Technical Report TR-1290 May 1983

THE SOFTWARE INDUSTRY:
A STATE OF THE ART SURVEY

Marvin V. Zelkowitz
Raymond Yeh
Richard G. Hamlet
John D. Gannon
Victor R. Basili

Department of Computer Science
University of Maryland
College Park, MD 20742

e

)

-
I

the term “"software engineering®

19605

ways to develop, manage, and maintain

ntroduction

Goals

{Naur and Randell 691, [Buxton and

first appeared in the late

Randell 701 to describe

Loftmare %50 that the

resulting products are reliable, correct, efficient, and #lexi-

ble.

it is

After 15 years of study by the computer science community,

impaortant to assess the (impact that numerous software

engineering advances have héd an actual software production. The

IBM Corporation asked the University of Maryland to conduct a

survey of different program development environments in industry

in arder

to determine the state of the art in software develop-

ment and to ascertain which software engineering techniques are

most

the results of that survey.

1.2

Thic project began during the spring

effective in the non-academic sector. This report contains

The Suryey Process

of 1981. The goal was

to sample 15 to 20 organizations, including the primary sponsor

of this projeck - IBM, and study their

This

&evelopment practices.

was accomplished via a two-step progess. A detailed survey

form was sent %o each of the participgting cumpanzes In

rasponse %o the return of this form, a follow—-up v1sit was made.

This visit clarified the answers given on

that

veyad,

the form. We believe

this process, although‘limitfng the anber of plaées suf—

resulted in more accurate informati

;ﬁﬁ'being presented than

- cessed.

if we had just relied an forms.

Each survey form contains two parts.
genaral comments concerning software deve

zation as a whole. The information descri

cally represents the “"standards and prac

organization. In addition, we also studie

pleted projects within each compang. Each

the second section of the survey form, whi

and techniques that were used on that part

A variety of organizations in both &

Japan participated in the study. The ack

of this report lists some .b? the part

Section ane asks(for
lopment for the organi-
bed by this part‘ typi-
tices" document far the
d several recentlgrcom—
such project completed

ch‘described the

tools
icular progject.
he United States and

nowledgement at the end

icipants. Due ¢+to the

prdprietarg nature oﬁ.part of the information we cbtained, some

of the participants wish to remain anangma

this project, we surveyed 25 different ¢

of them are U . 8. companies and 12 were frg
cast and time restrictions, about half of
vers not interviewed, and the ather

varying degrees of detail.

In addition to our survey form, intenm

. saveral company officials, and some pu

used for additional data. Figure 1 1lists
In order to characterize the pr

jects and teams are somewhat arbitrarilg

groups according to sizes: Small, Medium,

half

us. Over the life of
rganizations. Thirteen
m Japan. Due to the

the Japansse campanies

were interviewed in

views were. held with

blished raferences were

the basic data pro-

ojects we studied, pro-
classified into four

Large, and Very Large.

Projects are classified according to the number dF staff months
needed to complete 'them. and teamsﬂacc rding to the numbers of
members. This division leads to a breakdown in which there is
only aone case of a team that is larger than a project (Company

Ul

Code Divs Proje Interview Project Team

Site Size
A e 3 Yes L
B 1 0 MNo VL.
C i i No M
D i 3 Yes L
E 3 4 Yeg VL
+ i 3 Yes VL
$ 1 2 Yes L
b 1 7 Yasg M
I 1 Q Yes vu
J 1 4 Yeg VL
K i 8 Yes M
L 1 1 Yesg vL
™ 1 3 Yes VL
N 1 2 Mo s
o 1 1 Yes VL
P 1 1 Mo -
e} 2 0 No t.
R i ¢ No -
& i i Yesg S
k] 1 4 Yes VL
U i 0 Yes VL
\Y 1 1 Yes g
I 1 1 Yes S
X i i No S
Y 1 i Mo -

Figure 1.a Companies Surveyed

Project Size Team Size
(staft months) (statt)
&6<10 §<10

M 10-100 - M 10-25

L 100-~1000 ‘ L 25-%0

viL.>1000 vL>80

Figure 1.b Legend

After reviewing the basic data, we |recognized thrsze dif-

farant spftware development snvironments:

(1) Cantract software -~ quicallq Department of Defense and NASA

asrospace systems

(2) Data processing applications - Tgpic?llg sgftware produced

by an organization for its own interTal business use

(31 Sy

}.’3

\

tems software - Typically ape[ating system support
software produced by a hardware vendor as part of a total
hardware-software package of products for a given operating

sustem,

A zingle company might bé represented in more than one of

the above categories, For example, we looked at several
Defense-related projects and one internal data processing

application at an aerospace company.

