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 There is a strong need for statistical methods that can maximize the utility of 

ecological data while providing accurate estimates of species abundances and 

distributions. This dissertation aims to build on current statistical models using 

Bayesian hierarchical approaches to advance these methods. 

Chapters one, two, and three utilize a multi-species modeling framework to 

estimate species occurrence probabilities. Chapter one presents a model to assess the 

community response of breeding birds to habitat fragmentation. The results 

demonstrate the importance of understanding the responses of both individual, and 

groups of species, to environmental heterogeneity while illustrating the utility of 

hierarchical models for inference about species richness. Chapter two demonstrates 

how the multi-species modeling framework can be used to evaluate conservation 

actions through a component that incorporates species-specific responses to 



  

management treatments. In Chapter three, I develop a method for validating 

predictions generated by the multi-species model that accounts for detection biases in 

evaluation data. I build competing models using wetland breeding amphibian data and 

test their abilities to predict occupancy at unsampled locations. 

Chapters four and five develop count models that are used to estimate 

population abundances in relation to environmental and climate variables. In Chapter 

four, I employ a Poisson regression designed to determine how climate affects the 

annual abundances of migrating monarch butterflies. I incorporate the climate 

conditions experienced both during a spring migration phase, as well as during 

summer recruitment. In Chapter five, I analyze sea duck data to characterize the 

spatial and temporal distributions along the U.S. and Canadian Atlantic coast. I model 

count data for five species using a zero-inflated negative binomial model that includes 

latitude, habitat covariates, and the North Atlantic Oscillation. The results from these 

two chapters demonstrate how Bayesian models can be used to elucidate complicated 

species-climate relationships. 

 The chapters of this dissertation illustrate creative development and 

application of advanced statistical methods to complex biological systems. These 

applications provide a practical framework for dealing with highly aggregated species 

and uneven species distributions in community analyses, as well as a method for 

evaluating occurrence estimates that accounts for detection biases. My results 

highlight the dynamic relationships between population and community structure, 

habitat, and climate.  
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Introduction 

 
The discipline of ecology is fundamentally the study of species abundance and 

distribution (Ricklefs 1996). Much research in ecology is devoted to testing 

hypotheses about the biotic and abiotic processes that affect patterns of species 

occurrences. Understanding the biological mechanisms that create these patterns 

requires accurate information on the spatial locations of organisms. Thus, inherent in 

the study of ecology is the need for reliable counts of individuals, species in an area, 

communities within a region, and so on. Yet, it is nearly impossible to obtain such 

information for most all species, because data collection efforts that are designed to 

census an area are inevitably limited by budget and personnel constraints, and 

organisms move, hide, or are simply difficult to detect. Because of these limitations, 

statistical methods that accurately summarize data to estimate abundance and explain 

distributional patterns are essential to ecological inference and conservation decision-

making (Brown and Gibson 1983; Hanski 1999; MacArthur and Wilson 1967; Kerr 

1997; Ricklefs 2004).  

Heterogeneity in abundance and distribution, which is a key manifestation of 

the processes that ecologists strive to understand, also creates difficulties during the 

estimation process. Estimation of population size is frequently frustrated by the 

spatial and temporal aggregation of individuals, which lead to highly-skewed 

distributions and many zero counts. The same problem confronts researchers seeking 

simple numerical descriptions of ecological communities (e.g., richness and 
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composition) because, during sampling, common species are overrepresented while 

rare species are missed.   

The challenges to understanding species distribution and abundances are 

compounded when observers fail to detect rare or solitary organisms. Detection 

probabilities that vary based on behavioral or habitat characteristics can result in 

misleading inferences on the abundance and occurrences of species as well as their 

relationships to habitat (Boulinier et al. 2008; MacKenzie et al. 2002; Tyre et al. 

2003). In the context of community analyses (e.g., inferences on groups of 

taxonomically similar species), failure to account for heterogeneity in detection can 

lead to an underestimation of the number and distribution of rare species (Queheillalt 

et al. 2002) and can alter conservation decision-making (Meir et al. 2004).      

As the bias introduced by detection heterogeneity exemplifies, the estimation 

of population abundance and the quantification of community structure (e.g., species 

richness) is complicated by variability in landscape structure (Gaston 2003), which 

can as easily confound as elucidate the processes being investigated. Thus, it is 

necessary to explicitly determine the relationship between species occurrence 

probabilities and/or expected abundance with various habitat and climate features in 

order to correctly estimate population abundance and community richness. 

Understanding the species-habitat relationship allows researchers to determine how 

landscape heterogeneity affects patterns of species occurrence and is essential for 

making predictions about species’ responses to future environmental and climate 

changes.  
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My research is focused on the development and application of methods to 

more accurately and effectively describe populations and communities, using sound 

metrics to quantify species abundances and distribution, as well as richness and 

composition. In this dissertation, I advance current methodologies by building five 

unique Bayesian hierarchical models. I utilize a generalized linear modeling 

framework for each of these studies, tailoring my approach to address a specific 

question or hypothesis. The dissertation is broadly divided into two sections. The first 

section (chapters one, two and three) focuses on the analysis of species occurrences 

and distributions, while also emphasizing community-level assessments based on 

species-level models. The chapters in the first section use a modeling framework to fit 

individual species occurrence models and link them at the community level (Dorazio 

and Royle 2005; Dorazio et al. 2006), while accounting for the detection probabilities 

of each species. I refer to this type of model as either a “multi-species” or 

“community” model throughout the dissertation.  

Chapter one presents a case study of the basic version of the multi-species 

occurrence model to a community of breeding birds in a fragmented landscape in 

upstate New York. This chapter reveals the utility of the community modeling 

approach by demonstrating 1) the importance of accounting for individual species 

responses to habitat features (rather than combining rare or functionally similar 

species) and 2) how the hierarchical structure of the modeling framework leads to 

improved inferences at the species and community levels. 

Chapter two builds on the work of the first chapter by using the multi-species 

modeling framework to compare estimates of bird assemblage and richness in 
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different regions within the Catoctin Mountains in Maryland. While the first chapter 

presents an occurrence analysis based on habitat features, the second chapter takes 

this one step further by including covariates that account for differences in habitat 

structure that might be influenced by management strategies within regions. 

Furthermore, the model in this chapter includes data augmentation, a technique that 

allows for species richness estimation by using the multi-species model to analyze an 

augmented dataset that includes all-zero encounter histories for every potential, 

unobserved, species in the community in addition to the original data. My use of data 

augmentation provides a framework for considering how conservation and 

management actions may affect all species in a region and not just those that are 

common or were observed during data collection. 

Chapter three presents an approach for validating occurrence estimates 

generated by the multi-species model using amphibian data from wetlands in the 

Chesapeake and Ohio Canal National Historical Park in Maryland. In this chapter, I 

use the area under the receiver operator curve (AUC) to determine which of several 

competing models is best able to predict the occurrences of multiple species at 

unsampled wetlands and in future years. In modifying the use of receiver operator 

curves, I account for potential detection biases in the data that are used during model 

evaluation, providing an improved method for assessing the predictive abilities of 

multi-species occurrence models.  

The second section of the dissertation (chapters four and five) shifts from 

modeling occurrence data to modeling population abundances in relation to 

environmental and climate characteristics. The chapters in this section use count 
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models (Poisson and negative binomial) to describe on how spatially heterogeneous 

landscapes can result in patchy or aggregated distributions of individuals within a 

population.  

In Chapter four, I use a Poisson regression model to assess how weather 

variables affect the spatial and temporal abundances of monarch butterflies in Ohio, 

using data collected across the state and over 13 years. The model in this chapter 

contains a number of parameters that account for both local climate conditions (e.g., 

drought indices and growing degree day) as well as the environment experienced by 

individuals along their migratory route (e.g., precipitation and temperature). The 

results indicate that there are a number of important, interacting, climate factors 

affecting the final abundances of monarchs at their breeding grounds. I show that 

simpler analyses that do not include interactions among variables would have been 

unable to capture the complex ways in which climate can impact a migrating species.  

Chapter five presents a more complicated version of a count model using ten 

years of data from five sea duck species along the eastern Atlantic coast. Unlike 

monarch butterflies, sea ducks tend to aggregate spatially, requiring a count model 

with a higher variance to mean ratio. As such, I developed a negative binomial model 

to estimate how environmental and climate variables affect local abundances of sea 

ducks. Because the sea duck survey was not designed to collect data according to 

each species’ latitudinal range, I included a zero-inflation component (similar to the 

occurrence models in the first section) to account for the spatial distribution of each 

species. The results show that while local habitat characteristics can affect sea duck 
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abundances, the North Atlantic Oscillation was the only factor to have a significant, 

yet variable, affect on all five species. 

The complex and uncontrollable aspects inherent in living and dynamic 

ecosystems present significant challenges not only to field researchers, but also to 

statisticians. To improve statistical methods for ecology, it is necessary to understand 

more than sophisticated quantitative methodologies; it is also critical to understand 

the details of the biological and environmental system under study and the techniques 

used to measure the system. Thus, the goal of my dissertation is to advance the 

development of statistical methodologies through specific examples. Each case study 

presents an instance in which traditional analyses were less informative in answering 

the research question as compared to the Bayesian hierarchical approach.  
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Chapter 1: Impacts of forest fragmentation on species richness: 

a hierarchical approach to community modeling 

 

Published in: Journal of Applied Ecology, 46, 815-822, 2009. 

Coauthors: Amielle DeWan, J. Andrew Royle 

 

Abstract 

Species richness is often used as a tool for prioritizing conservation action. One 

method for predicting richness and other summaries of community structure is to 

develop species-specific models of occurrence probability based on habitat or 

landscape characteristics. However, this approach can be challenging for rare or 

elusive species for which survey data are often sparse. Recent developments have 

allowed for improved inference about community structure based on species-specific 

models of occurrence probability, integrated within a hierarchical modeling 

framework. This framework offers advantages to inference about species richness 

over typical approaches by accounting for both species-level effects and the 

aggregated effects of landscape composition on a community as a whole; thus leading 

to increased precision in estimates of species richness by improving occupancy 

estimates for all species, including those that were observed infrequently. We 

developed a hierarchical model to assess the community response of breeding birds in 

the Hudson River Valley, New York to habitat fragmentation and analyzed the model 

using a Bayesian approach. The model was designed to estimate species-specific 
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occupancy and the effects of fragment area and edge (as measured through the 

perimeter and the perimeter/area ratio), while accounting for imperfect detection of 

species. We used the fitted model to make predictions of species richness within 

forest fragments of variable morphology. The model revealed that species richness of 

the observed bird community was maximized in small forest fragments with a high 

perimeter/area ratio. However, the number of forest interior species, a subset of the 

community with high conservation value, was maximized in large fragments with low 

perimeter/area ratio. Our results demonstrate the importance of understanding the 

responses of both individual, and groups of species, to environmental heterogeneity 

while illustrating the utility of hierarchical models for inference about species 

richness for conservation. This framework can be used to investigate the impacts of 

land-use change and fragmentation on species or assemblage richness, and to further 

understand trade-offs in species-specific occupancy probabilities associated with 

landscape variability.  

Introduction 

With increasing development pressure on natural landscapes, managers and 

conservation scientists must determine the most effective ways to preserve the 

integrity of ecosystems and maintain biodiversity. Inherent in the goals of any 

conservation effort is the desire to protect as many ecosystem components and 

processes as possible (Margules and Pressey 2000; Williams et al. 1996). Many 

conservation and monitoring programs focus on species or population-level 

approaches because this can be a concrete and clear way to aid in the preservation of 

biodiversity (e.g. Myers et al. 2000; Pearce et al. 2008; Wilhere et al. 2008). Species 
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richness (the total number of species in a region) is another more comprehensive, and 

frequently used, state variable on which to base conservation and management 

decisions (Yoccoz et al. 2001). However, it can be difficult to gauge richness in 

variable environments (O’Dea et al. 2006; Vellend et al. 2008). Thus, to prioritize 

conservation action it is critical to have reliable estimates of species richness and to 

understand how environmental factors affect species-specific patterns of occurrence 

across a landscape (Boulinier et al. 2001; Cabeza et al. 2004; Fischer et al. 2004; 

Lepczyk et al. 2008; Soares and Brito 2007)  

There are two challenges in using community level summaries such as species 

richness in conservation and management applications. First, species identity is not 

preserved in many standard analyses used for inference about richness, which are 

based on simple aggregate species numbers (species-accumulation curves, Gotelli and 

Colwell 2001) or encounter frequencies (capture-recapture methods, Boulinier et al. 

1998). However, species-specific patterns of occurrence should be accounted for in 

modeling approaches (Fischer et al. 2004) because the response of species richness to 

features that can be manipulated (landscape, habitat) is necessarily species-specific.  

A second issue is that in most practical situations species are detected imperfectly. 

The importance of addressing the biasing effects of imperfect detection on 

community assessments is widely acknowledged (Boulinier et al. 1998; Kéry et al. 

2008; Nichols et al. 1998; O’Dea et al. 2006). Moreover, because detectability 

naturally varies by species (Boulinier et al. 1998), we expect that observed summaries 

of community structure (e.g. based on species lists) are biased towards abundant and 
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widespread species, which are likely to show diminished response to ecological 

gradients. 

One method for examining species richness in heterogeneous landscapes is to 

estimate species occurrence probabilities, or occupancy, based on localized habitat 

characteristics (MacKenzie et al. 2006). Occupancy can be an effective assessment 

method (Manley et al. 2005), generally requires less effort and expense than 

estimating total abundance of all species (MacKenzie et al. 2006), and readily allows 

for imperfect detection of species (MacKenzie et al. 2002).  Multi-species occupancy 

models have been used for inference in community studies in a number of situations, 

including estimation of richness and community overlap (Dorazio and Royle 2005), 

construction of individual species-based accumulation curves (Dorazio et al. 2006), 

and in determining the influence of habitat and landscape variation on richness (Kéry 

and Royle 2008; Kéry and Royle 2009; Russell et al. 2009).  

In addition to understanding total species richness, inferences on the number 

of rare, endangered, or functionally important species are frequently a variable of 

interest in conservation planning and monitoring programs (Samu et al. 2008). Occu-

pancy estimates for rare species and guild or assemblage richness (number of species 

in a subset of the population) can be more informative about areas of high 

conservation priority than assessments on only species that are common. 

Unfortunately, it can be difficult to get reliable estimates of occupancy for rare and/or 

elusive species because traditional sampling efforts often do not generate enough data 

for standard analyses (Queheillalt et al. 2002; Stockwell and Peterson 2002). Some 

approaches to mitigating this problem combine data on rare, but functionally similar, 
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species (e.g. by genus) or use indicator species to deduce occupancy of those species 

with limited data (Fleishman et al. 2001; O’Connell et al. 2000; Sergio et al. 2006). 

Such approaches discard valuable information about species-specific responses, and 

could be misleading or erroneous if rarely observed species respond differently than 

indicator species (Andelman and Fagan 2000; Kéry et al. 2008; Lawler and White 

2008). The question remains regarding the most efficient and cost effective method 

for estimating the occurrence and distribution of uncommon and elusive species 

(MacKenzie et al. 2005; Thompson 2004). 

Our research is motivated by a desire to develop a community-level 

quantitative framework for predicting areas of conservation value, and to provide 

high quality baseline data for vertebrate monitoring programs in urbanizing 

landscapes. To this end, we present a recently developed approach for assessing 

community composition based on species-specific occupancy and detection (Dorazio 

and Royle 2005) in which individual species occurrence models are linked together 

within a hierarchical (or multi-level) model (Gelman and Hill 2007; Royle and 

Dorazio 2008). Many multi-species field studies and monitoring programs have 

limited data on a large portion of observed species; as such, typical species-by-

species analyses are simply unable to provide occurrence estimates or information 

about the effects of environmental factors on occurrence probabilities. An advantage 

of the hierarchical modeling framework over typical species richness analyses is that 

it accounts for both species-level effects as well as aggregated effects of 

landscape/habitat on the community as a whole (Kéry and Royle 2008; Kéry and 

Royle 2009), leading to a more efficient use of available data and increased precision 
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in occupancy estimates, especially for infrequently observed species. We demonstrate 

the strengths of this approach by applying the hierarchical modeling framework to a 

bird community in forest fragments across the Hudson River Valley (HRV), New 

York (DeWan et al. 2009), a biologically diverse and ecologically significant region 

that is under intense development pressure, in the northeastern United States (Finton 

et al. 2000; Smith et al. 2001). Efforts are underway to prioritize the landscape for 

conservation actions, yet little is known about many of the species in the region 

(DeWan et al. 2009). We focused our analyses on the community response to habitat 

fragmentation by modeling species-level changes in occupancy to two factors with 

well-established effects on the success of breeding birds: forest fragment area and 

edge-effects as measured by responses to perimeter, and perimeter/area ratio (P/A) 

(Helzer and Jelinski 1999; Rafe et al. 1985). 

Methods 

Background 

We used a hierarchical model that links species-specific detection and 

occupancy, which are then related (across species, at the community level) through an 

additional component of the hierarchical model (Dorazio and Royle 2005; Dorazio et 

al. 2006). A hierarchical (sometimes referred to as multi-level or state-space) model is 

one in which various biological and sampling components are formally specified and 

related to one another in a pyramid-like structure (Gelman and Hill 2007; Royle and 

Dorozio 2008). For example in the context of estimating occupancy, hierarchical 

models can help distinguish absence from non-detection by explicitly incorporating 

models that specify presence vs. absence as one process and then detection vs. non-
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detection as another process that is dependent upon whether or not the species is in 

fact present. Hierarchical models posit weak, stochastic relations rather than 

deterministic relations among parameters and processes (Link 1999; Link et al. 2002), 

resulting in improved estimation of individual parameters by considering them in 

context of a group of related variables (Bayesian shrinkage: "borrowing strength from 

the ensemble") (Link and Sauer 1996). In the context of our community model, this 

allows for increased precision of occurrence estimates for rare or elusive species 

through utilization of collective community data (Russell et al. 2009) and improved 

“composite” analyses of species groups (Sauer and Link 2002). With limited 

resources and budgets, many multi-species data collection efforts have very small 

sample sizes – to such an extent that it is not possible to carry out formal inference on 

a species-by-species basis. The hierarchical modeling approach allows for the most 

effective use of available data while not requiring a priori assumptions on group 

structure or relatedness among species. 

Study site 

The data come from a breeding bird survey collected over a two-year period 

(15 May - July 1, 2006, and 15 May - July 1, 2007) at 72 randomly selected 

independent points in deciduous and mixed-deciduous forest fragments across the 

Hudson River Valley, New York. The sampling locations ranged over the entire 9546 

km2 region which includes all or part of nine counties that border the Hudson River, 

north of New York City. Points were located at least 500 m apart using Hawth’s 

stratified random sampling tool (Beyer 2004), and then mapped and field-checked, 

eliminating those that: 1) had recent disturbance that altered the cover classification 
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(n=1), 2) were too dangerous to access (e.g. steep ravine) (n=4), or 3) did not receive 

private landowner permission to access the site (n=21).  Forest fragments ranged in 

size from 0.14 – 8677.4 hectares (µ = 533.7 ha), while perimeter/area ratio ranged 

from 0.08 – 1.5 km/ha (µ = 0.2). Two trained observers recorded the presence of all 

species seen or heard during the 10-minute, 250 m fixed-radius point counts at each 

sampling station (Hutto et al. 1986). Sites were visited on three separate occasions 

during the breeding season (once each per 2-week period) although not all sites were 

surveyed both years. The perimeter and area of the fragment in which the point 

occurred was recorded. A total of 78 species were observed in this study. Of these, 

the data for 32 species were particularly sparse with less than 20 detections each over 

the entirety of the sampling season. Because of the small size of the dataset, typical 

single species approaches for estimating occupancy were inadequate for the majority 

of observed species. For more details on the sampling design and region see DeWan 

et al. (2009).  

The model 

The repeated sampling protocol allows for non-detection to be discerned from 

point-level absence at each location (MacKenzie et al. 2002). We developed a 

hierarchical model which assumes that site-specific occupancy (i.e., “true” 

presence/absence) for species i=1,2,…,N at site j=1,2,…,J, denoted z(i,j), where z(i,j) 

= 1 if species i occurs in site j and is zero otherwise. The model for occurrence is 

specified as ( ),( , ) i jz i j Bernψ:  where ,i jψ  is the probability that species i occurs at 

site j. The state variable z(i,j) is usually not known with certainty. Instead, we observe 

data x(i,j,k) for species i at site j during sampling period k, which are also assumed to 
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be Bernoulli random variables if species i is present (i.e., if z(i,j) = 1); otherwise, if 

z(i,j) = 0, then x(i,j,k) = 0  with probability 1. The observation model is represented by  

( ), ,( , , ) ( , )i j kx i j k Bern p z i j⋅:  where , ,i j kp  is the detection probability of species i 

for the kth sampling period at site j, if species i is present at site j. Note that the model 

satisfies the condition that detection is a fixed zero when a species does not occur 

(because z(i,j) = 0).    

In the simplest specification of the model, the occurrence and detection 

probabilities, ψ  and p , are determined by unspecified species and site level effects 

(Dorazio et al. 2006). These effects are incorporated into the model linearly on the 

logit-probability scale: ( ),logit i j i juψ α= +  and ( ),logit i j i jp v β= + where iu  and iv  

are species level effects and jα  and jβ  are site level effects on occurrence and 

detection, respectively. Because high abundance species are likely to be both easier to 

detect and more prevalent across the landscape, we modeled a correlation ( )ρ  

between occurrence and detection  in the model by allowing iu  and iv  to be jointly 

distributed such that ( ), 0,i iu v N ∑ ∑  :  where ( )2 2,u vσ σ  are the variance 

components among species for occurrence and detection, respectively, and uvσ  is the 

covariance of the 2 x 2 matrix ∑ (Dorazio and Royle 2005; Kéry and Royle 2008).  

