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There is a strong need for statistical methods that can maximizelitiyeo@iti
ecological data while providing accurate estimates of species abundaxces
distributions. This dissertation aims to build on current statistical models using
Bayesian hierarchical approaches to advance these methods.

Chapters one, two, and three utilize a multi-species modeling framework to
estimate species occurrence probabilitidsapter ongresents a model to assess the
community response of breeding birds to habitat fragmentation. The results
demonstrate the importance of understanding the responses of both individual, and
groups of species, to environmental heterogeneity while illustrating ttg otil
hierarchical models for inference about species richidsspter twodemonstrates
how the multi-species modeling framework can be used to evaluate conservation

actions through a component that incorporates species-specific responses to



management treatments.@mapter threel develop a method for validating

predictions generated by the multi-species model that accounts for deteciemibia
evaluation data. | build competing models using wetland breeding amphibian data and
test their abilities to predict occupancy at unsampled locations.

Chapters four and five develop count models that are used to estimate
population abundances in relation to environmental and climate variab{&sajrer
four, | employ a Poisson regression designed to determine how climate #féects
annual abundances of migrating monarch butterflies. | incorporate the climate
conditions experienced both during a spring migration phase, as well as during
summer recruitment. I€hapter five | analyze sea duck data to characterize the
spatial and temporal distributions along the U.S. and Canadian Atlantic coastl| mode
count data for five species using a zero-inflated negative binomial modeidiuates
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species-climate relationships.

The chapters of this dissertation illustrate creative development and
application of advanced statistical methods to complex biological systense The
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evaluating occurrence estimates that accounts for detection biasessiNtg
highlight the dynamic relationships between population and community structure,

habitat, and climate.
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Introduction

The discipline of ecology is fundamentally the study of species abundance and
distribution (Ricklefs 1996). Much research in ecology is devoted to testing
hypotheses about the biotic and abiotic processes that affect patterns of species
occurrences. Understanding the biological mechanisms that create thesespatt
requires accurate information on the spatial locations of organisms. Thushirihere
the study of ecology is the need for reliable counts of individuals, species irman are
communities within a region, and so on. Yet, it is nearly impossible to obtain such
information for most all species, because data collection efforts thagsigmed to
census an area are inevitably limited by budget and personnel constraints, and
organisms move, hide, or are simply difficult to detect. Because of these bnstati
statistical methods that accurately summarize data to estimate abuaddreelain
distributional patterns are essential to ecological inference and ecatiserdecision-
making (Brown and Gibson 1983; Hanski 1999; MacArthur and Wilson 1967; Kerr
1997; Ricklefs 2004).

Heterogeneity in abundance and distribution, which is a key manifestation of
the processes that ecologists strive to understand, also creates @#fiduting the
estimation process. Estimation of population size is frequently frustratée by t
spatial and temporal aggregation of individuals, which lead to highly-skewed
distributions and many zero counts. The same problem confronts researchers seeking

simple numerical descriptions of ecological communities (e.g., richness and



composition) because, during sampling, common species are overrepresented while
rare species are missed.

The challenges to understanding species distribution and abundances are
compounded when observers fail to detect rare or solitary organisms. Detection
probabilities that vary based on behavioral or habitat characteristics canrresul
misleading inferences on the abundance and occurrences of species ashagll as t
relationships to habitat (Boulinier et al. 2008; MacKenzie et al. 2002; Tyre et al.
2003). In the context of community analyses (e.g., inferences on groups of
taxonomically similar species), failure to account for heterogeneityt@tiien can
lead to an underestimation of the number and distribution of rare species (Queheillalt
et al. 2002) and can alter conservation decision-making (Meir et al. 2004).

As the bias introduced by detection heterogeneity exemplifies, the estimati
of population abundance and the quantification of community structure (e.g., species
richness) is complicated by variability in landscape structure (Gaston, 28
can as easily confound as elucidate the processes being investigated. $hus, it i
necessary to explicitly determine the relationship between speciesermair
probabilities and/or expected abundance with various habitat and climate features i
order to correctly estimate population abundance and community richness.
Understanding the species-habitat relationship allows researchersrinideteow
landscape heterogeneity affects patterns of species occurrence ssehisaéfor
making predictions about species’ responses to future environmental and climate

changes.



My research is focused on the development and application of methods to
more accurately and effectively describe populations and communities, using sound
metrics to quantify species abundances and distribution, as well as richness and
composition. In this dissertation, | advance current methodologies by buildeng fi
unique Bayesian hierarchical models. I utilize a generalized linear mgdeli
framework for each of these studies, tailoring my approach to addressfec spe
guestion or hypothesis. The dissertation is broadly divided into two sections. The first
section (chapters one, two and three) focuses on the analysis of species occurrences
and distributions, while also emphasizing community-level assessments based on
species-level models. The chapters in the first section use a modelingfndkne fit
individual species occurrence models and link them at the community level (Dorazio
and Royle 2005; Dorazio et al. 2006), while accounting for the detection probabilities
of each species. | refer to this type of model as either a “multi-sexie
“‘community” model throughout the dissertation.

Chapter one presents a case study of the basic version of the multi-species
occurrence model to a community of breeding birds in a fragmented landscape in
upstate New York. This chapter reveals the utility of the community modeling
approach by demonstrating 1) the importance of accounting for individual species
responses to habitat features (rather than combining rare or functionaliéy sim
species) and 2) how the hierarchical structure of the modeling frameworkdeads
improved inferences at the species and community levels.

Chapter two builds on the work of the first chapter by using the multi-species

modeling framework to compare estimates of bird assemblage and rialhness i



different regions within the Catoctin Mountains in Maryland. While the firgpteina
presents an occurrence analysis based on habitat features, the second chapter takes
this one step further by including covariates that account for differences tathabi
structure that might be influenced by management strategies withimsegi
Furthermore, the model in this chapter includes data augmentation, a technique that
allows for species richness estimation by using the multi-species ra@lyze an
augmented dataset that includes all-zero encounter histories for everygbotenti
unobserved, species in the community in addition to the original data. My use of data
augmentation provides a framework for considering how conservation and
management actions may affect all species in a region and not just those that are
common or were observed during data collection.

Chapter three presents an approach for validating occurrence estimates
generated by the multi-species model using amphibian data from wetlands in the
Chesapeake and Ohio Canal National Historical Park in Maryland. In this ghapter
use the area under the receiver operator curve (AUC) to determine which of several
competing models is best able to predict the occurrences of multiple species at
unsampled wetlands and in future years. In modifying the use of receivemoperat
curves, | account for potential detection biases in the data that are used durihg mode
evaluation, providing an improved method for assessing the predictive abilities of
multi-species occurrence models.

The second section of the dissertation (chapters four and five) shifts from
modeling occurrence data to modeling population abundances in relation to

environmental and climate characteristics. The chapters in this secticounse c



models (Poisson and negative binomial) to describe on how spatially heterogeneous
landscapes can result in patchy or aggregated distributions of individuals within a
population.

In Chapter four, | use a Poisson regression model to assess how weather
variables affect the spatial and temporal abundances of monarch butter@ike®)
using data collected across the state and over 13 years. The model in this chapte
contains a number of parameters that account for both local climate conditgpns (e.
drought indices and growing degree day) as well as the environment experignced b
individuals along their migratory route (e.g., precipitation and temperature). The
results indicate that there are a number of important, interacting, chactbes
affecting the final abundances of monarchs at their breeding groundsv thskto
simpler analyses that do not include interactions among variables would have been
unable to capture the complex ways in which climate can impact a migratingsspec

Chapter five presents a more complicated version of a count model using ten
years of data from five sea duck species along the eastern Atlanticldéoldse
monarch butterflies, sea ducks tend to aggregate spatially, requiring a count model
with a higher variance to mean ratio. As such, | developed a negative binomial model
to estimate how environmental and climate variables affect local abunddrsess
ducks. Because the sea duck survey was not designed to collect data according to
each species’ latitudinal range, | included a zero-inflation componentgsimiihe
occurrence models in the first section) to account for the spatial distributiorhof eac

species. The results show that while local habitat characteristicHeetnsaa duck



abundances, the North Atlantic Oscillation was the only factor to have a significant
yet variable, affect on all five species.

The complex and uncontrollable aspects inherent in living and dynamic
ecosystems present significant challenges not only to field reseqrobealso to
statisticians. To improve statistical methods for ecology, it is nagetssanderstand
more than sophisticated quantitative methodologies; it is also critical to tarders
the details of the biological and environmental system under study and the techniques
used to measure the system. Thus, the goal of my dissertation is to advance the
development of statistical methodologies through specific examples. Eschtady
presents an instance in which traditional analyses were less infornmadéimswering

the research question as compared to the Bayesian hierarchical approach.



Chapter 1: Impacts of forest fragmentation on gsedchness:

a hierarchical approach to community modeling

Published in:Journal of Applied Ecology, 46, 815-822, 2009.

Coauthors:Amielle DeWan, J. Andrew Royle

Abstract

Species richness is often used as a tool for prioritizing conservation aatien. O
method for predicting richness and other summaries of community structure is to
develop species-specific models of occurrence probability based on habitat or
landscape characteristics. However, this approach can be challengiaug for

elusive species for which survey data are often sparse. Recent develdpavents
allowed for improved inference about community structure based on specieszspecifi
models of occurrence probability, integrated within a hierarchical modeling
framework. This framework offers advantages to inference about speciessichne
over typical approaches by accounting for both species-levels#adtthe

aggregated effects of landscape composition on a community as a whole; thus leading
to increased precision in estimates of species richness by improvingpocy

estimates for all species, including those that were observed infrequently. We
developed a hierarchical model to assess the community response of breeging bir
the Hudson River Valley, New York to habitat fragmentation and analyzed the model

using a Bayesian approach. The model was designed to estimate specfi&s-speci



occupancy and the effects of fragment area and edge (as measured tieough t
perimeter and the perimeter/area ratio), while accounting for impeléésction of
species. We used the fitted model to make predictions of species richness within
forest fragments of variable morphology. The model revealed that speciessiciine
the observed bird community was maximized in small forest fragments wigin a hi
perimeter/area ratio. However, the number of forest interior speseabsat of the
community with high conservation value, was maximized in large fragmetiit$omi
perimeter/area ratio. Our results demonstrate the importance of undergtthe
responses of both individual, and groups of species, to environmental heterogeneity
while illustrating the utility of hierarchical models for inference aboutigse
richness for conservation. This framework can be used to investigatephetsnof
land-use change and fragmentation on species or assemblage richnessjrdmer to f
understand trade-offs in species-specific occupancy probabilitiesaegoeith

landscape variability.

I ntroduction

With increasing development pressure on natural landscapes, managers and
conservation scientists must determine the most effective ways to préserve
integrity of ecosystems and maintain biodiversity. Inherent in the gbalsy
conservation effort is the desire to protect as many ecosystem components and
processes as possible (Margules and Pressey 2000; Williams et al. 1996). Many
conservation and monitoring programs focus on species or population-level
approaches because this can be a concrete and clear way to aid in the [mesérvat

biodiversity (e.g. Myers et al. 2000; Pearce et al. 2008; Wilhere et al. 2008 Speci



richness (the total number of species in a region) is another more comprehesive, a
frequently used, state variable on which to base conservation and management
decisions (Yoccoz et al. 2001). However, it can be difficult to gauge richness in
variable environments (O’Dea et al. 2006; Vellend et al. 2008). Thus, to prioritize
conservation action it is critical to have reliable estimates of speclaness and to
understand how environmental factors affect species-specific pattevosusfence
across a landscape (Boulinier et al. 2001; Cabeza et al. 2004; Fischer et al. 2004;
Lepczyk et al. 2008; Soares and Brito 2007)

There are two challenges in using community level summaries such assspeci
richness in conservation and management applications. First, species ideity is
preserved in many standard analyses used for inference about richness, which are
based on simple aggregate species numbers (species-accumulation curvésn@otell
Colwell 2001) or encounter frequencies (capture-recapture methods, Boulalier et
1998). However, species-specific patterns of occurrence should be accounted for in
modeling approaches (Fischer et al. 2004) because the response of speciestdachnes
features that can be manipulated (landscape, habitat) is necessardyg-speaific.

A second issue is that in most practical situations species are detectddathper
The importance of addressing the biasing effects of imperfect detection on
community assessments is widely acknowleddgalinier et al. 1998; Kéry et al.
2008; Nichols et al. 1998; O’'Dea et al. 2006). Moreover, because detectability
naturally varies by species (Boulinier et al. 1998), we expect that edssmwnmaries

of community structure (e.g. based on species lists) are biased towards abundant and



widespread species, which are likely to show diminished response to ecological
gradients.

One method for examining species richness in heterogeneous landscapes is to
estimate species occurrence probabilities, or occupancy, based on localizad habi
characteristics (MacKenzie et al. 2006). Occupancy can be an effess@ssment
method (Manley et al. 2005), generally requires less effort and expense than
estimating total abundance of all species (MacKenzie et al. 2006), and relagily al
for imperfect detection of species (MacKenzie et al. 2002). Multi-speciepacy
models have been used for inference in community studies in a number of situations,
including estimation of richness and community overlap (Dorazio and Royle 2005),
construction of individual species-based accumulation curves (Dorazio et al. 2006),
and in determining the influence of habitat and landseagpgtion on richness (Kéry
and Royle 2008; Kéry and Royle 2009; Russell et al. 2009).

In addition to understanding total species richness, inferences on the number
of rare, endangered, or functionally important species are frequently a @arabl
interest in conservation planning and monitoring programs (Samu et al. 2008). Occu-
pancy estimates for rare species and guild or assemblage richnessr(ntisgecies
in a subset of the population) can be more informative about areas of high
conservation priority than assessments on only species that are common.
Unfortunately, it can be difficult to get reliable estimates of occupasraafe and/or
elusive species because traditional sampling efforts often do not generate enough data
for standard analyses (Queheillalt et al. 2002; Stockwell and Peterson 2002). Some

approaches to mitigating this problem combine data on rare, but functionallyrsimi

10



species (e.g. by genus) or use indicator species to deduce occupancy of these speci
with limited data (Fleishman et al. 2001; O’Connell et al. 2000; Sergio et al. 2006).
Such approaches discard valuable information about species-specific responses, and
could be misleading or erroneous if rarely observed species respond differently than
indicator species (Andelmand Fagan 2000; Kéry et al. 2008; Lawler and White

2008). The question remains regarding the most efficient and cost effective method
for estimating the occurrence and distribution of uncommon and elusive species
(MacKenzie et al. 2005; Thompson 2004).

Our research is motivated by a desire to develop a community-level
guantitative framework for predicting areas of conservation value, and to provide
high quality baseline data for vertebrate monitoring programs in urbanizing
landscapes. To this end, we present a recently developed approach for assessing
community composition based on species-specific occupancy and detection (Dorazio
and Royle 2005) in which individual species occurrence models are linked together
within a hierarchical (or multi-level) model (Gelman and Hill 2007; Roygle a
Dorazio 2008). Many multi-species field studies and monitoring programs have
limited data on a large portion of observed species; as such, typical species-by
species analyses are simply unable to provide occurrence estimatesmaiiio
about the effects of environmental factors on occurrence probabilities. An agvantag
of the hierarchical modeling framework over typical species richness agadythat
it accounts for both species-level effects as well as aggregéted ef
landscape/habitat on the community as a whole (Kéry and Royle 2008; Kéry and

Royle 2009), leading to a more efficient use of available data and increasswprec

11



in occupancy estimates, especially for infrequently observed species. We ttateons
the strengths of this approach by applying the hierarchical modeling frakntnar

bird community in forest fragments across the Hudson River Valley (HRW), Ne
York (DeWan et al. 2009), a biologically diverse and ecologically sigmificzgion

that is under intense development pressure, in the northeastern United Stadas (Fint
et al. 2000; Smith et al. 2001). Efforts are underway to prioritize the landscape for
conservation actions, yet little is known about many of the species in the region
(DeWan et al. 2009). We focused our analyses on the community response to habitat
fragmentation by modeling species-level changes in occupancy to two faittors w
well-established effects on the success of breeding birds: forest frageeand
edge-effects as measured by responses to perimeter, and perinzetatiar@/A)

(Helzer and Jelinski 1999; Rafe et al. 1985).

Methods

Background

We used a hierarchical model that links species-specific detection and
occupancy, which are then related (across species, at the community lecgjhtan
additional component of the hierarchical model (Dorazio and Royle 2005; Dorazio et
al. 2006). A hierarchical (sometimes referred to as multi-level or spatee) model is
one in which various biological and sampling components are formally specified and
related to one another in a pyramid-like structure (Gelman and Hill 2007; Ruyle
Dorozio 2008). For example in the context of estimating occupancy, hierarchical
models can help distinguish absence from non-detection by explicitly incongora

models that specify presence vs. absence as one process and then detection vs. non-

12



detection as another process that is dependent upon whether or not the species is in
fact present. Hierarchical models posit weak, stochastic relations tfziner
deterministic relations among parameters and processes (Link 1999; LinR@22),
resulting in improved estimation of individual parameters by considering them in
context of a group of related variables (Bayesian shrinkage: "borrowingtbtfemg

the ensemble™) (Link and Sauer 1996). In the context of our community model, this
allows for increased precision of occurrence estimates for rare oresfj@cies
through utilization of collective community data (Russell et al. 2009) and improved
“composite” analyses of species groups (Sauer and Link 2002). With limited
resources and budgets, many multi-species data collection efforts hgwenadir
sample sizes — to such an extent that it is not possible to carry out formahoef@n

a species-by-species basis. The hierarchical modeling approach alldines foost
effective use of available data while not requirangriori assumptions on group

structure or relatedness among species.

Study site

The data come from a breeding bird survey collected over a two-year period
(15 May - July 1, 2006, and 15 May - July 1, 2007) at 72 randomly selected
independent points in deciduous and mixed-deciduous forest fragments across the
Hudson River Valley, New York. The sampling locations ranged over the entire 9546
km? region which includes all or part of nine counties that border the Hudson River,
north of New York City. Points were located at least 500 m apart using Hawth’s
stratified random sampling tool (Beyer 2004), and then mapped and field-checked,

eliminating those that: 1) had recent disturbance that altered the covéiceliss

13



(n=1), 2) were too dangerous to access (e.g. steep ravine) (n=4), or 3) didinet rece
private landowner permission to access the site (n=21). Forest fragmentsinange

size from 0.14 — 8677.4 hectares (1 = 533.7 ha), while perimeter/area ratio ranged
from 0.08 — 1.5 km/ha (1 = 0.2). Two trained observers recorded the presence of all
species seen or heard during the 10-minute, 250 m fixed-radius point counts at each
sampling station (Hutto et al. 1986). Sites were visited on three separatemscas
during the breeding season (once each per 2-week period) although not all sites were
surveyed both years. The perimeter and area of the fragment in which the point
occurred was recorded. A total of 78 species were observed in this study.€)f thes

the data for 32 species were particularly sparse with less than 20 deteatlonsera

the entirety of the sampling season. Because of the small size of the dgbasat, t

single species approaches for estimating occupancy were inadequbeerf@jority

of observed species. For more details on the sampling design and region see DeWan

et al. (2009).

The model

The repeated sampling protocol allows for non-detection to be discerned from
point-level absence at each location (MacKenzie et al. 2002). We developed a
hierarchical model which assumes that site-specific occupancy (iue’; “tr
presence/absence) for spediek2,...,Nat sitej=1,2,...,J denoted(i,j), wherez(i,j)

=1 if species occurs in sitg¢ and is zero otherwise. The model for occurrence is
specified asz(i, j) : Bern(n//i,j) wherey; ; is the probability that specie®ccurs at

sitej. The state variable izj) is usually not known with certainty. Instead, we observe

datax(i,j,k) for species at sitej during sampling perioll, which are also assumed to

14



be Bernoulli random variables if specias present (i.e., i(i,j) = 1); otherwise, if
Z(i,)) = 0, therx(i,j,k) = 0 with probability 1. The observation model is represented by
x(i, J,K): Bern( Rijk- 4l D) where p, ; is the detection probability of species
for thek™ sampling period at sife if specied is present at sitie Note that the model
satisfies the condition that detection is a fixed zero when a species does not occur
(because(i,j) = 0).

In the simplest specification of the model, the occurrence and detection
probabilities,y and p, are determined by unspecified species and site level effects

(Dorazio et al. 2006). These effects are incorporated into the model lineaHg
logit-probability scale:logit(y/i,j )z 4 +¢; and Iogit( Pij )z \ + B, wherey; andy;

are species level effects and and g; are site level effects on occurrence and
detection, respectively. Because high abundance species are likely to be ieotio eas
detect and more prevalent across the landscape, we modeled a cor(gai;ation

between occurrence and detection in the model by allowirad v; to be jointly
distributed such thdtu, |~ ]: N(0.X) where(af,af) are the variance

components among species for occurrence and detection, respectivety, asadhe

covariance of the 2 x 2 matriX (Dorazio and Rgle 2005; Kéry and Royle 2008).
Extensions of this basic model have explicitly incorporated landscape and

survey characteristics into the probabilities of occupancy and detektionand

Royle 2009; Russell et al. 2009). We followed this approach, and modeled the

occurrence probability for specieatj by incorporating site-specific habitat

characteristics. In this case we used the size and relative shape oéshdérémment
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in which the point count occurred. Since counts were conducted in a 250 m radius,
occupancy and detection estimates for individual species are provided at the point
(not fragment) level. Thus we are considering how occupancy at a random point is
affected by the area and shape of the forest fragment in which it occurs. We
incorporated fragment area, perimeter, and P/A in the occupancy estyates
assuming that the logit transform of the occurrence probability was a linear

combination of a species effect and the site specific habitat characsesstfollows:
|09it(l//i,,- ) = U +alperimeter + o2 arga+ a3 P/A.