This survey is not meant to he all~encompassing; however, we
believe that we have surveyed a large en#ugh number of locations
to understand software development in 1n#ustrq today. Several
companies were concerned about which propects we should studg ——
we left that decisian up to them There w#s concern that the:prO*
jects we were looking at were "ﬁaf Lupical" of the company
(Interestingly, very few companies claimed to be doing “typical”
software. } We felt that we were getting to see the "better"
develaped projects. In general., every cahpang had =2ither a ur1t»

ten guideline or unwritten folklore as ¢to how software was

developed. Deviations from this policy were rare.
2. ereral Dbservations

The literature contains many referencas to software
engineering methodology, including tools support throughout the
lifecycle, language support in other than source code, festing
suppart, measurement and management practices, and other %tech-
niques that will be meniioned throughout this report. But in our
survey, we found surprisingly little use of software engineering
practices across all comhanies. No organization fully +tries ¢to
use the available technology. While some companies had sfranger
management practices than others, none used tools to support

these practices in any significant way.

2 L1 freanizational Structure

Most companies that we surveyed had an organizational struc—

tuyre similar to the one in Figure 2

Director of Softuware

— i ——— A - —— o o so00 z - -

' $. [: [
t ' ‘ . H

Goftware ArTea ATea . : Area
Technology 1 2 S ~ N '
Group Managers Managers Managers

Figure 2 Typical Drganization Structdre

The software technologg'group typically has one to five individu-
als collecting data, modelling Tesource usage, and generating

standards and practices documents. However, this group has no

direct authority to enforce adherence

practices even within a single division. A

often vary within a'single organization,

This structure also explains a curren

software engineering techniques. Altho

mentioned in the literatUré and at

engineering techniques'are rarely used co

at large. Developers of real products

software technology (research) group o

confzrence attendees and write most of the

too optimistic about the effects of ¢

to software engineering

s a rvesult, standards

t énomalg in the use GF‘
uéh they are frequently
can#erences; software
rrectly by the industry
poften think that the
f Figure 2 (who are the
is

research papers)

hese techniques and are

unrealistic since they have not applzed th

tions. Managers know their personnel 0

and experience needed for successful appli

niques. Even the technzques that

quently misused. For example, although ma
term “chis® programmer" to describe their
izations, maost bore little resemblance to

in the literature. Generally each proJec
els of management who handled stat#f and re

who did not actively participate in'sgstem

A further problem in many organizations

gensrally no one person at the head of th

makes software decisions. Such a person d
organizations. Foar this reason, software

low and vary across the company.

m to real life situa~
ten lack the education
atxons of these tech-
been adopted are Fre—
y companias used thé
rogramm1ﬂg team organ-
he technique described

had two to three lev—‘

=

ource acquisition, hut
deszgn.
is that there is

chart of Figure 2 who
ften'exists in hardware

;taﬁdards are generally

2.2 Tool Use

Yool use is relatively low across the industry. Not too
surpfisinglg. the use of tools varies inversely from their “dis-
tancé“ fram the code and unit test phase of development. That
is, %ools are most'frequentlg used Huring the code and unit test
phase of software development (e.g.. coméiiefs. code auditors.
tast coverage monitors, etc.). Adjacent phases of the software
lifecyle, design and integration. usually have less ool support
(e.g.. PFDL processors and source code control systems). Feuw
‘requirements or maintenance tools are used. In looking at tool
use, Figure 3 gives some indication of which technigques and tools

are uged:

Method or Taal Per Cent of Companies

High~level languages : 100=
Online access - 89
Reviews 84
Program design languages 60
Formal methodology &9
Test tools 27
Code auditors 18
Chief programmer team . 13
Formal verification 0
Farmal requirements . .0

or specifications

#-Every company seems to use some higher level language-
pbut often there is also a high usage of assembly language

Figure 3 Industrial Method or Tool Use

Time sharing computer systems and coﬁpiler writing became
practical in the late 1940s and tarlg'197055 thus online access

and tigh level languages can probablﬁ be labeled the successes of

the 174&0s. Similarly,

the widespread use of reviews and pseu-

docode or program design language (PDL) peJmits us to call them

the successes of the 1970s.

tools have been adopted by industry. Testxﬁg tools are

only 274 of the compan1es, and most of theée are szmplq

genarators. Only one company (in Japan) ind

any form oaof unit test tdol to measur

Althaugh many companias claim to use chief

actually do.

While PDLs are heavily used, it is di
pracess is not automated. Some PDL
formatters, while some do “pretty print"

It ie disappointing that

and

faw other

used by

test data

icated that it wused

e test case coverage.
pragrammer teams, few
sappointing that the

processors are simply manual

indent the code.

Often the PDL is only a "coding standard” and not enforced by any

v

tool.

faces and variable use/define patterns.

Tool use generally has the flavor of v

ing. Jobs have a “"batch flavor" in that

then compiled. There is little interactive

Only one location had a PDL processorn

‘computing.

that checked inter-

rintage 1970 time shar-—

T™Tuns are assembled and

There is

minimal tool support - mostly compilers and simple aditors.

The problems in using tools can be Tttributed to several

factors.

. |
Corporate management has little (if any) software

background and is not sympathetic wit# the need for tools.

