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Abstract

Load imbalance is a serious impediment to achieving good performance in parallel processing.
Global load balancing schemes are not adequately manage to balance parallel tasks generated
from a single application. Dynamic loop scheduling methods are known to be useful in balanc-
ing parallel loops on shared-memory multiprocessor machines. However, their centralized nature
causes a bottleneck for the relatively small number of processors in workstation clusters because
of order-of-magnitude differences in communications overheads. Moreover, improvements of ba-
sic loop scheduling methods have not dealt effectively with irregularly distributed workloads in
parallel loops, which commonly occur in applications for workstation clusters. In this paper, we

present a new decentralized balancing method for parallel loops on workstation clusters.
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1 INTRODUCTION

In a distributed parallel program, tasks are generated and distributed to multiple processors to be
processed simultaneously. Load imbalance is a serious impediment to achieving good performance
as it leaves some processors idle, when they could be working to make progress. While global
load balancing should still be an issue in the whole operating system’s concern, our focus is
on balancing parallel tasks within an application. Since minimizing the execution time of an
application is more important than average response time, each processor needs to keep making
progress rather than merely to have a balanced load. Although the latter state may finally lead
to the former, this is not a primary goal to shorten the finish time. From a program’s viewpoint,
loops are the largest source of task parallelism in a parallel application. A loop is called a parallel
loop (DOALL-loop) if there are no data dependences among all iterations. The question of how
to allocate an iteration to a particular processor for minimizing the total execution time is known

as a loop scheduling problem [19, 12, 15, 20, 5].

If there are I uniformly distributed iterations, and P identical processors, load can be balanced
simply by assigning I/ P iterations to each processor. Since both factors may not be known in
advance or may vary substantially, such a static method is often difficult or inefficient. Self-
scheduling (SS) [19] is the simplest dynamic solution. It assigns a new iteration to a processor
only when the processor becomes available. However, this method requires tremendous synchro-
nization overhead; to be practical, hardware support to fast barrier synchronization primitives
is desirable. Uniform-sized chunking (CSS) reduces such synchronization overhead by sending
K iterations instead of one [12]. In this method, the overhead is amortized to 1/K, but the
possibility of load imbalance increases when K is increased. In guided self-scheduling (GSS), the
fixed chunk function (K) is replaced with a non-linearly decreasing chunk function in order to
reduce the overhead at the beginning of a loop by allocating larger chunks, and also to reduce the
chance of load imbalancing at the end of the loop by allocating smaller chunks [15]. Trapezoid
self-scheduling (TSS) uses a linearly decreasing chunk function, which helps to reduce scheduling

overhead while still maintaining a reasonable balance [20].

Recently, networks of workstations have emerged as viable candidates for running parallel applica-
tions. To our knowledge, the first work on parallel loop scheduling in a network of heterogeneous
workstations was done by Cierniak et al. [5]. They considered three aspects of heterogeneity —

loop, processor, and network — and developed algorithms for generating optimal and sub-optimal



schedules of loops. Two major limitations are that it is static and that the loop heterogeneity
model is linear. In this paper, we present a dynamic load balancing method for parallel loops of
more general patterns, since many non-scientific applications such as the DNA sequence search
problem [4] or the Mandelbrot set computation [8], which are good candidate applications for
workstation clusters, often do not carry conventional regular loop patterns. The unpredictable
patterns can even be detrimental to those improvements [12, 15, 20], although the pure SS scheme

is orthogonal to the loop patterns.

1.1 Programming Environment

Networks of workstations have by nature easy-to-change configurations; programs must be adapted
accordingly whenever the hardware configuration has been changed. Without having to manually
rewrite module programs, diverse performance-related configurations can be incorporated accord-
ing to the given characteristics of an application program and its working platform with the aid of
an automatic adaptation tool. We assume such a distributed parallel application is written to the
RPC (Remote Procedure Call) paradigm. Normally, RPC does not consider the case of multiple
servers for the same function — except for some variations like PARPC [14] and MultiRPC [16].
Our work, called CORD (Configuration-level Optimization of RPC-based Distributed programs),
is a framework for automatically generating all necessary executables from RPC-based distributed
programs according to a configuration-level description intended for high performance [10]. From
the concern of software engineering, module interconnection activity is understood to be an es-
sentially distinct and different intellectual activity from that of implementing individual modules;
that is “programming-in-the-large” is distinct from “programming-in-the-small” [6]. We apply
this separating principle in order to isolate performance factors from the module programming
level with the aid of the CORD that eventually intergrates all information to prepare executables.
The load balancing method presented in this paper represents a feature of the CORD system

when an augmented configuration program specifies server replication to deal with parallel loops.