We standardized the covariates so that the means of the perimeter, area datd P/

were zero. Thus, the inverse-logitafis the occurrence probability for species
sites with "average" habitat characteristics. The coefficiehtsa2; and a3, are the

effects of perimeter, area and P/A, for speciesspectively. The detection

probability for specieswas assumed to vary based on the date of the survey (linear
and squared effects) and the year of the survey. We assumed that the comuminity w
closed (i.e. the species pool remained constant) over the two years during which the
survey was conducted, but added in a year effect (constant across speciesynd a

for shifting detection between the two years as a result of annual fluosiatio

seasonality:
Iogit(pi,jk) =\ + fl date, + B 2 datg, + S 3yeqr.
Our model contains seven parameters for each species in the community, and

one (year effect) that is estimated across species. Since observatiersparse for

many species in the sample, estimating all of these parameters would notilble poss
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if the data were analyzed on a species-by-species basis. As such, waradded
additional hierarchical component of the model by assuming that the species-level

parameters were random effects, each governed by community-level-“hyper

parameters”. For example, we assumed thiat: N (1, 0,1) Where,, is the

community response (mean across species) to peraetic,, , is the standard

deviation (among species), thus the hyper-parasiatersimply the mean and
variance for each habitat and sampling covariateeasured across speciksiy
and Royle 2009).

We estimated model parameters and community suragasing a Bayesian
analysis of the model with vague priors for the dryparameters (e.g. uniform
distribution from 0 to 1 for community level occuygy and detection covariates;
normal distributions with mean zero and varianc@0lfor community level habitat
and sampling covariates). Hierarchical models atarally analyzed by Bayesian
methods (Gelman and Hill 2007). We carried outanalysis with WinBUGS
(Spiegelhalter et al. 2003), general purpose soévia Bayesian analysis that uses
Markov chain Monte Carlo (MCMC). The advantage ahBUGS is that it only
requires specification of the model, and not anezi development of the MCMC

algorithm (see Appendix 1.1 for model code and tamithl details).

Results

Species richness and community level responses
The mean estimates for the community responseagprfent perimeter and
area were negative, while the response to P/A wasiye (see Table 1.1 for

summaries of the hyper-parameters). This suggestsih general, the mean
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probability of occupancy across species in thisroomity was higher at points in
smaller, more irregularly shaped fragments thdanger fragments with less edge.
The posterior intervals for each of the communitgdr-parameters contain both
positive and negative values (Table 1.1), which manifestation of the variability in
the community. In our study, which encompassevarse bird community, we
would naturally expect the response of individysdaes to vary with landscape
fragmentation. Thus, diffuse posterior distribuidar the community level habitat
covariates are as expected and simply reflectitresity within the community.

We used the model to make predictions of spe@bgaass at localized points
across a landscape with heterogeneous forest fragrtieat varied by area and P/A
(Figure 1.1). Species richness was maximized iflsaareas with high perimeter to
area ratios (large amounts of edge habitat) (Figure- left panel). However,
assemblage richness of forest interior breedingdsh(it7 species), a subset of the
population with high conservation value, was maxgxiin large fragments with less

edge (Figure 1.1 — right panel).

Species-specific responses

Mean probabilities of occurrence varied widely agngpecies, ranging from
6.5% to 98.5%. Detection was low for many specresaso varied widely (7.1%-
75.9%). There was a strong correlation betweengaowy and detection (posterior
mean forp was 0.73, 95% posterior interval: 0.52-0.88; Fegli2), a phenomenon
that is likely due to heterogeneity in abundancergrspecies (Dorazio and Royle
2005). Fragment area, as compared to perimetei®ohRd a large impact on mean

estimates of occupancy for many species withirctimemunity. Over the range of

18



surveyed fragments, 24 species showed (on aveaagagrease in occurrence
probability as area increased (greater than 10%gehan mean estimates of
occupancy from minimum to maximum fragment sizéhmsurvey), 31 species
showed a decrease in occurrence probability (grdae 10%) with increasing area
and 23 species showed no change in occurrencelpliopbaith area (less than 10%
change).

Many species whose mean occurrence probabiliteased in response to
increased area were forest dependent specieshotbigservation concern. On
average, nine forest-interior breeders (AcadiacaflgherEmpidonax virescens
black-and-white warble¥iniotilta varia, blackburnian warblebendroica fusca
black-throated blue warbl&endroica caerulescenblack-throated green warbler
Dendroica virenscerulean warblebendroica ceruleahooded warblewilsonia
citrina, worm-eating warbleHelmitheros vermivorupand winter wre roglodytes
troglodyte$ showed substantial increases in occupancy priedas fragment area
increased, but less response to changes in periord®A ratio (Figure 1.3).
Although the number of observations for these gsaaias fairly low (6-36 for each),
the community approach allowed us to obtain esemsat the response of each
species to fragment area and regularity of shalpe pfecision on species-level
estimates of occupancy and effects of fragmentatioreased for most species in the
community model compared to standard species-$pecifdels (see Appendix 1.2
and Figure Al.1 for selected results comparingctramunity model to a single
species modeling approach). When modeling eachespseparately, occupancy

estimates for species with sparse data could nobtaned without exhibiting
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extreme sensitivity to the prior. For the aboveerforest-interior species, the
standard deviations on the estimated species gpeffécts of area were generally
lower using the hierarchical community model (rabhg&4-1.83) than a standard
species level model (range 1.40-2.03; Appendix. T.B)ee species (ovenbi8kiurus
aurocapillag scarlet tanagd?iranga olivaceaand veeryCatharus fuscescehalso

had a positive response to area, but the effeats ss discernable on estimates of
occupancy because they were widely observed (ecgpancy was universally high).
A few forest dependent species (brown cre€pmthia americanaCanada warbler
Wilsonia canadensjsiorthern parul®arula americanared-breasted nuthat&itta
canadensisand wood thrushlylocichla mustelinaresponded more closely to the
community-level response by decreasing in occupanalyabilities as fragment area

increased (Figure 1.4).

Discussion

Although reliable summaries of species occurremaoesdistributions are
required for effective conservation, analysis oftirapecies data can be challenging
because sampling techniques often identify numespasies with few detections.
One way to address this issue is to utilize motielsintegrate data across species,
allowing for composite analyses of communities rmugs of species. Hierarchical
models are particularly valuable in this contentpart because they do not requre
priori assumptions about community structure; any compasialysis will improve
estimates on metrics of interest, regardless aficglships among species (Sauer and
Link 2002). For conservation purposes, it is gelhetseful to consider species from

one community or related communities; otherwise roomity-level summaries may
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not be meaningful. In some situations it may besiids to incorporate additional
group structure into the model when relationshipsrg species have been well
established. Estimates for rarely observed spedglesaturally be drawn to
community averages (“Bayesian shrinkage” towardntiean; Link 1999), but
precision of estimates can be improved with evemramal number of observations
(Appendix 1.2 and Figure Al.1). Accuracy of spe@pscific estimates will always
be limited by the amount of available data, wheheflected in the diffuse posterior
distributions for many habitat covariates. Sucimesties can only be objectively
improved through additional data collection effoH®wever, as with meta-analysis
in classical statistics (Osenberg et al. 1999),yfareak” inferences can be
combined to make a stronger collective responses,Tihy accounting for both
species-level effects as well as the aggregatedtsfbf landscape covariates on the
community as a whole, hierarchical models providalaable alternative to single
species analyses of community data.

Our model produced a number of key findings relétaprioritizing
conservation actions and was capable of makinggireds of bird species richness
based on fragment area and edge effects (Figuyewlhich should be verified
through additional sampling. Understanding theti@hship between environmental
factors and species richness will improve the affjcof conservation efforts in the
protection of biodiversity in urbanizing landscapiésr example, our estimates of the
community and species-level relationships betwaeenpancy probabilities and
habitat characteristics allows a direct valuatibfocest fragments in terms of either

total species richness (Figure 1.1 — left pane§ssemblage richness (Figure 1.1 —
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right panel), and illustrates an explicit trade{oétween these two competing
objectives. Overall, the community level resporsarea and P/A suggests that many
species increased in occupancy in response to éafgton inducing a concomitant
increase in species richness. These results asestamt with the intermediate
disturbance hypothesis (Connell 1978; Grime 1943nH 975) which suggests that
diversity is maximized in areas of moderate distade. Similar to Lepczyk et al.
(2008), we found that extremely large fragment$\eittensive forest-interior may be
less common (DeWan et al. 2009) and estimateseaafiep richness would be
expected to decline if sites were dominated by ddbpgant or generalist species. In a
conservation context, our overall estimates of igsaechness may not be particularly
valuable; however the hierarchical framework offeaemeans to acquire improved
precision in estimates of occupancy for rarer ggavhich we used to determine
assemblage richness for a subset of the commurtityhigh conservation value.
Many of the forest-breeding species respondeddeased fragmentation
with decreased probabilities of occupancy (FiguB). However, occupancy for
some forest-breeding species responded negativélggment area (Figure 1.4).
Although this may not be surprising for more urhlalerant species (e.g. red-breasted
nuthatch), these results were not typical for ctlleat are sometimes considered
sensitive to fragmentation (e.g. Canada warblegdatbrush). In addition, some area-
sensitive species were so common that their relstip to area would not have been
discernible through typical occupancy approachearl& tanager, ovenbird and
veery were observed frequently during sampling fzaxdi high occupancy estimates. If

we hada priori grouped these species together as an indicasansitivity to
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fragmentation, without testing the assumptionsyweald have been unable to
discern differences among species in their resptinBagment area and P/A.

Our approach allows for estimation of occupancy @etection probabilities
of all observed species, even if they are poonyesented in the sample data.
Detection probabilities were very low for many spsqFigure 1.2), further
supporting a number of studies that have demossitae importance of accounting
for detection in occupancy and abundance modeBaddy et al. 2004; Kéry et al.
2008; MacKenzie et al. 2006). Detection probabtigy also be significantly affected
by abundance (Royle and Nichols 2003), which isi@vwced in our analysis by the
high correlation between detection and occupaneayiavice around species-specific
estimates of occupancy, detection, and the coesriatll inevitably be high for
species with limited data. However, the commuretyel approach typically provides
more precise estimates for rare species thanitaditspecies-level analyses
(Appendix 1.2 and Figure Al.1) and was especialyable for the nine forest
interior species that were sensitive to habitagrfrantation, yet would not have
yielded reliable estimates of occupancy due tosample size. Our analysis
framework should be particularly effective in reshgccost and increasing efficiency
for organizations where funding for field-basedadeallection is limited.

Many conservation and management decisions regsbmates of species
richness to prioritize areas for protection and itaoimg. For example, DeWan et al.
(2009) developed a map of high priority conservaaceas in the Hudson River
Valley region based on indices of richness forlasstiof forest interior bird species.

Their analyses were limited to species that weit@etoo common nor too rare. The
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results from our community level approach can leslue improve such maps and
more accurately determine areas of high conservatitue to protect from urban
development. We demonstrated, using a diversecbimimunity, the applicability
and relevance of our hierarchical modeling apprdach) assess species richness
while accounting for individual species; 2) imprdhe precision on estimates of
occupancy and detection for many species, evenespetth relatively sparse data;
and 3) investigate the impacts of fragmentatioti@eding birds at the community
and species levels. Our hierarchical frameworkreféa exciting tool for wildlife
agencies and conservation organizations who seeuggffectively monitor and
protect biological diversity. Monitoring the stataisd distribution of biodiversity and
rare species is a priority at local, national, artdrnational scales (Oberbillig 2008).
Because of challenges in sampling and cost, lackuality data has been identified as
a serious challenge for biodiversity conservatparticularly for rarer species (The
Heinz Center 2002). Many sampling designs alreadide data collection on
multiple species (Heyer 1994; Wilson et al. 1996} enulti-species inventory
techniques can reduce sampling costs and effomi@yaet al. 2005; Vesely et al.
2006). The community approach allows researchenseéadata from all sampled
species to improve estimates of species richnasg@merate previously unavailable
estimates of occupancy for rare or elusive speties flexibility of hierarchical
modeling can provide greater insight on how a paldr taxonomic community
responds to environmental changes, while also atcwufor species-specific

differences. If incorporated into monitoring andessment programs, this framework
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could improve estimation of species richness afetemces for rare species, and

provide scientifically sound information to suppooinservation planning and action.
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Table 1.1 Community level summaries of the hyper-parametersfor the detection
and occupancy covariates.

Community-level hyper-parameter Mean Standard deviation 95% Posterior intervals
Mo mean - perimeter -0.06 0.75 (-1.65, 1.32)
(oo standard deviation - perimeter 0.64 0.34 (0.20, 1.51)
Heoo2 mean - area -0.25 0.83 (-1.79, 1.48)
o standard deviation - area 1.83 0.47 (0.82, 2.75)
Hys mean - P/A 0.07 0.12 (-0.15, 0.32)
O, standard deviation - P/A 0.54 0.18 (0.26, 0.96)
Mp mean - date effect (linear term) -0.04 0.04 (-0.12, 0.05)
O sd - date effect (linear term) 0.25 0.04 (0.17, 0.33)
Hpo mean - date effect (squared term)  -0.03 0.05 (-0.13, 0.08)
Op2 sd - date effect (squared term) 0.25 0.05 (0.16, 0.36)
3 mean - year effect 0.11 0.05 (0.01, 0.21)

26



All species Forest-interior species

S N
g 37 4028 oS 10.63
= ] 39.85 10.25
g 3942 9.86
= o 3899 & 9.48
© — 38.56 9.09
0 . 38.12 8.71
< 1 3769 1 8.32
T o 3726 g 7.94
£ ] 36.83 755
g 4 36.39 7.17
= 97 359 o 6.78
g o1 3553 © 6.40

Q [e0]

S - S

o o

0 519 1210 1902 2593 3285 0 519 1210 1902 2593 3285
Area (ha) Area (ha)

Figure 1.1 Total estimated species richness (left) basedesmand P/A and
estimated assemblage richness of forest interigeisp (right - 17 observed species:
Acadian flycatcher, black-and-white warbler, blagkiian warbler, black-throated
blue warbler, black-throated green warbler, broveeper, Canada warbler, cerulean
warbler, hooded warbler, northern parula, ovenbigd;breasted nuthatch, scarlet

tanager, veery, worm-eating warbler, winter wrerd wood thrush).
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Figure 1.3 Mean marginal probabilities of occupancy for riiaeest interior breeding
bird species (Acadian flycatcher, black-and-whitahler, blackburnian warbler,
black-throated blue warbler, black-throated greanbber, cerulean warbler, hooded
warbler, worm-eating warbler, and winter wren)@hation to fragment perimeter,

area, and perimeter/area ratio (P/A).
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Chapter 2: Multispecies occurrence models to evaltinee

effects of management and conservation actions

Published in:Biological Conservation, 143, 479-484, 2010.

Coauthors:J. Andrew Royle, Deanna K. Dawson, Scott Bates

Abstract

Conservation and management actions often havet dinel indirect effects on a wide
range of species. As such, it is important to estalthe impacts that such actions
may have on both target and non-target speciesrvathegion. Understanding how
species richness and composition differ as a re$attanagement treatments can help
determine potential ecological consequences. Yedifficult to estimate richness
because traditional sampling approaches deteciespatcvariable rates and some
species are never observed. We present a framdaroaksessing management
actions on biodiversity using a multi-species higlacal model that estimates
individual species occurrences, while accountingrfgerfect detection of species.
Our model incorporates species-specific respomsagmhagement treatments and
local vegetation characteristics and a hierarcldoaiponent that links species at a
community level. This allows for comprehensive mefeces on the whole community
or on assemblages of interest. Compared to traditispecies models, occurrence
estimates are improved for all species, even fasdlthat are rarely observed,

resulting in more precise estimates of speciesiash (including species that were
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unobserved during sampling). We demonstrate thigyudf this approach for
conservation through an analysis comparing birdraanities in two geographically
similar study areas: one in which white-tailed dg2aocoileus virginianusdensities
have been regulated through hunting and one inlwdieer densities have gone
unregulated. Although our results indicate thatgseand assemblage richness were
similar in the two study areas, point-level richsess significantly influenced by
local vegetation characteristics, a result thatlddiave been underestimated had we

not accounted for variability in species detection.

I ntroduction

Conservation and management actions are genegaigrted to target a
particular species of interest (e.g., Howe et@D72 Pauliny et al. 2008; Wang et al.
2009). However, actions focused on maintainingrgaroving habitat for a single
species may also affect other species (e.g., Tiédka al. 2007)For example,
management designed to improve conditions for tlievegered red-cockaded
woodpeckerRicoides borealis such as forest burning and thinning, may have
adverse impacts on neotropical migrant birds tlat m midstory and understory
vegetation (Powell et al. 2000; Moore et al. 200&ijial studies on wood thrush
(Hylocichla mustelinpfound that treatments had no effect on short emsity and
survival (Powell et al. 2000). However, further lsas have suggested that burning
and thinning may be “incompatible” with wood thrysérsistence (Moore et al.
2005). Many conservation plans explicitly view mgeaent as influencing a variety
of species, and balancing the losses and gaingecfes is an implicit part of

managing biodiversity (e.g., Rich et al. 2004; 8adarubio and Thomlinson 2009). It
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is therefore important to consider the effects ahagement actions on not only the
target species, but also on other species withagian.

One method for assessment is to compare localespgachness (i.e., total
number of species) in areas that are affected aaflacted by a specific action. Yet,
determining species richness is complicated byatdity in detection rates, which
can vary across species or by landscape charaice(Boulinier et al. 199& éry
and Schmidt 2008) and may be affected by actioaisciteate a change in habitat. As
a result, estimates of species richness and cotiogiould be biased if species-
specific detection is not accounted for properlyisimay feign a non-existing
management effect or mask a genuine effect.

Rare species, many of which are of conservatiog&wn may show
disproportionate responses to changes in habi@atrapared to common species.
Often there are inadequate data on rare speciesh) wiay be detected infrequently
or not at all during sampling, resulting in limitederences about occurrence
(MacKenzie et al. 2005). However, management evialismshould include all
species, not just those species that produce eratghRecent advances in statistical
methodology have improved the ability to accoumtifiaperfect detection and low
occurrence of rare species through a communityl-l@eearchical modeling approach
(Dorazio and Royle 2005; Dorazio et al. 2006), dtinspecies extension of the
occurrence model described in MacKenzie et al. Z200he fundamental idea behind
the multi-species modeling approach is that calleatommunity data can inform the
occurrence probabilities for all observed spe@gsn those that are rare or elusive,

and allow for occurrence estimation of speciesWee never observed in the sample
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plots. This results in an improved composite anslgtthe community and increased
precision in species-specific estimates of occuwedkéry and Royle 2009; Zipkin et
al. 2009). Furthermore, the hierarchical modellwaspecified to incorporate habitat
and sampling effects that influence occurrencedstdction, respectively (Russell et
al. 2009). Thus a multi-species approach can peoridre precise estimates of
species richness, while accounting for variationgourrence and detection among
species. Understanding how species richness angasaon differ as a result of
management treatments and habitat characteristicaid in determining the
ecological consequences of management.

In this paper, we explore the use of communitydrehical models in a
conservation context by comparing bird speciesnesl in two similar study areas in
the Catoctin Mountains, Maryland (USA): one withuarharvested population of
white-tailed deer@docoileus virginianusand one in which deer densities have been
regulated through hunting and are much lower @&saltr(Bates et al. 2005). White-
tailed deer can severely alter vegetation strua@actecomposition, reducing habitat
availability and quality for some bird species (€et al. 2004; McShea and Rappole
2000). Efforts to control deer densities have hegrlemented for a variety of
reasons including to reduce wildlife/human condli¢¢.g., vehicle collisions,
minimize human exposure to ticks) and to protegetation growth. Our interest lies
in understanding how management decisions to dadey densities (in this case, by
allowing hunting) affect total bird species riche@s well as the richness of
functional species groups, specifically assemblafispecies that nest and forage on

the ground or in the understory relative to thestady and canopy. To this end, we
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built our model to include both a treatment effgeinting vs. no hunting) as well as
local vegetation characteristics to estimate sgemnel assemblage richness at point-

level, study area, and regional spatial scales.