Extensions of this basic model have explicitly incorporated landscape and 

survey characteristics into the probabilities of occupancy and detection (Kéry and 

Royle 2009; Russell et al. 2009). We followed this approach, and modeled the 

occurrence probability for species i at j by incorporating site-specific habitat 

characteristics. In this case we used the size and relative shape of the forest fragment 
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in which the point count occurred. Since counts were conducted in a 250 m radius, 

occupancy and detection estimates for individual species are provided at the point 

(not fragment) level. Thus we are considering how occupancy at a random point is 

affected by the area and shape of the forest fragment in which it occurs. We 

incorporated fragment area, perimeter, and P/A in the occupancy estimates by 

assuming that the logit transform of the occurrence probability was a linear 

combination of a species effect and the site specific habitat characteristics as follows:  

( )  , 1 2 3logit perimeter area P/Ai j i i j i j i juψ α α α= + + + . 

We standardized the covariates so that the means of the perimeter, area and P/A data 

were zero. Thus, the inverse-logit of iu  is the occurrence probability for species i in 

sites with "average" habitat characteristics. The coefficients 1iα , 2iα  and 3iα  are the 

effects of perimeter, area and P/A, for species i, respectively. The detection 

probability for species i was assumed to vary based on the date of the survey (linear 

and squared effects) and the year of the survey. We assumed that the community was 

closed (i.e. the species pool remained constant) over the two years during which the 

survey was conducted, but added in a year effect (constant across species) to account 

for shifting detection between the two years as a result of annual fluctuations in 

seasonality: 

( ) 2
, , , , ,logit 1 date 2 date 3 yeari j k i i j k i j k j kp v β β β= + + + . 

Our model contains seven parameters for each species in the community, and 

one (year effect) that is estimated across species. Since observations were sparse for 

many species in the sample, estimating all of these parameters would not be possible 
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if the data were analyzed on a species-by-species basis. As such, we added an 

additional hierarchical component of the model by assuming that the species-level 

parameters were random effects, each governed by community-level “hyper-

parameters”. For example, we assumed that ( )
  

   1 11 ,i N α αα µ σ:  where 
 1αµ  is the 

community response (mean across species) to perimeter and 
 1ασ  is the standard 

deviation (among species), thus the hyper-parameters are simply the mean and 

variance for each habitat and sampling covariate as measured across species (Kéry 

and Royle 2009).  

We estimated model parameters and community summaries using a Bayesian 

analysis of the model with vague priors for the hyper-parameters (e.g. uniform 

distribution from 0 to 1 for community level occupancy and detection covariates; 

normal distributions with mean zero and variance 1000 for community level habitat 

and sampling covariates). Hierarchical models are naturally analyzed by Bayesian 

methods (Gelman and Hill 2007). We carried out our analysis with WinBUGS 

(Spiegelhalter et al. 2003), general purpose software for Bayesian analysis that uses 

Markov chain Monte Carlo (MCMC). The advantage of WinBUGS is that it only 

requires specification of the model, and not a technical development of the MCMC 

algorithm (see Appendix 1.1 for model code and additional details).  

Results 

Species richness and community level responses  

The mean estimates for the community response to fragment perimeter and 

area were negative, while the response to P/A was positive (see Table 1.1 for 

summaries of the hyper-parameters). This suggests that, in general, the mean 
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probability of occupancy across species in this community was higher at points in 

smaller, more irregularly shaped fragments than in larger fragments with less edge. 

The posterior intervals for each of the community hyper-parameters contain both 

positive and negative values (Table 1.1), which is a manifestation of the variability in 

the community. In our study, which encompasses a diverse bird community, we 

would naturally expect the response of individual species to vary with landscape 

fragmentation. Thus, diffuse posterior distributions for the community level habitat 

covariates are as expected and simply reflect the diversity within the community.    

 We used the model to make predictions of species richness at localized points 

across a landscape with heterogeneous forest fragments that varied by area and P/A 

(Figure 1.1). Species richness was maximized in small areas with high perimeter to 

area ratios (large amounts of edge habitat) (Figure 1.1 – left panel).  However, 

assemblage richness of forest interior breeding birds (17 species), a subset of the 

population with high conservation value, was maximized in large fragments with less 

edge (Figure 1.1 – right panel).   

Species-specific responses 

Mean probabilities of occurrence varied widely among species, ranging from 

6.5% to 98.5%. Detection was low for many species and also varied widely (7.1%-

75.9%). There was a strong correlation between occupancy and detection (posterior 

mean for ρ  was 0.73, 95% posterior interval: 0.52-0.88; Figure 1.2), a phenomenon 

that is likely due to heterogeneity in abundance among species (Dorazio and Royle 

2005). Fragment area, as compared to perimeter or P/A, had a large impact on mean 

estimates of occupancy for many species within the community. Over the range of 
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surveyed fragments, 24 species showed (on average) an increase in occurrence 

probability as area increased (greater than 10% change in mean estimates of 

occupancy from minimum to maximum fragment size in the survey), 31 species 

showed a decrease in occurrence probability (greater than 10%) with increasing area 

and 23 species showed no change in occurrence probability with area (less than 10% 

change).  

Many species whose mean occurrence probabilities increased in response to 

increased area were forest dependent species of high conservation concern. On 

average, nine forest-interior breeders (Acadian flycatcher Empidonax virescens, 

black-and-white warbler Mniotilta varia, blackburnian warbler Dendroica fusca, 

black-throated blue warbler Dendroica caerulescens, black-throated green warbler 

Dendroica virens, cerulean warbler Dendroica cerulea, hooded warbler Wilsonia 

citrina, worm-eating warbler Helmitheros vermivorum, and winter wren Troglodytes 

troglodytes) showed substantial increases in occupancy probabilities as fragment area 

increased, but less response to changes in perimeter or P/A ratio (Figure 1.3). 

Although the number of observations for these species was fairly low (6-36 for each), 

the community approach allowed us to obtain estimates of the response of each 

species to fragment area and regularity of shape. The precision on species-level 

estimates of occupancy and effects of fragmentation increased for most species in the 

community model compared to standard species-specific models (see Appendix 1.2 

and Figure A1.1 for selected results comparing the community model to a single 

species modeling approach). When modeling each species separately, occupancy 

estimates for species with sparse data could not be obtained without exhibiting 
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extreme sensitivity to the prior. For the above nine forest-interior species, the 

standard deviations on the estimated species specific effects of area were generally 

lower using the hierarchical community model (range 1.24-1.83) than a standard 

species level model (range 1.40-2.03; Appendix 1.2). Three species (ovenbird Seiurus 

aurocapilla, scarlet tanager Piranga olivacea, and veery Catharus fuscescens) also 

had a positive response to area, but the effects were less discernable on estimates of 

occupancy because they were widely observed (e.g. occupancy was universally high). 

A few forest dependent species (brown creeper Certhia americana, Canada warbler 

Wilsonia canadensis, northern parula Parula americana, red-breasted nuthatch Sitta 

canadensis, and wood thrush Hylocichla mustelina) responded more closely to the 

community-level response by decreasing in occupancy probabilities as fragment area 

increased (Figure 1.4).   

Discussion 

Although reliable summaries of species occurrences and distributions are 

required for effective conservation, analysis of multi-species data can be challenging 

because sampling techniques often identify numerous species with few detections. 

One way to address this issue is to utilize models that integrate data across species, 

allowing for composite analyses of communities or groups of species. Hierarchical 

models are particularly valuable in this context, in part because they do not require a 

priori assumptions about community structure; any composite analysis will improve 

estimates on metrics of interest, regardless of relationships among species (Sauer and 

Link 2002). For conservation purposes, it is generally useful to consider species from 

one community or related communities; otherwise community-level summaries may 
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not be meaningful. In some situations it may be possible to incorporate additional 

group structure into the model when relationships among species have been well 

established. Estimates for rarely observed species will naturally be drawn to 

community averages (“Bayesian shrinkage” toward the mean; Link 1999), but 

precision of estimates can be improved with even a minimal number of observations 

(Appendix 1.2 and Figure A1.1). Accuracy of species-specific estimates will always 

be limited by the amount of available data, which is reflected in the diffuse posterior 

distributions for many habitat covariates. Such estimates can only be objectively 

improved through additional data collection efforts. However, as with meta-analysis 

in classical statistics (Osenberg et al. 1999), many “weak” inferences can be 

combined to make a stronger collective response. Thus, by accounting for both 

species-level effects as well as the aggregated effects of landscape covariates on the 

community as a whole, hierarchical models provide a valuable alternative to single 

species analyses of community data. 

Our model produced a number of key findings relevant to prioritizing 

conservation actions and was capable of making predictions of bird species richness 

based on fragment area and edge effects (Figure 1.1), which should be verified 

through additional sampling. Understanding the relationship between environmental 

factors and species richness will improve the efficacy of conservation efforts in the 

protection of biodiversity in urbanizing landscapes. For example, our estimates of the 

community and species-level relationships between occupancy probabilities and 

habitat characteristics allows a direct valuation of forest fragments in terms of either 

total species richness (Figure 1.1 – left panel) or assemblage richness (Figure 1.1 – 
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right panel), and illustrates an explicit trade-off between these two competing 

objectives. Overall, the community level response to area and P/A suggests that many 

species increased in occupancy in response to fragmentation inducing a concomitant 

increase in species richness. These results are consistent with the intermediate 

disturbance hypothesis (Connell 1978; Grime 1973; Horn 1975) which suggests that 

diversity is maximized in areas of moderate disturbance. Similar to Lepczyk et al. 

(2008), we found that extremely large fragments with extensive forest-interior may be 

less common (DeWan et al. 2009) and estimates of species richness would be 

expected to decline if sites were dominated by edge-tolerant or generalist species. In a 

conservation context, our overall estimates of species richness may not be particularly 

valuable; however the hierarchical framework offered a means to acquire improved 

precision in estimates of occupancy for rarer species, which we used to determine 

assemblage richness for a subset of the community with high conservation value.  

Many of the forest-breeding species responded to increased fragmentation 

with decreased probabilities of occupancy (Figure 1.3). However, occupancy for 

some forest-breeding species responded negatively to fragment area (Figure 1.4). 

Although this may not be surprising for more urban-tolerant species (e.g. red-breasted 

nuthatch), these results were not typical for others that are sometimes considered 

sensitive to fragmentation (e.g. Canada warbler, wood thrush). In addition, some area-

sensitive species were so common that their relationship to area would not have been 

discernible through typical occupancy approaches. Scarlet tanager, ovenbird and 

veery were observed frequently during sampling and had high occupancy estimates. If 

we had a priori grouped these species together as an indicator of sensitivity to 
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fragmentation, without testing the assumptions, we would have been unable to 

discern differences among species in their response to fragment area and P/A.  

Our approach allows for estimation of occupancy and detection probabilities 

of all observed species, even if they are poorly represented in the sample data. 

Detection probabilities were very low for many species (Figure 1.2), further 

supporting a number of studies that have demonstrated the importance of accounting 

for detection in occupancy and abundance modeling (Bailey et al. 2004; Kéry et al. 

2008; MacKenzie et al. 2006). Detection probability can also be significantly affected 

by abundance (Royle and Nichols 2003), which is evidenced in our analysis by the 

high correlation between detection and occupancy. Variance around species-specific 

estimates of occupancy, detection, and the covariates will inevitably be high for 

species with limited data. However, the community level approach typically provides 

more precise estimates for rare species than traditional species-level analyses 

(Appendix 1.2 and Figure A1.1) and was especially valuable for the nine forest 

interior species that were sensitive to habitat fragmentation, yet would not have 

yielded reliable estimates of occupancy due to low sample size. Our analysis 

framework should be particularly effective in reducing cost and increasing efficiency 

for organizations where funding for field-based data collection is limited.   

Many conservation and management decisions rely on estimates of species 

richness to prioritize areas for protection and monitoring. For example, DeWan et al. 

(2009) developed a map of high priority conservation areas in the Hudson River 

Valley region based on indices of richness for a subset of forest interior bird species. 

Their analyses were limited to species that were neither too common nor too rare. The 
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results from our community level approach can be used to improve such maps and 

more accurately determine areas of high conservation value to protect from urban 

development. We demonstrated, using a diverse bird community, the applicability 

and relevance of our hierarchical modeling approach to: 1) assess species richness 

while accounting for individual species; 2) improve the precision on estimates of 

occupancy and detection for many species, even species with relatively sparse data; 

and 3) investigate the impacts of fragmentation on breeding birds at the community 

and species levels. Our hierarchical framework offers an exciting tool for wildlife 

agencies and conservation organizations who struggle to effectively monitor and 

protect biological diversity. Monitoring the status and distribution of biodiversity and 

rare species is a priority at local, national, and international scales (Oberbillig 2008). 

Because of challenges in sampling and cost, lack of quality data has been identified as 

a serious challenge for biodiversity conservation, particularly for rarer species (The 

Heinz Center 2002). Many sampling designs already include data collection on 

multiple species (Heyer 1994; Wilson et al. 1996) and multi-species inventory 

techniques can reduce sampling costs and effort (Manley et al. 2005; Vesely et al. 

2006). The community approach allows researchers to use data from all sampled 

species to improve estimates of species richness and generate previously unavailable 

estimates of occupancy for rare or elusive species. The flexibility of hierarchical 

modeling can provide greater insight on how a particular taxonomic community 

responds to environmental changes, while also accounting for species-specific 

differences. If incorporated into monitoring and assessment programs, this framework 
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could improve estimation of species richness and inferences for rare species, and 

provide scientifically sound information to support conservation planning and action.  
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Table 1.1 Community level summaries of the hyper-parameters for the detection 
and occupancy covariates. 
 

Community-level hyper-parameter   

mean - perimeter

standard deviation - perimeter

mean - area

standard deviation - area

mean - P/A

standard deviation - P/A

mean - date effect (linear term)

sd - date effect (linear term)

mean - date effect (squared term)

sd - date effect (squared term)

mean - year effect

1ασ
  1αµ

1βµ

2βµ

2ασ

3ασ

1βσ

2βσ

3β

  2αµ

  3αµ

Mean

-0.06

0.64

-0.25

1.83

0.07

0.54

-0.04

0.25

-0.03

0.25

0.11

Standard deviation

0.75

0.34

0.83

0.47

0.12

0.18

0.04

0.04

0.05

0.05

0.05

95% Posterior intervals

(-1.65, 1.32)

(0.20, 1.51)

(-1.79, 1.48)

(0.82, 2.75)

(-0.15, 0.32)

(0.26, 0.96)

(-0.12, 0.05)

(0.17, 0.33)

(-0.13, 0.08)

(0.16, 0.36)

(0.01, 0.21)
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Figure 1.1 Total estimated species richness (left) based on area and P/A and 

estimated assemblage richness of forest interior species (right - 17 observed species: 

Acadian flycatcher, black-and-white warbler, blackburnian warbler, black-throated 

blue warbler, black-throated green warbler, brown creeper, Canada warbler, cerulean 

warbler, hooded warbler, northern parula, ovenbird, red-breasted nuthatch, scarlet 

tanager, veery, worm-eating warbler, winter wren, and wood thrush). 
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Figure 1.2 Mean estimated values of occupancy and detection for the 78 observed 

species. The shaded line shows the one to one relationship. 
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Figure 1.3 Mean marginal probabilities of occupancy for nine forest interior breeding 

bird species (Acadian flycatcher, black-and-white warbler, blackburnian warbler, 

black-throated blue warbler, black-throated green warbler, cerulean warbler, hooded 

warbler, worm-eating warbler, and winter wren) in relation to fragment perimeter, 

area, and perimeter/area ratio (P/A). 
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Figure 1.4 Mean marginal probabilities of occupancy for five forest interior breeding 

bird species (brown creeper, Canada warbler, northern parula, red-breasted nuthatch, 

and wood thrush) in relation to fragment perimeter, area, perimeter/area ratio (P/A). 
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Chapter 2: Multispecies occurrence models to evaluate the 

effects of management and conservation actions 
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Abstract 

Conservation and management actions often have direct and indirect effects on a wide 

range of species. As such, it is important to evaluate the impacts that such actions 

may have on both target and non-target species within a region. Understanding how 

species richness and composition differ as a result of management treatments can help 

determine potential ecological consequences. Yet it is difficult to estimate richness 

because traditional sampling approaches detect species at variable rates and some 

species are never observed. We present a framework for assessing management 

actions on biodiversity using a multi-species hierarchical model that estimates 

individual species occurrences, while accounting for imperfect detection of species. 

Our model incorporates species-specific responses to management treatments and 

local vegetation characteristics and a hierarchical component that links species at a 

community level. This allows for comprehensive inferences on the whole community 

or on assemblages of interest. Compared to traditional species models, occurrence 

estimates are improved for all species, even for those that are rarely observed, 

resulting in more precise estimates of species richness (including species that were 
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unobserved during sampling). We demonstrate the utility of this approach for 

conservation through an analysis comparing bird communities in two geographically 

similar study areas: one in which white-tailed deer (Odocoileus virginianus) densities 

have been regulated through hunting and one in which deer densities have gone 

unregulated. Although our results indicate that species and assemblage richness were 

similar in the two study areas, point-level richness was significantly influenced by 

local vegetation characteristics, a result that would have been underestimated had we 

not accounted for variability in species detection.  

Introduction 

Conservation and management actions are generally designed to target a 

particular species of interest (e.g., Howe et al. 2007; Pauliny et al. 2008; Wang et al. 

2009). However, actions focused on maintaining or improving habitat for a single 

species may also affect other species (e.g., Tikkanen et al. 2007). For example, 

management designed to improve conditions for the endangered red-cockaded 

woodpecker (Picoides borealis), such as forest burning and thinning, may have 

adverse impacts on neotropical migrant birds that nest in midstory and understory 

vegetation (Powell et al. 2000; Moore et al. 2005). Initial studies on wood thrush 

(Hylocichla mustelina) found that treatments had no effect on short term density and 

survival (Powell et al. 2000). However, further analyses have suggested that burning 

and thinning may be “incompatible” with wood thrush persistence (Moore et al. 

2005). Many conservation plans explicitly view management as influencing a variety 

of species, and balancing the losses and gains of species is an implicit part of 

managing biodiversity (e.g., Rich et al. 2004; Suarez-Rubio and Thomlinson 2009). It 
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is therefore important to consider the effects of management actions on not only the 

target species, but also on other species within a region. 

One method for assessment is to compare local species richness (i.e., total 

number of species) in areas that are affected and unaffected by a specific action. Yet, 

determining species richness is complicated by variability in detection rates, which 

can vary across species or by landscape characteristics (Boulinier et al. 1998; Kéry 

and Schmidt 2008) and may be affected by actions that create a change in habitat. As 

a result, estimates of species richness and composition would be biased if species-

specific detection is not accounted for properly. This may feign a non-existing 

management effect or mask a genuine effect.  

Rare species, many of which are of conservation concern, may show 

disproportionate responses to changes in habitat as compared to common species. 

Often there are inadequate data on rare species, which may be detected infrequently 

or not at all during sampling, resulting in limited inferences about occurrence 

(MacKenzie et al. 2005). However, management evaluations should include all 

species, not just those species that produce enough data. Recent advances in statistical 

methodology have improved the ability to account for imperfect detection and low 

occurrence of rare species through a community-level hierarchical modeling approach 

(Dorazio and Royle 2005; Dorazio et al. 2006), a multi-species extension of the 

occurrence model described in MacKenzie et al. (2002). The fundamental idea behind 

the multi-species modeling approach is that collective community data can inform the 

occurrence probabilities for all observed species, even those that are rare or elusive, 

and allow for occurrence estimation of species that were never observed in the sample 
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plots. This results in an improved composite analysis of the community and increased 

precision in species-specific estimates of occurrence (Kéry and Royle 2009; Zipkin et 

al. 2009). Furthermore, the hierarchical model can be specified to incorporate habitat 

and sampling effects that influence occurrence and detection, respectively (Russell et 

al. 2009). Thus a multi-species approach can provide more precise estimates of 

species richness, while accounting for variation in occurrence and detection among 

species. Understanding how species richness and composition differ as a result of 

management treatments and habitat characteristics can aid in determining the 

ecological consequences of management.    

In this paper, we explore the use of community hierarchical models in a 

conservation context by comparing bird species richness in two similar study areas in 

the Catoctin Mountains, Maryland (USA): one with an unharvested population of 

white-tailed deer (Odocoileus virginianus) and one in which deer densities have been 

regulated through hunting and are much lower as a result (Bates et al. 2005). White-

tailed deer can severely alter vegetation structure and composition, reducing habitat 

availability and quality for some bird species (Cote et al. 2004; McShea and Rappole 

2000). Efforts to control deer densities have been implemented for a variety of 

reasons including to reduce wildlife/human conflicts (e.g., vehicle collisions, 

minimize human exposure to ticks) and to protect vegetation growth. Our interest lies 

in understanding how management decisions to control deer densities (in this case, by 

allowing hunting) affect total bird species richness as well as the richness of 

functional species groups, specifically assemblages of species that nest and forage on 

the ground or in the understory relative to the midstory and canopy. To this end, we 
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built our model to include both a treatment effect (hunting vs. no hunting) as well as 

local vegetation characteristics to estimate species and assemblage richness at point-

level, study area, and regional spatial scales.  

