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1 INTRODUCTIONIn a distributed parallel program, tasks are generated and distributed to multiple processors to beprocessed simultaneously. Load imbalance is a serious impediment to achieving good performanceas it leaves some processors idle, when they could be working to make progress. While globalload balancing should still be an issue in the whole operating system's concern, our focus ison balancing parallel tasks within an application. Since minimizing the execution time of anapplication is more important than average response time, each processor needs to keep makingprogress rather than merely to have a balanced load. Although the latter state may �nally leadto the former, this is not a primary goal to shorten the �nish time. From a program's viewpoint,loops are the largest source of task parallelism in a parallel application. A loop is called a parallelloop (DOALL-loop) if there are no data dependences among all iterations. The question of howto allocate an iteration to a particular processor for minimizing the total execution time is knownas a loop scheduling problem [19, 12, 15, 20, 5].If there are I uniformly distributed iterations, and P identical processors, load can be balancedsimply by assigning I=P iterations to each processor. Since both factors may not be known inadvance or may vary substantially, such a static method is often di�cult or ine�cient. Self-scheduling (SS) [19] is the simplest dynamic solution. It assigns a new iteration to a processoronly when the processor becomes available. However, this method requires tremendous synchro-nization overhead; to be practical, hardware support to fast barrier synchronization primitivesis desirable. Uniform-sized chunking (CSS) reduces such synchronization overhead by sendingK iterations instead of one [12]. In this method, the overhead is amortized to 1=K, but thepossibility of load imbalance increases when K is increased. In guided self-scheduling (GSS), the�xed chunk function (K) is replaced with a non-linearly decreasing chunk function in order toreduce the overhead at the beginning of a loop by allocating larger chunks, and also to reduce thechance of load imbalancing at the end of the loop by allocating smaller chunks [15]. Trapezoidself-scheduling (TSS) uses a linearly decreasing chunk function, which helps to reduce schedulingoverhead while still maintaining a reasonable balance [20].Recently, networks of workstations have emerged as viable candidates for running parallel applica-tions. To our knowledge, the �rst work on parallel loop scheduling in a network of heterogeneousworkstations was done by Cierniak et al. [5]. They considered three aspects of heterogeneity |loop, processor, and network| and developed algorithms for generating optimal and sub-optimal2



schedules of loops. Two major limitations are that it is static and that the loop heterogeneitymodel is linear. In this paper, we present a dynamic load balancing method for parallel loops ofmore general patterns, since many non-scienti�c applications such as the DNA sequence searchproblem [4] or the Mandelbrot set computation [8], which are good candidate applications forworkstation clusters, often do not carry conventional regular loop patterns. The unpredictablepatterns can even be detrimental to those improvements [12, 15, 20], although the pure SS schemeis orthogonal to the loop patterns.1.1 Programming EnvironmentNetworks of workstations have by nature easy-to-change con�gurations; programsmust be adaptedaccordingly whenever the hardware con�guration has been changed. Without having to manuallyrewrite module programs, diverse performance-related con�gurations can be incorporated accord-ing to the given characteristics of an application program and its working platform with the aid ofan automatic adaptation tool. We assume such a distributed parallel application is written to theRPC (Remote Procedure Call) paradigm. Normally, RPC does not consider the case of multipleservers for the same function | except for some variations like PARPC [14] and MultiRPC [16].Our work, called CORD (Con�guration-level Optimization of RPC-based Distributed programs),is a framework for automatically generating all necessary executables from RPC-based distributedprograms according to a con�guration-level description intended for high performance [10]. Fromthe concern of software engineering, module interconnection activity is understood to be an es-sentially distinct and di�erent intellectual activity from that of implementing individual modules;that is \programming-in-the-large" is distinct from \programming-in-the-small" [6]. We applythis separating principle in order to isolate performance factors from the module programminglevel with the aid of the CORD that eventually intergrates all information to prepare executables.The load balancing method presented in this paper represents a feature of the CORD systemwhen an augmented con�guration program speci�es server replication to deal with parallel loops.1.2 MotivationsUnder a heterogeneous network of workstations, a simple policy like equally distributing work-loads to multiple processors may lead to a parallelization anomaly. That is, the execution timeof the given workload may take longer even if the number of workstations is increased. Suppose3