Methods

The hierarchical community model is a multi-spe@pproach to obtain
composite information by estimating individual sigscccurrence probabilities
(Dorazio and Royle 2005; Dorazio et al. 2006). bhsic idea is that (1) non-
detection can be distinguished from absence throggdated sampling and (2)
species-specific estimates of occurrence can beiwed using collective data on all
species observed during sampling. This approaebgscially useful for communities
that include rare (or unobserved) species, whiténofield too few detections to
estimate occurrence. Because species are detagtedeéctly, it is likely that some
species do not appear in the sample. Inferencet apeuaies richness, including the
number of unobserved species, is a central obgatigtudies of species distributions
(e.g., Cam et al. 2002; Husté et al. 2006) andbeaa useful metric in assessing the
impacts of management actions. The hierarchicatitspécies model can produce
estimates of richness that account for speciesserebd during sampling (Dorazio et
al. 2006). Before outlining the specific detailsloé model, we describe the study

area and data.

Study area and data collection

High densities of white-tailed deer have lead tweasing concern about the

effects of intense browsing on biological resoured forest processes in the eastern

35



United States and elsewhere. The United StatesiNdtPark Service (NPS)
implemented an assessment to determine whethemdter Catoctin Mountain Park
(CATO) should be managed to address declining foeggneration to ensure that
natural processes support native vegetation ardlif@iin the region (Bates et al.
2005). As part of the assessment, bird surveys e@rducted in CATO, where
white-tailed deer abundance is unregulated, atldemearby Frederick City
Watershed Cooperative Wildlife Management Area (FQwWhere deer are hunted.
Estimates of white-tailed deer densities were ntloae seven times higher in CATO
than in FCW (Bates et al. 2005). Sampling occuate8b random points in each
study area in late May through early July 2002.ibgid.2-minute counts, all birds
seen or heard were recorded. Bird species that deteeted within 75 m of the point
were considered present for the specified samploagsion. All points were sampled
on at least three separate days distributed thoutghe breeding season and at
different times in the morning. For each point, pleecent cover by understory foliage
(UFC) and the basal area of trees (BA) were alsasomed during a separate
sampling effort carried out from mid-July to AuguSte Bates et al. (2005) and

Royle et al. (2004) for further details on the dadection process.

Modeling framework

We define occurrencxi,j) as a binary variable in whidi,j)=1 if species

occurred within 75 m of point(and zero otherwise). The occurrence state igass$u

to be the outcome of a Bernoulli random variabenated byz(i, j) ~ Bern(y; ; ),

wherey; ; is the probability that speciesccurs at sitg  True occurrence is
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imperfectly observed, which confounds the estinmatiby; ; . However, sampling at

a pointj with k>1 temporal replicates over a short period (suehtthe community
remains closed for the duration of the survey)vedldor a formal distinction between
species absence and non-detection, which is spedtrough a detection model for

the observed datdi,j,k) (MacKenzie et al. 2002). We define the detectimdel for
species at pointj during replicatek as x(i, j,k) ~ Bern( Rk 4l j)) where p i is

the detection probability of speciefor thek™ replicate at poini, given that specids
is in fact present at point Thus the detection model satisfies the condttnar
detection is a fixed zero when a species is nagmebecausHi,j)=0.

We assumed that the occurrenge () and detection g, ; ) probabilities

varied by species and were influenced by habitdtsamvey characteristics,
respectively. These effects were incorporatedtimomodel using the logit link
function Kéry and Royle 2008Kéry et al. 2008; Russell et al. 2009). We estimated
the occurrence probabilities for spedied pointj dependent on whether pojnvas
in CATO (Ind=1) or FCW (nd=0), thus allowing for species-level effects tdalif
between the two study areas. We also incorporaegaint-specific habitat
characteristics: UFC and BA. We included both Imead quadratic terms for UFC
and BA so that species associations with thesddtaltiaracteristics could be
maximized at any intermediate level (e.g., someetstdry foliage vs. 0% or 100%)
and standardized the data to have mean zero. Tuerence model for speciest
pointj is specified:

Iogit(wi,j):uCATQ( Ind) + UFCW1- Ind)+
a JUFC; + 2 2UFC’ + a 3BA +a A4 BR
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In this caseuCATQ anduFCW are the occurrence probabilities (on the

logit scale) for specidsat points in the CATO and FCW study area, respelgsti for

average values of UFC and BA. The coefficientdlierfour ¢; terms are the linear

and squared effects of understory foliage andliesal area on specieshe
detection model was similarly designed to estindatection separately for each
species in the two study areas. We included theegutate (linear and squared
effects) and the time from sunrise (linear, sintswveys occurred in the morning)
as possible species-specific detection covaridtes.detection covariates were also
standardized to have mean zero:

logit(p;x ) = VCATQ( Ing) + VFCWL- Ind)

+ B date+ B ;2 ddte- B 3 sunyis:

The species-specific occurrence and detection psesewere related to one
another through an additional component where & assumed that each of the
species parameters was drawn from a common (contyrlenel) distribution. A
major benefit of the multi-species approach is thdbes not requira priori
community or group designation; combining data fr@milar species will be an
improvement over individual species models, proditteat species occurrence
responses can conceivably come from a commonlulisitvn (Sauer and Link 2002).
By linking the individual species occurrence prabads through this community
hierarchical component, precision of species-speesitimates is improved leading to
enhanced composite analyses and a more efficientfusmvailable datai¢ry and

Royle 2008; Zipkin et al. 2009).
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The community-level hierarchical component of thedel assumes that each

of the species-level occurrent@CATQ, uFCW, ¢ ) and detection
(VCATQ, VFCW, A ) parameters were random effects, governed by “hyper
parameters”. For example, we assumed H@ATQ ~ N t4,cato » O ucato Where

HycaTo IS mean occurrence across the community in CAT®Oa@p 410 IS the

standard deviation among species. We similarlyiipddhe mean and standard
deviations for each of the twelve community-levabtiat parameters (mean and

standard deviation paramejeyo for each species-specific random effect
UCATQ UFCW, a1, a 2, a 3, a 4) and the ten detection parameters (mean and
standard deviation fovCATO, VFCW, 51, 52, 3 3).

Bayesian analysis of the model was carried outgusia method of data
augmentation described in Royle et al. (2007) k&g and Royle (2009), which
allows for estimation of the number of specieshe tommunity that were
unobserved (either locally or never detected) dutie sampling process. Analysis
by data augmentation assumes a uniforfal)@rior for N, the “true” species
richness, wher# is a fixed constant chosen to be much greatertttenumber of
observed species)and such that the resulting posterior distribuinot truncated.
Implementation of the model with a uniform priordigne by augmenting the data set
with M-n all-zero encounter histories. Then the modellerdaugmented data set is a
zero-inflated version of a model where the actwahber of species in the community

(N) is known Kéry and Royle 2009; Royle et al. 2007). The occurrgmoeess is

modified so thatz(i, j) ~ Bern(l//i’j . vy) wherew ~ Bern(Q) for species

39



i=12,..n,n+ 1L,n+ 2,..N N+ 1IN+ 2,..M. The interpretation of this
modified occurrence process is thatjf = 1 (corresponding to species that were

observed or that were unobserved but availabledompling), the probability of

occurrence is simply; ;. If w, = 0 (indicating that a species was unavailable for

sampling), then occurrence is zero by definitioe.(ia structural zero). The model is
now modified to estimate the paramefer The value oM need only be large
enough to not truncate the posterior distributibNowhich can be assessed by
running short initial trials. Interpretation of tpesterior ofN must be done
cautiously. It is not necessarily the number ofcggethat occur in a particular
landscape; rather, it is equivalent to the asynepdbta species accumulation curve
(Kéry and Royle 2009). In the context of deer browsimgis the intrinsic capacity of
bird species in the study areas, suggesting thglgesiumber of species that could
occur in regions with similar vegetation charadrs and management actions.

We calculated species richness including unobsesgedies in the two study
areas as well as at each point location by sumthegumber of estimated species in
the occurrence matrix. We also estimated the degfrsienilarity in community
composition between study areas by calculatingabmcidence index” (Dice 1945;
Dorazio and Royle 2005 pg. 387), a value betweem aed one where zero indicates
no overlap and one indicates complete overlapofalg McShea and Rappole
(2000), we classified observed species into twerabtages that might respond
differently to deer densities or vegetation charastics: (1) low/ground nesting and
foraging species and (2) midstory/canopy nestirgigg. We then estimated point-

specific richness and the coincidence index betvgtgay areas for these
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assemblages, which we used for comparison. Redagrtize limitations of the
design (confounding of study area and managemgimed, we compared the point-
specific associations of richness with the halaitatbutes that reflect understory
openness (UFC) and forest maturity (BA). We not the model does not build in
explicit relationships between point-specific rielss and covariates; instead we
inferred these relationships from the point-specitthness results.

The model was analyzed using a Bayesian approatie iprograms R and
WiIinBUGS (Spiegelhalter et al. 2003). We used inddpet, diffuse proper prior
distributions for the community-level hyper-paraarst We ran three chains of
length 10,000 after a burn-in of 20,000 and thintedposterior chains by 10.
Convergence was assessed using the R-hat statibtat) examines the variance
ratio of the MCMC algorithm within and between clsacross iterations (Gelman

and Hill 2007).

Results

A total of 58 bird species were observed during@ang: 52 species in
CATO and 46 in FCW. The model estimated 60.3 sgani¢he whole of the region
(95% Posterior Interval, PI: 58-64) with 55.8 (52)@nd 51.2 (47-58) species in the
CATO and FCW study areas, respectively. The specegosition of the two study
areas was similar with an estimated coincidencexrad 0.89 (0.83-0.96). However,
detection probabilities were low, with greater tt88%6 of observed species having
mean detection probabilities of less than 0.5 pering occasion in both study

areas (Figure 2.1). There was a positive, but weddtionship (P<0.02,
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R%cat0=0.12, Rrcn=0.10) between estimates of occurrence and detegtimss
species in both CATO and FCW, but no differencevben study areas.

There was no difference between point-specifiovesies of species richness
in CATO and FCW (Figure 2.2 — left panel) and nepstcies had similar occurrence
probabilities in the two study areas (Figure 2right panel). The mean estimated
point-specific richness was 29.3 (19-43) specigSATO and 27.4 (19-38) species in
FCW. In contrast, the mean observed number of epatas 17.2 (range: 9-33) in
CATO and 14.0 (range: 4-24) in FCW. Species-spedditection probabilities were
also similar between the two study areas, with imgreffects of survey date on
detection probability and a generally negative afées time from sunrise increased
(Figure 2.3).

Estimated point richness for an assemblage of $érebd understory species
was 4.9 (1-10) in CATO and 7.2 (3-11) in FCW. TReabserved midstory/canopy
species had an estimated point richness of 16-22)in CATO and 13.4 (9-18) in
FCW. The coincidence index suggested that the ceitigo was similar in the two
study areas for both understory species (0.96; B§%.92-1.0) and midstory/canopy
species (0.87; 95% PI: 0.79-0.96). Although postetistributions for occurrence
estimates in CATO and FCW overlapped for all bpd@es, a few notable species
had visibly higher mean occurrence probabilitieene of the two study areas.
Several ground-nesting species had higher occlengrababilities in FCW (and
relatively little overlap in posterior distributis)) including black-and-white warbler
(Mniotilta varia, difference in mean occurrence between areas),®48nbird

(Seiurus aurocapilla0.20), and worm-eating warbldd€lmitheros vermivorys
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0.57), a species of continental and regional ceasi®n concern (Rich et al. 2004,
Rosenberg 2003). Species with higher occurrendeapibities in CATO included
others of high conservation priority (Rich et @02; Rosenberg, 2003), such as
cerulean warbler¥endroica cerulea0.70) and yellow-throated vire¥ifeo
flavifrons, 0.26).

Point-specific richness and individual species a@nce probabilities were
significantly influenced by local vegetation chagmistics (Figure 2.4). The effect of
vegetation characteristics on species richnesamaasrstated in an analysis that
included only the locally observed number of spgcidere was a strong positive
relationship between estimated point-specific sggedchness and understory foliage
cover (UFC; P<0.001 for estimated richness comptréd=0.017 for observed
richness) and a strong negative relationship betweet-specific richness and tree
basal area (BA; P<0.001 for estimated richness eoeapto P=0.138 for observed
richness). As noted above, these relationships dedlaced from species-specific
responses to the covariates (i.e., Figure 2.4 tefhie posterior means of the
estimated richness for each sampled point plotjaghat the covariates used in the
analysis). Additionally, there was a significangagve relationship between UFC
and BA but no difference in the overall vegetatbiaracteristics between the two

study areas.

Discussion
Management actions can have significant impactheiroader plant,

animal, and bird communities. Our results demotestiaw multi-species models can

be used in a conservation context to assess diffesan the richness and
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composition of multi-species data based on (1) ndredn area is affected by a
specific management action and (2) local habitdamadscape characteristics. The
strength of the approach lies in the ability toreate species-specific occurrence and
detection separately, while linking members ofcbexmunity. This leads to greater
precision in species-specific parameter estimatgscially for rare or infrequently
observed species (Zipkin et al. 2009) as well asmmoved understanding of the
overall community response to management actions.

Many species in our study had low detection prdiiss. Inferences on
occurrence distributions can be misleading withmoperly accounting for
detectability (Gu and Swihart 2004¢#¢ et al. 2008; Nichols et al. 1998). Had the
model not accounted for variability in detectioolpabilities among species, we
would have underestimated point-level richnessthacffects of local vegetation
characteristics (Figure 2.4). Additionally, sevespécies had too few detections to
yield occurrence estimates under individual spetiedels. Yet for comprehensive
assessments, it is important to examine the eftdatsanagement actions on all
species, not just those species that produce ersatgHor standard analyses.

For conservation agencies interested in improemuditions for bird species,
it may be more important to focus on the manipafatf local vegetation
characteristics rather than on regional deer dessin our study, we found no
differences between the overall bird communitie€EAITO, where deer are
unmanaged, and FCW, where deer density is reguilatedgh hunting (Figure 2.2).
We found that point-specific richness estimateseweost strongly associated with

the local habitat characteristics, UFC and BA (Feég2.4), which is consistent with
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other studies that have examined the relationsiepseen deer, vegetation, and birds
(e.g., deCalesta 1994; DeGraaf et al. 1991; Mc@hdeRappole 1992; McShea and
Rappole 2000). Since understory foliage and trealerea are negatively correlated
covariates, the response of species richness $e tregetation characteristics is
necessarily opposing. To better understand theoertient effects of UFC and BA

on species richness, additional controlled stuslesild be conducted to sample a
wider range of BA for prescribed levels of UFC (amck versa). The vegetation in
both study areas is heterogeneous, with speciepasition, stem density, and
structure influenced not only by deer browsing, lyibther factors, including soil
type and depth, slope and aspect, and land usahiBtespite the high deer densities
in CATO, sections of the park still retain relatiwvdigh stem densities of woody
understory plants such as spicebushdera benzoijy which deer generally do not
browse on, and points in these sections generatlyhigher richness than where
understory was sparse (Bates et al. 2005). Wedtidetect a difference in the total
percent of understory foliage between CATO and FEMivever, Bates et al. (2005)
did find differences in understory foliage by hdiglass, with significantly less
foliage with heights between 0.1-1.5 meters in CAWBich may account for
decreased occurrence estimates for some undesgtecies in CATO as compared to
FCW. Although the limited design of the study daes permit experimental
evaluation of a wide array of habitat changes aatmtwith deer browsing, the
associations of point-specific vegetation charasties and estimated bird community
attributes can provide park managers with initiadels for manipulating habitats to

improve bird occurrence and abundance. In additt@modeling framework allows
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for explicit calculations of assemblage richness @amposition, which should be
helpful in further understanding trade-offs in §pe@ccurrences associated with
management actions.

Multi-species hierarchical models can be usedit@ace understanding of
how conservation and management actions affecs bind other taxa at the species
and community levels. The approach offers a unifi@acthework for simultaneously
estimating species and assemblage richness aasvaticurrence and distribution of
individual species at local and regional spatiales. Covariates can be included in
models to make spatial or temporal comparisong) assess the effects of factors
that likely influence the occurrence or detectibismecies, thus refining parameter
estimates. Recent advancements have extendecetiaechical multi-species model
to account for colonization and extinctidféfy et al. 2009), which should be useful
for conservation agencies interested in studyiegefifects of management actions
over time. Our approach can improve understandifgpe species and communities
respond to management actions, allows for exgmmparisons relevant to
management (such as how deer influence underssoganopy birds), and provides
enhanced information on manageable factors (iemsity of understory shrubs)
affecting species richness. Incorporating this apgh into conservation should
improve biodiversity assessments of species anamomty responses to

management actions.
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Figure 2.1 Comparison of mean occurrence and detection pildiesgbfor all bird

species observed on surveys conducted during gtengeseason of 2002 in the

Catoctin Mountain Park (CATO) and the Fredericky@Gitatershed (FCW),

Maryland.
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Figure 2.2 Estimated point-specific bird species richnessl(iding unobserved
species) in the Catoctin Mountain Park (CATO) dmelErederick City Watershed
(FCW; left panel) and mean estimated species-spgxibbabilities of occurrence in
CATO vs FCW (right panel; the solid black line stsilve regression line and the

dashed grey line is a 1-to-1 line).
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Figure 2.3 Species-specific sampling effects on detectiomabdities: survey date
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Figure 2.4 Estimated (black circle) and observed (grey diam@oint-specific bird
species richness compared to understory foliage€C(UHit panel) and tree basal area
(BA,; right panel), from the combined bird and vetiein data collected in the two

study areas in the Catoctin Mountains, Maryland.
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Chapter 3: Evaluating the predictive abilities oframunity

occupancy models using AUC

Accepted pending revisiongcological Applications.

Coauthors:Evan H. Campbell Grant, William F. Fagan

Abstract

The ability to accurately predict patterns of spscoccurrences is fundamental to the
successful management of animal communities. Terahie optimal management
strategies, it is essential to understand spe@bgdi relationships and how species
habitat use is related to natural or human-indwredronmental changes. Using five
years of monitoring data in the Chesapeake and Oaral National Historical Park,
Maryland, USA, we developed four multi-species &iehical models for estimating
amphibian wetland use that account for imperfetéa®mn during sampling. The
models were designed to determine which factorslgwe habitat characteristics,
annual trend effects, spring/summer precipitataorg previous wetland use) were
most important for projecting future habitat usee Wsed the models to make
predictions of species occurrences in sampled asdrpled wetlands and evaluated
model projections using additional data. Using ge8&an approach, we calculated a
posterior distribution of receiver operating chéeastic area under the curve (ROC
AUC) values, which allowed us to quantify expligithe uncertainty in the quality of

our projections and to account for false negatingbe evaluation dataset. We found
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that wetland hydroperiod (the length of time thatedland holds water) as well as the
occurrence state in the prior year were generaélyniost important factors in
determining occupancy. The model with only halitatariates best predicted species
occurrences; however, knowledge of wetland usherptevious year significantly
improved predictive ability at the community lewaeld for two of 12 species/species
complexes. Our results demonstrate the utility aftrspecies models for
understanding which factors affect species habgatand provide an improved
methodology using AUC that is helpful for quantifgithe uncertainty in model

projections while explicitly accounting for detemtibiases.

I ntroduction

For many species, occurrence patterns (i.e., theoeuand geographic
distribution of species occurrences) are targetesdurce managers, especially when
management objectives include multiple species (Be&t al. 2009; Manley et al.
2004). An essential component of effective managemneludes understanding how
habitat characteristics affect species distribiand how changes in habitat features
can alter species occurrence patterns (Guisan lanidler 2005; Williams et al.

2002). Multi-species occupancy and fine-scale ilistion models can improve
conservation efforts by providing decision-makeithhe information necessary to
evaluate whether proposed actions are beneficedaages individually and to the
community as a whole (Kéry and Royle 2008; Zipkin et al. 2010). Such models can
help assess tradeoffs in the expected occurreficgeoes associated with different
management actions (Suarez-Rubio et al. 2009). dwere models that are designed

to assist with management must provide clear insigh the accuracy, reliability,
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and inherent uncertainty of their projections. @leggrizing the uncertainty of model
predictions is a vital, but often overlooked, comgot of conservation management.
Yet, it is crucial for adequate assessments of ebimgp actions and objectives.
Arguably, the most common method for evaluatinggieglictive abilities of
occupancy and species distribution models is imast the area under the receiver
operating characteristic (e.g., Anderson and R848;2Elith et al. 2006; Kharouba
and Kerr 2010; Phillips et al. 2006; Rebelo eRall0; although AIC is a popular
model selection criterion for occupancy modelsoit generally used for prediction).
In its use for evaluating occupancy models, theix@r operating characteristic
(ROC) is based on a confusion matrix that summaitize prediction results in terms
of true/false presences/absences. The confusiaxnsah two by two table of the
true outcome versus the predicted outcome that suensumber of locations that
both correctly and incorrectly identified presenaed absences of the species. The
predicted outcome for species occurrences is ginezpresented as a probability
and not a binary response, leading to constructidthe ROC. The ROC plots the
ratio of true positives, called sensitivity (etipe species is present when the model
predicts that it is present), to false positivesmed 1-specificity (e.g., the species is
not present when the model predicts that it shbalgresent), for all possible cutoff
values of the estimated occupancy probability (w@npérom 0-1). The area under the
ROC (termed AUC and also ranging from 0-1) measanm@®del’s discrimination, or
ability to correctly determine which locations aeupied (Hosmer and Lemeshow
2000). With the advent of software such as MAXEKErp, and Biomapper, which

allow for easy implementation of species distribntmodels, the use of AUC for
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evaluating such models has become increasing popid@vever, in using AUC to
evaluate a model’s discrimination abilities, cutrerethods fail to consider the
influence of species’ detection probabilities (Ekt al. 2006; Phillips et al. 2006).
While imperfect detection during sampling can leéaBiases in estimates of
occupancy, potential errors can be reduced by wsatgstical methods that account
for the detection process (MacKenzie et al. 20@2eEt al. 2003). In the context of
AUC, detection biases leading to false negativasg,(a species is not detected in a
location even though it is present) in the data @in@ used for model evaluation, and
not in model development, present an additional@hge in accurately determining
a model’s performance. This is because nondeteofiarspecies does not necessarily
imply absence, which can alter both the sensitiaitgl specificity of the confusion
matrix, biasing estimates of AUC. Despite the pté&dfor misleading results, we
have not seen attempts to address this issue Indtature. Yet, the implications of
using models that have been evaluated with biagdabuld be serious for species
management.

