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feedback linearization and backstepping are developed.
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Chapter 1: Introduction

The ball and straight beam is widely used in many control labs as an example of

a system that is relatively easy to understand and model but challenging to control.

There are many publications concerning various control implementations of differing

apparatuses and models. There are two typical constructions of the model. One

model places the center of the motor shaft at the center of the pivot, while the other

places the pivot at one end of the beam. While the model calculations are slightly

different, the complexity is similar.

Figure 1.1: The motor rotates the beam, and value of φ is a possible
equilibrium point when θ = 0. The ball rolls under the influence of
gravity.
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1.1 Model of Straight Beam and Ball

The two typical states that are measurable are the position of the ball and the

angle of the beam. The dynamics for the model in Fig. 1.1 is as follows [1]

0 = mφ̈+mg sin θ −mφθ̇2

Q = (mφ2 + Ib)θ̈ + 2mφφ̇θ̇ + (mgφ+Mgr) cos (θ)

where m is the mass of the ball, M is the mass of the beam, g is the acceleration

of gravity, Ib is the inertia of the beam about the pivot, r is the distance from the

pivot to the center of the beam, θ is the beam angle, φ is the ball position, and Q is

the torque applied by the motor. If the pivot is located at the center of the beam,

so r = 0, then the Mgr cos (θ) term disappears. The rotation of the ball is omitted,

as its effect is small relative to the system dynamics.

1.2 Background

In this thesis, we expand and correct the related system described by Sheng,

Renner, and Levine [1]. We also compare the nonlinear and linear performances,

and results from tests using nonlinear control theories. The straight beam and ball

setup is replaced with a circular beam and the pivot is not on the beam but offset

to a point below the beam, as shown in Fig 2.1.

The ball and circular beam setup as described by Sheng et al. [1] considered

only the linearized system and its performance using linear controls. No testing

was done using the nonlinear model, which could allow for other equilibrium points
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besides the origin. The nonlinear model should also provide more accurate simula-

tions. However, the model and equations needed corrections, which are done in this

paper.

The same setup is used, with the system being linearized about a beam angle

θ = 0 so that the pivot and center of the circle are on a common vertical line. The

system is simplified by making the ball very light compared to the beam, allowing

the ball dynamics (the rotation) to be very small compared to the dynamics of the

beam. This linear control input is then implemented in the nonlinear model for

simulations, and the results are discussed later.

In Khalil [2], feedback linearization of a nonlinear model is described to trans-

form the nonlinear system into a linear one using an appropriate transformation of

the states and new control input. Hauser, et al. [3] then describes some approxi-

mate input-output linearizations of a nonlinear system (the straight beam and ball)

that can be used should feedback linearization be unfeasible. However, feedback lin-

earization would be better because approximate input-output linearizations would

remove or simplify terms, thus limiting the accuracy of the model. A new coordi-

nate system of the same ball and beam setup may make the possibility of feedback

linearization obvious, while another may not. Thus, a new coordinate system is also

considered.

3



Chapter 2: The Model

2.1 Derivation

Figure 2.1: The coordinate system used for derivation [1]. The y direc-
tion is vertical (aligned with gravity)

Following [1] but correcting a number of errors, consider the system shown

in Fig. 2.1, where the beam is an arc of a circle of radius r and d is the distance

between the center of the motor shaft and the center of the beam circle. The x, y

positions and velocities of the ball are given as

x = r sin (φ− θ) + d sin (θ) (2.1)

y = r cos (φ− θ)− d cos (θ) (2.2)
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ẋ = r cos (φ− θ)(φ̇− θ̇) + d cos (θ)θ̇ (2.3)

ẏ = −r sin (φ− θ)(φ̇− θ̇) + d sin (θ)θ̇ (2.4)

where (x, y) is the current position of the ball.

The kinetic energy of the system, T (ignoring the small amount of energy in

the rotation of the ball), is

T =
1

2
m(ẋ2 + ẏ2) +

1

2
Ibθ̇

2 (2.5)

The ball contributes a potential energy

V = mgy (2.6)

For simplicity, the beam’s center of mass is adjusted to coincide with the

motor shaft. This is not essential as any offset in the beam’s center of mass can be

easily compensated for in the controller. Substituting Eqn. 2.5 and Eqn. 2.6 into

L = T − V yields the Lagrangian

L =
mr2

2
(φ̇− θ̇)2 +

md2

2
θ̇2 −mrd cos (φ)(φ̇− θ̇)θ̇

+
Ib
2
θ̇2 −mgr cos (φ− θ) +mgd cos (θ)

(2.7)

Substituting the Lagrangian into the Euler-Lagrange equations,

d

dt

∂L

∂θ̇
− ∂L

∂θ
= Qθ ,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= Qφ

Here, Qθ and Qφ are the generalized forces (torques) corresponding to the two

generalized coordinates θ and φ, and solving for φ̈ and θ̈ produces the following

equations for the dynamics of the system (Qφ = 0 because there is no way to
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directly apply a generalized force to the ball).