there are n processors fP1; : : : ; Png, and T identical tasks. Let �i be the number of tasks per unittime that the processor i can process. In equal distribution, each processor has T=n numbers oftasks. The execution time of the program is determined by the critical processor that has thesmallest �i value; let's say it is �min. Then the execution time is T=n�min = Tn�min . Now, let's adda new processor of �new to the cluster for the application. Each processor will have T=(n + 1).Therefore, if �new < nn+1 �min, the execution time of (n+1)-processors cluster is T(n+1)�new , whichis longer than that of n processors!One may want to get around this problem by allocating tasks according to the known computingpower of each processor [9, 3]. However, their methods were static, thus of limited usefulness.Dynamic loop scheduling methods can deal with more general cases, but the centralized nature ofthe methods | the central processor that generates sub-tasks has to manage all other processors| may cause a bottleneck in a network of many workstations. For example, if there are 100servers, and if a master needs 10�2 second to prepare and send a task, the master would createa bottleneck unless the average time for each server to �nish a task is greater than one second.In our experimentation with the Mandelbrot set computation on [0:5;�1:8] to [1:2;�1:2] usinga 400 � 400 pixel window, the program reached its saturation point at 25 workstations underthe self-scheduling scheme. To avoid such a situation, sub-tasks should be su�ciently largegrained compared to communication overheads, but it is not likely considering relatively highcommunication costs in workstation clusters. Since there are many \embarrassingly parallel"applications, a decentralized load balancing scheme is called for. We present such a method thatcan reduce the overheads by means of establishing proper migration topology based on the knowncomputing powers of the processors involved.1.3 Our ApproachParallel tasks (\objects") and their working platforms (\bases") are two ingredients in parallelprocessing. Nonetheless, only the \objects" part has been the focus of load balancing. Therehas been nothing wrong in this because the \bases" part has been mostly �xed. Meanwhile,workstation clusters have become viable platforms for parallel processing. As mentioned before,the conventional global load balancing and dynamic loop scheduling methods become problematicwhen they are employed to applications on workstation clusters. One of the key issues in dynamicload balancing is how to reduce the accompanying overheads. The main idea of our approach isbalancing the \bases" to facilitate balancing the \objects;" i.e. we construct a special migration4
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L(i)Figure 1: Four typical parallel loops.topology based on relative processor speeds in order to reduce migration overheads. Basically ourmethod adopts demand-driven migrations the same way that dynamic loop scheduling methodsdo. Well-constructed topology reduces unnecessary migrations. The theme of this paper is howto construct such a topology that aims to do demand-driven migrations in a decentralized wayfor e�cient load balancing.1.4 OutlineSection 2 delineates models of parallel loops that need to be balanced and of workstation clustersthat process those parallel tasks. Section 3 formally describes the cluster model and presents howto construct such a cluster and its corresponding task migration network based on the model.Section 4.1 provides preliminary characteristics that explain task migration behaviors under ourmethod. Section 4.2 is devoted to the complexity issues incurred by migration using the results inSection 4.1. Section 4.3 addresses initial load distributions. In Section 5, we show experimentalresults using our implementation of the balancing scheme for an irregular and unpredictable loop.2 LOOP AND WORKSTATION CLUSTER MODELSIn this section, we classify four typical parallel loop patterns that a�ect performance of loadbalancing schemes based on workload distribution in an iteration space. Next, we discuss ourworkstation cluster model to deal with those diverse patterns, especially if the workstationsinvolved are heterogeneous. 5