1.2 Motivations

Under a heterogeneous network of workstations, a simple policy like equally distributing work-
loads to multiple processors may lead to a parallelization anomaly. That is, the execution time

of the given workload may take longer even if the number of workstations is increased. Suppose



there are n processors { Py, ..., P,}, and T identical tasks. Let 7; be the number of tasks per unit
time that the processor i can process. In equal distribution, each processor has T'/n numbers of
tasks. The execution time of the program is determined by the critical processor that has the
smallest 7; value; let’s say it is 7,,5,. Then the execution time is % = ﬁ Now, let’s add

a new processor of 7,., to the cluster for the application. Each processor will have T'/(n + 1).

, which

. n . . . T
Therefore, if 7,.,, < i Tmin, the execution time of (n 4 1)-processors cluster is (CESIo

is longer than that of n processors!

One may want to get around this problem by allocating tasks according to the known computing
power of each processor [9, 3]. However, their methods were static, thus of limited usefulness.
Dynamic loop scheduling methods can deal with more general cases, but the centralized nature of
the methods — the central processor that generates sub-tasks has to manage all other processors
— may cause a bottleneck in a network of many workstations. For example, if there are 100
servers, and if a master needs 1072 second to prepare and send a task, the master would create
a bottleneck unless the average time for each server to finish a task is greater than one second.
In our experimentation with the Mandelbrot set computation on [0.5,—1.8] to [1.2, —1.2] using
a 400 x 400 pixel window, the program reached its saturation point at 25 workstations under
the self-scheduling scheme. To avoid such a situation, sub-tasks should be sufficiently large
grained compared to communication overheads, but it is not likely considering relatively high
communication costs in workstation clusters. Since there are many “embarrassingly parallel”
applications, a decentralized load balancing scheme is called for. We present such a method that
can reduce the overheads by means of establishing proper migration topology based on the known

computing powers of the processors involved.

1.3 Our Approach

Parallel tasks (“objects”) and their working platforms (“bases”) are two ingredients in parallel
processing. Nonetheless, only the “objects” part has been the focus of load balancing. There
has been nothing wrong in this because the “bases” part has been mostly fixed. Meanwhile,
workstation clusters have become viable platforms for parallel processing. As mentioned before,
the conventional global load balancing and dynamic loop scheduling methods become problematic
when they are employed to applications on workstation clusters. One of the key issues in dynamic
load balancing is how to reduce the accompanying overheads. The main idea of our approach is

balancing the “bases” to facilitate balancing the “objects;” i.e. we construct a special migration
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Figure 1: Four typical parallel loops.

topology based on relative processor speeds in order to reduce migration overheads. Basically our
method adopts demand-driven migrations the same way that dynamic loop scheduling methods
do. Well-constructed topology reduces unnecessary migrations. The theme of this paper is how
to construct such a topology that aims to do demand-driven migrations in a decentralized way

for efficient load balancing.

1.4 OQutline

Section 2 delineates models of parallel loops that need to be balanced and of workstation clusters
that process those parallel tasks. Section 3 formally describes the cluster model and presents how
to construct such a cluster and its corresponding task migration network based on the model.
Section 4.1 provides preliminary characteristics that explain task migration behaviors under our
method. Section 4.2 is devoted to the complexity issues incurred by migration using the results in
Section 4.1. Section 4.3 addresses initial load distributions. In Section 5, we show experimental

results using our implementation of the balancing scheme for an irregular and unpredictable loop.

2 LOOP AND WORKSTATION CLUSTER MODELS

In this section, we classify four typical parallel loop patterns that affect performance of load
balancing schemes based on workload distribution in an iteration space. Next, we discuss our
workstation cluster model to deal with those diverse patterns, especially if the workstations

involved are heterogeneous.
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Figure 2: Topologies in workstation cluster model for load balancing.

2.1 Loop Model

Fig. 1 shows four typical parallel loops where L(7) represents the execution time of the ¢-th
iteration. The workload may be uniformly distributed over an iteration space as shown in Fig. 1
(a). It may also be non-uniform but linearly distributed as in Figs. 1 (b) and (c); this kind of
distribution is often contained in scientific programs. Finally, as in Fig. 1 (d), the workload may
be quite irregular. Many non-scientific applications carry parallel loops of this type. The first
three cases have been specially considered by conventional loop scheduling methods [15, 20, 5] in

order to improve on the basic self-scheduling method.