Mo separate corporate entitg'exists‘wﬁose charter includes

tools so there is no focal point‘for’

ment and evaluation. Tools must

ool selection,

deploy-

be paid out of progject

funds: sa there ié a fair amount of v

a project manager to adopt a new %o

o use it

Since project management

current coste and schedules, and too
across several projects to be effecti

manager will almost always stand out

panies often work on different hardware.

transportable, 1limiting their scop

ve. a

isk and expenditure for
ol and train hié people
is evaluated on meefing
1 uze must be amortized

single project

as “unproductive. " Com-—

s0 tools are not

e and their perceived

advantage.

$1M was spent bUilding a

The most striking exampl
tem where 1

no thaought of ever using that data bJ

The need %o maintain large existin

(generally in assembly code) makes it

new tool that processes a new N

Finally: many of the taools are incomp

mented. Because such fools +ail

ata hase,

of this, was one sYys—

yet there was
se on anocther system.

g source code libraries

hard to introduce =
igher level language.
lete and paorly docu-

to live up to promises,

ar

project managers are yustifiably relyctant to adopt them

cancider subsequently developed tools.
2.3 Jgpan - U. 8 Comparisons

There is currently much interest in| comparing U. 8§ and
Japanese technology. In general, development practices are simi-
lar. Frogrammers in both countries complain about the amount of
monsy going towards hardware development and the lack af
resagurces for software. However, in comparing U. 8. and Japanes:

software

optimize development across the

company

development, we found that Jahanese companies typically

rather than within =&

single project. One effect of this is t#at tools become a capi-
talized 1nvestment paxd for or developed #ut of company overhead

rather than progject funds. The cost #F using tools is spread
among mare progjects, knomledge about tooil is known to more in
the company, and proJectvmanagement is maore willing to use toaols
since the risk is loﬁér. Thus: tool develoﬁment and use is more

widezgread in Japan.
2 4 QReviews

At the end of each phase (and éomefimes within a phase) the
evolving software product (i.e., requirements, design, code, test
cases, see for example [Belady and Lﬁhman'?é]) is subjected to a
review process, trying to uncover préblems’as s00n aﬁ possible.

("Inspection" and "walkthrough“ [Fagan 761 are other terms vdsed

for reviews without regard to the distinctions made in the

software-engineering Iiteréture.)-'hearlq everyone agress that

reviews work, and nearly everyone usaes thrh.'buf theré is a wide
variety in the ways that reyiéhs are ﬁondu#ied. There seems to
‘be an agreement that‘:tﬁéu allow tﬁeviroutine completion of
software projects within time and hudget c;nstraxnts that onlg a
few years ago could be managed only bg luck and sweat Reviews
were first instituted far code, then exten&ed to design. :Exfen—‘
sions to requirements and test-case design are not universal. ;nd_
some feel that the technique may have b‘eﬁ ﬁushed bayond its uSe—?
fulness. Managers wouldblike to extend the ‘Teview process, while

the tachnical people are more 1nclined to limit if'to the best-

undarafaod phases of development

10

Twn aspects of reviews must be separa

ted: aone is management

control and the other is technical vtility. Managers must be
concerned with both aspects, but technicalﬁ syccess cannot be
assured by insisting that certain forms be completed. If the
tasks ascigned to the reviewers are ill-defined, or the form of

the product reviewed inappropriate, the

able people‘s time, Lower-level managers
where they think reviews are appropriate,

situations.

The technical success of Ehe review p

on the expertise and interest of th
‘review, not on the mechanism itselé.
‘refined by continvally changing it to re

failures, and much of this information is

known to experienced pafticipants. Som

is encoded in review checklists, which ne

to use. However, subjective items li

requirements are of little help to a novi

2 3. Data Collection

Every caompany collects some data, bu

" part of the corpaorate memory to be us

which it was collected. Data 'generallg

managers, and it is their cption as to

review will waste valu-

prefer to use rveviews

and avoid them in cther

rocess rests squarely

people canducting the

he' review process is

lect past successes and
tﬁbJective. implicitly
ﬁigtorical information
comefé can be trained
e the "completeness" of

little data becomes

d beyond the project on
individUaII

belongs ta

hat to do with it. Data

is rarely evaluated and used in a postmortem analysis of a pro-

ject. APter a project is completed, it i

i1

rarely subjected to an

[

analysis to see if the process could have
not the case in Japanese companies,

was more frequently performed.

Several companies are experimenting

modsls (e.g.., SLIM CPutnam 791, PRICE S

etc. }.
full praposal;
mates. Figure 4 shows that little data is

all rompanies.

e OF DATA |

been improved. lThis is

in which postmortem analysis

with wvariogus resource

CFreiman and Park 791,

No company seems to trust any modei enough to use it on a

instead the models are used to check manual esti-

being collected across

l !: RECOReE
! : BT R
N

-8
u
(o]
(3]
. -
i
-
.8
i
A "
(. AVERAGE ,BFECI¥ICATION DE3Ti

A : :

Figure 4 Data Collectior Across

In general, we found it zrxtremely dif

First. of all, quantitative data is quit

panies, In addition each company has diff

mast of the measured quéntities, such as:

12

'Life Cycle -

ficult to acquire data.
e rare within most com—

erent definitions for

(1) Lines of gode is defined as source lines, comment lines,
with or without data declarations, executable lines ar gen-

arated lines.