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Task Migration Network(b) Our ApproachFigure 2: Topologies in workstation cluster model for load balancing.2.1 Loop ModelFig. 1 shows four typical parallel loops where L(i) represents the execution time of the i-thiteration. The workload may be uniformly distributed over an iteration space as shown in Fig. 1(a). It may also be non-uniform but linearly distributed as in Figs. 1 (b) and (c); this kind ofdistribution is often contained in scienti�c programs. Finally, as in Fig. 1 (d), the workload maybe quite irregular. Many non-scienti�c applications carry parallel loops of this type. The �rstthree cases have been specially considered by conventional loop scheduling methods [15, 20, 5] inorder to improve on the basic self-scheduling method.Particularly for irregular loops, we can distinguish between the two cases: predictable vs. un-predictable. For example, the parallel tasks in the DNA sequence search problem [4] and theMandelbrot set computation are all irregular, but the tasks in the �rst problem are predictablewhile the tasks in the second one are not. Of course, the above three loops are all predictable.2.2 Workstation Cluster Model for Load BalancingFig. 2 shows two representative topologies in the workstation cluster model for parallel loops.Fig. 2 (a) represents the topology of traditional loop scheduling methods [19, 12, 15, 20], in whichload migration is not performed. Instead, the main processor (shaded circle) prepares a set of6



tasks and allocates them to each server whenever the server demands them. Since the schedulingprocess is dedicated to the main processor (shaded circle), its chance of creating a bottleneck risesas the number of servers present on the network increases. Fig. 2 (b) illustrates the topology ofour workstation cluster model. The main processor distributes workloads to all servers initially.Load balancing is attempted by task migration via pre-determined paths, deeming load statepolling or exchange overhead unnecessary, unlike in global dynamic load balancing schemes. Themigration is performed in a decentralized fashion between only the two processors involved. Theworkstation cluster model for load balancing is characterized by the following parameters:� N : the number of workstations, fW1; : : : ;WNg.� �i: the throughput of Wi, which is de�ned by the number of unit tasks per unit time.� 
ij: the amount of load to migrate from i to j.3 LOAD BALANCING METHODTwo important components of dynamic load balancing schemes are transfer policy and locationpolicy [7, 11]. The transfer policy determines whether a task should be processed locally orremotely by transferring it at a particular load state. The location policy determines whichprocess initiates the migration and its source or destination. These are for global load balancingfrom the OS's viewpoints. Multi-dimensional load vectors determine the load state of a processor.In our system, we aim to balance parallel loops in an application. A simple `demand' messageis enough to initiate load migration rather than load state exchange [11] or random polling ofcandidate processors [7] because the only load vector is the number of sub-tasks in a processor.The transfer policy then becomes simple: if a processor receives a request message for transferfrom a processor that is running out of sub-tasks to work on, it migrates some of its sub-tasks tothat processor.Likewise, the location policy is now modi�ed by the problem of establishing proper task migrationpaths. Workstation clusters have virtually no restrictions on topology for migration. It may beassumed that any two point-to-point communication overheads are equal, but identifying theoptimal sender and receiver pair is essential. Considering all possible candidates for sender (orreceiver) to migrate the excess load causes high overhead, but it is avoidable. The key is how7



/* P i: sender */for (i = 0; i < taskcnt; i++) fif (pvm nrecv( P j, MoreTaskReq )) f/* a request arrived */n = (taskcnt-i+1) * Ratio ij;/* Migrate to P j */if (n) fpvm initsend( PvmDataDefault );pvm pkint( &n, 1, 1 );pvm pkint( &TaskQ[i], n, 1 );pvm send( P j, TaskMigrating );i += n;continue;gg/* loop body on TaskQ[i] */g