Methods 

The hierarchical community model is a multi-species approach to obtain 

composite information by estimating individual species occurrence probabilities 

(Dorazio and Royle 2005; Dorazio et al. 2006). The basic idea is that (1) non-

detection can be distinguished from absence through repeated sampling and (2) 

species-specific estimates of occurrence can be improved using collective data on all 

species observed during sampling. This approach is especially useful for communities 

that include rare (or unobserved) species, which often yield too few detections to 

estimate occurrence. Because species are detected imperfectly, it is likely that some 

species do not appear in the sample. Inference about species richness, including the 

number of unobserved species, is a central objective in studies of species distributions 

(e.g., Cam et al. 2002; Husté et al. 2006) and can be a useful metric in assessing the 

impacts of management actions. The hierarchical multi-species model can produce 

estimates of richness that account for species unobserved during sampling (Dorazio et 

al. 2006). Before outlining the specific details of the model, we describe the study 

area and data. 

Study area and data collection 

High densities of white-tailed deer have lead to increasing concern about the 

effects of intense browsing on biological resources and forest processes in the eastern 
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United States and elsewhere. The United States National Park Service (NPS) 

implemented an assessment to determine whether deer in the Catoctin Mountain Park 

(CATO) should be managed to address declining forest regeneration to ensure that 

natural processes support native vegetation and wildlife in the region (Bates et al. 

2005). As part of the assessment, bird surveys were conducted in CATO, where 

white-tailed deer abundance is unregulated, and in the nearby Frederick City 

Watershed Cooperative Wildlife Management Area (FCW), where deer are hunted. 

Estimates of white-tailed deer densities were more than seven times higher in CATO 

than in FCW (Bates et al. 2005). Sampling occurred at 35 random points in each 

study area in late May through early July 2002. During 12-minute counts, all birds 

seen or heard were recorded. Bird species that were detected within 75 m of the point 

were considered present for the specified sampling occasion. All points were sampled 

on at least three separate days distributed throughout the breeding season and at 

different times in the morning. For each point, the percent cover by understory foliage 

(UFC) and the basal area of trees (BA) were also measured during a separate 

sampling effort carried out from mid-July to August. See Bates et al. (2005) and 

Royle et al. (2004) for further details on the data collection process.    

Modeling framework 

We define occurrence z(i,j) as a binary variable in which z(i,j)=1 if species i 

occurred within 75 m of point j (and zero otherwise). The occurrence state is assumed 

to be the outcome of a Bernoulli random variable, denoted by ( ),( , ) ~ i jz i j Bernψ , 

where ,i jψ  is the probability that species i occurs at site j.  True occurrence is 
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imperfectly observed, which confounds the estimation of ,i jψ . However, sampling at 

a point j with k>1 temporal replicates over a short period (such that the community 

remains closed for the duration of the survey) allows for a formal distinction between 

species absence and non-detection, which is specified through a detection model for 

the observed data x(i,j,k) (MacKenzie et al. 2002). We define the detection model for 

species i at point j during replicate k as ( ), ,( , , ) ~ ( , )⋅i j kx i j k Bern p z i j  where , ,i j kp  is 

the detection probability of species i for the kth replicate at point j, given that species i 

is in fact present at point j. Thus the detection model satisfies the condition that 

detection is a fixed zero when a species is not present because z(i,j)=0.  

We assumed that the occurrence (,i jψ ) and detection ( , ,i j kp ) probabilities 

varied by species and were influenced by habitat and survey characteristics, 

respectively. These effects were incorporated into the model using the logit link 

function (Kéry and Royle 2008; Kéry et al. 2008; Russell et al. 2009). We estimated 

the occurrence probabilities for species i at point j dependent on whether point j was 

in CATO (Ind=1) or FCW (Ind=0), thus allowing for species-level effects to differ 

between the two study areas. We also incorporated the point-specific habitat 

characteristics: UFC and BA. We included both linear and quadratic terms for UFC 

and BA so that species associations with these habitat characteristics could be 

maximized at any intermediate level (e.g., some understory foliage vs. 0% or 100%) 

and standardized the data to have mean zero. The occurrence model for species i at 

point j is specified:  

( )
 

,

2 2

logit ( ) (1 )

                                            1 2 3 4  .

i j i j i j

i j i j i j i j

uCATO Ind uFCW Ind

UFC UFC BA BA

ψ

α α α α

= + − +

+ + +
 



 

 38

In this case, iuCATO  and iuFCW  are the occurrence probabilities (on the 

logit scale) for species i at points in the CATO and FCW study area, respectively, for 

average values of UFC and BA. The coefficients for the four iα  terms are the linear 

and squared effects of understory foliage and tree basal area on species i. The 

detection model was similarly designed to estimate detection separately for each 

species in the two study areas. We included the survey date (linear and squared 

effects) and the time from sunrise (linear, since all surveys occurred in the morning) 

as possible species-specific detection covariates. The detection covariates were also 

standardized to have mean zero: 

( ), ,

2

logit ( ) (1 )

                                                        1 date 2 date 3 sunrise  .

i j k i j i j

i j i j j

p vCATO Ind vFCW Ind

β β β

= + −

+ + +
 

The species-specific occurrence and detection processes were related to one 

another through an additional component where it was assumed that each of the 

species parameters was drawn from a common (community-level) distribution. A 

major benefit of the multi-species approach is that it does not require a priori 

community or group designation; combining data from similar species will be an 

improvement over individual species models, provided that species occurrence 

responses can conceivably come from a common distribution (Sauer and Link 2002). 

By linking the individual species occurrence probabilities through this community 

hierarchical component, precision of species-specific estimates is improved leading to 

enhanced composite analyses and a more efficient use of available data (Kéry and 

Royle 2008; Zipkin et al. 2009).    
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The community-level hierarchical component of the model assumes that each 

of the species-level occurrence ( ), , i i iuCATO uFCW α  and detection 

( ), , i i ivCATO vFCW β  parameters were random effects, governed by “hyper-

parameters”. For example, we assumed that ( )
 

  ~ ,i uCATO uCATOuCATO N µ σ  where 

uCATOµ  is mean occurrence across the community in CATO and uCATOσ  is the 

standard deviation among species. We similarly specified the mean and standard 

deviations for each of the twelve community-level habitat parameters (mean and 

standard deviation parameterµ ,σ  for each species-specific random effect 

     ,  ,   1 2 3, 4, ,CATO FCWu u α α α α ) and the ten detection parameters (mean and 

standard deviation for   ,  ,  , , 1 2 3CATO FCWv v β β β ). 

Bayesian analysis of the model was carried out using the method of data 

augmentation described in Royle et al. (2007) and Kéry and Royle (2009), which 

allows for estimation of the number of species in the community that were 

unobserved (either locally or never detected) during the sampling process. Analysis 

by data augmentation assumes a uniform (0,M) prior for N, the “true” species 

richness, where M is a fixed constant chosen to be much greater than the number of 

observed species (n) and such that the resulting posterior distribution is not truncated.  

Implementation of the model with a uniform prior is done by augmenting the data set 

with M-n all-zero encounter histories. Then the model for the augmented data set is a 

zero-inflated version of a model where the actual number of species in the community 

(N) is known (Kéry and Royle 2009; Royle et al. 2007). The occurrence process is 

modified so that ( ) ,( , ) ~ i j iz i j Bern wψ ⋅  where ( )~iw Bern Ω  for species 
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1,2,..., ,  1,  2,...,  ,  1,  2,...,  i n n n N N N M= + + + + . The interpretation of this 

modified occurrence process is that if 1=iw  (corresponding to species that were 

observed or that were unobserved but available for sampling), the probability of 

occurrence is simply ,i jψ . If 0=iw  (indicating that a species was unavailable for 

sampling), then occurrence is zero by definition (i.e., a structural zero). The model is 

now modified to estimate the parameter Ω . The value of M need only be large 

enough to not truncate the posterior distribution of N, which can be assessed by 

running short initial trials. Interpretation of the posterior of N must be done 

cautiously. It is not necessarily the number of species that occur in a particular 

landscape; rather, it is equivalent to the asymptote of a species accumulation curve 

(Kéry and Royle 2009). In the context of deer browsing, N is the intrinsic capacity of 

bird species in the study areas, suggesting the possible number of species that could 

occur in regions with similar vegetation characteristics and management actions. 

We calculated species richness including unobserved species in the two study 

areas as well as at each point location by summing the number of estimated species in 

the occurrence matrix. We also estimated the degree of similarity in community 

composition between study areas by calculating the “coincidence index” (Dice 1945; 

Dorazio and Royle 2005 pg. 387), a value between zero and one where zero indicates 

no overlap and one indicates complete overlap. Following McShea and Rappole 

(2000), we classified observed species into two assemblages that might respond 

differently to deer densities or vegetation characteristics: (1) low/ground nesting and 

foraging species and (2) midstory/canopy nesting species. We then estimated point-

specific richness and the coincidence index between study areas for these 
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assemblages, which we used for comparison. Recognizing the limitations of the 

design (confounding of study area and management regime), we compared the point-

specific associations of richness with the habitat attributes that reflect understory 

openness (UFC) and forest maturity (BA). We note that the model does not build in 

explicit relationships between point-specific richness and covariates; instead we 

inferred these relationships from the point-specific richness results. 

The model was analyzed using a Bayesian approach in the programs R and 

WinBUGS (Spiegelhalter et al. 2003). We used independent, diffuse proper prior 

distributions for the community-level hyper-parameters. We ran three chains of 

length 10,000 after a burn-in of 20,000 and thinned the posterior chains by 10. 

Convergence was assessed using the R-hat statistic, which examines the variance 

ratio of the MCMC algorithm within and between chains across iterations (Gelman 

and Hill 2007). 

Results 

A total of 58 bird species were observed during sampling: 52 species in 

CATO and 46 in FCW. The model estimated 60.3 species in the whole of the region 

(95% Posterior Interval, PI: 58-64) with 55.8 (52-60) and 51.2 (47-58) species in the 

CATO and FCW study areas, respectively. The species composition of the two study 

areas was similar with an estimated coincidence index of 0.89 (0.83-0.96). However, 

detection probabilities were low, with greater than 80% of observed species having 

mean detection probabilities of less than 0.5 per sampling occasion in both study 

areas (Figure 2.1). There was a positive, but weak, relationship (P<0.02, 
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R2
CATO=0.12, R2

FCW=0.10) between estimates of occurrence and detection across 

species in both CATO and FCW, but no difference between study areas.   

There was no difference between point-specific estimates of species richness 

in CATO and FCW (Figure 2.2 – left panel) and most species had similar occurrence 

probabilities in the two study areas (Figure 2.2 – right panel). The mean estimated 

point-specific richness was 29.3 (19-43) species in CATO and 27.4 (19-38) species in 

FCW. In contrast, the mean observed number of species was 17.2 (range: 9-33) in 

CATO and 14.0 (range: 4-24) in FCW. Species-specific detection probabilities were 

also similar between the two study areas, with varying effects of survey date on 

detection probability and a generally negative effect as time from sunrise increased 

(Figure 2.3).  

Estimated point richness for an assemblage of 14 observed understory species 

was 4.9 (1-10) in CATO and 7.2 (3-11) in FCW. The 29 observed midstory/canopy 

species had an estimated point richness of 16.3 (11-22) in CATO and 13.4 (9-18) in 

FCW. The coincidence index suggested that the composition was similar in the two 

study areas for both understory species (0.96; 95% PI: 0.92-1.0) and midstory/canopy 

species (0.87; 95% PI: 0.79-0.96). Although posterior distributions for occurrence 

estimates in CATO and FCW overlapped for all bird species, a few notable species 

had visibly higher mean occurrence probabilities in one of the two study areas. 

Several ground-nesting species had higher occurrence probabilities in FCW (and 

relatively little overlap in posterior distributions), including black-and-white warbler 

(Mniotilta varia, difference in mean occurrence between areas: 0.43), ovenbird 

(Seiurus aurocapilla, 0.20), and worm-eating warbler (Helmitheros vermivorus, 
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0.57), a species of continental and regional conservation concern (Rich et al. 2004; 

Rosenberg 2003). Species with higher occurrence probabilities in CATO included 

others of high conservation priority (Rich et al. 2004; Rosenberg, 2003), such as 

cerulean warbler (Dendroica cerulea, 0.70) and yellow-throated vireo (Vireo 

flavifrons, 0.26).  

Point-specific richness and individual species occurrence probabilities were 

significantly influenced by local vegetation characteristics (Figure 2.4). The effect of 

vegetation characteristics on species richness was understated in an analysis that 

included only the locally observed number of species. There was a strong positive 

relationship between estimated point-specific species richness and understory foliage 

cover (UFC; P<0.001 for estimated richness compared to P=0.017 for observed 

richness) and a strong negative relationship between point-specific richness and tree 

basal area (BA; P<0.001 for estimated richness compared to P=0.138 for observed 

richness). As noted above, these relationships were deduced from species-specific 

responses to the covariates (i.e., Figure 2.4 depicts the posterior means of the 

estimated richness for each sampled point plotted against the covariates used in the 

analysis). Additionally, there was a significant negative relationship between UFC 

and BA but no difference in the overall vegetation characteristics between the two 

study areas.  

Discussion 

 Management actions can have significant impacts on the broader plant, 

animal, and bird communities. Our results demonstrate how multi-species models can 

be used in a conservation context to assess differences in the richness and 
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composition of multi-species data based on (1) whether an area is affected by a 

specific management action and (2) local habitat or landscape characteristics. The 

strength of the approach lies in the ability to estimate species-specific occurrence and 

detection separately, while linking members of the community. This leads to greater 

precision in species-specific parameter estimates, especially for rare or infrequently 

observed species (Zipkin et al. 2009) as well as an improved understanding of the 

overall community response to management actions.  

Many species in our study had low detection probabilities. Inferences on 

occurrence distributions can be misleading without properly accounting for 

detectability (Gu and Swihart 2004; Kéry et al. 2008; Nichols et al. 1998). Had the 

model not accounted for variability in detection probabilities among species, we 

would have underestimated point-level richness and the effects of local vegetation 

characteristics (Figure 2.4). Additionally, several species had too few detections to 

yield occurrence estimates under individual species models. Yet for comprehensive 

assessments, it is important to examine the effects of management actions on all 

species, not just those species that produce enough data for standard analyses.    

 For conservation agencies interested in improving conditions for bird species, 

it may be more important to focus on the manipulation of local vegetation 

characteristics rather than on regional deer densities. In our study, we found no 

differences between the overall bird communities in CATO, where deer are 

unmanaged, and FCW, where deer density is regulated through hunting (Figure 2.2). 

We found that point-specific richness estimates were most strongly associated with 

the local habitat characteristics, UFC and BA (Figure 2.4), which is consistent with 
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other studies that have examined the relationships between deer, vegetation, and birds 

(e.g., deCalesta 1994; DeGraaf et al. 1991; McShea and Rappole 1992; McShea and 

Rappole 2000). Since understory foliage and tree basal area are negatively correlated 

covariates, the response of species richness to these vegetation characteristics is 

necessarily opposing. To better understand the independent effects of UFC and BA 

on species richness, additional controlled studies should be conducted to sample a 

wider range of BA for prescribed levels of UFC (and vice versa). The vegetation in 

both study areas is heterogeneous, with species composition, stem density, and 

structure influenced not only by deer browsing, but by other factors, including soil 

type and depth, slope and aspect, and land use history. Despite the high deer densities 

in CATO, sections of the park still retain relatively high stem densities of woody 

understory plants such as spicebush (Lindera benzoin), which deer generally do not 

browse on, and points in these sections generally had higher richness than where 

understory was sparse (Bates et al. 2005). We did not detect a difference in the total 

percent of understory foliage between CATO and FCW. However, Bates et al. (2005) 

did find differences in understory foliage by height class, with significantly less 

foliage with heights between 0.1-1.5 meters in CATO, which may account for 

decreased occurrence estimates for some understory species in CATO as compared to 

FCW. Although the limited design of the study does not permit experimental 

evaluation of a wide array of habitat changes associated with deer browsing, the 

associations of point-specific vegetation characteristics and estimated bird community 

attributes can provide park managers with initial models for manipulating habitats to 

improve bird occurrence and abundance. In addition, the modeling framework allows 
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for explicit calculations of assemblage richness and composition, which should be 

helpful in further understanding trade-offs in species occurrences associated with 

management actions.  

 Multi-species hierarchical models can be used to advance understanding of 

how conservation and management actions affect birds and other taxa at the species 

and community levels. The approach offers a unified framework for simultaneously 

estimating species and assemblage richness as well as occurrence and distribution of 

individual species at local and regional spatial scales. Covariates can be included in 

models to make spatial or temporal comparisons, or to assess the effects of factors 

that likely influence the occurrence or detection of species, thus refining parameter 

estimates. Recent advancements have extended the hierarchical multi-species model 

to account for colonization and extinction (Kéry et al. 2009), which should be useful 

for conservation agencies interested in studying the effects of management actions 

over time. Our approach can improve understanding of how species and communities 

respond to management actions, allows for explicit comparisons relevant to 

management (such as how deer influence understory vs. canopy birds), and provides 

enhanced information on manageable factors (i.e., density of understory shrubs) 

affecting species richness. Incorporating this approach into conservation should 

improve biodiversity assessments of species and community responses to 

management actions.  
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Figure 2.1 Comparison of mean occurrence and detection probabilities for all bird 

species observed on surveys conducted during the nesting season of 2002 in the 

Catoctin Mountain Park (CATO) and the Frederick City Watershed (FCW), 

Maryland.  
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Figure 2.2 Estimated point-specific bird species richness (including unobserved 

species) in the Catoctin Mountain Park (CATO) and the Frederick City Watershed 

(FCW; left panel) and mean estimated species-specific probabilities of occurrence in 

CATO vs FCW (right panel; the solid black line shows the regression line and the 

dashed grey line is a 1-to-1 line). 
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Figure 2.3 Species-specific sampling effects on detection probabilities: survey date 

(left panel) and survey time (right panel). 
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Figure 2.4 Estimated (black circle) and observed (grey diamond) point-specific bird 

species richness compared to understory foliage (UFC; left panel) and tree basal area 

(BA; right panel), from the combined bird and vegetation data collected in the two 

study areas in the Catoctin Mountains, Maryland.  
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Chapter 3: Evaluating the predictive abilities of community 

occupancy models using AUC  

 

Accepted pending revisions: Ecological Applications. 
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Abstract 

The ability to accurately predict patterns of species’ occurrences is fundamental to the 

successful management of animal communities. To determine optimal management 

strategies, it is essential to understand species-habitat relationships and how species 

habitat use is related to natural or human-induced environmental changes. Using five 

years of monitoring data in the Chesapeake and Ohio Canal National Historical Park, 

Maryland, USA, we developed four multi-species hierarchical models for estimating 

amphibian wetland use that account for imperfect detection during sampling. The 

models were designed to determine which factors (wetland habitat characteristics, 

annual trend effects, spring/summer precipitation, and previous wetland use) were 

most important for projecting future habitat use. We used the models to make 

predictions of species occurrences in sampled and unsampled wetlands and evaluated 

model projections using additional data. Using a Bayesian approach, we calculated a 

posterior distribution of receiver operating characteristic area under the curve (ROC 

AUC) values, which allowed us to quantify explicitly the uncertainty in the quality of 

our projections and to account for false negatives in the evaluation dataset. We found 
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that wetland hydroperiod (the length of time that a wetland holds water) as well as the 

occurrence state in the prior year were generally the most important factors in 

determining occupancy. The model with only habitat covariates best predicted species 

occurrences; however, knowledge of wetland use in the previous year significantly 

improved predictive ability at the community level and for two of 12 species/species 

complexes. Our results demonstrate the utility of multi-species models for 

understanding which factors affect species habitat use and provide an improved 

methodology using AUC that is helpful for quantifying the uncertainty in model 

projections while explicitly accounting for detection biases. 

Introduction 

For many species, occurrence patterns (i.e., the number and geographic 

distribution of species occurrences) are targets of resource managers, especially when 

management objectives include multiple species (DeWan et al. 2009; Manley et al. 

2004). An essential component of effective management includes understanding how 

habitat characteristics affect species distributions and how changes in habitat features 

can alter species occurrence patterns (Guisan and Thuiller 2005; Williams et al. 

2002). Multi-species occupancy and fine-scale distribution models can improve 

conservation efforts by providing decision-makers with the information necessary to 

evaluate whether proposed actions are beneficial to species individually and to the 

community as a whole (Kéry and Royle 2008; Zipkin et al. 2010). Such models can 

help assess tradeoffs in the expected occurrences of species associated with different 

management actions (Suarez-Rubio et al. 2009). Moreover, models that are designed 

to assist with management must provide clear insight into the accuracy, reliability, 
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and inherent uncertainty of their projections. Characterizing the uncertainty of model 

predictions is a vital, but often overlooked, component of conservation management. 

Yet, it is crucial for adequate assessments of competing actions and objectives. 

Arguably, the most common method for evaluating the predictive abilities of 

occupancy and species distribution models is to estimate the area under the receiver 

operating characteristic (e.g., Anderson and Raza 2010; Elith et al. 2006; Kharouba 

and Kerr 2010; Phillips et al. 2006; Rebelo et al. 2010; although AIC is a popular 

model selection criterion for occupancy models, it not generally used for prediction). 

In its use for evaluating occupancy models, the receiver operating characteristic 

(ROC) is based on a confusion matrix that summarizes the prediction results in terms 

of true/false presences/absences. The confusion matrix is a two by two table of the 

true outcome versus the predicted outcome that sums the number of locations that 

both correctly and incorrectly identified presences and absences of the species. The 

predicted outcome for species occurrences is generally represented as a probability 

and not a binary response, leading to construction of the ROC. The ROC plots the 

ratio of true positives, called sensitivity (e.g., the species is present when the model 

predicts that it is present), to false positives, termed 1-specificity (e.g., the species is 

not present when the model predicts that it should be present), for all possible cutoff 

values of the estimated occupancy probability (ranging from 0-1). The area under the 

ROC (termed AUC and also ranging from 0-1) measures a model’s discrimination, or 

ability to correctly determine which locations are occupied (Hosmer and Lemeshow 

2000). With the advent of software such as MAXENT, Garp, and Biomapper, which 

allow for easy implementation of species distribution models, the use of AUC for 
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evaluating such models has become increasing popular.  However, in using AUC to 

evaluate a model’s discrimination abilities, current methods fail to consider the 

influence of species’ detection probabilities (Elith et al. 2006; Phillips et al. 2006). 