Models that predict the occurrences of speciesinvalgiven region in future
years and under a plausible range of environmentaditions are useful decision-
making tools. Building such models can be a dagrtsk, considering that many
research projects have short time series of delatifre to the longevity of a species
or the temporal scale of environmental changes)yaadonducted on relatively
restricted spatial scales. Our objective is togmea framework for predicting the

occurrence dynamics of a community of wetland bireedmphibian species that (1)
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explicitly characterizes the uncertainty in thedacéve success of model projections
and (2) incorporates detection uncertainty in botddel development and evaluation.

The conservation of amphibian communities presamtsmidable challenge
to resource managers because populations respdathtdocal and broad-scale
factors (which may differ among species that stiaesame habitat), potentially
limiting the suite of possible management actioralable within protected areas
(Green 2003; Mattfeldt et al. 2008). As such, arbaims are ideal for exploring the
utility of multi-species models for management deed to mitigate the declines of
populations and communities. Amphibian populatiaresdeclining worldwide,
although the ultimate causes of these declineararertain and likely differ among
regions and populations (Cushman 2006; Wake anddérgourg 2008).
Accordingly, resource managers in the Chesapeak®©aro Canal National
Historical Park (CHOH) in Maryland, USA, recogniziat increasing urbanization
in the surrounding region, combined with regionaljgctions of future climate
change, may decrease the suitability of wetlandt&tsbwithin the park that are
necessary for successful amphibian breeding.

Three pieces of information are needed to undeddtav management
actions can improve local species richness in CHOHivetland-specific occurrence
information for the complete amphibian communitya@ understanding of how
wetland characteristics affect species-specifitepas of occurrence and how
management actions can affect wetland charactasjstnd 3) reliable models for
projecting probabilities of species occupancy isampled wetlands and in future

years. Here, we evaluate the ability of multi-spse@ccupancy models, to predict the
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occurrences of wetland breeding amphibians in CH@H .apply competing
hierarchical community occupancy models to fiverged detection/nondetection
amphibian data, and determine the predictive piatlenit our models using data
collected in the sixth year at locations that heel/pusly been sampled as well as
from new locations. To achieve our objectives, widomodels that account for
imperfect detection in both the data that we us@$timating occupancy
probabilities and the data used for evaluatingait@iracy and precision of the
occupancy estimates. We utilize a Bayesian apprtmaektimate the parameters in
our model, essentially treating occupancy probidslias random variables. In
addition, we take advantage of this Bayesian fraonkwo create a posterior
distribution of AUC values and generate confideimtervals of our estimates,
allowing us to quantify explicitly the uncertaintythe predictive success and the

discriminatory ability of our models.

Methods

Study area

The data were collected over six field season832010) in CHOH at 33
randomly chosen wetlands (out of a possible 27&)wlere each sampled on four
occasions during March-July in each year of 20066200 2010, an additional 30
wetlands were sampled on four occasions usingaine protocols. All wetlands held
water on at least one sampling occasion duringyeyesr of sampling. If a wetland
was dry at a given sampling occasion, it was rembab “not available” and that
sampling occasion was not used in our analysisingwach sampling occasion, two

independent observers (n = 32 total observerstbeesix sampling seasons, all
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trained in field methods and identification) walkée full perimeter of the wetland
(starting from opposite ends) and recorded thestége and species of each
amphibian encountered. We treat each observegiaea wetland as one sampling
replicate (rep). Thus, for the purposes of estingaginnual occupancy (here defined
as wetland use at any point during the breedingaggawe assume that within a year,
a given wetland could be sampled on up to eighiqids x 2 observers) separate
occasions. In estimating annual occupancy, werdeedasted in whether a species
uses the habitat during the course of the samplenigpd (March-July) and assume
that each population is closed during that timenga

Fourteen species were observed over the six pégempling.Lithobates
clamitans(total of 441 observations at 31 different wetndmbystoma maculatum
(347, 24) Lithobatessylvaticus(227, 23) Lithobatescatesbeianu§l49, 25),
Anaxyrus americandi®wleri (146, 24) Lithobatespalustris(134, 15)Pseudacris
crucifer (125, 21) Notopthalmus viridescer{d11, 8) Lithobates sphenocephala
(100, 17) Hyla versicolor/chrysoceli§s3, 17) Ambystomapacum(41, 8), and
Hemidactyliumscutatum(11, 3). Two species’ complexes were analyZethxyrus
americanus/fowlerandHyla versicolor/chrysocelibecause their tadpoles are
difficult to distinguish in the field.

Three wetland characteristics that affect the aetuwe probabilities of
amphibian species were also recorded: hydropesi@d, and connectivity.
Hydroperiod is the characteristic amount of timat #h wetland holds water, and each
site was classified into one of three hydroperiatkgories using the National

Wetland Inventory (Cowardin et al. 1979): tempor@ypically dry up annually),
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semi-permanent (typically dry up every few yearspermanent (always hold water).
Area is a static covariate, defined as the wetmndhimum length times minimum
width not including instances when the wetland digs Thus wetland area is defined
as the smallest size of a given wetland duringreesuevent when it was not dry

(Mattfeldt et al. 2009). Connectivity is a measof@ wetland’s distance to other

wetlands, and is calculated esnn = In (z exp6 ¢ )areg} Where% is the mean

j#i
migration distance for a specieg, is the pairwise distance between wetlanasd;,
andareg is the area of wetlanidMoilanen and Nieminen 2002; Werner et al. 2007).
Area is included in the measure of connectivityause larger wetlands can generally
support larger population sizes of amphibians, tincreases the potential pool of
dispersers originating from a given wetland. Beeadsta on dispersal distances are
lacking, we conservatively seét to 750m for all species (Smith and Green 2005).

For more details on the sampling protocols refeviattfeldt et al. (2009).

Model description

We used a multi-species hierarchical modeling fraork (Dorazio and
Royle 2005; Dorazio et al. 2006; Gelfand et al.20Which links individual single-
species occupancy models (MacKenzie et al. 200 &tyal. 2003) at the
community level by assuming that each of the sjgespecific parameter values are
drawn from a common distribution (for meadetails see Dorazio and Royle 2005;
Dorazio et al. 2006; Kéry and Royle 2008; Royle and Dorazio 2008; Walls et al.
2011). This leads to an improved composite anabfsibe species (Zipkin et al.

2009) and community levels (Russell et al. 2009e model is based on the survey-
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specific detection/non-detection records of alsp2cies/species complexes across all

life stages. The observations,;; , , denote detectiorxt1) or non-detectionx€0) of

species (1,2,...,12) at wetlang(1,2,...,63) in yeatr (2005, 2006,...,2010) during

sampling occasiok (1,2,...,8). True occupancy is only partially obsde and is

modeled as a Bernoulli random variabig;; ~ Berr(l//i it ) with probability y; ;, ,

where z ;; =1 when speciesis present at wetlarjdduring yeat, and zero
otherwise. Detection of a species is assumed Bebaoulli random variable
dependent on the occupancy state;, ~ Bern( p;,y - Z;, ) wherep, j, is the

detection probability for speciesat wetland in yeart during sampling reg, given

that the species is present. Thus, the repeateplisgnprotocol k >1) over the
breeding season allows us to differentiate nonetiete from true absences in a given
year by estimating the detection probability focteapecies during each sampling
occasion.

We modeled the occupancy probability;;, for species in wetlandj during

yeart using the three wetland-specific covariates: hydrmd (a discrete variable),
wetland area and connectivity (both continuousaldes, each standardized to have
mean of zero and standard deviation of one). Weldped four versions of the
model: 1) a model with the three wetland-speci@bitat covariates only; 2) a model
with the wetland covariates and an annual trer@toupancy; 3) a model with the
wetland covariates and cumulative spring precipitafMarch through June); and 4)
a model with the wetland covariates and an autstmgierm (an additional covariate

to measure the effect of occurrence at wetjand/eart-1 on the occupancy
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probability in yeat). We modeledy; ;; for each specieisusing the logit link

function:

Iogit(x//i’j t ) = al; hydro +agareg +a3 conp

+a4trend + aj precip+ a6 z 4
where the intercept terne, ) is dependent on the hydroperiod class (hydro =

temporary, semi-permanent, or permanent)cgtidand o3, are the effects of the

wetland area and wetland connectivity (includedlirversions of the model). The

parametersr4;, o5, anda6; are, respectively, an annual trend (standardiaed s

that year 2007 is zero), the effect of precipitafistandardized to have mean of zero
and standard deviation of one), and an autologistia (an effect on occupancy
based on whether the species was present at ttend/@t the previous year). In
fitting the autologistic model with the latent sEcoccurrences (thematrix), our
model accounts for imperfect detection rather siarply using observed species,
which likely contain false negative errors. Eachih&f parametera4 — a6 are
included in only one of the four model'{23¢9, and &', respectively). We note that
in the autologistic model, species-specific occayaran be specified by colonization

(a1, on the logit scale) and persistened;(+ « 6 ) probabilities. Our specification

of the autologistic model is a restricted form ghdmic occupancy models such as
those described in Dorazio et al. 2010 &gy et al. 2009 where we assume that the
effects of the wetland covariates are equal onrénédion and persistence.

Detection was similarly modeled for each spetc@swetland and sampling

repk, with covariates for annual (linear and squardidces of the sampling date
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(Julian day standardized to have a mean of zerctmdiard deviation of one) on the
species-specific detection probabilikéfy and Royle 2008). We note that in
specifying the model this way that detection proltgyepresents a combination of
both observer effects as well as temporal repboatHowever, we do not believe that
this affects our estimates of occupancy becauserefss were well trained, there
was reasonable congruence between observers (c&t¥species-specific detection
(and covariate values) were allowed to vary anguall

We expected hydroperiod to influence speciesitasito both colonize and
persist in a given wetland. Temporary wetlands alopnovide suitable breeding
habitat for some species (elgthobates clamitansrhose tadpoles require two years
to metamorphose), though they may be used for ifogay breeding by others.
Though many amphibian species only use wetlandaglthie breeding season,
persistence (e.g., wetland use from one spring/semborthe next) in temporary
wetlands is likely to be lower compared to semiapenent or permanent wetlands
where water is retained longer during the seasdditinally, because permanent
wetlands are available during the full annual cyttley are comparatively easier for
species to colonize. We expected hydroperiod te laaarge effect on the occupancy
probabilities for all species, withithobates sylvaticygHemidactylium scutatam
Ambystoma opacum, Ambystoma maculaamdPseudacris crucifehaving higher
occupancy in more temporary wetlands aitobates clamitand.ithobates
catesbeianud.ithobates palustrisandNotophthalmus viridescermsaving higher
occupancy in permanent wetlands. We believed tletland area and connectivity

would have positive effects on species occurredcager wetlands tend to have
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higher colonization rates because they are laeggets for dispersing amphibians
(Armstrong 2005; Haddad and Baum 1999; WhiteheadJanes 1969). Wetlands
with high connectivity values are more likely to @@onized compared to wetlands
that are less connected because travel distanesharter. Due to concerns that the
amphibian community is declining in CHOH, we incialthe trend model to
determine if species-specific occupancy probaeditiad in fact declined over the
study. Because increased precipitation over theding period leads to wetlands
holding water longer and provides more suitableddams for breeding and foraging
at a given wetland, we hypothesized that precipitatvould have a positive effect on
both persistence and colonization. Even though #@mghwetland use is ephemeral
and can vary annually, the site fidelity exhibitgdmany species suggests that use of
a wetland in time-1 would have a positive effect on wetland useaary (e.g.,
persistence; Smith and Green 2005).

Each of the species-specific parameter values were assumed to come from a
normal, community-level, prior distribution (Dorazio et al. 2006; Kéry and Royle
2008). We estimated parameters using a Bayesianagpwith Markov chain
Monte Carlo (MCMC) implemented in the programs Rttjwhe R2WinBUGS
package; Sturtz et al. 2005) and WinBUGS (Lunn.e2@00) using flat priors for
each of the community-level parameters. In a Bayeanalysis, each parameter is
treated as a random variable. The MCMC approaciwalls to explicitly measure
variation in parameter values by examining a pastelistribution for each

parameter. We ran three chains of each model 100 §8rations, thinned by 5, after
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a burn-in of 5000 iterations (resulting in 3000teo®r samples for each parameter)

and assessed model convergence using the R-hstisi@elman and Hill 2007).

Evaluating model projections using AUC

We fit each model separately using data from thev@&Bands sampled in
2005-2009. We then used the posterior covariatgegaland the precipitation
conditions of 2010 and occurrence states of 200@vapplicable) to generate
species-specific occupancy estimates for bothh@ 88 sites that had previously been
sampled and (2) the 30 new sites that were sangollydn 2010. To determine
whether or not a species was present at each efd@tiands in 2010, we fit an
additional model with the three wetland-specifivagates, hydroperiod, area, and
connectivity, using only the 2010 data (all 63 wetls) to generate the latentalues
for each specigsat each wetlang which we considered to be the true 2010 species
occurrences. Thus, if speciewas observed on at least one sampling occasion at

wetland] in 2010, 7 ; ,910=1 for every draw of the posterior distribution. Hoxge,
if the species was not observed at a wetjJattten z ; 510=0 0Or 7 j 2010=1

depending on the species’ detection probability thedvetland characteristics (i.e.,

the posterior distribution foz; ; 410 Would likely contain both 0 and 1 values).

We estimated the AUC for each of the individualcsge models (Hosmer and
Lemeshow 2000). We also calculated the AUC fospdicies at every location, and
separately, for all species in the previously saapletlands and for all species in the
new wetlands. As mentioned earlier, the AUC (ragdrmom 0-1) measures the

discrimination of a model, which in this case cep@nds to the ability to correctly
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project which wetlands are occupied. A value ofiQdicates that the model performs
no better than random. Values greater than O0.sateliprogressively better
discriminatory capabilities (Hosmer and Lemesho@@ORather than use average
values to determine a single point estimate, we tise full posterior distribution
(3000 draws) and the R package ROCR (Sing et 8b)20 quantify the uncertainty
in model estimates, essentially producing a pasteample of ROC plots and AUC
values. For the purposes of evaluating the effi@ay utility of our models, we
consider the top model to be the one with the lEgpeedictive capability (e.g., AUC

value) for species’ occurrences at each of theand.

Results

Although the number of detections was small for s@pecies, our
hierarchical multi-species modeling approach alldws to use all the available data
and estimate the occurrence probabilities and cateseffects for each of the 12
species/species complexes. For all species, hydoopeas the most significant
wetland covariate affecting occurrence probabditieigure 3.1). This result was
fairly consistent across all models. Occurrencéabdities for all species were
generally lowest in temporary wetlands and highepermanent wetlands. In the
autologistic model, which allowed us to examineoo@tation and persistence
probabilities, mean species-specific colonizatemged from 0.02-0.19 in temporary,
0.02-0.41 in semi-permanent, and 0.05-0.49 in peemiawetlands, while persistence
ranged from 0.29-0.55 in temporary (with one spedenbystoma maculatym
having a value of 0.75), 0.36-0.81 in semi-permaramd 0.52-0.92 in permanent

wetlands (when other covariates were at their aevalues). This suggests that
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persistence was generally higher in all wetlaneé$ypompared to colonization and
that colonization increased with hydroperiod. Ahaa a significant positive effect on
the occupancy probabilities of almost all spearethe habitat-only, precipitation, and
trend models (except fétemidactylium scutatuppossibly because of its small
sample size). In the autologistic model, area hsig@ficant positive effect on all but
four speciesAmbystoma maculaturAmbystoma opacum, Hemidactylium scutatum
andNotopthalmus viridescepsConnectivity was not significant for any of the
species except fdrthobatessylvaticus which surprisingly showed a negative effect.

The observed number of species per wetland wag liov@10 compared to
the average number of observed species per watie2@D5-2009 (Figure 3.2). Thus,
predicted wetland richness was generally overestichia 2010 using the habitat-
only model (Figure 3.3). However, the trend anctimiéation effects were not
significant (i.e., 95% posterior intervals overlagzero) for any of the 12
species/species complexes, in their respective Isiotlee mean trend estimate was
negative for nine species and the probability thattrend was negative was greater
than 70% for seven species (i.e., >70% of sampies the posterior distribution
were negative). Together with the overestimatesaifand richness, these results
suggest that some species may be declining (€gupancy probabilities may have
decreased over the time period from 2005 to 2dd@})more data are needed for
definitive conclusions.

The autologistic model confirmed our expectatiwat occurrence at a

wetland in one yedrad a strong impact on species occupancy probasilit the

following year, indicating a difference in the coipation and persistence rates at
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wetlands. The autologistic term was significant poditive for all species and was
generally more important than even hydroperiodstimgating occupancy. For many
species, there were smaller differences in occypasitmates among hydroperiod

class as compared to whether or not the speciebdedpresent the previous year.

Evaluating model projections using AUC

The AUC was virtually identical in the trend anggpitation models as
compared to the habitat-only model. This is bec#lusenean values of the trend and
precipitation effects were centered on zero, ahdratovariate values were consistent
among these models. Because these covariates atdrdarmative in predicting
occupancy of any species, we focus on comparingridictive abilities of the
habitat-only and autologistic models.

At the community level, the habitat-only (AUC falt species at all wetlands:
mean 0.71; 95% PI: 0.66-0.75; Figure 3.4) and agtstic (AUC: mean 0.74; 95% PI
0.68-0.78) models performed well, and their AUQuesl had overlapping posterior
intervals. However, the autologistic model perfodnseynificantly better for the 2010
data in the 33 wetlands that had been previoushpkad from 2005-2009 (AUC:
mean 0.80; 95% PI: 0.76-0.83; Figure 3.4) comps&wdle habitat-only model (AUC:
mean 0.71; 95% PI: 0.67-0.74). The habitat-only ehpdedicted species occupancy
in 2010 equally well for the wetlands that had beampled from 2005-2009 as well
as the unsampled wetlands (AUC: mean 0.71; 95%.8%-0.76). The autologistic
model had a poorer performance in predicting oceap@ unsampled wetlands

(AUC: mean 0.69; 95% PI: 0.62-0.74) compared tdamels that had been sampled,
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but was not significantly worse than the habitdtronodel in the newly sampled
wetlands.

To determine how well we would expect the modelgdrform (i.e., the
maximum AUC values possible for a given model),cakeulated AUC values for
simulated datasets generated using the model se¥Wdt used the habitat-only model
to simulate ten datasets using the estimated npessoies- and wetland-specific
occupancy values (to obtain the latestate) as well as the detection covariates (to
simulate the observed “data), for the 2005-2010 data. We then fit the habitairo
model to these simulated data (using the samefgjaticins as the real data in
WinBUGS and R) and estimated occupancy probalsilibe each species at each
wetland for each simulated dataset (ten replicéks)y. We calculated the AUC
values using these new covariate estimates amdikaisdataset simulated for 2010.
Our results indicate that the mean of the uppendai the AUC for the habitat-only
model is 0.78 (95% PI: 0.74-0.81; with standardreon these estimates <0.01
among the ten simulations), with upper bounds 96 @95% PI: 0.71-0.81; standard
error <0.01) and 0.79 (95% P1I: 0.73-0.84; stan@aror <0.01) in previously
sampled and unsampled wetlands, respectively.

Species-specific AUC values were generally acddpt@e., mean values
greater than 0.6 for all species exddpmidactylium scutatunhithobatessylvaticus
in the previously sampled locations, alabystoma opacum the wetlands that had
not been previously sampled; Table 3.1) with nipecges having overall mean AUC
values greater than 0.7 in one or both of the h&bily and autologistic models.