Particularly for irregular loops, we can distinguish between the two cases: predictable vs. un-
predictable. For example, the parallel tasks in the DNA sequence search problem [4] and the
Mandelbrot set computation are all irregular, but the tasks in the first problem are predictable

while the tasks in the second one are not. Of course, the above three loops are all predictable.

2.2 Workstation Cluster Model for Load Balancing

Fig. 2 shows two representative topologies in the workstation cluster model for parallel loops.
Fig. 2 (a) represents the topology of traditional loop scheduling methods [19, 12, 15, 20], in which

load migration is not performed. Instead, the main processor (shaded circle) prepares a set of



tasks and allocates them to each server whenever the server demands them. Since the scheduling
process is dedicated to the main processor (shaded circle), its chance of creating a bottleneck rises
as the number of servers present on the network increases. Fig. 2 (b) illustrates the topology of
our workstation cluster model. The main processor distributes workloads to all servers initially.
Load balancing is attempted by task migration via pre-determined paths, deeming load state
polling or exchange overhead unnecessary, unlike in global dynamic load balancing schemes. The
migration is performed in a decentralized fashion between only the two processors involved. The

workstation cluster model for load balancing is characterized by the following parameters:

e N: the number of workstations, {Wy,..., Wx}.
o 7;: the throughput of W;, which is defined by the number of unit tasks per unit time.

e 7;;: the amount of load to migrate from 7 to ;.

3 LOAD BALANCING METHOD

Two important components of dynamic load balancing schemes are transfer policy and location
policy [7, 11]. The transfer policy determines whether a task should be processed locally or
remotely by transferring it at a particular load state. The location policy determines which
process initiates the migration and its source or destination. These are for global load balancing
from the OS’s viewpoints. Multi-dimensional load vectors determine the load state of a processor.
In our system, we aim to balance parallel loops in an application. A simple ‘demand’ message
is enough to initiate load migration rather than load state exchange [11] or random polling of
candidate processors [7] because the only load vector is the number of sub-tasks in a processor.
The transfer policy then becomes simple: if a processor receives a request message for transfer
from a processor that is running out of sub-tasks to work on, it migrates some of its sub-tasks to

that processor.

Likewise, the location policy is now modified by the problem of establishing proper task migration
paths. Workstation clusters have virtually no restrictions on topology for migration. It may be
assumed that any two point-to-point communication overheads are equal, but identifying the
optimal sender and receiver pair is essential. Considering all possible candidates for sender (or

receiver) to migrate the excess load causes high overhead, but it is avoidable. The key is how



/* P_i: sender */ /* P_j: receiver */

for (i = 0; i < taskent; i++) { LOOP:
if (pvmunrecv( P_j, MoreTaskReq )) { for (i = 0; i < taskcnt; i++) {
/* a request arrived */ /* loop body on TaskQ[i] */
n = (taskcnt-i+1) * Ratio_ij; }
/* Migrate to P_j */ /* Check the partner processor P_i */
if (n) { pvm_initsend( PvmDataDefault ) ;
pvn_initsend( PvmDataDefault ); pvnpkint ( &more, 1, 1 );
pvonpkint( &n, 1, 1 ); pvnsend( P_i, MoreTaskReq );
pvopkint ( &TaskQ[i]l, n, 1 ); /* Wait until killed by parent */
pvm_send( P_j, TaskMigrating ); while(1)
i += n; if (pvmmrecv( P_i, TaskMigrating )) {
continue; /* migrated tasks arrived */
} pvmupkint ( &taskent, 1, 1 );
} pvnupkint ( TaskQ, taskcnt, 1 );
/* loop body on TaskQ[i] */ goto LOOP;
} }

Figure 3: Programs generated for a migration path in Fig. 2 (b).

to identify the busy and the idle processors in the middle of computations. Since the relative
processing speeds of workstations in a cluster are known in advance, the possible senders and
receivers of migrations are not unknown — momentary overload by other activities is the reason

for uncertainty.

In this section, we present how to construct such a task migration network as shown in Fig. 2 (b).
Once the network is constructed, load balancing is pursued through task migration on it. For
example, each pair connected in a dotted line in Fig. 2 (b) (P; — P;) is a basic unit of migration;
whenever the faster processor (P;) depletes its workload, it demands that its pre-determined
partner P; share some of P;’s workload, and P; migrates 7;; of its current workload to P;. Fig. 3
shows the generated source codes for such a connection. First, we will formally define the cluster
model in Section 2.2. Then, we will describe how to construct such a cluster and its corresponding

migration network based on the model.

