
  

 
 

ABSTRACT 
 
 
 
  
Title: INTEGRATING SOFTWARE BEHAVIOR INTO 

DYNAMIC PROBABILISTIC RISK ASSESSMENT 
  
 Dongfeng Zhu, Doctor of Philosophy 2005 
  
Directed By: Associate Professor Carol Smidts, Professor Ali Mosleh 

Department of Mechanical Engineering 
 

 

Software plays an increasingly important role in modern safety-critical systems. 

Although research has been done to integrate software into the classical Probability 

Risk Assessment (PRA) framework, current PRA practice overwhelmingly neglects 

the contribution of software to system risk. The objective of this research is to 

develop a methodology to integrate software contributions in the Dynamic 

Probabilistic Risk Assessment (DPRA) environment. 

DPRA is considered to be the next generation of PRA techniques. It is a set of 

methods and techniques in which simulation models that represent the behavior of the 

elements of a system are exercised in order to identify risks and vulnerabilities of the 

system. DPRA allows consideration of dynamic interactions of system elements and 

physical variables. The fact remains, however, that modeling software for use in the 

DPRA framework is also quite complex and very little has been done to address the 

question directly and comprehensively. 



  

This dissertation describes a framework and a set of techniques to extend the DPRA 

approach to allow consideration of the software contributions on system risk. The 

framework includes a software representation, an approach to incorporate the 

software representation into the DPRA environment SimPRA, and an experimental 

demonstration of the methodology. 

This dissertation also proposes a framework to simulate the multi-level objects in the 

simulation based DPRA environment. This is a new methodology to address the state 

explosion problem. The results indicate that the DPRA simulation performance is 

improved using the new approach. The entire methodology is implemented in the 

SimPRA software. An easy to use tool is developed to help the analyst to develop the 

software model.   

This study is the first systematic effort to integrate software risk contributions into the 

dynamic PRA environment. 

 

 

 

 

 

 

 

 

 

 



  

 

 
 
 
 
 
 
 
 

 
 

INTEGRATING SOFTWARE BEHAVIOR INTO DYNAMIC PROBABILISTIC 
RISK ASSESSMENT 

 
 
 

By 
 
 

Dongfeng Zhu. 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2005 
 
 
 
 
 

 
 
 
Advisory Committee: 
Associate Professor Carol Smidts, Co-Chair / Co-Advisor 
Professor Ali Mosleh, Co-Chair / Co-Advisor 
Assistant Professor Michel Cukier 
Professor Dave Akin 
Professor Shapour Azarm 
Dr. Michael Stamatelatos 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

© Copyright by 
Dongfeng Zhu 

2005 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

 
ii 

 

Dedication 

To my family. 



 

 
iii 

 

Acknowledgements 

I wish to express my sincere gratitude to Dr. Carol Smidts and Dr. Ali Mosleh for 

their support, patience, and encouragement throughout my graduate studies. Without 

their immense help in guiding my research and this dissertation would have been 

impossible. 

I owe special thanks to the contributions of Dr. Ming Li and Dr. Frank Greon for their 

tremendous help during the research, as colleague and as friends. 

I am fortunate to have been able to work on this project with a talented and dedicated 

team of UMD researchers consisting of Dr. Yunwei Hu, Thiago Pirest, and Hamed 

Nejad. Special thanks are presented to my colleagues: Dr. Bin Li, Dr. Avik Sinha, 

Yuan Wei, Susmita Ghose, Anand Ladda, Wende Kong, Ying Shi, and Jun Dai for 

their help and the support they provided to this project.  

I would like to thank Dr. Michael Stamatelatos, Dr. Dave Akin, Dr. Shapour Azarm 

and Dr. Michel Cukier for agreeing to be on my committee.  

Thanks to my wife, Yuan, for supporting me with love and understanding. My parents 

receive my deepest gratitude and love for their dedication and support. 



 

 
iv 

 

Table of Contents 

Dedication ..................................................................................................................... ii 

Acknowledgements...................................................................................................... iii 

Table of Contents......................................................................................................... iv 

List of Tables ............................................................................................................... ix 

List of Figures ............................................................................................................. xii 

Glossary ...................................................................................................................... xv 

Chapter 1: Introduction ................................................................................................. 1 

1.1 Research Objective ............................................................................................. 1 

1.2 Research Statement............................................................................................. 1 

1.3 Approach............................................................................................................. 3 

1.4 Content................................................................................................................ 5 

1.5 Summary of Research Contributions .................................................................. 7 

Chapter 2: Background ................................................................................................. 8 

2.1 Software modeling in classical PRA................................................................... 8 

2.2 Dynamic PRA environment.............................................................................. 11 

2.3 SimPRA environment ....................................................................................... 14 

2.3.1 Introduction................................................................................................ 14 

2.3.2 Software Representation in DPRA ............................................................ 15 

2.4 Teamwork ......................................................................................................... 17 

2.5 Glossary of terms .............................................................................................. 18 



 

 
v 

 

Chapter 3: Software Modeling Requirements in DPRA............................................. 20 

3.1 General Modeling Requirement........................................................................ 20 

3.2 Simulation Requirements.................................................................................. 20 

3.3 Interaction Requirements .................................................................................. 22 

Software-Software interactions........................................................................... 23 

Software-Hardware interactions ......................................................................... 24 

Software-Human interactions ............................................................................. 24 

3.4 Non-Functional Requirements .......................................................................... 25 

3.5 Discussion ......................................................................................................... 28 

Chapter 4: Software Representation Framework for simulation ................................ 29 

4.1 Overview........................................................................................................... 29 

4.2 Key Concept...................................................................................................... 30 

4.3 Behavior Model ................................................................................................ 34 

4.3.1 Overview.................................................................................................... 34 

4.3.2 Simulation-based Finite State Machine (SFSM) ....................................... 38 

4.3.3 Deterministic Model .................................................................................. 40 

4.3.4 Stochastic Model........................................................................................ 44 

4.3.5 Summary .................................................................................................... 53 

4.4 Simulation Guidance Model ............................................................................. 55 

4.4.1 Overview.................................................................................................... 55 

4.4.2 Interactions with other models................................................................... 55 

4.4.3 Simulation Knowledge Base (SKB) .......................................................... 58 

Chapter 5: Integrating the Software Representation into SimPRA ............................ 61 



 

 
vi 

 

5.1 State Explosion Issue ........................................................................................ 61 

5.2 SimPRA environment ....................................................................................... 62 

5.2.1 Overview.................................................................................................... 62 

5.2.2 Guidance Rule in the single-level SimPRA environment.......................... 63 

5.2.2 Integrating Software into the single-level SimPRA................................... 66 

5.3 Enhanced SimPRA environment ...................................................................... 74 

5.3.1 Overview.................................................................................................... 74 

5.3.2 Enhanced Planner....................................................................................... 75 

5.3.3 Enhanced Scheduler................................................................................... 78 

5.3.4 Software Guidance Model in SimPRA...................................................... 84 

5.4 Integration ......................................................................................................... 84 

Chapter 6:  Experimental Demonstration --- Propulsion System Mission and Design 

Problem....................................................................................................................... 86 

6.1 Introduction....................................................................................................... 86 

Mission Profile.................................................................................................... 86 

Design Description.............................................................................................. 87 

6.2 Simulation Model.............................................................................................. 91 

6.2.1 Overview.................................................................................................... 91 

6.2.1 Software Model.......................................................................................... 91 

6.3 Discussion ......................................................................................................... 94 

Chapter 7:  Experimental Demonstration --- PACS ................................................... 96 

7.1 PACS System Introduction ............................................................................... 96 

7.2 Simulation Model.............................................................................................. 97 



 

 
vii 

 

7.2.1 Overview.................................................................................................... 97 

7.2.2 Software Model........................................................................................ 100 

7.3 Traditional vs. Dynamic.................................................................................. 107 

7.4 Multi-level Simulation .................................................................................... 110 

7.5 Comparison of software model vs. Real code ................................................ 111 

Step 1: Define a complete operation profile for PACS..................................... 112 

Step 2: Inject software failures into PACS ....................................................... 113 

Step 3: Test PACS. ........................................................................................... 114 

Step 4: Build a software model based on different levels of knowledge.......... 118 

Step 5: Inject the software code into the simulation environment and compare 

the results .......................................................................................................... 126 

Step 6: Quantitative coverage results................................................................ 127 

7.6 Discussion ....................................................................................................... 130 

7.7 Summary ......................................................................................................... 132 

Chapter 8:  Procedure to Develop the Software Model in Case of Objective Data.. 133 

8.1 Approach......................................................................................................... 133 

Step 1: Build the executable low-level model for the software. ....................... 133 

Step 2: Define a multi-level structure for the software model.......................... 134 

Step 3: Obtain the operational profile for the software..................................... 141 

Step 4: Define the possible software failure modes.......................................... 142 

Step 5: Test the software using the operational profile..................................... 142 

Step 6: Analyze the test results ......................................................................... 145 

Step 7: Estimate the probability for undetected software failures .................... 146 



 

 
viii 

 

Step 8: Inject the software failures in the executable software model.............. 147 

8.2 Discussion ....................................................................................................... 147 

Chapter 9:  Conclusion and Future Work ................................................................. 148 

9.1 Conclusion ...................................................................................................... 148 

9.2 Future Work .................................................................................................... 150 

9.2.1 Large scale validation .............................................................................. 150 

9.2.2 Software-related knowledge .................................................................... 150 

9.2.3 Software-testing knowledge..................................................................... 151 

9.3 Acknowledgement .......................................................................................... 153 

Bibliography ............................................................................................................. 154 



 

 
ix 

 

List of Tables 

Table 1. Comparison of the software representation methodologies.......................... 29 

Table 2. Software-guidance model vs. System-behavior model................................. 56 

Table 3. Software-Guidance model vs. Software-Behavior Model ............................ 56 

Table 4. Software-guidance model vs. System Scheduler.......................................... 57 

Table 5. An example for the system level knowledge base........................................ 76 

Table 6.  Mission Profile (table used in previous version) ......................................... 87 

Table 7.  Common Cause Failure Modeling Values................................................... 89 

Table 8.  Failure Mode and Effects Analysis.............................................................. 90 

Table 9.  Reliability Data ............................................................................................ 91 

Table 10. Software failure examples for PACS........................................................ 102 

Table 11. Time requirement factor table for PACS.................................................. 104 

Table 12. Multi-level simulation: Run-time for different levels of detail (within 

SimPRA)................................................................................................................... 111 

Table 13. Multi-level simulation: Run-time for different levels of detail (in Isolation)

................................................................................................................................... 111 

Table 14. User records .............................................................................................. 113 

Table 15. Database used in PACS ............................................................................ 114 

Table 16. Test results for PACS ............................................................................... 115 

Table 17. Failure probabilities for PACS (from high-level test results from Table 16)

................................................................................................................................... 115 



 

 
x 

 

Table 18. Operational Profile for High-level PACS................................................. 116 

Table 19. Testing results for card validation ............................................................ 116 

Table 20. Failure probability for card validation ...................................................... 117 

Table 21. Testing results for PIN validation (right card).......................................... 117 

Table 22. Testing results for PIN validation (wrong card) ....................................... 117 

Table 23. Failure probabilities for PIN validation (right card)................................. 117 

Table 24. Failure probabilities for PIN validation (wrong card) .............................. 118 

Table 25. Simulation results for high-level PACS model......................................... 119 

Table 26. Simulation results for low-level PACS model.......................................... 121 

Table 27.  Failure probabilities for high-level testing – strategy 2 (Bayesian approach)

................................................................................................................................... 123 

Table 28. Failure probabilities for card validation – strategy 2 (Bayesian approach)

................................................................................................................................... 124 

Table 29. Failure probabilities for PIN validation (right Card)  - strategy 2 (Bayesian 

approach)................................................................................................................... 124 

Table 30. Failure probabilities for PIN validation (wrong card)  - strategy 2 (Bayesian 

approach)................................................................................................................... 124 

Table 31.  Testing time for PACS............................................................................. 124 

Table 32. Failure probabilities for time-delay failure (Bayesian approach)............. 124 

Table 33. Simulation results for high-level software model – strategy 2 (Bayesian 

approach)................................................................................................................... 125 

Table 34. Simulation results for low-level software model – strategy 2 (Bayesian 

approach)................................................................................................................... 125 



 

 
xi 

 

Table 35.  PACS simulation results (software code without coverage guidance) .... 127 

Table 36. Coverage information for PACs low-level simulation ............................. 128 

Table 37. Example scenarios for different levels...................................................... 130 

 



 

 
xii 

 

List of Figures 

Figure 1 Overview of the software representation in SimPRA environment ............... 5 

Figure 2: Structure of the adaptive scheduling DPRA environment [38]................... 15 

Figure 3. Teamwork chart for SimPRA...................................................................... 18 

Figure 4. Relationship between the Multi-Layer structure and the Multi-Level 

structure....................................................................................................................... 32 

Figure 5. Software functional decomposition............................................................. 35 

Figure 6. The highest logic level system diagram for LOCAT .................................. 36 

Figure 7. Example Software System LOCAT ............................................................ 37 

Figure 8. Typical structure used to control the level of model detail used in simulation

..................................................................................................................................... 42 

Figure 9. Abstraction Knowledge Base ...................................................................... 42 

Figure 10. AKB for software example in Figure 5 ..................................................... 44 

Figure 11. Value-related failure modeling in SFSM .................................................. 45 

Figure 12. Delay failure modeling in SFSM............................................................... 46 

Figure 13. Delay component for time-related failure in SFSM.................................. 46 

Figure 14. Different fault injection methods for an example system LOCAT ........... 47 

Figure 15. Structure of the Failure-Injection Knowledge Base .................................. 50 

Figure 16. AKB for software example in Figure 14 ................................................... 52 

Figure 17. Pump control system ................................................................................. 59 

Figure 18. General framework for adaptive learning.................................................. 63 



 

 
xiii 

 

Figure 19. The use of information in the SimPRA environment................................ 64 

Figure 20.  SimPRA environment............................................................................... 65 

Figure 21. Software branch point generation adjustment factor................................. 69 

Figure 22. The effect of the adjust factor to the branch generation............................ 71 

Figure 23. wa vs. the total number of branch point requests in the space shuttle 

example ....................................................................................................................... 73 

Figure 24. Software failure branch point generation procedure ................................. 73 

Figure 25. Sample scenarios consisting of multi-level objects................................... 74 

Figure 26. Planner update cycle.................................................................................. 76 

Figure 27. Example ESD constucted from a pre-defined plan ................................... 78 

Figure 28. Simulation level of detail adjustment logic ............................................... 80 

Figure 29. Part of an example plan ............................................................................. 82 

Figure 30 Data flow in the enhanced SimPRA scheduler........................................... 83 

Figure 31: Software Guidance update mechanism ..................................................... 84 

Figure 32. Propulsion System Mission Profile ........................................................... 87 

Figure 33.  Thruster Assembly Schematic.................................................................. 89 

Figure 34. High level software overview for PSAM benchmark problem................. 92 

Figure 35. Central control software representation for PSAM benchmark problem.. 93 

Figure 36. Failure recovery mechanism for PSAM benchmark problem................... 93 

Figure 37. State Diagram for assembly control software ........................................... 94 

Figure 38. High-level model overview for the PACS system .................................... 98 

Figure 39. Detailed PACS behavior model............................................................... 100 

Figure 40. Level 1 abstraction for PACS.................................................................. 101 



 

 
xiv 

 

Figure 41. Detailed simulation model for Read_PIN ............................................... 102 

Figure 42. Abstraction knowledge base for PACS ................................................... 103 

Figure 43. Extract of the plan for the PACS simulation ........................................... 105 

Figure 44. Probability estimation from SimPRA...................................................... 106 

Figure 45. Example scenario for PACS.................................................................... 106 

Figure 46. ESD for the PACS System (The initiator is fire. Gray place holders 

indicate the presence of software contributions). ..................................................... 108 

Figure 47.  Software model with failure injected (gate control module).................. 118 

Figure 48. Software model for PACS (card validation module) .............................. 120 

Figure 49. Software model for PACS (PIN validation module)............................... 121 

Figure 50. Area studied for coverage analysis.......................................................... 127 

Figure 51. Simulation results from different strategies ............................................ 131 

Figure 52. Error introduced in the deterministic behavior........................................ 136 

Figure 53. High-level event vs. low-level events ..................................................... 138 

Figure 54. A chain of events ..................................................................................... 138 

Figure 55. High-level function f vs. low-level function f ......................................... 140 

Figure 56. Different conditions for software testing................................................. 144 

Figure 57. New framework for branch exploration .................................................. 152 

 
 
 
 
 
 
 
 
 



 

 
xv 

 

 

Glossary 

AKB Abstraction Knowledge Base 

DPRA Dynamic Probabilistic Risk Assessment 

ESD Event Sequence Diagram 

ET Event Tree 

FSM Finite State Machine 

FIKB Failure Injection Knowledge Base  

IE Initiating Event 

PACS Personnel Access Control System 

PRA Probabilistic Risk Assessment 

SFSM Simulation-based Finite State Machine 

SimPRA Simulation-based Probabilistic Risk Analysis 

SKB Simulation Knowledge Base 

UML Unified Modeling Language 

 

 

 

 

 



 

 
1 

 

Chapter 1: Introduction 

1.1 Research Objective 

The objective of this research is to extend current dynamic PRA methodology to 

integrate software behavior and risk contributions in the risk assessment process. 

Accordingly this research proposes a multi-level software representation and an 

approach to integrate such representation into the Simulation-based dynamic PRA 

(SimPRA) environment. The adaptive rules for adjusting multi-level components are 

designed in this research. It is shown that such adaptive rules increase the efficiency 

of the simulation, and mitigate the state explosion issue in Dynamic PRA 

environment. A case study is conducted demonstrate the usefulness of the framework 

and the methodology. 

1.2 Research Statement 

Modern safety critical systems usually are complex hybrid systems of hardware, 

software, and human operators. By taking over many of the hardware and human 

tasks, software is increasingly playing an important role in the systems. This naturally 

translates into an increase in the software’s contribution to the system risk. A 

significant number of system failures can be attributed to software failures, such as 

the well known Northeast Blackout of 2003, Therac-25 radiation overdose accidents, 

NASA Mars Climate Orbiter, Mariner I Venus Probe, and Ariane 5 accidents. 
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Probabilistic Risk Assessment (PRA) is a methodology for identifying and assessing 

the probability of situations leading to undesired state of a system. It has been widely 

used to assess the likelihood of accident scenarios following an initiating failure or 

perturbation event. Classical PRA focuses on answering three basic questions: (i) 

What can go wrong? (ii) What is the consequence? (iii) What’s the likelihood of such 

events? PRA is used to assess, predict, and reduce the risk of large technological 

systems. NASA, for example, requires PRA for all manned missions as well as for all 

missions with nuclear payloads or nuclear fuel. PRA has been proven to be a 

systematic, logical, and comprehensive methodology for risk assessment. In classical 

PRA method, the analysts need to construct separate models describing system 

vulnerabilities and risks. However the dynamic interactions among the components 

inside the system often make it infeasible to identify and predict all the possible 

scenarios. Enumeration of risk scenarios in case of highly complex and hybrid 

systems of hardware, software and human components is very difficult using the 

classical PRA method. The quality of a PRA is completely analyst dependent. 

Some research has been conducted on the integration of software into the traditional 

PRA framework [1-3]. However the classical PRA framework is widely believed to 

be very limiting when it comes to identifying software and human contributions to 

system risk. Dynamic Probabilistic Risk Assessment (DPRA) is a set of methods and 

techniques in which executable models that represent the behavior of the elements of 

a system are exercised in order to identify risks and vulnerabilities of the system [4]. 

Using the DPRA method, the analyst no longer needs to identify and enumerate all 

the possible risk scenarios manually. The computer model explores the possible 
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scenarios based on the system model. This observation has been one of the bases of 

the argument for the need for DPRA. The fact remains however that modeling 

software for use in the DPRA framework, is also quite complex and very little has 

been done to address the question directly and comprehensively. This research 

focuses on the software modeling for use in a simulation-based dynamic PRA 

environment. 