While the mean species-specific AUC values wereeggly higher in the autologistic
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model (using previously sampled locations onlyg, difference was only significant

for two speciesAmbystoma maculatuandNotopthalmus viridescens

Discussion
The value of AUC in evaluating model projectiond gnantifying uncertainty

The use of the receiver operating characteristictbe AUC has been debated
in ecology and species distribution modeling anslbeen cautioned in its use when
species absences are unknown (Lobo et al. 2007)e WIs increasingly common to
use detection/nondetection data for estimating A&lG., Manel et al. 2001) and to
evaluate presence only models (e.g., Rebelo 20&0), such methods fail to
consider that nondetection may occur either becawsgpecies was absent or because
the species was overlooked during the samplinggso(MacKenzie et al. 2002; Tyre
et al. 2003). In our approach to using AUC, we exhy account for detection biases
by using the estimated “true” occurrenezean(atrix) of each species. Thus if a species
was not detected, we account for the possibili#y the species was truly present, but
overlooked during sampling, leading to a more issle picture of the variability and
transient use of habitat inherent in many systems.

In using the full posterior distribution of spegigpecific wetland occupancy
and “true” occurrence, we were able to calculgbesterior distribution of ROC and
AUC values. This allowed us to quantify the undettaassociated with our model’s
discrimination abilities (e.g., by providing a cat@nce interval of our estimate). In
many applications of AUC in species distributiondaling, there is no mention of
uncertainty in model discrimination (e.g., Andersond Raza 2010; Kharouba and

Kerr 2010). Liu et al. (2011) highlight the need fltermining the accuracy of AUC
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and suggest bootstrapping and randomization mefloo@stimating confidence
intervals. Our approach, using a Bayesian analgsesents an alternative method by
assuming that uncertain quantities such as AUGesedescribed by examining their
full posterior distributions. This allows for a neocomplete characterization of model
discrimination, including measures for determinting accuracy and precision of
estimates.

We note that in our analysis we discovered that®C ceiling for our
models was less than one. By this we mean thheiattual data-generating model is
known and the AUC is computed, then you would stifbect to achieve some AUC
value < 1.0. In considering which model best presdoccupancy status of wetland
breeding amphibians, it may thus be important twsmer a model’s maximum AUC
value. It is not clear whether it is always besttoose a model with the highest AUC
value or if it is better to choose a model withAdsC value that is close to its ceiling
(for predictive purposes). There is no clear maadgction criterion for hierarchical
models; although other approaches such as BIC @ayénformation Criterion) and
loss functions (Gelfand and Ghosh 1998) may preesul.

AUC is quickly becoming a standard method for eataihg species
distribution models, in part because it is readdiculated in software packages such
as MAXENT (Elith et al. 2006; Philips et al. 2006)owever, in our Bayesian
approach, it is also possible to directly calcuthgeconfusion matrix by simulating
the binary data using the species- and site- spagtupancy probabilities. In this
way, we calculated the true positive and true negaates (e.g., the fraction of times

with correct predictions) for the habitat-only aagtologisitic models (Table 3.2).
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Comparison of these results shows that the two egadgform equally well, except
for in previously sampled wetlands where the agfisiic model has a significantly
higher true positive rate. In all cases the trugtpe rates were significantly lower
than the true negative rates. Although examinimgctbnfusion matrix does not
change our inference, calculation of these ratgslights the difficulty in predicting
presences compared to absences for ephemeralspattidow prevalence, such as
the wetland breeding amphibians in CHOH. For exampke would expect the true
positive rate to increase with increasing prevagiassuming reasonably high
detection probabilities). AUC provides an underdiag of a model’'s predictability
by determining whether a randomly selected wetlahdre a species occurred had a
higher occupancy probability than a randomly sel@etetland where the species did
not occur. Thus AUC provides a measure differeanthn examination of the
confusion matrix (Hosmer and Lemeshow 2000). Howewne believe that direct
calculations of the true positive and negativesatging a Bayesian approach can
provide more intuitive comparisons among modelsfaniitate understanding of a

model’s predictive abilities; we suggest calculgtihese quantities when possible.

Management implication for CHOH

In establishing the utility of our multi-speciescopancy models for
informing management decisions, we are specificatBrested in evaluating how
well our models can predict species occurrencésarsituations: 1) in future years
for sites where sampling has previously occurretirin unsampled wetlands.
Determining the predictive capability of our modslsmportant for both identifying

wetlands that may benefit most from managementr&iie.g., increasing
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hydroperiod or area) and for evaluating the sucoéssanagement (critical steps in
an adaptive management program as well as otheagearent scenarios, Williams et
al. 2002). At the community level, the habitat-ompdel (wetland hydroperiod, area,
connectivity) was the top model because of its av@erformance (mean AUC of
0.71 from an average possible ceiling of 0.78) pardimony (the other models had
similar AUC values but each had one extra paramedter specific wetlands where
data are available, knowledge of species use dtinmgrevious year improved
predictive ability for the amphibian community,\eas demonstrated by the
autologistic model. Though knowledge of the prieays wetland use led to a
significant gain in AUC at the community level, imdual species’ AUC values were
only significantly improved for two out of 12 spesispecies complexes.

The habitat and autologistic models had fairlyhhpgedictive abilities for
most species (Table 3.1). In some instances (gthgbatessylvaticusin the
previously sampled locations aAthbystoma opacuim the wetlands that had not
been previously sampled; Table 3.1), the modeloperéd worse than would be
expected by chance. It is possible that the hiareat structure of our model, in
which information is shared across species, magdggpropriate for some species
(e.g., pulling estimates of covariate effects df@xe species, for which few data
exist, towards the community mean). Also possiblinat wetland use in 2010 was
inconsistent with wetland use in previous yearsstome species. In fitting occupancy
models separately for each species (e.g., no coimtyriewel structure), we
determined that there were not enough data to atiotcupancy — with the

relevant covariates — individually for most spediesults not shown, but see
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Mattfeldt et al. 2009 for more on individual spec@ecupancy models at CHOH).
Thus, we believe that the utility of the model is@est when focusing on
management of the community rather than on indalidpecies. Indeed, at CHOH as
well as many other monitoring programs (DeWan aipiid 2010; Manley et al.
2004; Weir et al. 2005), the objective — in thiseato maintain species richness —
is targeted at the community level.

Neither spring precipitation nor trend had sigraft effects on occupancy for
any species, yet the habitat-only model overesgthathness in 2010 at nearly all
wetlands (Figure 3.3). Likewise, the breeding seas 2010 had lower cumulative
precipitation (9.32 inches) in CHOH compared to ahthe others years of the
survey (mean: 17.89 inches; range: 10.49-23.18wdould help explain why the
observed number of species was lower in 2010 cosddarprevious years (Figure
3.2), and thus why the models overestimated wetlmhtess. Wetland use by
amphibians has high temporal variability (Green®0Weather variables, including
precipitation, can influence the occurrence of gseat wetlands. Finer resolution
precipitation (e.g., wetland specific) data, inchgltiming of rainfall, may better
predict wetland use by amphibians. It is also fmsghat other environmental
variables in the region (e.g., wetland use by otdea, including humans;
urbanization outside the park) are influencing aiiph use of wetlands in CHOH

and cannot be captured by a simple trend effect.

Conclusions

The use of predictive models can aid decision msaikedetermining the

optimal course of action for a given set of objessi (Williams et al. 2002). However,
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it is important to first assess whether model ptpams are reliable. Our approach for
evaluating the predictive power of multi-speciesugancy models accounts for
potential detection biases and incorporates therent variability found in species-
habitat relationships. In accounting for false riegeerrors and estimating a full
posterior distribution of covariate as well as AM&ues, we were able to understand
better the accuracy and precision of our modellt®sThe conservation and
management of species and their habitats requieaa understanding of species-
habitat relationships and the potential traded$toaiated with alternative

management actions.
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Table 3.1 Species-specific AUC values for the habitat-onlgl antologistic models

for the 33 wetlands that had been sampled contslydrom 2005-2009 and for the

30 wetlands that were unsampled in 2005-2009. dbie shows the mean of the

posterior distributions as well as the 95% postantervals.

Ambystoma maculatum
Ambystoma opacum
Anaryxus americanus/fowleri
Hemidactylium scutatum
Hyla versicolor/chrysocelis
Notopthalmus viridescens
Pseudacris crucifer
Lithobates catesbeiana
Lithobates clamitans
Lithobates palustris
Lithobates sphenocephala
Lithobates sylvatica

Ambystoma maculatum
Ambystoma opacum
Anaryxus americanus/fowleri
Hemidactylium scutatum
Hyla versicolor/chrysocelis
Notopthalmus viridescens
Pseudacris crucifer
Lithobates catesbeiana
Lithobates clamitans
Lithobates palustris
Lithobates sphenocephala
Lithobates sylvatica

Habitat model

AUC (sampled wetlands)

Mean
0.60
0.75
0.82

NA
0.64
0.74
0.68
0.78
0.71
0.84
0.79
0.41

95-Low

0.54
0.43
0.66

NA
0.46
0.64
0.57
0.59
0.61
0.72
0.64
0.32

95-High

0.65
0.91
0.92

NA
0.80
0.79
0.78
0.92
0.79
0.90
0.90
0.52

AUC (unsampled wetlands)

Mean 95-Low 95-High
0.64 0.48 0.78
0.41 0.31 0.56
0.77 0.54 0.91
0.51 0.10 0.88
0.77 0.54 0.91
0.80 0.73 0.88
0.82 0.68 0.92
0.82 0.63 0.93
0.86 0.77 0.92
0.64 0.56 0.74
0.79 0.54 0.94
0.63 0.57 0.70

Autologistic model

AUC (sampled wetlands)

Mean
0.89
0.70
0.80

NA
0.64
0.97
0.79
0.78
0.80
0.85
0.83
0.50

95-Low
0.86
0.37
0.63
NA
0.45
0.85
0.66
0.59
0.71
0.71
0.69
0.43
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95-High

0.93
0.88
0.93

NA
0.83
0.99
0.88
0.94
0.88
0.92
0.91
0.59

AUC (unsampled wetlands)

Mean  95-Low 95-High
0.66 0.47 0.82
0.45 0.32 0.62
0.75 0.49 0.94
0.59 0.10 0.93
0.75 0.49 0.94
0.78 0.61 0.95
0.80 0.64 0.92
0.77 0.56 0.93
0.82 0.67 0.93
0.62 0.47 0.78
0.77 0.52 0.96
0.61 0.49 0.73



Table 3.2 The posterior means of true positive rate (TPRI)tame negative rate
(TNR) for the habitat only and autologistic mode¢sng data from all wetlands, from
the 33 wetlands that had been sampled continudwsty2005-2010, and from the 30

wetlands that were only sampled in 2010. The valuéise parentheses are the 95%

posterior intervals.

Habitat model
All wetlands
Sampled wetlands
Unsampled wetlands

Autologistic model
All wetlands
Sampled wetlands
Unsampled wetlands

TPR

0.40 (0.32-0.48)
0.41 (0.31-0.52)
0.39 (0.29-0.50)

0.52 (0.43-0.60)
0.59 (0.47-0.69)
0.44 (0.33-0.55)

75

TNR

0.77 (0.74-0.81)
0.76 (0.71-0.80)
0.79 (0.74-0.85)

0.76 (0.73-0.80)
0.77 (0.72-0.81)
0.76 (0.71-0.81)
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Figure 3.1 Average projected wetland richness (as estimateduhe habitat only
model with data from 2005-2009) for each of ther@®lands (circles - permanent,
diamonds — semi-permanent, triangles — tempordoyden against the area of the

wetland. The red points are wetlands with belowagye connectivity.
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Figure 3.2 Observed number of species in 2010 plotted agtiestverage number
of observed species in 2005-2009 for the 33 weldhdt have been sampled

continuously over the duration of the study.
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Projected wetland richness

Wetland richness 2010

Figure 3.3 Species richness (accounting for detection erair)e 63 wetlands in
2010 as estimated using the habitat-only modeb¢dy the 2010 data) plotted
against the projected wetland richness as calaulatesumming the individual
occurrence probabilities for each species at eattand as estimated using the

habitat model for the 2005-2009 data.
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Figure 3.4 Receiver operator curves for the habitat modéid $ioe with 95% Pl in
grey; calculated using all species at each of hweétlands) and autologistic model
(dashed line with 95% PI in grey; calculated usatigpecies in the 33 wetlands that
had been sampled all years of the surtgmidactylium scutatums excluded since

it was not observed in 2010 in any of these 33amels.)
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Chapter 4: Tracking climate impacts on the migsatapnarch

butterfly

In review:Global Change Biology.

Coauthors:Leslie Ries, Rick Reeves, James Regetz

Abstract

Understanding the impacts of climate on migratqecses is complicated by the fact
that these species travel through several clinthtgsmay be changing in diverse
ways throughout their complete migratory cycle.t,Yeost studies are not designed
to tease out the direct and indirect effects ahate at various stages along the
migration route. We assess the impacts of spmiaigsammer climate conditions on
breeding monarch butterflies, a species that cameplés annual migration cycle over
several generations. No single, broad-scale clinratric can explain summer
breeding phenology or the substantial year-to-fleatuations observed in
population abundances. As such, we built a Poissgiession model to help explain
annual arrival times and abundances in the Midwediaited States. We
incorporated the climate conditions experiencedh loloring a spring
migration/breeding phase in Texas as well as dwsuiggequent arrival and breeding
during the main recruitment period in Ohio. Ustd#ja from a state-wide butterfly
monitoring network in Ohio, our results suggest tianate acts in conflicting ways

during the spring and summer seasons. High osjmmg precipitation is associated
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with the largest annual population growth in Ohmal éhe earliest arrival to the
summer breeding ground, as is intermediate spemgpératures. On the other hand,
arrival to the summer breeding grounds in Ohioosaifected by climate conditions
within Ohio. Precipitation has minimal impacts amsner grounds, whereas warmer
temperatures are generally associated with theebtggxpected abundances, yet this
effect is mitigated by the average seasonal tertyneraf each location in that the
warmest sites receive no benefit of above averagerer temperatures. Our results
highlight the complex relationship between climatel performance for a migrating
species and suggest that attempts to understandniooarchs will be affected by

future climate conditions will be challenging.

I ntroduction

A primary goal of global climate change researdo isnderstand the
connections between climate and biological phen@nsenthat specific predictions
can be made about how species will be affectedituyd climate regimes (Parmesan
2006). While this is a difficult task for any orgam, characterizing the responses of
migratory species is particularly challenging. Digrthe course of their life cycles,
migratory species experience multiple climates thay be changing in different
ways (Bowlin et al. 2010; Norris and Marra 2007griaps not surprisingly, it has
been suggested that climate change, along withr atitropogenic pressures, may
be contributing to the overall decline of migrat@sa biological phenomenon
(Brower and Malcolm 1991; Wilcove and Wikelski 200Bere, we use the term
“migratory” to refer to species that have a regulamg-distance pattern of “return”

migration related to predictable, disjunct seasoaadjes, and not species that track
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resources within their own home ranges or thahareadic and track unpredictable
resources over large areas (sensu Mueller and RO§4).

Establishing cause and effect relationships betwéerate and migratory
dynamics is complicated. In addition to direct iroggeon physiology at each location
along the migration cycle, which may be carriedrant subsequent migratory
phases (Harrison et al. 2011), climate can alse radirect effects on the abundance
or timing of food resources (Visser and Both 2@&lucki and Rochester 2004).
Disentangling these multiple, interacting climat&ers is complex and studies are
rarely designed to isolate causes to a particulgratory phase or effect (Gordo
2007; Norris and Marra 2007). Indeed, many studag focused on large scale
climate dynamics like the North Atlantic OscillatiNAO), which are often
associated with broad-scale weather patterns arelthas been found to be good
predictors of both phenology (e.g., Adamik andrezkova 2008; Palm et al. 2009)
and abundance (e.g., Zipkin et al. 2010). Yet geaf large-scale climate metrics
like the NAO makes it difficult to isolate how sz climate factors may be
impacting particular phases of migration or thefguanance of species (Gordo 2007;
Norris and Marra 2007).

The vast majority of studies on the impacts of elienon terrestrial, migratory
species have focused on bird phenology, with thie dfithat research studying
spring arrival times at breeding grounds in Northekica and Europe (Gordo 2007).
In general, dates of spring arrival have been adlwgrfor many species and those
advancements are consistent with regional warn@aydo 2007). While there is a

great deal of interspecific variability in this pteenenon, there is also general within-
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species consistency (Rubolini et al. 2010). Howewerst studies have not
specifically examined the climate conditions durihg winter or migratory
(stopover) phases, and instead have focused ortlyeoenvironment at the point of
arrival (Gordo 2007), despite the fact that itesywunlikely that birds are able to
assess conditions at summer breeding groundstprtbeir arrival. While some
climate variables may operate on a large enougk soahat metrics from the arrival
point are correlated to stopover or wintering clesae.g., the NAO), this approach
does not allow specific climate mechanisms to eatified (Norris and Marra 2007).
Earlier arrivals to breeding locations can leaditber better access to resources
(Kokko 1999) or, conversely, a phenological misthattere access to optimal
resources is diminished, possibly leading to desg@ditness or even population
declines (Both et al. 2006; Saino et al. 2011)dfesiof how climate impacts
population size have been less common and morasigtent, possibly because
breeding performance responds to more complexaictiens of factors both on and
off the breeding grounds (Norris and Marra 2007).

Although butterflies have received intensive foonghe climate impacts
related to phenology (Parmesan 2007), phenologichatches (Doi et al. 2008;
Singer and Parmesan 2010), local abundances (Ho@gsd. 2011; Warren et al.
2001) and range and elevational dynamics (Cronidavyer 2006; Forister et al.
2010; Parmesan et al. 1999), none of the specitb®se studies exhibit return
migration as defined here. Insects are not geyegiaociated with return migration;
instead, many species display spectacular massmete out of natal areas, often

called migration, but from which there is generatysubsequent return (Holland et
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al. 2006). One of the few known exceptions is tlmmanch butterfly (Danaus
plexippus) which completes a regular migratory ecedich year, but over multiple
generations (Brower 1986). Because of its spedcacnigration, it has become a
“flagship” species for both migration and the camation of migratory phenomenon
(Brower and Malcolm 1991; Wilcove and Wikelski 2008nderstanding how
climate impacts monarchs will be a key factor snabnservation (Batalden et al.
2007; Oberhauser and Peterson 2003) and will expandnderstanding of the

impacts of climate on migratory species in gen@alvlin et al. 2010).

Study system

The monarch butterflydfanaus plexippysn North America has a regular
seasonal migratory pattern that is completed owdtipie generations rather than by
single individuals (Brower 1986). There are thraey distinct monarch populations
in North America: the western migratory populat{@rest of the Rocky Mountains
that overwinters along the California coast), thstern migratory population (east of
the Rocky Mountains that overwinters in Mexico) ansimall non-migratory
population in southern Florida (Altizer et al. 2000he eastern migratory population
is the largest, and the focus of this study. Durmgration, monarchs use host plants
in the subfamilyAsclepiadoideaémilkweeds), which are common throughout North
America.

The migration patterns of the eastern populatienlarstrated in Figure 4.1.
Individuals from this population overwinter in a aihforested area at the boundary
of the Mexican states Michoacan and México (Bro®@86). During the winter, they

remain clustered in dense colonies, which stadking up in late February or early
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March as individuals begin moving northward. Thargpmigrants move into Texas
and its surrounding areas by mid-March (Browen.e2@04) and begin laying eggs in
mid- to late-March. These eggs become the yeassdeneration, which fans out
over the rest of eastern North America. Throughlbetsummer breeding season, the
population grows as an additional 2-3 generatioageoduced, with the bulk of
recruitment occurring in the Midwest (Wassenaarldatdson 1998). The size of the
final generation, which migrates to Mexico, fludegssubstantially from year to year
(Prysby and Oberhauser 2004; Swengel 1995). Theesanf those fluctuations are
currently unknown, although climate is assumedeaoihe contributing factor

(Zalucki and Rochester 2004). Around the first ept@mber, monarchs enter
reproductive diapause, begin to move southwarduétimdately return to the

Mexican overwintering sites (Brower 1986).

Climate effects on monarchs can be direct, impgauotult activity and
juvenile development, or indirect, by impacting\gtl and vitality of their host
plants. Niche models have suggested that monarteiregdhe breeding season have
an optimal temperature and precipitation “enveldapet tracks northward as the
season progresses, starting in Texas during MardiAgril. Although that climate
envelope continually shifts position throughout senmer growing season, much of
the optimal range persists in the Midwest (Bataleteal. 2007). These modeling
results are largely consistent with laboratory &sithat bracket the minimum and
maximum temperatures that promote monarch juveieilelopment (York and
Oberhauser 2002; Zalucki 1982) and suggest clistadeld underlie some of the

year-to-year variability in population dynamics [#&ki and Rochester 2004). Studies
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in western populations suggest drought is a limgitactor (Stevens and Frey 2010)
and that higher winter temperatures and increastiprevious season’s rainfall can
advance the onset of spring migration (Forister @napiro 2003). Our goal is to
examine how climate experienced during the sprimgysummer impacts phenology
as well as inter-annual fluctuations in abundarfd@@monarch butterfly on its
summer breeding grounds. We focus our analysisloo kecause there is a well-
established series of butterfly survey sites thnowd the state which falls within the

major zone of monarch recruitment.

