MARYLAND

TECHNICAL
RESEARCH
REPORT

Interchange Arguments In -
Stochastic Scheduling

by

P. Nain, P. Tsoucas, J. Walrand

SYSTEMS RESEARCH CENTER
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742







Interchange arguments in stochastic scheduling

Philippe Nain ', Pantelis Tsoucas °
and
Jean Walrand

INRIA- Sophia Antipolis
Av. E. Hugues
06565 Valbonne Cedex
France

Systems Research Center

University of Maryland

College Park, MD 20742
USA

and

Department of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory
University of California
Berkeley, CA 94720
USA

ABSTRACT

Interchange arguments are applied to establish the optimality of priority list
policies in three problems. First, we prove that in a multi-class tandem of two
/M /1 queues it is always optimal in the second node to serve according to the
”¢ u” rule. The result holds more generally if the first node is replaced by a
multi-class network consisting of */M /1 queues with Bernoulli routing. Next, for
scheduling a single server in a multi-class node with feedback, a simplified proof
of Klimov’s result is given. From it follows the optimality of the index rule
among idling policies for general service time distributions, and among pre-
emptive policies when the service time distributions are exponential. Lastly, we
consider the problem of minimizing the blocking in a communication link with
lossy channels and exponential holding times.
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1. Introduction

This paper has two main aims. The first is to demonstrate the use of interchange arguments
in proving optimality properties and the second is to obtain new results in stochastic scheduling.
The main idea of our arguments appears in Varaiya et al [14] where it is used in order to obtain
the optimality of index rules in multi-armed bandit problems. There, the objective is to maxim-
ize the expected total discounted reward. We use variations of this idea together with path-wise
coupling techniques.

We first apply an interchange argument in Section 2 to partially characterize the optimal
policy for scheduling two servers in a tandem of two nodes with M different classes of customers
with exponential service times. The result, motivated by Ross and Yao (11}, is that the optimal
policy in the second node is a ” ¢ u” rule. This is an easy extension of the results of Baras et al [2]
and Buyukkoc et al {3]. The result can be extended to the case where the first node is a network
consisting of /M /1 queues with Bernoulli routing.

Next, in Section 3 the problem of Klimov (7] is considered. A single server is to be
scheduled In a network of M /GI /1 nodes. The objective is to minimize the expected long term
average cost. It has been shown in [14] that this problem is equivalent to a multi-armed bandit
problem. Our argument provides a simple proof of the result in (7], that the nonpre-emptive

1 Work performed while this author was visiting the Systems Research Center, University of Maryland, Col-
lege Park, supported by the Office of Naval Research through grant number N00014-84-1<-0614.

2 The work of this author was supported in part by the NSF Englneering Research Centers Program
#NSFD-CDR-88-03012.



nonidling optimal policy is a priority rule. We also establish the optimality of that rule among
idling policies. The priorities are determined and for the case where the service distributions are
exponential we show that the same priority rule is optimal among pre-emptive policies. Remark-
ably, the optimal policy does not depend on the arrival rate. Our proof provides some insight
into this fact.

PFinally, in Section 4 we consider a problem of stochastic scheduling that does not fall in the
framework of multi-armed bandit problems. Calls arrive at a communication link where N chan-
nels are available. There are probabilities of immediate loss associated with each channel and a
successful call occupies the channel for an exponential amount of time. If the holding times are
all independent and identically distributed, Anantharam et al {1] show that the time to reach the
state where all channels are full is independent of the placement policy used. We provide a sim-
ple proof of this result and further prove that in the case where the holding times are not identi-
cally distributed, the time to reach the full state is stochastically maximized by assigning calls to
the free channel with the shortest holding time.