/* P j: receiver */LOOP:for (i = 0; i < taskcnt; i++) f/* loop body on TaskQ[i] */g/* Check the partner processor P i */pvm initsend( PvmDataDefault );pvm pkint( &more, 1, 1 );pvm send( P i, MoreTaskReq );/* Wait until killed by parent */while(1)if (pvm nrecv( P i, TaskMigrating )) f/* migrated tasks arrived */pvm upkint( &taskcnt, 1, 1 );pvm upkint( TaskQ, taskcnt, 1 );goto LOOP;gFigure 3: Programs generated for a migration path in Fig. 2 (b).to identify the busy and the idle processors in the middle of computations. Since the relativeprocessing speeds of workstations in a cluster are known in advance, the possible senders andreceivers of migrations are not unknown | momentary overload by other activities is the reasonfor uncertainty.In this section, we present how to construct such a task migration network as shown in Fig. 2 (b).Once the network is constructed, load balancing is pursued through task migration on it. Forexample, each pair connected in a dotted line in Fig. 2 (b) (Pi ! Pj) is a basic unit of migration;whenever the faster processor (Pj) depletes its workload, it demands that its pre-determinedpartner Pi share some of Pi's workload, and Pi migrates 
ij of its current workload to Pj . Fig. 3shows the generated source codes for such a connection. First, we will formally de�ne the clustermodel in Section 2.2. Then, we will describe how to construct such a cluster and its correspondingmigration network based on the model.A cluster is a bipartite form of (ws; wf), in which ws is slower than wf : i.e. �s < �f . Throughoutthe paper, we use the notation (�s; �f) interchangeably with the notation (ws; wf) when we focuson throughputs. An entire workstation cluster is de�ned as follows:De�nition 3.1 The cluster tree (CT ) of N workstations fW1; : : : ;WNg is a binary tree CT =(V;Eleft [ Eright), where 8



� The vertices V represent clusters. A distinguished vertex `root' represents an entire cluster,and the right sub-cluster is faster than (or equal to) the left sub-cluster.� Eleft is a set of edges to the left sub-trees. Eright is a set of edges to the right sub-trees.� If (c; v) 2 Eleft and (c; w) 2 Eright, a load migration path exists from v to w. When v andw are not terminal nodes, the path is established from the fastest node in cluster v, whichis the rightmost terminal in the subtree of v, to the slowest node in cluster w, which is theleftmost terminal in the subtree of w.Terminal vertices are individual workstations. Each terminal v is associated with its throughput�v. Throughput of non-terminal node C = (v; w) is de�ned by (�v + �w), which is explained byTheorem 4.3. 2De�nition 3.2 In a cluster C1 = (�1; �2), the balance ratio BC1 is de�ned by (�2��1)(�2+�1) . A clusterC1 = (�1; �2) is said to be more balanced than another cluster C2 = (�3; �4), if the balance ratioof C1 is less than that of C2, i.e. (�2��1)(�2+�1) < (�4��3)(�4+�3) . 2De�nition 3.3 A cluster C1 = (�1; �2) is faster than another cluster C2 = (�3; �4) if �C1 is greaterthan �C2 , or if �C1 is equal to �C2 and C1 is more balanced than C2. 2In the extreme case that �1 is equal to �2, the balance ratio is zero; thus load is perfectly balanced.Likewise, in the other extreme in which �2 is much greater than �1, the ratio is asymptotically1. The balance ratio in a cluster can be related to the amount of load migration. When thecomponents in a cluster are equally loaded initially, if the cluster is perfectly balanced, thenno intra-cluster migration is necessary. In other words, the more balanced a cluster is, the lessmigration is needed.The process of constructing a cluster tree from a set of workstations is done in recursive \bitonic"fashion. First, workstations in the set fw1; : : : ; wng become terminal nodes in the tree. Theyare sorted in ascending order by their throughputs. Let the sorted set be fw01; : : : ; w0ng. Thefastest one (w0n) is coupled with the slowest one (w01), the second fastest one (w0n�1) is coupledwith the second slowest one (w02), and so forth. The couples come to have parents in the tree,i.e. fc1 = (w01; w0n); : : : ; cn=2 = (w0n=2; w0n=2+1)g, which are likewise sorted by their throughputs.9
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Figure 4: A cluster tree and its corresponding task migration paths.Again, they are coupled in bitonic fashion. This process continues until it reaches a single cluster.Notice that the cluster of the two identical components still needs an intra-cluster migrationbecause an equal distribution is not always possible. Once such a tree is constructed, the taskmigration topology is determined as follows:Algorithm 3.1: Task migration network from CTBeginFor all clusters (non-terminal nodes) c in CTFor two children v and w such that (c; v) 2 Eleft and (c; w) 2 Erightif (v, w are terminals) then CONNECT v TO welse CONNECT RightmostTerminal(v) TO LeftmostTerminal(w)EndFig. 4 shows the relationship between the cluster tree and the migration topology. For example,the rightmost terminal of C1234 is W4, and the leftmost terminal of C5678 is W5, so the link forthe root cluster Call is constructed between W4 and W5. The thicker links denote higher levellinks; they will be used only if the load cannot be balanced through the lower links.10