Methods

Our analysis focuses on the impacts of climate eapeed by the first
generation in the southern U.S. (developed frons ¢égjd by incoming spring
migrants from Mexico) and during the main populatggowth phase in Ohio (from
incoming first generation adults that emerged iraBeand the surrounding areas).
We concentrated on temperature and precipitatiemain facets of weather known
to affect monarchs (Batalden et al. 2007; Zalucki €larke 2004). Because initial
explorations of the data suggested that coarsehereatetrics could not explain inter-
annual variations in abundance and phenology @igve developed a model that
captured weekly dynamics at each Ohio survey sised on several climate metrics.

To account for timing in our model, we sequentiallymbered each week in
the season and we refer to those week designatiomsghout the rest of this paper.
The onset of migration is approximately the begugrof March (week 1 always
begins on March 1) and spring breeding in Texasisgorimarily between the last

week in March through the end of April (weeks 4-Fhe adults that emerge during
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spring breeding usually arrive in Ohio by the finstek in May (week 10), but are
relatively uncommon until mid-June to mid-July (we€é 5-20). Population growth
continues through approximately the beginning qitSaber (week 28).
Temperature impacts were captured by convertingpéeature into growing
degree days (GDD). GDD accumulate the number afegsghat can contribute to
development, assuming a minimum temperature belbiehna species cannot
develop and a maximum temperature beyond which threeano longer benefited
(McMaster and Wilhelm 1997). GDD calculations goeses-specific and were
developed for the monarch by Zalucki (1982). Theimum temperature required
for monarch growth is 11.5C while the maximum i€3&DD are accumulated over
the season by summing the total GDD accumulateld @ayg. Daily GDD are
calculated using the mean of each day’s high andlp to a maximum of 33C) and
subtracting the minimum temperature required fomgh, meaning that a maximum
of 21.5 GDD can be accumulated each day for mosaand 352 GDD are required
for an egg to develop into an adult. Like tempeamtthe impacts of drought can
accumulate over a season and the timing of rairgfalso critical. The Palmer
Drought Index (PDI) integrates rainfall events, pemature, and other hydrological
dynamics over the season to estimate water aviayalbieim Jr. 2002). This metric
can give more biologically relevant informationhainfall alone (Heim Jr. 2002),
but PDI can also be confounded with temperaturegftliWilson 2000), a factor that

we considered when constructing our model.
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Monarch data collection

The Ohio data were collected at 90 locations thatprise a state-wide
network of butterfly monitoring surveys (Fig. 1Bhis monitoring program was
launched in 1995 by the Ohio Lepidopterist Soc{atyw.ohiolepidopterists.org) and
we include data from 1996 (the first year with rpié locations) through 2008 (the
last year for which we have acquired and proceda&). The annual number of
survey locations increased from 13 in 1996 to 580@8. Each location was surveyed
by a volunteer who visited their assigned locaapproximately once weekly during
the study period, although not all locations wesit®d every week or during every
year. Survey protocols were based on those dewtlop@ollard (1977) and follow
similar protocols to other butterfly monitoring grams in North America and
Europe. At each survey point, the observer wakéged transect of variable length
and recorded all butterflies seen within approxghative meters. Transect lengths
vary between sites, but remained fixed at sites fyear to year. To account for

variable transect lengths and effort, observersroed the time spent on each survey.

Climate data

To calculate GDD, we first acquired daily minimunmdamaximum
temperatures throughout Texas (weeks 4-9) and Waeks 10-28) for 1996-2008
from NOAA'’s Global Summary of the Day network, alghl network of weather
stations that provides daily weather metrics (wwogldinoaa.gov/oa/gsod.html). For
Texas, we used the daily minimum and maximum teatpeg values over the period
of interest at each weather station in the stafleaaeraged values across the entire

state to arrive at a single GDD spring value farteygear. In Ohio, we needed
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spatially-specific temperature values at each Hiyttsurvey location based on the
network of weather stations. To obtain these deg¢aperformed spatial interpolation
in R (R Development Core Team 2011) using an auficrkaging procedure
implemented internally in the automap package (Htemet al. 2008) and carried out
via the intamap package (Pebesma et al. 2011 ngluisese time-series of
interpolated minimum and maximum daily temperatuwes calculated GDD values
for each survey location in Ohio on each day irhggar, and accumulated them
over phenologically relevant time periods as désclibelow.

We obtained weekly PDI values from NOAA'’s ClimatatB Center for each
of the ten NOAA-defined climate divisions within ©h
(http://www.esrl.noaa.scr/psd/usclimate/map.htinl)Texas, there was a strong
correlation between GDD and PDI, averaged acrassttte’s ten climate divisions.
We therefore used mean rainfall to account forlygaecipitation patterns. We used
totals from February, March and April to align witke growing season of both
milkweed and monarchs. We downloaded state-widevsaries of February, March
and April monthly rainfall totals for Texas from M®@'’s Climate at a Glance for
each year (http://www.ncdc.noaa.gov/oa/climateaedécag3/cag3.html).

Unlike the Texas data, which we used to captugelacale conditions
averaged across the state, the GDD data from Oéiie summarized at the temporal
and spatial scale of the individual monarch survedhough monarchs are able to
move long distances, we assumed that once thematony expansion was complete,
populations responded to local climate conditioRer each survey location, we

accumulated GDD from week 10 up to the week of esachey. To account for
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rainfall effects at survey locations in Ohio, wedshe PDI calculated for week 28.
Although it is possible that weekly changes indheught index could affect monarch
counts, PDI tended to be negatively correlated witkk (i.e., the spring tends to be
wetter than the summer in Ohio), so we opted toatharize the overall precipitation
conditions at sites for each year. We believettnatadequately captures the
necessary variation in PDI because the index igjded to remain fairly stable over
the season and does not experience high variaisedoon a weekly weather patterns

(Heim 2002).

Analysis

We modeled monarch abundance at each survey sitenv@hio throughout
the summer breeding season based on spring andesuciimate metrics. We used
Poisson regression to model expected counts atlee&tion] that varied annually
(by yeart) and by week within season (denoted)ad he objective of our model is to
characterize local monarch dynamics based on ne@lianate variables during the
spring and summer. We opted not to include splatgation (e.g., latitude and
longitude) as a factor in the model but insteadlusproxy for location in the form of
mean GDD accumulated by the end of the seasona@e®mover the 13 year study
period). This allowed us to capture the averagaall/condition of a site (i.e.,
whether it tended to be relatively warmer or coobehnile still allowing the model to
remain general, increasing the potential to transte other locations.

Although we incorporated variables from the sprimgr model predicts
expected counts during the summer breeding seasmwk$ 10-28). That week range

roughly corresponds to the time period from befbeefirst arrival of most monarchs
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into Ohio (from Texas and the surrounding areag)gbprior to the southerly
migration back to Mexico. We modeled expected mamapunts at each locatipn
(1-90) in weekk (10-28) within yeat (1996-2008) on the log scale using the

following model:

Iog(’ij,t,k) =al +a?2- weelk + a3 spPREg:+ a 4 spPRlll?C
+a5-spGDD + a6- SpGDIF + a7- SPPREC wegk- a8  spGPD  week

+9- GDDiff; | | + a10-avgGDD, + 11 angD[?

+al2- GDDdiffj't,k . weel& + 13- GDDdiﬂj,k,t . angDIi)- weﬁk

+ al4- PDI it + al5: PDIJ-Z’,[ +al6 PDIj t ~WeeK + a l7 opep + Ioé effothk i )
with 1 as the intercept term ane — 17 as parameters that affect the count
annually, weekly, and by location. We standardieach covariate so that it had a
mean of 0 and a standard deviation of 1. The dmmiggation northward retains a

fairly consistent within-season temporal schedBerause of this consistency and
because we hypothesized that the effects of seoktiaé weather covariates may

vary over the course of the season, we includem/ar@ate on weekd?2, linear term
because monarch abundance in Ohio will generalipdreasing during this time
frame). The parametes3 — a8 deal with the effects of the spring conditions in

Texas on monarch counts, wher8 and a4 are the linear and squared effects of

cumulative precipitation in TexaspPRECE, anda5 and a6 are the linear and
squared effects of GDD in TexaspGD[% . We also included parameta#§ and

a8 as interaction terms with spring precipitation/GBRd week, respectively,
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because we hypothesized that spring condition&kxa3 may affect monarch counts
in Ohio differently over the course of the breedsagson.

Parametersx9 — 13 are effects related to the accumulating GDD at the
survey poinj. Because GDD increases throughout the spring amdner, we used

the difference from the mean GD,DDdiffj

Kt ata given pointacross all 13
years of the survey (Hodgsehal.2011). Thus we were able to capture whether the
GDD accumulated by the end of each week of theesuwere above or below the

average for that site at that time. We included anlinear effect ¢9) on

GDDdiffj Kt because a squared term did not come out as sigmifin earlier

versions of the model. The average GDngGDDj , accumulated at the end of the

summer season (week 28 in our model) across alkaBs of sampling, accounted for

location effects. We included lineax10) and squaredd«11) effects forangDDj .

We hypothesized that the importance@j]deiffj K t might vary by week over the

course of the sampling period and may have anasarg influence on monarch
abundance as the season progresses (because afsuisdaways very low during

the early part of the season). We similarly susgkttat a site’sangDDj may be

important in understanding how variation(BDDdiffj Kt affects abundance over

the spring and summer seasons (i.e., the effeatb@ie average GDD may depend on
whether or not that site is typically a warmer ooler location). Covariateg12 and
a13 account for these possible interactions. Parasetbl — o 16are effects related

to site-specific PDI values. The covarid@®I it is the annual metric of the drought
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index at each survey location and we included lified4) and squaredg15)
effects as well as an interaction with survey wgek6).

We included two nuisance terms in our model: theadate opery is the

proportion of area along thth transect that is unforested. Although we aite no
specifically interested in how differences in habaffect monarch abundance, we

included a17 because milkweed tends to grow in open areasl&lmisurvey

durations and transect lengths vary and we inclacheoffset term]og(effortj K t) :

measured in survey minutes to account for variafitat.

We analyzed the model using a Bayesian approadthta programs R and
WinBUGS (Lunn et al. 2000). We ran three chains3f@d0 iterations after a burn-in
of 3000 iterations and thinned the chains by 3. &l@dnvergence was assessed

using the R-hat statistic (Gelman and Hill 2007).

Results

In contrast to coarse-scale comparisons which stiaweelationship
between any single climate metric and yearly mdmatmundance (Figure 4.2), our
model results suggest that climate in both Texads@imno does impact expected
counts in Ohio. All parameters that were includethe model had significant
effects and standard errors for each parameter gesrerally small (Table 4.1). The
interactions between week and the spring climatiabkes (Texas GDD and
precipitation) as well as the GDD differentialdatations in Ohio were all positive,
suggesting that the importance of these climatebbas increases over the course of

the summer. This is an expected result becausdsoemain near zero for the first
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few weeks of the modeling period then increasedigphrough the remainder of the
study period. Results for both spring and sumrherate impacts are displayed in
Figures 4.3 and 4.4, in all cases the displayeadtseassume that all other covariates
in the model are held at their mean values.

Spring weather conditions in Texas had signifiegdfdcts on the magnitude

of monarch counts later in the season in Ohio, wekter springs $pPRE(l2) and
average spring temperaturespGDQ) leading to the highest predicted abundances

at the end of the season (Figure 4.3). Springheeaionditions in Texas also
affected emergence phenology of monarchs in Ohity, @arlier observations and
faster increases in expected abundance duringékttest/and, to a lesser degree,
driest springs (Fig. 4.3a), when other parameter$iald constant. Our results
further indicate that intermediate values of spBIgD were associated with earlier
observations and greater increases of monarchkim(@igure 4.3 — bottom panel),
although the magnitude of the effect was not aatgae for spring precipitation
(Figure 4.3 — top panel).

Monarchs’ response to climate experienced on twitmer breeding grounds
in Ohio showed some key differences compared toggffects. First, GDD was
much more important than precipitation during sum(iable 4.1). The impacts of
precipitation (as measured with annual PDI) weneamand did not have a consistent
effect on timing or abundance (results not illugdd. On the other hand, expected
monarch abundance was greatest when GDD was aliexage for each site.
However, that effect was strongest for the cod#es (Figure 4.4 — top panel) and

diminished as sites became warmer (Figure 4.4 dlmjplnel), with the pattern
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beginning to reverse at the warmest sites (Figute-dbottom panel). The effect was
increasingly pronounced as the season progreskedhighest observed counts were

found late in the season in the coolest locatiams (angDDj values) that had

accumulated above average GD(E)IZ(Ddiffj K t) values (Figure 4.4 — top panel).

Conditions in Ohio had no obvious impact on monancival phenology (Figure

4.4).

Discussion

Our results show that climate is a major drivemainarch population
dynamics, but that the relationships are comple&.showed that no simple climate
metric (seasonal summaries of temperature andtaoon) on either the spring or
summer breeding grounds could explain annual almgegan Ohio (Figure 4.2).
Instead, a combination of interacting climate feston both the spring and summer
breeding grounds seems to set the stage for nogrptienology and differences in
annual population growth (Figures 4.3 and 4.4).sEhesults emphasize the
difficulties in trying to understand how climatiorditions impact migrating species
and highlight the challenges associated with magneglictions on how monarchs
and other migrating species will do under futurealte regimes.

According to our model, spring precipitation whe factor associated with
the greatest potential for population growth, viite wettest springs leading to the
highest population numbers (Figure 4.3). This refesthip was curvilinear, with low
precipitation also leading to slightly higher pradd values compared to average

precipitation. Yet, this relationship is obviouslymplex. We first note that the year
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with the lowest population (2004) occurred durihg second wettest spring (Figure
4.2). More in line with these results, the yeathvihe highest population (1997) also
occurred in the wettest spring, but this year wasrausually abundant one
(highlighted as an outlier in all four panels ofjitie 4.2). This raises the question of
whether the result could have been driven by thatpotentially aberrant year. To
explore this, we reran the model excluding the ffata 1997. The results were
strikingly similar to those illustrated in Figurés3 and 4.4 with two notable
differences. First, the strength of the effectdpring precipitation was weaker, with
both wet and dry springs still leading to highemtoers, but in a weaker and more
symmetrical fashion. Results were unchanged fongiDD. Second, the strength
of the effect of summer GDD was stronger, but thieraction effect with average site
GDD, while still present, was weaker with no rea¢id effect occurring at the
warmest sites.

Based on the results from the model runs witlfuleaind reduced data sets,
we conclude that the climate factors leading tonagit population growth include
wetter or drier springs and intermediate tempeeatones in Texas and Ohio. In
Texas, average temperatures are optimal while in,@armer summers (within the
range experienced during this 13-year study) gdlgdead to higher monarch
numbers, except at the very warmest sites. Areaih ©f Ohio are too warm to
support optimal growth during summer months (Baaldt al. 2007; Malcolm et al.
1987) and these results are in line with laborastugies that highlight both lethal
and sub-lethal effects of hot temperatures (Yoik @berhauser 2002). Our results

suggest that any future temperature regimes aanosgrchs’ growing range are
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likely to have divergent effects depending on laté and also the time of the season.
In both runs of the model, only spring climate nostimpacted the expected timing
of arrival in a substantive way, with wetter oredlrsprings and average temperatures
in Texas associated with earlier sightings in QRigures 4.3 and 4.4). This is
consistent with our hypothesis that climate in Beglaould have a bigger impact on
arrival than conditions in Ohio.

Despite these general trends, these climate factomot in and of themselves
explain all the observed year-to-year variabilitymonarch abundances (Figure 4.2).
The purpose of our model was to determine how g@imd summer climate
conditions affect inter-annual monarch abundanoesiae phenology of arrival to
breeding locations in Ohio. However, additionakéas may affect monarch
population dynamics, including size of the wintgrpopulation and winter mortality,
annual milkweed growth, and parasitism. The areaged by the wintering
population is often used to indicate overall mohgyopulation size (Brower et al.
2011), but the values used in previous studiesn@a@sured near the start of the
overwinter period and do not account for wintenngrtality (Rendon-Salinas et al.
2011), which can be highly variable. Despite thigs worth noting that 1997, which
experienced an exceptionally cool spring and sun{faetors associated with smaller
population sizes) nevertheless produced an extyelargle population that year
(Figure 4.2). This may or may not be related to1886-1997 overwinter colony
sizes, which were the largest ever recorded (Rei&ddinas et al. 2011). Similarly,
overwinter mortality during 2003-2004 was high, gibs/ contributing to the small

population size observed in 2004. Yearly milkweealdh is also likely to be an
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important factor in monarch population sizes, hotfiexas and Ohio, and the timing
of growth may be particularly important. Anecdaaldence suggests that monarch
arrivals sometimes occur when milkweed has bamlgrged, leading to food
depletion, crowding, and potentially increased pifisa rates (Karen Oberhauser
personal communication), which could have an efbeciocal population
abundances. Parasitism and disease are othertugifd@ and important factors in
monarch biology (Prysby 2004) and it is currenthkimown how they may interact
with arrival phenology, crowding, and/or climate.

Climate predictions across North America (implenedrity
www.climatewizard.org, based on data from MaurealeR007) suggest that springs
in Texas may become hotter and drier while the samarthroughout eastern North
America may also be hotter and slightly wetter @olagn a high emission, 50 year
scenario). If spring precipitation in Texas remainthin the range captured by our
1996-2008 study period, then our model results asigipat this could potentially
have a slight benefit for monarchs since low priéaiion is associated with earlier
arrivals and more growth. Anecdotal observatioomf2011, the driest spring in
Texas on record since 1895 (based on summariesNKOAA’s Climate at a Glance),
offers some support for this result. Arrivals i@bio in 2011 were early (based on
Journey North sightings http://www.learner.org/fidy and reports on breeding
abundances for the year seem to be above normejsitin some areas (Oberhauser
2011). Although it is possible for drier spring daions to help monarch populations,
if springs in Texas become too hot the result ctaldlecreased abundances as the

optimal spring temperature for monarchs is in titermediate range of current
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conditions. The impacts of increased summer tenr@sand precipitation are
harder to gauge. Our model suggests that monandDkip are likely to experience
increased growth with warmer summers, but at soond this relationship may slow
or reverse (Figure 4.4 — bottom panel). At a lacge, warming is expected to be
more intense further north and west, which coulthddeful to monarch growth, but
again at some point, the heat may slow growth en@ause mortality. These crude
projections are in line with niche modeling thabwis the optimal climate window
tracking north based on a 50 year climate projedtizatalden et al. 2007). No
modeling approach has yet captured the full comiylex how climate interacts with
all the potential factors that influence monarcpuydation growth, including
incoming Mexican migrants, milkweed growth and cwgce with monarch
arrivals, natural enemies, and appropriate climatiironments for activity and
growth throughout each phase of their migratoryawaly. Further consideration of
the effects of climate on monarchs will ultimateled to include changing climate
during their overwinter and fall migration phasesagell. Research has already shown
that changes in climate in Mexico could have deatagjy consequences for this
population (Oberhauser and Peterson 2003). Pieécgegher the mechanisms that
drive these dynamics will be crucial to understarharch biology in general and
how this unique species may respond under futumeatd scenarios.

Migrating species have an intricate and complicadéationship with climate
variables, one that cannot easily be describednyls weather variables. Our results
shed light on how monarchs respond to both locdlragional climate factors. They

also demonstrate how optimal climate conditionsatzgange for a species over the
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migration route and how phenology may be impactederseverely by climate
conditions along the migratory route than at th&tidation, something that is rarely
considered in studies of migratory species (Go@@/2. These findings highlight the
importance of ongoing research into understandiegetfects of climate on migrating
species dynamics and particularly emphasize the teeéetermine which variables

are most important along specific points of thenatigry path.