θ̈ =
1

md2 + Ib −md2 cos (φ)2
[mrd sin (φ)(φ̇− θ̇)2 −mgd sin (θ)

−mgd cos (φ) sin (φ− θ)−md2 cos (φ) sin (φ)θ̇2 +Qθ]

(2.8)

φ̈ =
−1

r(md2 + Ib −md2 cos (φ)2)
[mrgd sin (θ)−mgd2 sin (θ) cos (φ)

+mgd2 sin (θ − φ)−mdr2 sin (φ)(φ̇− θ̇)2 +mrd2 cos (φ) sin (φ)(φ̇− θ̇)2

+mrgd cos (φ) sin (φ− θ) +mrd2 cos (φ) sin (φ)φ̇2 +md3 sin (φ)

− Ibg sin (φ− θ)− Ibd sin (φ)θ̇2 − (r − d cos (φ))Qθ]

(2.9)

2.2 Force of Interaction

While this model assumes the ball never leaves the beam, in many situations,

the ball may easily leave the beam. These cases make the model inappropriate.

To ensure the ball stays in contact with beam, the force necessary to keep the ball

on the beam was calculated. First, by substituting the time dependent variable ρ

for the parameter r, another degree of freedom is added to the system. Then, the

additional Euler-Lagrange equation

d

dt

∂L

∂ρ̇
− ∂L

∂ρ
= Qρ

was derived, with the constraint ρ = r enforced, and the resulting equation solved

for the radial force Qρ required to satisfy the constraint. The equations for θ and φ

were unaffected by this substitution. The results for Qρ yielded

Qρ = md cos (φ)θ̇2 +md sin (φ)θ̈ −mr(φ̇− θ̇)2 +mg cos (φ− θ) (2.10)
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Here, Qρ ≥ 0 implies the ball is in contact with the beam, while Qρ < 0 is

physically impossible as this implies the beam is pulling on the ball, hence the ball

has left the beam. Thus, when Qρ < 0, a simulation ignoring this constraint is

invalid.

2.3 Dimensionless Parameters

To simplify the dynamics of the model, dimensionless parameters were used.

The initial model uses seven parameters: m, Ib, d, g, Qθ, and t. By using the

dimensionless time parameter, τ =
√

g
r
t, dθ

dt
=

√
g
r
dθ
dτ

, dφ
dt

=
√

g
r
dφ
dτ

, and Qθ(t) =

g
r
Q̂θ(τ). From this point on, Q̂θ, θ, θ̇, θ̈, φ, φ̇ and φ̈ will be in the τ domain. In

addition, the following substitutions will further reduce the number of parameters to

four: Îb = Ib
md2

, Q = Q̂θ
md2

, R = r
d
, and τ̂ =

√
r
g
, with τ as the independent variable.

The model is reduced to

θ̈ =
1

Îb + sin (φ)2
[R sin (φ)θ̇2 − 2Rθ̇ sin (φ)φ̇− cos(φ)sin(φ)θ̇2

R cos (φ) sin (θ − φ) +R sin (φ)φ̇2 −R sin (θ) +Q]

(2.11)

φ̈ =
1

Îb + sin (φ)2
[R sin (φ)φ̇2 − 2Rθ̇φ̇ sin (φ)− 2θ̇2 cos (φ) sin (φ)

+R cos (φ) sin (θ − φ) +Rφ̇2 sin (φ)−R sin (θ)

+ 2 cos (φ) sin (φ)φ̇θ̇ − cos (φ) sin (φ)φ̇2 + sin (θ) cos (φ)

− sin (θ − φ) + sin (φ)
θ̇2

R
− Îb sin (θ − φ)

+
Îb
R
sin(φ)θ̇2 +Q(1− cos (φ)

R
)]

(2.12)

Q̂ρ = cos (φ)θ̇2 + sin (φ)θ̈ −R(φ̇− θ̇)2 +R cos (φ− θ) (2.13)

7



where Q̂ρ = Qρτ̂2

md2
.

2.4 Linearized Model

To first test the nonlinear model, a linearized model was created to compare

results with the nonlinear model. For a straight beam and ball system, every equi-

librium point must satisfy θe = 0. However, for a curved beam and ball, θe can take

many values. For example, by setting Qe = R sin (θe) (the control input), φe = θe,

and φ̇e = θ̇e = 0, any value of θ becomes an equilibrium point as long as the beam is

a full circle. However, for simplicity, the model was linearized around θe = φe = 0.