A cluster is a bipartite form of (w,, wy), in which w; is slower than wy: i.e. 7, < 7¢. Throughout
the paper, we use the notation (7,,7s) interchangeably with the notation (ws,wy) when we focus

on throughputs. An entire workstation cluster is defined as follows:

Definition 3.1 The cluster tree (C'T') of N workstations {Wy,..., Wy} is a binary tree C'T" =
(V, B¢ U Erighe), where



o The vertices V represent clusters. A distinguished vertex ‘root’ represents an entire cluster,

and the right sub-cluster is faster than (or equal to) the left sub-cluster.
o Iy is a set of edges to the left sub-trees. F,;4p¢ is a set of edges to the right sub-trees.

o If (¢,v) € Ejgt and (¢, w) € Fyrignt, a load migration path exists from » to w. When v and
w are not terminal nodes, the path is established from the fastest node in cluster », which
is the rightmost terminal in the subtree of v, to the slowest node in cluster w, which is the

leftmost terminal in the subtree of w.

Terminal vertices are individual workstations. Fach terminal v is associated with its throughput
7y. Throughput of non-terminal node €' = (v, w) is defined by (7, + 7,), which is explained by
Theorem 4.3. O

Definition 3.2 In a cluster Cy = (71, 73), the balance ratio B¢, is defined by %%% A cluster

Cy = (1, 72) is said to be more balanced than another cluster Cy = (73,74), if the balance ratio

of (' is less than that of (5, i.e. EZ_T_Q; < EZ_T_E; O

Definition 3.3 A cluster Cy = (71, 72) is faster than another cluster Cy = (713, 74) if 7¢, is greater

than 7¢,, or if 7¢, is equal to 7, and C is more balanced than Cj. a

In the extreme case that 7 is equal to 7, the balance ratio is zero; thus load is perfectly balanced.
Likewise, in the other extreme in which 75 is much greater than 7, the ratio is asymptotically
1. The balance ratio in a cluster can be related to the amount of load migration. When the
components in a cluster are equally loaded initially, if the cluster is perfectly balanced, then
no intra-cluster migration is necessary. In other words, the more balanced a cluster is, the less

migration is needed.

The process of constructing a cluster tree from a set of workstations is done in recursive “bitonic”
fashion. First, workstations in the set {wq,...,w,} become terminal nodes in the tree. They
are sorted in ascending order by their throughputs. Let the sorted set be {wf],...,w!}. The
fastest one (w/) is coupled with the slowest one (w]), the second fastest one (w/ _;) is coupled
with the second slowest one (w), and so forth. The couples come to have parents in the tree,

ie. {1 = (wi,wy,), ... ¢0 = (w;/z,w;/z_l_l)}, which are likewise sorted by their throughputs.
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Figure 4: A cluster tree and its corresponding task migration paths.

Again, they are coupled in bitonic fashion. This process continues until it reaches a single cluster.
Notice that the cluster of the two identical components still needs an intra-cluster migration
because an equal distribution is not always possible. Once such a tree is constructed, the task

migration topology is determined as follows:

Algorithm 3.1: Task migration network from CT
Begin
For all clusters (non-terminal nodes) ¢ in CT
For two children v and w such that (¢,v) € Ej.s¢ and (¢, w) € Epignt
if (v, w are terminals) then CONNECT v TO w
else CONNECT RightmostTerminal(v) TO LeftmostTerminal(w)
End

Fig. 4 shows the relationship between the cluster tree and the migration topology. For example,
the rightmost terminal of Cy234 is Wy, and the leftmost terminal of Csg7g is Wi, so the link for
the root cluster C,j is constructed between W4 and Ws. The thicker links denote higher level
links; they will be used only if the load cannot be balanced through the lower links.
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4 ANALYSIS OF MIGRATION BEHAVIORS

There are two important concerns in devising a load balancing scheme [7]. First, the overhead
should not negate the benefits of an improved load distribution. Next, the potential migration
instability!, in which processors spend too much time transferring tasks, should be avoided. Qur
method is orthogonal to the stability issue because a demand is issued only when the processor
is idle. In this section, we present an analytic result on the overheads incurred by our method.

We start with an example case to explain our method qualitatively.