100



Table 4.1 Parameter descriptions, point estimate (postengan), posterior standard
deviation and 95% posterior interval. The subssnppresent transect locatigh (

week within seasork], and year of survey)(

Parameter Covariate Description Estimate SD 95% PI

ol Intercept -0.578 0.025 (-0.63,-0.53)
a2 Week in season 1.376 0.014 (1.35,1.40)
a3 Spring precipition in Texas (linear) -0.070  0.015 (-0.10,-0.04)
ad Spring precipition in Texas (squared) 0.364 0.011 (0.34,0.39)
ab Spring GDD in Texas (linear) -0.198 0.022 (-0.24,-0.15)
a6 Spring GDD in Texas (squared) -0.229 0.014 (-0.26,-0.20)
ol Spring precipitation and week interaction 0.100 0.017 (0.07,0.13)
a8 Spring GDD and week interaction 0.109 0.013 (0.08,0.13)
a9 Weekly GDD differential at transects in Ohio -0.049 0.020 (-0.09,-0.01)
10 Average GDD at transects in Ohio (linear) -0.091 0.011 (-0.11,-0.07)
oll Average GDD at transects in Ohio (squared) 0.055 0.011 (0.03,0.08)
al?2 GDD differential and week interaction 0.080 0.015 (0.05,0.11)
ol3 GDD differential, average GDD, week interaction -0.031 0.006 (-0.04,-0.02)
ald PDI at transects in Ohio (linear) -0.104  0.016 (-0.14,-0.07)
ol5 PDI at transects in Ohio (squared) -0.059  0.009 (-0.08,-0.04)
al6 Palmer drought index and week interaction -0.108 0.014 (-0.14,-0.08)
al’ Proportion unforested at transects in Ohio 0.303 0.010 (0.28,0.32)
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Figure 4.1 Breeding dynamics of the eastern migratory monpagulation (a).
Adults overwinter in a small area in Mexico (stangen fly north in spring and lay
eggs in the southern US with most known breedinbexas. Adults emerge and fan
out to occupy the rest of the breeding range dwessummer. Two or three more
generations are produced during this time with mestuitment occurring in the
Midwest, including Ohio where there is a networlbafterfly monitoring stations
that was established in 1995 (b). In Septembest eults enter reproductive

diapause and return to the overwintering sites axikb.
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Figure 4.2 The relationship between an index of monarch yesslndance
(averaged over all sites during weeks 26-28) arsgpang GDD in Texas
(accumulated from weeks 4-9), b) summer GDD in Gaazumulated from weeks
10-28), c) Feb-Apr rainfall in Texas, and d) meaimier Drought Index in Ohio. An

outlier (1997) is circled in each panel.
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Figure 4.3 Expected monarch count by week for the range séonied spring
precipitation in Texas (top panel) and spring GO exas (bottom panel) where all
other parameter values were held at their averalyes. The precipitation and GDD
covariates are shown on a standardized scale Batthe mean and standard

deviation for each are 0 and 1, respectively.
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Figure 4.4 Expected monarch count by week as plotted agdiesEDD differential
(standardized to have a mean of 0 and a SD ofrthécoolest survey location in
Ohio (minimum avgGDD — top panel), a location watlrerage temperatures (mean
avgGDD — middle panel), and the warmest surveytiocgmaximum avgGDD —

bottom panel).
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Chapter 5: Distribution patterns of wintering skegks in
relation to the North Atlantic Oscillation and ldca

environmental characteristics

Published in:Oecologia, 163, 893-902, 2010.
Coauthors:Beth Gardner, Andrew T. Gilbert, Allan F. O’Conlndl Andrew Royle,

Emily D. Silverman

Abstract

Twelve species of North American sea ducks (Trilerdvhi) winter off the eastern
coast of the United States and Canada. Yet, dethgiteseasonal proximity to
urbanized areas in this region, there is limitddrimation on patterns of wintering
sea duck habitat use. It is difficult to gatheomfation on sea ducks because of the
relative inaccessibility of their offshore locatgrheir high degree of mobility, and
their aggregated distributions. To characterizarenmental conditions that affect
wintering distributions, as well as their geograpfanges, we analyzed count data on
five species of sea ducks (black scotdedanitta nigra americanasurf scoterd/.
perspicillatg white-winged scotersl. fusca common eiderSomateria mollissima
and long-tailed duck€langula hyemalisthat were collected during the Atlantic
Flyway Sea Duck Survey for ten years starting enghrly 1990s. We modeled count

data for each species within 10 nautical mile segmesing a zero-inflated negative
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binomial model that included four local-scale habdovariates, (sea surface
temperature, mean bottom depth, maximum bottorreskapd a variable to indicate if
the segment was in a bay or not), one broad-scatiate (the North Atlantic
Oscillation), and a temporal correlation componénir results indicate that species
distributions have strong latitudinal gradients andsistency in local habitat use.
The North Atlantic Oscillation was the only envireantal covariate that had a
significant (but variable) effect on the expectedmt for all five species, suggesting
that broad-scale climatic conditions may be diseatlindirectly important to the
distributions of wintering sea ducks. Our resutsvle critical information on
species-habitat associations, elucidate the coatplicrelationship between the North
Atlantic Oscillation, sea surface temperature, lacdl sea duck abundances, and

should be useful in assessing the impacts of ciirobange on seabirds.

I ntroduction

Current evidence suggests that 10 of the 15 Nontlerican sea duck species
may be in decline, including eight out of 12 spedleat winter off the Atlantic coast
(Sea Duck Joint Venture 2003). Yet there is mudtetainty on the status of sea
ducks because population data are limited. Theesanissea duck declines are not
well understood, as relatively little is known abthe distributions and habitat
preferences of each species. The Atlantic coasteotinited States (U.S.) and
Canada is a major wintering area for a number grawory species, including sea
ducks, which face a variety of pressures assocuiddhuman populations and
potential climate changes. For example, increasedelst pressure on sea ducks in

the 1980s, resulting from more restrictive huntiegulations on other waterfowl
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(e.g., Canada goo&ranta canadens)sled to concern about the condition of sea
duck populations along the Atlantic flyway (Caithemet al. 2000; Perry and Deller
1995). More recently, wind turbines, proposed tatons along the Atlantic coast
(e.g., Kempton et al. 2007), are raising questaiut potential adverse impacts on
survival and habitat use (e.g., Larsen and Guiltear2007). Before we can assess the
influence of factors such as harvest, offshoregndevelopment, contaminants, and
climate change on sea duck populations, it is re2cgg0 accurately characterize the
spatial distribution, annual variability, and habiassociations of these species.

North American sea ducks breed at high northernudss throughout the
U.S. and Canada; these ducks migrate south tomimtmastal waters, reaching as
far as Florida on the Atlantic coast. Yet, desthie potential impacts resulting from
their seasonal proximity to large, urbanized areg&shave comparatively limited
information on winter habitat preference and usks. difficult to gather information
on sea ducks during the winter, not only becaugbeoinaccessibility of their
offshore locations, but also due to the tendencgoaie species to aggregate in large,
mobile flocks. Outside of a few areas (e.g., Cheake Bay — Perry et al. 2007), the
status and trends of sea ducks along the east&rrabdd Canadian coasts have not
been well established (Caithamer et al. 2000; Sezk Doint Venture 2003).

The spatial distribution of wintering sea ducksnghe Atlantic coast is
determined by both large-scale as well as localgsses. General winter conditions
and habitat gradients are likely to influence tbetilmern and southern boundaries of
their wintering ranges, while distributions witlitose ranges may be based on a

variety of site-specific factors, including foodagability, local environmental
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conditions, and habitat suitability (Lewis et @08). Thus, it is necessary to examine
how both large-scale processes, such as annuataioonditions, as well as local
factors, such as ocean depth, ocean floor topoyrapial sea surface temperature,
affect the distributions and abundance of sea ducks

The North Atlantic Oscillation (NAO) is a driver ofimate variability, which
has been shown to affect the marine environmentr@iet al. 2003) and ecosystems
(Otterson et al. 2001; Stenseth et al. 2002) albagastern coast of the U.S. and
Canada. The NAO is the fluctuation in sea surfaesgure across the northern
Atlantic Ocean between areas of high (Azores Hagig low (Icelandic Low)
pressure; it exerts strong control over the cliniratie Atlantic Ocean region,
particularly in the winter (Hurrell 1995; Hurrelt al. 2003). A positive NAO index
indicates an increase in winter storms with greatensity in the northern Atlantic
Ocean, leading to cold, dry winters in northern &knand mild, wet winters in the
eastern U.S. A negative NAO index indicates fewel @eaker winter storms in the
Atlantic Ocean leading to cold and snowy conditialtg the east coast of the U.S.
and Canada (Bell and Visbeck 2009). The NAO isramusite measure of winter
conditions and has been linked to ecological preeesm plants (Post and Stenseth
1999), terrestrial invertebrates (Halkka et al.@0@ngulates (Post and
Forchhammer 2002; Post and Stenseth 1999), fissk{@ad Ridgway 2007), and
amphibians (Forchhammer et al. 1998). In birdsNA©® has been linked to
breeding phenology (Forchhammer et al. 1998; M@@92; Weatherhead 2005) and
migration patterns (Huppop and Huppop 2003) andikas correlated specifically

with adult survival (Sandvik et al. 2005; Sandwildé&Erikstad 2008), breeding
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success (Lehikoinen et al. 2006; Sandvik and Exk&008) and general population
dynamics (Thompson and Grosbois 2002) in seal@d®&n these correlations, it is
possible that climatic conditions, including the @Amay also be influencing
distributions of wintering sea ducks.

Studies from other regions provide evidence thstributions of sea ducks
may be linked to local environmental charactersstsuich as ocean depth and water
temperatures. Common eideBo(ateria mollissiman Greenland (Merkel et al.
2006) and surf scoterMglanitta perspicillatd in British Columbia (Kirk et al. 2008)
were found to have strong site fidelity within thientering season, but Kirk et al.
(2008) noted that prey availability influenced shsabhle movement. Wintering
common eiders foraged most frequently in depthadat 0-6 m, although they are
capable of diving much deeper (Guillemette et @03). Surf scoters, white-winged
scoters elanitta fuscy and common eiders also appear to prefer coastak with
relatively shallow depths (Guillemette et al. 19B8wis et al. 2008).

In the early 1990s, the U.S. Fish and Wildlife $s(FWS) initiated the
Atlantic Flyway Sea Duck Survey (AFSDS) to assassidutions of sea ducks along
the nearshore of the eastern U.S. and Canada (eigraird Data Center 2009).
Because the timing and scale of movements by vngfesea ducks are not well
characterized, the survey offers limited informatabout the overall abundance of
each species. This ten-year dataset can, howeaweidp critical information on how
distributions of sea duck populations vary bothtigiig and temporally along the
nearshore Atlantic coast. Using survey data fromRSDS, we characterize the

winter distributions of five sea duck species altmgeastern U.S. and Canada and
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relate observed counts to pertinent broad and kmzdé environmental
characteristics. Defining the relationships amogg duck distributions, latitude, and
habitat will provide a quantitative basis for uretanding wintering ecology and
movements, help with the design of future monit@mnograms, and inform targeted

conservation and management actions.

Methods

Sea duck aerial surveys

The AFSDS was flown between mid-January and mid+kaaly along the east
coast of the U.S. and Canada in 1991, 1992, 19885,1and 1997-2002 from
southern Georgia (30.8°N, 81 W/ to Nova Scotia (48.1°N, 64.8°W) (Figure 5.1). A
single aerial transect was flown parallel to thastpa quarter mile from the shore and
data were reported within approximately 10 nautodé segments. The segments
were defined by drawing the survey transect onesareutical chart and marking
increments of 10 nautical miles. Since the survey imitiated and conducted
primarily in years when geographic positioning tealogy was unavailable to the
crew (i.e., pre-GPS), 10 nautical miles, represktite smallest practical spatial unit
for collecting and recording data. All sea duclkenitfied to species were counted
within 500 m (250 m on each side of the routeheftransect line, which defined the
boundaries for each segment (10 nautical milesO@yrd). Roughly 451 segments
were flown once yearly, 335 of which were in th&Uwith the remaining segments
in Canada. Two person crews conducted the surflgygg at an altitude of 250 feet.
The pilot and an observer recorded the speciesiamiber in each segment

(Caithamer et al. 2000).
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Eleven sea duck species were observed at leastdoniog the ten years of
the AFSDS survey. We focused our analyses on freeiss for which there were
adequate data and whose wintering ranges suffigiemérlap with the study area:
black scotersNlelanitta nigra americana85,000 observed over all years of the
survey), surf scoters (100,000 observed), whitegethscoters (25,000 observed),
common eiders (414,000 observed), and long-tailets Clangula hyemalis
95,000 observed). We did not include counts in Wisiea ducks were not indentified

to species (e.qg., bird identified only as scoter).

Habitat and climate data

We used hand drawn maps of the survey route (tlyenoaps available) to
digitally recreate the survey path and identifytséad stop points for each segment
in ArcGIS 9.3 (Environmental Systems Researchtutstiinc., Redlands, CA). The
digital survey path was buffered by 250 m on eagdé m GIS to recreate the
segments, which averaged 11.4 (SD 2.6) nauticashing and 500 m wide. We
validated the recreated digital route using GP&tdata from flights in 2001 and
2002, the only years with a GPS record of the rdotensure that our recreated
transect segments included the areas in whichsge diad been observed during the
two years with known flight paths.

To characterize the yearly winter climatic condisalong the Atlantic coast,
we obtained monthly values for NAO, based on tliiedince between the
normalized sea level pressure over Gibraltar aachtitmalized sea level pressure
over Southwest Iceland (Jones et al. 1997) fronClimaatic Research Unit,

University of East Anglia, Norwich, U.K.
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(http://www.cru.uea.ac.uk/cru/data/nao.htm). Wedtkipsized that overall conditions
(i.e., NAO) during migration would have a largeeetfon sea duck winter
distributions, since previous research suggestst#amducks may exhibit within
season site fidelity, at least on local scalesk(léiral. 2008). Thus we averaged the
NAO values for the three months prior to the sur{@gtober, November, December)
to characterize the climatic conditions around atign. Average NAO values may
differ from winter averages calculated using ottmeiasures of NAO (e.g., Cook et al.
2002), but data from the Climatic Research Univmled a sufficiently long period

of record for our study.

To assess local factors affecting sea duck digtabs, we summarized
relevant environmental data to characterize thédtadf individual segments. We
included three static, segment-level variablesviigther or not the segment occurred
in a bay (binary variable with 1 indicating thae t,egment was in a bay and O
otherwise; Figure 5.1), 2) bottom depth, and 3godéoor topography. Coarse
resolution bathymetry data is available for thebglaoceans, but no fine-scale data is
available for both U.S. and Canadian Atlantic watep we acquired data separately
from each country. We downloaded the coastal ratiediel for the U.S. Atlantic,
available from the National Geophysical Data Ce(avins and Metzger 2008).

U.S. bathymetry data were available in a 3 arcisg@¢approximately 90 m) grid,

with depths resolved to 0.1 m. We obtained a simbidédhymetry dataset from the
Canadian Hydrographic Service (CHS), Fisheries@oeians Canada, a new product
produced for the Canadian Atlantic that is notaedilable to the public. Bathymetry

data were received from the CHS as point data $@thm or closer spacing, from
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which a 500 m raster was created using routinesldpgd in ArcGIS 9.3. Depths
were again resolved to 0.1 m. For bottom depthavexaged depth values for all
pixels within a segment to achieve a single estnfat each segment. The segment-

level depth values were measured in negative vdiugesthe surface is zero) and

ranged from -80.16 m to O m (95% range: -31.2850%,,ys=—9.1,

Xhon-bays= —6-2). To characterize the ocean floor topography, sexithe slope

routine in ArcGIS 9.3 to calculate the bottom slagp¢he maximum rate of change
for each depth cell (i.e., pixel) from its adjaceight cells. We used the maximum
slope for all depth cells within each segment,eathan the average, which provided
a realistic measure of the topography range fon sagment. The segment-level

slope values ranged from 0 to 21.39 (95% rangé, A.Q.55;X,5ys = 3.0,

Xnon- bays= 2-3)-

We also gathered monthly averages for sea suréacpdrature (SST) as
measured through satellite data from the NOAA/NASPHRR Pathfinder Program
(http://www.nodc.noaa.gov/SatelliteData/pathfindend). Data were downloaded
from the NASA Physical Oceanography DistributediveiArchive Center
(ftp://podaac.jpl.nasa.gov/pub/sea_surface_temperatvhrr/pathfinder/data_v5/mon
thly/). We used the best estimate (BSST) fromdtliekm resolution version 5, SST
data. These data were derived using the Reynoltis@lfy Interpolated SST,
Version 2, methodology (Reynolds et al. 2002), Wwipcovides complete areal
coverage even where clouds are masking the oce#ltirilyin missing data with
optimally interpolated SST data. We hypothesized segment level SST would

likely affect movement within the winter season aattulated winter averages from
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monthly BSST data that coincided with the end agnation and the dates of the
survey (December-February). Since the resolutiogach SST pixel was larger (4100
m) than the buffered segment (500 m), we reducedd¢h size of each seasonal SST
pixel to 1/28" the original resolution and calculated the weidteerage SST for
each segment for every year of the survey. The eagglavel SST values across all

years ranged from 0.65°C to 22.65°C (95% range&, 2 3.45).

Model

The sea duck survey produced spatially- and teriparalexed counts for
which a modeling framework based on generalizezhlirmodels (GLMS) is
appropriate (Clarke et al. 2003). Poisson GLMsframguently used in analyses of
count data for other avian monitoring programsluding trend analysis, models of
abundance and distribution, and modeling landsaagéhabitat effects (e.g., the
North American Breeding Bird Survey, Link and Sa2@07). In most avian surveys
and in the case of the AFSDS, the assumption ddléygwf mean and variance for
Poisson models is not realistic, as there is hagiation in the observed number of
individuals. For the AFSDS, a high variance to mesio likely results because some
sea duck species tend to be highly aggregateciwithter. Because of the extreme
over-dispersion of the data in our survey, we medi¢he counts using a zero-inflated
negative binomial distribution (Hall 2000; Martihad. 2005), which allows for a
higher variance compared to the mean and has mwwadetter fit to data in previous
analyses of other duck species (Wenger and Fre20G8). To do so, we define

¥i,jt asthe count of specieat survey segmenin yeart. The mean of the model is

115



it =4jy %) wherez ; ~ Bernoulli(z//i i ) is random variable that indicates

whether or not a segment should be included imtbeel (variable for each species

but constant over the ten years of the survey).Mée =1, the count for speciesn

segmenj at timet has a negative binomial distribution,

E1-p;
(yi,jI 17 :1) ~ NegBinorﬁi L iRt ) with mean’; j :I(p—-;“) and variance
1]
sz =ﬂ'—” Thus, the parametet is the estimated mean count whgn =1,

Rt
otherwise the expected count is zero. Since theD&d-®as not designed to

accommodate the specific geographic range of gaatiess, we hypothesized that

would vary by latitude and modeled the inclusioobability (‘//i,j ) for each segment

as a function of latitude such thagit(y; ;) = 8Q + 1 -lat; , where B0 is the

intercept angbl is the coefficient on latitude. Although a segneiriclusion
probability could depend on a number of factorscivese to include only latitude in
order to (1) investigate the north-south rangeitistions for each species and (2)
explore the effects of habitat covariates on thendance of birds within the north-
south boundaries of their range, because the alaittata limit further complexity
(i.e., inclusion of habitat covariates in both Bernoulli and negative binomial
components of the model).

We modeled sources of variation inusing a log-linear function:
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log(4 j;)=aQ +a}-NAQ +a2- SST +a3- degth
a j-4lopg +a ; -Days+a ; -6NAO SJT
+ a7, -Iog(y,'“_1+ 1)+ Iog(offse})

where 0 is the intercept and1 through a6 are the effects of each of the covariates

for species on the estimated count: NAO for each yeBIAQ ); sea surface

temperature at each segment in each (/SS{T”) ; mean bottom depth at each
segmem(deptt] ); maximum slope at each segm(aalbpq ); a binary vector
indicating whether a segment was in a (Jlaaysj ); and an interaction effect between

segment-level sea surface temperature and r@nmq : SSIt). The latitude, SST,

depth, and slope data were each standardized &éehmean of zero and a standard

deviation of one. We incorporated temporal corretainto the model at the segment-

level by estimating an effeaﬁtrx?) of the observed count in the previous year. The

temporal effect was only estimated when data weadable in the previous year
(e.g., years 1991, 1994, and 1997 were excludedpfiet term was included to
account for differences in counts due to variatirosegment length. During
development of the model, we included an explig#t®l correlation using a
conditional autoregressive (CAR) model. The reduttsh the CAR model were
uninformative when habitat covariates were notipocated (likely due to the high
variation in the data) and parameter estimatesavool converge with inclusion of
both explicit spatial correlation and covariatese purpose of including spatial
correlation in a model is based on the notion tants are likely to be similar within

some neighborhood (a predefined region). Oftenreason for such correlations is
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because of similarities in landscape features wighneighborhood. If sea ducks are
responding to habitat factors, inclusion of relédandscape covariates should
account for variation in observed counts and rettanclusion of an explicit spatial
correlation unnecessary. We determined that hatmtadriates explained more of the
variation in the data and we thus removed the CéfRponent.

We analyzed the model separately for each speanigestimated the

parameter values using a Bayesian framework wélptbgrams R and WinBUGS.

Since our model includes a temporal correla(iaﬂ), analysis using standard

canned statistical software was not possible. &b swe specified code in R to
estimate the parameter values using a Markov Q¥laime Carlo (MCMC) approach
in the software program WinBUGS. The idea behind\MCis that parameter
estimates, which are assumed to be random varjataiede obtained by creating a
posterior distribution of the variable (Gelman &l 2007). This can be preferable
to finding a parameter’'s maximum likelihood whetegrating the likelihood is
difficult, as is the case with our model. An addlit@l benefit of the Bayesian
approach is that interpretation of parameter vaisisgraightforward and intuitive.