The linear model is then

θ̇

θ̈

φ̇

φ̈


=



0 1 0 0

0 0 −R

Îb
0

0 0 0 1

−1 0 1 + 1

Îb
− R

Îb
0





θ

θ̇

φ

φ̇


+



0

1

Îb

0

1

Îb
(1− 1

R
)


Q (2.14)

2.5 Motor Model

A DC motor was incorporated into the model for the simulation (and experi-

ment in [1]) using the following equation

Q =
1

md2
(αV − β

τ̂
θ̇) (2.15)

where α and β are the motor parameters, V is the input voltage to the motor,

and the τ̂ arises from the conversion to the dimensionless ”time” parameter τ . The

motor includes a saturation at an input voltage Vsat. The output torque of this
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motor model is the torque input of the ball and beam model. The input voltage to

the motor is now the new control input into the system. The linear system around

zero becomes

θ̇

θ̈

φ̇

φ̈


=



0 1 0 0

0 − β

md2Îbτ̂
−R

Îb
0

0 0 0 1

−1 − β

md2Îbτ̂
(1− 1

R
) 1 + 1

Îb
− R

Îb
0





θ

θ̇

φ

φ̇


+



0

α

md2Îb

0

α

md2Îb
(1− 1

R
)


V (2.16)

with the new input voltage, V , corresponding to the voltage used to drive the

motor. From [1], the values determined for the motor used were found as α =

0.21 and β = 0.11. The dimensions used in the simulation were: r = 0.75m,

Ibeam = 0.05kg/m2, mball = 0.02kg, and pivot point d = 0.5m. These values are

equivalent to the following dimensionless parameters: R = 1.5, I = 0.05
0.02(0.5)2=10

, and

τ̂ =
√

0.75
9.8

= 0.27. To simplify calculations, full access to the state was assumed.

2.6 Controller

The control objective was to stabilize the system at the equilibrium point

[θ, θ̇, φ, φ̇] = [0, 0, 0, 0]. The control design strategy used in [1] was the linear

quadratic regulator (LQR). This control proved successful in the physical system.

Assuming full state feedback, the controller was designed to minimize the perfor-

mance measure

J =
1

2

∫ ∞
0

(xT Q̂x+ u2)dt (2.17)
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where the weights are Q̂ = 10 ∗ I(4×4). These weights ensure that the controller

moves fast enough to keep the ball in the linear region. Theoretically, any invertible

Q̂ should result in a closed-loop nonlinear system that is asymptotically stable by

Lyapunov’s first method. Lyapunov’s method allows any invertible Q̂ to be used,

and a control gain K can be found for the closed-loop nonlinear system, but the

control gains may be unreasonable for a physical system. Using MATLAB’s lqr

command, the control gain matrix K was found to control the linear system using

feedback.
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Chapter 3: Parametric Studies

3.1 Overview

To compare the effectiveness of the nonlinear model versus the linear model,

we studied how altering the parameters of the system changes the behavior of the

closed-loop system. These parameters are R, Îb,
α
md2

, β
md2τ̂

, and Q̂ (weight in LQR).

In this thesis, we focused on studying R, Q̂, and Îb.

The main issue is finding the size of the region of attraction in the state space.

By changing the value of d specifically, we can easily alter the values of R and Îb

without changing the basic physical setup outlined in [1]. In the implementation, d

is adjustable over a fairly large range of values.

3.2 Initial Testing

First, to ensure the nonlinear model operated as expected, the initial values

found in [1] were considered (r = 0.75m and d = 0.5m, meaning R = 1.5 and

Îb = 10). The linear model is stabilized for all initial conditions, while the nonlinear

model should only work for a range of initial conditions.

Setting the initial conditions for [θ, θ̇, φ, φ̇] = [0.1, 0.1, 0.1, 0.1], both the linear
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and nonlinear systems are stable, thus driven to [θ, θ̇, φ, φ̇] = [0, 0, 0, 0]. The two

systems behave very similarly, despite the initially large difference in θ̇ values. The

results are shown in Figs. 3.1, 3.2, and 3.3. Qρ is shown in the nonlinear model’s

output to show the ball does not leave the beam (Qρ ≥ 0 for the entire simulation).

Figure 3.1: Linear model simulation with initial condition [0.1, 0.1, 0.1, 0.1].

Figure 3.2: Nonlinear model simulation with initial condition [0.1, 0.1, 0.1, 0.1].
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Figure 3.3: Difference in nonlinear and linear model simulations with
initial condition [0.1, 0.1, 0.1, 0.1].