Example 4.1 Suppose there are four processors P1, P2, P3 and P4 that have N identical tasks
initially and we know their relative throughputs, which are 7,27,37 and 47. When a load state
of a potential sender P1 is probed by other processors, migration to P2 or P3 would be wasteful
because its resulting resolution of P1’s overloaded state may be merely temporal. Since P4 is the
fastest, the then-migrated load may have to be migrated again to P4, while a single migration
directly to P4 would have been more efficient. Thus we can say the P1 has the greatest affinity

to P4 among all possible receiver candidates. a

The above example suggests that the slowest processor should be connected to the fastest pro-
cessor, and the second slowest one is to the second fastest one, and so on, in bitonic fashion. The
resulting pairs would tend to be more balanced in terms of the combined throughputs. We will
elaborate on the effects of this kind of bitonic pairing in Section 4.1. This method calls for load
migration to be done in as much bulk as possible. One ten-byte sized load migration is cheaper
than ten one-byte sized load migrations. This is particularly important in workstation clusters

where the communication overheads are still high.

Example 4.2 Let us consider the topology of P1 — P4 and P2 — P3 as shown in Fig. 2 (b).
Throughputs are the same as in Example 4.1. In this case the combined throughputs of the two
sub-clusters turn out to be equal. That is, no further load migration is necessary through the

link between the two clusters (P1, P4) and (P2, P3)! o

!For example, in a two-processor system where both are overloaded, they may continuously migrate each part
of loads to the other processor, which does not improve the situation at all.
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However, now that cluster (P2, P3) is more balanced than cluster (P1, P4), the resulting decrease
in the intra-cluster migration makes cluster (P2, P3) process more tasks. That is why this cluster
is defined as the faster one in Def. 3.3. In general, such an ideal case may not be common in real
situations; throughputs may fluctuate in the middle of computing and initial distributions are
not always equal. For the case that the load is not balanced in the first cluster for some reason,
we continue to balance the load through inter-cluster migrations. In the following analysis, we
use v;; = 1/2, for all 7, j, which guarantees uni-directional migration is enough for load balancing

(notice P; is faster), although more aggressive choice like v;; = 7;/7; may reduce overheads.

4.1 Preliminaries

To examine migration overhead, we need a communication time model. The conventional ap-
proach to modeling communication time for transferring a message of m bytes is a simple linear
function, i.e. Teomm = a + Bm, where « is startup time and [ is transfer time per byte [2]. The
empirical values for e and 5 under the PVM system [18] at LAN-based clustered workstations are
4.527 msec, 0.0024 msec and 1.661 msec, 0.00157 msec for datagram and stream transmission

cases, respectively, which imply a > g [17].

In Theorems 4.1 and 4.2, we compute the total number of migrated tasks (3’s multiplier) and
the frequencies of migrations (a’s multiplier) in a cluster. Furthermore, we also illustrate an
important characteristics of our method, which is that balance ratio gets improved as clustering

happens at higher levels.

Theorem 4.1 In a cluster C' = (v, w) where v and w are terminal nodes in C'T', and they have

initially loaded N identical tasks respectively, the total number of tasks to be migrated from v

to w to meet the finish times at both processors is :w;:” N, i.e. the balance ratio of C' times N.

Proof: Let us determine the general terms of the number of tasks to be migrated from » to w
at the time w becomes idle. Since w is faster than », w’s first incidence of task depletion occurs
after Tl; thus the number of tasks in the first migration is half of what remains in » at that time,

which is L(N — & . 7,) = &(1 — ). Notice that 7,/7, is less than 1. T,,, the total number of

2 Tw 2 Tw
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tasks that are eventually processed by w, is a summation of the following series:

N T, N T, =1 T,
Ty, = N+—(1--)+—1-"P+-- = NY —(1--2)
t 2( Tw)+ 4( Tw) t ;22( Tw)
o ImGO-E) oy
= 1 =
h—oo 11— 2(1- o) Ty + Tw
Therefore, Migrated,_.,, = T, — N, which yields :Z_T_:ZN a

Theorem 4.2 In a cluster C' = (v, w) where v and w are terminal nodes in C'T', and they have
initially loaded N identical tasks respectively, the frequency of migration from » to w to meet

the finish times at both processors is 1Ogl(1_‘r_v) %
2

Tw

Proof: The general term in the series is zﬂk(l — :—;)k Thus, k = log%(l_:_;) % 0

Theorem 4.3 In a cluster C = (v, w) where v, w are arbitrary nodes in CT', and they have
initially loaded N identical tasks, the combined throughput of a cluster C' = (v, w) is 7, + Tw,

assuming no migration overhead.

