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Abstract

A noninvertible, two-dimensional, discrete-time system featuring multistability is pre-
sented. Because the preimage behavior of this system is a function of location in phase
space, the boundary separating the basins of attraction can be disconnected. These
“polka-dot” basins of attraction have either a finite number of preimages (giving a finitely-
complicated basin) or infinitely many (giving infinite complexity). A complexity criterion
based on following the noninvertible region forward in time is presented and a fixed-point

algorithm for computing the boundary of the “complete” noninvertible region is discussed.

Introduction

A nonlinear system having multiple, stable, equilibrium states will have a phase space
divided by the boundaries of the different basins of attraction. In an invertible system,
these boundaries are invariant objects defined by the points in phase space which, when
followed forward in time, do not asymptotically approach any of the attractors. These
objects are typically the stable manifolds of fixed or periodic saddle-type points or of
invariant circles. The manifolds themselves can undergo global bifurcations or transitions
giving complicated, but reasonable-well understood behavior. It is important to note that
while the basins of attraction may have complicated, contorted boundaries, the basins
themselves remain as contiguous regions of phase space.

Maps that are noninvertible allow distinctly-different points in phase space to be
mapped to a single point in one forward iteration of the map. Furthermore, the number of
the points which are mapped to one (i.e., the preimage behavior) can change as a function
of the location in phase space. This underlying structure profoundly affects the geometry
of the basin boundaries (in particular, can give rise to discontinuous, polka-dot-like basins
of attraction) and also influences the shape and location of the attractors (Gumowski and
Mira, 1980). In this note, we show that following selected patches of phase space forward
in time gives insight and computable conditions for determining the point in parameter
space separating polka-dot basins of finite and infinite complexity and determining which
portions of phase space an attractor cannot inhabit—recall that equilibrium states cannot

be found in noninvertible regions.



The system analyzed is the Rotating Logistic map:
(r,8) > F(r,8) where F(r,8) =(r® 4+ X+ ecos27,0 +w mod 1) ¢y

with w irrational (Kevrekidis et al., 1985; Adomaitis, 1990). Because of the constant
rate of rotation and the choice of w = (v/5 — 1)/2, the system will never exhibit fixed
or periodic points and will only have equilibrium states in the form of invariant circles
and other, more complicated objects. Also, one can prove that in the limit of € — 0, the
invariant circles will be smooth and will demonstrate the same bifurcation behavior as the
logistic map: a saddle-node bifurcation of invariant circles at A = 1/4 and a supercritical
cascade (in the direction of decreasing A) of period-doubling bifurcations beginning with
the period-doubling of the period-1 invariant circle at A = —3/4.

The only attractors of this system are the bounded invariant object born during the
saddle-node bifurcation and the attractor at r — oo (see Fig. 1 for a representative situ-
ation). At first glance, it appears that the boundaries separating the basins of attraction
would be provided by the unstable invariant circle and its negative preimage. As seen in
Fig. 2a, this is true under some circumstances, but as seen in Fig. 2b, this is not always
true. The latter Figure demonstrates that the basin of attraction of the attractor at infin-
ity can extend into the “apparent” basin of attraction of the bounded attractor in the form
of “polka-dots” of phase space. The mechanism that gives rise to polka-dots is illustrated
in Fig. 3a: when the boundary separating the region where two real preimages exist (the
upper, 2RP region) from the zero-real-preimage region (the ORP region) of the period-1
map (1) has a segment which exists below the negative-root preimage line, polka-dots exist
and can be computed by following the preimages of this first polka-dot (Adomaitis, 1990;
Gumowski and Mira, 1980). The first polka-dot acts as a window which allows a region
of the apparent basin of attraction (the region of phase space in between the unstable

invariant circle and its negative-root preimage) to be mapped above the unstable invariant
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Fig. 1. A representative phase portrait of the Rotating Logistic map.
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Fig. 2. Results from “brute-force” calculations of the basin of attraction of the bounded
solution illustrating (a) an “expected” basin structure and (b) polka-dots in the
expected basin. The white regions are the basin of attraction of the r — oo
attractor.