(2) Milestone dates depend on the local softuware life cycle used

y the company. Whether brequirements. specification, ar

o

maintenance data is included will have a significant effect

upon the results.

(3} Personnel might include programmers, analysts, typists,

librarians: managers, eftc.

Much of this data is proprietary. Thiﬁéifﬁering definitions
of quantities for which data was collected prevent any mean-
ingful comparison. It is quite evident that +the computer
industry needs more work bn thé-standardizatiun of terms in
order to be able to address these quantitative issues in the

future.

joftware Development Environments

3

(&

3.

In the following section general characteristics about most
software environments are described. The last sections outline
particular characteristics of the three c;@sses of environments

that we studied in detail.

3.1 Gengral Lifg Cycle

13

3.1 1. Reauirements _a_g_g‘ Specification -

In all places we contacted, requirements were in natural
language text (English in the US and Kanji in Japﬁni[Some pro-
jects had machine~proceé§able requifements ‘documents, but tool
suppoart was Iiﬁited"fq interactive text editoré. No analysis
tools (e.g., SREM IAI#ord>77]. PSL/PSA [Teichioow and Hersey 77])‘
were used except on “toy" éroJect§; Projects were either too
small to make the dse of suéh'a processﬁr vaiuable, of' else too

large to make use of the processar economical;

Reviews determine if the system architechure is complete, i
the specifications are ‘“complete®”, the internal and external

interfaces are defined;'aﬁd the system can be implemented. These

reviews are the most difficult o per#dr@ and their results are
’ 1

highly dependent aoan the quality of peo#le doing the review

because &he specifications are not formaii There is little tra-

ceability between specifications and desig#s.

2. 1@ Degsign Phase

Most designs were expressed in some form of Pragram Désign"
Language (PDL) or pseudocode, which’méd# design reviqw; effec-
tive. Tools that manipulated PDL véfied:¢¢d; editors to_.simple
text formatters. Only oné”companybixtendgd its PDL processbr to

analyze interfaces and the dataflow in the resulting design.

While using PDL seems to be accepted practice, its effective

use is naot a foregone conclusion. For example, we consider the

14

expansion of PDL to code a reasonable meas

A 1:1 PDL %o source code expansi

design.
the design was essentially code instead
indicates the ranges of expansions of

several locations that provided such data.

PDL to dee Ra

Location
1 i to 5~-10
2 1 to 3-10
3 1 to 1.5¢(!!)~-3

Figure 5 Expénsion of PDL

Customer involvement with design vari

installations. Producing lots of detail
as producing lots of detailed flowcharts.

in the contract.)

3.1 3 Code and Unit Test

Most code that we saw was in higher 1

ure of the level of a

on ratio indicates that

e design. Figure 9

PDL to code found at

tio

to Code

ed greatly even within
ed PDL. is much the same

(Nobody cares, but it‘s

evel languages -—— For-

tran for scientific applications or some local variation of PL)I
for systems work.

In the aerospace industry FORTRAN was the predominant
language. People who normally worked in assembly language

‘thought that FORTRAN and PL/I significantl

ductivity. Historical
duce an average of one line of dehugged‘
regardless of the language. (CBrooks

review of this work.)

15

y enhanced their pro-

studies have shoun that pragrammers pro-

source cade per hour

751 contains a concise

Despite claims that they wused

development, very few +first or second-

any PDL, or code themselves. We heard co

grammer teams worked well only with sma

and on projects in which a person’s

divided between different groups.

Much of the code and unit test phase

support. Code auditors could

gr

review process. We studied one code

-chief

responsibility

eétlg

programmer ¢teams in

line managers evaer wrote

mplaints that chief pro¥

11 groups of 6~9 pecple,

was not

lacks proper machine

enhance the code

review form and found

that 13 of 32 checks could be automated. Manual checks are

currently performed for brdpgf inde

code, initialization o# variables

between the,calling aﬁd called modul

ntation
']

of the source
interface consistency

etc.

Most unit testing could be called Pdvgrggrg 'testing, The
|

programmer claims to have tested a modulﬁ and the manager either

believes the programmer or nof.' No unit

measure how

test tools are wused to

effectively the tests devised by a praogrammer exer-

cise his source code.

ment or branch coverage is nominally re

While a test coverage measure like state-

vired during the review

of unit test, mechanisms are rarely available to assure that such

criteria have been met.
3.14 Integration Test

Integration testing isvmostlg stress

testiﬁg -= running the

product on as much real ar simulated dafa as is pbssible, Thé

data pracessing environment had tﬁe highest level of ‘stresg

16

testing during integration fasting. Systems software projects
were relatively slsck in integration testing compared fo the

banging industry.

3 £ BResgurces

Office space for programmers varied from 1 fo 2 programmers
sharing a "Santa-Tefesa" style office CMcCue‘1?78] with a termi-
nal ¢to large bullpens divided by low, moveable partitions. Ter~
minals were the dominant mode for computef access. Some sites
had terminals in offices, while others had large terminal rooms.