Proof: Suppose v and w are terminal nodes in C'T. In Theorem 4.1, the total number of tasks

2NTU a‘nd 2N7w

processed by v and w is given by - T P

, respectively, and the finish time is m
at either processor. As cluster C' have loaded 2N tasks in total, this may be interpreted to mean
that the de facto throughputs of the cluster is 7, + 7,. Now let us assume this holds for two
clusters C1 = (11, 72) and Cy = (73, 74); i.e. T¢, and 7¢, are 7 + 72 and 75 + 74, respectively. For
a cluster C' = (Cq,Cy) (we can assume (4 is slower without loss of generality), we can calculate

the number of tasks processed by (5 as follows:

=1 O 270 ae
Tc, = N (1 - =Y=N.—"2 _N.— 2
’ ; 22( TC, ) Ty + TCy (7_01 + TO2)/2
By induction, this completes our proof. a

Theorem 4.3 implies that the sum of the two throughputs in a cluster may represent the combined
throughput of the cluster so that we can cluster recursively in bitonic fashion. The real combined
throughput can be yielded by subtracting the throughput loss incurred by migration overheads

(see Section 4.2) from that amount.

13



Theorem 4.4 If there are two clusters C7 = (71, 74) and Cy = (73, 73), and C7 is slower than C5
(i.e. 7¢, is less than 7¢, ), then another cluster C' = (C4q,Cy) is always more balanced than the

less balanced cluster between Cq and C5.

Proof: Consider the case when B¢, is greater than Be, (i.e. Cy is less balanced than Cy). Due to
the property of bitonic coupling, 7 < 75 < 753 < 74y must hold. Let us write 7, = amy, 73 = abry and

T4 = abery, where a, b, ¢ > 1. By Theorem 4.3, B¢ is yielded by Zig;ﬁ Thatis, B¢, = Zg:j

and Be = % Since (abec +ab+a+1)-(abc — 1) — (a+ ab— (abc + 1)) - (abe + 1) =

2abc(abe+1)—2a(b+1) > 0, Be is less than or equal to Be,. But if 2abe(abe+1) —2a(b+1) = 0,

all @, b, ¢ must be 1, which implies 4 = 7, = 73 = 74 that contradicts the given assumption

(¢, < 7o, or Be, > Be,). Hence Be is strictly less than Be,. Likewise, when Bg, is less
than B, (i.e. Cy is less balanced than C1), we also can show that B¢ is less than Bo, — now
73 < 171 < 74 < 73 holds. Finally, consider the case when B¢, is equal to B¢,. Again, due to the
property of bitonic coupling, this condition implies 7y = 79 = 73 = 74, which is a contradiction.

This completes the proof. a

Theorem 4.4 contains an important subtlety. It implies the amount of inter-cluster migration is
always less than that of intra-cluster migration in a critical sub-cluster. Since migrations through
a higher-level link may need multi-hop communications, they result in higher overheads. Theo-
rem 4.4 assures that the amount of migrations of such higher overheads get smaller. Consequently,

the complexity of migration overheads is bounded.

4.2 Complexities of Task Migration Overhead

Consider the topologies in Fig. 2 (a) and (b) extended to p processors and the total number
of tasks are pN. Self-scheduling requires pN(a 4 3), where N is the total number of tasks
between a master and its servers. Putting aside the fact that the master can easily create a
bottleneck in that topology, we investigate the complexity of our method and compare it with

that of self-scheduling.

The worst case happens when the fastest processor (the rightmost one in a cluster tree) is far

faster than the remaining ones: i.e. 73 > 71,74, 72 in Fig 2 (b). Let us calculate the overhead

for a one-hop migration in this scenario. For example, in a link between P2 and P3, the total
T3—T2

number of tasks to migrate is, by Theorem 4.1, mN. As 73 > 7o, the number becomes N.