circle (and subsequently towards positive infinity) in one forward iteration. A key notion
needed to understand the polka-dot behavior is how the phase space folds in one forward
iteration (see Fig. 3b)—since both the upper and lower boundaries of the apparent region
map to the unstable invariant circle, the phase space must fold along some curve. This
curve is defined by setting the determinant of the Jacobian matrix equal to zero: in (1) it
is simply r = 0 (the one-dimensional return map of Fig. 3b can be thought of as a “cut”
of F' parameterized by §). Thus, the unstable invariant circle and the image of 1 = 0
provide the boundaries of the image of the apparent region. As was also shown in Yasuda
and Sunahara (1990), if this image lies within the original region no polka-dots are to be
expected, and if some part of the image falls outside polka-dots are to be expected and
can be computed by following all of the preimages of this region.

Comparing Figs. 4a and 4b brings to light another issue: under some circumstances
(Fig. 4a) we see that all of the polka-dot preimages eventually premap into the ORP region
giving finite complexity to the basin of attraction, and for a different set of parameter values
the polka-dots can be premapped ad infinitum (Fig. 4b) giving infinite complexity. The
case of a finite number of polka-dot preimages is equivalent to following the ORP region
(the boundary is defined by inverting (1) and determining where the inverse has a single,
real root: r = e€cos2n(6 —w)+ A) forward in time, accumulating the regions of phase space
defined by the overlapping region of the folded image of the regions accumulated. Iterating
this algorithm determines the “complete” noninvertible region: the union of the ORP region
and the region of phase space in which all of the preimages eventually premap to the ORP
region. We see that if the “first” polka-dot is contained within the complete noninvertible
region, there will be a finite number of preimages of the first polka-dot. If any portion of the
first polka-dot lies outside the complete region, that portion will have an infinite number
of preimages. It should also be noted that equilibrium states must lie outside the complete

region since any point on a equilibrium solution has an infinite number of preimages.
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Fig. 3. (a) The varying preimage behavior and (b) an illustration the folding behavior of
a one-dimensional, noninvertible system.
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ture; (b) Infinite complexity.



It now appears that we have only replaced following polka-dots backward in time
with following folding fragments of phase space forward in time, possibly without end, as a
means of determining the complexity of the polka-dot structure. However, it will be shown
in the next section that for the Rotating Logistic map (and possibly other maps):

1) The portions of the images of the union of the ORP region and the regions which
eventually premap to the ORP region “glue” onto the ORP region giving a larger,
closed (in the sense that it has no holes) region;

2) The edges of the images glue smoothly onto the ORP region giving the complete

noninvertible region smooth boundaries;

3) The intersection of the folded image of the union of the ORP region and the regions
which eventually premap to the ORP region are simply the image of the “accumulated”

region above r = 0;

4) The positive segment of the boundary of the complete noninvertible region maps
onto a portion of itself and the remainder onto the negative segment—the boundary
is thus invariant under the map in a limited way. This means that while 1t is not
an equilibrium state of (1), we can write a fixed-point algorithm for computing it,
hence, the infinite-complexity condition can be computed in a finite amount of time
(an amount roughly on the order of computing the onset-of-polka-dots condition).