While imperfect detection during sampling can lead to biases in estimates of 

occupancy, potential errors can be reduced by using statistical methods that account 

for the detection process (MacKenzie et al. 2002; Tyre et al. 2003). In the context of 

AUC, detection biases leading to false negatives (e.g., a species is not detected in a 

location even though it is present) in the data that are used for model evaluation, and 

not in model development, present an additional challenge in accurately determining 

a model’s performance. This is because nondetection of a species does not necessarily 

imply absence, which can alter both the sensitivity and specificity of the confusion 

matrix, biasing estimates of AUC. Despite the potential for misleading results, we 

have not seen attempts to address this issue in the literature. Yet, the implications of 

using models that have been evaluated with biased data could be serious for species 

management.  

Models that predict the occurrences of species within a given region in future 

years and under a plausible range of environmental conditions are useful decision-

making tools. Building such models can be a daunting task, considering that many 

research projects have short time series of data (relative to the longevity of a species 

or the temporal scale of environmental changes) and are conducted on relatively 

restricted spatial scales. Our objective is to present a framework for predicting the 

occurrence dynamics of a community of wetland breeding amphibian species that (1) 
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explicitly characterizes the uncertainty in the predictive success of model projections 

and (2) incorporates detection uncertainty in both model development and evaluation.    

The conservation of amphibian communities presents a formidable challenge 

to resource managers because populations respond to both local and broad-scale 

factors (which may differ among species that share the same habitat), potentially 

limiting the suite of possible management actions available within protected areas 

(Green 2003; Mattfeldt et al. 2008). As such, amphibians are ideal for exploring the 

utility of multi-species models for management designed to mitigate the declines of 

populations and communities. Amphibian populations are declining worldwide, 

although the ultimate causes of these declines are uncertain and likely differ among 

regions and populations (Cushman 2006; Wake and Vrendenburg 2008). 

Accordingly, resource managers in the Chesapeake and Ohio Canal National 

Historical Park (CHOH) in Maryland, USA, recognized that increasing urbanization 

in the surrounding region, combined with regional projections of future climate 

change, may decrease the suitability of wetland habitats within the park that are 

necessary for successful amphibian breeding. 

Three pieces of information are needed to understand how management 

actions can improve local species richness in CHOH: 1) wetland-specific occurrence 

information for the complete amphibian community, 2) an understanding of how 

wetland characteristics affect species-specific patterns of occurrence and how 

management actions can affect wetland characteristics, and 3) reliable models for 

projecting probabilities of species occupancy in unsampled wetlands and in future 

years. Here, we evaluate the ability of multi-species occupancy models, to predict the 
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occurrences of wetland breeding amphibians in CHOH. We apply competing 

hierarchical community occupancy models to five years of detection/nondetection 

amphibian data, and determine the predictive potential of our models using data 

collected in the sixth year at locations that had previously been sampled as well as 

from new locations. To achieve our objectives, we build models that account for 

imperfect detection in both the data that we use for estimating occupancy 

probabilities and the data used for evaluating the accuracy and precision of the 

occupancy estimates. We utilize a Bayesian approach to estimate the parameters in 

our model, essentially treating occupancy probabilities as random variables. In 

addition, we take advantage of this Bayesian framework to create a posterior 

distribution of AUC values and generate confidence intervals of our estimates, 

allowing us to quantify explicitly the uncertainty in the predictive success and the 

discriminatory ability of our models.   

Methods 

Study area 

 The data were collected over six field seasons (2005-2010) in CHOH at 33 

randomly chosen wetlands (out of a possible 274) that were each sampled on four 

occasions during March-July in each year of 2005-2010. In 2010, an additional 30 

wetlands were sampled on four occasions using the same protocols. All wetlands held 

water on at least one sampling occasion during every year of sampling. If a wetland 

was dry at a given sampling occasion, it was recorded as “not available” and that 

sampling occasion was not used in our analysis. During each sampling occasion, two 

independent observers (n = 32 total observers over the six sampling seasons, all 
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trained in field methods and identification) walked the full perimeter of the wetland 

(starting from opposite ends) and recorded the life stage and species of each 

amphibian encountered. We treat each observer at a given wetland as one sampling 

replicate (rep). Thus, for the purposes of estimating annual occupancy (here defined 

as wetland use at any point during the breeding season), we assume that within a year, 

a given wetland could be sampled on up to eight (4 visits x 2 observers) separate 

occasions. In estimating annual occupancy, we are interested in whether a species 

uses the habitat during the course of the sampling period (March-July) and assume 

that each population is closed during that time frame. 

 Fourteen species were observed over the six years of sampling: Lithobates 

clamitans (total of 441 observations at 31 different wetlands), Ambystoma maculatum 

(347, 24), Lithobates sylvaticus (227, 23), Lithobates catesbeianus (149, 25), 

Anaxyrus americanus/fowleri (146, 24), Lithobates palustris (134, 15), Pseudacris 

crucifer (125, 21), Notopthalmus viridescens (111, 8), Lithobates sphenocephala 

(100, 17), Hyla versicolor/chrysocelis (53, 17), Ambystoma opacum (41, 8), and 

Hemidactylium scutatum (11, 3). Two species’ complexes were analyzed: Anaxyrus 

americanus/fowleri and Hyla versicolor/chrysocelis because their tadpoles are 

difficult to distinguish in the field. 

Three wetland characteristics that affect the occurrence probabilities of 

amphibian species were also recorded: hydroperiod, area, and connectivity. 

Hydroperiod is the characteristic amount of time that a wetland holds water, and each 

site was classified into one of three hydroperiod categories using the National 

Wetland Inventory (Cowardin et al. 1979): temporary (typically dry up annually), 
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semi-permanent (typically dry up every few years) or permanent (always hold water). 

Area is a static covariate, defined as the wetland’s minimum length times minimum 

width not including instances when the wetland was dry. Thus wetland area is defined 

as the smallest size of a given wetland during a survey event when it was not dry 

(Mattfeldt et al. 2009). Connectivity is a measure of a wetland’s distance to other 

wetlands, and is calculated as ln exp( )i ij j
j i

conn d areaθ
≠

 
= − 

 
 
∑  where 

1

θ
is the mean 

migration distance for a species, ijd  is the pairwise distance between wetlands i and j, 

and areaj is the area of wetland j (Moilanen and Nieminen 2002; Werner et al. 2007). 

Area is included in the measure of connectivity because larger wetlands can generally 

support larger population sizes of amphibians, which increases the potential pool of 

dispersers originating from a given wetland. Because data on dispersal distances are 

lacking, we conservatively set θ  to 750m for all species (Smith and Green 2005).  

For more details on the sampling protocols refer to Mattfeldt et al. (2009). 

Model description 

We used a multi-species hierarchical modeling framework (Dorazio and 

Royle 2005; Dorazio et al. 2006; Gelfand et al. 2005), which links individual single-

species occupancy models (MacKenzie et al. 2002; Tyre et al. 2003) at the 

community level by assuming that each of the species-specific parameter values are 

drawn from a common distribution (for more details see Dorazio and Royle 2005; 

Dorazio et al. 2006; Kéry and Royle 2008; Royle and Dorazio 2008; Walls et al. 

2011). This leads to an improved composite analysis at the species (Zipkin et al. 

2009) and community levels (Russell et al. 2009). The model is based on the survey-
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specific detection/non-detection records of all 12 species/species complexes across all 

life stages. The observations, , , ,i j t kx , denote detection (x=1) or non-detection (x=0) of 

species i (1,2,…,12) at wetland j (1,2,...,63) in year t (2005, 2006,...,2010) during 

sampling occasion k (1,2,…,8). True occupancy is only partially observable and is 

modeled as a Bernoulli random variable, ( ), , , ,~i j t i j tz Bernψ  with probability , ,i j tψ , 

where , , 1i j tz =  when species i is present at wetland j, during year t, and zero 

otherwise. Detection of a species is assumed to be Bernoulli random variable 

dependent on the occupancy state: ( ), , , , , , , ,~i j t k i j t k i j tx Bern p z⋅  where , , ,i j t kp  is the 

detection probability for species i at wetland j in year t during sampling rep k, given 

that the species is present. Thus, the repeated sampling protocol (k >1) over the 

breeding season allows us to differentiate non-detection from true absences in a given 

year by estimating the detection probability for each species during each sampling 

occasion. 

We modeled the occupancy probability , ,i j tψ  for species i in wetland j during 

year t using the three wetland-specific covariates: hydroperiod (a discrete variable), 

wetland area and connectivity (both continuous variables, each standardized to have 

mean of zero and standard deviation of one). We developed four versions of the 

model: 1) a model with the three wetland-specific habitat covariates only; 2) a model 

with the wetland covariates and an annual trend in occupancy; 3) a model with the 

wetland covariates and cumulative spring precipitation (March through June); and 4) 

a model with the wetland covariates and an autologistic term (an additional covariate 

to measure the effect of occurrence at wetland j in year t-1 on the occupancy 
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probability in year t). We modeled , ,i j tψ  for each species i using the logit link 

function:

 
( )

, , 1

logit 1 2 3, , ,

                                                      4 5 6

j

i t i t i i j t

area conni j t i j i ji hydro

trend precip z

ψ α α α

α α α −

= + +

+ + +  

where the intercept term (1iα ) is dependent on the hydroperiod class (hydro = 

temporary, semi-permanent, or permanent) and2iα  and 3iα  are the effects of the 

wetland area and wetland connectivity (included in all versions of the model). The 

parameters 4iα , 5iα , and 6iα  are, respectively, an annual trend (standardized so 

that year 2007 is zero), the effect of precipitation (standardized to have mean of zero 

and standard deviation of one), and an autologistic term (an effect on occupancy 

based on whether the species was present at the wetland in the previous year). In 

fitting the autologistic model with the latent species occurrences (the z matrix), our 

model accounts for imperfect detection rather than simply using observed species, 

which likely contain false negative errors. Each of the parameters 4 6α α−  are 

included in only one of the four models (2nd, 3rd, and 4th, respectively). We note that 

in the autologistic model, species-specific occupancy can be specified by colonization 

( 1iα  on the logit scale) and persistence (1 6i iα α+ ) probabilities. Our specification 

of the autologistic model is a restricted form of dynamic occupancy models such as 

those described in Dorazio et al. 2010 and Kéry et al. 2009 where we assume that the 

effects of the wetland covariates are equal on colonization and persistence.   

Detection was similarly modeled for each species i at wetland j and sampling 

rep k, with covariates for annual (linear and squared) effects of the sampling date 
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(Julian day standardized to have a mean of zero and standard deviation of one) on the 

species-specific detection probability (Kéry and Royle 2008). We note that in 

specifying the model this way that detection probability represents a combination of 

both observer effects as well as temporal replication. However, we do not believe that 

this affects our estimates of occupancy because observers were well trained, there 

was reasonable congruence between observers (>60%) and species-specific detection 

(and covariate values) were allowed to vary annually.  

 We expected hydroperiod to influence species’ abilities to both colonize and 

persist in a given wetland. Temporary wetlands do not provide suitable breeding 

habitat for some species (e.g., Lithobates clamitans whose tadpoles require two years 

to metamorphose), though they may be used for foraging or breeding by others. 

Though many amphibian species only use wetlands during the breeding season, 

persistence (e.g., wetland use from one spring/summer to the next) in temporary 

wetlands is likely to be lower compared to semi-permanent or permanent wetlands 

where water is retained longer during the season. Additionally, because permanent 

wetlands are available during the full annual cycle, they are comparatively easier for 

species to colonize. We expected hydroperiod to have a large effect on the occupancy 

probabilities for all species, with Lithobates sylvaticus, Hemidactylium scutatam, 

Ambystoma opacum, Ambystoma maculatum, and Pseudacris crucifer having higher 

occupancy in more temporary wetlands and Lithobates clamitans, Lithobates 

catesbeianus, Lithobates palustris, and Notophthalmus viridescens having higher 

occupancy in permanent wetlands. We believed that wetland area and connectivity 

would have positive effects on species occurrences. Larger wetlands tend to have 
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higher colonization rates because they are larger targets for dispersing amphibians 

(Armstrong 2005; Haddad and Baum 1999; Whitehead and Jones 1969). Wetlands 

with high connectivity values are more likely to be colonized compared to wetlands 

that are less connected because travel distances are shorter. Due to concerns that the 

amphibian community is declining in CHOH, we included the trend model to 

determine if species-specific occupancy probabilities had in fact declined over the 

study. Because increased precipitation over the breeding period leads to wetlands 

holding water longer and provides more suitable conditions for breeding and foraging 

at a given wetland, we hypothesized that precipitation would have a positive effect on 

both persistence and colonization. Even though amphibian wetland use is ephemeral 

and can vary annually, the site fidelity exhibited by many species suggests that use of 

a wetland in time t-1 would have a positive effect on wetland use in year t (e.g., 

persistence; Smith and Green 2005).  

Each of the species-specific parameter values were assumed to come from a 

normal, community-level, prior distribution (Dorazio et al. 2006; Kéry and Royle 

2008). We estimated parameters using a Bayesian approach with Markov chain 

Monte Carlo (MCMC) implemented in the programs R (with the R2WinBUGS 

package; Sturtz et al. 2005) and WinBUGS (Lunn et al. 2000) using flat priors for 

each of the community-level parameters. In a Bayesian analysis, each parameter is 

treated as a random variable. The MCMC approach allows us to explicitly measure 

variation in parameter values by examining a posterior distribution for each 

parameter. We ran three chains of each model for 5000 iterations, thinned by 5, after 
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a burn-in of 5000 iterations (resulting in 3000 posterior samples for each parameter) 

and assessed model convergence using the R-hat statistic (Gelman and Hill 2007). 

Evaluating model projections using AUC 

We fit each model separately using data from the 33 wetlands sampled in 

2005-2009. We then used the posterior covariate values (and the precipitation 

conditions of 2010 and occurrence states of 2009, when applicable) to generate 

species-specific occupancy estimates for both (1) the 33 sites that had previously been 

sampled and (2) the 30 new sites that were sampled only in 2010. To determine 

whether or not a species was present at each of the wetlands in 2010, we fit an 

additional model with the three wetland-specific covariates, hydroperiod, area, and 

connectivity, using only the 2010 data (all 63 wetlands) to generate the latent z values 

for each species i at each wetland j, which we considered to be the true 2010 species 

occurrences. Thus, if species i was observed on at least one sampling occasion at 

wetland j in 2010, , ,2010 1i jz =  for every draw of the posterior distribution. However, 

if the species was not observed at a wetland j, then , ,2010 0i jz =  or , ,2010 1i jz =  

depending on the species’ detection probability and the wetland characteristics (i.e., 

the posterior distribution for , ,2010i jz  would likely contain both 0 and 1 values).   

We estimated the AUC for each of the individual species models (Hosmer and 

Lemeshow 2000). We also calculated the AUC for all species at every location, and 

separately, for all species in the previously sampled wetlands and for all species in the 

new wetlands. As mentioned earlier, the AUC (ranging from 0-1) measures the 

discrimination of a model, which in this case corresponds to the ability to correctly 



 

 64

project which wetlands are occupied. A value of 0.5 indicates that the model performs 

no better than random. Values greater than 0.5 indicate progressively better 

discriminatory capabilities (Hosmer and Lemeshow 2000). Rather than use average 

values to determine a single point estimate, we used the full posterior distribution 

(3000 draws) and the R package ROCR (Sing et al. 2005) to quantify the uncertainty 

in model estimates, essentially producing a posterior sample of ROC plots and AUC 

values. For the purposes of evaluating the efficacy and utility of our models, we 

consider the top model to be the one with the highest predictive capability (e.g., AUC 

value) for species’ occurrences at each of the wetlands.  

Results 

Although the number of detections was small for some species, our 

hierarchical multi-species modeling approach allowed us to use all the available data 

and estimate the occurrence probabilities and covariate effects for each of the 12 

species/species complexes. For all species, hydroperiod was the most significant 

wetland covariate affecting occurrence probabilities (Figure 3.1). This result was 

fairly consistent across all models. Occurrence probabilities for all species were 

generally lowest in temporary wetlands and highest in permanent wetlands. In the 

autologistic model, which allowed us to examine colonization and persistence 

probabilities, mean species-specific colonization ranged from 0.02-0.19 in temporary, 

0.02-0.41 in semi-permanent, and 0.05-0.49 in permanent wetlands, while persistence 

ranged from 0.29-0.55 in temporary (with one species, Ambystoma maculatum, 

having a value of 0.75), 0.36-0.81 in semi-permanent, and 0.52-0.92 in permanent 

wetlands (when other covariates were at their average values). This suggests that 
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persistence was generally higher in all wetland types compared to colonization and 

that colonization increased with hydroperiod. Area had a significant positive effect on 

the occupancy probabilities of almost all species in the habitat-only, precipitation, and 

trend models (except for Hemidactylium scutatum, possibly because of its small 

sample size). In the autologistic model, area had a significant positive effect on all but 

four species (Ambystoma maculatum, Ambystoma opacum, Hemidactylium scutatum, 

and Notopthalmus viridescens). Connectivity was not significant for any of the 

species except for Lithobates sylvaticus, which surprisingly showed a negative effect.  

The observed number of species per wetland was lower in 2010 compared to 

the average number of observed species per wetland in 2005-2009 (Figure 3.2). Thus, 

predicted wetland richness was generally overestimated in 2010 using the habitat-

only model (Figure 3.3). However, the trend and precipitation effects were not 

significant (i.e., 95% posterior intervals overlapped zero) for any of the 12 

species/species complexes, in their respective models. The mean trend estimate was 

negative for nine species and the probability that the trend was negative was greater 

than 70% for seven species (i.e., >70% of samples from the posterior distribution 

were negative). Together with the overestimates of wetland richness, these results 

suggest that some species may be declining (e.g., occupancy probabilities may have 

decreased over the time period from 2005 to 2010), but more data are needed for 

definitive conclusions.  

  The autologistic model confirmed our expectation that occurrence at a 

wetland in one year had a strong impact on species occupancy probabilities in the 

following year, indicating a difference in the colonization and persistence rates at 
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wetlands. The autologistic term was significant and positive for all species and was 

generally more important than even hydroperiod in estimating occupancy. For many 

species, there were smaller differences in occupancy estimates among hydroperiod 

class as compared to whether or not the species had been present the previous year.    

Evaluating model projections using AUC 

 The AUC was virtually identical in the trend and precipitation models as 

compared to the habitat-only model. This is because the mean values of the trend and 

precipitation effects were centered on zero, and other covariate values were consistent 

among these models. Because these covariates were not informative in predicting 

occupancy of any species, we focus on comparing the predictive abilities of the 

habitat-only and autologistic models.  

 At the community level, the habitat-only (AUC for all species at all wetlands: 

mean 0.71; 95% PI: 0.66-0.75; Figure 3.4) and autologistic (AUC: mean 0.74; 95% PI 

0.68-0.78) models performed well, and their AUC values had overlapping posterior 

intervals. However, the autologistic model performed significantly better for the 2010 

data in the 33 wetlands that had been previously sampled from 2005-2009 (AUC: 

mean 0.80; 95% PI: 0.76-0.83; Figure 3.4) compared to the habitat-only model (AUC: 

mean 0.71; 95% PI: 0.67-0.74). The habitat-only model predicted species occupancy 

in 2010 equally well for the wetlands that had been sampled from 2005-2009 as well 

as the unsampled wetlands (AUC: mean 0.71; 95% PI: 0.65-0.76). The autologistic 

model had a poorer performance in predicting occupancy in unsampled wetlands 

(AUC: mean 0.69; 95% PI: 0.62-0.74) compared to wetlands that had been sampled, 
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but was not significantly worse than the habitat-only model in the newly sampled 

wetlands. 

 To determine how well we would expect the models to perform (i.e., the 

maximum AUC values possible for a given model), we calculated AUC values for 

simulated datasets generated using the model results. We used the habitat-only model 

to simulate ten datasets using the estimated mean species- and wetland-specific 

occupancy values (to obtain the latent z state) as well as the detection covariates (to 

simulate the observed “data”, x) for the 2005-2010 data. We then fit the habitat-only 

model to these simulated data (using the same specifications as the real data in 

WinBUGS and R) and estimated occupancy probabilities for each species at each 

wetland for each simulated dataset (ten replicate trials). We calculated the AUC 

values using these new covariate estimates and a similar dataset simulated for 2010. 

Our results indicate that the mean of the upper bound of the AUC for the habitat-only 

model is 0.78 (95% PI: 0.74-0.81; with standard error on these estimates <0.01 

among the ten simulations), with upper bounds of 0.76 (95% PI: 0.71-0.81; standard 

error <0.01) and 0.79 (95% PI: 0.73-0.84; standard error <0.01) in previously 

sampled and unsampled wetlands, respectively.  

 Species-specific AUC values were generally acceptable (i.e., mean values 

greater than 0.6 for all species except Hemidactylium scutatum, Lithobates sylvaticus 

in the previously sampled locations, and Ambystoma opacum in the wetlands that had 

not been previously sampled; Table 3.1) with nine species having overall mean AUC 

values greater than 0.7 in one or both of the habitat-only and autologistic models. 

While the mean species-specific AUC values were generally higher in the autologistic 
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model (using previously sampled locations only), the difference was only significant 

for two species: Ambystoma maculatum and Notopthalmus viridescens.    

