,

U(β) − I ¯β(β̂ − β) = 0

where β̄ is between β and β̂. Also, I ¯β = Iβ

∣∣∣
β=

¯β
, Iβ is the “observed” quasi-

information matrix of β with known covariance matrix V(·). Now I ¯β satisfies

that

I ¯β =
n∑

k=1

Xk

{(
V−1 (µ̄k) (g′(η̄k))

)2

+
[(

V−1 (µ̄k)
)2

(V (µ̄k))
′ (g′(η̄k))

2 − g′′(η̄k)V
−1 (µ̄k)

]
(Yk − µ̄k)

}
XT

k ,

where

µ̄k = g
(
Xkβ̄

)
, η̄ = Xkβ̄.

By the results of McCullagh (1983), we have

√
n(β̂ − β) ∼ N

(
0, Σ−1

)
.

Let β̂
∗

be the nonparametric estimator of β such that

U∗(β̂
∗
) = 0

and I∗β is the “observed” quasi-information matrix of β with nonparametric esti-

mator of covariance matrix Vn(·), where U∗(β) is defined as the nonparametric

quasi-score equation in chapter 4.

U∗(β) =
n∑

k=1

V−1
n (µk)(Yk − µk)(g

′(η̄k))
TX (7.6)
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and

I∗β = −
{

∂2L∗(µ;Y)

∂β2

}
= −

{
∂U∗ (β)

∂β

}

=
n∑

k=1

Xk

{(
V̂−1

n (µk) (g′(ηk))
)2

+

[(
V̂−1

n (µk)
)2 (

V̂n (µk)
)′

(g′(ηk))
2

− g′′(ηk)V̂
−1
n (µk)

]
(Yk − µk)

}
XT

k .

By Taylor expansion,

U∗(β̂
∗
) − I∗¯β

(β̂
∗ − β) = 0

where β̄ is between β and β̂. Also, I∗¯β
= I∗β

∣∣∣
β=

¯β
, I∗β is the “observed” nonpara-

metric quasi-information matrix of β with nonparametric estimator of unknown

covariance matrix V(·), and I∗
β̄

satisfies

I∗¯β
=

n∑

k=1

Xk

{(
V̂−1

n (µ̄k) (g′(η̄k))
)2

+

[(
V̂−1

n (µ̄k)
)2 (

V̂n (µ̄k)
)′

(g′(η̄k))
2 − g′′(η̄k)V̂

−1
n (µ̄k)

]
(Yk − µ̄k)

}
XT

k

where

µ̄k = g
(
Xkβ̄

)
, η̄ = Xkβ̄.

In order to show the nonparametric quasi-likelihood estimator β̂
∗

has the

same asymptotic distribution as the quasi-likelihood estimator β̂ obtained from

the quasi-score equation with known covariance matrix, it will be sufficient to

show that
√

n
(
β − β̂

∗)
=

√
n
(
β − β̂

)
+ op(1) (7.7)

Equation (7.7) will follow if we can show

1

n2

(
I∗¯β

− I ¯β

)
= op(1)
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and

1

n

(
U∗

β − Uβ

)
= op(1).

First, we have

1

n2

(
I∗¯β

− I ¯β

)

=
1

n2

n∑

k=1

XkHk (g′(ηk))
2
XT

k

+
1

n2

n∑

k=1

Xk

{
Fk (g′(ηk))

2 − g′′(ηk)Hk(µ̄k)
}

(Yk − µk)X
T
k

where

Hk(µ̄k) = V̂n(µ̄k)
−1 − V−1(µ̄k)

and

Fk(µ̄k) =
(
V̂−1

n (µ̄k)
)2 (

V̂n (µ̄k)
)′

−
(
V−1 (µ̄k)

)2
(V (µ̄k))

′ .

Throughout the rest of Chapter, ‖ · ‖ means ‖ · ‖∞. By Theorem 5.2, (K5)

and (N2), we have

‖Hk‖ ≤
∥∥∥V̂n(µ̄k)

−1
∥∥∥
∥∥∥V(µ̄k) − V̂n(µ̄k)

∥∥∥
∥∥V(µ̄k)

−1
∥∥

≤ cond (V̂n(µ̄k))
(∥∥∥V̂n(µ̄k)

∥∥∥
)−1

Op (νn)

= Op (νn/λn)

where

νn =

[
log n

n2hsht

]1/2

+ h2
s + h2

t +
1√
nhs

+
1√
nht

.

By the definition of derivative, we have the following:

‖Fk(µ̄k)‖ =

∥∥∥∥
(
1/(V̂n(µ̄k)

)′
− (1/(V(µ̄k))

′
∥∥∥∥

= Op (νn/ (hshtλn)) .