2. Server scheduling in a multi-class network

Consider two /M /1 queues in tandem with M classes of jobs. Calls arrive at the first node
at deterministic time instants {a; }, . The service rates at the first node are {i; },., and there are
associated holding costs denoted by {c,- },-Ail. In the second node the corresponding service rates
are {v; }£, and the holding costs are {d; }.,. Let x, =(z,},...,z,*) (respectively y, =(y,*,....y™))
be the vector of class populations in node 1 (respectively node 2). Assume that
dyw,2dv,> - - >dy vy . A pre-emptive server allocation policy is a function

e (xt Yt ) nd (ntl(xt DA ),1."2()(‘ WYt )) € {1»21""1\{ }2

The objective is to minimize over 7 the expected discounted cost incurred in the interval
[0,T] given by

T
M M .
J(mTYy=E[[e® (3 c;iz/+ Y d; w)at ] (2.1)
4] 1=1 =1

The following result shows that a "d v” policy is optimal for the second node. It is an
extension of results in Baras et al {2] and Buyukkoc et al [3] who consider a single node. It also
provides an extension to results in Ross and Yao [11] who consider multi-server scheduling in a
network.

Theorem 2.1: In node 2 the optimal policy always serves job ¢, among the ones present in
the queue, for which the quantity d; v; is maximum.

Proof: The virtual service process of an exponential server with rate u is a Poisson point
process with parameter p. A point of this process is a service completion if the queue is non-
empty. Let {ti} (respectively {.s,f}) be the points of the virtual service process for class
i €{1,..,.M} in node 1 (respectively in node 2). We only need consider policies m switching at
times

M M
{ta}={a} Ut} U{ea}

f=1 §=1

For T >0, condition on the number of points of the process {t, } in the interval (0,T ], say
0<t,<t, < -+ <4, KT <44, < -+ - . Optimality will be proved by induction on k. The
result is trivially true for k =0 and assume that it holds for k=1, -+, {. We will prove that
the result remains true for k =K +1.

By the optimality principle and the induction hypothesis my(-,') has to follow the »d v” rule
at times t,,t,,...tx and suppose that mg=={ While yJ >0 with {1 >3. Then policy 7 cannot be
optimal because it can be improved as follows. Denote by ¢, the first time when 7r,20=j and

define policy ™ as follows.



Tl=mn! t >0,

Fo=17.

ff:ﬂ"z’ t==t,,..., t,,
To=1,

-1F¢2=7|'g2, t=ta+lnta+2' e

Then simple algebraic manipulation shows that
J(m K +1)-J (7,K +1)>0,
if
p(J.t)d; —p(i,t)d; >0, k=10,
where
pUty)=Pr{t€{sys} }, l=i,j k=1,.

It is easy to verify that because {a, } is a deterministic process and processes {t, }, {s,} are Pois-
son,

p(J.4) v

PUA Y h

p(t.ty) v
Therefore, J (m, K +1)-J (F,K +1)>0 since d;v; >d, v; and x cannot be optimal. A similar argu-
ment shows that a policy that idles in node 2 at time 0 cannot be optimal. Note that policies
and T are not feasible because they are allowed to switch at all the points of process {¢, }, some
of which are not observable. The above argument shows that the " d v~ rule is optimal among all
such policies. Yet, the "d v~ rule is a feasible policy and is optimal among feasible policies as
well.

a

Remarks 2.1

(a) In the above proof, policies * and 7 result in identical arrivals for node 2. The proof,
except for the embedding, is identical to the one in Buyukkoc et al [7].

(b) The result stated in Theorem 2.1 remains true if node 1 is replaced by a network of
/M /1 queues with Bernoulli routing (see Figure 2.1), and the cost function in (2.1) is modified in
the obvious way.

3. Klimov’s problem

3.1. The problem

The following situation was considered in Klimov [7]. There are N queues. The service
times are independent and have the distribution function G;{t) in queue ¢ (1 < ¢ < N). Cus-
tomers arrive as an independent Poisson process with rate A and are assigned to queue { with pro-
bability p; . Write p = (p;, . : ., py ). Upon service completion in queue ¢, a customer 113 sent
to queue j with probability p;;, and leaves the network with probability p;o=1- 3 p;;,

J=1
independently of the state of the network. There is a single server that is allocated to one of the
nodes at a time, in a nonpre-emptive way.