The current average seems to be about two to seven programmers

per terminal. Within the last two years most companies have
realized the cost-effectiveness of giving programmers adequate
computer access via terminals, but have still not provided ade-
quate response time. Ten to twenty second response time was con-
sidared “good"” at some places: where sub~second response could be
used [Thadani 821.
It seems worth noting that most companies weré willing to
invest in hardware (e.g.., %terminals) to assist their pfc*
grammers, but were reluctant to invest in ao#twar§ thaf

might be as beneficial.

Education

i
i

Most companies had agreements with local universitg to
send employees for advanced ¢training (e g., MS daqrees)y. Most
brought in special speakers. However, there was little ¢training

far progject management. Only one company had a fairly extansive

i7

training policy for all software persannel.

May companies had the following probl

tional Qrogram:

(1) Programmers were sent to courses wikh
experience. Thus what they learned was

tive, and was often forgotten.

(2} Scme locations complained about thei
quality universifq, and the difficulti
brought.

3.4 Data Collection Efforts
The data typically collected on pfOJec

of lirmes of PDL for each level o#ydesign{

soutrce code praoduced per staféf-month, the

errars found in reviews, and a variety

troukle reports. The deficiency o? lines ¢

can be indicated by the range in values ¢

as given by Figure &:

LOC/Statf-Manth Applic
75 08 in
21

142-167 g8 in
182-280 Assembl

Figure & Source Code per Staf

Due to the differing application areas, it

18

ems with their educa-

little or no follow-up

farelg put inte prac-

r distance from any

es that such isolation

ts includes the number
the number of lines of
number and kinds of
of measures on program
£ code measure

a4 a

¥ “gaopd" developments,

tion and Language

sgembler

" 1/0 controller in HLL

LL
er applications

£-Manth

is not reallg‘poésible

.

to compare these numbers. However, it does seem obvious that the
difficulty of the application area (e.g.. operating systems and
ather real-time programs ‘béing the most' ﬁi@#icult) has more
impact on productivity than does the implementation language

vsed.

One location reports the following figure: for srrors . found

during reviews.

Phase Defects/1000 Lines
Design ‘2 magjor, 9 minor
Code 5 major. 8 minor

Figure 7 Defects Discovered'buring Reviews

The classification of errors into 6ategorios like “major" and
*minor" is actuvarial. While th classification is vseful forv
putting priorities on changes, it sheds " 1little 1light onto the

causes and possible treatments of thése erTorTs.

ihree Development Environments

i

4.1 Applications Software

We studied 13 projects in 4 companies fhat produce abplica-
tions softuware. In this area, so?tmaré is contracted from the
organization by a Federal agency, tqbicallq the Departm?nt of
Defense or NASA. Software is developed and “throuwn over the wall"
to the agency for operation and maintenance. Typically, none of
the oarganizations we surveyed were interested in méintenance

activities. All believed that the payoff in maintenance was too

19

low, and smaller software houses could Fiil that void.

Since contracts are .awardedy after fa competitive bidding
cycle {after a Request For Prﬁpogal) and reQuireﬁents analysis is
typically charged against company overﬁead. énalqsis was kept to
a minimum before the contract was awarded. In addifiun. since the
goal was to win a contfaﬁt, there was a :igar distinction between

cost and price. Cost was the amount ne!ded to build a product -

a technical process at which most campaniqs' belieyed they were
reasonably proficient. On the other hén%. price Qas a marketing
strategy needed to win a bid. The price th to be low enough ¢to
win, but not too low to either lose moneq on tha pro;ect or else
be deeamed "not responsive" to the requ:rements of the RFP. Thus
many of the ideas of software engiheering'dgveloped during the.
19705 on tesource estimation and workload characterization are
not meaningful in this environﬁent due to the competitive process

_of winning bids.

In additian, two distinct'tgpes'o¥ campanies emerged ‘yithin_
this group - gggﬁg_ developers and ;gg_ggng goxelobefg. ;The tng'
tem developers would package both hardward and software for a
government agency, e.g.. a communicatioﬁS‘network. In this case,
most of the costs were for hardware with gdﬁfwave not considefed
significant. On tﬁe ofher hand. theﬂsoftwére developers sihplq
built systems on existing hardware sgstéMs. DEC's PDP/11 series
seemed to be the most popular with sqstem‘bbildersrthat were not

hardware vendors.