4 ANALYSIS OF MIGRATION BEHAVIORSThere are two important concerns in devising a load balancing scheme [7]. First, the overheadshould not negate the bene�ts of an improved load distribution. Next, the potential migrationinstability1, in which processors spend too much time transferring tasks, should be avoided. Ourmethod is orthogonal to the stability issue because a demand is issued only when the processoris idle. In this section, we present an analytic result on the overheads incurred by our method.We start with an example case to explain our method qualitatively.Example 4.1 Suppose there are four processors P1; P2; P3 and P4 that have N identical tasksinitially and we know their relative throughputs, which are �; 2�; 3� and 4� . When a load stateof a potential sender P1 is probed by other processors, migration to P2 or P3 would be wastefulbecause its resulting resolution of P1's overloaded state may be merely temporal. Since P4 is thefastest, the then-migrated load may have to be migrated again to P4, while a single migrationdirectly to P4 would have been more e�cient. Thus we can say the P1 has the greatest a�nityto P4 among all possible receiver candidates. 2The above example suggests that the slowest processor should be connected to the fastest pro-cessor, and the second slowest one is to the second fastest one, and so on, in bitonic fashion. Theresulting pairs would tend to be more balanced in terms of the combined throughputs. We willelaborate on the e�ects of this kind of bitonic pairing in Section 4.1. This method calls for loadmigration to be done in as much bulk as possible. One ten-byte sized load migration is cheaperthan ten one-byte sized load migrations. This is particularly important in workstation clusterswhere the communication overheads are still high.Example 4.2 Let us consider the topology of P1 ! P4 and P2 ! P3 as shown in Fig. 2 (b).Throughputs are the same as in Example 4.1. In this case the combined throughputs of the twosub-clusters turn out to be equal. That is, no further load migration is necessary through thelink between the two clusters (P1; P4) and (P2; P3)! 21For example, in a two-processor system where both are overloaded, they may continuously migrate each partof loads to the other processor, which does not improve the situation at all.11



However, now that cluster (P2; P3) is more balanced than cluster (P1; P4), the resulting decreasein the intra-cluster migration makes cluster (P2; P3) process more tasks. That is why this clusteris de�ned as the faster one in Def. 3.3. In general, such an ideal case may not be common in realsituations; throughputs may 
uctuate in the middle of computing and initial distributions arenot always equal. For the case that the load is not balanced in the �rst cluster for some reason,we continue to balance the load through inter-cluster migrations. In the following analysis, weuse 
ij = 1=2, for all i; j, which guarantees uni-directional migration is enough for load balancing(notice Pj is faster), although more aggressive choice like 
ij = �i=�j may reduce overheads.4.1 PreliminariesTo examine migration overhead, we need a communication time model. The conventional ap-proach to modeling communication time for transferring a message of m bytes is a simple linearfunction, i.e. Tcomm = �+ �m, where � is startup time and � is transfer time per byte [2]. Theempirical values for � and � under the PVM system [18] at LAN-based clustered workstations are4:527 msec, 0:0024 msec and 1:661 msec, 0:00157 msec for datagram and stream transmissioncases, respectively, which imply �� � [17].In Theorems 4.1 and 4.2, we compute the total number of migrated tasks (�'s multiplier) andthe frequencies of migrations (�'s multiplier) in a cluster. Furthermore, we also illustrate animportant characteristics of our method, which is that balance ratio gets improved as clusteringhappens at higher levels.Theorem 4.1 In a cluster C = (v; w) where v and w are terminal nodes in CT , and they haveinitially loaded N identical tasks respectively, the total number of tasks to be migrated from vto w to meet the �nish times at both processors is �w��v�w+�vN , i.e. the balance ratio of C times N .Proof: Let us determine the general terms of the number of tasks to be migrated from v to wat the time w becomes idle. Since w is faster than v, w's �rst incidence of task depletion occursafter N�w ; thus the number of tasks in the �rst migration is half of what remains in v at that time,which is 12(N � N�w � �v) = N2 (1� �v�w ). Notice that �v=�w is less than 1. Tw, the total number of12