Discussion 

The value of AUC in evaluating model projections and quantifying uncertainty

 The use of the receiver operating characteristic and the AUC has been debated 

in ecology and species distribution modeling and has been cautioned in its use when 

species absences are unknown (Lobo et al. 2007). While it is increasingly common to 

use detection/nondetection data for estimating AUC (e.g., Manel et al. 2001) and to 

evaluate presence only models (e.g., Rebelo et al. 2010), such methods fail to 

consider that nondetection may occur either because a species was absent or because 

the species was overlooked during the sampling process (MacKenzie et al. 2002; Tyre 

et al. 2003). In our approach to using AUC, we explicitly account for detection biases 

by using the estimated “true” occurrence (z matrix) of each species. Thus if a species 

was not detected, we account for the possibility that the species was truly present, but 

overlooked during sampling, leading to a more inclusive picture of the variability and 

transient use of habitat inherent in many systems.  

 In using the full posterior distribution of species-specific wetland occupancy 

and “true” occurrence, we were able to calculate a posterior distribution of ROC and 

AUC values. This allowed us to quantify the uncertainty associated with our model’s 

discrimination abilities (e.g., by providing a confidence interval of our estimate). In 

many applications of AUC in species distribution modeling, there is no mention of 

uncertainty in model discrimination (e.g., Anderson and Raza 2010; Kharouba and 

Kerr 2010). Liu et al. (2011) highlight the need for determining the accuracy of AUC 
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and suggest bootstrapping and randomization methods for estimating confidence 

intervals. Our approach, using a Bayesian analysis, presents an alternative method by 

assuming that uncertain quantities such as AUC are best described by examining their 

full posterior distributions. This allows for a more complete characterization of model 

discrimination, including measures for determining the accuracy and precision of 

estimates.  

 We note that in our analysis we discovered that the AUC ceiling for our 

models was less than one. By this we mean that if the actual data-generating model is 

known and the AUC is computed, then you would still expect to achieve some AUC 

value < 1.0. In considering which model best predicts occupancy status of wetland 

breeding amphibians, it may thus be important to consider a model’s maximum AUC 

value. It is not clear whether it is always best to choose a model with the highest AUC 

value or if it is better to choose a model with an AUC value that is close to its ceiling 

(for predictive purposes). There is no clear model selection criterion for hierarchical 

models; although other approaches such as BIC (Bayesian Information Criterion) and 

loss functions (Gelfand and Ghosh 1998) may prove useful.  

AUC is quickly becoming a standard method for evaluating species 

distribution models, in part because it is readily calculated in software packages such 

as MAXENT (Elith et al. 2006; Philips et al. 2006). However, in our Bayesian 

approach, it is also possible to directly calculate the confusion matrix by simulating 

the binary data using the species- and site- specific occupancy probabilities. In this 

way, we calculated the true positive and true negative rates (e.g., the fraction of times 

with correct predictions) for the habitat-only and autologisitic models (Table 3.2). 
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Comparison of these results shows that the two models perform equally well, except 

for in previously sampled wetlands where the autologisitic model has a significantly 

higher true positive rate. In all cases the true positive rates were significantly lower 

than the true negative rates. Although examining the confusion matrix does not 

change our inference, calculation of these rates highlights the difficulty in predicting 

presences compared to absences for ephemeral species with low prevalence, such as 

the wetland breeding amphibians in CHOH. For example, we would expect the true 

positive rate to increase with increasing prevalence (assuming reasonably high 

detection probabilities). AUC provides an understanding of a model’s predictability 

by determining whether a randomly selected wetland where a species occurred had a 

higher occupancy probability than a randomly selected wetland where the species did 

not occur. Thus AUC provides a measure different than an examination of the 

confusion matrix (Hosmer and Lemeshow 2000). However, we believe that direct 

calculations of the true positive and negative rates using a Bayesian approach can 

provide more intuitive comparisons among models and facilitate understanding of a 

model’s predictive abilities; we suggest calculating these quantities when possible.  

Management implication for CHOH  

 In establishing the utility of our multi-species occupancy models for 

informing management decisions, we are specifically interested in evaluating how 

well our models can predict species occurrences in two situations: 1) in future years 

for sites where sampling has previously occurred and 2) in unsampled wetlands. 

Determining the predictive capability of our models is important for both identifying 

wetlands that may benefit most from management actions (e.g., increasing 
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hydroperiod or area) and for evaluating the success of management (critical steps in 

an adaptive management program as well as other management scenarios, Williams et 

al. 2002). At the community level, the habitat-only model (wetland hydroperiod, area, 

connectivity) was the top model because of its overall performance (mean AUC of 

0.71 from an average possible ceiling of 0.78) and parsimony (the other models had 

similar AUC values but each had one extra parameter). For specific wetlands where 

data are available, knowledge of species use during the previous year improved 

predictive ability for the amphibian community, as was demonstrated by the 

autologistic model. Though knowledge of the prior year’s wetland use led to a 

significant gain in AUC at the community level, individual species’ AUC values were 

only significantly improved for two out of 12 species/species complexes.  

 The habitat and autologistic models had fairly high predictive abilities for 

most species (Table 3.1). In some instances (e.g., Lithobates sylvaticus in the 

previously sampled locations and Ambystoma opacum in the wetlands that had not 

been previously sampled; Table 3.1), the model performed worse than would be 

expected by chance. It is possible that the hierarchical structure of our model, in 

which information is shared across species, may be inappropriate for some species 

(e.g., pulling estimates of covariate effects of extreme species, for which few data 

exist, towards the community mean). Also possible is that wetland use in 2010 was 

inconsistent with wetland use in previous years for some species. In fitting occupancy 

models separately for each species (e.g., no community level structure), we 

determined that there were not enough data to estimate occupancy — with the 

relevant covariates — individually for most species (results not shown, but see 
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Mattfeldt et al. 2009 for more on individual species occupancy models at CHOH). 

Thus, we believe that the utility of the model is greatest when focusing on 

management of the community rather than on individual species. Indeed, at CHOH as 

well as many other monitoring programs (DeWan and Zipkin 2010; Manley et al. 

2004; Weir et al. 2005), the objective — in this case, to maintain species richness — 

is targeted at the community level. 

 Neither spring precipitation nor trend had significant effects on occupancy for 

any species, yet the habitat-only model overestimated richness in 2010 at nearly all 

wetlands (Figure 3.3).  Likewise, the breeding season in 2010 had lower cumulative 

precipitation (9.32 inches) in CHOH compared to any of the others years of the 

survey (mean: 17.89 inches; range: 10.49-23.18), which could help explain why the 

observed number of species was lower in 2010 compared to previous years (Figure 

3.2), and thus why the models overestimated wetland richness. Wetland use by 

amphibians has high temporal variability (Green 2003). Weather variables, including 

precipitation, can influence the occurrence of species at wetlands. Finer resolution 

precipitation (e.g., wetland specific) data, including timing of rainfall, may better 

predict wetland use by amphibians. It is also possible that other environmental 

variables in the region (e.g., wetland use by other taxa, including humans; 

urbanization outside the park) are influencing amphibian use of wetlands in CHOH 

and cannot be captured by a simple trend effect. 

Conclusions 

 The use of predictive models can aid decision makers in determining the 

optimal course of action for a given set of objectives (Williams et al. 2002). However, 
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it is important to first assess whether model projections are reliable. Our approach for 

evaluating the predictive power of multi-species occupancy models accounts for 

potential detection biases and incorporates the inherent variability found in species-

habitat relationships. In accounting for false negative errors and estimating a full 

posterior distribution of covariate as well as AUC values, we were able to understand 

better the accuracy and precision of our model results. The conservation and 

management of species and their habitats require a clear understanding of species-

habitat relationships and the potential tradeoffs associated with alternative 

management actions.  
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Table 3.1 Species-specific AUC values for the habitat-only and autologistic models 

for the 33 wetlands that had been sampled continuously from 2005-2009 and for the 

30 wetlands that were unsampled in 2005-2009. The table shows the mean of the 

posterior distributions as well as the 95% posterior intervals. 

 

 Habitat model 
        
 AUC (sampled wetlands)  AUC (unsampled wetlands) 
        
 Mean 95-Low 95-High  Mean 95-Low 95-High 
Ambystoma maculatum  0.60 0.54 0.65  0.64 0.48 0.78 
Ambystoma opacum  0.75 0.43 0.91  0.41 0.31 0.56 
Anaryxus americanus/fowleri  0.82 0.66 0.92  0.77 0.54 0.91 
Hemidactylium scutatum  NA NA NA  0.51 0.10 0.88 
Hyla versicolor/chrysocelis  0.64 0.46 0.80  0.77 0.54 0.91 
Notopthalmus viridescens  0.74 0.64 0.79  0.80 0.73 0.88 
Pseudacris crucifer  0.68 0.57 0.78  0.82 0.68 0.92 
Lithobates catesbeiana  0.78 0.59 0.92  0.82 0.63 0.93 
Lithobates clamitans  0.71 0.61 0.79  0.86 0.77 0.92 
Lithobates palustris  0.84 0.72 0.90  0.64 0.56 0.74 
Lithobates sphenocephala  0.79 0.64 0.90  0.79 0.54 0.94 
Lithobates sylvatica  0.41 0.32 0.52  0.63 0.57 0.70 

        
 Autologistic model 
        
 AUC (sampled wetlands)  AUC (unsampled wetlands) 
        
 Mean 95-Low 95-High  Mean 95-Low 95-High 
Ambystoma maculatum  0.89 0.86 0.93  0.66 0.47 0.82 
Ambystoma opacum  0.70 0.37 0.88  0.45 0.32 0.62 
Anaryxus americanus/fowleri  0.80 0.63 0.93  0.75 0.49 0.94 
Hemidactylium scutatum  NA NA NA  0.59 0.10 0.93 
Hyla versicolor/chrysocelis  0.64 0.45 0.83  0.75 0.49 0.94 
Notopthalmus viridescens  0.97 0.85 0.99  0.78 0.61 0.95 
Pseudacris crucifer  0.79 0.66 0.88  0.80 0.64 0.92 
Lithobates catesbeiana  0.78 0.59 0.94  0.77 0.56 0.93 
Lithobates clamitans  0.80 0.71 0.88  0.82 0.67 0.93 
Lithobates palustris  0.85 0.71 0.92  0.62 0.47 0.78 
Lithobates sphenocephala  0.83 0.69 0.91  0.77 0.52 0.96 
Lithobates sylvatica  0.50 0.43 0.59  0.61 0.49 0.73 
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Table 3.2 The posterior means of true positive rate (TPR) and true negative rate 

(TNR) for the habitat only and autologistic models using data from all wetlands, from 

the 33 wetlands that had been sampled continuously from 2005-2010, and from the 30 

wetlands that were only sampled in 2010. The values in the parentheses are the 95% 

posterior intervals. 

 

  TPR  TNR 

Habitat model    
 All wetlands 0.40 (0.32-0.48)   0.77 (0.74-0.81)  
 Sampled wetlands 0.41 (0.31-0.52)  0.76 (0.71-0.80) 
 Unsampled wetlands 0.39 (0.29-0.50)   0.79 (0.74-0.85)  
     

Autologistic model    
 All wetlands 0.52 (0.43-0.60)  0.76 (0.73-0.80)  
 Sampled wetlands 0.59 (0.47-0.69)   0.77 (0.72-0.81) 
 Unsampled wetlands 0.44 (0.33-0.55)   0.76 (0.71-0.81)  
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Figure 3.1 Average projected wetland richness (as estimated using the habitat only 

model with data from 2005-2009) for each of the 63 wetlands (circles - permanent, 

diamonds – semi-permanent, triangles – temporary) plotted against the area of the 

wetland. The red points are wetlands with below average connectivity. 
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Figure 3.2 Observed number of species in 2010 plotted against the average number 

of observed species in 2005-2009 for the 33 wetlands that have been sampled 

continuously over the duration of the study. 
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Figure 3.3 Species richness (accounting for detection errors) at the 63 wetlands in 

2010 as estimated using the habitat-only model (on only the 2010 data) plotted 

against the projected wetland richness as calculated by summing the individual 

occurrence probabilities for each species at each wetland as estimated using the 

habitat model for the 2005-2009 data. 
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Figure 3.4 Receiver operator curves for the habitat model (solid line with 95% PI in 

grey; calculated using all species at each of the 63 wetlands) and autologistic model 

(dashed line with 95% PI in grey; calculated using all species in the 33 wetlands that 

had been sampled all years of the survey. Hemidactylium scutatum is excluded since 

it was not observed in 2010 in any of these 33 wetlands.) 
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Chapter 4: Tracking climate impacts on the migratory monarch 

butterfly 

 

In review: Global Change Biology. 

Coauthors: Leslie Ries, Rick Reeves, James Regetz 

 

Abstract 

Understanding the impacts of climate on migratory species is complicated by the fact 

that these species travel through several climates that may be changing in diverse 

ways throughout their complete migratory cycle.  Yet, most studies are not designed 

to tease out the direct and indirect effects of climate at various stages along the 

migration route.  We assess the impacts of spring and summer climate conditions on 

breeding monarch butterflies, a species that completes its annual migration cycle over 

several generations.  No single, broad-scale climate metric can explain summer 

breeding phenology or the substantial year-to-year fluctuations observed in 

population abundances.  As such, we built a Poisson regression model to help explain 

annual arrival times and abundances in the Midwestern United States.  We 

incorporated the climate conditions experienced both during a spring 

migration/breeding phase in Texas as well as during subsequent arrival and breeding 

during the main recruitment period in Ohio.  Using data from a state-wide butterfly 

monitoring network in Ohio, our results suggest that climate acts in conflicting ways 

during the spring and summer seasons.  High or low spring precipitation is associated 
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with the largest annual population growth in Ohio and the earliest arrival to the 

summer breeding ground, as is intermediate spring temperatures.  On the other hand, 

arrival to the summer breeding grounds in Ohio is not affected by climate conditions 

within Ohio. Precipitation has minimal impacts on summer grounds, whereas warmer 

temperatures are generally associated with the highest expected abundances, yet this 

effect is mitigated by the average seasonal temperature of each location in that the 

warmest sites receive no benefit of above average summer temperatures.  Our results 

highlight the complex relationship between climate and performance for a migrating 

species and suggest that attempts to understand how monarchs will be affected by 

future climate conditions will be challenging. 

Introduction 

A primary goal of global climate change research is to understand the 

connections between climate and biological phenomena so that specific predictions 

can be made about how species will be affected by future climate regimes (Parmesan 

2006). While this is a difficult task for any organism, characterizing the responses of 

migratory species is particularly challenging. During the course of their life cycles, 

migratory species experience multiple climates that may be changing in different 

ways (Bowlin et al. 2010; Norris and Marra 2007). Perhaps not surprisingly, it has 

been suggested that climate change, along with other anthropogenic pressures, may 

be contributing to the overall decline of migration as a biological phenomenon 

(Brower and Malcolm 1991; Wilcove and Wikelski 2008). Here, we use the term 

“migratory” to refer to species that have a regular, long-distance pattern of “return” 

migration related to predictable, disjunct seasonal ranges, and not species that track 
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resources within their own home ranges or that are nomadic and track unpredictable 

resources over large areas (sensu Mueller and Fagan 2008).  

Establishing cause and effect relationships between climate and migratory 

dynamics is complicated. In addition to direct impacts on physiology at each location 

along the migration cycle, which may be carried over into subsequent migratory 

phases (Harrison et al. 2011), climate can also have indirect effects on the abundance 

or timing of food resources (Visser and Both 2005; Zalucki and Rochester 2004).  

Disentangling these multiple, interacting climate drivers is complex and studies are 

rarely designed to isolate causes to a particular migratory phase or effect (Gordo 

2007; Norris and Marra 2007). Indeed, many studies have focused on large scale 

climate dynamics like the North Atlantic Oscillation (NAO), which are often 

associated with broad-scale weather patterns and have thus been found to be good 

predictors of both phenology  (e.g., Adamik and Pietruszkova 2008; Palm et al. 2009) 

and abundance (e.g., Zipkin et al. 2010). Yet the use of large-scale climate metrics 

like the NAO makes it difficult to isolate how specific climate factors may be 

impacting particular phases of migration or the performance of species (Gordo 2007; 

Norris and Marra 2007). 

The vast majority of studies on the impacts of climate on terrestrial, migratory 

species have focused on bird phenology, with the bulk of that research studying 

spring arrival times at breeding grounds in North America and Europe (Gordo 2007).  

In general, dates of spring arrival have been advancing for many species and those 

advancements are consistent with regional warming (Gordo 2007). While there is a 

great deal of interspecific variability in this phenomenon, there is also general within-
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species consistency (Rubolini et al. 2010). However, most studies have not 

specifically examined the climate conditions during the winter or migratory 

(stopover) phases, and instead have focused only on the environment at the point of 

arrival (Gordo 2007), despite the fact that it is very unlikely that birds are able to 

assess conditions at summer breeding grounds prior to their arrival. While some 

climate variables may operate on a large enough scale so that metrics from the arrival 

point are correlated to stopover or wintering climates (e.g., the NAO), this approach 

does not allow specific climate mechanisms to be identified (Norris and Marra 2007).  

Earlier arrivals to breeding locations can lead to either better access to resources 

(Kokko 1999) or, conversely, a phenological mismatch where access to optimal 

resources is diminished, possibly leading to decreased fitness or even population 

declines (Both et al. 2006; Saino et al. 2011). Studies of how climate impacts 

population size have been less common and more inconsistent, possibly because 

breeding performance responds to more complex interactions of factors both on and 

off the breeding grounds (Norris and Marra 2007).   

Although butterflies have received intensive focus on the climate impacts 

related to phenology (Parmesan 2007), phenological mismatches (Doi et al. 2008; 

Singer and Parmesan 2010), local abundances (Hodgson et al. 2011; Warren et al. 

2001) and range and elevational dynamics (Crozier and Dwyer 2006; Forister et al. 

2010; Parmesan et al. 1999), none of the species in those studies exhibit return 

migration as defined here. Insects are not generally associated with return migration; 

instead, many species display spectacular mass movements out of natal areas, often 

called migration, but from which there is generally no subsequent return (Holland et 
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al. 2006). One of the few known exceptions is the monarch butterfly (Danaus 

plexippus) which completes a regular migratory route each year, but over multiple 

generations (Brower 1986). Because of its spectacular migration, it has become a 

“flagship” species for both migration and the conservation of migratory phenomenon 

(Brower and Malcolm 1991; Wilcove and Wikelski 2008). Understanding how 

climate impacts monarchs will be a key factor in its conservation (Batalden et al. 

2007; Oberhauser and Peterson 2003) and will expand our understanding of the 

impacts of climate on migratory species in general (Bowlin et al. 2010).   

Study system 

The monarch butterfly (Danaus plexippus) in North America has a regular 

seasonal migratory pattern that is completed over multiple generations rather than by 

single individuals (Brower 1986). There are three fairly distinct monarch populations 

in North America: the western migratory population (west of the Rocky Mountains 

that overwinters along the California coast), the eastern migratory population (east of 

the Rocky Mountains that overwinters in Mexico) and a small non-migratory 

population in southern Florida (Altizer et al. 2000). The eastern migratory population 

is the largest, and the focus of this study. During migration, monarchs use host plants 

in the subfamily Asclepiadoideae (milkweeds), which are common throughout North 

America.   

The migration patterns of the eastern population are illustrated in Figure 4.1.  

Individuals from this population overwinter in a small forested area at the boundary 

of the Mexican states Michoacán and México (Brower 1986). During the winter, they 

remain clustered in dense colonies, which start breaking up in late February or early 
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March as individuals begin moving northward. The spring migrants move into Texas 

and its surrounding areas by mid-March (Brower et al. 2004) and begin laying eggs in 

mid- to late-March. These eggs become the year’s first generation, which fans out 

over the rest of eastern North America. Throughout the summer breeding season, the 

population grows as an additional 2-3 generations are produced, with the bulk of 

recruitment occurring in the Midwest (Wassenaar and Hobson 1998).  The size of the 

final generation, which migrates to Mexico, fluctuates substantially from year to year 

(Prysby and Oberhauser 2004; Swengel 1995). The causes of those fluctuations are 

currently unknown, although climate is assumed to be one contributing factor 

(Zalucki and Rochester 2004). Around the first of September, monarchs enter 

reproductive diapause, begin to move southward, and ultimately return to the 

Mexican overwintering sites (Brower 1986).     

Climate effects on monarchs can be direct, impacting adult activity and 

juvenile development, or indirect, by impacting growth and vitality of their host 

plants. Niche models have suggested that monarchs during the breeding season have 

an optimal temperature and precipitation “envelope” that tracks northward as the 

season progresses, starting in Texas during March and April.  Although that climate 

envelope continually shifts position throughout the summer growing season, much of 

the optimal range persists in the Midwest (Batalden et al. 2007). These modeling 

results are largely consistent with laboratory studies that bracket the minimum and 

maximum temperatures that promote monarch juvenile development (York and 

Oberhauser 2002; Zalucki 1982) and suggest climate should underlie some of the 

year-to-year variability in population dynamics (Zalucki and Rochester 2004). Studies 
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in western populations suggest drought is a limiting factor (Stevens and Frey 2010) 

and that higher winter temperatures and increases in the previous season’s rainfall can 

advance the onset of spring migration (Forister and Shapiro 2003). Our goal is to 

examine how climate experienced during the spring and summer impacts phenology 

as well as inter-annual fluctuations in abundance of the monarch butterfly on its 

summer breeding grounds. We focus our analysis on Ohio because there is a well-

established series of butterfly survey sites throughout the state which falls within the 

major zone of monarch recruitment.  

Methods 

Our analysis focuses on the impacts of climate experienced by the first 

generation in the southern U.S. (developed from eggs laid by incoming spring 

migrants from Mexico) and during the main population growth phase in Ohio (from 

incoming first generation adults that emerged in Texas and the surrounding areas).  