For example, if 95% of a parameter’s posteriorritigtion does not overlap with
zero, we can directly interpret that as a 95% podibathat the parameter is nonzero.
To run our model, we used uninformative priorsdtiof the covariates. We ran three
chains for 10,000 iterations after a burn in pendd0,000 iterations and estimated
the posterior distributions after thinning the cfsaby 10. We checked that the model
and all parameters had converged by examining thatRcores (Gelman and Hill

2007).
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Results

The model estimated significant temporal correfatiothe mean count and a
latitude effect in the inclusion parameter forfalé species of sea ducks (see Table

5.1 for parameter estimates). There was a posiiationship at the segment-level

between expected count in yéand observed count in the previous y@m?) for all

species, with white-winged scoters having the héghensistency in local habitat use.

As expected, there was also a consistent and yeséiationship to Iatitud(aﬂl) in

the inclusion parameter, indicating that the praiiglmf observing each species
increased from south to north, with common eidelleded by long-tailed ducks

showing the strongest relationship (Figure 5.2).

The NAO(al) was the only environmental covariate that hadyaicant

effect on all five sea duck species: negativelierthree scoter species and positive
for the common eiders and long-tailed ducks. Thggests that climatic conditions
along the Atlantic coast during migration and setént may have strong influences,
either directly or indirectly (e.g., by affectingsttibutions of prey), on sea duck
distributions, with the scoter species observedgher abundances in the nearshore

during cold, snowy winters and common eiders angd-i@iled ducks observed in
higher abundance in the nearshore during wet, wiritkers. SST(aZ) had a
significant negative effect on long-tailed duck avhite-winged scoter counts and a
positive effect on common eiders (but see belowd&tails on the interaction

between NAO and SST). A negative relationship wethperature suggests that the

expected count increases with colder SST valuelfg-tailed ducks and white-
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winged scoters. Because the model incorporategizde-dependent inclusion
parameter (Figure 5.2), the positive relationsi@wieen SST and the expected count
for common eiders can be interpreted to mean wWittin the northern latitudes

where common eiders are present (greater than i@itdde), the ducks are found in
higher abundance in segments with moderate temypesafnote x-axis temperature
range in Figure 5.3 for eiders is smaller thanatier four species).

The relationship among NAO, SST, and the expembeait was highly
variable by species (Figure 5.3). The expected toouhe nearshore for all three
scoter species was generally higher in years witegative NAO index compared to
years with a positive index for nearly all rangéS8T. Yet the difference in
expected count was consistent across SST for Blaatlers, highest at warmer SST
values for surf scoters, and highest at colder &8&ies for white-winged scoters
(even reversing the relationship at very warm \&feSST). In contrast, the
expected count for common eiders and long-taileskslin the nearshore, although
very different from each other, were generally leigim positive years, compared to
negative NAO years, in warmer SST ranges (FiguBe $he expected count of
common eiders, within the temperature range whexg Wwere observed, was fairly
constant across SST in negative years, but hadmrgspositive relationship with SST
in positive NAO years. Conversely, the expectedhtod long-tailed ducks tended to
decrease with SST in both NAO scenarios.

All species, except for white-winged scoters (whield a similar, although
not significant response), had positive relatiopshvith ocean bottom dep(lazB),

measured in negative values where zero is sea ladaating that sea duck
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abundance is greater in shallower sections offtbesine. Maximum slop(aa4)

had a negative effect on all three scoter spebuatswas significant only for surf
scoters) and positive effects on the other twoisggbut again, significant only for
common eiders), suggesting that the scoters may ac@reas with flat topography,

while eiders and long-tailed ducks may prefer aveiets steeper, more rugged

bottoms. Black scoters were significantly less alaum in bays(aS) , While white-

winged scoters were significantly more abundant.

Discussion

Our results provide critical information on the salsand temporal
distributions of wintering sea ducks in the nearshwbitat of the U.S. and southern
Canadian Atlantic coast. Sea duck distributionseappo be responding to a
combination of local habitat conditions and broadks weather patterns. All species
had strong consistency in local habitat use ame@gsyand exhibited significant
responses to latitude. Yet, the effects of envirental conditions were largely
species-specific with similarities among the scsefgcies and different responses by
common eiders and long-tailed ducks. Common eigeddong-tailed ducks had
sharp southern range boundaries compared to thers¢bigure 5.2), which had
more gradual range boundaries and were sometimes fa southern waters.
Research within the last decade has demonstratéieny extensions in some bird
species ranges (Thomas and Lennon 1999) andméatdiinduced winter range shifts
do occur in sea ducks, they may be comparativedieeto detect in common eiders

and long-tailed ducks.
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The North Atlantic Oscillation was the only enviroantal covariate that had
a significant effect on all five sea duck speciesble 5.1), suggesting that site-
specific abundance may be influenced by large sgadther conditions. This result
is consistent with recent studies on the NAO, wlsighgest that broad scale climatic
indices, rather than measurements of local weatherhave stronger correlations
with ecological processes (Hallett et al. 2004nSé¢h and Mysterud 2005).
However, our results show that the response to NA@@d by species and was
dependent on segment-level SST values (Figure SS3).has been correlated with
the NAO at interannual timescales and evidenceesigghat the NAO itself may be
altered by SST in the Atlantic Ocean on the ordesixodecades (Higuchi et al.
1999). Although we did not find a significant cdateon between the NAO and mean
annual SST values in our data, the relationshiwéen the NAO and SST may be
influencing sea duck distributions at differing lesa(hence the inclusion of the
interaction term of NAO and SST in our model) amaymossibly have greater
effects at longer time scales. Seabirds, in geneaale shown variable and complex
responses to the NAO (e.g., Lehikoinen et al. 2@361dvik and Erikstad 2008;
Thompson and Grosbois 2002; Thompson and Ollaséh)Zihd climate change may
affect the NAO in unpredictable ways (eldqgerling et al. 2001). The response of sea
duck distributions in the nearshore to fluctuationthe NAO and climate change is
likely to be species-specific, due to differenaeshie influence of weather conditions,
physiological constraints, and other habitat facgrch as food availability.
Lehikoinen et al. (2006), for example, found thmathe Baltic Sea, the body condition

of female common eiders during egg hatching wagipely correlated with the
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NAO. Together with our results, their work suggehltt sea ducks may demonstrate
complex and indirect responses to fluctuation©i&éNAO during the wintering and
subsequent breeding seasons. To protect sea dookslécline, it may be useful to
make annual predictions about abundance in rel&i®ddAO in areas along the
Atlantic coast and mitigate or limit human intedece where abundance of several
species is predicted to be high.

We found ecologically relevant relationships betwsea duck abundances
and climatic conditions. However, survey data fiibie AFSDS was limited to one
north-south transect, a quarter mile off the Ailanbast; future research should
investigate whether our results are relevant dweentire winter range. Because the
available data represent nearshore observationsamet make inferences on
overall sea duck abundances or determine whetbeatitterences in mean counts
reflect changes in wintering locations or more gahehifts further offshore (Braeger
et al. 1995). The results from our model can heligiine optimal sampling
strategies based on the estimated relationshipagatmundance, latitude, and the
environmental covariates. For example, our resuitthe effect of latitude (Figure
5.2) suggest that it may be possible to excludarot effort in southerly portions of
the coast in future surveys. Recent offshore suefyts, conducted by the FWS and
including transects extending offshore, as wepasllel to the coast, should help to
further characterize sea duck distributions, theange limits, and the potential
tradeoffs between nearshore and offshore abundance.

The relationships between the local habitat cot@siand sea duck abundance

were similarly variable across species. While pficges were associated with shallow
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depths, there was greater variation in responskesttom slope. As a group, the
scoters were more abundant in flatter areas alemgdast (Table 5.1), which is
consistent with previous research that showeddlaak, surf, and white-winged
scoters prefer sandy sections along the Atlanticedime (Stott and Olson 1973).
Observational data from other studies have dematestthat common eiders may
prefer rugged substrate but long-tailed ducks metdeen clearly linked to bottom
substrate (Perry et al. 2007). These results, dsag/bay associations, may be related
to the resolution of the count and covariate dife sea duck data in the AFSDS
were recorded at a 10 nautical miles by 500 m véieol. Because we did not know
the location of each observation more preciselg-PS era), we used
environmental covariate data at similar spatial @maporal resolutions. However, it
is possible that sea ducks are responding to hdadirs that occur on much finer
scales, such as upwellings or high local produgtiuture surveys with GPS
coordinates of duck locations should be analyzeH finer scale covariate data to
assess the strength of our results. Additionakgaise the U.S. and Canada provide
bathymetry data at different resolutions, slopei@alwere smaller than expected for
the Canadian segments, which might indicate tl@b00 m resolution of this dataset
was effectively “smoothing” the bottom surface, iting our ability to detect the true
ruggedness.

Knowledge of wintering sea ducks is limited andadabm the AFSDS
provide the only distributional information in thearshore Atlantic across a large
temporal and spatial scale. The results from aatyses clarify how both local and

broad landscape factors can influence distributadrisrd species. Specifically, we
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demonstrated the importance of climate and wegtlomesses to distributions of sea
ducks in North America. Given that NAO had a siguaifit effect on all species in our
study, it reasonable to believe that NAO, as welbther climatic factors, can exert
powerful and complicated forces on distributiondiofl species in North America,
and worldwide. Our analysis improves understandingter-annual variation in sea
duck distributions, interspecific differences ispense to environmental conditions,
and provides a basis for understanding how wingesga ducks may respond to
climate change, information that is critical fofegftive conservation planning and the

design of future monitoring programs.
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Table 5.1 Posterior summary of species-specific parametenatts. The mean and

standard error of the mean estimate (SD) are sliomeach parameter.

Environmentally relevant parameters that are sitedity different from zero (95%

posterior intervals that do not overlap zero) aghlighted in bold. Note that the

intercepts for both count and inclusion terms wadse statistically different from

zero for all species.

White-

Black Surf winged Common Long-tailed

Scoters Scoters Scoters Eiders Ducks
Parameter
Intercept - count a0 3.10 (0.11) 3.31 (0.12) 1.38 (0.19) 596 (0.20) 2.20 (0.06)
NAO al 042 (009 036 (0.10) 0.71 (0.18) 0.70 (0.14) 0.38 (0.05)
SST a2 0.07 (0.10) 0.28 (0.15) 0.55 (0.20) 1.27 (0.25) 1.04 (0.07)
Depth a3 0.26 (0.08) 0.32 (0.07) 0.21 (0.10) 0.26 (0.06) 0.25 (0.03)
Slope a4 0.12 (0.09) 041 (0.08) 0.08 (0.11) 0.16 (0.06) 0.06 (0.04)
Bay a5 0.36 (0.16) 0.27 (0.15) 0.63 (0.20) -0.17 (0.13) 0.09 (0.07)
SST*NAO a6 0.01 (0.11) 0.11 (0.17) 052 (0.24) 1.18 (0.24) 0.39 (0.08)
Year a7 0.22 (0.05) 0.17 (0.05) 0.38 (0.07) 0.18 (0.02) 0.18 (0.02)
Intercept -
inclusion BO 235 (0.25) 2.19 (0.26) 0.53 (0.14) -1.58 (0.42) 4.76 (0.54)
Latitude 1 0.88 (0.20) 1.23 (0.20) 1.19 (0.16) 13.99 (2.40) 3.30 (0.41)
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Conclusion

Statistical models will always be necessary in egichl research because of
data limitations, the inherent complexities in egatal systems, and the desire to
make predictions beyond the study system. My digsen presents five case studies
in which generalized linear models were developeektimine how habitat and
climate variables affect the abundance and didtdhs of species including birds,
amphibians, and butterflies. Through my dissenatiork, | contributed to the
development of modern estimation techniques omdtiearrences and abundance of
species using Bayesian inference. Specificallgapsed and expanded on methods
for dealing with highly aggregated species by ipooating covariates into a
comprehensive model for simultaneously estimatisgFidution and abundance; |
developed an approach for validating occurrenceaisatiat accounts for detection
biases; and | advanced methods for dealing witvemspecies abundances in
community analyses of richness and composition.

My model developments can be used to help deterpotential threats to
populations and communities of species as welb @aiidde management planning.
For example, the results from chapter three camsbkd to mitigate the declines in
amphibian occurrences in the Chesapeake and OhiondbHistorical Park.
Managers could use the models to make predictibogtahe status of amphibian
richness at all 274 wetlands in CHOH. This inforimatcould then be used to assess
which wetlands might benefit most from managemetibas, such as translocating

species or increasing wetland hydroperiod anda.akll amphibian species had
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higher occurrence probabilities at semi-permanepeananent as compared to
temporary wetlands. Thus, one potential managestetegy to reverse observed
declines in amphibians would be to increase wetlayttoperiod (i.e., by increasing
depth) of temporary wetlands during the breediragse. By using the estimated
covariate effects, the models can be used to detenwhich temporary wetlands
would produce the highest expected change in reshii¢hey were altered to semi-
permanent. This approach would allow managersrik tfze potential efficacy of
management alternatives and choose a strategintets their objectives.

The use of predictive models can aid decision nskedetermining the
optimal course of action for a given set of objezsi (Williams et al. 2002). As such,
the results from my models can also be used to mpdictions about how species
and communities may respond to environmental cleimgleabitat as well as climate.
For example, the monarch butterfly model in chafuar can be used in conjunction
with climate predictions on temperature and preatmn in Ohio and Texas to assess
not only the potential sizes of local populations &iso the uncertainty and variation
in such predictions. This information can then bedito determine which locations
are likely to be important for maintaining monapdpulations and which therefore
should be prioritized for conservation.

The work in my dissertation presents the first stefomy research objectives
related to hierarchical model development. | haaxeegl projects planned or in the
works that | aim to complete over the next few gearcluding:

- Comparison of traditional methods for estimatingaes richness to the

multi-species modeling framework;
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- Imposing additional structure in the community modgframework, such as
subdividing species according to functional groapd/or phylogenetic
structure;

- Developing methodology within the multi-species mlaty framework to
explicitly model covariate effects (such as climate the timing of habitat
use;

- Exploring other statistical distributions (suchpasver law) to more
effectively model the extreme spatial aggregatroabundances that is
observed in some species (e.g., seabirds).

My dissertation sets the stage for these additiom&thodological advances.
The chapters from this dissertation along with closden my models (see the
appendix and http://www.mbr-pwrc.usgs.gov/pubansigemmunitymodeling/) will
allow other researchers to build upon my work athap this modeling framework
for their own study systems. It is my goal to ithase the utility of hierarchical
models while making the approach accessible tasthishing to employ these

methods.
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Appendices

Appendix 1.1 Hierarchical community model WinBUGS code

We ran the community model using MCMC with the peogs R (using the
R2Winbugs package) and WinBUGS for three chairergdgth 70,000 after a burnin
of 7000 and thinned by 40. Convergence was asseysexhmining the R-hat values
for each parameter estimate (Gelman and Hill 20D¢. model code, including the

prior distributions, is presented below.

Winbugs model code:
model {

#Prior distributions on the communitydewccupancy and detection covariates
psi.mean ~ dunif(0,1)
a <- log(psi.mean) - log(1-psi.mean)

theta.mean ~ dunif(0,1)
b <- log(theta.mean) - log(1-theta.mean)

mu.alphal ~ dnorm(0, 0.001)
mu.alpha2 ~ dnorm(0, 0.001)
mu.alpha3 ~ dnorm(0, 0.001)

mu.betal ~ dnorm(0, 0.001)
mu.beta2 ~ dnorm(0, 0.001)
beta3 ~ dnorm(0, 0.001)

taul ~ dgamma(0.1,0.1)
tau2 ~ dgamma(0.1,0.1)

tau.alphal ~ dgamma(0.1,0.1)
tau.alpha 2 ~ dgamma(0.1,0.1)
tau.alpha 3 ~ dgamma(0.1,0.1)

tau.betal ~ dgamma(0.1,0.1)
tau.beta2 ~ dgamma(0.1,0.1)

rho ~ dunif(-1,1)
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var.v <- tau2 /(1.-pow(rho,2))

sigmal <- 1/sqrt(taul)
sigma2 <- 1/sqrt(tau2)

for (iin 1:(N)) {

#Prior distributions for the occupancy and dibeccovariates for each species
u[i] ~ dnorm(a, taul)

mu.Vv[i] <- b + (rho*sigma2 /sigmal)*(u[i] — a)
V[i] ~ dnorm(mu.v[i], var.v)

alphal[i] ~ dnorm(mu.alphal, tau.alphal)
alpha2[i] ~ dnorm(mu.alpha2, tau.alpha?2)
alpha3[i] ~ dnorm(mu.alpha3, tau.alpha3)

betall[i] ~ dnorm(mu.betal, tau.betal)
beta2[i] ~ dnorm(mu.beta2, tau.beta?)

#Estimate the occupancy probability (latent Zrmafor each species at each point
for (jin 1:J) {
logit(psi[j,i]) <- u[i] + alphal[i]*perm] + alpha2[i]*area [j] + alpha3[i]*palj]
Z[j,i] ~ dbin(psilj,i], 1)

#Estimate the species specific detection prdibabar every rep at each point
# where the species occurs (Z=1)
for (k in 1:K[j]) {
logit(theta[j,k,i]) <- v[i] + betal[i]*datel[k] + beta2[i]*date2[},k] +
betgdar(j,k]
mu.thetalj,k,i] <- thetal[j,k,i]*Z[j,i]
X[j,k,i] ~ dbin(mu.thetalj,k,i], 1)
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Appendix 1.2. Comparison of the community model to species-level models

We developed and analyzed species-specific ocargnerodels (that
accounted for detection) to compare the resultls thibse obtained using the
community model described in the main text of Ceafit For many species,
including some of direct interest, we could notaattMLES of model parameters.
This is manifested in the numerical optimizationgadure (e.g., nim() in the package
R) as a singular Hessian matrix with typically @menore parameters that tend
toward the boundary of the parameter space (Hifiipffor regression parameters).
In the context of a Bayesian analysis, this appasextreme sensitivity to the prior
distribution or a posterior maximum at one of tle@idaries for those priors having
bounded support (e.g. a uniform prior on the iraepB,B]),.

The WinBUGS model code for the single-species oanap models is shown
below. In this specification, we used uniform (Mpdiors for the regression
parameters. The results, summarized for area efféagure Al.1, compare the
posterior distributions for the seventeen foresrinr species as estimated in the
community model to the individual species model& &gain ran three chains of the
species-by-species model for a length 70,000 afterrnin of 7000 and thinned the
model by 40. Convergence was assessed by exantimarig-hat values for each
parameter estimate. The very diffuse posteriorigigions (and in some cases,
posterior modes on the boundary) is evidence beaparameters are non-identifiable
under the single-species models. Therefore, ilassdal analysis framework we
would have to discard these data or possibly relpaoling the species to increase

sample size, inducing an assumption of homogewéiffects across species.
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Winbugs model code:
model {
for (iin 1:N) {

#Prior distributions for the intercept termscopancy and detection
expit.u[i]~dunif(0,1)

u[i] <- log(expit.u[i}/(1-expit.u[i]))

expit.v[i]~dunif(0,1)

V[i] <- log(expit.v[i]/(1-expit.v[i]))

#Prior distributions for the habitat and samgplaovariates for each species
alphal][i] ~ dunif(-4,4)

alpha2[i] ~ dunif(-4,4)

alpha3|i] ~ dunif(-4,4)

betal[i] ~ dunif(-4,4)

beta2[i]~ dunif(-4,4)

beta3[i] ~ dunif(-4,4)

#Estimate the occupancy probability (latent Znwafor each species at each point
for (jin 1:J) {
logit(psi[j,i]) <- u[i] + alphal[i]*perm[j]+ alpha2[i]*areal[j] + alpha3Ji]*palj]
mu.psi[j,i] <- psi[j,i]
Z[},i] ~ dbin(mu.psi[j,i], 1)

#Estimate the species specific detection prolbalfdr every rep at each point where
the
#species occurs (Z=1)
for (k in 1:K[j]) {
logit(theta[j,k,i]) <- v[i] + betal[i]*datel[k] + beta2[i]*date2[},k] +
beta3[i]*year]j,K]
mu.thetalj,k,i] <- thetal[j,k,i]*Z[j,i]
X[j,k,i] ~ dbin(mu.thetalj,k,i], 1)
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Figure A1.1 Comparison of posterior distributions a2 (effect of area) for
seventeen forest interior species (Acadian flyeaat¢ACFL), black-and-white
warbler (BAWW), blackburnian warbler (BBWA), brovaneeper (BRCR), black-
throated blue warbler (BTBW), black-throated greembler (BTGN), Canada
warbler (CAWA), cerulean warbler (CERW), hooded lvar (HOWA), northern
parula (NOPA), ovenbird (OVEN), red-breasted nuithgdRBNU), scarlet tanager
(SCTA), veery (VEER), worm-eating warbler (WEWA)inter wren (WIWR), and
wood thrush (WOTH)) as estimated using the commyumérarchical model (left
column — Appendix Al.1 code) and with a Bayesiagcgs-level model (right

column — Appendix Al1.2 code).
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