tasks that are eventually processed by w, is a summation of the following series:Tw = N + N2 (1� �v�w ) + N4 (1� �v�w )2 + � � � = N 1Xi=0 12i (1� �v�w )i= N limk!1 1� (12(1� �v�w ))k+11� 12(1� �v�w ) = 2N�w�v + �wTherefore, Migratedv!w = Tw �N , which yields �w��v�w+�vN . 2Theorem 4.2 In a cluster C = (v; w) where v and w are terminal nodes in CT , and they haveinitially loaded N identical tasks respectively, the frequency of migration from v to w to meetthe �nish times at both processors is log 12 (1� �v�w ) 1N .Proof: The general term in the series is N2k (1� �v�w )k. Thus, k = log 12 (1� �v�w ) 1N . 2Theorem 4.3 In a cluster C = (v; w) where v; w are arbitrary nodes in CT , and they haveinitially loaded N identical tasks, the combined throughput of a cluster C = (v; w) is �v + �w,assuming no migration overhead.Proof: Suppose v and w are terminal nodes in CT . In Theorem 4.1, the total number of tasksprocessed by v and w is given by 2N�v�v+�w and 2N�w�v+�w , respectively, and the �nish time is N(�v+�w)=2at either processor. As cluster C have loaded 2N tasks in total, this may be interpreted to meanthat the de facto throughputs of the cluster is �v + �w. Now let us assume this holds for twoclusters C1 = (�1; �2) and C2 = (�3; �4); i.e. �C1 and �C2 are �1+ �2 and �3 + �4, respectively. Fora cluster C = (C1; C2) (we can assume C1 is slower without loss of generality), we can calculatethe number of tasks processed by C2 as follows:TC2 = N 1Xi=0 12i (1� �C1�C2 )i = N � 2�C2�C1 + �C2 = N � �C2(�C1 + �C2)=2By induction, this completes our proof. 2Theorem 4.3 implies that the sum of the two throughputs in a cluster may represent the combinedthroughput of the cluster so that we can cluster recursively in bitonic fashion. The real combinedthroughput can be yielded by subtracting the throughput loss incurred by migration overheads(see Section 4.2) from that amount. 13



Theorem 4.4 If there are two clusters C1 = (�1; �4) and C2 = (�2; �3), and C1 is slower than C2(i.e. �C1 is less than �C2), then another cluster C = (C1; C2) is always more balanced than theless balanced cluster between C1 and C2.Proof: Consider the case when BC1 is greater than BC2 (i.e. C1 is less balanced than C2). Due tothe property of bitonic coupling, �1 � �2 � �3 � �4 must hold. Let us write �2 = a�1, �3 = ab�1 and�4 = abc�1, where a; b; c� 1. By Theorem 4.3, BC is yielded by �2+�3��1��4�1+�2+�3+�4 . That is, BC1 = abc�1abc+1and BC = a+ab�(abc+1)abc+ab+a+1 . Since (abc+ ab + a + 1) � (abc� 1)� (a+ ab� (abc+ 1)) � (abc+ 1) =2abc(abc+1)�2a(b+1)� 0, BC is less than or equal to BC1 . But if 2abc(abc+1)�2a(b+1) = 0,all a, b, c must be 1, which implies �1 = �2 = �3 = �4 that contradicts the given assumption(�C1 < �C2 or BC1 > BC2). Hence BC is strictly less than BC1 . Likewise, when BC1 is lessthan BC2 (i.e. C2 is less balanced than C1), we also can show that BC is less than BC2 | now�2 � �1 � �4 � �3 holds. Finally, consider the case when BC1 is equal to BC2 . Again, due to theproperty of bitonic coupling, this condition implies �1 = �2 = �3 = �4, which is a contradiction.This completes the proof. 2Theorem 4.4 contains an important subtlety. It implies the amount of inter-cluster migration isalways less than that of intra-cluster migration in a critical sub-cluster. Since migrations througha higher-level link may need multi-hop communications, they result in higher overheads. Theo-rem 4.4 assures that the amount of migrations of such higher overheads get smaller. Consequently,the complexity of migration overheads is bounded.4.2 Complexities of Task Migration OverheadConsider the topologies in Fig. 2 (a) and (b) extended to p processors and the total numberof tasks are pN . Self-scheduling requires pN(� + �), where N is the total number of tasksbetween a master and its servers. Putting aside the fact that the master can easily create abottleneck in that topology, we investigate the complexity of our method and compare it withthat of self-scheduling.The worst case happens when the fastest processor (the rightmost one in a cluster tree) is farfaster than the remaining ones: i.e. �3 � �1; �4; �2 in Fig 2 (b). Let us calculate the overheadfor a one-hop migration in this scenario. For example, in a link between P2 and P3, the totalnumber of tasks to migrate is, by Theorem 4.1, �3��2�3+�2N . As �3 � �2, the number becomes N .14