Assumptions

1. The matrix P = [p;;, 1 € 1,7 <N] is such that every customer eventually leaves, i.e,,
P™ — 0as n — oo. In particular, this implies that (] — P) is invertible.



oo

2. It is also assumed that ft dG; (t)=:8; < oo, for1 <¢ < N.
[¢]

3. Finally, one assumes that A\p[/ — R]8 < 1, where 8= (8,, ..., By)T ()T denotes
transposition).
Denote by Z/ the number of customers at time ¢t > 0 in Jueue € {1,.,N} and let
Z, =(Z'...,2Z"Y. Fix ¢, 20for1 <¢ < N and such that 33¢; = 1. For a given server
f=1
allocation policy m, one defines the average waiting cost per unit of time as

T
N
1 .
J(mx) = lim inf — F ¢, Z¢ dt. 3.1
(n) = m inf = B[ 336 2, (8.1)

A policy is said to be admisstble if it is non-idling, nonpre-emptive and nonanticipative.
Non-idling means that the server is idle only when the system is empty. Nonanticipative means
that the decision to allocate the server to queue 7 at time ¢ 2> 0 is based on the evolution of the
network up to time ¢{. Under Assumptions 1,2 and 3 the system is ergodic under any non-idling
policy (see Section 3.2).

A policy is optimal if it minimizes the cost (1.1) over all the admissible policies. The prob-
lem is to find an optimal policy.

Outline

We give a simple proof and provide two extensions of the result in [7]. Specifically, we show
that a priority list policy that serves the non-empty node with the highest priority is optimal.
Remarkably, the priorities do not depend on the parameters of the arrival process. In Section 3.2
we discuss the effects of idling in the simple case of two nodes with no feedback. Some auxiliary
calculations are performed in Section 3.3 and are used subsequently in Section 3.4 to derive a
priority index for each node. The optimality results extend to the case of pre-emptive policies for
nodes where the service distributions are exponential.

3.2. The busy period

Decomposition

Convention: The set of nodes is partitioned into n == {1,..,n } and n° = {n +1,...,N }.
Assume that while the nodes in n are not all empty the server serves according to the priority
rule 1>2>..>n.

Notation: For a matrix M and sets of natural numbers A and B, M,p denotes the matrix
{M;; }ica . jep . Similar notation for vectors has the obvious meaning.

Definition: Let B(*) be the time it takes to empty nodes n, i.e.,
B®) = int{t >0 | Z,(t)=0}

We represent the queueing process in the system during a busy period as a collection of
trees (see Feller [4]). A job arriving in node ¢ with service requirement S,- is represented as a
node of type ¢ with weight §;. The children of each node are jobs arriving in the system while
the customer is being served. Each job initially present in the system is the root of a tree and the
length of a busy period is the sum of the weights of these trees. It is shown in {13] that under
Assumptions 2 and 3 one has E [B))<oo for all n. It is easy to see by this construction that

Fact: The random variable B®) does not depend on the order of service.

Furthermore, one obtains a decomposition for the mean of a busy period. Let e; be the ¢ th
unit vector in (-0o0,00)" and for any Z(0) write Z(0) = m ,e, + ...+ myey. Then, ‘

EIB™ | 20) = SSm E(B® | ). (3:2)

§ =1



3.3. Auxiliary calculations

Probabilities of transition

In this section we calculate the transition probabilities of a customer exiting the set of nodes
n, i.e., we are interested in the quantity

r,-}"): Indicator function of the event that node y€n° is the first node not in n that a job visits
starting in node ¢. The probabilities are given by

pif®) = E[r;{*)]. (3.3)

Lemma 3.1: The probabilities defined in (3.3) above are given, in matrix form by

PR, =P . . +P . (I-Py)'P_. . (3.4)
Proof: For 1 €n° and { En we write the following first step equations.
pif" = pij + SoanSt (3.5)
leén
i = Doy 2+ my (3.6)
I €n

n)
n®

The result is obtained by writing the above equations in matrix form and solving (3.5) for Prf
0

Expected sojourn times

We now calculate the expected sojourn time for each passage of a customer through the set
of nodes n. For this define

Sj("): Total amount of service that a job receives until it exits n having started at node y €En°.