We concentrated on temperature and precipitation, two main facets of weather known 

to affect monarchs (Batalden et al. 2007; Zalucki and Clarke 2004). Because initial 

explorations of the data suggested that coarse weather metrics could not explain inter-

annual variations in abundance and phenology (Fig. 2), we developed a model that 

captured weekly dynamics at each Ohio survey site based on several climate metrics.   

To account for timing in our model, we sequentially numbered each week in 

the season and we refer to those week designations throughout the rest of this paper.  

The onset of migration is approximately the beginning of March (week 1 always 

begins on March 1) and spring breeding in Texas occurs primarily between the last 

week in March through the end of April (weeks 4-9).  The adults that emerge during 
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spring breeding usually arrive in Ohio by the first week in May (week 10), but are 

relatively uncommon until mid-June to mid-July (weeks 15-20).  Population growth 

continues through approximately the beginning of September (week 28).  

Temperature impacts were captured by converting temperature into growing 

degree days (GDD). GDD accumulate the number of degrees that can contribute to 

development, assuming a minimum temperature below which a species cannot 

develop and a maximum temperature beyond which growth is no longer benefited 

(McMaster and Wilhelm 1997). GDD calculations are species-specific and were 

developed for the monarch by Zalucki (1982).  The minimum temperature required 

for monarch growth is 11.5C while the maximum is 33C. GDD are accumulated over 

the season by summing the total GDD accumulated each day. Daily GDD are 

calculated using the mean of each day’s high and low (up to a maximum of 33C) and 

subtracting the minimum temperature required for growth, meaning that a maximum 

of 21.5 GDD can be accumulated each day for monarchs and 352 GDD are required 

for an egg to develop into an adult. Like temperature, the impacts of drought can 

accumulate over a season and the timing of rainfall is also critical. The Palmer 

Drought Index (PDI) integrates rainfall events, temperature, and other hydrological 

dynamics over the season to estimate water availability (Heim Jr. 2002).  This metric 

can give more biologically relevant information than rainfall alone (Heim Jr. 2002), 

but PDI can also be confounded with temperature (Hu and Wilson 2000), a factor that 

we considered when constructing our model.   
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Monarch data collection 

The Ohio data were collected at 90 locations that comprise a state-wide 

network of butterfly monitoring surveys (Fig. 1b). This monitoring program was 

launched in 1995 by the Ohio Lepidopterist Society (www.ohiolepidopterists.org) and 

we include data from 1996 (the first year with multiple locations) through 2008 (the 

last year for which we have acquired and processed data). The annual number of 

survey locations increased from 13 in 1996 to 56 in 2008. Each location was surveyed 

by a volunteer who visited their assigned location approximately once weekly during 

the study period, although not all locations were visited every week or during every 

year. Survey protocols were based on those developed by Pollard (1977) and follow 

similar protocols to other butterfly monitoring programs in North America and 

Europe.  At each survey point, the observer walked a fixed transect of variable length 

and recorded all butterflies seen within approximately five meters. Transect lengths 

vary between sites, but remained fixed at sites from year to year. To account for 

variable transect lengths and effort, observers recorded the time spent on each survey. 

Climate data 

To calculate GDD, we first acquired daily minimum and maximum 

temperatures throughout Texas (weeks 4-9) and Ohio (weeks 10-28) for 1996-2008 

from NOAA’s Global Summary of the Day network, a global network of weather 

stations that provides daily weather metrics (www.ncdc.noaa.gov/oa/gsod.html). For 

Texas, we used the daily minimum and maximum temperature values over the period 

of interest at each weather station in the state and averaged values across the entire 

state to arrive at a single GDD spring value for each year.  In Ohio, we needed 
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spatially-specific temperature values at each butterfly survey location based on the 

network of weather stations. To obtain these data, we performed spatial interpolation 

in R (R Development Core Team 2011) using an automatic kriging procedure 

implemented internally in the automap package (Hiemstra et al. 2008) and carried out 

via the intamap package (Pebesma et al. 2011).  Using these time-series of 

interpolated minimum and maximum daily temperatures, we calculated GDD values 

for each survey location in Ohio on each day in each year, and accumulated them 

over phenologically relevant time periods as described below.   

We obtained weekly PDI values from NOAA’s Climate Data Center for each 

of the ten NOAA-defined climate divisions within Ohio 

(http://www.esrl.noaa.scr/psd/usclimate/map.html). In Texas, there was a strong 

correlation between GDD and PDI, averaged across the state’s ten climate divisions.  

We therefore used mean rainfall to account for yearly precipitation patterns.  We used 

totals from February, March and April to align with the growing season of both 

milkweed and monarchs.  We downloaded state-wide summaries of February, March 

and April monthly rainfall totals for Texas from NOAA’s Climate at a Glance for 

each year (http://www.ncdc.noaa.gov/oa/climate/research/cag3/cag3.html).   

Unlike the Texas data, which we used to capture large-scale conditions 

averaged across the state, the GDD data from Ohio were summarized at the temporal 

and spatial scale of the individual monarch surveys.  Although monarchs are able to 

move long distances, we assumed that once their migratory expansion was complete, 

populations responded to local climate conditions.  For each survey location, we 

accumulated GDD from week 10 up to the week of each survey.  To account for 
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rainfall effects at survey locations in Ohio, we used the PDI calculated for week 28.  

Although it is possible that weekly changes in the drought index could affect monarch 

counts, PDI tended to be negatively correlated with week (i.e., the spring tends to be 

wetter than the summer in Ohio), so we opted to characterize the overall precipitation 

conditions at sites for each year. We believe that this adequately captures the 

necessary variation in PDI because the index is designed to remain fairly stable over 

the season and does not experience high variation based on a weekly weather patterns 

(Heim 2002).   

Analysis 

We modeled monarch abundance at each survey site within Ohio throughout 

the summer breeding season based on spring and summer climate metrics.  We used 

Poisson regression to model expected counts at each location j that varied annually 

(by year t) and by week within season (denoted as k). The objective of our model is to 

characterize local monarch dynamics based on relevant climate variables during the 

spring and summer.  We opted not to include spatial location (e.g., latitude and 

longitude) as a factor in the model but instead used a proxy for location in the form of 

mean GDD accumulated by the end of the season (averaged over the 13 year study 

period).  This allowed us to capture the average overall condition of a site (i.e., 

whether it tended to be relatively warmer or cooler) while still allowing the model to 

remain general, increasing the potential to transfer it to other locations.    

 Although we incorporated variables from the spring, our model predicts 

expected counts during the summer breeding season (weeks 10-28).  That week range 

roughly corresponds to the time period from before the first arrival of most monarchs 
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into Ohio (from Texas and the surrounding areas) to just prior to the southerly 

migration back to Mexico. We modeled expected monarch counts at each location j 

(1-90) in week k (10-28) within year t (1996-2008) on the log scale using the 

following model: 

( ) 2log 1 2 3 4, ,
25 6  7  8
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12 13, , , ,
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with 1α  as the intercept term and 2 17α α−  as parameters that affect the count 

annually, weekly, and by location. We standardized each covariate so that it had a 

mean of 0 and a standard deviation of 1.  The annual migration northward retains a 

fairly consistent within-season temporal schedule. Because of this consistency and 

because we hypothesized that the effects of several of the weather covariates may 

vary over the course of the season, we included a covariate on week (2α , linear term 

because monarch abundance in Ohio will generally be increasing during this time 

frame).  The parameters 3 8α α−  deal with the effects of the spring conditions in 

Texas on monarch counts, where 3α  and 4α  are the linear and squared effects of 

cumulative precipitation in Texas, spPRECt , and 5α  and 6α  are the linear and 

squared effects of GDD in Texas, spGDDt . We also included parameters 7α  and 

8α  as interaction terms with spring precipitation/GDD and week, respectively, 



 

 92

because we hypothesized that spring conditions in Texas may affect monarch counts 

in Ohio differently over the course of the breeding season.  

Parameters 9 13α α−  are effects related to the accumulating GDD at the 

survey point j. Because GDD increases throughout the spring and summer, we used 

the difference from the mean GDD, , ,GDDdiff j k t , at a given point j across all 13 

years of the survey (Hodgson et al. 2011). Thus we were able to capture whether the 

GDD accumulated by the end of each week of the survey were above or below the 

average for that site at that time. We included only a linear effect ( 9α ) on 

, ,GDDdiff j k t  because a squared term did not come out as significant in earlier 

versions of the model. The average GDD, avgGDDj ,  accumulated at the end of the 

summer season (week 28 in our model) across all 13 years of sampling, accounted for 

location effects.  We included linear (10α ) and squared (11α ) effects for avgGDDj . 

We hypothesized that the importance of , ,GDDdiff j k t   might vary by week over the 

course of the sampling period and may have an increasing influence on monarch 

abundance as the season progresses (because abundance is always very low during 

the early part of the season). We similarly suspected that a site’s avgGDDj  may be 

important in understanding how variation in , ,GDDdiff j k t  affects abundance over 

the spring and summer seasons (i.e., the effect of above average GDD may depend on 

whether or not that site is typically a warmer or cooler location). Covariates 12α  and 

13α  account for these possible interactions.  Parameters 14 16α α− are effects related 

to site-specific PDI values. The covariate ,PDI j t  is the annual metric of the drought 
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index at each survey location and we included linear ( 14α ) and squared (15α ) 

effects as well as an interaction with survey week ( 16α ).  

We included two nuisance terms in our model: the covariate jopen  is the 

proportion of area along the jth transect that is unforested.  Although we are not 

specifically interested in how differences in habitat affect monarch abundance, we 

included 17α  because milkweed tends to grow in open areas. Similarly, survey 

durations and transect lengths vary and we included an offset term, ( )log , ,effort j k t , 

measured in survey minutes to account for variable effort. 

 We analyzed the model using a Bayesian approach with the programs R and 

WinBUGS (Lunn et al. 2000). We ran three chains for 3000 iterations after a burn-in 

of 3000 iterations and thinned the chains by 3. Model convergence was assessed 

using the R-hat statistic (Gelman and Hill 2007). 

Results 

In contrast to coarse-scale comparisons which showed no relationship 

between any single climate metric and yearly monarch abundance (Figure 4.2), our 

model results suggest that climate in both Texas and Ohio does impact expected 

counts in Ohio.  All parameters that were included in the model had significant 

effects and standard errors for each parameter were generally small (Table 4.1).  The 

interactions between week and the spring climate variables (Texas GDD and 

precipitation) as well as the GDD differentials at locations in Ohio were all positive, 

suggesting that the importance of these climate variables increases over the course of 

the summer. This is an expected result because counts remain near zero for the first 
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few weeks of the modeling period then increase rapidly through the remainder of the 

study period.  Results for both spring and summer climate impacts are displayed in 

Figures 4.3 and 4.4; in all cases the displayed results assume that all other covariates 

in the model are held at their mean values.   

Spring weather conditions in Texas had significant effects on the magnitude 

of monarch counts later in the season in Ohio, with wetter springs (spPRECt ) and 

average spring temperatures (spGDDt ) leading to the highest predicted abundances 

at the end of the season (Figure 4.3).  Spring weather conditions in Texas also 

affected emergence phenology of monarchs in Ohio, with earlier observations and 

faster increases in expected abundance during the wettest and, to a lesser degree, 

driest springs (Fig. 4.3a), when other parameters are held constant.  Our results 

further indicate that intermediate values of spring GDD were associated with earlier 

observations and greater increases of monarchs in Ohio (Figure 4.3 – bottom panel), 

although the magnitude of the effect was not as great as for spring precipitation 

(Figure 4.3 – top panel).   

Monarchs’ response to climate experienced on their summer breeding grounds 

in Ohio showed some key differences compared to spring effects.  First, GDD was 

much more important than precipitation during summer (Table 4.1). The impacts of 

precipitation (as measured with annual PDI) were minor and did not have a consistent 

effect on timing or abundance (results not illustrated).  On the other hand, expected 

monarch abundance was greatest when GDD was above average for each site.  

However, that effect was strongest for the coolest sites (Figure 4.4 – top panel) and 

diminished as sites became warmer (Figure 4.4 – middle panel), with the pattern 
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beginning to reverse at the warmest sites (Figure 4.4 – bottom panel). The effect was 

increasingly pronounced as the season progressed. The highest observed counts were 

found late in the season in the coolest locations (min avgGDDj  values) that had 

accumulated above average GDD ( , ,GDDdiff j k t ) values (Figure 4.4 – top panel). 

Conditions in Ohio had no obvious impact on monarch arrival phenology (Figure 

4.4). 

Discussion 

Our results show that climate is a major driver of monarch population 

dynamics, but that the relationships are complex. We showed that no simple climate 

metric (seasonal summaries of temperature and precipitation) on either the spring or 

summer breeding grounds could explain annual abundances in Ohio (Figure 4.2).  

Instead, a combination of interacting climate factors on both the spring and summer 

breeding grounds seems to set the stage for migration phenology and differences in 

annual population growth (Figures 4.3 and 4.4). These results emphasize the 

difficulties in trying to understand how climatic conditions impact migrating species 

and highlight the challenges associated with making predictions on how monarchs 

and other migrating species will do under future climate regimes.     

 According to our model, spring precipitation was the factor associated with 

the greatest potential for population growth, with the wettest springs leading to the 

highest population numbers (Figure 4.3). This relationship was curvilinear, with low 

precipitation also leading to slightly higher predicted values compared to average 

precipitation.  Yet, this relationship is obviously complex. We first note that the year 
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with the lowest population (2004) occurred during the second wettest spring (Figure 

4.2).  More in line with these results, the year with the highest population (1997) also 

occurred in the wettest spring, but this year was an unusually abundant one 

(highlighted as an outlier in all four panels of Figure 4.2).   This raises the question of 

whether the result could have been driven by that one potentially aberrant year.  To 

explore this, we reran the model excluding the data from 1997.  The results were 

strikingly similar to those illustrated in Figures 4.3 and 4.4 with two notable 

differences.  First, the strength of the effect for spring precipitation was weaker, with 

both wet and dry springs still leading to higher numbers, but in a weaker and more 

symmetrical fashion.  Results were unchanged for spring GDD.  Second, the strength 

of the effect of summer GDD was stronger, but the interaction effect with average site 

GDD, while still present, was weaker with no reversal of effect occurring at the 

warmest sites. 

 Based on the results from the model runs with the full and reduced data sets, 

we conclude that the climate factors leading to optimal population growth include 

wetter or drier springs and intermediate temperature zones in Texas and Ohio.  In 

Texas, average temperatures are optimal while in Ohio, warmer summers (within the 

range experienced during this 13-year study) generally lead to higher monarch 

numbers, except at the very warmest sites.  Areas south of Ohio are too warm to 

support optimal growth during summer months (Batalden et al. 2007; Malcolm et al. 

1987) and these results are in line with laboratory studies that highlight both lethal 

and sub-lethal effects of hot temperatures (York and Oberhauser 2002).  Our results 

suggest that any future temperature regimes across monarchs’ growing range are 
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likely to have divergent effects depending on latitude and also the time of the season.  

In both runs of the model, only spring climate metrics impacted the expected timing 

of arrival in a substantive way, with wetter or drier springs and average temperatures 

in Texas associated with earlier sightings in Ohio (Figures 4.3 and 4.4). This is 

consistent with our hypothesis that climate in Texas should have a bigger impact on 

arrival than conditions in Ohio. 

 Despite these general trends, these climate factors cannot in and of themselves 

explain all the observed year-to-year variability in monarch abundances (Figure 4.2). 

The purpose of our model was to determine how spring and summer climate 

conditions affect inter-annual monarch abundances and the phenology of arrival to 

breeding locations in Ohio. However, additional factors may affect monarch 

population dynamics, including size of the wintering population and winter mortality, 

annual milkweed growth, and parasitism. The area occupied by the wintering 

population is often used to indicate overall monarch population size (Brower et al. 

2011), but the values used in previous studies are measured near the start of the 

overwinter period and do not account for wintering mortality (Rendon-Salinas et al. 

2011), which can be highly variable. Despite this, it is worth noting that 1997, which 

experienced an exceptionally cool spring and summer (factors associated with smaller 

population sizes) nevertheless produced an extremely large population that year 

(Figure 4.2). This may or may not be related to the 1996-1997 overwinter colony 

sizes, which were the largest ever recorded (Rendon-Salinas et al. 2011). Similarly, 

overwinter mortality during 2003-2004 was high, possibly contributing to the small 

population size observed in 2004. Yearly milkweed growth is also likely to be an 
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important factor in monarch population sizes, both in Texas and Ohio, and the timing 

of growth may be particularly important. Anecdotal evidence suggests that monarch 

arrivals sometimes occur when milkweed has barely emerged, leading to food 

depletion, crowding, and potentially increased parasitism rates (Karen Oberhauser 

personal communication), which could have an effect on local population 

abundances. Parasitism and disease are other well studied and important factors in 

monarch biology (Prysby 2004) and it is currently unknown how they may interact 

with arrival phenology, crowding, and/or climate.   

Climate predictions across North America (implemented by 

www.climatewizard.org, based on data from Maurer et al. 2007) suggest that springs 

in Texas may become hotter and drier while the summers throughout eastern North 

America may also be hotter and slightly wetter (based on a high emission, 50 year 

scenario). If spring precipitation in Texas remains within the range captured by our 

1996-2008 study period, then our model results suggest that this could potentially 

have a slight benefit for monarchs since low precipitation is associated with earlier 

arrivals and more growth. Anecdotal observations from 2011, the driest spring in 

Texas on record since 1895 (based on summaries from NOAA’s Climate at a Glance), 

offers some support for this result. Arrivals into Ohio in 2011 were early (based on 

Journey North sightings http://www.learner.org/jnorth/) and reports on breeding 

abundances for the year seem to be above normal, at least in some areas (Oberhauser 

2011). Although it is possible for drier spring conditions to help monarch populations, 

if springs in Texas become too hot the result could be decreased abundances as the 

optimal spring temperature for monarchs is in the intermediate range of current 
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conditions. The impacts of increased summer temperatures and precipitation are 

harder to gauge. Our model suggests that monarchs in Ohio are likely to experience 

increased growth with warmer summers, but at some point this relationship may slow 

or reverse (Figure 4.4 – bottom panel). At a large scale, warming is expected to be 

more intense further north and west, which could be helpful to monarch growth, but 

again at some point, the heat may slow growth or even cause mortality. These crude 

projections are in line with niche modeling that shows the optimal climate window 

tracking north based on a 50 year climate projection (Batalden et al. 2007). No 

modeling approach has yet captured the full complexity of how climate interacts with 

all the potential factors that influence monarch population growth, including 

incoming Mexican migrants, milkweed growth and congruence with monarch 

arrivals, natural enemies, and appropriate climatic environments for activity and 

growth throughout each phase of their migratory pathway. Further consideration of 

the effects of climate on monarchs will ultimately need to include changing climate 

during their overwinter and fall migration phases as well. Research has already shown 

that changes in climate in Mexico could have devastating consequences for this 

population (Oberhauser and Peterson 2003). Piecing together the mechanisms that 

drive these dynamics will be crucial to understand monarch biology in general and 

how this unique species may respond under future climate scenarios. 

Migrating species have an intricate and complicated relationship with climate 

variables, one that cannot easily be described by simple weather variables. Our results 

shed light on how monarchs respond to both local and regional climate factors. They 

also demonstrate how optimal climate conditions can change for a species over the 
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migration route and how phenology may be impacted more severely by climate 

conditions along the migratory route than at the destination, something that is rarely 

considered in studies of migratory species (Gordo 2007). These findings highlight the 

importance of ongoing research into understanding the effects of climate on migrating 

species dynamics and particularly emphasize the need to determine which variables 

are most important along specific points of the migratory path. 
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Table 4.1 Parameter descriptions, point estimate (posterior mean), posterior standard 

deviation and 95% posterior interval. The subscripts represent transect location (j), 

week within season (k), and year of survey (t). 

 

Parameter  Covariate Description Estimate SD 95% PI 

     

 Intercept -0.578 0.025 (-0.63,-0.53) 

 Week in season 1.376 0.014 (1.35,1.40) 

 Spring precipition in Texas (linear) -0.070 0.015 (-0.10,-0.04) 

 Spring precipition in Texas (squared) 0.364 0.011 (0.34,0.39) 

 Spring GDD in Texas (linear) -0.198 0.022 (-0.24,-0.15) 

 Spring GDD in Texas (squared) -0.229 0.014 (-0.26,-0.20) 

 Spring precipitation and week interaction 0.100 0.017 (0.07,0.13) 

 Spring GDD and week interaction 0.109 0.013 (0.08,0.13) 

 Weekly GDD differential at transects in Ohio  -0.049 0.020 (-0.09,-0.01) 

 Average GDD at transects in Ohio (linear) -0.091 0.011 (-0.11,-0.07) 

 Average  GDD at transects in Ohio (squared) 0.055 0.011 (0.03,0.08) 

 GDD differential and week interaction 0.080 0.015 (0.05,0.11) 

 GDD differential, average GDD, week interaction -0.031 0.006 (-0.04,-0.02) 

 PDI at transects in Ohio (linear) -0.104 0.016 (-0.14,-0.07) 

 PDI at transects in Ohio (squared) -0.059 0.009 (-0.08,-0.04) 

 Palmer drought index and week interaction -0.108 0.014 (-0.14,-0.08) 

 Proportion unforested at transects in Ohio 0.303 0.010 (0.28,0.32) 
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Figure 4.1 Breeding dynamics of the eastern migratory monarch population (a).  

Adults overwinter in a small area in Mexico (star), then fly north in spring and lay 

eggs in the southern US with most known breeding in Texas.  Adults emerge and fan 

out to occupy the rest of the breeding range over the summer.  Two or three more 

generations are produced during this time with most recruitment occurring in the 

Midwest, including Ohio where there is a network of butterfly monitoring stations 

that was established in 1995 (b).  In September, most adults enter reproductive 

diapause and return to the overwintering sites in Mexico. 