1.3 Approach 

A software representation methodology is proposed. The software model is integrated 

into the SimPRA dynamic PRA simulation environment. The software representation 

is a conceptual model of the software that allows consideration of software as an 

integral component of the system and contributor to risk, to the same level as humans 

or hardware. A multi-level software representation framework is established for the 

SimPRA environment. It includes both a behavior model and a simulation guidance 

model. The behavior model is an executable model. It is plugged into the system 

model to represent the software behavior. It is able to capture all phenomena that fall 

within the scope of the analysis. The software guidance model is used to guide the 

simulation to explore scenarios of interest instead of a wide-scale exploration. The 

software guidance model interacts with the high-level planner and scheduler to better 

estimate the total system risk.  

The software behavior model is a combination of a deterministic model and stochastic 

model. The deterministic model is used to simulate the behavior of the software, as 
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well as the interaction between the software and other parts of the system. The 

stochastic model is superimposed onto the deterministic model to represent the 

uncertain behavior of the software, e.g., software failures. Finite State Machine (FSM) 

is chosen to build the deterministic behavior model. Finite state machine has been 

defined as: “a computational model consisting of a finite number of states and 

transitions between these states, possibly with accompanying actions” [5, 6]. 

Simulation-based Finite State Machine (SFSM) is defined by adding simulation-

related components to traditional FSM. Multiple controllable variables are defined in 

the behavior model including simulation level of detail, software failure injection, 

failure level of detail. The values of the variables are controlled by the guidance 

model. 

The guidance model adjusts the behavior model based on the requirements from the 

high-level scheduler and planner. Meanwhile, the software guidance model also 

provides information to update the planner. An adaptive guidance rule is designed in 

the high-level planner, scheduler and the software guidance model to adjust the 

software simulation level of detail to the appropriate level for different scenarios 

based on simulation result and prior knowledge. It is demonstrated that this increases 

the simulation efficiency and mitigates the state explosion problem in dynamic PRA.  

A complete procedure to build the software representation and integrate the software 

representation into SimPRA environment is provided. Figure 1 presents an overview 

of the software modeling in the SimPRA environment. 
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Figure 1 Overview of the software representation in SimPRA environment 

1.4 Content 

Chapter 2 presents an overview of the related work and motivation for this research. 

Software modeling in classical PRA and dynamic PRA are also introduced. The 

difference in modeling methodologies between traditional PRA environment and 

Dynamic PRA environment is described. The SimPRA environment is reviewed. 

Chapter 3 summarizes the software modeling requirements in dynamic PRA 

environment. The requirements are discussed in terms of general modeling 

requirements, simulation requirements, interaction requirements, and non-functional 

requirements. 

Chapter 4 presents the proposed software representation methodology, based on the 

software modeling requirements.  The software behavior model and guidance model 

are also established. 
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The integration of the software representation into the SimPRA environment is 

described in Chapter 5. This includes a detailed description of the adaptive scheduling 

in SimPRA environment. The state explosion problem in dynamic PRA environment 

is described and possible approaches to mitigate it are discussed.  A new multi-level 

simulation based approach is proposed. The necessary modification to the SimPRA 

environment is summarized. The detailed integration procedure is presented at the 

end of the chapter. 

Chapter 6 describes the implementation of the software representation on a parallel 

system. The methodology has been applied to the benchmark problem proposed for 

an invited session on advanced PRA methods in PSAM 2006. The benchmark 

problem is a Propulsion System Mission and Design Problem proposed by NASA 

headquarters.  

Chapter 7 presents an application of the methodology for a Personnel Access Control 

System (PACS). PACS is a relatively complex system with human, software and 

hardware involved. A complete system model is developed. The integration process is 

discussed. A 3-level software abstraction is defined. The model is then used in the 

modified SimPRA software to generate risk scenarios and corresponding probabilities. 

At the end of the chapter, a comparison between using the classical PRA 

methodology and dynamic PRA methodology are summarized using this example. 

Chapter 8 develops a procedure to establish a consistently quantified software model 

when code is available and objective test data can be obtained.  

Chapter 9 concludes this dissertation by highlighting the contribution and also the 

limitation of the approach. Possible future research topics are also discussed. 
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1.5 Summary of Research Contributions 

The significant contributions of this dissertation are as follows: 

1. Development of a software representation for dynamic PRA environment: 

This research is the first effort to develop a methodology to systematically 

identify software contributions to the system risk in a dynamic PRA 

environment. Since the methodology is built on current PRA techniques and 

since a tool is provided, it is expected that PRA practitioners should find it 

easy to use and understand. 

2. Development of a methodology for simulating multi-level objects in the 

dynamic PRA environment: This is a new methodology to address the state 

explosion problem in simulation-based dynamic PRA methodologies. Our 

results indicate that the use of the proposed approach improves the DPRA 

simulation performance. 

3. Enhancement of the simulation based dynamic PRA (SimPRA) environment. 

SimPRA is more complete PRA modeling environment with the addition of 

the software model. An easy to use tool is developed for the end user. The 

methods development and tool enhancements achieved in this research are 

significant steps forward in improving capabilities for conducting risk analysis 

of complex systems, particularly those offered by dynamic PRA 

methodologies. The modeling procedures and tools proposed here also help in 

developing procedures to enhance the system design and development 

activities.  
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Chapter 2: Background 

2.1 Software modeling in classical PRA 

PRA has been applied to large complex systems for over 30 years. It is required as 

part of the risk management process in the US Nuclear Regulatory Commission 

(NRC) and National Aeronautical and Space Administration (NASA). 

The first full scale application of PRA methods was the Reactor Safety Study WASH-

1400 [7]. Since its completion in 1975, NRC has been exploring ways of 

systematically applying PRA to nuclear plants. A “PRA procedure guide” was 

developed by NRC in 1983 in the background of increasing application of PRA 

methods within the nuclear industry and the regulatory process. This guide describes 

the principal methods used in PRA and provides general guidance for performing 

PRAs for nuclear power plants [8].  

NASA instituted a number of programs for PRA analysis after the Challenger 

accident in 1986 [9]. After the extensive review of NASA safety policy, NASA 

managers decided to use PRA as one of the bases for the support of decisions 

regarding improvements in Space Shuttle safety. Office of Safety and Mission 

Assurance at NASA headquarters published several handbooks to enhance the PRA 

expertise at NASA [10]. Software tools such as QRAS have been designed to 

automate the PRA analysis procedure [11]. 

However, current PRA practice effectively neglects the contributions of software. The 
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consequence is that one of the major potential causes of safety-critical system failures 

is not included in the analysis. 

Some related research has been conducted in recent years. But the focus has been 

mostly on the software risk assessment itself rather than as an integral part of the 

PRA super-structure [12-14].  A literature review for the recent work is found in [15]. 

We briefly summarize it below. 

Dugan [13] used fault trees for software reliability analysis. Lutz [14] investigated the 

use of fault trees to study the root causes of safety-related software errors in safety-

critical embedded systems. The research results are used to identify methods by 

which requirements errors can be prevented.  

A risk index factor has been developed by Lee to quantify the risk associated with 

individual software components in programs developed for space flight applications 

[16]. The risk index attempts to quantify the risk, utilizing the results from software 

complexity analysis, the evaluation of test coverage, and a failure modes and effects 

analysis.  

Schneidewind’s model [17] was used to quantify the reliability of the shuttle’s on-

board system software. Ammarrt [12] presented a methodology of risk assessment of 

functional-requirement specifications for complex real-time software systems using a 

heuristic risk assessment technique based on CPN (colored Petri-net) models. Yacoub 

[18] presents a methodology for risk assessment at the architectural level by 

developing heuristic risk factors for architectural elements using complexity factors 

and severity. These studies stay at the software component level without 

consideration of the PRA super-structure. 
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Li’s study is the first step towards a systematic approach to integrating software into a 

traditional PRA framework [1-3]. This framework of integrating software into the 

traditional PRA environment follows the standard PRA procedure. 

The so-called test-based approach has been designed to integrate software 

contributions into PRA analysis [3]. Using this approach, software related failures 

need to be identified first. A software-related failure modes taxonomy has been 

established and validated by Li [2]. Once the software-related failure modes have 

been identified, the system- and software-related functions need to be identified in the 

system failure scenarios. The input tree and output tree need to be defined per 

function and per scenario. The basic procedure of Li’s approach is: 

1. Identify events/components controlled/supported by software in MLD, accident 

scenarios, fault trees; 

2. Specify the functions involved; 

3. Model software function in Event Sequence Diagram (ESD), or Event Tree (ET), 

and fault trees; 

4. Identify (i.e., estimate probability of) the input tree; 

5. Quantify the input tree; 

6. Develop and perform software safety tests; 

7. Build and quantify the output tree. 

The test-based approach has several limitations.  

First, the methodology is test based; therefore it assumes the availability of source 

code. Also it precludes risk analysis during other software life-cycle phases. An 

analytical approach needs to be developed to handle the risk analysis prior to the 



 

 
11 

 

source-code stage.  

Second, the testing is performed at the software-component level, implying that the 

risk scenarios should also model the software at that level. That may not produce 

sufficient detail in some risk analyses. Modifications are required to study the 

software at a lower level.  

The third limitation is that the analyst is still responsible for identifying the risk 

scenarios, as well as the input and output tree. The quality of the risk assessment 

depends greatly on the analyst. Meanwhile, if the software needs to be studied at a 

lower level, software-failure propagation will become a major obstacle for the analyst 

in exploring all the possible risk scenarios.  

The final limitation is the quality of the software operational profile. A profile is 

defined as a set of disjoint (only one can occur at a time) alternatives with the 

probability that each will occur [19]. The detailed software operational profile is 

essential to the final risk assessment quality in the traditional PRA framework. In the 

test-based approach, the functional profile needs to be defined for each function in 

each scenario. In a complex hybrid system, obtaining a detailed functional profile is 

usually very time-consuming and costly. The analyst needs to strike a balance 

between the degree of profile detail and the final cost, which also limits the final risk-

assessment quality.  

2.2 Dynamic PRA environment 

Dynamic PRA refers to an approach to identification and quantification of risk 
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scenarios of complex systems. The essence of this approach is the probabilistic 

simulation of the dynamic behavior of the system using the models of the system 

elements and rules of their internal and external interactions. Due to the fact that risk 

scenario generation in DPRA is more detailed, and context-rich, it is generally 

believed that software can be more realistically modeled in such framework. A 

literature review for different DPRA methodologies is found in [4, 20]. We briefly 

summarize it below. 

Amendola proposed an approach to incorporate process dynamics with stochastic 

transitions in 1981 [21].  After that, different approaches have been attempted to 

solve the DPRA problems. 

Some research proposes extensions to include the dynamic feathers in the traditional 

ET/FT methods [22, 23]. Others introduced graphic tools to capture the dynamic 

feathers, such as Petri-Net [24-26], Dynamic Flowgraph [27], Go-Flow [28], and 

Dynamic Event Sequence Diagram [29-31]. The mathematic framework was 

proposed for probabilistic dynamics by several researchers [32, 33]. The close form 

analytical solution is hard to find for large systems using DPRA methodologies. The 

simulation-based methods present great potential to solve DPRA problems. 

The simulation-based DPRA methodology provides a framework for explicitly 

capturing the influence of time and process dynamics on risk scenarios. Using the 

DPRA approach, a formal representation of the system behavior needs to be 

constructed for the hardware, software, and human components. A set of rules needs 

to be prescribed to systematically decompose the system. The executable model is 

then used to simulate the behavior of the system and the physical processes taking 
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place in the system, as a function of time. The event sequences are generated 

automatically by controlling the stochastic events in the model, such as hardware, 

software, and human failures. Each sequence represents a unique combination of 

timing and occurrence of the stochastic events. The system vulnerabilities, defined as 

the elements inside the system that could bring the system to an undesirable state, are 

identified, using the sequence simulation results. This significantly reduces the need 

for specialized risk models developed by the analyst, thus closing the gap between the 

design and risk assessment process. 

Current DPRA frameworks largely rely on two strategies, which are referred to as 

systematic exploration (Discrete Dynamic Event Tree Simulation) and random 

exploration (Continuous Event Tree Simulation). The Discrete Dynamic Event Tree 

(DDET) methods systematically explore a large number of scenarios by introducing, 

at set points in time, branch points whose branches represent distinct courses of 

events, thus leading to distinct sequences of events. All possible branches of the 

system evolution are simulated systematically [34, 35]. Continuous Event Tree (CET) 

simulation does not involve the discretization of the event sequence space. The event 

sequences are randomly generated by randomly deciding on the occurrence and 

timing of events. Biasing techniques are typically applied in the DPRA approaches 

based on CET simulation [36, 37].  

DPRA is considered to be the next generation of PRA techniques. The technique is 

not currently in use because of the state explosion problem, which needs resolution, 

and because some components, such as software and human behavior, are currently 

not systematically modeled.  The recent progress in computational methods and in 
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state explosion solutions makes DPRA a more practical PRA technique. However, the 

software model still needs to be systematically studied, and new solutions are still 

needed to mitigate the state explosion problem. 

There is no generally accepted software presentation methodology in DPRA 

environment. Most DPRA methodologies either neglect the software contribution to 

the system risk in comparison to hardware component contributions, or treat the 

software component in the same way as hardware components. Software failures 

however are in general the result of faults or flaws possibly introduced in the logic of 

the software design, or in the code-implementation of that logic. These may or may 

not produce an actual functional failure, depending on whether or not they are found 

by an execution path activated according to the specific inputs to the software that 

drive the execution at a specific time [10].  

Thus, software contribution to the system risk is highly input condition depended. 

The relationship between software failures and different input conditions should be 

modeled inside the DPRA environment. 

2.3 SimPRA environment 

2.3.1 Introduction 

An adaptive-scheduling simulation-based DPRA environment has been developed at 

the University of Maryland [38, 39]. Entropy-based biasing techniques are used to 

adaptively guide the simulation towards events and end-states of interest. The prior 

knowledge of the systems and knowledge gained during simulation are used to 
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dynamically adjust the exploration rules in the DPRA environment. That approach 

has been demonstrated in a computer code implementation known as SimPRA 

(Simulation-based PRA). See [38]. 

In SimPRA, a high-level simulation scheduler is constructed to control the simulation 

process, generally by controlling the occurrence of the random events inside the 

system model. To stimulate the desired types of scenarios, the input to the simulation 

model is also controlled, using scheduling algorithms. Rather than using a generic 

wide-scale exploration, the scheduler is able to pick up the important scenarios, which 

are essential to the final system risk, thus increasing the simulation efficiency.  To do 

that, a high-level simulation planner is constructed to guide the scheduler to simulate 

the scenarios of interest. Figure 2 is an overview structure of the adaptive-scheduling 

simulation-based DPRA environment. 

 

Figure 2: Structure of the adaptive scheduling DPRA environment [38] 

2.3.2 Software Representation in DPRA 

Software modeling in the DPRA environment differs from the traditional PRA 

environment. The analyst no longer needs to study the fault propagation and 

enumerate all the possible accident sequences. That task is replaced by that of 
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building an executable software model and identifying possible software-related 

initiating events. The simulation environment will explore the scenario space, based 

on the system model, which includes model of the hardware, human and software 

elements. In this approach an executable software model first needs to be constructed 

to simulate the software behaviors. The software-related failure modes need to be 

identified similarly, as in the traditional PRA framework. The selected failure modes 

will be superimposed on the executable behavior model as stochastic events. The 

software-related failures are controlled by the simulation guidance model during 

simulation, based on the predefined rules for exploring the risk-scenarios space, 

following the selected initiating events. 

Based on the above description, the software representation in the adaptive-

scheduling DPRA environment should include both a behavior model and a software 

guidance model. The behavior model is an executable model. It will be plugged into 

the system environment to simulate the software behavior. It should be able to capture 

all phenomena that fall within the scope of the analysis. The software guidance model 

guides the simulation to explore scenarios of interest instead of a wide-scale 

exploration. The software guidance model should also interact with the high-level 

planner and scheduler to better estimate the total system risk. See Figure 1 

The software representation is established based on the information available. The 

following assumptions and limitations are implied in this dissertation: 

• Basic information about the software is obtainable. 

• The software model can only be built based on information available. It can 

not go beyond the level of information available. 
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• The software model is not guaranteed to be correct once the information is 

limited. But the software model can be refined once the analyst gets more 

information. 

2.4 Teamwork 

The research of SimPRA environment is a teamwork result. All team members 

contribute their individual efforts to make this research come true. The whole team 

includes Professor Ali Mosleh, Dr. Frank Greon, Dr. Yunwei Hu, Hamed Nejad, 

Thiago Tinoco Pires, and me. My contribution to this research includes designing the 

software model, implementing the software representation in SimPRA, developing a 

methodology to simulate multi-level objects, and enhancing current SimPRA 

environment to simulate multi-level objects. Figure 3 presents a teamwork chart to 

identify the contributions from each individual team member. 
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Figure 3. Teamwork chart for SimPRA 

2.5 Glossary of terms 

The following terms are used in this dissertation: 

1. Model: an abstraction of the real-life system. Models are used to obtain 

predictions of the behavior of real system, especially how one or more 

changes in various aspects of the modeled system would affect the other 

aspects of the system. [38, 40] 

2. Event: following the convention of discrete event simulation, an event is 
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defined as an instantaneous occurrence that changes the system configuration. 

[41] 

a. Random Events are the events whose occurrences are depicted by a 

stochastic model and can be controlled by the simulation environment. 

b. Deterministic Events are induced by the deterministic rules. 

3. Scheduling: the process of controlling the generation of event sequences. It is 

done by deciding on the occurrence and timing of the random events in the 

model.  

4. Branch Point: a point in the simulation of the system at which the occurrence 

of a random event is considered by the algorithm controlling the simulation. 

Each branch point will have two or more branches, corresponding to 

occurrence of possible events.  

5. End State: a classification of the condition of the system at the end of an event 

sequence. 

6. Scenario: One simulation realization as a sequence of events from the 

Initiating Event (IE) to one End State (ES). 

7. One round of simulation: One round of simulation is defined as a specific 

number of scenarios generated before updating the plan. In other words, it is 

the number of event sequences of one updating interval 

8. Plan updating interval: The planner is part of SimPRA. It serves as a map for 

exploration. The scenarios of interest are highlighted in the planner. The map 

will be updated after each round of simulation. 
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Chapter 3: Software Modeling Requirements in DPRA 

This chapter describes the basic requirements that a successful integration of software 

behavior models in DPRA must meet. 

3.1 General Modeling Requirement 

From a general modeling perspective, the software model should be: 

 　 Simple in methodology 

 　 Easy to learn. The basic modeling concept should be easy to understand 

 　 Easy to use, with acceptable modeling costs 

 　 Quickly and seamlessly developed  

 　 Accompanied with a tool to help end users build the model 

 　 Easily and economically maintained and modified 

 　 Reusable 

3.2 Simulation Requirements 

From the simulation perspective, there are different requirements for the behavior 

model and the guidance model. The software behavior model should have the 

following characteristics: 

 Complete. Since the model needs to capture all phenomena that fall within 

the scope of the analysis, the software model should be able to represent 
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most (ideally, all) of the software systems and software characteristics as 

they relate to risk assessment.  

 Executable and linkable. The behavior model should be executable and 

linkable with other elements, such as humans and hardware, inside the 

DPRA framework. This is a basic requirement of the simulation 

environment. 

 Hierarchical. First the model should have a hierarchical structure from the 

lines of code to the coarser-grained software model. Meanwhile, different 

levels of abstraction should also be defined to simulate the software behavior 

at each level. Secondly one needs to model the software at different stages of 

the software development life-cycle: requirement, design and code. The 

modeling method should be usable at various stages and should also be 

updatable as the analysts get more information about the real software. 

 Flexible. The level of the abstraction should be flexible and controlled by the 

simulation scheduler. As was specified in the hierarchical requirements, 

different levels of abstraction should be constructed, and the scheduler 

should be able to flexibly control the simulation level of detail, based on the 

different simulation requirements. 

 Controllable Stochastic Events. The behavior model is a combination of 

deterministic model and stochastic model. Stochastic events represent 

possible software failures inside the behavior model. The latter should be 

controllable by the software scheduler and the high-level system scheduler. 

During simulation, the stochastic events will be triggered to study the impact 
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of possible software faults. 

 Explorable. The simulation scheduler should be able to perform a systematic 

exploration of the software model behavior. 

The software guidance model is designed to guide the simulation to explore scenarios 

of interest. It also interacts with the high-level simulation scheduler to automatically 

adjust the software level of detail used in the simulation, based on prior knowledge 

and previous simulation results. To fit into the DRPA simulation environment, the 

guidance model should: 

 Capture common software vulnerabilities 

 Include a software scheduler to control the stochastic events inside the behavior 

model 

 Adjust the software simulation rules, based on prior simulation results 

 Adjust the software simulation rules, upon requests from the high-level system 

simulation scheduler 

3.3 Interaction Requirements 

Modern safety-critical systems are usually X-ware systems [42]. The systems consist 

of interacting X-ware components of hardware, software, and human operators. 