Folding Under Forward Iteration

Consider the situation illustrated in Fig. 5, where the unstable invariant circle, it negative-
root preimage, and the boundary separating the ORP from the 2RP regions are shown.
We see that a sizable portion of the ORP region stretches into the apparent basin of
attraction of the bounded attractor. This region is divided into two, the upper marked A
and the lower B, by the det(J) = 0 condition (r = 0). Returning to the one-dimensional
parameterization of F illustrated in Fig. 3b, it becomes easier to visualize how the phase
space folds along r = 0; the image of A retains its orientation and the image of B is flipped.
Both images are connected at F(r = 0) and so we have a region F(A) N F(B) which is,
in effect, a noninvertible region since both preimages of this region come from the ORP
region in one forward iteration. Another important fact becomes apparent when F(A)
and F(B) are plotted (Figs. 5a and 5b): because the boundary separating the ORP and
2RP regions is the image of the folding line (r = 0), the regions which eventually premap
into the ORP region are always “glued” to the ORP region, making the “accumulated”
noninvertible region a connected, hole-less region.

If we inspect the images of the two regions where the boundary separating the ORP
and 2RP regions intersects r = 0, we see that since F' preserves smoothness, since r = 0
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Fig. 5. Images of the ORP region above the negative-root preimage line: (a) The positive
portion A; (b) The negative portion B.



maps to the ORP/2RP boundary, and since nothing can be mapped into the ORP region,
the images of the ORP/2RP boundary must bend towards, touch the 0RP/2RP boundary
tangentially, and then bend back. This means that the portions glued to the ORP region
glue smoothly and will give a complete noninvertible region that is smooth.

The following facts (especially fact (3) of the previous section) appear to be specific
to F', although some of the ideas should be applicable to other maps. This third issue
concerns computing the intersection of the folded image of the “accumulated” region (the
ORP region plus n image intersections where n is less than that required to find the complete

region). First, there are two things to note:

a) The negative-root preimage of the unstable invariant circle can never cross r = 0

(proof is obvious);

b) No point in the region below the unstable invariant circle and above r = 0 can be
mapped in a single iteration to a point above the unstable invariant circle (proof is
based on the unstable invariant circle mapping to itself and r = 0 being the det(J) =0
condition—the image of this region has the same orientation so the images of the two

boundaries cannot intersect).

With these two facts in mind and looking at Fig. 5, we see that area B extends (with
respect to §) beyond region A. By (b) we know that A will always remain below the
unstable invariant circle but B will be flipped with its bottom mapped to the unstable
invariant circle and its top mapped to the same segment as the bottom of A. Because the
rate of rotation (with respect to 6) is independent of r and because B extends beyond A,
we see that F(A) N F(B) = F(A) whenever the accumulated noninvertible region has this
lemon-shape with r = 0 passing through the upper part of the “lemon” (and by (a), it
always will).

After this first iteration, we see that the accumulated region consists of F(A) U ORP
and anything premapped into this region will either have zero preimages or will have one
or two real preimages inside the ORP region. Because of the way F(A) glues onto the
ORP region, the basic shape of the accumulated region remains unchanged and so the
intersection of the two folds of the accumulated region always consists of the image of the
positive portion. We can also see at this time that since the orientation of the image of
the positive portion is preserved and since the lower boundary of the positive portion is
mapped onto the ORP/2RP boundary, the upper boundary of the accumulated region can
be computed by iterating on the map:

_J(r*+ X+ ecos2n8,0 +w) forr > 0; 5
G(r,0) = { (A + ecos 27,6 + w) r <0, (2)
with the initial condition
_ fr=ce€cos2x(f —w)+ A for ecos2m(f —w)+ A >0;
Tpos,o(r,0) = { r=0 ecos2n(f —w)+ A <0. (3)



The complete noninvertibility region boundary is a stable equilibrium solution to G. It is
interesting to note that when the complete noninvertibility region boundary lies completely
above r = 0, the stable attractor and the complete noninvertibility boundary coincide.