79



By (K5), as n → ∞ we have

∥∥∥∥
1

n2

(
I∗¯β

− I ¯β

)∥∥∥∥

≤ 1

n2

n∑

k=1

‖Hk‖ +
1

n2

n∑

k=1

{[‖Fk‖ + ‖Hk‖] ‖Yk − µk‖}

= Op ((hshtνn)/λn) + Op (νn/λn) → 0.

Hence

1

n2

(
I∗¯β

− I ¯β

)
= op(1). (7.8)

From (7.5) and (7.6) and (K5), we have the following as n → ∞ :

∥∥∥∥
1

n

(
U∗

β − Uβ

)∥∥∥∥ ≤ 1

n

∥∥∥∥∥
n∑

k=1

[
V−1

n (µk) − V−1(µk)
]
(Yk − µk) (g′(η̄k))

T
X

∥∥∥∥∥

≤ 1

n

n∑

k=1

[
Op

(∥∥Vn
−1(µk) − V−1(µk)

∥∥) ‖Yk − µk‖
]

= Op (νn/λn) → 0.

Hence,

1

n

(
U∗

β − Uβ

)
= op(1). (7.9)

Next, we are going to show that if (7.8) and (7.9) are true, then the nonpara-

metric quasi-likelihood estimator β̂
∗

will have the same asymptotic distribution

as the quasi-likelihood estimator β̂ with known covariance matrix.

Since

U∗
β − I∗¯β

(
β̂

∗ − β
)

= Uβ − I ¯β

(
β̂ − β

)
,

then by (7.8), (7.9) and the results in Chapter 3, we have

√
n
(
β − β̂

∗)
=

√
n
(
β − β̂

)
+ op(1).

Therefore,
√

n
(
β − β̂

∗)
will asymptotically have the same distribution as

√
n
(
β − β̂

)
.
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Chapter 8

Conclusions and Future Research

8.1 Summary and Conclusions

This proposed nonparametric quasi-likelihood approach is designed to estimate

regression model parameters β in the class of generalized linear models for longi-

tudinal data analysis where the covariance matrix is totally unknown but consists

of smooth functions of means. It has been shown that the estimator obtained

from nonparametric quasi-likelihood approach has an asymptotic normal distri-

bution, the same as the estimator obtained from quasi-likelihood approach with

true covariance matrix. Moreover, the rate of convergence has been established.

With sample size n = 200, 300 and 800 separately, four simulation studies were

run by using the automatic bandwidth sector (6.1). The results of the first two

simulation studies show that with sample size n = 200, the relative efficiency of

NQLE is close to 1 compared to GEE with correct working correlation structure.

In some cases, NQLE is more efficient than GEE, compared to QL with true

covariance matrix, such as the estimates of slope in the second simulation. The

simulation suggests the following:

NQLE becomes more efficient as n is increasing.

81



When substantial correlation is present, NQLE seems more efficient than GEE

with independent working correlation.

When the working correlation structure is badly misspecified, GEE is very in-

efficient, compared to NQLE.

NQLE performs as well as or better than GEE with completely unstructured

working correlation.

We conclude that NQLE may be superior to GEE when we have no idea of

how to choose a working correlation matrix. It is sometimes suggested that GEE

with independent working correlation matrix may be used when we have no idea

how to choose the working correlation. However, our simulations suggest that

this strategy may not be effective and that NQLE is a better approach.

The simulation suggests that the efficiency of NQLE increase as sample size n

increases. This agrees with our theoretical result. Presumably the explanation is

that the nonparametric estimator of the variance function is more accurate when

n is large.

8.2 Suggestions for Future Research

The approach of this thesis assumes a correctly specified link function and a

correctly specified linear predictors, while the covariance structure is unspecified,

except for smoothness conditions. However, in some cases, the true link function

may not be specified correctly or that assumption of a linear predictor may be

inaccurate.

A semiparametric or fully nonparametric specification of E(Y |X) might ad-

dress these problems. A fully nonparametric approach might call for estimating
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µ(x) = E(Y |X) by a smooth function of unspecified form. This approach has

already been studied for independent data. Semiparametric approaches include

generalized additive models (GAMs) in which E(Y |X) = g
(∑p

j=1 fj(xj)
)

and

the fj(·) are smooth function estimated nonparametrically from the data (Hastie

and Tibshirani (1992)). Hybrid approaches might also be used, for example by

assuming E(Y |X) = X1β + g
(∑p

j=q+1 fj(xj)
)

.

A combination of a semiparametric or nonparametric model for E(Y |X) and

nonparametric estimation of the covariance functions is a nature extension of the

results of this thesis. The principal difficulties will be establishing the various

rates of convergence.

It is unlikely that the efficiency of such methods will be as high as QL with

correctly specified covariance structures, but they may be appropriate for some

studies where useful modeling information is unavailable.

83



BIBLIOGRAPHY

[1] CARROLL, R. J. and RUPPERT, D. (1982). “Robust Estimation in Het-

eroscedastic Linear Models.” Annals of Statistics, 10, 429-441.
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