Software components thus interact with hardware, and human components within the 

simulation environment. Therefore, we should also establish the software model 

requirements from an interaction perspective.  

Interaction in X-ware systems is defined as mutual or reciprocal action or influence in 
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relation to certain functions. It results in the exchange of matter, energy, force, and/or 

information [42]. The system functions are achieved via the interactions of 

components. As there are three types of components in X-ware systems (hardware, 

software, and human), the interactions between any two components need to be 

studied separately. 

Software-Software interactions 

Interaction between two software takes place via information exchange. The 

information can be categorized into value-related information and time-related 

information [43].  

 Value-related information 

 Amount: the total number or quantity of input or output 

 Value: The value taken by the input or output 

 Range: the limits of input/output’s quantities. 

 Type: a set of data with values having defined characteristics 

 Time-related information 

 Time: the point at which the ith input/output element is available or feeds 

into/out of the software 

 Rate: the frequency at which the input is sent or the output is received 

 Duration: the time period during which the input or the output lasts 

 Load: the quantity that can be carried at one time by a specified input or 

output medium 

Software interactions need to be modeled in the software representation. The 
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representation should also have the capability to model all value-related failure modes 

as well as time-related failure modes. 

Software-Hardware interactions 

Software interaction with hardware can be simplified as an information exchange. 

Software obtains hardware-state information and then sends command signals to the 

hardware. From this perspective, this interaction is similar to a software-software 

interaction. Both value-related failure modes and time-related failure modes need to 

be considered. 

The hardware can also act as a support medium for software, such as memory, CPU, 

etc. In that sense, support failure modes should also be modeled inside the software 

representation.  

Software-Human interactions 

For complex, critical, and reliability-demanding operating environments, the 

software/human interaction is equally important. Information related to human 

detection can be divided into the following categories: visual detection, auditory 

detection, olfactory detection, and tactual detection. Tactual detection and olfactory 

detection usually invoke human/hardware interactions. When considering 

human/software interaction, we usually need to consider the following characteristics: 

• Auditory interaction 

Spectrum; Frequency; Amplitude; Relative intensity 

• Visual interaction 



 

 
25 

 

Overall layout; Position; Distance; Size; Color; Contrast; Brightness; Flash rate 

These characteristics need to be added to the software output to human as additional 

factors. Different value of these factors can influence human detection capability to 

software output. These factors can be represented using value-related information and 

time-related information. For instance, the relationship between distance and human 

movement time can be modeled using Fitts’ Law [44]. The movement time can be 

future used in the human model to predict the performance of operators using 

complex system. Fitts’ law is stated as follows:  

MT = a + b log2(2A/W)        (3.1) 

where  

• MT = movement time  

• a,b = regression coefficients  

• A = distance of movement from start to target center  

• W = width of the target  

3.4 Non-Functional Requirements 

A non-functional requirement is defined as a software requirement that describes not 

what the software will do, but how the software will do it, as in for example, software 

performance requirements, software external interface requirements, software design 

constraints, and software quality attributes. [43] Nonfunctional requirements are 

difficult to test; therefore, they are usually evaluated subjectively. 

To model the software completely, the software representation should also be able to 
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capture the related non-functional requirements, which can be summarized in the 

following categories: 

 Design constraints: 

 cost and delivery date  

 development process to be used 

 platform 

 accuracy requirements 

 interface requirement: describe how the system is to interface with its 

environment, users, and other systems. (e.g., user interfaces) and their 

qualities (e.g., user-friendliness) 

 response time: the time that elapses from when a user issues a command to 

when the system provides enough results for the user to continue to work  

 throughput: computations or transactions per minute 

 technology to be used 

 resource usage 

 Lifecycle requirements 

 flexibility: the ability to handle requirement changes 

 installability: ease of system installation 

 operability: ease of everyday operation 

 allowance for maintainability and enhancement 

 allowance for reusability: describes the percentage of the system, measured 

in lines of code, that must be designed generically, so that it can be reused 

 usability and availability: a quality that measures the amount of time that a 
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system is running and able to provide services to its users  

 robustness, recovery from failure 

 reliability: an important quality of software that measures the frequency of 

failures, as encountered by testers and end-users  

 security requirements 

 portability: the capacity to be moved to different platforms or operating 

systems 

 Other requirements 

 economic requirements 

 organization requirements 

 political requirements 

Among all these requirements, we need to consider the requirements related to 

software behavior and system risk. From that perspective, we mainly consider design 

constraints, including the following: 

• platform;  

• accuracy requirements;  

• interface requirements;  

• response time;  

• throughput; resource usage 

The non-functional requirements should be captured inside the behavior model. The 

simulation environment should have the capability to simulate different overload 

situations to check for software vulnerability. 
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3.5 Discussion 

In this chapter, the software modeling-requirements in the DPRA environment are 

summarized from different perspectives.  

The simulation requirements are basic requirements imposed by the simulation 

environment. The software representation developed in this dissertation meets the 

simulation requirements. The software methodology should be able to model all time-

related information and value-related information in order to model the interaction 

requirements and the non-functional requirements. The methodology developed in the 

following chapter ensures the integration of value-related information and time-

related information. It is the author’s belief that general modeling requirements are 

met. A modeling tool is developed for software representation that is easy to learn, 

easy to use, and easily maintained. The methodology is designed to be reusable. 
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Chapter 4: Software Representation Framework for simulation 

4.1 Overview 

Among the available methodologies for modeling software behavior are: finite-state 

charts [6], UML [45], Petri-Net[46], and pattern concepts [47]. Those methods, and 

others, fall into one of two broad categories: 1) those based on software data flow, 

representing the software through decomposition of the system into dataflow 

diagrams that capture the successive transformations of system input into system 

output, and 2) those that model the procedural stages of the software, represented in 

the form of states and transitions between those states, leading to a finite-state chart. 

Because of its ability to model reactive systems, the latter seems appropriate for our 

purpose.  

Table 1 compares some existing software representations with respect to the 

modeling requirements: 

  Executable Hierarchical FlexibleExplorableComplete Easy 
to 
learn 

Easy 
to 
use 

Reusable Tool 
Support 

Pattern No No NA No No Good TBD Yes NA 
UML Engine 

required 
No NA No TBD Fair TBD Partially Available

FSM Partially Yes Yes Yes TBD Very 
Good 

TBD Partially Available

Petri-
Net 

Partially Yes No Yes TBD Good TBD Partially Available

Table 1. Comparison of the software representation methodologies 
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Table 1 shows that two of the criteria can not be assessed since completeness can 

never be fully proven. No experimental evidence exists which would allow us to 

conclude on the respective ease of use of the modeling approaches considered. Thus 

we conclude based on the remaining factors that FSM best fits our purpose.  

FSM has been defined as: A computational model consisting of a finite number of 

states and transitions between these states, possibly with accompanying actions [5]. 

FSM accepts input events (or stimuli) that cause an output (or action) and possibly a 

change in state. Both the output actions and the next state of the machine are pure 

functions of input event and current state. Transitions can be separated into two parts: 

conditions and transitions. Transitions are triggered when the conditions are true.  

There are two concepts of states. 1) A condition or mode of existence that a system, 

component, or simulation may be in; and 2) the values assumed at a given instant by 

the variables that define the characteristics of a system, component, or simulation.  

The concept of simulation-based Finite State Machine (SFSM) is defined in the 

following sections. The model is based on FSM but integrates all the simulation-

required components.  

4.2 Key Concept 

The following concepts will to be used in the sections that follow.  

1) Multi-Layer Software Representation 

The software representation is defined during different stages of the software 

development life-cycle. In this sense, it is a multi-layer software representation 
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starting with the requirement specification and continuing through the design 

specification and coding stages. The software representation is refined after more 

information becomes available. At any given time point in the software-

development life cycle, the software representation also has a multi-level structure. 

(See next definition, below.) 

2) Multi-Level Software Representation 

The multi-level abstractions may be viewed as a hierarchical structure of software 

representations from the lines of code to the coarser-grained software model. The 

level of detail used in simulation is dynamically adjusted, based on the different 

simulation requirements. 

The relationship between the Multi-Layer and Multi-Level structure is illustrated in 

Figure 4. 

 

Requirement

Design

Code

......

Level 1

Level 2

Lowest Level

Level 3

......

Multi-Layer Multi-Level

  
 



 

 
32 

 

Figure 4. Relationship between the Multi-Layer structure and the Multi-Level structure 

3) Failure Modes 

Failure modes fm are defined as the observable typically functional ways in which a 

system, a component, an operator, a piece of software, or a process can fail. All the 

failure modes considered in this dissertation belong to the pre-defined failure modes 

set.  

msm Ff ∈          (4.1) 

4) Failure Sets 

Failure-mode Sets Fms is simply a set of failure modes. A pre-defined failure-mode set 

is defined in the following sections. 

{ }mnmmms fffF ,,, 21 L=        (4.2) 

5) Stochastic Failures 

Stochastic failures are the real failures injected at random, and according to a 

stochastic model, in the software behavior model. Each stochastic failure is a 

realization of a selected failure mode. Each failure has the following attributes: 

 Failure location 

 Failure mode 

 Stochastic properties (e.g., occurrence probabilities) 

6) Abstraction 

Abstraction techniques are defined as techniques that derive simpler representations 

while maintaining the validity of the simulation results with respect to the questions 

being addressed by the simulation. [48] Abstraction techniques can be categorized 



 

 
33 

 

into three broad techniques: model boundary modification, model behavior 

modification and model form modification [48] [49]. Model boundary modification 

refers to the modification of the input variable space. Model behavior modification 

involves modification of behaviors within a model rather than the inputs to a model. 

Model form modification refers to modification of model form, characterized by a 

simplication of the input-output transformation within a model or model component.  

In this research, functional abstraction and continuous abstraction are defined for 

software abstraction based on the nature of software. Functional abstraction is an 

abstraction of the discrete structure of the software. Functional abstraction can be 

defined for all high-level functions. However, the lowest level function can not be 

abstracted in this way. Functional abstraction is a mixed modification of model 

boundary modification and model behavior modification. 

Continuous abstraction is a mathematical abstraction of the continuous behavior of 

basic functions. For instance, a complex equation using physical quantities, such as 

temperature and pressure, i.e. continuous variables, can be abstracted using a look-up 

table. Continuous abstraction focuses on model form modification.  

7) Functional Abstraction vs. Functional Decomposition 

Functional decomposition is a methodology used to break down complex systems 

into low-level tasks or functions. A hierarchical function tree can be constructed 

using the functional decomposition methodology. Functional abstraction is an abstract 

description of high-level functions in the function tree. Use of functional abstraction 

disables all sub-functions under high-level function. 
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4.3 Behavior Model 

4.3.1 Overview 

The behavior model is designed to capture all possible software behavior within the 

scope of analysis. The real software is used directly in the previously mentioned test-

based methodology proposed for the classical PRA framework. Clearly, the software 

itself could also be used as the behavior model in the DPRA environment. But using 

the software directly in the simulation environment may be unacceptable for any of 

the following reasons: 

1) The software code is not available. 

2) Software development is still in the requirement stage or the design stage. 

3) The execution of the real software is time-consuming, which makes it 

unacceptable for the purpose of simulation. 

Software failures include requirement and implementation failures. Both types are 

naturally included if the real software is used directly as the behavior model. There 

are no controllable variables, so the software representation is merely a software-

behavior model. The software model gets inputs from the simulation environment and 

provides outputs to hardware and human models. 

In most cases the software-behavior model needs to be constructed separately by the 

analyst. The behavior model can be constructed from the information available and 

then refined after the analyst receives more information about the software. The 

analyst may start with the information available from the software requirement 

document, the design document, or the real source code. The closer to the real 
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software, the less uncertainty there will be in the final risk estimation, since the 

representation is a more accurate description of reality.   

When the real software is not available, abstraction needs to be made to construct the 

behavior model based on the information available. As stated earlier, abstraction 

could be done at different levels, making the software representation a multi-level 

software representation. Considering the following functional decomposition of the 

software (Figure 5), an abstraction (the shaded blocks) could be done at function level 

F1 or function level F11. The abstraction will lead to omission of details related to 

sub-functions. For instance, if the abstraction of function F1 is activated, all the sub-

functions F11, F12, etc are disabled automatically. 

Root

F1 F2 F3 Fn

.........

F11 F12 ... F1m

... ... ... ...

Lowest level

Fn1 Fn2 ... Fnl

... ... ... ...

 
Figure 5. Software functional decomposition 

The behavior model is an executable model. The deterministic behavior of the 

software is based on the information available. Error is introduced into this procedure 
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if the information is not accurate, but it can be reduced when the analyst receives 

more information. The abstraction can be defined at different functional levels. The 

behavior needs to be clearly defined for each level of abstraction.  

Consider, for example, a software system LOCAT1 which calculates the projectile’s 

coordinates. LOCAT receives real-time t from the TRAC hardware and computes the 

corresponding (x, y) Cartesian coordinates and outputs the results. The highest logic 

level system diagram is illustrated in Figure 6. 

TRAC
Hardware LOCAT OUTPUTt x,y

TRAC system

 

Figure 6. The highest logic level system diagram for LOCAT 

LOCAT is composed of sub-functions realtimeCalculation and outputResult. Sub-

function realtimeCalculation can be further decomposed to sub-functions get_time 

and cal_coordinate. Sub-function get_time retrieves time information from TRAC 

hardware and validates the time received from TRAC hardware. Sub-function 

cal_coordinate calculates x,y coordinates for the given time. Sub-function 

outputResult outputs the results to the external device. 

                                                 

1 . The software is a part of a real-time simple projectile tracking system for the Army’s all weather Doppler radar 

system called TRAC. It is part of a host software subsystem called COMP 
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getTime * calCoordinate

realtimeCalculation

outputResult *

 

Figure 7. Example Software System LOCAT 

The abstraction behavior has been defined for function LOCAT, also for sub-function 

realtimeCalculation. In this system the software function LOCAT can be modeled at 

the abstraction level of LOCAT or at the lower abstraction levels realtimeCalculation 

and outputResult, or at the detailed levels getTime, calCoordinate, outputResult. For 

each level, the detailed behavior needs to be defined deterministically. The level of 

detail is controlled by the software guidance model during simulation. Error is 

introduced when simulating at a high-level, but can be eliminated when simulating at 

the lowest level. 

The software behavior model is constructed, based on an expected software behavior 

that omits all the failures introduced during software implementation. The 

implementation failures should be modeled also as stochastic events. The detailed 

failure information should be simulated in the abstraction model during simulation. 

The software failures can be injected at the selected level. The software function 

outputs are influenced by the failures, even when the detailed locations of the 

software faults are not available. So the software failures will be injected at the output 
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side of the functions in our models.  

Considering the example LOCAT system in Figure 7, from the information available 

we know that some faults exist in the function block getTime and the function block 

outputResult.  The detailed fault location, however, is not available. Accordingly, the 

software failures can be injected at the output side of LOCAT, or at the output side of 

getTime and outputResult, or at the output side of getTime and outputResult. The 

detailed injection rules are discussed in the guidance model section (section 4.4). The 

failure injection level differs from the abstraction level. Even if the software is 

simulated at the lowest level getTime, calCoordinate, outputResult, the failure can 

still be injected at the output side of function LOCAT.  

In this sense the software-behavior model is a combination of a deterministic model 

and a stochastic model. The deterministic model is used to simulate the behavior of 

the software, as well as the interaction between the software and other parts of the 

system. The stochastic model should be superimposed onto the deterministic model to 

represent the uncertain behavior of the software, e.g., software failures. 

4.3.2 Simulation-based Finite State Machine (SFSM) 

The software-behavior model is built using the FSM notation established by Harel 

[6]. The simulation-based concept is built into the basic FSM to form the SFSM. 

The machine will be built using Matlab/Simulink [50]. Stateflow toolbox has been 

used to build the SFSM for our application software.  

MATLAB, a very powerful tool designed by MathWorks, integrates mathematical 

computing, visualization, and a powerful language to provide a flexible environment 
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for technical computing. The open architecture makes it easy to use MATLAB and its 

companion products to explore data, create algorithms, and create custom tools that 

provide early insights and competitive advantages.  

Simulink, a toolbox extension of Matlab, is an interactive tool for modeling, 

simulating, and analyzing dynamic, multi-domain systems. It allows the user 

accurately describe, simulate, evaluate, and refine a system’s behavior through 

standard and custom block libraries.  Simulink integrates seamlessly with MATLAB, 

providing immediate access to an extensive range of analysis and design tools.  

Simulink is a very good tool for control-system design, signal-processing system 

design, communications-system design, and other simulation applications. Stateflow 

is another toolbox for MATLAB. It is a graphical design and development tool for 

simulating complex reactive systems based on FSM theory. Stateflow and simulink 

together will be used to construct a software representation for our examples.  

Some key notions of SFSM are defined in the following: 

[State] 

State is defined as a condition or mode of existence that a system, component, 

or simulation may be in [5]. A state can be dissected into sub-states. There are 

two types of states: exclusive state and parallel state. Exclusive states are used 

for the software models that are mutually exclusive. Parallel states are used to 

model parallel software, which means that two or more states can be active at 

the same time [50]. 

States have labels that can specify actions executed in a sequence based upon 

action type. The action types are “entry”, “during”, “exit” and “on”.  
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“Entry” action is executed when the state is entered. “During” action is 

executed when the system stays in the state. “Exit” action is executed when 

the system exit the state. “On event” action is executed when the given event 

occurs and the system stays in the state.  

[Transition] 

Transition can be separated into two parts: the conditions and the transitions. 

The transitions are triggered when the conditions are true. Actions can be 

associated with both conditions and transitions. Transitions are not 

decomposable, and all of the transition is executed instantaneously.  

[Action] 

Actions can be associated with states, conditions, or transitions. An action can 

be a function call, the broadcast of an event, the assignment of a value to a 

variable. It can be served as an interface to load the real software. 

[Internal Variables] 

Internal variables are defined inside the SFSM. They will be used to describe 

the internal states of the software. They are also used to define control 

information for the guidance model. 

The basic concept of the SFSM is discussed above. Simulation-based elements are 

added in the following sections. 

4.3.3 Deterministic Model 

Construction of the deterministic model is based on the information available. Multi-

layer abstraction can be employed during different stages of the software 



 

 
41 

 

development life cycle. Construction of the behavior model can be based on the 

software-requirement document, the software-design document, and the software 

code. The model is continually refined as more information becomes available. 

Given the available information, the behavior model is also a multi-level model. 

Multi-level abstraction is defined for selected functions which meet the following 

criteria: 

1) The execution of the functions is time-consuming (during simulation), and 

2) The selected functions are not important for certain scenarios. 

Different function blocks have different simulation priorities. The simulation level of 

detail may be different for different sub-function blocks. Even for the same function 

block, the priority changes in different contexts. The software guidance model 

(section 4.4) dynamically adjusts the simulation level of detail.  

The simulation level of detail is defined as an internal variable. The simulation 

environment controls the values of the internal variables. The software is executed at 

different levels based on the value of the control variables. (See Figure 8) 
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Figure 8. Typical structure used to control the level of model detail used in simulation 

An abstraction knowledge base (AKB) needs to be defined before the simulation. A 

tree structure is used to construct the AKB (See Figure 9). Use of high-level 

abstraction will automatically disable all the low-level abstraction. The reason is 

obvious; the use of “Abstract_Model” (see Figure 8) disables all details in the 

software state “Detail_Model”. 

Root

Abstraction 1 Abstraction n...

Abstraction 11 Abstraction 1n...

... ... ...
 

Figure 9. Abstraction Knowledge Base 

A node of the AKB tree is described by the following equation: 

{ }{ }
njcjcpli NNNffiAKB

,,11,,,,,
L=

=         (4.3) 

I is the abstraction-function index; the index uniquely defines the abstraction 
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function; the index value for Root is always 0; 

fi represents the function name in the functional-decomposition structure (see  

Figure 5); 

fl represents the function level in the functional-decomposition structure (see  

Figure 5); 

Np represents the parent node of the current node; the value is -1 for the Root 

node; 

Ncj represents the child nodes of the current node; the value is -1 if there is no 

child node available; 

n represents the number of child nodes of the current node. 