 

 103

 

 

 

Figure 4.2 The relationship between an index of monarch yearly abundance 

(averaged over all sites during weeks 26-28) and a) spring GDD in Texas 

(accumulated from weeks 4-9), b) summer GDD in Ohio (accumulated from weeks 

10-28), c) Feb-Apr rainfall in Texas, and d) mean Palmer Drought Index in Ohio.  An 

outlier (1997) is circled in each panel.    
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Figure 4.3 Expected monarch count by week for the range of observed spring 

precipitation in Texas (top panel) and spring GDD in Texas (bottom panel) where all 

other parameter values were held at their average values. The precipitation and GDD 

covariates are shown on a standardized scale such that the mean and standard 

deviation for each are 0 and 1, respectively. 
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Figure 4.4 Expected monarch count by week as plotted against the GDD differential 

(standardized to have a mean of 0 and a SD of 1) for the coolest survey location in 

Ohio (minimum avgGDD – top panel), a location with average temperatures (mean 

avgGDD – middle panel), and the warmest survey location (maximum avgGDD – 

bottom panel). 
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Abstract 

Twelve species of North American sea ducks (Tribe Mergini) winter off the eastern 

coast of the United States and Canada. Yet, despite their seasonal proximity to 

urbanized areas in this region, there is limited information on patterns of wintering 

sea duck habitat use. It is difficult to gather information on sea ducks because of the 

relative inaccessibility of their offshore locations, their high degree of mobility, and 

their aggregated distributions. To characterize environmental conditions that affect 

wintering distributions, as well as their geographic ranges, we analyzed count data on 

five species of sea ducks (black scoters Melanitta nigra americana, surf scoters M. 

perspicillata, white-winged scoters M. fusca, common eiders Somateria mollissima, 

and long-tailed ducks Clangula hyemalis) that were collected during the Atlantic 

Flyway Sea Duck Survey for ten years starting in the early 1990s. We modeled count 

data for each species within 10 nautical mile segments using a zero-inflated negative 
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binomial model that included four local-scale habitat covariates, (sea surface 

temperature, mean bottom depth, maximum bottom slope, and a variable to indicate if 

the segment was in a bay or not), one broad-scale covariate (the North Atlantic 

Oscillation), and a temporal correlation component. Our results indicate that species 

distributions have strong latitudinal gradients and consistency in local habitat use. 

The North Atlantic Oscillation was the only environmental covariate that had a 

significant (but variable) effect on the expected count for all five species, suggesting 

that broad-scale climatic conditions may be directly or indirectly important to the 

distributions of wintering sea ducks. Our results provide critical information on 

species-habitat associations, elucidate the complicated relationship between the North 

Atlantic Oscillation, sea surface temperature, and local sea duck abundances, and 

should be useful in assessing the impacts of climate change on seabirds.  

Introduction 

Current evidence suggests that 10 of the 15 North American sea duck species 

may be in decline, including eight out of 12 species that winter off the Atlantic coast 

(Sea Duck Joint Venture 2003). Yet there is much uncertainty on the status of sea 

ducks because population data are limited. The causes of sea duck declines are not 

well understood, as relatively little is known about the distributions and habitat 

preferences of each species. The Atlantic coast of the United States (U.S.) and 

Canada is a major wintering area for a number of migratory species, including sea 

ducks, which face a variety of pressures associated with human populations and 

potential climate changes. For example, increased harvest pressure on sea ducks in 

the 1980s, resulting from more restrictive hunting regulations on other waterfowl 
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(e.g., Canada goose Branta canadensis), led to concern about the condition of sea 

duck populations along the Atlantic flyway (Caithamer et al. 2000; Perry and Deller 

1995). More recently, wind turbines, proposed in locations along the Atlantic coast 

(e.g., Kempton et al. 2007), are raising questions about potential adverse impacts on 

survival and habitat use (e.g., Larsen and Guillemette 2007). Before we can assess the 

influence of factors such as harvest, offshore energy development, contaminants, and 

climate change on sea duck populations, it is necessary to accurately characterize the 

spatial distribution, annual variability, and habitat associations of these species. 

North American sea ducks breed at high northern latitudes throughout the 

U.S. and Canada; these ducks migrate south to winter in coastal waters, reaching as 

far as Florida on the Atlantic coast. Yet, despite the potential impacts resulting from 

their seasonal proximity to large, urbanized areas, we have comparatively limited 

information on winter habitat preference and use. It is difficult to gather information 

on sea ducks during the winter, not only because of the inaccessibility of their 

offshore locations, but also due to the tendency of some species to aggregate in large, 

mobile flocks. Outside of a few areas (e.g., Chesapeake Bay – Perry et al. 2007), the 

status and trends of sea ducks along the eastern U.S. and Canadian coasts have not 

been well established (Caithamer et al. 2000; Sea Duck Joint Venture 2003).  

The spatial distribution of wintering sea ducks along the Atlantic coast is 

determined by both large-scale as well as local processes. General winter conditions 

and habitat gradients are likely to influence the northern and southern boundaries of 

their wintering ranges, while distributions within those ranges may be based on a 

variety of site-specific factors, including food availability, local environmental 
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conditions, and habitat suitability (Lewis et al. 2008). Thus, it is necessary to examine 

how both large-scale processes, such as annual climatic conditions, as well as local 

factors, such as ocean depth, ocean floor topography, and sea surface temperature, 

affect the distributions and abundance of sea ducks.  

The North Atlantic Oscillation (NAO) is a driver of climate variability, which 

has been shown to affect the marine environment (Hurrell et al. 2003) and ecosystems 

(Otterson et al. 2001; Stenseth et al. 2002) along the eastern coast of the U.S. and 

Canada. The NAO is the fluctuation in sea surface pressure across the northern 

Atlantic Ocean between areas of high (Azores High) and low (Icelandic Low) 

pressure; it exerts strong control over the climate in the Atlantic Ocean region, 

particularly in the winter (Hurrell 1995; Hurrell et al. 2003). A positive NAO index 

indicates an increase in winter storms with greater intensity in the northern Atlantic 

Ocean, leading to cold, dry winters in northern Canada and mild, wet winters in the 

eastern U.S. A negative NAO index indicates fewer and weaker winter storms in the 

Atlantic Ocean leading to cold and snowy conditions along the east coast of the U.S. 

and Canada (Bell and Visbeck 2009). The NAO is a composite measure of winter 

conditions and has been linked to ecological processes in plants (Post and Stenseth 

1999), terrestrial invertebrates (Halkka et al. 2006), ungulates (Post and 

Forchhammer 2002; Post and Stenseth 1999), fish (Suski and Ridgway 2007), and 

amphibians (Forchhammer et al. 1998). In birds, the NAO has been linked to 

breeding phenology (Forchhammer et al. 1998; Moller 2002; Weatherhead 2005) and 

migration patterns (Hüppop and Hüppop 2003) and has been correlated specifically 

with adult survival (Sandvik et al. 2005; Sandvik and Erikstad 2008), breeding 
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success (Lehikoinen et al. 2006; Sandvik and Erikstad 2008) and general population 

dynamics (Thompson and Grosbois 2002) in seabirds. Given these correlations, it is 

possible that climatic conditions, including the NAO, may also be influencing 

distributions of wintering sea ducks.      

Studies from other regions provide evidence that distributions of sea ducks 

may be linked to local environmental characteristics, such as ocean depth and water 

temperatures. Common eiders (Somateria mollissima) in Greenland (Merkel et al. 

2006) and surf scoters (Melanitta perspicillata) in British Columbia (Kirk et al. 2008) 

were found to have strong site fidelity within the wintering season, but Kirk et al. 

(2008) noted that prey availability influenced small scale movement. Wintering 

common eiders foraged most frequently in depths between 0-6 m, although they are 

capable of diving much deeper (Guillemette et al. 1993). Surf scoters, white-winged 

scoters (Melanitta fusca), and common eiders also appear to prefer coastal areas with 

relatively shallow depths (Guillemette et al. 1993; Lewis et al. 2008). 

In the early 1990s, the U.S. Fish and Wildlife Service (FWS) initiated the 

Atlantic Flyway Sea Duck Survey (AFSDS) to assess distributions of sea ducks along 

the nearshore of the eastern U.S. and Canada (Migratory Bird Data Center 2009). 

Because the timing and scale of movements by wintering sea ducks are not well 

characterized, the survey offers limited information about the overall abundance of 

each species. This ten-year dataset can, however, provide critical information on how 

distributions of sea duck populations vary both spatially and temporally along the 

nearshore Atlantic coast. Using survey data from the AFSDS, we characterize the 

winter distributions of five sea duck species along the eastern U.S. and Canada and 
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relate observed counts to pertinent broad and local scale environmental 

characteristics. Defining the relationships among sea duck distributions, latitude, and 

habitat will provide a quantitative basis for understanding wintering ecology and 

movements, help with the design of future monitoring programs, and inform targeted 

conservation and management actions. 

Methods 

Sea duck aerial surveys 

The AFSDS was flown between mid-January and mid-February along the east 

coast of the U.S. and Canada in 1991, 1992, 1994, 1995, and 1997-2002 from 

southern Georgia (30.8°N, 81.4° W) to Nova Scotia (48.1°N, 64.8°W) (Figure 5.1). A 

single aerial transect was flown parallel to the coast, a quarter mile from the shore and 

data were reported within approximately 10 nautical mile segments. The segments 

were defined by drawing the survey transect on an aeronautical chart and marking 

increments of 10 nautical miles. Since the survey was initiated and conducted 

primarily in years when geographic positioning technology was unavailable to the 

crew (i.e., pre-GPS), 10 nautical miles, represented the smallest practical spatial unit 

for collecting and recording data. All sea ducks identified to species were counted 

within 500 m (250 m on each side of the route) of the transect line, which defined the 

boundaries for each segment (10 nautical miles by 500 m). Roughly 451 segments 

were flown once yearly, 335 of which were in the U.S. with the remaining segments 

in Canada. Two person crews conducted the surveys, flying at an altitude of 250 feet. 

The pilot and an observer recorded the species and number in each segment 

(Caithamer et al. 2000).  
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Eleven sea duck species were observed at least once during the ten years of 

the AFSDS survey. We focused our analyses on five species for which there were 

adequate data and whose wintering ranges sufficiently overlap with the study area: 

black scoters (Melanitta nigra americana; 85,000 observed over all years of the 

survey), surf scoters (100,000 observed), white-winged scoters (25,000 observed), 

common eiders (414,000 observed), and long-tailed ducks (Clangula hyemalis; 

95,000 observed). We did not include counts in which sea ducks were not indentified 

to species (e.g., bird identified only as scoter).  

Habitat and climate data 

We used hand drawn maps of the survey route (the only maps available) to 

digitally recreate the survey path and identify start and stop points for each segment 

in ArcGIS 9.3 (Environmental Systems Research Institute Inc., Redlands, CA). The 

digital survey path was buffered by 250 m on each side in GIS to recreate the 

segments, which averaged 11.4 (SD 2.6) nautical miles long and 500 m wide. We 

validated the recreated digital route using GPS track data from flights in 2001 and 

2002, the only years with a GPS record of the route, to ensure that our recreated 

transect segments included the areas in which sea ducks had been observed during the 

two years with known flight paths.   

To characterize the yearly winter climatic conditions along the Atlantic coast, 

we obtained monthly values for NAO, based on the difference between the 

normalized sea level pressure over Gibraltar and the normalized sea level pressure 

over Southwest Iceland (Jones et al. 1997) from the Climatic Research Unit, 

University of East Anglia, Norwich, U.K. 
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(http://www.cru.uea.ac.uk/cru/data/nao.htm). We hypothesized that overall conditions 

(i.e., NAO) during migration would have a large effect on sea duck winter 

distributions, since previous research suggests that sea ducks may exhibit within 

season site fidelity, at least on local scales (Kirk et al. 2008). Thus we averaged the 

NAO values for the three months prior to the survey (October, November, December) 

to characterize the climatic conditions around migration. Average NAO values may 

differ from winter averages calculated using other measures of NAO (e.g., Cook et al. 

2002), but data from the Climatic Research Unit provided a sufficiently long period 

of record for our study.  

To assess local factors affecting sea duck distributions, we summarized 

relevant environmental data to characterize the habitat of individual segments. We 

included three static, segment-level variables: 1) whether or not the segment occurred 

in a bay (binary variable with 1 indicating that the segment was in a bay and 0 

otherwise; Figure 5.1), 2) bottom depth, and 3) ocean floor topography. Coarse 

resolution bathymetry data is available for the global oceans, but no fine-scale data is 

available for both U.S. and Canadian Atlantic waters, so we acquired data separately 

from each country. We downloaded the coastal relief model for the U.S. Atlantic, 

available from the National Geophysical Data Center (Divins and Metzger 2008). 

U.S. bathymetry data were available in a 3 arc-second (approximately 90 m) grid, 

with depths resolved to 0.1 m. We obtained a similar bathymetry dataset from the 

Canadian Hydrographic Service (CHS), Fisheries and Oceans Canada, a new product 

produced for the Canadian Atlantic that is not yet available to the public. Bathymetry 

data were received from the CHS as point data with 500 m or closer spacing, from 
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which a 500 m raster was created using routines developed in ArcGIS 9.3. Depths 

were again resolved to 0.1 m. For bottom depth, we averaged depth values for all 

pixels within a segment to achieve a single estimate for each segment. The segment-

level depth values were measured in negative values (i.e., the surface is zero) and 

ranged from -80.16 m to 0 m (95% range: -31.29, -0.35; 9.1baysx = − , 

6.2non baysx − = − ). To characterize the ocean floor topography, we used the slope 

routine in ArcGIS 9.3 to calculate the bottom slope or the maximum rate of change 

for each depth cell (i.e., pixel) from its adjacent eight cells. We used the maximum 

slope for all depth cells within each segment, rather than the average, which provided 

a realistic measure of the topography range for each segment. The segment-level 

slope values ranged from 0 to 21.39 (95% range: 0.20, 10.55; 3.0baysx = , 

2.3non baysx − = ).   

We also gathered monthly averages for sea surface temperature (SST) as 

measured through satellite data from the NOAA/NASA AVHRR Pathfinder Program 

(http://www.nodc.noaa.gov/SatelliteData/pathfinder4km/). Data were downloaded 

from the NASA Physical Oceanography Distributed Active Archive Center 

(ftp://podaac.jpl.nasa.gov/pub/sea_surface_temperature/avhrr/pathfinder/data_v5/mon

thly/).   We used the best estimate (BSST) from the 4.1 km resolution version 5, SST 

data. These data were derived using the Reynolds Optimally Interpolated SST, 

Version 2, methodology (Reynolds et al. 2002), which provides complete areal 

coverage even where clouds are masking the ocean by filling in missing data with 

optimally interpolated SST data. We hypothesized that segment level SST would 

likely affect movement within the winter season and calculated winter averages from 
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monthly BSST data that coincided with the end of migration and the dates of the 

survey (December-February). Since the resolution of each SST pixel was larger (4100 

m) than the buffered segment (500 m), we reduced the cell size of each seasonal SST 

pixel to 1/20th the original resolution and calculated the weighted average SST for 

each segment for every year of the survey. The segment-level SST values across all 

years ranged from 0.65°C to 22.65°C (95% range: 1.32, 21.45).   

Model 

The sea duck survey produced spatially- and temporally-indexed counts for 

which a modeling framework based on generalized linear models (GLMs) is 

appropriate (Clarke et al. 2003). Poisson GLMs are frequently used in analyses of 

count data for other avian monitoring programs, including trend analysis, models of 

abundance and distribution, and modeling landscape and habitat effects (e.g., the 

North American Breeding Bird Survey, Link and Sauer 2007). In most avian surveys 

and in the case of the AFSDS, the assumption of equality of mean and variance for 

Poisson models is not realistic, as there is high variation in the observed number of 

individuals. For the AFSDS, a high variance to mean ratio likely results because some 

sea duck species tend to be highly aggregated in the winter. Because of the extreme 

over-dispersion of the data in our survey, we modeled the counts using a zero-inflated 

negative binomial distribution (Hall 2000; Martin et al. 2005), which allows for a 

higher variance compared to the mean and has provided a better fit to data in previous 

analyses of other duck species (Wenger and Freeman 2008). To do so, we define 

, ,i j ty  as the count of species i at survey segment j in year t. The mean of the model is 
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, , , , ,= ⋅i j t i j t i jzµ λ , where ( ), ,~i j i jz Bernoulliψ
 
 is random variable that indicates 

whether or not a segment should be included in the model (variable for each species 

but constant over the ten years of the survey). When , 1i jz = , the count for species i in 

segment j at time t  has a negative binomial distribution,  

( ) ( ), , , , ,| 1 ~ ,i j t i j i i j ty z NegBinom r p= , with mean 
( ), ,

, ,
, ,

1i i j t
i j t

i j t

r p

p
λ

−
=  and variance 

, ,2
, ,

, ,

i j t
i j t

i j tp

λ
σ = . Thus, the parameter λ  is the estimated mean count when , 1i jz = , 

otherwise the expected count is zero. Since the AFSDS was not designed to 

accommodate the specific geographic range of each species, we hypothesized that z 

would vary by latitude and modeled the inclusion probability ( ),i jψ  for each segment 

as a function of latitude such that ( ), 0 1= + ⋅i j i i jlogit latψ β β , where 0β  is the 

intercept and 1β  is the coefficient on latitude. Although a segment’s inclusion 

probability could depend on a number of factors, we chose to include only latitude in 

order to (1) investigate the north-south range distributions for each species and (2) 

explore the effects of habitat covariates on the abundance of birds within the north-

south boundaries of their range, because the available data limit further complexity 

(i.e., inclusion of habitat covariates in both the Bernoulli and negative binomial 

components of the model). 

We modeled sources of variation in λ  using a log-linear function: 
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,
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λ α α α α

α α α

= + ⋅ + ⋅ + ⋅ +

⋅ + ⋅ + ⋅ ⋅

+ ( ) ( ), , 17 log 1 logi i j t jy offset−⋅ + +  

where 0α  is the intercept and 1α  through 6α are the effects of each of the covariates 

for species i on the estimated count: NAO for each year ( )tNAO ; sea surface 

temperature at each segment in each year ( ),j tSST ; mean bottom depth at each 

segment ( )jdepth ; maximum slope at each segment ( )jslope ; a binary vector 

indicating whether a segment was in a bay ( )jbays ; and an interaction effect between 

segment-level sea surface temperature and NAO ( ),t j tNAO SST⋅ . The latitude, SST, 

depth, and slope data were each standardized to have a mean of zero and a standard 

deviation of one. We incorporated temporal correlation into the model at the segment-

level by estimating an effect ( )7α  of the observed count in the previous year. The 

temporal effect was only estimated when data were available in the previous year 

(e.g., years 1991, 1994, and 1997 were excluded). An offset term was included to 

account for differences in counts due to variation in segment length. During 

development of the model, we included an explicit spatial correlation using a 

conditional autoregressive (CAR) model. The results from the CAR model were 

uninformative when habitat covariates were not incorporated (likely due to the high 

variation in the data) and parameter estimates would not converge with inclusion of 

both explicit spatial correlation and covariates. The purpose of including spatial 

correlation in a model is based on the notion that counts are likely to be similar within 

some neighborhood (a predefined region). Often, the reason for such correlations is 
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because of similarities in landscape features within a neighborhood. If sea ducks are 

responding to habitat factors, inclusion of relevant landscape covariates should 

account for variation in observed counts and render the inclusion of an explicit spatial 

correlation unnecessary. We determined that habitat covariates explained more of the 

variation in the data and we thus removed the CAR component. 

 We analyzed the model separately for each species and estimated the 

parameter values using a Bayesian framework with the programs R and WinBUGS.  

Since our model includes a temporal correlation ( )7α , analysis using standard 

canned statistical software was not possible. As such, we specified code in R to 

estimate the parameter values using a Markov Chain Monte Carlo (MCMC) approach 

in the software program WinBUGS. The idea behind MCMC is that parameter 

estimates, which are assumed to be random variables, can be obtained by creating a 

posterior distribution of the variable (Gelman and Hill 2007). This can be preferable 

to finding a parameter’s maximum likelihood when integrating the likelihood is 

difficult, as is the case with our model. An additional benefit of the Bayesian 

approach is that interpretation of parameter values is straightforward and intuitive. 

For example, if 95% of a parameter’s posterior distribution does not overlap with 

zero, we can directly interpret that as a 95% probability that the parameter is nonzero. 

To run our model, we used uninformative priors for all of the covariates. We ran three 

chains for 10,000 iterations after a burn in period of 10,000 iterations and estimated 

the posterior distributions after thinning the chains by 10. We checked that the model 

and all parameters had converged by examining the R-hat scores (Gelman and Hill 

2007).    
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Results 

The model estimated significant temporal correlation in the mean count and a 

latitude effect in the inclusion parameter for all five species of sea ducks (see Table 

5.1 for parameter estimates). There was a positive relationship at the segment-level 

between expected count in year t and observed count in the previous year ( )7α  for all 

species, with white-winged scoters having the highest consistency in local habitat use. 

As expected, there was also a consistent and positive relationship to latitude ( )1β  
in 

the inclusion parameter, indicating that the probability of observing each species 

increased from south to north, with common eiders followed by long-tailed ducks 

showing the strongest relationship (Figure 5.2). 