20

All of the companies surveyed had a

ever, thay mere>éither out of date., or

of being updated. In this environment: D
speci#icatiohs were a dominant dri?ing
were ariented around government poliéi#s.
als were often policq'&ocuménts outiiniﬁg
to he produced by a progject, but not ho&

tion,

As stated previously, most organizat

government agencies. Because of that,

kept to a minimum. Requirements are writ

formal tool is used to pfocesé the requir

Except for one company. FORTRAN seemed to

programming language. Two tools did see
specifications, most ﬁad some sort of man
an resource utilization. Herver. these
on pragrammer activities. PDL was fhe‘onq

' depend on - probably because fhe cost was

Staff turnover was uniformly low - g

year. Space for programmers seemed

office being typical. All locations, exce

methodology manual; how-
were just in the process
epartment of Defense MIL
force and most standards

The methaodology manu-
the type of information

to'nﬁtain that informa—

ions bid oan RFPs from
requirement analysis is
ten in English and no

ements.

be the dominant

m to be usad. Due to Dol
agement reporting forms
genevlilu did not report

tool many companies did

low.

enerally 5% to 104 a

adequate, with 1 to 2 per

pt one, used terminals.

for all computer access, and that one site had a pilotbprogect_to

build "Santa Teresa“-style o#Pices cannec

puter,

21

ted td a local minicqm-l

Software

4.2 Systems
We studied eight projects produced b
the projects were for large machines, a

those machines were the most important

other projects, mostly compilers and u

the same development rules as did opera

because they were coansidered to be small

understood.

The software is generally written on

target machine. Terminals are universal

programmers to terminals varies from almg

a terminal is frequently léss of a

cycles te do development.

Software support is generally limite

" editors and interactive compilers.

languages exist, and in most cases fheré
used; bowever, a substantial portibn of a
in assembler language (20% to 90% dependi
- Teasgns are partly gaod onés (such a
assembler code) and partly the usual one:
been considered at the technical level.

are in wide uge, but analysis of machine-

source code is virtually nonexistent.

Most testing is considered part of ¢

There may be a separate test group,

22

y three vendors. All of
nd operating systems far
projects studied. The
tilities, did not follow
ting

systems projects.

and their designs well~-

hardware similar to the
ly used and the ratio of
st 1:1 to 3:1. Getting

problem than getting CPU

d to Iiﬁe—arieﬁted teit
'HighéleQel development
is a policy thaf they be
p:réting systems remains
ﬁg upon company’. The
s the prior existence of
alternatives have never
Text formatting programs

reédable text other than

he development effort.

buf it reports to the

devalopment managers. Only a final

control of an independent quality-~control

Maintenance is . usually handled by th

field - support

then farwards them on to the development

"fiel

group obtains ftrouble Tep

d" test may be under the

group.

e developmant staff. A

orts from the +ield, and

mrganizatian for correc~

tion. In many cases, the developers, EQen if working on a new
project, handle errars.

Frogrammers are usually urganized into (usually) small teams
by progject, and usually stick with a project until it is com-
plated. The “erm “chief programmer team" is used incorrectly to
des:ribe conventional organizations: a chain of managars (the
number depends on projectk sizé) who do not program; and small

‘groups of programmers

tian.

Staff turnover is relatively high

parad to the applications software area.

cally kave private cubicles sarcelled aut

The lack of privacy is often stated as a

Software engineering practices vary

jacts we investigated. There was a

betuean the age of the system and

enginegaring used.

23

with little resp

{u

EX A

t

ongibility for erganiza-—

p to 20% per yeavr) com-

Most programmers typi-

of large open areas.
negative factor.
the pro-

widely. amang
ong negative correlation

he amount of software

4.3 Data Processing

e ztudied & data processing pro}ects at 4 locations,
although every location had §ohe data processing activities for
its ocwn internal use. Mosf data processiﬂg softwars that we stu-
died was developed in COBOL, alfhough soméksqstems are written in
FORTRAN, and used %o provide internal da%a processing services
faor the company. These systems did not%produce revenue for the
company, and were all “company overhead."iThere was a nsed to

maintain the code throughout the life cqcie.

Requirements were wmostly in Engl%sh and unstructured,
although one financial coempany spructure& specifications by user
function, Designs, especiallq far term%nal—oriented praducts,
wera relatively similar - a set of simul%ted screen displays and
menys o which the user could respond. T%e mast striking differ-

ence in the data processing environment w?s the heavy involvement
|

of users in the two development steps. The success of the pro-

ject degended upon the degree of user‘invﬁlvement tefore integra-
tion testing. One site clearly had a "su%cess" and a “failure"
on two different projects that used t%e same methodology. The
company directly attributed the succes% and failure to the

intarest (or lack of interest, respectiveig) to the user assigned

to the development team during develapmen#

All usage that we observed was via terminals. 0Office space
was more varied than in the other two environments we obserwved

Some places used one and two-person offices, while nthers parti-

!

tioned large open areas into cubic;es. “Stress" was often high
in that overtime was move common, and turnover was the highest in
this environment - often uﬁ*fo 30% per geaf, although one loca-
tion had a low turnover rate which they attribufe# to telatively

higher salaries than comparable companies.

Data processing enviraonments often used a phased apprhach to
development, and qdélitq control was eipéci;llg important. One
location, which had numerous failures in | the past, attributed

their recent successes to never attempting any development that

would require more than 18 months. Sinc] these systems often
managed the company’s finances, the need for reliability was most

critical and stress testing was higher than in other areas.