Only the structure-related information is stored in AKB. The simulation-related 

information about the abstraction level of detail is stored in a separate knowledge 

base. The detail of this knowledge base is introduced in the guidance model (section 

4.4). 

Considering the software example in Figure 5, the tree structure of AKB can be 

represented by the following figure: 

Root

F1 Fn2

F11 F1m

0, Root, 0, -1, {1,2}

1, F1, 1, 0, {3,4}

2, Fn2, n, 0, {-1}

3, F11, 2, 1, {-1}

4, F1m, 2, 1, {-1}
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Figure 10. AKB for software example in Figure 5 

The nodes of the AKB tree are described on the right side of Figure 10. 

4.3.4 Stochastic Model 

The stochastic model simulates the uncertain behavior of the software, e.g., software 

failures. Uncertain behavior should be controlled by the software scheduler and the 

high-level system scheduler. Using this mechanism, the simulation environment can 

simulate the implementation failures in the real software and analyze their impact on 

the whole system. 

Failure Modes 

Failure modes are defined as the observable ways in which a system, a component, an 

operator, a piece of software, or a process can fail. A taxonomy of software-related 

failure modes has been proposed in [4]. Software failures may originate either within 

the software itself or from the software interface with its operational environment. 

Failure modes, therefore, can be classified as either software functional-failure modes 

(failure modes of the software itself) or software interaction-failure modes 

(input/output failure modes, support-failure modes and environmental-impact factors). 

In this research, input/output (I/O) failure modes are considered first. The I/O failure 

modes include value-related failure modes (amount, value, range and type) and time-

related failure modes (time, rate, duration and load). Function failure modes generate 

different function outputs and, as such can be covered by the above failure modes. 
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The effect of a support failure2 will be covered in future research. The definition of 

the following failure mode set is based on the above information. 

[ ] [ ]},,,,,,,{ loaddurationratetimeTtyperangeamountvalueTF tvs =   (4.4) 

The above set is used as a pre-defined generic failure-mode set in this research. 

The value-related failure model uses the SFSM structure in Figure 11: 

 

Figure 11. Value-related failure modeling in SFSM 

Time related failures are complex, compared with value-related failures. Figure 12 

presents the structure used for modeling a delay failure. Figure 13 shows the structure 

for the delay unit. 

                                                 

2 The “support” failure modes include failures due to competition for computing resource and the computing 

platform physical features. The failure modes due to resource competition are deadlock and lockout. The impact of 

physical failures on software can be decomposed further into the impact of CPU failures, memory failures and I/O 

devices failures 
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Figure 12. Delay failure modeling in SFSM 

 

Figure 13. Delay component for time-related failure in SFSM 

The detailed description for each transition will be discussed in the section discussing 
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the integration of the software model into the SimPRA environment (chapter 5). 

Failure Injection 

The selected software failures are injected into the software behavior model. Failures 

are injected at the output side of software functions. They can be injected at different 

software levels. 

Considering the software example in Figure 7, it is known that some faults exist in 

sub-function getTime and function outputResult.  

getTime * calCoordinate

realtimeCalculation

outputResult *

LOCAT

F

 

getTime * calCoordinate

realtimeCalculation

outputResult *

LOCAT

F F

 

Figure 14. Different fault injection methods for an example system LOCAT 

For the same type of failure mode, a high-level software failure is the combined result 

of low-level failures. In the example system, the software failure at the function 

LOCAT level is the abstraction of software failures at the sub function 
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realtimeCalculation and outputResult levels. Software failures belonging to similar 

failure modes should not be modeled at different levels simultaneously.  

The failure-injection level is different from the abstraction level Li. For example, in 

Figure 14, the output failure can be injected at the level of function LOCAT. 

However, the abstraction level of detail may be at the lowest level. In other words, the 

failure can still be injected at the high-level, even if the detailed code is used in the 

behavior model. The level of failure injection cannot go lower than the level of 

abstraction for an obvious reason. The failure cannot be injected at the sub-functions 

getTime and calCoordinate levels if they are not modeled at all. 

The failure-injection location is determined by the analysts. The different injection 

level is dynamically adjusted by the guidance model. 

Failure Probability Quantification 

The selection of software failure modes is based on expert opinion and previous 

experience. Failure probabilities are estimated using statistical data, expert judgment, 

or the test-based methodology mentioned in section 2.1, once the code is available. 

For example, there are two databases for the Space Shuttle Group Project: one for the 

history of the software code and another that records every error ever made on the 

software project.  As a result of the vast amount of data collected in the databases, the 

Space Shuttle Software Group has written software that predicts the amount of errors 

that should be expected. The data in the database is quite detailed: it contains 

information on possible failures in the software code, and the probability of failure. 

That information can be used to inject failures into the software representation and 
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also to quantify the failure probabilities [51]. 

Software failures can only be triggered for the specified input domain. To inject a 

failure at the high-level, the analyst needs to define the decomposition of the input 

domain into a minimum input set. The failure probability in each of the sub-domains 

of the minimum input set is a fixed value. The triggering of software failures will be 

based on probabilities. 

The minimum input set is defined as the set of sub-domains of the input domain I, 

such that: 

U
n

j
jII

1=

=  

Φ=kj II I   for all kj ≠    (4.5) 

For each jlk Ixx ∈,   

The failure probability )()( lk xPxP =  

A Failure Injection Knowledge Base (FIKB) needs to be constructed for the failures 

injected. Each injected failure is related with one software function. The minimum 

input set needs to be defined for those functions. The relationship between failure 

probability and each sub domain inside the minimum input set needs to be defined 

inside the knowledge base. A tree structure is used to construct the FIKB (see Figure 

15). 
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Root

Failure 1 Failure n...

Failure 11 Failure 1n...

... ... ...
 

Figure 15. Structure of the Failure-Injection Knowledge Base 

Each node inside the FIKB can be presented using the following equation. 

{ } { }{ }
njjijiinjcjcplmi pfIINNNffiFIKB

,,1,,11 ,,,,,,,,,
LL

L
==

=    U
n

j
jii II

1=

=      (4.6) 

I is the software-failure index; the index uniquely defines the injected 

software failures; 

fmi represents the name of the injected software-failure modes (see  

Figure 5); 

fl represents the injected software-failure level in the functional-

decomposition structure (see  

Figure 5); 
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Np represents the parent node of the current node; the value is -1 for the Root 

node; 

Ncj represents the child nodes of the current node; the value is -1 if there is no 

child node available; 

n represents the number of child nodes of the current node. 

Ii represents the input domain of the software-failure related function; 

Iji represents each sub-domain of the minimum-input set; the size of the 

minimum-input set is n; 

pfji represents the failure probability for the sub-domain Iji; 

n represents the number of sub-domains. 

Fmi and fl are used in the guidance model to control the activation of the software 

failures at different levels. Once the failures are activated, the relationship between Iji 

and pfji is used to decide whether or not the failures are to be triggered for specific 

input from the simulation environment. 

Considering the example system in Figure 14, the failure can be injected at the level 

of LOCAT as failure failure_LOCAT; it can also be injected at the level of sub-

function realtimeCalculation as failure_realtimeCalculation and sub-function 

outputResult as failure_outputResult. FIKB can be represented using the tree 

structure in Figure 16 
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Root

Failure_LOCAT

Failure_realtimeCalculation Failure_outputResult
 

Figure 16. AKB for software example in Figure 14 

The guidance model controls the activation of software failures. High-level failures 

and low-level failures can not be actived at the same time. In Figure 16, 

Failure_realtimeCalculation and Failure_outputResult become invisible once 

Failure_LOCAT is actived. Once the failure is activated, the relationship between Iji 

and pfji defined for that failure is used to decide whether or not the failures are to be 

triggered for specific input from the simulation environment. 
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4.3.5 Summary 

The deterministic model and the stochastic behavior models were introduced in 

previous sections. Several controllable variables are defined inside the behavior 

model. Multi-level abstraction structure is constructed in the deterministic model. The 

simulation level of detail is controlled by the guidance model (section 4.4). Software 

failures are injected through the stochastic model. The failure modes and locations are 

selected by the analysts. Different failure-injection levels are defined in the stochastic 

model. The software failures are triggered in the guidance model. The detailed 

mechanism used is discussed in the following sections. 

To summarize, we can use the following equation to represent every component in 

the software behavior model. 

{ }
njLSLSLSLB

mkfff
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 (4.7) 

I is the software component name or (index), which uniquely defines the 

software components; 

di is a Boolean variable indicating whether one will simulate Si at an abstract 

level ; di is controlled by the scheduler; 

Li is the current level of detail of the function Si in the software 

representation; Li is a relative value. (For a given component, the current level 

of detail may be different, depending on the definition of the baseline in the 

software representation. The baseline is defined as level 0 of the software 



 

 
54 

 

component. The baseline needs to be unified for the whole software 

representation before the simulation); 

Bi is the detail behavior model of the software component Si; 

~

iB  is the abstract behavior model of the software component Si; 

fis is a set of stochastic failures injected at the output side of the normal 

behavior model of the software component Si; 

~

isf  is a set of stochastic failures injected at the output side of the abstract 

behavior model of the software component Si (The structure of 
~

isf  is similar 

as that of fis) ; 

fk is a single software failure injected for this software function; 

fkd is a Boolean variable indicating whether this failure is activated or not (fkd 

is controlled by the simulation guidance model) ; 

m is the total number of software failures injected for this software function; 

⊕  represents that Bi is composed by the sub-function Sij. 

If no abstraction is defined for the software component, equation 4.7 becomes a 

solely functional decomposition of the software component. To explore the system 

vulnerabilities, the software simulation-guidance model controls all the controllable 

variables inside the behavior model. 
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4.4 Simulation Guidance Model 

4.4.1 Overview 

The high-level guidance model guides the simulation to explore scenarios of interest, 

in lieu of doing a wide-scale exploration. In this sense the guidance model is not 

necessarily a complete representation of the software system. Instead, it may be 

fragmentary, covering only specific parts of the system. The key elements of the 

software can be identified and built into the guidance model. General knowledge 

about the software and common vulnerabilities should also be defined in the guidance 

model. Meanwhile, a software scheduler needs to be constructed inside the guidance 

model to control the stochastic behavior of the software and to communicate with the 

high-level system scheduler. 

The guidance model simultaneously interacts with the system-behavior model, the 

software-behavior model, and the high-level system scheduler (See Figure 1). The 

high-level scheduler provides high-level simulation requirements. The system-

behavior model provides hardware inputs and human inputs. The software-guidance 

model adjusts the software-behavior model, based on the inputs from the system-

behavior model and the high-level system scheduler. The software-behavior model 

generates the software outputs, based on the inputs from the guidance model. 

4.4.2 Interactions with other models 

Guidance Model vs. System Behavior Model 

The relationship between the guidance model and the system behavior model is 
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relatively clear. The system-behavior model provides the input to the software and 

receives the output from the software. The guidance model works as an intermediate 

layer. Let Is-sw be the input from the system-behavior model to the software-behavior 

model. Let Osw-s be the output from the software-behavior model to the system-

behavior model. 

The input/output for the software-guidance model is: 

Input from the system-behavior model  Is-sw 

Output to the system-behavior model Osw-s 

Table 2. Software-guidance model vs. System-behavior model 

Guidance Model vs. Multi-level Software-Behavior Model 

The software-guidance model provides the software input to the software-behavior 

model and controls the execution of the multi-level software model using control 

variables. The system input to the software Is-sw comes from the system-behavior 

model. The control variables include abstraction level of detail L, which of the pre-

existing software failure types ft should be activated and also the failure simulation 

level of detail fL. The values of L, ft and fL are calculated based on the detailed 

guidance rules. 

The input/output for the software guidance model is:  

Input from the software-behavior model  Osw-s 

Output to the software-behavior model Is-sw L ft fL  

Table 3. Software-Guidance model vs. Software-Behavior Model 
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Guidance Models vs. High-Level System Scheduler 

The relationship between the guidance model and the high-level system scheduler is 

the most complex. The high-level system scheduler provides the high-level 

requirements. The guidance model calculates the value of the control variables, based 

on the simulation requirements and the inputs from the system model. It provides the 

system scheduler with the simulation-level control information and the failure-

injection information. Also, the guidance model decides branch generation and 

provides the result back to the high-level system scheduler. Let Rh be the high-level 

requirements from the system scheduler. Let B be the branch-generation information. 

The input/output for the software guidance model is:  

Input from High-Level System Scheduler Rh 

Output to High-Level System Scheduler B L ft fL 

Table 4. Software-guidance model vs. System Scheduler 

Rh includes: 

 Simulation level of detail control factor RL 

 Injected failure type Rft; Injected failure level of detail Rfl 

 Simulation time requirement factors Rt 

There is no direct control from the high-level scheduler for a particular variable, if the 

value of that variable is -1 

The guidance model interacts with the enhanced SimPRA environment to adjust the 

controllable variables. The enhanced high-level planner and scheduler are presented 

in Chapter 5. The detailed guidance rules are discussed thereafter. 
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4.4.3 Simulation Knowledge Base (SKB) 

A Simulation Knowledge Base (SKB) is constructed inside the software-guidance 

model to store prior knowledge about the software system. SKB, AKB, and FIKB 

together serve as the knowledge base for the software model.  

The following information is stored in the SKB as prior knowledge: 

1. Time-factor related information 

The relationship between the high-level scheduler Simulation time requirement 

factors Rt and the simulation level of detail control factor RL are stored in the 

knowledge base. When there is no direct control from the high-level system 

scheduler, the guidance model decides the simulation level of detail based on the time 

requirements factor from the high-level system scheduler. 

The relationship between Rt and RL is not necessarily a 1-to-1 relationship. When the 

relationship between Rt and RL is 1-to-many, the probability for each pair should also 

be defined in SKB.  

That type of node in SKB can be described using the following equation: 

{ }{ }LnLti RRRtypeiSKB L,,,, 1=          (4.8) 

I is the node index (the index uniquely defines the node in the SKB); 

typei represents the type of node; 

Rt represents the simulation time requirements factor from the high-level 

scheduler; 

RL represents the simulation level of detail; 

2. Prior knowledge   
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The relationship between the pre-defined condition and the simulation level of detail 

is stored in this part. It is an interface that can be modified by the analysts for 

different applications. The pre-defined condition can be configured differently in 

different environments. For instance, in the example system in Figure 17, let us 

assume that the pump-control software is designed to maintain the life-support system 

for the Space Shuttle, based on the temperature, pressure, and time. When the system 

is in a relatively safe range, there is no need to simulate the control software in detail. 

A high-level lookup table is used to simulate the software-deterministic behavior. The 

lookup table is a continuous abstraction for the detailed control equation. When the 

system reaches the danger area, the lookup table is not accurate enough, so the low-

level detailed control equation is used to simulate the software behavior. 

Temperature

Pressure

Pump Control Software

Life Support System

Temperature, Pressure,
Time

Low Level:
Detailed Equation

High Level:

Lookup Table

Software

Scheduler

Danger

Safe

Sensitive

 

Figure 17. Pump control system 

The relationship between the simulation level of detail (High/Low) and the 

predefined condition (Range of Temperature + Pressure) is defined in this part of 

SKB.  
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This type of node in SKB can be described using the following equation: 

{ }{ }LnLi RRCtypeiSKB L,,,, 1=          (4.9) 

I is the node index (the index uniquely defines the node in the SKB); 

typei represents the type of node; 

C represents the pre-defined condition in the system model; 

RL represents the simulation level of detail; 

The above information is simply the type of information we studied to this point. 

SKB can be further enriched later to store more simulation-related prior knowledge. 
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Chapter 5: Integrating the Software Representation into 

SimPRA  

5.1 State Explosion Issue 

Dynamic Probabilistic Risk Assessment (DPRA) of complex systems is considered to 

be the next generation of PRA techniques. It is not currently in wide use because of 

state explosion issues that need resolution. DPRA is a set of methods and techniques 

in which executable models representing the behavior of the elements of a system are 

exercised in order to identify risks and vulnerabilities of the system, by simulating a 

variety of sequences of events that are representative of the possible true behaviors of 

the system. The event sequences typically share a single initial condition but are 

varied by introducing, at various points in the event sequence, possible deviations due 

to hardware and software failures, as well as human actions. The set of simulated 

sequences is then analyzed to gain insights into courses of events leading to 

undesirable end states, as well as their likelihood.  

State explosion is a well-known problem that impedes the implementation of DPRA 

techniques. The major weakness of the approach based on state space-exploration is 

that the size of the state-space grows exponentially with the number of branches 

generated and thus creates the state space explosion problem. 

Different approaches have been proposed to solve the state explosion issue. One 

approach is to employ a conservative assumption and merge the system states or the 
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end states, thus reducing the branch generations. A second approach is through 

distributed computing which would reduce the loads on a single computer. Another 

approach is to bias the simulation toward interesting events and end states. That 

approach would include the use of a knowledge-driven high-level planner to guide the 

simulation, as well as an entropy-based biasing of the scenarios. The simulation 

scheduler drives the actual-risk scenarios. The SimPRA environment is a real 

implementation of the third approach.  

5.2 SimPRA environment 

5.2.1 Overview 

SimPRA is an adaptive scheduling simulation-based DPRA environment developed 

by the University of Maryland under a grant from NASA Ames Research Laboratory. 

[38] Prior knowledge of the systems and knowledge gained during simulation are 

used to dynamically adjust the exploration rules in the DPRA environment. In 

SimPRA, a high-level simulation scheduler is constructed to control the simulation 

process, generally by controlling the occurrence of the random events inside the 

system model. Instead of using a generic wide-scale exploration, the scheduler is able 

to pick out important scenarios, which are essential to the final system risk, thus 

increasing the simulation efficiency. To do this, a high-level simulation planner was 

constructed to guide the scheduler. 
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5.2.2 Guidance Rule in the single-level SimPRA environment 

The adaptive exploration strategy used in SimPRA is based on an adaptive learning 

procedure. A general framework of adaptive learning procedure is described in Figure 

18. It is believed that there is always information available prior to the experiments. 

The information gained from past data can be used to alter the exploration strategy of 

future exploration to more efficiently address the area of interest. 

 

Figure 18. General framework for adaptive learning 

In the current SimPRA environment, two kinds of knowledge are used to guide the 

simulation. The first category is prior knowledge, including the system-specific 

knowledge, such as the design of a system, plus generally applicable knowledge, such 

as the experience from similar systems. The second category is knowledge obtained 

during simulation, which is used to adaptively guide the simulation towards the 

scenarios of interest and to fairly distribute the simulation among possible scenarios. 

For instance, the event sequences generated can be used to modify the focus of 

exploration. 
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Figure 19. The use of information in the SimPRA environment 

The SimPRA environment includes a planner, a scheduler, and the system simulator 

(see Figure 20).  

The planner serves as a map for exploration. The scenarios of interest are highlighted 

in the planner. The map should not necessarily be accurate and complete; it will be 

updated after each round of simulation. There are two types of updating. The first 

type is automatic updating after simulating a specific number of event sequences. A 

second type of updating needs the analysts’ intervention. The result of simulation 

may disagree with the plan. The discrepancy is highlighted for further investigation 

by the analysts [52].  

The scheduler manages the simulation process, including saving system states, 

deciding the branch selection, and restarting the simulation. The scheduler guides the 
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simulation toward the plan generated by the planner. The scenarios with high 

importance would be explored with higher priority, while all other scenarios also 

have a chance to be simulated. The objective of the scheduler guidance includes [40]: 

• Maintain sufficient coverage of important scenarios in the plan 

• Guide simulation toward areas of greatest uncertainty  

• Continuously adjust priorities, based on simulation results  

• Avoid test areas known to definitely lead to a specific end state  

• Cover all possible event-sequence space 

 

 

Figure 20.  SimPRA environment 

Whenever it comes to a branching point, the system simulator proposes transitions 

(branches) to the scheduler. The scheduler retrieves the information of the proposed 

transitions and decides which branch to explore. The exploration command is sent 
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back to the simulation, and the simulation model executes the command, continuing 

the simulation until another branching point or end state is reached. 

There are two types of stochastic events in the system model: time-based events and 

demand-based events. One type of stochastic behavior of a component can be 

described by the probability distribution function of time-to-failure. There is another 

class of failure. The probabilistic branching stochastic process has a set of outcomes, 

each with of a probability of occurrence. The timing of the occurrence is not random; 

instead, the outcomes at that point of time are random [38]. In our model, software 

failures are considered to be demand-based failures3 , which means the software 

failure is not triggered unless that part of the software is executed in the simulation 

environment.  