The Fixed-Point Algorithm

In the previous section, it was shown that the upper boundary of the accumulated non-
invertible region could be found iteratively with the iterations converging to the upper
boundary of the complete noninvertible region. Just as with any other equilibrium solu-
tion, this procedure can be sped up using a Newton-Raphson algorithm. Since it has been
shown that the upper boundary of the complete noninvertible region is smooth and other-
wise well-behaved, it seems reasonable that a discretization of the entire upper boundary
I'(8) should capture the correct behavior. Thus, the irrational w will be approximated
by the ratio of two consecutive terms in the Fibonacci sequence w = f,_1/fn and so the

Newton algorithm can be written as
T3(0;) + X + ecos 2m8; — T9(6;) = [T'1(8;) — To(6;)] — 2T6(6:) [T1(8:) —To(8:)]  (4a)
for T'g(6;) > 0 and
A+ ecos2nl; —To(6;) = [['1(0;) —To(§;)] for To(8:) <O0. (4b)

In the above, 6; =i/ fn, 8; = (1 + fn—1)/fn mod f, + 1, and the subscript 0 denotes the
results of the previous Newton iteration and 1 the present. An example of the results of
this algorithm can be seen in Fig. 6. The quantity d is the minimum vertical distance from
the complete noninvertibility region boundary to the first polka-dot. A positive d therefore
indicates finite complexity and negative indicates infinite complexity.

Two-Parameter Continuations

As mentioned previously, the bifurcation behavior of the invariant circles is equivalent to
the logistic map in the limit of ¢ — 0. However, as € is increased the behavior changes and
it becomes more difficult to draw analogies with the logistic map. A partial classification
of qualitatively-different behaviors is given in Fig. 7.

For large A all forward iterations approach positive infinity. For small ¢, decreasing
A means eventually passing through a saddle-node bifurcation of invariant circles, giving
rise to a stable and unstable invariant circle which exist in the region marked “2 ICs” in
Fig. 7. Keeping A = 0.1 and increasing e from ¢ — 0, we see that the stable invariant circle
eventually touches the noninvertibility curve (the image of r = 0). No transition takes
place at this point, but this curve is connected to the onset-of-polka-dots curve (the latter
is shown as the dotted curve of Fig. 7). Also, notice that while touching the noninvertibility
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Fig. 6. The complete noninvertible region upper boundary computed by the fixed-point
algorithm (shown as the long-dashed line): (a) Finite complexity case (note how
the bounded attractor nearly coincides with the boundary); (b) Infinite complex-
ity case. No attractor was found in this case. (Infinite complexity = destruction
of the attractor? Maybe, maybe not.)
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different dynamical behaviors exhib-

Fig. 7. A partial classification of the qualitatively-

ited by the rotating logistic map in two of its parameters.
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curve is a necessary consequence of the attractor crossing r = 0, the reverse is not always
true, so the attractor remains as the boundary of the complete noninvertible region of
phase space until the long-dash-dot curve is crossed.

We are now in the region where the attractor lies both above and below r = 0 and still
have an “apparent” basin of the bounded attractor unpopulated by polka-dots. Continuing
to increase €, we cross the onset-of-polka-dots line. For A above the the curve marked “1
pk-dot limit”, only one polka-dot is found in the apparent basin of attraction. Proof of this
can be seen with a single iteration of the positive portion of the “lemon” for A below this
curve—it is completely mapped into r < 0 in a single iteration. Furthermore, by plotting
the curve of where the top of the noninvertible region touches r = 0 (given by A = ¢), we
see that below this curve, the noninvertible region is the complete noninvertible region,
hence, the onset of polka-dots corresponds to the onset of infinite complexity.

We have computed other curves, such as the transition from one polka-dot to two,
and so-forth. The final question is whether the onset of infinitely many polka-dots implies
the destruction of the attractor. Careful computations for A = —0.7 indicate this might
be the case, at least for this particular parameter value.

Conclusions

A noninvertible, two-dimensional map featuring a complicated, disconnected basin of at-
traction structure was discussed. A fixed-point algorithm for computing the boundary of
the “complete” noninvertible region (the region of phase space that has no preimages plus
the portion of phase space which gets completely premapped into it) was developed and
was used to predict the complexity level of the basin structure.
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