We set
7" =E (S5 (3.7)

Lemma 3.2: The expected sojourn times defined in (3.7) are given by

T,E?) = Pncn(I—Pnn)_lﬂn (3-8)

Proof: For j €n‘ and { €n first step equation give

TJ.(ﬂ) = ra T,
len

Tl(”) = ﬂl + lE 2y T['(n)
' én

The proof then proceeds as in Lemma 3.1 above.

O

We next turn our attention to a quantity that will be important in the computation of
priority indices in Section 3.5. Deflne

R ,-("):Tot.al amount of time needed to clear the set of nodes n of the arrivals resulting from serv-
ing a job in node j €n° and through its sojourn in n.

Lemma 3.3: The expectation of R,-"‘) is given by

EIR™) = N8, + T S nEB® | &) (3.9)

f =1



Proof: By A (t) denote the number of arrivals in the interval [0,2]. The result then follows
easily from relationship (3.2) and by noting that

ER™) =E[E(B®™ | A(S;+5;"™)]

= EE (A (S; + S, NE[B™) | ;)

f=1

= ME+ TN p BB o]

=1

The last step follows from the fact that the arrival process is Poisson.

3.4. Optimality
The nonpre-emptive case

In this section we prove that, as mentioned in the Section 3.1, the policy that minimizes the
cost defined in (3.1) is a priority list which we determine. It is clear that an optimal policy also
minimizes the expected cost in each busy period of the system given by

B
J(m,B) = E[[eZ(t)dt)
0

We give expressions for the priority index of each node.

First, the nodes {1,2,...,N } are renumbered as follows. Assign number 1 to the node that
maximizes the quantity

2 -ka 7
B;

Recursively, for 1<n <N, assign the number n +1 to the node 1 €En° that maximizes the quan-
tty ,

, 1=1,....N. (3.10)

¢i— 33 Pl ek
ken®

B+

where n is the set of nodes {1,..,n } in the new numbering. Denote by 7 the priority assignment
list that corresponds to this ordering.

Theorem 3.1: Policy = is optimal among all nonpre-emptive, non-idling policies.

Proof: Let J(x m, B )Z) be the cost incurred in a busy period starting from state Z and
following policy 7 in the first step and 7 thereafter. Then it suflices to prove that

J(x m, B)2Z) > J(r, BYZ), for all Z&{0,1,..}V . (3.11)
It suffices to consider the case where 7r' (Z) =1 #£ n(Z) = j with {>j. This implies that
=(0,...,0,Z7, ..., 2", *,...,*¥) with Z' Z’ >0. For simplicity consider that Z, == Z. To estab-

lish (3.11) define p to be the first time that policy r w serves node j . By € (respectively ¢) denote
the job that was served in node { at time O (respectively in node j at time p). In the context of
Section 3.2, p is the time it takes to clear the system of the descendants of job ¢ that have prior-
ity higher than 7. Let { be the node in (j—1)° where job ¢ ends up after its sojourn in j~1 and
let x be the vector of the the rest of the descendants of € after their sojourn in j—1. Then define
p+0 to be the time it takes to serve job ¢ in node 5 and clear the system of the descendants of ¢
that have priority higher than j. Similarly, let ¢ end up in k €(j-1)° after its sojourn in y -1 and



let y be the vector of the rest of the descendants of ¢ after their sojourn in j—1. For each sample
path that is obtained by applying policy T T construct a sample path where 7 is followed until
time ¢, then any policy T such that m(Z(c)) = 1 is followed for one step, and 7 is resumed after-
wards. Denote this policy by 79%r. The arrival and service processes of jobs with priority higher
than ; are interchanged as in the construction of Section 3.2, i.e., the descendants of job ¢ with
priority higher than ; and the descendants of job ¢ with priority higher than ; are the same in
both realizations. The arrival and service processes of jobs with priority lower than j are the
same in both realizations. One then obtains (see Figure 3.1),