Software aging is another phenomenon discussed in the literature, where the error 

conditions actually accrue with time and/or load, resulting in performance 

degradation and/or failures. The typical causes include memory bloating and leaking, 

unreleased file-locks, data corruption, storage space fragmentation and accumulation 

of round-off errors [53]. This type of failure is not considered in this dissertation.  

5.2.2 Integrating Software into the single-level SimPRA 

Software reliability is defined in [54] by the Institute of Electrical and Electronics 

Engineers as: 

                                                 

3 One should not confuse the concept of time-based event with the concept introduced later of delayed software 

execution. 
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“Software reliability is the probability that the software will not cause the failure of 

a product or of a mission for a specified time under specified conditions; this 

probability is a function of the inputs to and use of the product, as well as a function 

of the existence of faults in the software; the inputs to the product will determine 

whether an existing fault is encountered or not.” 

From the definition, it is clear that software reliability is a function of the context in 

which the software operates. Software faults are triggered by specific input conditions. 

Unlike hardware, software does not deteriorate with operation time. However, the 

passing of time is still used as a parameter in some software reliability models due to 

the fact that it usually associates with the count of software execution cycles, which 

has a direct link with the probability of occurrence/non-occurrence of a specific input 

condition.  

Software risk models have been categorized as black-box unconditional software 

reliability formulations and conditional risk formulations in the “Probabilistic Risk 

Assessment Procedures Guide for NASA Managers and Practitioners” [10]. In the 

conditional risk model, the presence of a software failure event is determined by two 

basic constituents, namely: 

• The “input condition” event that triggers the execution of a certain logic path 

in the software 

• The “software response” to that condition, as determined by the internal logic 

path execution. 

In our software representation, software failures are injected at the output of the 
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selected functions. The logic path from the beginning of the software input to that 

selected function is already modeled inside the software behavior representation. The 

internal logic of the selected function and the detailed location of the failure are 

unknown to us. The failure probability is related with the input condition. The analyst 

needs to divide the input domain into minimum input sets. Within each minimum 

input set, the failure occurrence probability is treated as a uniform distribution. 

All the failure-related information is stored in FIKB. The detailed structure of FIKB 

is defined in chapter 4. Software failures are treated as demand-based failures. There 

are some differences between software failures and hardware failures.  

The first difference is that demand-based software failures are usually loaded more 

frequently compared with other demand-based components in the simulation 

environment. 

In SimPRA, a branch point is proposed when a component with demand-based failure 

is demanded in the system simulation. For instance, human action can be considered 

as a demand-based component. When a human action is required in the simulation 

environment, the human proposes different actions with different probabilities to the 

scheduler. The scheduler picks one branch based on the scheduling rule. A branch 

point is generated whenever the human action is demanded.  

Software is different due to the reason that software requests are much more intensive 

compared with other components. Considering the space shuttle thrust control 

software, a software output is needed for every single step of the simulation. If there 

is a software failure injected at the output of the thrust control software, it means a 

branch point request is generated for every single time step in the simulation, which is 
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not efficient and is very time-consuming. The branch point request should be reduced 

to an acceptable level.  

In order to get unbiased estimation of the final system risk, we introduced the concept 

of adjustment factor wa. Adjustment factor wa is a weigh factor ranging from 0 to 1. It 

is used to adjust the number of software branch point requests (See Figure 21) 

 

Figure 21. Software branch point generation adjustment factor 

In Figure 21, only wa percent of software execution proposes a branch point to the 

system scheduler. In order to make the final result unbiased, the adjustment factor 

should be considered when the software proposes a transition to the system scheduler. 

Assume the natural software failure probability is P.  When the software proposes a 

transition to the system scheduler, the probability used should be P/ wa. In this way, 

the final branch probability remains identical. Indeed: 
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=×          (5.1) 

Also the occurrence of the branch points remains the same. Assume that the software 

is executed n times. Before applying the adjust factor wa, the probability for the ith 

execution to be selected is: 

Pips =)(          (5.2) 

After applying the adjust factor wa, the probability for the ith event to be selected into 

the group proposing branch generation requests is 

awgip =∈ )(          (5.3) 

Within the group, the probability for each event to be selected is 

a
s w

Pgiip =∈ )|(         (5.4) 

So the probability for the the ith execution to be selected is 

P
w
Pwgiipgipip

a
ass =×=∈×∈= )|()()('     (5.5) 

Comparing the equation (5.2) and equation (5.5), one can see that the probability for 

the ith execution to be selected remains the same. Thus the occurrence of the branch 

points remains the same. 

The total branch generation requests decrease after applying the adjust factor wa. 

Before applying wa, the branch generation requests are proposed to the system 

scheduler at every time step when the software is executed. Two branches are 

generated if there are only two possible branches for each request. See Figure 22 a) 
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a) Before applying the adjust factor

b) After applying the adjust factor  

Figure 22. The effect of the adjust factor to the branch generation 

After applying wa, only wa percent of the software execution proposes the branch 

generation requests to the system scheduler. Two branches are generated for each 

request. For the rest of the software execution, no branch generation requests are 

proposed to the system scheduler. Thus only one branch is generated. (See Figure 22 

b) 

Assume that the actual software execution can be represented using a Poisson 

distribution with parameter λ. The number of branches generated after time T is: 

Before applying wa   2×Tλ  

After applying wa  )1())1(2( aaa wTwwT +×=−+×× λλ  

The adjustment factor can be selected by the analyst. But the value of the adjustment 

factor should be greater than the natural probability of the software failure P.  

Pwa >≥1          (5.6) 

Considering a software function with the following input domain, the failure 
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probability is defined for each minimum input set as:  

{ }
njjj pfII

,,1
,,

L=
    U

n

j
jII

1=

=      (5.7) 

We can define: 

)1),)max(*min(( ,,1 njja pfmw L==           1>m     (5.8) 

Considering a software function with the following input domain: 

{ })05.0,(),001.0,(),02.0,(),01.0,(, 4321 IIIII  

We can get: 

)1,05.0*min()1),05.0,001.0,02.0,01.0max(*min()1),)max(*min(( ,,1 mmpfmw njja === = L

The factor m is defined by the analyst for different software failures. The increase of 

the value of m increases the total number of branch points. A small value of m 

decreases the stochastic characteristic of the software failures. Figure 23 shows the 

relationship between wa and the total number of branch point requests in the space 

shuttle example [38].  
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Figure 23. wa vs. the total number of branch point requests in the space shuttle example 

Comparing Figure 21 with the software failure template of Figure 11 and Figure 12, 

the transitions within the template should be clear at this point. 

The second difference is that the software failure probability is not a fixed value as in 

other demand-based components. The failure probability is input condition dependent. 

In FIKB, different failure probabilities are defined for different minimum input sets. 

When the software-behavior model proposes a branch point to the scheduler, the 

request is sent to the software-guidance model to get the failure probability based on 

the input value. The guidance model queries FIKB to get the actual failure 

probabilities and further sends the request to the system scheduler. (See Figure 24) 

Software Behavior
Model

(Propose branch Point)

Software
Guidance Model

System Scheduler

FIKB

Input Condition +
name of software failure

Input Condition +
name of software failure

name of software failure +
Failure Probabilities

name of software failure +
Failure Probabilities

 

Figure 24. Software failure branch point generation procedure 

The detailed rules used in the system scheduler to select a branch based on its value 

measure can be found in [38].  
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5.3 Enhanced SimPRA environment 

5.3.1 Overview 

The state explosion issue was discussed in section 5.1. Three different approaches to 

solve the problem were introduced. In this section, an alternative approach is 

presented, in which a multi-level simulation environment is constructed; multi-level 

objects are defined within the simulation environment; multi-layer planner and 

scheduler are constructed and dynamically used to guide the risk simulation at the 

right level of detail and abstraction. That reduces the branch generation and mitigates 

the state explosion problem.  

The initial levels of the multi-level objects are defined by the analysts in the plan. The 

simulation results are used to adjust the level of detail to an appropriate level. The 

multi-level objects are simulated at a relatively high-level when they are not 

important for the end states of interest (see Figure 25). 

 

Figure 25. Sample scenarios consisting of multi-level objects 

An enhanced multi-level SimPRA environment is constructed and provisions are 
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provided to use software models at different levels of detail and fidelity. The 

innovative aspect of the approach is that the selection of the most appropriate level of 

detail is initially specified by the analyst in the Planner, but then automatically 

adjusted during the various rounds of simulation according to an entropy-based rule. 

5.3.2 Enhanced Planner 

As we discussed before, the planner is designed to guide the simulation towards a 

smarter and faster way to assess the risks of the system and generate useful 

knowledge about the contribution of different classes of scenarios. The goal of the 

plan is to guide the system to fail in such a way that the user’s knowledge about the 

system is increased. The planning process that is suggested is dynamic, meaning that 

the plan is updated by the results of the simulation. Figure 26 shows the cycle that the 

planner goes through to guide the simulation in a dynamic way [38, 52]. 
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Figure 26. Planner update cycle 

A high-level Scripting Language (SL), similar to a programming language, is defined 

in [38, 55] to represent the types of knowledge including physical and mathematical 

knowledge as well as temporal knowledge.  

In the enhanced SimPRA environment, a special Level Control Node (LCN) is added 

to SL to represent the level information for multi-level objects. The LCN is added to 

the scenarios generated in the plan. The structure of the LCN can be represented as: 

},,{ valuetypeLCN  

The type of level control nodes includes: 

1. Undefined: the level control information is undefined. 

2. Direct level control: the direct value for the level of simulation 

3. Time Factor: the time factor required at this point (see section 4.4.3) 

LCN is used to control the simulation level of detail for the multi-level objects. For 

the direct level control, a System Level Knowledge Base (SLKB) is constructed 

separately to associate the value of the level control with the level of detail for the 

software, human and hardware. (See Table 5 for an example) 

LCN Control Value Hardware level  Software Level Human Level 
1 1 1 1 
2 1 2 2 
3 1 3 2 

Table 5. An example for the system level knowledge base 

Inside the knowledge base, each row represents a compatible combination of the level 

of detail for different sub-components. For each combination, the input/output of the 
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connected components needs to be compatible. For instance, if the software output is 

connected to the human input, the number of output from the software model needs to 

be compatible with the human input requirements. In other words, the human model 

needs to be able to understand the software input and process the software input at the 

level used. 

The planner is loaded into the scheduler at the beginning of the simulation. The 

simulation level of detail is adjusted adaptively based on the information in the plan, 

the information in the guidance model of different components, and the previous 

simulation results. After each round of simulation, the planner is updated, based on 

the prior simulation results. The detailed adaptive scheduling rule and the updating 

mechanism will be discussed in the following sections. 

At the beginning of each simulation, the scheduler loads the plan from the plan file 

generated by the planner. An ESD is constructed based on the scenarios within the 

plan. LCN at the beginning of the scenario indicates that this plan is a multi-level 

model. For instance, the following is an example plan. 

LCN,1,1 

BP1|BP2|LCN|BP3|End_1!H 

BP1|BP4|BP5|BP6|End_2!L 

BP1|BP4|BP5|BP7|End_1!H 

BP1|BP8|LCN|BP9|End_2!L 

An enhanced ESD with LCN can be constructed using the multi-level plan (See 

Figure 27). 
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Figure 27. Example ESD constucted from a pre-defined plan 

5.3.3 Enhanced Scheduler 

The enhanced scheduler is established to handle multi-level objects in the simulation 

model. The scheduler loads the plan at the beginning of the simulation. If the ESD 

from the plan starts with LCN, the scheduler initializes the multi-level objects based 

on the information in the first LCN.  

The scheduler controls the level of multi-level objects based on the following logic.  

1. If LCN contains the direct control information, scheduler reads the level 

information from LCN; queries the system level knowledge base to get the 

detailed simulation level for each sub-component; sets the simulation level of 

detail for all multi-level objects. If there is no direct control information, go to 

step 2; 

2. If LCN contains time factor requirements4, the scheduler sends the time factor 

requirements to the sub-components guidance model. In our case, the system 

                                                 

4 The time factor for different LCN is defined separately based on the input from the analyst. The value of time 

factor for different LCN may be different.  
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scheduler sends an information request to the software guidance model, the 

guidance model queries SKB to get the level control information based on the 

time factor requirement and sends it back to the high-level scheduler; the high 

level scheduler queries SLKB to check the compatibility of the level 

information received from each sub-component and obtain a valid 

combination; the scheduler sets the simulation level of detail for all multi-

level objects based on the combination. 

3. If LCN is undefined, the scheduler sends this information to the sub-

component guidance models. The guidance model decides the simulation level 

based on the information in SKB and sends it back to the high-level scheduler; 

the high level scheduler queries SLKB to check the compatibility of the level 

information received from each sub-component and obtain a valid 

combination; the scheduler sets the simulation level of detail for all multi-

level objects based on the combination. 

As discussed before, the plan is updated during simulation. In SimPRA, user could 

specify the number of event sequences of one updating interval, and number of 

updating round.  

After the simulation has started, the enhanced scheduler will control the simulation 

level of detail during each simulation. The simulation continues until it reaches a 

LCN node. The level control logic is the same for all LCNs within the plan. The 

simulation level of detail for multi-level objects only changes when the simulation 

reaches LCN. The level information is adjusted based on the logic in Figure 28. 
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Figure 28. Simulation level of detail adjustment logic 

The plan is updated after one round of simulation. The information in LCN is updated 

based on the simulation results. A post simulation analysis is executed after each 

round of simulation. The switching mechanism is based on Shannon’s entropy 

measure [56-58] and its application to simulation branch generation introduced in 

[38]. In this research the entropy-based branch control is extended to simulation level 

control.  

For a event sequence with two end states, let x be our degree of belief that end state E 

will be reached, and let our belief regarding this probability be described by a Beta 

distribution 

( ) ( )
( )βα

βαπ
βα

,
1,|

11

Be
xxx

−− −⋅
=                                                                                (5.9) 

where 1α −  and 1β −  respectively represent the number of times that end states 1 

and 2 are observed in a total of 2α β+ −  sequences. Then the entropy measure is 

equal to 

( | , ) ( 1) ( ( ) ( )) ( 1) ( ( ) ( )) ln ( , )I x Beα β α ψ α ψ α β β ψ β ψ α β α β= − ⋅ − + + − ⋅ − + −  

                                                                                                                  (5.10)  
where, ( )zψ  is the digamma function, 
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which for integer arguments can be computed as (Abramowitz) 
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For large values of z, the digamma function can be approximated efficiently by 

( ) ( ) 2ln zzz −≈ψ          (5.14) 

After N simulation, the entropy reaches its maximum value when 1α −  = N or 

1β − =N. The entropy reaches its minimum value when 1α −  = 1β −  = N/2. A small 

value of entropy indicates a state of ignorance about the outcome of the scenario. A 

large value of entropy indicates a good confidence about the outcome of the scenario.  

The entropy value is calculated for each multi-level object in the plan. It is used 

together with the conditional end state probability after this node. The conditional 

probability for end state of interest is calculated. It is a value ranging from 0 to 1. A 

large value indicates that the execution of the failure in this multi-level object has a 

large probability to lead the simulation to the end state of interest.  

Considering the plan in Figure 29, software model is adjusted to the high-level after 

LCN1.  
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SWLCN1

 

Figure 29. Part of an example plan 

Software failures are executed after LCN1, the result of simulation indicates the 

entropy for the software failure is high and the conditional probability to the end state 

of interest is high, which indicates that we have a high confidence that the execution 

of the software failure greatly influences the simulation to the end state of interest. In 

this case, the software model should be further decomposed to get more accurate 

results. In the reverse case, it indicates that the execution of the software failure does 

not have a great influence to lead the simulation to the end state of interest. In this 

case, the software model should stay at a relatively high-level.  

The threshold for entropy and the conditional probability is defined by the analyst 

before simulation begins. It can be further updated after each round of simulation. 

After each round of simulation, the entropy value and the conditional probability for 

each multi-level object is calculated and compared with the level information in the 

previous LCN. If the value of entropy indicates that the simulation level should be 

adjusted, the scheduler submits a request to the multi-level objects guidance models. 

In our case, the system scheduler submits a request to the software guidance model to 

check if any updates are available. If no further updates are available for the software, 

the plan is treated as the best plan available. The simulation results are calculated 

based on this plan. 
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Figure 30 describes a high-level overview of the data flows in the enhanced 

scheduler: 

Start Simulation

Define the planAnalyst

Load plan into
scheduler

Initialize multi-level
objects

Start one round of
simulation

Use entropy to select
branch in each

simulation

Finish One round

No

Calculate entropy for
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software guidance

No further update
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Fail

No

Yes

No

Yes

Yes

 

Figure 30 Data flow in the enhanced SimPRA scheduler 
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The use of entropy-based strategies in the dynamic PRA environment to select 

different branches is discussed in [39].  

5.3.4 Software Guidance Model in SimPRA 

The software guidance model receives the update request from the system scheduler. 

The basic updating algorithm is presented in Figure 31. 

Start Simulation

Initialize the level  and
failure information

Simulation in progress

Receiving updating
command from

scheduler

Level can go futher?Adjust simulation level

Failure can  be
decomposed?Decompose failure

Update
success

Fail to Update

No

No

Yes

Yes

 

Figure 31: Software Guidance update mechanism 

5.4 Integration 

The approach to integrate the software model into the dynamic simulation 



 

 
85 

 

environment is as follows: 

1 Identify the boundary of the software. Decompose the software into independent 

software blocks. Each block is modeled separately. 

2 Define the information available and construct the executable behavior model 

using SFSM. (section 4.3.2) 

3 Define the multi-level structure for the selected functions. In this step, the analyst 

needs to choose the functions first. Then define the abstraction method and build 

the high-level abstraction model for the selected functions. (section 4.3.3) 

4 Select the software failures based on the available information, including the 

failure type and different failure levels. Inject the software failures into the 

behavior model. (section 4.3.4) 

5 Construct AKB and FIKB using the software modeling tool. (section 4.3.3 and 

section 4.3.4) 

6 Build the software guidance model; establish the interface between the guidance 

model and other models. (section 4.4) 

7 Establish SKB. The analyst needs to categorize the prior knowledge available, 

define the interface and summarize it in SKB. (section 4.4.3) 

8 Integrate the software components in the high-level planner. The multi-level 

abstraction information should be included in the plan generated. (section 5.3) 

9 Run the simulation and update the plan using the simulation results. (section 5.3) 
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Chapter 6:  Experimental Demonstration --- Propulsion System 

Mission and Design Problem 

6.1 Introduction 

The benchmark problem is a multi-phase mission involving an ion propulsion system 

needed for a science mission to the outer solar system. The propulsion system is 

needed only in some of the phases, during which thrust is continually provided. 

Mission Profile 

An ion propulsion system is needed for a science mission to the outer solar system. 

Figure 32 depicts the mission phases, along with the propulsion system operating 

time during each phase in hours of Mission Elapsed Time (MET). Table 6 conveys 

the same information in tabular form. For those phases where the propulsion system 

only operates during part of the phase (e.g. Phases 4 & 5), thrust is continually 

provided from the beginning of the phase until the specified operating time expires. 

Phase No. 1 2 3 6 7

ON

Thrusters

OFF

MET [hour] 0 5520 14899 28039 41179 66180 68038 78039
5856 68538

4 5
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Figure 32. Propulsion System Mission Profile 

Mission Phase No. Duration (Hours) Propulsion System Operating 
Time (Hours) 

1 5520.0 5520.0 
2 336.0 0 
3 9043.2 9043.2 
4 26280.0 13140.0 
5 26858.5 25001.0 
6 500.0 0 
7 9501.5 9501.5 

Table 6.  Mission Profile (table used in previous version) 

Design Description 

The propulsion system consists of 5 thruster assemblies and a single propellant 

supply. Each assembly has: 

1) propulsion power unit (PPU), and 

2) ion engines 

When an assembly is operating, the PPU provides power to just one ion engine. The 

other engine will be in a standby mode, unless failed. 

During Phase 1 the success criterion is propulsion from 2 assemblies. In all 

subsequent phases where the propulsion system is operating, the success criterion is 

propulsion from 3 assemblies. 

Relative to the assembly operation, the strategy is to use Assemblies 1 through 2 

during the first phase. During subsequent phases, Assemblies 1 through 3 will furnish 

propulsion, if available. 