14



In other words, all of the task in a slower processor must be migrated to the infinitely faster
one. Likewise, by Theorem 4.2, the frequency of migrations is given by logi % = logy N. Thus,
the one-hop overhead (OHy) is alogy N + 3N. Since the farthermost tasks2need p— 1 hops, we
obtain the worst case complexity of migration overhead as follows:

p—1

OH yorst = Z k-OH, = %p(p —1)(alogy N + GN)

k=1
Recalling the facts that a > g and N > p, OH .5 can hardly be worse than pN(a + 3). Now
let us consider an average case where each processor contains the average number of tasks (N)
at any moment during computation.? Consider a lowest-level cluster (v,w); i.e. v and w are
terminal nodes in C'T. By Theorem 4.2 and 4.1, the one-hop migration overhead is obtained as

follows:

OHy =

Tw — T,
— N - w YN .
[ log, 2 082 N rat TN - 5

2 7y
By Theorem 4.4, the balance ratio of a higher-level cluster is always less than the maximum of
those of the two sub-clusters. That is, the maximum balance ratio among all clusters (v, w) at
the lowest level is the maximum balance ratio of all clusters in an entire cluster tree. Let it be
Biyaz. Then, no (p— 1) links in the topology can migrate more than B, - N tasks. Therefore,
the average case complexity of migration overhead is a lower bound of the following formula,

where 7,4, 1s the maximum of :—Z for all clusters (v, w) at the lowest level in C'T":

p—1

p—1
OHaveTa e — o, = ————1 N - Bmaac -1)N
g kzz:l 1 1— 10g2 o OgQ a + (p ) ﬁ
Notice that 0 < rpuy < 1 and 0 < Byuy < 1. OHgperage is always better than pN(a + 3).
Furthermore, since & > 3 and N > p, it is significantly better in general.

Example 4.3 Let us consider Fig. 2 (b) again. Each processor initially has N identical sub-
tasks. Throughputs are the same as in Example 4.1: ie. 7,27,37,47 for P1, P2, P3 and P4,
respectively. For brevity, suppose all processors have constant throughputs, and we assume no

migration overhead for the time being. Then the following table shows each snapshot of load

20bviously this is a harsher condition than what a real average case needs to be, since the number of remaining
tasks gets decreased as time goes by. Therefore, our obtained complexity is an upper-bound of the average
complexity.
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distribution under our load balancing method in case we chose v14 = % and a3 = % particularly.

P1 P4 P2 P3
Initial Load N N N N
After N /4T 3N/4 0 N/2 N/4
After Load Migration | 3N/20 | 3N/5 | N/2 N/4
After N/127 N/15 |4N/15| N/3 0
After Load Migration | N/15 | 4N/15 | 2N /15 | 3N/15
After N/157 0 0 0 0

Table 1: Snapshots of load distribution.

. . e N N N _ 2N.:
The table shows that total execution time is Tttt =% in other words, the average
throughput of this 4-processor cluster with 4N sub-tasks is 107. However, the real behavior
deviates from this ideal behavior because of migration overheads. We calculate the overhead for
two different choices of y: when v is taken proportionally based on throughput (Case 1) and

when all y = § (Case 2).

Case 1: As shown in Table 1, migrations occur twice of amount 3N /5 and 3N /15, respectively.

Thus, the overhead is yielded by a + %Nﬁ +a+ %Nﬁ =2a+ %Nﬁ.

Case 2: By Theorem 4.1, the number of tasks to migrate for P1 — P4 and P2 — P3 links is

calculated as follows:

47 — 1 3 3r =27 1
N ==-N Mpo_pa = N =
47+ 7 57 Pi=P3 37+ 27 5

Mpi—ps =

Similarly, by Theorem 4.2, the number of migrations that occur for the two links is as follows:

1 1 1 1
kpi—ps = 10g%(1_§) N - 10%% ¥ kpy—.p3 = 10g%(1_§) N - 10%% N

Thus, the overhead is yielded by

OH = a(kpi—ps+kpo—p3)+ B(Mpi—ps+ Mpa_.p3)
1 1 4 4
= a(loggﬁ—l—log% N)+3Nﬁ~3.63logNa+gNﬁ

In either case, the overhead is much less than that of self-scheduling, which is 4N (a + ). O
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4.3 Initial Load Distribution

While any initially distributed load should be balanced through a dynamic load balancing method,
the resulting overhead is associated. We discuss now the initial load distribution issue that
can lower overhead, compared with the equal distribution that was assumed for analysis in the

previous sections.