In other words, all of the task in a slower processor must be migrated to the in�nitely fasterone. Likewise, by Theorem 4.2, the frequency of migrations is given by log 12 1N = log2N . Thus,the one-hop overhead (OH1) is � log2N + �N . Since the farthermost tasks need p� 1 hops, weobtain the worst case complexity of migration overhead as follows:OHworst = p�1Xk=1 k �OH1 = 12p(p� 1)(� log2N + �N)Recalling the facts that �� � and N � p, OHworst can hardly be worse than pN(�+ �). Nowlet us consider an average case where each processor contains the average number of tasks (N)at any moment during computation.2 Consider a lowest-level cluster (v; w); i.e. v and w areterminal nodes in CT . By Theorem 4.2 and 4.1, the one-hop migration overhead is obtained asfollows: OH1 = 11� log2 �v�w log2N � �+ �w � �v�w + �vN � �By Theorem 4.4, the balance ratio of a higher-level cluster is always less than the maximum ofthose of the two sub-clusters. That is, the maximum balance ratio among all clusters (v; w) atthe lowest level is the maximum balance ratio of all clusters in an entire cluster tree. Let it beBmax. Then, no (p� 1) links in the topology can migrate more than Bmax �N tasks. Therefore,the average case complexity of migration overhead is a lower bound of the following formula,where rmax is the maximum of �v�w for all clusters (v; w) at the lowest level in CT :OHaverage = p�1Xk=1OH1 = p� 11� log2 rmax log2N � �+ Bmax(p� 1)N�Notice that 0 < rmax < 1 and 0 < Bmax < 1. OHaverage is always better than pN(� + �).Furthermore, since �� � and N � p, it is signi�cantly better in general.Example 4.3 Let us consider Fig. 2 (b) again. Each processor initially has N identical sub-tasks. Throughputs are the same as in Example 4.1: i.e. �; 2�; 3�; 4� for P1; P2; P3 and P4,respectively. For brevity, suppose all processors have constant throughputs, and we assume nomigration overhead for the time being. Then the following table shows each snapshot of load2Obviously this is a harsher condition than what a real average case needs to be, since the number of remainingtasks gets decreased as time goes by. Therefore, our obtained complexity is an upper-bound of the averagecomplexity. 15



distribution under our load balancing method in case we chose 
14 = 45 and 
23 = 35 particularly.P1 P4 P2 P3Initial Load N N N NAfter N=4� 3N=4 0 N=2 N=4After Load Migration 3N=20 3N=5 N=2 N=4After N=12� N=15 4N=15 N=3 0After Load Migration N=15 4N=15 2N=15 3N=15After N=15� 0 0 0 0Table 1: Snapshots of load distribution.The table shows that total execution time is N4� + N12� + N15� = 2N5� ; in other words, the averagethroughput of this 4-processor cluster with 4N sub-tasks is 10� . However, the real behaviordeviates from this ideal behavior because of migration overheads. We calculate the overhead fortwo di�erent choices of 
: when 
 is taken proportionally based on throughput (Case 1) andwhen all 
 = 12 (Case 2).Case 1: As shown in Table 1, migrations occur twice of amount 3N=5 and 3N=15, respectively.Thus, the overhead is yielded by �+ 35N� + �+ 315N� = 2�+ 45N�.Case 2: By Theorem 4.1, the number of tasks to migrate for P1 ! P4 and P2 ! P3 links iscalculated as follows:MP1!P4 = 4� � �4� + � N = 35N; MP2!P3 = 3� � 2�3� + 2� N = 15NSimilarly, by Theorem 4.2, the number of migrations that occur for the two links is as follows:kP1!P4 = log 12 (1� 14 ) 1N = log 38 1N ; kP2!P3 = log 12 (1� 23 ) 1N = log 16 1NThus, the overhead is yielded byOH = �(kP1!P4 + kP2!P3) + �(MP1!P4 +MP2!P3)= �(log 38 1N + log 16 1N ) + 45N� � 3:63 logN�+ 45N�In either case, the overhead is much less than that of self-scheduling, which is 4N(�+ �). 216



4.3 Initial Load DistributionWhile any initially distributed load should be balanced through a dynamic load balancing method,the resulting overhead is associated. We discuss now the initial load distribution issue thatcan lower overhead, compared with the equal distribution that was assumed for analysis in theprevious sections.When loops are predictable (see Section 2.1), there are two cases: one is when we know the amountof the required computation exactly, as in Fig. 1 (a), (b), (c) and sometimes (d), and the otheris when we can determine just the orderings, like in the DNA sequence search problem [4]. Forthe former case, as L(i) is known in advance, if we distribute proportionately according to eachprocessor's throughput, we can reduce the likelihood of migration. In other words, the processorPi with �i will get �iPi L(i)=Pk �k. Dynamic adjustments to this approximation are made by ourload balancing method. In a lowest-level cluster (v; w) in CT , if we allocate b�iPi L(i)=Pk �kcto v, and d�iPi L(i)=Pk �ke, Since