Failure of an assembly causes it to be replaced by the lowest numbered standby 

assembly. For example, if assembly 1 fails in Phase 1, the strategy is to actuate 
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Assembly 3.  If no further failures occur during Phase 1, assemblies 2, 3 & 4  will 

furnish propulsion at the beginning of Phase 3. 

Basically, standby assemblies remain in standby until they are needed to replace a 

failed assembly, and they are actuated in series (i.e., the lowest numbered assembly is 

first selected). 

Figure 33 is a schematic of a thruster assembly.  In assessing the mission risk input 

power failures are modeled separately, so the propulsion system model can ignore a 

loss of power from that support system. 

The strategy for thruster assembly operation is to begin with power from the PPU 

going to Ion Engine A.  Ion Engine A will continue to be the operating engine of the 

assembly until the engine fails.  At that time the strategy is to: 

• shutdown the PPU; 

• switch the PPU to Ion Engine B; then 

• reenergize the PPU and operate with Ion Engine B. 

There are no intermediate switches between a PPU and the ion engines.  All switches 

are integral to the PPU. 

Figure 33 also depicts a propellant supply to each engine.  The propellant is a noble 

gas from a common storage tank.  The engine ionizes and accelerates the propellant 

to produce thrust.  Since the propellant supply is part of the propulsion system, it 

must be included in the system model. 
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Figure 33.  Thruster Assembly Schematic 

Common cause failures (CCF) should be assessed using the conditional probability 

values from Table 7 by the CCF model of choice. No specific CCF model is 

endorsed, but any simplification or approximation of CCF probabilities must be based 

on calculations using the values below. 

Group Size  Group Conditional Failure Probability [%] 
2 8.0 
3 4.0 
4 2.0 
5 1.0 

Table 7.  Common Cause Failure Modeling Values 

Table 8 is a failure mode and effects analysis for the propulsion system.  Reliability 

data are listed in Table 9. 

Component Failure Mode Effect 
PPU Fails to start on demand Assembly failure 

PPU 

Ion A

Ion B

Input Power 

Propellant (to A) 

Propellant (to B) 
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Component Failure Mode Effect 
 Failure to operate  
 Failure to shutdown on 

demand5 
 

Ion Engine A Fails to start on demand6 Loss of redundancy 
 Failure to operate  
Ion Engine B Fails to start on demand Assembly failure 
 Failure to operate  
Propellant Valve A Failure to open on demand Loss of Ion Engine A 
 Failure to close on demand System failure 
 External leakage  
Propellant Valve B Failure to open on 

demand7 
Loss of Ion Engine B 

 Failure to close on demand System failure 
 External leakage  
Propellant tank External leakage System failure 
Propellant distribution 
lines 

External leakage System failure 

Table 8.  Failure Mode and Effects Analysis 

Component Type Failure Mode Value 
PPU Fails to start on demand 1×10-4 (per demand) 
 Failure to operate 1×10-6 (per hour) 
 Failure to shutdown on 

demand 
1×10-5 (per demand) 

 Fails to switch to Ion 
Engine B 

2×10-6 (per demand) 

Ion Engine Fails to start on demand 3×10-5 (per demand) 
 Failure to operate 2×10-5 (per hour) 

                                                 

5  Failure of a PPU to shutdown on demand will burn it out rather quickly.  This results in an assembly 

failure because the PPU is permanently disabled. 

6  An ion engine is shutdown on demand be shutting down its PPU and closing its propellant valve.  Hence, 

failure to shutdown on demand is not an ion engine failure mode.  However, the power surge 

experienced when an ion engine is started (i.e., when its PPU initially supplies power) subjects an ion 

engine to appreciable internal stresses that can result in failure to start on demand. 

7  If Ion Engine A fails in an assembly, the strategy for transferring to Ion Engine B includes terminating 

propellant flow to the failed engine and opening Propellant Valve B. 
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Component Type Failure Mode Value 
 Failure to shutdown on 

demand 
3×10-6 (per demand) 

Propellant Valve Failure to open on demand 3×10-4 (per demand) 
 Failure to close on demand 3×10-4 (per demand) 
 External leakage 5×10-5 (per hour) 
Propellant tank External leakage 1×10-6 (per hour) 
Propellant distribution 
lines 

External leakage 1×10-6 (per hour) 

Table 9.  Reliability Data 

Predicated upon the above mission and design descriptions, the time-dependent 

reliability of the propulsion system over the planned mission should be quantified. 

6.2 Simulation Model 

6.2.1 Overview 

The benchmark system is a system with hardware components and software 

components. The whole software system is a parallel running software system with 6 

sub software-components: 1 central control unit and 5 thruster assembly control 

software. The central control software controls the status of the 5 assemblies by 

sending control signals. The thruster assembly control software receives the 

command from the central control software; controls the working status of the 

assembly; and sends the status of the assembly back to the central control unit.  

6.2.1 Software Model 

Figure 34 shows a high level overview for the software model. 
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Figure 34. High level software overview for PSAM benchmark problem 

The central control software controls the status of the assemblies during different 

phases of the mission (See Figure 35). During each phase, the central control software 

monitors the status of each assembly. If any working assembly fails, the control unit 

powers off the failure unit and turns on the backup assembly (Figure 36). If there is 

no backup assembly available, software control unit sends a signal to the simulation 

environment to indicate the system failure. 



 

 
93 

 

 

Figure 35. Central control software representation for PSAM benchmark problem 

 

Figure 36. Failure recovery mechanism for PSAM benchmark problem 
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There are 4 different states for each assembly during the mission: Standby, working, 

switching and failure. A state diagram for the assembly is represented in Figure 37. 

 

Figure 37. State Diagram for assembly control software 

6.3 Discussion 

In this chapter, a detailed software representation is presented to represent the parallel 

control software based on the mission profile. No software failure is represented in 

the original mission profile. But the simulation model can be easily extended to 

introduce software malfunction failure modes. The impact of the software failures to 

the system risk can be fully studied based on the simulation results, i.e., risk scenarios 

leading to predefined End States are in form of specific realizations of time dependent 

sequences of events. End State probabilities are based on grouping of such 
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realizations [59].   

In the next chapter, a software model is constructed for a complex system. Different 

types of software failure are injected in the software model. Three levels of 

abstraction are defined. The whole integration process is studied in detail. 
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Chapter 7:  Experimental Demonstration --- PACS 

7.1 PACS System Introduction 

The PACS system is a simplified version of an automated personnel-entry-access 

system (gate) used to limit physical access to rooms, buildings, or other facilities to 

authorized persons, to whom coded identification (ID) cards have been issued. The ID 

card contains the person’s name and social security number.  Users insert their ID 

cards into a reader. The system searches for a match in the system’s updateable 

database, requests the user’s four-digit Personal Identification Number (PIN), 

validates the PIN, and unlocks a turnstile gate for entry. A single-line display screen 

and a 12-key keyboard provide communication between the system and its users. A 

security officer monitors a duplicate message on his/her console with override 

capability. 

The software system initially displays the message “INSERT CARD,” then checks a 

register for a 0 or 1 value to determine if the card has been inserted into the card 

reader. Given a positive response (value 1), it reads the nine-digit social security 

number and the twenty-character last name and validates that data against the 

information in the card database. If the card is valid, the software displays the 

message “ENTER PIN”. Should the card not be readable then the message “RETRY” 

is posted for a maximum of three tries, after which the system posts the message “See 

Officer”. A duplicate message is sent to the officer. 
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The PACS system involves two humans (the user and the guard) and six hardware 

components (the card reader, keyboard, single-line digital message display unit, the 

guard’s display unit, guard reset unit, and a gate).  

In the event of fire, the user needs to pass through the gate within sixty seconds. The 

guard may notice the fire right away and open the gate directly. If the guard does not 

open the gate, the user needs to pass through the gate using his ID card and PIN. The 

user’s stress increases as the remaining time decreases. The guard may leave his 

position in case of fire. Even when the actions of the user are correct, hardware 

failures may generate incorrect inputs to the software. Software implementation or 

requirements failures may be another reason for a delay in the opening of the gate. 

The complex interaction among software, hardware, human and environment finally 

leads to two end states. The end result may be either loss of occupant or successful 

escape. 

7.2 Simulation Model 

7.2.1 Overview 

Let us model the example system at the requirements stage. The software, human, 

hardware and environment factors are modeled separately. Figure 38 shows a high-

level overview of the final system model.  
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Figure 38. High-level model overview for the PACS system 
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There follows the description of each block: 

• FireEnvironment: This block simulates the fire initiator. The environment 

factor evolves as the fire unfolds and so does the Human Performance 

Influence Factor Stress. From Figure 38, we can see that the output of this 

block serves as an input to the human modeling blocks. 

• UserInput, GuardInput: These two blocks are human modeling blocks. The 

human receives input from the software and control command information 

from the high-level system scheduler. The human then performs different 

actions, based on the inputs. For instance, the user may insert card, input PIN, 

etc. Human stress increases as the time remaining decreases, causing the user 

and the guard to be more prone to errors. The guard will leave his position 

when the time remaining is less than 10 seconds. 

• Hardware block: The hardware components are simulated in this modeling 

block. The hardware serves as a bridge between humans and software. If a 

hardware failure occurs, the corresponding software input may be incorrect 

even if the human’s input is correct. The gate may not open even if the 

software generates the right open gate command when a failure of the turnstile 

gate hardware occurs. 

• Software block: The software representation. Detailed procedures for building 

the model are discussed in the following sections. 

The hardware and human modeling blocks are not the focus of this research; 

therefore, they are not discussed in detail.  
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7.2.2 Software Model 

Below are the detailed steps for building the software representation. 

Step 1: Identify the boundary of the software. PACS is an independent software 

system; therefore, PACS is modeled as a whole unit. 

Step 2: Model the PACS behavior, based on the software requirements specification. 

The PACS model is implemented using Matlab/Simulink. Figure 39 shows a high-

level view of the PACS software model: 

 

Figure 39. Detailed PACS behavior model 

Step 3: Define the multi-level structure for PACS. Three levels are defined. 

The highest level is to treat PACS as a single block (Abstract PACS in Figure 40). 

User card information, User PIN input, and guard inputs are treated as one single 

input. The output is gate status (open or not). The time necessary for human input and 

software execution is added as the PACS execution delay.  
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Figure 40. Level 1 abstraction for PACS 

The second level goes inside PACS. PACS is decomposed into Insert_Card, 

Read_Card, Read_PIN, Verfiy_PIN. The structure of Detailed_PACS is similar to 

that in Figure 39. All sub-functions are at the lowest level, except Read_PIN. An 

abstraction of Read_PIN is used at this level. The input to this sub-function is the 

correctness of the PIN value (true or false). No detailed PIN input is simulated at this 

level. The output of Read_PIN is the PIN status. The human input time and the 

software execution time are added as the Read_PIN execution delay.  

The third level corresponds to a detailed view of Read_PIN. The PIN input is 

processed digit by digit. Figure 41 is a detailed simulation model for function 

Read_PIN. At this level, each digit of the PIN is simulated separately.  
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Figure 41. Detailed simulation model for Read_PIN 

Step 4: From past experience, typical software failures are selected for different 

abstraction levels. Below are some of the failures injected: 

Level Function Failure Modes Failure Description 
1 PACS Value A value failure is injected at the output of 

PACS; gate does not open even if the user 
inserts the correct card and inputs the 
correct PIN.  

1 PACS Time A delay failure is injected at the output of 
PACS; gate opening is delayed even if the 
user inserts the correct card and inputs the 
correct PIN. 

2 Read_PIN Time An infinite time delay is injected for any 
abnormal PIN input.  

3 Done_Input Function 8 If the input is not “enter” as expected, 
Function Done_Input leads the software 
to a crash state.  

Table 10. Software failure examples for PACS  

Step 5: The Software AKB and FIKB are constructed automatically, based on the 

PACS software model. PACS is a small example with only a three-layer abstraction; 

                                                 

8 This is a real fault at the lowest code level which is not controllable. 
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so, the structure of the knowledge base is relatively simple. Figure 42 is the structure 

for the abstraction knowledge. Because of the nature of the abstraction knowledge 

base, only the functions with abstractions are modeled in the knowledge base.  

PACS

Read_PIN

Lowest level
 

Figure 42. Abstraction knowledge base for PACS 

Step 6: Build the software guidance model; establish the interface between the 

guidance model and other models. The software model is integrated in the whole 

system model (see Figure 38). The input/output interfaces are defined and connected 

to the rest of the system model. 

Step 7: Establish SKB. The analyst needs to categorize the prior knowledge available, 

define the interface and summarize it in SKB.  

Two types of information are categorized and stored in SKB. The first type is the 

time-related information. A simple knowledge base is constructed to build the 

relationship between the high-level system scheduler time requirements and 

controllable variables. In the PACS example, the time requirements factor from the 

high-level scheduler includes three different values.  

Time Requirement Factor Simulation Level 

Low 3 
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Medium 2 
High 1 
Table 11. Time requirement factor table for PACS 

The second category is the prior knowledge information. Based on prior knowledge, 

the user has a very low probability to exit the gate if the time remaining is less than 

10 seconds since the guard is no longer available and the user will easily make a 

mistake in such a short time. PACS is simulated at the highest level if the pre-defined 

condition is true. 

Tremaining < 10s, RL = 1        

Step 8: Integrate the software components in the high-level planner. Software input 

and output vary, depending on the software level. The human input should also be 

defined separately for different levels. The multi-level abstraction information is 

included in the plan generated. The following scenario is part of the plan generated.  

In the event of a gate failure, the probability that the gate will open is low even if the 

software issues the gate open command. In this scenario, PACS is executed at the 

highest level. In the case of a keyboard failure, PACS is executed at the second level 

since there is a high probability that the software will receive a wrong PIN even if the 

user inputs the right PIN through the keyboard (See Figure 43). 
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Fire
Gate

Hardware
Failure

PACS to level
1

PACS default
level 3

Read_Card Keyboard
Error

PACS to level
2

Human
Insert Card

 

Figure 43. Extract of the plan for the PACS simulation 

In the high-level system scheduler, a knowledge base is constructed to store the 

relationship between the software simulation level of detail and the human simulation 

level of detail. The human simulation level of detail is adjusted automatically with the 

software simulation level of detail by the high-level system scheduler. 

Step 9: Run the simulation and update the plan using the simulation results. The 

initial plan for the multi-level objects may not be perfect. The plan is updated 

automatically based on the simulation results. 

Running the simulation model based on the pre-defined plan, the cumulative 

distribution of the two end states are obtained through SimPRA. (See Figure 44) 
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Figure 44. Probability estimation from SimPRA 

A list of scenarios is generated as part of the simulation results. Here is one example 

scenario: 

Fire
Protection

Off
Fire

t=0 second

Guard Open
Gate

t=4 second

Guard Reset
Unit

hardware
failure

t=5 second

User Inputs
Right Card

t=19 second

User Inputs
Wrong PIN

t=38 second

Guard Opens
Gate

t=41 second

Guard Reset
Unit

hardware
failure

t=42 second

Loss of
Occupants

t=60 second

User Inputs
Wrong Card

t=52 second
 

Figure 45. Example scenario for PACS 
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7.3 Traditional vs. Dynamic  

PACS has been studied in [3] using the traditional PRA methodology. The ESD in 

Figure 46 is used to model the system evolution. Software components are included 

in the ESD and quantified using the test-based methodology. 

The ESD in Figure 46 is a simplified version with conservative assumptions. The 

guard intervention is restricted to the beginning of the fire. If the guard fails to take 

action, the user will only have one chance to escape the gate using his card or PIN. 

Failure to insert the right card or to input the right PIN all lead to loss of occupants. 

The assumption here is that the guard always opens the gate directly in case of fire if 

the guard is in his position. If the guard is not in his position, no one is going to open 

the gate or reset the system thus the user only has one chance to insert the right card 

and input the right PIN. The logic here seems clear and complete under this 

assumption. But it is not. For instance, the dynamic scenario in Figure 45 is not 

covered in this ESD. The following story can be retrieved from Figure 45: 

The guard noticed the fire immediately and decided to open the gate directly. He 

pressed the gate open button but the gate did not open due to a hardware failure in 

the guard reset unit. The user tried to exit the gate using his card and PIN. The guard 

stayed in his position to reset the system if needed. Even if the guard can not open the 

gate directly, he can still reset the system and allow the user multiple trials. The user 

inserted the right card but input the wrong PIN due to stress. The guard reset the 

system but the user failed to get out before 60 second.   
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Figure 46. ESD for the PACS System (The initiator is fire. Gray place holders indicate the presence of software contributions). 
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Apparently this scenario fits into the assumptions used to create Figure 46 but is not 

covered in the ESD. The reason is complex. The dynamic interactions among the 

components make it difficult for the analyst to identify and predict all the possible 

scenarios. Meanwhile the count of scenarios increases dramatically if the analyst 

needs to consider the details of the system. The analyst has to model at a relatively 

high-level to explore all possible scenarios. In the ESD in Figure 46, the software 

related blocks B1, B2, B3 in the ESD represent a group of events. For instance, block 

B1 in Figure 46 represents the Read Card function. Two different branches originate 

from block B1: correct card is read or failure to read card. Considering the second 

branch, the possible reason for failing to read the card includes a failure of the 

software function Read_Card, a failure of the card reader hardware, and human 

failure. If the analyst needs to unfold all these blocks, the size of the ESD will 

increase dramatically. Using the dynamic PRA methodology, the analyst only needs 

to construct the behavior model and the simulation environment explores all the 

scenarios automatically. The level of detail can be easily changed. Meanwhile, once 

the system model has been constructed, only small modifications are needed to obtain 

results under different assumptions.  

Compared with the traditional PRA methodology, software modeling in the DPRA 

environment has the following benefits: 

• The dynamic methodology generates more information in the output. 

The scenarios generated in the dynamic environment include time-related 

information. The ESD used in the traditional methodology is conservative. Time-
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related information is generated in the ESD.  

• The system model generated using the dynamic methodology can be easily 

and economically maintained and modified. 

If a new failure needs to be included in the system analysis, the entire ESD in the 

traditional methodology may need to be reconstructed and all components may need 

to be re-quantified if the operational profile is different. In the dynamic environment, 

the result can be obtained easily by running the simulation after adding the new 

failure in the system model. 

• The system and software models generated using the dynamic methodology 

are reusable. 

The system and software model generated in the dynamic environment can be easily 

reused for a different system if similar components exist.  

7.4 Multi-level Simulation 

The system model for PACS is a multi-level model, as described in section 7.2. 

Running the simulation at different levels generates different results. PACS has been 

executed under the following three different cases: 

Case 1: The execution of PACS has been maintained at the highest level: level 1; 

Case 2: The execution of PACS has been maintained at the lowest level: level 3; 

Case 3: The simulation level of detail is dynamically adjusted by the simulation 

environment.  

The following results are generated after 500 runs: 
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 Time Used (s) Success  Loss of Occupant 
Case 1 412.26 0.891 0.109 
Case 2 463.61 0.947 0.053 
Case 3 447.28 0.928 0.072 
Table 12. Multi-level simulation: Run-time for different levels of detail (within SimPRA) 

In Table 12, the “time used” factor is influenced by both the software model and other 

parts of the simulation environment. Table 13 displays the run time obtained when the 

contribution of the software model is isolated from the simulation environment. 

 Time Used (s) 
Case 1 187.985 
Case 2  219.063 
Case 3 213.469 
Table 13. Multi-level simulation: Run-time for different levels of detail (in Isolation) 

7.5 Comparison of software model vs. Real code 

In this section an experiment is designed to validate the software model when 

compared with the real code. All hardware failures are removed from the PACS 

system model. The guard action is restricted to responding to the user’s requests. In 

other words, the guard will not open the gate before the user inserts his card, or inputs 

his PIN. Also the guard will not leave when the time left is small. The software 

models are built based on different levels of knowledge from analysts. The profile for 

PACS is completely defined. Value-related failures are injected into PACS and 

testing is performed on the real code. Analysts design the software model based on 

the results from different levels of test results. The models are integrated into the 

simulation environment. The results are obtained and compared with those obtained 
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using the code directly in the simulation environment. 

Here are the basic procedures for this experiment: 

1. Define a complete operation profile for PACS 

2. Inject software failures into PACS code 

3. Test PACS; different levels of results are obtained based on the number of 

rounds of tests performed 

4. Build a software model based on different levels of knowledge; integrate the 

software model into the simulation environment and run the simulation 

5. Integrating the software code into the simulation environment; the IO part of 

the software model is modified to fit the simulation environment; compare the 

simulation results with the results from step 5. 