 The NAO ( )1α  was the only environmental covariate that had a significant 

effect on all five sea duck species: negative for the three scoter species and positive 

for the common eiders and long-tailed ducks. This suggests that climatic conditions 

along the Atlantic coast during migration and settlement may have strong influences, 

either directly or indirectly (e.g., by affecting distributions of prey), on sea duck 

distributions, with the scoter species observed in higher abundances in the nearshore 

during cold, snowy winters and common eiders and long-tailed ducks observed in 

higher abundance in the nearshore during wet, mild winters. SST ( )2α  had a 

significant negative effect on long-tailed duck and white-winged scoter counts and a 

positive effect on common eiders (but see below for details on the interaction 

between NAO and SST). A negative relationship with temperature suggests that the 

expected count increases with colder SST values for long-tailed ducks and white-
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winged scoters. Because the model incorporates a latitude-dependent inclusion 

parameter (Figure 5.2), the positive relationship between SST and the expected count 

for common eiders can be interpreted to mean that, within the northern latitudes 

where common eiders are present (greater than 40°N latitude), the ducks are found in 

higher abundance in segments with moderate temperatures (note x-axis temperature 

range in Figure 5.3 for eiders is smaller than the other four species).     

 The relationship among NAO, SST, and the expected count was highly 

variable by species (Figure 5.3). The expected count in the nearshore for all three 

scoter species was generally higher in years with a negative NAO index compared to 

years with a positive index for nearly all ranges of SST. Yet the difference in 

expected count was consistent across SST for black scoters, highest at warmer SST 

values for surf scoters, and highest at colder SST values for white-winged scoters 

(even reversing the relationship at very warm values of SST). In contrast, the 

expected count for common eiders and long-tailed ducks in the nearshore, although 

very different from each other, were generally higher in positive years, compared to 

negative NAO years, in warmer SST ranges (Figure 5.3). The expected count of 

common eiders, within the temperature range where they were observed, was fairly 

constant across SST in negative years, but had a strong positive relationship with SST 

in positive NAO years. Conversely, the expected count of long-tailed ducks tended to 

decrease with SST in both NAO scenarios. 

All species, except for white-winged scoters (which had a similar, although 

not significant response), had positive relationships with ocean bottom depth ( )3α , 

measured in negative values where zero is sea level, indicating that sea duck 
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abundance is greater in shallower sections of the shoreline. Maximum slope ( )4α  

had a negative effect on all three scoter species (but was significant only for surf 

scoters) and positive effects on the other two species (but again, significant only for 

common eiders), suggesting that the scoters may occur in areas with flat topography, 

while eiders and long-tailed ducks may prefer areas with steeper, more rugged 

bottoms. Black scoters were significantly less abundant in bays ( )5α , while white-

winged scoters were significantly more abundant.  

Discussion 

Our results provide critical information on the spatial and temporal 

distributions of wintering sea ducks in the nearshore habitat of the U.S. and southern 

Canadian Atlantic coast. Sea duck distributions appear to be responding to a 

combination of local habitat conditions and broad-scale weather patterns. All species 

had strong consistency in local habitat use among years and exhibited significant 

responses to latitude. Yet, the effects of environmental conditions were largely 

species-specific with similarities among the scoter species and different responses by 

common eiders and long-tailed ducks. Common eiders and long-tailed ducks had 

sharp southern range boundaries compared to the scoters (Figure 5.2), which had 

more gradual range boundaries and were sometimes found in southern waters. 

Research within the last decade has demonstrated northerly extensions in some bird 

species ranges (Thomas and Lennon 1999) and, if climate induced winter range shifts 

do occur in sea ducks, they may be comparatively easier to detect in common eiders 

and long-tailed ducks.   



 

 122

The North Atlantic Oscillation was the only environmental covariate that had 

a significant effect on all five sea duck species (Table 5.1), suggesting that site-

specific abundance may be influenced by large scale weather conditions. This result 

is consistent with recent studies on the NAO, which suggest that broad scale climatic 

indices, rather than measurements of local weather, can have stronger correlations 

with ecological processes (Hallett et al. 2004; Stenseth and Mysterud 2005). 

However, our results show that the response to NAO varied by species and was 

dependent on segment-level SST values (Figure 5.3). SST has been correlated with 

the NAO at interannual timescales and evidence suggests that the NAO itself may be 

altered by SST in the Atlantic Ocean on the order of six decades (Higuchi et al. 

1999). Although we did not find a significant correlation between the NAO and mean 

annual SST values in our data, the relationship between the NAO and SST may be 

influencing sea duck distributions at differing scales (hence the inclusion of the 

interaction term of NAO and SST in our model) and may possibly have greater 

effects at longer time scales. Seabirds, in general, have shown variable and complex 

responses to the NAO (e.g., Lehikoinen et al. 2006; Sandvik and Erikstad 2008; 

Thompson and Grosbois 2002; Thompson and Ollason 2001) and climate change may 

affect the NAO in unpredictable ways (e.g., Hoerling et al. 2001). The response of sea 

duck distributions in the nearshore to fluctuations in the NAO and climate change is 

likely to be species-specific, due to differences in the influence of weather conditions, 

physiological constraints, and other habitat factors such as food availability. 

Lehikoinen et al. (2006), for example, found that in the Baltic Sea, the body condition 

of female common eiders during egg hatching was positively correlated with the 
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NAO. Together with our results, their work suggests that sea ducks may demonstrate 

complex and indirect responses to fluctuations in the NAO during the wintering and 

subsequent breeding seasons. To protect sea ducks from decline, it may be useful to 

make annual predictions about abundance in relation to NAO in areas along the 

Atlantic coast and mitigate or limit human interference where abundance of several 

species is predicted to be high. 

We found ecologically relevant relationships between sea duck abundances 

and climatic conditions. However, survey data from the AFSDS was limited to one 

north-south transect, a quarter mile off the Atlantic coast; future research should 

investigate whether our results are relevant over the entire winter range. Because the 

available data represent nearshore observations, we cannot make inferences on 

overall sea duck abundances or determine whether the differences in mean counts 

reflect changes in wintering locations or more general shifts further offshore (Braeger 

et al. 1995). The results from our model can help determine optimal sampling 

strategies based on the estimated relationships among abundance, latitude, and the 

environmental covariates. For example, our results on the effect of latitude (Figure 

5.2) suggest that it may be possible to exclude or limit effort in southerly portions of 

the coast in future surveys. Recent offshore survey efforts, conducted by the FWS and 

including transects extending offshore, as well as parallel to the coast, should help to 

further characterize sea duck distributions, their range limits, and the potential 

tradeoffs between nearshore and offshore abundance.  

The relationships between the local habitat covariates and sea duck abundance 

were similarly variable across species. While all species were associated with shallow 
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depths, there was greater variation in responses to bottom slope. As a group, the 

scoters were more abundant in flatter areas along the coast (Table 5.1), which is 

consistent with previous research that showed that black, surf, and white-winged 

scoters prefer sandy sections along the Atlantic shoreline (Stott and Olson 1973). 

Observational data from other studies have demonstrated that common eiders may 

prefer rugged substrate but long-tailed ducks have not been clearly linked to bottom 

substrate (Perry et al. 2007). These results, as well as bay associations, may be related 

to the resolution of the count and covariate data. The sea duck data in the AFSDS 

were recorded at a 10 nautical miles by 500 m resolution. Because we did not know 

the location of each observation more precisely (pre-GPS era), we used 

environmental covariate data at similar spatial and temporal resolutions. However, it 

is possible that sea ducks are responding to habitat factors that occur on much finer 

scales, such as upwellings or high local productivity. Future surveys with GPS 

coordinates of duck locations should be analyzed with finer scale covariate data to 

assess the strength of our results. Additionally, because the U.S. and Canada provide 

bathymetry data at different resolutions, slope values were smaller than expected for 

the Canadian segments, which might indicate that the 500 m resolution of this dataset 

was effectively “smoothing” the bottom surface, limiting our ability to detect the true 

ruggedness.  

Knowledge of wintering sea ducks is limited and data from the AFSDS 

provide the only distributional information in the nearshore Atlantic across a large 

temporal and spatial scale.  The results from our analyses clarify how both local and 

broad landscape factors can influence distributions of bird species. Specifically, we 
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demonstrated the importance of climate and weather processes to distributions of sea 

ducks in North America. Given that NAO had a significant effect on all species in our 

study, it reasonable to believe that NAO, as well as other climatic factors, can exert 

powerful and complicated forces on distributions of bird species in North America, 

and worldwide. Our analysis improves understanding of inter-annual variation in sea 

duck distributions, interspecific differences in response to environmental conditions, 

and provides a basis for understanding how wintering sea ducks may respond to 

climate change, information that is critical for effective conservation planning and the 

design of future monitoring programs. 
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Table 5.1 Posterior summary of species-specific parameter estimates. The mean and 

standard error of the mean estimate (SD) are shown for each parameter. 

Environmentally relevant parameters that are statistically different from zero (95% 

posterior intervals that do not overlap zero) are highlighted in bold. Note that the 

intercepts for both count and inclusion terms were also statistically different from 

zero for all species. 

 

Parameter 
  

Black 
Scoters 

Surf    
Scoters 

White-
winged 
Scoters 

Common 
Eiders 

Long-tailed 
Ducks 

                      
            

Intercept - count α0 3.10 (0.11) 3.31 (0.12) 1.38 (0.19) 5.96 (0.20) 2.20 (0.06) 

NAO α1 0.42 (0.09) 0.36 (0.10) 0.71 (0.18) 0.70 (0.14) 0.38 (0.05) 

SST α2 0.07 (0.10) 0.28 (0.15) 0.55 (0.20) 1.27 (0.25) 1.04 (0.07) 

Depth α3 0.26 (0.08) 0.32 (0.07) 0.21 (0.10) 0.26 (0.06) 0.25 (0.03) 

Slope α4 0.12 (0.09) 0.41 (0.08) 0.08 (0.11) 0.16 (0.06) 0.06 (0.04) 

Bay α5 0.36 (0.16) 0.27 (0.15) 0.63 (0.20) -0.17 (0.13) 0.09 (0.07) 

SST*NAO α6 0.01 (0.11) 0.11 (0.17) 0.52 (0.24) 1.18 (0.24) 0.39 (0.08) 
            

Year α7 0.22 (0.05) 0.17 (0.05) 0.38 (0.07) 0.18 (0.02) 0.18 (0.02) 
            
Intercept - 
inclusion β0 2.35 (0.25) 2.19 (0.26) 0.53 (0.14) -1.58 (0.42) 4.76 (0.54) 

Latitude β1 0.88 (0.20) 1.23 (0.20) 1.19 (0.16) 13.99 (2.40) 3.30 (0.41) 
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Figure 5.1 Map of the Atlantic Flyway Sea Duck Survey route flown ten years 

between 1991 and 2002. Segments shown in green were included as bays, all others 

are shown in blue. 
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Figure 5.2 Probability of inclusion by latitude for each sea duck species. The mean 

estimate is shown in black and the 95% posterior interval is shown with gray dashed 

lines. BLSC = black scoters, SUSC = surf scoters, WWSC = white-winged scoters, 

COEI= common eiders, and LTDU = long-tailed ducks. 
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Figure 5.3 Expected count for each sea duck species (given inclusion, i.e., , 1i jz = ) 

by sea surface temperature (SST) in years with the highest positive (1994; solid line) 

and lowest negative (1998; dashed line) NAO values. BLSC = black scoters, SUSC = 

surf scoters, WWSC = white-winged scoters, COEI= common eiders, and LTDU = 

long-tailed ducks. 
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Conclusion 

 
Statistical models will always be necessary in ecological research because of 

data limitations, the inherent complexities in ecological systems, and the desire to 

make predictions beyond the study system. My dissertation presents five case studies 

in which generalized linear models were developed to examine how habitat and 

climate variables affect the abundance and distributions of species including birds, 

amphibians, and butterflies. Through my dissertation work, I contributed to the 

development of modern estimation techniques on the occurrences and abundance of 

species using Bayesian inference. Specifically, I adapted and expanded on methods 

for dealing with highly aggregated species by incorporating covariates into a 

comprehensive model for simultaneously estimating distribution and abundance; I 

developed an approach for validating occurrence models that accounts for detection 

biases; and I advanced methods for dealing with uneven species abundances in 

community analyses of richness and composition. 

My model developments can be used to help determine potential threats to 

populations and communities of species as well as to guide management planning.  

For example, the results from chapter three can be used to mitigate the declines in 

amphibian occurrences in the Chesapeake and Ohio National Historical Park. 

Managers could use the models to make predictions about the status of amphibian 

richness at all 274 wetlands in CHOH. This information could then be used to assess 

which wetlands might benefit most from management actions, such as translocating 

species or increasing wetland hydroperiod and/or area. All amphibian species had 
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higher occurrence probabilities at semi-permanent or permanent as compared to 

temporary wetlands. Thus, one potential management strategy to reverse observed 

declines in amphibians would be to increase wetland hydroperiod (i.e., by increasing 

depth) of temporary wetlands during the breeding season. By using the estimated 

covariate effects, the models can be used to determine which temporary wetlands 

would produce the highest expected change in richness if they were altered to semi-

permanent. This approach would allow managers to rank the potential efficacy of 

management alternatives and choose a strategy that meets their objectives.    

The use of predictive models can aid decision makers in determining the 

optimal course of action for a given set of objectives (Williams et al. 2002). As such, 

the results from my models can also be used to make predictions about how species 

and communities may respond to environmental changes in habitat as well as climate. 

For example, the monarch butterfly model in chapter four can be used in conjunction 

with climate predictions on temperature and precipitation in Ohio and Texas to assess 

not only the potential sizes of local populations but also the uncertainty and variation 

in such predictions. This information can then be used to determine which locations 

are likely to be important for maintaining monarch populations and which therefore 

should be prioritized for conservation. 

The work in my dissertation presents the first steps of my research objectives 

related to hierarchical model development. I have several projects planned or in the 

works that I aim to complete over the next few years, including: 

- Comparison of traditional methods for estimating species richness to the 

multi-species modeling framework; 
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- Imposing additional structure in the community modeling framework, such as 

subdividing species according to functional groups and/or phylogenetic 

structure; 

- Developing methodology within the multi-species modeling framework to 

explicitly model covariate effects (such as climate) on the timing of habitat 

use;  

- Exploring other statistical distributions (such as power law) to more 

effectively model the extreme spatial aggregation in abundances that is 

observed in some species (e.g., seabirds). 

My dissertation sets the stage for these additional methodological advances. 

The chapters from this dissertation along with code from my models (see the 

appendix and http://www.mbr-pwrc.usgs.gov/pubanalysis/communitymodeling/) will 

allow other researchers to build upon my work and adapt this modeling framework 

for their own study systems. It is my goal to illustrate the utility of hierarchical 

models while making the approach accessible to others wishing to employ these 

methods.   
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Appendices 

Appendix 1.1 Hierarchical community model WinBUGS code 
 

We ran the community model using MCMC with the programs R (using the 

R2Winbugs package) and WinBUGS for three chains of length 70,000 after a burnin 

of 7000 and thinned by 40. Convergence was assessed by examining the R-hat values 

for each parameter estimate (Gelman and Hill 2007). The model code, including the 

prior distributions, is presented below.   

 
Winbugs model code: 
 
model { 
 
          #Prior distributions on the community level occupancy and detection covariates 

psi.mean ~ dunif(0,1) 
a <- log(psi.mean) - log(1-psi.mean) 
 
theta.mean ~ dunif(0,1) 
b <- log(theta.mean) - log(1-theta.mean) 
 
mu.alpha1 ~ dnorm(0, 0.001) 
mu.alpha2 ~ dnorm(0, 0.001) 
mu.alpha3 ~ dnorm(0, 0.001) 
 
mu.beta1 ~ dnorm(0, 0.001) 
mu.beta2 ~ dnorm(0, 0.001) 
beta3 ~ dnorm(0, 0.001) 
 
tau1 ~ dgamma(0.1,0.1) 
tau2 ~ dgamma(0.1,0.1) 
 
tau.alpha1 ~ dgamma(0.1,0.1) 
tau.alpha 2 ~ dgamma(0.1,0.1) 
tau.alpha 3 ~ dgamma(0.1,0.1) 
 
tau.beta1 ~ dgamma(0.1,0.1) 
tau.beta2 ~ dgamma(0.1,0.1) 
 
rho ~ dunif(-1,1) 
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var.v <- tau2 /(1.-pow(rho,2)) 
 
sigma1 <- 1/sqrt(tau1) 
sigma2 <- 1/sqrt(tau2) 

  
 for (i in 1:(N)) { 
     
   #Prior distributions for the occupancy and detection covariates for each species  
    u[i] ~ dnorm(a, tau1) 
 
    mu.v[i] <- b + (rho*sigma2 /sigma1)*(u[i] – a) 
    v[i] ~ dnorm(mu.v[i], var.v) 
 
    alpha1[i] ~ dnorm(mu.alpha1, tau.alpha1) 
    alpha2[i] ~ dnorm(mu.alpha2, tau.alpha2) 
    alpha3[i] ~ dnorm(mu.alpha3, tau.alpha3) 
     
    beta1[i] ~ dnorm(mu.beta1, tau.beta1) 
    beta2[i] ~ dnorm(mu.beta2, tau.beta2)    
    
   #Estimate the occupancy probability (latent Z matrix) for each species at each point 
      for (j in 1:J) { 
          logit(psi[j,i]) <- u[i] + alpha1[i]*perm[j] + alpha2[i]*area [j] + alpha3[i]*pa[j] 
          Z[j,i] ~ dbin(psi[j,i], 1) 
    
   #Estimate the species specific detection probability for every rep at each point  
   # where the species occurs (Z=1) 
     for (k in 1:K[j]) {    
     logit(theta[j,k,i]) <- v[i] + beta1[i]*date1[j,k] + beta2[i]*date2[j,k] +          
                                              beta3*year[j,k] 
 mu.theta[j,k,i] <- theta[j,k,i]*Z[j,i] 
 X[j,k,i] ~ dbin(mu.theta[j,k,i], 1)  
 
     } 
       }   
          }  
      
  }  
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Appendix 1.2. Comparison of the community model to species-level models 
 

We developed and analyzed species-specific occurrence models (that 

accounted for detection) to compare the results with those obtained using the 

community model described in the main text of Chapter 1. For many species, 

including some of direct interest, we could not obtain MLEs of model parameters. 

This is manifested in the numerical optimization procedure (e.g., nlm() in the package 

R) as a singular Hessian matrix with typically one or more parameters that tend 

toward the boundary of the parameter space (+/- infinity for regression parameters). 

In the context of a Bayesian analysis, this appears as extreme sensitivity to the prior 

distribution or a posterior maximum at one of the boundaries for those priors having 

bounded support (e.g. a uniform prior on the interval [-B,B]),. 

The WinBUGS model code for the single-species occupancy models is shown 

below. In this specification, we used uniform (-4,4) priors for the regression 

parameters. The results, summarized for area effect in Figure A1.1, compare the 

posterior distributions for the seventeen forest interior species as estimated in the 

community model to the individual species models. We again ran three chains of the 

species-by-species model for a length 70,000 after a burnin of 7000 and thinned the 

model by 40. Convergence was assessed by examining the R-hat values for each 

parameter estimate. The very diffuse posterior distributions (and in some cases, 

posterior modes on the boundary) is evidence that the parameters are non-identifiable 

under the single-species models. Therefore, in a classical analysis framework we 

would have to discard these data or possibly rely on pooling the species to increase 

sample size, inducing an assumption of homogeneity of effects across species. 
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Winbugs model code: 
 
model { 
 
for (i in 1:N) { 
 
   #Prior distributions for the intercept terms: occupancy and detection 
    expit.u[i]~dunif(0,1) 
    u[i] <- log(expit.u[i]/(1-expit.u[i])) 
    expit.v[i]~dunif(0,1) 
    v[i] <- log(expit.v[i]/(1-expit.v[i])) 
     
   #Prior distributions for the habitat and sampling covariates for each species 
    alpha1[i] ~ dunif(-4,4)  
    alpha2[i] ~  dunif(-4,4) 
    alpha3[i] ~ dunif(-4,4) 
    beta1[i] ~  dunif(-4,4) 
    beta2[i]~  dunif(-4,4) 
    beta3[i] ~  dunif(-4,4) 
    
  #Estimate the occupancy probability (latent Z matrix) for each species at each point 
   for (j in 1:J) { 
       logit(psi[j,i]) <- u[i] + alpha1[i]*perm[j] + alpha2[i]*area1[j] + alpha3[i]*pa[j] 
       mu.psi[j,i] <- psi[j,i]     
       Z[j,i] ~ dbin(mu.psi[j,i], 1) 
 
  #Estimate the species specific detection probability for every rep at each point where 
the      
  #species occurs (Z=1) 
     for (k in 1:K[j]) {    
     logit(theta[j,k,i]) <- v[i] + beta1[i]*date1[j,k] + beta2[i]*date2[j,k] + 
beta3[i]*year[j,k] 
 mu.theta[j,k,i] <- theta[j,k,i]*Z[j,i] 
 X[j,k,i] ~ dbin(mu.theta[j,k,i], 1) 
 
}      

}  
}  } 
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Figure A1.1 Comparison of posterior distributions for α2 (effect of area) for 

seventeen forest interior species (Acadian flycatcher (ACFL), black-and-white 

warbler (BAWW), blackburnian warbler (BBWA), brown creeper (BRCR), black-

throated blue warbler (BTBW), black-throated green warbler (BTGN), Canada 

warbler (CAWA), cerulean warbler (CERW), hooded warbler (HOWA), northern 

parula (NOPA), ovenbird (OVEN), red-breasted nuthatch (RBNU), scarlet tanager 

(SCTA), veery (VEER), worm-eating warbler (WEWA), winter wren (WIWR), and 

wood thrush (WOTH)) as estimated using the community hierarchical model (left 

column – Appendix A1.1 code) and with a Bayesian species-level model (right 

column – Appendix A1.2 code).  
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