J(r ®, BXZ)-J (x'"Fr, B)Z) = (3.12)
=i B+ LY BRI S pal Ve e B )8, + T, 4B (R
Le(g-1¢
e B+ TV HE RSN B pf Ner +e By + TV +E (R Y]}
ke€(j-1)°

To simplify this expression we need to determine £ [x] and E' [y] as functions of the system
parameters. For this, denote by am((’ 1) the expected number of jobs that enter node m €j~1 dur-
ing a busy cycle that starts with a job in node { €j~1. From Section 3.2 one gets

¢Ex] = E c," E pm(g;—x) >> a"fl’"l)km (ﬁ;+T,-(1"l))

o e(j-1)¢ meEj-1 {E€j-1
From this, relation (3.9) and some rearrangement one gets that J(r m, B )=J (7%, B) >oif
e;i-% pit Ve i3 pil Ve
k k

- > -
ﬂj +TJ,(J -1) B; +T|,(J -1)

To complete the proof one now argues that

J(x m B)> J(x9"Fx, B) — J(m, B) (3.13)

by bounded convergence. Policy n’™ #r is defined recursively as 7™ -Uzn tor m =1,2,... .

3uppose now that policy T idles for some amount of time, at state Z. The above argument
then shows that T can be improved and thus policy 7 is optimal among idling policies as well.

O

Remark 3.2: The argument used in the above proof is a variation of an argument in
Varalya et al [14]. We have followed closely the notation in Weiss [16], where a similar argument
appears. Our argument also gives a simple proof of the results in Foss (5] who considers a gen-
eralized version of KKlimov's problem and obtains a corresponding index rule.

The pre-emptive case

Assume now that the service time distributions are exponential at all the nodes and consider
the coupling described above where m is now a pre-emptive policy following the same priority
assignment list as in the nonpre-emptive case. One then sees that J(x x, B)-J (r9%r, B) is the
same as in (3.12). It follows that 7 is optimal among pre-emptive policies.

Remark 3.3: While this paper was under review, the paper of Lai and Ying [9] appeared.
There, asymptotics of the "open bandit problem” are studied as the discount factor approaches 1.
The above results are then derived. Our approach is simpler in that it does not rely on previous
results on multi-armed bandits. At the same time, the results in [9] can be simply obtained by a
direct argument similar to ours (see {8] and (16}).



4., A communication link model

In this section we demonstrate how interchange arguments can be employed in problems
that do not fall in the multi-armed bandit framework.

The model

We consider the following model of a communication link. There are N channels to be
used for the transmission of telephone calls. The calls arrive according to a deterministic
sequence {a; }; . Each call is to be placed on one of the idle communication links, if one is avail-
able, and is lost otherwise. A call placed on link 1 is immediately lost with probability p; and
with probability 1-p; it occupies the link for a period of time which is exponentla]ly distributed
with parameter p;. The system is described by the vector Z€{0,1}" where Z'=1 if a call is
present at link 1 and Z‘==0 otherwise. A placement policy is a function

u:Z—u2Z)e{1,..N}.

such that Z*®=0 if Z54(1, ..., 1). That is, in state Z policy u will place the next arrival on
link w(Z). We have restricted ourselves to deterministic policies. Our arguments however, easily
extend to randomized policies.

Outline

First, the case where y; =u, 1 =1,...,N is considered. We prove that from any state Z thc
time T 7 it takes to reach state (1,...,1)6{0,1}N_‘has a distribution that is independent of the pol-
icy u. This result was obtained by Smith (12] and Anantharam et al {1] by explicit computation of
the moment generating function of 7 z.