6. Calculate quantitative coverage information through the comparison of  

scenarios generated 

Step 1: Define a complete operation profile for PACS 

All hardware failures are removed from the current PACS system model. In that way, 

the influence of hardware failure is isolated from the final system risk estimation. 

Final results are influenced only by the software model and the human decisions. The 

following profile is used for the human:  

• The probability for a user to insert a right/wrong card is 0.55/0.45 

• The probability for a user to insert a right/wrong PIN is 0.55/0.45 

• The probability for a guard to accept/reject a user request to open the gate is 

0.5/0.5 
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Assume PACS is used in a building with 10 employees with SSNs and PINs as 

follows: 

Name SSN PIN 
Jacob 212590000 0000 
Michael 212590001 1111 
Joshua 212590002 2222 
Matthew 212590003 3333 
Andrew 212590004 4444 
Christopher 212590005 5555 
Joseph 212590006 6666 
Nicholas 212590007 7777 
Daniel 212590008 8888 
William 212590009 9999 
Table 14. User records 

The following assumptions apply: 

• Only the first 5 people have the authorization to pass through the gate.  

• All four numbers in a PIN are the same. There are only 10 different PINs 

available during simulation. 

• All cards used during simulation belong to the 10 records in Table 14. 

For each user, the probability of inserting the right/wrong card is 0.55/0.45. The first 

5 cards in Table 14 are treated as right cards; the rest, as wrong cards. The 

right/wrong cards are uniformly distributed in the set of right/wrong cards. Once the 

user inserts the card, the probability of inputting a right PIN is 0.55. The probability 

of a user inputting a wrong PIN is 0.45. The wrong PINs are uniformly distributed in 

the set of wrong PINs.  

Step 2: Inject software failures into PACS 

A correct database should contain the first 5 records in Table 14. Now assume that the 
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database is erroneous, and the following information is the information actually 

stored in the database. 

SSN Name PIN 
212590000 Jacob 0000 
212590001 Michael 5555 
212590002 Joshua 2222 
212590003 Matthew 3333 
212590004 Andrew 4444 
212590005 Christopher 5555 
212590006 Joseph 6666 
212590001 Michael 1111 
Table 15. Database used in PACS 

The following errors are observed in the database: 

1. There are two records for Michael in Table 15; the first record contains the 

wrong PIN 

2. Christopher and Joseph are not supposed to be in the database 

Because of those errors, the following different value-related failure modes exist in 

PACS: 

1. A user with a correct card and correct PIN cannot enter the gate 

2. A user with an unauthorized card and right PIN can enter the gate 

3. A user with a correct card and wrong PIN can enter the gate  

Those failures are typical in this type of system. The failure probability for each 

failure mode can be obtained through software testing.  

Step 3: Test PACS.  

A test environment is designed using visual C++. The software input is sampled from 

the database in Table 14. Assume that the analyst has no knowledge about the actual 
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failures residing in the software; using the original design information, tests are 

performed at different software levels. 

[High-level Testing] 

The first testing is performed on the entire software. The following results are 

obtained after the indicated number of tests: 

Number of Tests 10 100 1000 10000 
Right Card, Right PIN, Success 6 58 542 5385 
Right Card, Right PIN, Fail 0 7 74 741 
Right Card, Wrong PIN, Success 0 1 18 186 
Right Card, Wrong PIN, Fail 1 8 100 1060 
Wrong Card, Right PIN, Success 3 19 222 2196 
Wrong Card, Right PIN, Fail 0 0 0 0 
Wrong Card, Wrong PIN, Success 0 0 0 0 
Wrong Card, Wrong PIN, Fail 0 5 26 209 
Wrong Card, Fail 0 2 18 225 
Table 16. Test results for PACS 

Based on the test results, the failure probabilities can be calculated for different 

inputs: 

Conditional Probability Input Failure 
10 100 1000 10000 

Right Card, Right PIN Fails to go through 0 0.108 0.120 0.121 
Right Card, Wrong PIN Goes through 0 0.111 0.153 0.149 
Wrong Card, Right PIN Goes through 1 1 1 1 
Wrong Card, Wrong PIN Goes through N/A 0 0 0 
Table 17. Failure probabilities for PACS (from high-level test results from Table 16) 

From the results in Table 17, we observe that more software failures are detected after 

enough rounds of testing are performed. In this example, all software failures can be 

detected after a certain rounds of testing.  

In this example, the high-level operational profile for PACS is influenced by software 
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errors. Theoretically, a user with a wrong card shall not be able to go through the 

gate, and a user with a right card and the right PIN can always go through. The high-

level human input profile can be calculated, based on the theoretical probabilities; but 

this method is inaccurate because of software failures. In this example, multiple 

software failures are observed after software testing. So the high-level operational 

profile should also be updated based on test results. The operational profile for the 

human can be calculated based on the test results in Table 16. 

Conditional Probability Input 
10 100 1000 10000 

Right Card, Right PIN 0.6 0.65 0.616 0.6126 
Right Card, Wrong PIN 0.1 0.09 0.118 0.1246 
Wrong Card, Right PIN 0.3 0.19 0.222 0.2196 
Wrong Card, Wrong PIN 0 0.05 0.026 0.0209 
Wrong Card, No PIN Input 0 0.02 0.018 0.0225 
Table 18. Operational Profile for High-level PACS 

[Low-level Testing] 

The second test is performed at a detailed level. The testing is performed for sub-

functions: Card validation and PIN validation. The following table shows the test 

results for card validation: 

Total Tests 10 100 1000 10000 
Right Card, PIN Entry Process can proceed 7 56 544 5500 
Right Card, Fail 0 0 0 0 
Wrong Card, PIN Entry Process can proceed 1 20 192 1825 
Wrong Card, Fail 2 24 264 2675 
Table 19. Testing results for card validation 

Based on the test results, the failure probabilities can be calculated for different 

inputs: 
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Conditional Probability Input Failure 
10 100 1000 10000 

Right Card Fails to go through 0 0 0 0 
Wrong Card Goes through 0.333 0.455 0.421 0.406 
Table 20. Failure probability for card validation 

A further test is performed for PIN validation. It is performed separately and 

conditioned on the types of card validation. Table 21 lists the PIN validation test 

results when the user has used a right card to pass the card validation stage. Table 22 

lists the PIN validation test results when the user has used a wrong card to pass the 

card validation stage. 

Total Tests 10 100 1000 10000 
Right Card, Right PIN, pass 3 35 450 4345 
Right Card, Right PIN, fail 2 18 97 1038 
Right Card, Wrong PIN, pass 0 0 7 100 
Right Card, Wrong PIN, fail 5 47 446 4517 
Table 21. Testing results for PIN validation (right card) 

Total Tests 10 100 1000 10000 
Wrong Card, Right PIN, pass 7 62 575 5624 
Wrong Card, Right PIN, fail 0 0 0 0 
Wrong Card, Wrong PIN, pass 0 0 0 0 
Wrong Card, Wrong PIN, fail 3 38 425 4376 
Table 22. Testing results for PIN validation (wrong card) 

The failure probabilities can be calculated from the test results: 

Conditional Probability Input Failure 
10 100 1000 10000 

Right Card, Right PIN Fails to go through 0.4 0.340 0.177 0.193 
Right Card, Wrong PIN Goes through 0 0 0.016 0.022 
Table 23. Failure probabilities for PIN validation (right card) 

Input Failure Conditional Probability 
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10 100 1000 10000 
Wrong Card, Right PIN Goes through 1 1 1 1 
Wrong Card, Wrong PIN Goes through 0 0 0 0 
Table 24. Failure probabilities for PIN validation (wrong card) 

Step 4: Build a software model based on different levels of knowledge 

The software model can be constructed from the test results. There are two different 

strategies. The first is to inject only those detected failures.  The second, more 

conservative one, is to inject all possible failure modes using probability estimation.  

[Results of Strategy 1] 

A high-level software model is constructed using the test results in Table 16. The 

observed software failures are injected into SimPRA. (See Figure 47) 

 

Figure 47.  Software model with failure injected (gate control module) 
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The failure probabilities are stored in FIKB. The probability is obtained from 

different test results: 

• Case 1: 10 tests 

• Case 2: 100 tests 

• Case 3: 1000 tests 

• Case 4: 10000 tests 

The system is modeled at the highest level. The operational profile is based on the test 

results in Table 18. The following results are obtained after 500 runs: 

Test Case Escape Success LossOfOccupant Time 
Case 1 0.658 0.342 244.08 
Case 2 0.877 0.123 252.20 
Case 3 0.929 0.071 260.92 
Case 4 0.895 0.105 269.88 

Table 25. Simulation results for high-level PACS model 

A detailed-level software model is constructed using the test results in Table 19, 

Table 21, and Table 22. The observed software failures are injected into the Software 

model. (See Figure 48 and Figure 49) 
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Figure 48. Software model for PACS (card validation module) 
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Figure 49. Software model for PACS (PIN validation module) 

The failure probability is determined from the test results in Table 19, Table 21, and 

Table 22. The following is obtained after 500 runs: 

Test Case Escape Success LossOfOccupant Time 
Case 1 0.823 0.177 304.52 
Case 2 0.873 0.127 317.23 
Case 3 0.858 0.142 327.75 
Case 4 0.893 0.107 346.05 

Table 26. Simulation results for low-level PACS model 

[Results of Strategy 2] 

For the second strategy, all possible failure modes are injected into the software 

model, including failure modes not detected after several rounds of testing.  

There are 8 different types of failures defined for the software model: 
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amount, value, range, type, time, rate, duration, and load 

Rate is defined as the frequency at which the input is sent or the output is received. 

Duration is defined as the time period during which the input or the output lasts. Load 

is defined as the quantity that can be carried at one time by a specified input or output 

medium. These types of failure modes are typical in real time system with heavy 

loads, for instance, a server which processes requests from large amounts of clients 

simultaneously. PACS is a gate control system running on a single computer. The 

time interval between two human inputs is usually several seconds. The process time 

for every input is less than 0.001 second. Rate, duration, and load are not applicable 

for PACS.  

Amount, range, and type are the inputs from the human model. The human inputs are 

limited to a fixed amount of inputs in step 1. The testing is performed based on the 

input profile. There are no range, amount, or type failures existing in the profile. 

Assuming that the tester has a perfect knowledge about the inputs from the human, 

amount, range, and type failure modes are not considered in this experiment.  

The remaining failure modes value and time need to be explored. Three types of 

software failures are injected and detected in PACS. There are some other failures 

based on the logic of the software. 

1. A user with a correct card and a correct PIN cannot enter the gate (included) 

2. A user with an unauthorized card and a right PIN can enter the gate (included) 

3. A user with a correct card and a wrong PIN can enter the gate (included) 

4. A user with an unauthorized card and a wrong PIN can enter the gate 

If a specific software failure mode is not detected, the Bayesian approach with non-
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informative priors is used to estimate the failure probability. One common used non-

informative priors is Beta(0.5, 0.5) [60]. The beta distribution is used to model the 

probability of the failure modes. 

11 )1(
)()(
)()( −− −

ΓΓ
+Γ

= βα

βα
βαπ qqq       (7.1) 

Binomial distribution is used as the likelihood function: 

Nqq
N

qN )1(
0

),|0Pr( 0 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=        (7.2) 

Since Beta distribution is conjugate with the Binomial distribution used as a 

likelihood function, the posterior function is a beta distribution Beta(0.5, 0.5+N). 

The mean value of the posterior distribution is used as the estimation of the 

undetected software failure probability. 

N
q

+
=

+
=

1
5.0

βα
α         (7.3) 

Based on that, the failure probabilities are recalculated for Table 17, Table 20, Table 

23 and Table 24.  

Conditional Probability Input Failure 
10 100 1000 10000 

Right Card, Right PIN Fails to go through 0.071 0.108 0.120 0.121 
Right Card, Wrong PIN Goes through 0.25 0.111 0.153 0.149 
Wrong Card, Right PIN Goes through 0.5 1 1 1 
Wrong Card, Wrong PIN Goes through 0.5 0.083 0.019 0.002 
Table 27.  Failure probabilities for high-level testing – strategy 2 (Bayesian approach) 

Conditional Probability Input Failure 
10 100 1000 10000 

Right Card Fails to go through 0.063 0.009 9.2e-4 9.1e-5 
Wrong Card Goes through 0.333 0.455 0.421 0.406 
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Table 28. Failure probabilities for card validation – strategy 2 (Bayesian approach) 

Conditional Probability Input Failure 
10 100 1000 10000 

Right Card, Right PIN Fails to go through 0.4 0.340 0.177 0.193 
Right Card, Wrong PIN Goes through 0.083 0.010 0.016 0.022 
Table 29. Failure probabilities for PIN validation (right Card)  - strategy 2 (Bayesian approach) 

Conditional Probability Input Failure 
10 100 1000 10000 

Wrong Card, Right PIN Goes through 1 1 1 1 
Wrong Card, Wrong PIN Goes through 0.125 0.013 0.001 1.1e-4 
Table 30. Failure probabilities for PIN validation (wrong card)  - strategy 2 (Bayesian approach) 

Time-related failure mode is another type of failure mode to be considered. In the 

performance requirements section in PACS Software Requirements Specification 

(SRS), it states that the data validation should take less than 1 second. The testing 

time is collected for different rounds of testing.  

Total Number of Tests 10 100 1000 10000 
Total Time Used (second) NO9 NO 1 4 
Average Time for each validation NO NO 0.001 0.0004 
Table 31.  Testing time for PACS 

No time delay is observed in Table 31. The same equation is used to estimate the 

probability for time delay failures.  

Total Number of Tests 10 100 1000 10000 
Failure Probability 0.045 4.95e-3 4.995e-4 5e-5 

Table 32. Failure probabilities for time-delay failure (Bayesian approach) 

                                                 

9 Not Observable (i.e. < 1s) 
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The time delay failure is injected in the software model in addition to all other failure 

modes. Applying the results in Table 27, Table 28, Table 29, Table 30, and Table 32 

to the software model, the following results are obtained after 500 runs: 

Test Case Escape Success LossOfOccupant Time 
Case 1 0.755 0.245 234.094 
Case 2 0.881 0.119 232.844 
Case 3 0.894 0.106 242.172 
Case 4 0.907 0.093 262.703 

Table 33. Simulation results for high-level software model – strategy 2 (Bayesian approach) 

Test Case Escape Success LossOfOccupant Time 
Case 1 0.891 0.109 316.132 
Case 2 0.867 0.133 314.428 
Case 3 0.900 0.100 327.354 
Case 4 0.895 0.105 351.953 

Table 34. Simulation results for low-level software model – strategy 2 (Bayesian approach) 

[Further discussion] 

In the two strategies discussed before, the model is built based on the assumption that 

the tester has a perfect knowledge of the operational profile. In reality, this may not 

be true. If system analysts find out that some specific inputs are not tested, the failure 

probabilities need to be adjusted by either doing more testing or adjusting the 

probabilities based on conservative estimations for zero events.  

For instance, if the analyst finds out that there is an out-of-range failure in the user 

PIN input, the failure probability needs to be adjusted for this situation since there is 

no testing for out-of-range failure. Assuming that the probability for the user to input 

an out-of-range PIN is 1%, the software failure mode probabilities in Table 29 and 

Table 30 can be recalculated by doing more testing. The probabilities can also be 
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recalculated using a conservative assumption. The extreme case is to assume the 

failure always happens once the user inputs an out-of-range value. In this case, if the 

failure mode is related with invalid PIN input, the probability can be adjusted using 

the following equation: 

01.099.0* += oldnew pp        (7.4) 

This is an extremely conservative assumption. But it is normally enough for low 

probability events at the beginning of the simulation. If the simulation results indicate 

that this part of the system is important, the model can be refined using more testing 

results if needed. 

Step 5: Inject the software code into the simulation environment and compare the 

results 

The real code is injected into the PACS model. The IO part is reconstructed to fit into 

the simulation environment. In that way, the input/output is processed in the 

simulation environment. The human model is modified to generate the real input from 

the input space (Table 14) for the software. The detailed card information and the PIN 

information are selected and sent to the software model. The card/PIN data are 

validated using the real code.  

The total number of lines of code (LOC) for PACS is 553, for the IO process part, 

185. So the code coverage for this analysis is 66.55%.  It can be increased when the 

human model is refined to incorporate the details of IO processes. 

A coverage related criterion is added to the simulation environment to ensure that all 

software input can be covered during simulation. The following results are obtained 
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after 500 runs: 

Total Simulation Runs Escape Success LossOfOccupant Time 
500 0.883 0.117 414.91 
Table 35.  PACS simulation results (software code without coverage guidance) 

Step 6: Quantitative coverage results 

A post-simulation tool is designed to analyze the scenarios generated during 

simulation. The first guard action and the sequence of events prior to it are used to 

categorize the system level scenarios. See Figure 50 for the area studied inside the 

scenario. A quantitative coverage is assessed for the system level scenarios by 

comparing the results obtained from the code and from the software model 

simulation.  

Fire
Protection

Off
Fire User Card

Action
User PIN

Action User RetryGuard
Action End State

Area Studied

 

Figure 50. Area studied for coverage analysis  

[Code simulation] 

The simulation results produce 74 different scenarios if one uses the real software 

code.  

 [Low-Level Simulation] 

The following coverage information is obtained after studying the low-level 
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simulation results for 500 runs: 

Test Case Valid Scenario Invalid Scenario Coverage 
Case 1 41 8 0.554 
Case 2 44 7 0.595 
Case 3 49 7 0.662 
Case 4 50 6 0.677 

Table 36. Coverage information for PACs low-level simulation 

As shown in Table 36, a reasonable number of scenarios are covered in the low-level 

simulation. The uncovered scenarios are not simulated after 500 runs because the 

probabilities for those scenarios are low and their impact on the final system end 

states is not high. Those scenarios can be covered eventually after enough rounds of 

simulation have been run. Meanwhile, because of the abstraction in the software 

modeling, some invalid scenarios appear in the simulation results; for instance, the 

scenarios previously mentioned: 

UserCard_f, UserCard_s, UserPIN_s, UserPIN_s, E-1,   

That is because the failures are dependent on a specific input. A conservative 

assumption is used when the model is constructed. Several inputs are grouped 

together in the model which introduces these invalid scenarios.  

For instance, in PACS, the first 5 users in Table 14 are treated as authorized users. 

Comparing the information in Table 14 and Table 15, one can find out that all 

authorized users are in the software database used, which means all authorized users 

could pass the card validation. Within the authorized users, Michael is the only 

person who can not pass PIN validation using his correct PIN. The conditional 

probability of PIN validation software failure for authorized users is 0.2, which means 
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20% of the users with correct card can not pass through the PIN validation using the 

correct PIN.  That is the conditional failure probability used if all users with correct 

card are grouped as one input: correct card. Based on the probability, the following 

scenario becomes possible. 

UserCard_f, UserCard_s, UserPIN_s, UserPIN_s, E-1,   

But in reality, Michael is the only authorized user who can not pass PIN validation 

using his correct PIN. All other authorized users could pass the PIN validation using 

the correct PIN. Checking the scenario above, a user uses the correct card to pass card 

validation but fails to pass the PIN validation using his correct PIN at the first try. 

This indicates that the user could only be Michael. In the scenario, the user uses his 

correct PIN again and goes through the gate successfully. In reality, this is not the 

case since Michael will never be able to go through the gate using his correct PIN. 

This can be solved by either using the real code in the simulation or by building all 

detailed inputs into the software model.  

Checking the results in Table 26 and Table 36 reveals that even with the uncovered 

scenarios and invalid scenarios, the software model still captures the major scenarios 

during simulation and produces reasonably accurate results.  

[High-level Simulation] 

The scenarios generated for the high-level simulation contain basic events different 

from the low-level simulation and the code simulation. The card input event and the 

PIN input event are grouped as: 

• RCRP: Right Card, Right PIN 

• RCWP: Right Card, Wrong PIN 
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• WCRP: Wrong Card, Right PIN 

• WCWP: Wrong Card, Wrong PIN 

• WCNP: Wrong Card, No PIN input anymore 

The detailed input events for low-level simulation are grouped together. For instance, 

the following combinations of basic events all belong to RCRP: 

• UserCard_s, UserPIN_s 

• UserCard_f, UserCard_s, UserPIN_f, UserPIN_s 

• UserCard_f, UserCard_f, UserCard_s, UserPIN_f, UserPIN_s 

The relationship between high-level scenarios and low-level scenarios is a one-to-

many relationship. There is a mapping among simulation results at different levels. 