v is slower than w, uni-directional migration is enough. If wecannot guarantee the faster processor �nishes earlier, the migration paths must be bi-directionalas in the following cases. For the latter case, we cannot initialize in the above way as the value ofL(i) is unknown. The LPT (Largest Processing Time �rst) algorithm [1] is for this class of loopmodels. The tasks are sorted in descending order based on execution time L(i). Each processorshould process the largest task �rst. Otherwise, an unfortunate processor may happen to take alarge task (say, about 100 times larger than the small ones) as a last one at the near end of allcomputations, which results in a load imbalance | other processors are idle because few tasksleft to migrate at this moment.When tasks are not \orderable" and quite irregular like in the Mandelbrot set computationproblem, we can neither quantify the loads to proportionately distribute to processors of diversethroughputs nor sort in decreasing order and apply the LPT algorithm. No general heuristicscan be used | random distribution does not need to be worse.5 EXPERIMENTSTo demonstrate the performance of our method, we conducted our experiment on 16 worksta-tion clusters using PVM message passing systems. The example program was Mandelbrot set17
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Figure 5: The load distribution pattern of a loop in the Mandelbrot set computation.computation on [0:5;�1:8] to [1:2;�1:2] using a 800� 800 pixel window. This program containsunpredictably irregular loops as shown in Fig. 5, which cannot be analyzable as in Section 4. Thex-value indicates the x-th row in an outer loop. The y-value is the number of inner iterations(L(x)) to compute the corresponding x-th row. The total number of sub-tasks are 800, and theresult size of a sub-task is 800 in integers: one integer per pixel.We have initially distributed those tasks in a round-robin style. A variety of heterogeneousworkstations have been used as shown in Fig. 6 (a) which shows the execution time for each of 16workstations3 to compute the given Mandelbrot set; the range is from 250 seconds to 2000 seconds.The results by 16-workstations cluster are given by Fig. 6 (b). The dotted boxes represent the�nish times of each workstation under the pure self-scheduling method, which substantiate theexpected good load balance. The result by our method is seemingly imbalanced but the actual�nish time is much improved. Perfect balance may be good but the evaluation should be basedon how much its overheads negate its resulting bene�ts.taskcnt 1 2 3 4 5 6 7 10 11 12 17 19 20 30freq 13 6 3 3 3 1 4 1 1 1 1 1 1 1Table 2: The sizes of migration units and the frequencies of migrationsTable 2 summarizes the size of each migration and its frequency that are counted in our experi-31 SPARCstation 20, 3 SPARCstation 5's, 2 SPARCstation 10's, 2 DECstation 5000/25's, 4 SPARCstationIPX's, 2 DECstation 23/100's, 2 SPARCstation IPC's are used.18
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Figure 6: Execution times: Mandelbrot set computation on [0.5,-1.8] to [1.2,-1.2]mentation. For example, the single-task migration occurred 13 times, and the 30-tasks migrationoccurred once, etc, during the entire task migration attempts. In the table, we can compute thetotal occurrences of migrations by summing all frequencies up, that is 40. If we calculate this�gure from our formula on OHaverage, that is p�11�log2 rmax log2N , where p = 16, N = 800=16 = 50,rmax = 692=693 � 1. This formula gives 15 log2 50 � 84:7. Considering this formula is obtainedas an upper bound, the experimental value is said to conform to the theoretically obtained value.Although the theoretical model does not exactly with our experimental environments, the modelgives us a reasonable implication about the migration behaviors in general cases.6 CONCLUSIONWe have presented a new decentralized load balancing method for parallel tasks in heterogeneousworkstation clusters to deal with various patterns of parallel loops. We discussed why the con-ventional global dynamic load balancing methods are not adequate to our application area. Loopscheduling schemes that have been useful under shared-memory multiprocessor machines causea bottleneck in workstation clusters because the communication overheads are so high. To ourknowledge, migration topology for load balancing is considered for the �rst time. The topol-ogy has not been considered important heretofore because sometimes it is given in a hard-wiredform [13] or it is meaningless where distributed load patterns cannot be assumed to be known19
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