Next, for unequal y;’s, the problem of stochastically maximizing T'; for any initial state Z
is considered. We prove that the optimal policy always places calls on the free channel with the
largest pu; .

4.1. Invariance

In this subsection it will be assumed that p,=p,= - - - =y =u.

Theorem 4.1: For any ZE{0,1}", the distribution of Tz does not depend on the policy u.

Proof: We will use a stochastic variation of the argument used in Section 3.5. Let u be a
priority list assigning calls in the order 1,...,N. As in the proof of Theorem 3.1 it will sufflice to
show that

Ty u) = Ta(w) (4.1)

for any policy u . To establish (4.1) it suffices to consider the case where _Z7é(1, ..., 1) and
U (Z)=i54u(Z)=j with i > . This implies that Z' =1, [ =1,...,j -1, and Z' =27 =0.

Arguing again as in the proof of Theorem 3.1, we will establish an analogue of relationship
(3.13). To this end, denote by a, the first time that u u places a call on link j§ and assume for
simplicity that a,—O Denote Lhe virtual servxce processes of the links by {S,},=l and their
points by {a,, }l=1 Also, for | =1,...,N, set r,, =1 if the n th trial to engage link [ is a success,
and O otherwise.

For each sample path of (Z,) resulting from u’ u we construct a sample path of a process
(Z,) as follows. Consider a policy that places a call on link j at time a a,, follows policy u after-
wards, and places a call on link 1 at time a,, if a <s1 . 'Then, Z, o, Z s, and the paths of (Z,)
and (Z,) can be made to coincide from time a, onward. This would be the obvious argument in
the case where u=0. It would suflice to let ?,f =71l l=1,,N,n=1.2,...

On the other hand, if s,' <a,, the paths of (Z,) and (Z) can again be made to coincide

from time s} onward. Thns is achieved in the construction of (Z, ) by letting {5/} be the virtual
service process at link ¢, i.e., §] = 5% . Then, Z' =17 ’{ == 0. The two cases are illustrated in

Figures 4.1(a) and 4.1(b) respectively.



Formally, in the construction of process (Z,) the arrival process remains {a,,} and policy u
is followed (recall u(Z) = j) until r=a,/\s} with

5= 5} l5£1,5,t >0,

Flep! I=1,.,N, n=12,..

Si=85 t <r.
If r=s' =F{ then continue with u. Otherwise, i.e., if ==a,, follow #(Z,)=¢ and then
continue with u. Denote this composite policy by 1. In either case set
:S_"'. B St'.' Ei = Stj, t >r1.
We have thus obtained that

T (0 u) = Tz(u™).
st
The proof now concludes as in Theorem 3.1.
O

Remark 4.1: The model considered here is similar to the well known repairman model (see
e.2, Nash and Weber [10]). Our methods should apply to that model as well. In particular, one
should be able to simply obtain the results in Hirayama [6] where a related optimization problem
is studied.

4.2. Optimality

In this subsection we assume that u,>p,>> *-- >uy and that policy u assigns calls
according to the priorities 1,...IN .

Theorem 4.2: For any Z€{0,1}"V, Ty is stochastically maximized by policy u.
Proof: Again, as in Theorem 3.1, we will show that

T (0’ U)St T y(u)

where u (Z)=154u(Z)=5 with 1 >;. With notation as in the proof of Theorem 4.1 one can
check that using a similar construction for a process (Z, ) we have

T,(u' u) < Tyu™i)as., (4.2)
on some probability space, where the stopping time 7 remains to be specified.

_ The construction of _(-Z_t) only differs from the one in the proof of Theorem 4.1 in that
57 [0,7] is a superset of S'{0,7]. This can be done since u; 2pu;. Also, note that in this case it
suffices to define 7 as

r=inf{t | Z, >Z,}

where the inequality is component-wise.
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