Table 37 presents one example scenario from each level. Scenario 15 in the code 

simulation corresponds to Scenario 95 in level 1 simulation and Scenario 2 in level 0 

simulation. 

Level Example scenarios 
Code 15 : { FireProtection_Off@0 , 

UserCard_f(Christopher,1,5555)@7 , 
UserPIN_f(3333,5555)@17 , UserPIN_f(1111,5555)@30 , 
UserPIN_s(5555,5555)@44 , E-1@48 ,  } [ES-1 , 9.01E-1 , 
48.0] 

Level 1 95 : { FireProtection_Off@0 , UserCard_f@8 , 
CardValidation@9 , UserPIN_f@16 , UserPIN_f@28 , 
UserPIN_s@41 , E-1@47 ,  } [ES-1 , 3.63E-1 , 47.0] 

Level 0 2 : { FireProtection_Off@0 , WCRP@34 , swVal@35, E-
1@36 ,  } [ES-1 , 3.58E0 , 36.0] 

Table 37. Example scenarios for different levels 

7.6 Discussion 

Comparing the results from different strategies and code simulation, the following 
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figure is obtained.  

 

Figure 51. Simulation results from different strategies 

From Figure 51, the following phenomena are observed:  

1 The low level model simulation generates a better result compared with the high 

level model simulation as expected.  

2 When the number of tests is small, the conservative strategy increases the result 

performance dramatically for the high-level simulation. The reason for this is that 

most of the software failures are not detected after a small amount of tests. Using a 

conservative strategy, the impacts of the undetected failures are effectively 
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represented.  

3 When the number of tests is sufficient, the difference between the result from 

strategy 1 and conservative strategy 2 becomes small.  

4 Enough testing can ensure a good estimation of risk 

7.7 Summary 

This chapter introduces the gate-control system (PACS), and the whole modeling 

process is studied using our methodology.  The experimental-validation results show 

that: 

1. Using a software model in the simulation environment leads to a reasonably 

accurate estimate for the end-state probability.  

2. The software model can be refined after the analyst obtains more test results; 

the accuracy of end-state probabilities increases when the model improves. 

3. High-level simulation is less time-consuming, but this comes at the expense of 

lower scenario resolution.  

4. A smart adaptive simulation captures the benefits from both low-level 

simulation and high-level simulation; the simulation is less time consuming 

and produces sufficient details.  
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Chapter 8:  Procedure to Develop the Software Model in Case 

of Objective Data 

The integration approach is discussed in Chapter 5. This chapter provides further 

guidance on how to establish an accurate software representation when code is 

available and objective test data can be obtained. The procedure presented is based on 

lessons learnt from our experimental demonstration in Chapter 7. This approach can 

be used in addition to the integration approach discussed in Chapter 5. 

8.1 Approach 

Step 1: Build the executable low-level model for the software. 

In the first step, the analyst needs to decide how to abstract the real software. The 

lowest level abstraction for the software needs to be defined. The following 

constrains restrict the analyst’s modeling alternative to specific low-level models: 

• Inputs/outputs resolution from other models (human, hardware, software): the 

software model can not go beyond the level of resolution that other models 

can understand/produce. 

• Limits imposed by the code: the lowest level of abstraction can not go beyond 

the code resolution as expected. 

• Limits of the characteristic of the input/output variables: the software model 

can not go beyond the natural resolution of the input/output variables. 
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• The lowest level software model should not break the dependences between 

input variables. 

An executable software model needs to be built using SFSM based on the abstraction. 

(Section 4.3) 

In the case of PACS, the input/output resolution of the human model stays at the level 

of correct card, wrong card, correct PIN and wrong PIN. This limits the lowest level 

of the PACS software model. The detailed card inputs and PIN inputs are grouped 

together as correct card and wrong card, correct PIN and wrong PIN. This is used as 

lowest input unit in the software model. 

Step 2: Define a multi-level structure for the software model. 

In this step, the analyst first needs to choose the functions to be abstracted, then 

define the abstraction methods and build the multi-level abstraction model for the 

software. The abstraction technique includes functional abstraction and continuous 

abstraction, which were introduced in section 4.2. 

Functional abstraction leads to the omission of details related to sub-functions. 

Continuous abstraction focuses on input-output transformations resulting from 

functional computations. Errors are introduced during the abstraction process. These 

errors fall into two groups, which are explained below. 

The scenarios generated in the DPRA environment contain a sequence of stochastic 

events resulting from model execution, and timing of occurrence. In between the 

points of occurrence of these random events, the behavior of the system is typically 

modeled using deterministic models describing the physical and other processes 
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taking place in the system.  

The first group of errors modifies the deterministic behavior. Both abstraction 

techniques change the input/output relationship, i.e. if the expected behavior is )(if , 

the modified behavior is )()( iif ε+ . )(iε is the error introduced into the deterministic 

behavior. This group of errors can be quantified before the simulation. It is usually 

small at the component level. 

For instance, π≤≤= xxxf 0)sin()(  

Assume the abstraction function is  

)12(1)(
~

−−=
π
xabsxf  

The error introduced is represented by the shaded area in Figure 52. 
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Figure 52. Error introduced in the deterministic behavior 

The second group of errors modifies the stochastic events, such as software failures. 

There are three types of errors in this group: 

• Event error: the high-level events are usually a combination of low-level 

stochastic events. This thus introduces the event error. Normally the event 

error is acceptable if it does not influence the global behavior of the event. 

• Time error: the time of occurrence of the event is different since the details of 

the low-level events are not modeled in the high-level abstraction 

• Probability error: the probability of the event changes due to abstraction. The 

probability needs to be quantified using testing results. Probability error is 

introduced when the value of the probability used is not accurate. 

If the functional abstraction groups multiple stochastic events together, the event error 

will be introduced and the time error will be introduced also. The probability of the 

high-level event can be quantified using the high-level test result. The probability 

error is introduced if the test result is not accurate. 

Figure 53 a) presents a high-level event RCRP. The high-level event presents the 

combination of the low-level events in Figure 53 b). At the high level, based on the 

test results in Table 18 (10000 test cases), the characteristics of this event can be 

defined as: 

Probability p = 0.6126  

The time needed for this event is uniformly distributed between 14 seconds and 52 

seconds. 
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At the low level, based on the test results in Table 19, Table 21, and Table 22 (10000 

test cases), the characteristics of the low level events can be defined as: 

7327.0406.0*45.055.0
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+

=
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cardrightsuccesspcardrightpsuccessvalidationcardp
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The time needed for card validation is uniformly distributed between 6 seconds and 8 

seconds. 
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5223.04777.01),_(1),_( =−=−= successvalidationPINpfailvalidationPINp  

The time needed for PIN validation is uniformly distributed between 6 seconds and 8 

seconds. 

Comparing the high-level event RCRP, the low-level events are card_validation and 

PIN_validation. The high-level event is a combination of the low-level events. The 

event is different thus event error exists in this situation. The time occurrence of the 

high-level event RCRP should map to the last event in the low-level sequence, time 

error is introduced if the occurrence of the event is not modeled correctly. Probability 

error will be introduced also if the probability used at the high-level is not accurate. 
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Figure 53. High-level event vs. low-level events 

The continuous abstraction does not deal with the combination of multiple stochastic 

events. But the accumulation of the errors, introduced in the deterministic behavior, 

over a chain of events may exceed a threshold which will lead to the occurrence of a 

different stochastic event.  

f g h

f' g' h'

e1 e2 e3

e

 

Figure 54. A chain of events 
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For instance, considering the chain of events in Figure 54, errors are introduced in the 

abstraction of function f, g, and h. The propagation of the errors leads to an 

accumulated error є. If the error is large enough, it may influence the execution of the 

stochastic events following, such as the possible occurrence of a software failure. In 

this way, the event error and the probability error are introduced. If the continuous 

abstraction changes the software execution time, the time error is introduced also. 

The abstraction is recommended for the functions with the following characteristics: 

• The execution of the function is time-consuming. The abstraction can be a 

functional abstraction to reduce the complexity of the software function. It can 

also be a continuous abstraction to simplify the calculation process. 

• The function interacts with other models multiple times sequentially in one 

run. The functional abstraction should be used to group several interactions in 

one single time step if applicable. The sequential inputs from the interactions 

need to be combined together. 

Assuming the sequential inputs to the software function are f1 to fn, it needs to 

be combined as one single input: 

),,( 111 ni ffI L=   1)(},,{ 1 == ∑
m

mm IpIII L  (8.1) 

m represents the number of different combinations for sequential inputs f1 to 

fn. 

Other models need to be updated to be able to understand and produce this 

type of inputs. 

The improvement brought to the computational complexity includes two components: 



 

 
140 

 

1. The computation time decreases due to abstraction 

f

f1 f2 f3

f4 f5
 

Figure 55. High-level function f vs. low-level function f 

Figure 55 presents a high-level abstraction model for function f and the low-level 

model for function f. Assume that the execution of each function block takes 1 time 

cycle. The execution of the high-level model only takes one time step. The low-level 

model contains two paths: Path1 (f1, f2, f3), Path2 (f1, f4, f5, f3). 

The average execution time is  

4*)2(3*)1( pathpPathptLL +=       (8.2) 

Generally, the average execution time can be represented as: 

∑
=

=
n

i
LL iPathtiPathpt

1

)_(*)_(       (8.3) 

The time decreases by the factor of 
LLt
1 . 

2. The number of branches generated decreases due to the grouping of multiple 

stochastic events. 
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Assume n different sequences of low-level stochastic events are grouped into 

1 event in the high-level model. The branches generated decrease by the factor 

of 1/n. 

In Figure 53, the high-level event includes six low-level stochastic events 

sequences. The branches generated will decrease by the factor of 1/6. 

The analyst needs to make a balance between the errors introduced during abstraction 

and the improvement brought to the computational complexity.  

Step 3: Obtain the operational profile for the software 

In this step, the analyst needs to obtain the operational profile [19] for the software 

from the software requirements and the system requirements. The test is conducted 

based on this profile. The profile is an external input profile from other models 

(hardware, software, human). 

If unexpected inputs to the software model are observed during the simulation, the 

profile needs to be updated. More testing needs to be conducted or the conservative 

estimation can be used to adjust the test results (See section 7.5 step 4). The 

conservative estimation can be obtained through the following equation: 

qqpp oldnew +−= )1(*        (8.4) 

Pnew is the new failure probability estimation 

Pold is the original failure probability obtained through testing.  

q represents the probability of the unexpected input detected 

In the case of PACS, for each user, the probability of inserting the right/wrong card is 

0.55/0.45. The right/wrong cards are uniformly distributed in the set of right/wrong 
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cards. Once the user inserts the card, the probability of inputting a right PIN is 0.55. 

Step 4: Define the possible software failure modes 

Based on the logic of the software, all possible software failure modes are defined in 

this step. There are eight types of failure modes defined for the software model. These 

are value, range, amount, type, time, rate, duration, and rate. The definition of the 

failure modes can be found in [2]. The analyst needs to study the applicability of each 

failure mode. 

In the case of PACS, amount, range, value, load, duration, and rate failure are not 

applicable. All possible value failures and time failures are defined and studied for 

PACS. 

Step 5: Test the software using the operational profile 

In this step, the software is tested using the operational profile defined in step 3. The 

test is performed at different levels. 

Assume that the external profile defined in step 3 is represented as: 

ii niipII ,,1)}(,{ L==      (8.5) 

The profile for the software function to be tested is presented as:  

fif niipII ,,1)}(,{ L==      (8.6) 

The output is represented as  

oif niipOO ,,1)}(,{ L==      (8.7) 

If II f ⊆ , which means that the software function to be tested is only related with the 

external profile, the software can be tested directly. (case a in Figure 56) 
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If 21 fff III U= , II f ⊆1 , 12 swf OI ⊆      (8.8) 

which means the inputs of the software to be tested are not only from the external 

profile, but also dependent on the outputs of the other software to be tested (software 

component 1) (case b in Figure 56), the software profile needs to be updated in the 

following condition. 

If unexpected software failures are observed in the test result for software component 

1, and the software failures detected introduce some unexpected outputs, the profile 

for software function f needs to be updated to reflect the new inputs from software 

component 1. 

1
'

swOO ∉   '' OII ff ∪=       (8.9) 
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Figure 56. Different conditions for software testing 

The probability of the software failure is calculated using the following equation: 

casestesttotalofnumber
failureswithcasestestofnumberp =      (8.10)  

In the case of PACS, the test is performed at the high level and the low level. The 

input profile of the high level test is only influenced by the human model. Thus it can 

be tested directly using the operation profile. The low-level test includes the tests for 

card validation and PIN validation. The inputs of card validation are only from the 



 

 
145 

 

human model. It can be tested directly using the profile obtained from the human 

model. Based on the design document, the perfect card validation should have the 

following results: 

• A user with a right card can pass the card validation 

• A user with a wrong card can not pass the card validation 

The following software failures are detected during testing of card validation: 

• A user with a right card can not pass the card validation 

• A user with a wrong card can pass the card validation 

Since the input profile of PIN validation is dependent on the human input and the 

results from card validation, it needs to be updated based on the software failure 

detected. The initial input profile for PIN validation only includes: 

• PIN profile for the user with a correct card 

Based on software failures observed in the implementation of the function card 

validation, the following profile should be added to the original profile: 

• PIN profile for the user with a wrong card that passes the card validation 

The PIN validation function needs to be tested for both conditions.  

Step 6: Analyze the test results 

The test results are analyzed in this step. The software failure modes need to be 

quantified using the test results. The test results are first categorized based on the type 

of inputs and outputs. The conditional probability for each failure mode is calculated 

if the failure mode is observed.  

If the software failure introduces unexpected output, and the output serves as an input 
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to next sequential component, it may introduce a new combination of sequential 

inputs. If the high-level abstraction model combines the sequential inputs during 

abstraction, and the newly discovered sequence does not belong to the original 

combination set, the new sequence combination needs to be added as a new input to 

the high level model. 

IIffI mnm ∉= ++ 1
''

1 )},,{(
1
L    1+= mIII U   (8.11) 

Also the probability profile for each input to the high-level model needs to be 

replaced based on the profile observed in the test results. 

For instance, in the case of PACS, Table 16 lists the high-level test results for PACS. 

The results are categorized based on the inputs (right card, wrong card, right PIN, 

wrong PIN) and output (success, fail). The probability for each failure mode is 

calculated and presented in Table 17. In this case, the high-level operation profile is 

influenced by software errors. Thus the profile is updated as in Table 18. 

Step 7: Estimate the probability for undetected software failures 

If some software failures defined in step 5 are not discovered in the simulation results, 

the conservative estimation should be used to estimate the failure probability. The 

estimation can be done using the Bayesian Approach defined in Chapter 6. The 

probability for the failure after N tests can be calculated using the following equation: 

N
q

+
=

1
5.0          (8.12) 

In the case of PACS, some failure modes are not detected after a small amount of 

testing. The probability of the undetected failure modes are estimated using the 
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conservative estimation. The simulation results indicate that the undetected software 

failures are effectively represented using the conservative estimation. 

Step 8: Inject the software failures in the executable software model 

The software failures are injected in the multi-level software model defined in step 2. 

AKB and FIKB needs to be constructed based on the testing results 

8.2 Discussion 

The approach defined in this chapter is applicable to the case when the real software 

is available. If the real software is not available, the software failures need to be 

quantified using expert judgment or statistical data from similar projects. The basic 

steps for this case are: 

Step 1: Build the executable low-level model for the software. 

Step 2: Define multi-level structure for the software model. 

Step 3: Define the possible software failure modes. 

Step 4: Quantify the probabilities of software failure modes using expert judgment or 

statistical data.  

Step 5: Inject the software failures in the executable software model. 
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Chapter 9:  Conclusion and Future Work 

9.1 Conclusion 

DPRA is a methodology to assess the probability of failure or success of a mission. 

The current DPRA environments do not allow modeling of software risk contribution. 

This dissertation describes a framework and a set of techniques to extend the DPRA 

approach to allow consideration of the software contributions on system risk. The 

framework includes a software representation, an approach to incorporate the 

software representation into the DPRA environment SimPRA, and an experimental 

demonstration of the methodology. 

Here are the major contributions: 

• Systematically identify the software modeling requirements for simulation-

based DPRA environments  

• Assess the existing software representations with respect to the DPRA 

modeling requirements 

• Extend the concept of FSM to SFSM and apply it to the area of software 

modeling DPRA environments 

• Establish a software representation framework including a software behavior 

model and a software guidance model 

• Build a multi-level software representation using functional abstraction and 

continuous abstraction techniques 
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• Integrate the failure mode taxonomy developed by Li [2] in the software 

representation 

• Develop the mechanism to separate the software-related knowledge with the 

system-related knowledge 

• Define the structure for AKB, FIKB, SKB 

• Propose a framework to simulate the multi-level objects in the simulation-

based DPRA environment 

• Enhance the current single-level SimPRA to support multi-level objects in the 

modeling framework 

• Apply the concept of entropy to dynamically control the simulation level of 

detail for the multi-level objects 

• Implement the entire methodology in the SimPRA software 

• Develop an easy to use tool to help the analyst develop the software model 

• Conduct an experimental demonstration to study the quantification aspects of 

the software model when objective test data is available 

o Develop a consistently quantified software representation 

o Embed software profile information in the software model 

o Cover the  failure mode taxonomy developed by Li 

o Obtain data from testing 

o Account for the dependencies between model components 

o Compare the software model simulation results with the simulation 

using the real code 
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• Formalize a procedure to establish a consistently quantified software model 

when code is available and objective test data can be obtained 

9.2 Future Work 

This dissertation describes a framework for integrating software into Dynamic PRA. 

It is the first study of its kind.  More research is needed. Below are some possible 

avenues for future research: 

9.2.1 Large scale validation 

Although a case study has been provided, which demonstrates the applicability of this 

framework and of the set of techniques developed, the methodology should be 

applied to a large system. Problems that arise in that process need to be identified, 

and their solutions should be provided.  

9.2.2 Software-related knowledge 

Different types of prior software-related knowledge may exist. In this dissertation, the 

time-factor information was added to SKB and supported by the multi-level scheduler 

and planner. In future research, different types of software-related information could 

be defined and added to SKB. For instance, different software-abstraction levels 

could be associated with different levels of accuracy in the results.  The accuracy-

related factor could then be added to SKB.. The current multi-level simulation 

environment provides an open interface which easily allows the introduction of new 

types of knowledge. 
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9.2.3 Software-testing knowledge 

SimPRA uses two types of information to guide the simulation: prior knowledge and 

knowledge obtained during the simulation. 

In this dissertation, the knowledge obtained during simulation is mainly entropy-

based information. Knowledge about the relationship between branch selection and 

end-state probabilities is summarized after simulation. The information gain is 

dynamically updated to adjust the simulated branch selection process. 

Other types of information can also be used to adaptively adjust the simulation, for 

instance, the software test coverage information. Various software coverage indices 

(i.e. statement coverage, branch coverage, etc) can be calculated after simulation. In 

subsequent simulations an uncovered statement, branch could receive additional 

weighting compared with statement, branches already covered.  

In the current SimPRA environment, when the system simulator proposes transitions 

to the scheduler, the scheduler retrieves the information for the proposed transitions 

and decides which branch to explore, based on the previous simulation results. The 

new framework can be upgraded to include the instruction from sub-component 

guidance model. (See Figure 57) 
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Figure 57. New framework for branch exploration 

The coverage information is a different type of information for branch decisions. The 

system scheduler needs to combine its current entropy-based decision and the 

decision generated by the software-guidance model and based on the software 

coverage results. Different strategies can be defined to combine the two decisions. 

Strategy 1: 

Different weights can be assigned to the entropy-based information on the one hand 

and software coverage on the other, depending on the simulation goal. The analyst 

decides the weights, based on the simulation requirements. If a complete software 

branch exploration is expected as a result of the simulation, the software-coverage 

weight should be assigned a higher value. If the simulation focuses on final system 

risk, the entropy-based information should receive more weight. 

Strategy 2: 
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An adaptive-selection strategy can be defined, based on the simulation process. If the 

entropy-based information is insufficient initially because of a lack of simulation 

results, the system scheduler may base its decision on the coverage information 

received from the software-guidance model. If entropy-based uncertainty is low after 

many rounds of simulation, the system scheduler can select branches based mainly on 

entropy-based information.  
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