'.-'é' Conclysions

We feel there are both short and long-term remédies to raise
the level of methodoldgq and tool psé throughout industry. .The
short-term suggestions are relatively :6n ofvative; however, we
feel they can imprové productivitq.“ ﬁilb we can point to no
empirical evidence that will permit us to forecast gains, there
is a general consensus in the softqare ommunity (like that for
the use of high level languages) to support these ideas. Our

long~term suggestions could form the basis for a research effort.

8.1 Short Term

B p\ :

(1) Mgre and hs&isnissmngsgn‘nszsuzssgushnuli
for develaopment. . The computef’ sgstems being wused for

25

made available

2)

(32

development are comparable with the best of those available
in the late 19460‘s or ear1q>1970's: timesharing on lafge
machines. The use of screen editor; at some locations has
been a MBJOf‘ improvement., but otﬁer tools seem limited to
batch compilers and primitive’dgbugging' systems, Response
time seems ¢to be a méJor ﬁdﬁpiaint at many development

installations.

Methods and tools should be gvaluated A separate organiza-
tion with this charter should be established. As of now, it
does not appear thét'anq'one gradp in most companies has the
responsibility to:kstudg theg reséarchv literature and try
promising techniques. Siﬁée the MO§t successful tools have
been high level language cnmpile;s{ the ?irst taols to bhe
develaoped should be intég;ated infb?compilers. Thus theée
tools should concentrate on the deQiQh and unit test phases
aof developmentkduring which Formal.#énguages exist and com-
piler extensions are relativelqi straightforward. This
organization could both'acqﬁire aﬁ&%evaluate the tools via

case studies and/or experiments.

Tool gypggzi should g§ bg;;t géx' g. common high lévgl

language. The tools we would pick?first include a PDL pro-
cessor, a code auditor, and a unit test coverage monit3§.'
The PDL processor should at lcast:chefk interfaces. Unfor-
tunately, commercially available prﬁcdssors do 1little more
than format a listing; however, intef#ace'cheﬁking is noth-

ing more than 20-year-old ”compilerf 'techﬁaiogg.' The

26

(4)

pracessor should also construct graphs of the flow of data
through the desigﬁ aﬁd extract PDL ?fom source code so that
while both are maintained toglthif’ they can be viemed
separately. Code auditars can be used to check that source
code meets accepted standards and practices. Many of these
checks are boring to 'pévform 6anuallg (e.g., checking
whether BEGIN-END blocks are aligned):ahd thus become evrror
prane. Unit testing tools can evaluate houw thorodghlq a
program has been exercised. These taols are easgAto build
and should meet with quick iccoﬁéance since many managers

require statement or branch coverage during unit test.

PDL processors shouid support an automated set of metrics
that cover the design and‘coﬁing process. The metrics in
turn can monitor progréss.' charattirizc the intermediate
products (e.g., the design, source code, etc), and attempt
to predict the characteristics of the next phase of develqpi
ment. Possible metrics include deﬁign change counts, con-
¢rol and data complexity metrice for sourc§ code, structural

coverage metrics for test data, etc. (Pasili 801,

Improve the review process. Reviews or inspections are a

strong part of current methodology. The revigu prociss can
be strengthened by the use of the tools méntioﬁed above.
This would permit reviewers td spend more time on the major
purpose of the review —- the detection of logical errors:
and avoid the distractions of for&atting or syntactic

anomalies.

(3}

(&)

52

1)

Use incremental development (e.g;) .itefative enhanceméﬁ%
fBasili and Turner 751). One Jata'ﬁrocessing locatiaﬁ.
after repeatedly failing to deliver?so#tware. made a deﬁi*
sian never to build anything thaé had a chunk larger than
those requiring 18 staff months. Since then they have been

successful.

Collect gﬁg ana;ﬁze gggg. Mogt‘of ﬁherdaf; betn§ collected
now is wused primarily to schedule%work‘assignments. Meas-
urement data can be .used to clasdifg .proJect;. evalvate
methods and tools, and provide Feedﬁaék to project managers.

Data should be collected acrqssb pré;ects " to evaluate and
help predict the proddctivitq and Quilitq'of software. The
kind of data collected and -analgsié' performed shaould be
driven by a set of questioﬁs that?n;cd aﬁswers rather than
what is convenient té'toilecf ahd ?aﬁalqze. For example..
classi?qing errors into "major" ané "minor" categories does
not answer any useful questions. A?mofd detailed examina-
tion of error data can deterﬁiﬁe the causes of common_f
errors, many of which may have réme&i.t. Project post movr—

tems should be conducted.
Long Term

Compiler technology should be maintained. Many companies
seem to ‘“contract" out cdmpilerf development to smaller
software houses due to'“pédestriaﬁ"ﬁnéture of building most

compilers. While compiler tédhnologq is relatively

28

(2)

3

(4)

straightforward and perhaps cheapér te contract to a

software thouse, the implicationé are far Teaching. Software
research is heading towards an integrated environment cover-
ing the entire life cycle of softuwa e development. Research

papers are now being written about requirements and specifi-

cation languages, desi§n languages.,

urement, knowledge based Japanes

[Karatsu 621 languages, etc. All o

dane compiler technology as their ba

Prototuping should be tried. It was

our visits.