When loops are predictable (see Section 2.1), there are two cases: one is when we know the amount
of the required computation exactly, as in Fig. 1 (a), (b), (¢) and sometimes (d), and the other
is when we can determine just the orderings, like in the DNA sequence search problem [4]. For
the former case, as L(¢) is known in advance, if we distribute proportionately according to each
processor’s throughput, we can reduce the likelihood of migration. In other words, the processor
P; with ; will get 7,5, L(¢)/ >_p 7. Dynamic adjustments to this approximation are made by our
load balancing method. In a lowest-level cluster (v,w)in CT, if we allocate |7 >, L(¢)/ >k Tk]
towv,and [1; >, L(i)/ > 7], Since v is slower than w, uni-directional migration is enough. If we
cannot guarantee the faster processor finishes earlier, the migration paths must be bi-directional
as in the following cases. For the latter case, we cannot initialize in the above way as the value of
L(7) is unknown. The LPT (Largest Processing Time first) algorithm [1] is for this class of loop
models. The tasks are sorted in descending order based on execution time L(7). Each processor
should process the largest task first. Otherwise, an unfortunate processor may happen to take a
large task (say, about 100 times larger than the small ones) as a last one at the near end of all
computations, which results in a load imbalance — other processors are idle because few tasks

left to migrate at this moment.

When tasks are not “orderable” and quite irregular like in the Mandelbrot set computation
problem, we can neither quantify the loads to proportionately distribute to processors of diverse
throughputs nor sort in decreasing order and apply the LPT algorithm. No general heuristics

can be used — random distribution does not need to be worse.

5 EXPERIMENTS

To demonstrate the performance of our method, we conducted our experiment on 16 worksta-

tion clusters using PVM message passing systems. The example program was Mandelbrot set
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L(%) is the # of iterations for i-th loop
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Figure 5: The load distribution pattern of a loop in the Mandelbrot set computation.

computation on [0.5, —1.8] to [1.2, —1.2] using a 800 x 800 pixel window. This program contains
unpredictably irregular loops as shown in Fig. 5, which cannot be analyzable as in Section 4. The
xz-value indicates the z-th row in an outer loop. The y-value is the number of inner iterations
(L(z)) to compute the corresponding z-th row. The total number of sub-tasks are 800, and the

result size of a sub-task is 800 in integers: one integer per pixel.

We have initially distributed those tasks in a round-robin style. A variety of heterogeneous
workstations have been used as shown in Fig. 6 (a) which shows the execution time for each of 16
workstations® to compute the given Mandelbrot set; the range is from 250 seconds to 2000 seconds.
The results by 16-workstations cluster are given by Fig. 6 (b). The dotted boxes represent the
finish times of each workstation under the pure self-scheduling method, which substantiate the
expected good load balance. The result by our method is seemingly imbalanced but the actual
finish time is much improved. Perfect balance may be good but the evaluation should be based

on how much its overheads negate its resulting benefits.

10 11 12 17 19 20 30

taskent | 1 7
4 1 1 1 1 1 1 1

2
freq 13 6

3 4 5 6
3 3 3 1

Table 2: The sizes of migration units and the frequencies of migrations

Table 2 summarizes the size of each migration and its frequency that are counted in our experi-

#1 SPARCstation 20, 3 SPARCstation 5’s, 2 SPARCstation 10’s, 2 DECstation 5000/25’, 4 SPARCstation
IPX’s, 2 DECstation 23/100’s, 2 SPARCstation IPC’s are used.
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Figure 6: Execution times: Mandelbrot set computation on [0.5,-1.8] to [1.2,-1.2]

mentation. For example, the single-task migration occurred 13 times, and the 30-tasks migration
occurred once, etc, during the entire task migration attempts. In the table, we can compute the
total occurrences of migrations by summing all frequencies up, that is 40. If we calculate this
figure from our formula on O Hyyepqgqe, that is %log2 N, where p = 16, N = 800/16 = 50,
Tmaz = 092/693 = 1. This formula gives 15log, 50 = 84.7. Considering this formula is obtained
as an upper bound, the experimental value is said to conform to the theoretically obtained value.
Although the theoretical model does not exactly with our experimental environments, the model

gives us a reasonable implication about the migration behaviors in general cases.

6 CONCLUSION

We have presented a new decentralized load balancing method for parallel tasks in heterogeneous
workstation clusters to deal with various patterns of parallel loops. We discussed why the con-
ventional global dynamic load balancing methods are not adequate to our application area. Loop
scheduling schemes that have been useful under shared-memory multiprocessor machines cause
a bottleneck in workstation clusters because the communication overheads are so high. To our
knowledge, migration topology for load balancing is considered for the first time. The topol-
ogy has not been considered important heretofore because sometimes it is given in a hard-wired

form [13] or it is meaningless where distributed load patterns cannot be assumed to be known
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in advance [7, 11]. More interesting topologies can be studied in the future. We have shown
analytically that the overhead of our method is lower than that of the self-scheduling scheme
when an “predictability” condition is given. We have also provided some experimental data for

cases when the loop pattern is unpredictably irregular.
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