Develop & test and evaluation me

be designéd and evalvuated.

development process providgs.?ur the

PRER:

Whil

rogram complexity meas-
“£ifth generation"
these depend upon mun-—

never mentioned during

Test data has to
the current softuware

design of test data in

conjunction with the design of the softuire, there is little

tool support for this effort.
project builds its own test data

build test evaluators. Concepts 1ik

As a

result, almost ‘every
rinerator'énd a few even

e attribute gramméis may

provide the basis for a tool t6 support test‘dsta genera-

tion.

Examine the maintenance process. The maintenance process

‘ghaould be Fformalized as paft'of th

process. Maintenance was rarely mentioned in our

process, although there is a

maintenance workstations. Their view is that develapment

29

e continuin§ development

interview

project in Japan to build

is

a subset of maintenance. This implies that the swuccessful
methods and tools used in development should be adapted Ffor

use in this stage of the process.

(3) Encourage innovation. Expefimental' software develapment
facilities are needed. .Management should be encouraged to

use new techniques on small funded-risk projects.

& Acknowledgements

This praJect.was sﬁonsored by a contract from the IBM Cor-
poration ta the Universitu of Mérq[aﬂd.'we also wish to ack-
nowledge the cooperation of the folléming of@aﬁizations in addi-
tion ¢to IBM for allowing us to survey their development activi-
ties: Bankers Trust Company, Honeywell Lawgi Information Systems
Division, HKozo HKeikaku Kenkgu;o- Japdﬁ fn#ovmétion Pro?eséing
Service, Nomura Computer Systems Ltd.., Sa#é@are Reseafch Associ~
ates (Japan), Sperry ‘Univac: System ﬂ;velppment Corporation,
Tokye Electric Power Company. Toshiba waporétion. TRW, Xefox.
and several other organizétions ‘Qho wish to remain anongmous:

This praoject would not have been possible without their help.

Z. References

CAlford 771 M. W. Alford. A Requirements Engineering Methodology

for Real-time Processing Requirements. JEEE Transactions on
Software Engineering SE-3. 1. (Januarg. 1977). 60"69

CBasili 807 V. R. Basili. Models and Metrics for Software
Manacement and Engingering. IEEE Computer Society Press, 1980.

fBasili and Turner 731 o ‘ ' ' -

V.R. Basili and A.J. Turner. Iterative Eﬂhancement A Practical
Technigue for Software Development. = IEEE Transactions on
Software Engineering SE-1, 4, (December 1973), 390-3%6.

30

CBelady and Lehman 761 L. A Belady and M. M. Lehman. A model of
Large Program Development. IEM ste Journal 19, 3, (Sep-
tember, 1976&), 2235-252.

[Boshm 811

B. W. Eoehm. Software Engineering
Inc., Englewoad Cliffs, N . J. ., (1981).

Prentice-~Hall,

[Braoks 751

F.P. Brooks, Jr. The Mythical Man-Month. Addison-Wesley Pub~
lishing Company, Reading, MA, (1973).

[Buxton and Randell 701 , :
J. M. Buxton and B. Randell (ed.). Software Engineering Tech-
niques. NATO Scientific Affairs Division,| Brussels, (1970).

[Fagan 761 , N ,
M. E. Fagan. Design and Code Inspections tp Reduce Errors in Pro-
gram Development. IBM Systems Journal 139, 3, (1976), 182-211.

LFreiman and Park 79] _ :
F. Freiman and Park. PRICE Software Model Overvieuw. RCA,
(February 1979). ' :

{Halztead 771

M.H. Halstead. Elements gg- ngtggzg Science. Elsevier, New
York, (1977).

[Karatsu 821
H. Karatsu, What is vequired of the . 3th - generation . computer =
sacial needs and its impact, Fifth nevw n cComputer Systems.
North Holland, 1982.

fMcCue 17781 ‘ :
¢. M. McCue:, IBM’s Santa Teresa Laboratory - Architectural design
for program development, IBM Systems Journal 17, 1 (1978) 4-29.

CNaur and Randell 6%1
P. Naur and B. Randell (ed.). Software Engineering. NATO Scien-
tific Affairs Division, Brussels, (196%9).

[Putnam 791 - S '
L. Putnam. SLIM Software Life Cycle Management Estimating Model:
User‘s Guide. Quantitative Software Managomnnt. (July 1979).

[Teichroew and Hersey 771 _ .
D. Teichroew and E.A. Hersey III. PESL/P8A: A Computer—Aided
Technique for Structured Documentation 'arnd Analysis of Informa~
tion Processing Systems. IEFE Transactions on Software Encineer=
ing, SE-3, 1, (Janvary 1977)., 41-48. . _

{Thadani 811 o : . o R , Lo ‘ .
4.J. Thadani. Interactive User Productivity. IBM Systems

31

Journal: 20, 4, (1981), 407-423.

3=2