The graphs show that the nonlinear and linearized systems both act very

similarly with the same, ”small” (close to 0) initial conditions. However, when the

initial states are larger (further away from 0), we expect the nonlinear system to

behave differently, and possibly no longer be stabilizable or for the ball to leave the

beam. Note that these are two different instabilities. One can, for example, imagine

an apparatus where the ball is replaced by a ring that surrounds and slides along

the beam. Such a system would eliminate the possibility of flying off the beam, but

could still be unstable at any of the possible equilibria. Nonetheless, the primary

source of instability in the model is the ball leaving the beam. This can be seen by

setting [θ, θ̇, φ, φ̇] = [0, 0, 0, 0.3]. Here, the nonlinear model shows the ball leaving

the beam. In the nonlinear model, the states have not increased to a large value

where stabilizability is unlikely, yet the ball has left the beam. The results are shown

in Figs. 3.4 and 3.5
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Figure 3.4: Linear model simulation with initial condition [0, 0, 0, 0.3].

Figure 3.5: Nonlinear model simulation with initial condition [0, 0, 0, 0.3].

We are concerned primarily with the initial value of φ because this is where

the ball is initially placed. It is difficult to test nonzero initial conditions of θ̇ and

φ̇ because in the physical system, we cannot easily give the ball or beam an initial

velocity. We do not consider the initial conditions of θ and φ together because then
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we can position the system so that the ball is at an equilibrium point already (for

example, rotate the beam so that the ball is positioned where φ = 0 would be when

θ = 0). It makes more sense to consider placing the ball at any given position, and

keeping the beam at θ = 0.

3.3 Case d = 0.5m

We found that the nonlinear system could operate until φ0 = 0.172. The results

and comparison of the nonlinear and linear systems can be seen in Figs. 3.6, 3.7,

and 3.8. Making the value of φ0 any larger would cause the ball to leave the beam

(Qρ < 0) very quickly after starting the simulation. This is shown in Fig. 3.9.

Fig. 3.10 shows the state of the model when the ball leaves the beam. Fig. 3.11

shows the control input signal for the nonlinear system at the max φ0 value.

Figure 3.6: Linear model simulation for d = 0.5m with initial condition
[0, 0, 0.172, 0].
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Figure 3.7: Nonlinear model simulation for d = 0.5m with initial condi-
tion [0, 0, 0.172, 0].

Figure 3.8: Difference in nonlinear and linear model simulations for d =
0.5m with initial condition [0, 0, 0.172, 0].
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Figure 3.9: Nonlinear model for d = 0.5m with initial condition [0, 0, 0.173, 0].

(a) Ball and beam initial states (b) States of system when ball leaves

Figure 3.10: States of the system for nonlinear model initially (θ = 0 and
φ = 0.172) and when the ball leaves the beam (θ = 0.226 and φ = 0.257)
for d = 0.5m.
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Figure 3.11: Input signal for nonlinear model simulation for d = 0.5m
with initial condition [0, 0, 0.172, 0].

3.4 Case d = 0.375m

Next, we considered when the pivot is halfway between the beam and the

center of the circle formed by the beam. In this case, r = 0.75m and d = 0.375m,

thus R = 2 and Îb = 17.77. Again, the results didn’t differ too much in terms of what

initial conditions make it impossible to stabilize the nonlinear system. The system

acts very similarly to what occurs when R = 1.5, which is expected. Surprisingly,

the maximum initial value of φ that allows the nonlinear system to be stabilizable

is much lower than the R = 1.5 case (maximum φ0 = 0.15). However, we know

that when d = 0 (so the pivot is at the center of the circle), the system is not

stabilizable at all because R = ∞. Thus, we now expect the possible domain of

attraction of the origin to decrease as d becomes smaller, as is evident from these

results. Figs. 3.12, 3.13, and 3.14. refer to the case d = 0.375m. Again, choosing a
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φ0 larger than 0.150 causes the ball to leave the beam, as shown in Fig. 3.15, and

Fig. 3.16 shows the state of the model when the ball leaves the beam. Fig. 3.17

shows the control input signal for the nonlinear system at the max φ0 value.

Figure 3.12: Linear model simulation for d = 0.375m with initial condi-
tion [0, 0, 0.150, 0].

Figure 3.13: Nonlinear model simulation for d = 0.375m with initial
condition [0, 0, 0.150, 0].
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Figure 3.14: Difference in nonlinear and linear model simulations for
d = 0.375m with initial condition [0, 0, 0.150, 0].

Figure 3.15: Nonlinear model for d = 0.375m with initial condition [0,
0, 0.151, 0].
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(a) Ball and beam initial states (b) States of system when ball leaves

Figure 3.16: States of the system for nonlinear model initially (θ = 0 and
φ = 0.150) and when the ball leaves the beam (θ = 0.349 and φ = 0.339)
for d = 0.375m.

Figure 3.17: Input signal for nonlinear model simulation for d = 0.375m
with initial condition [0, 0, 0.150, 0].
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3.5 Case d = 0.75m

Now we consider when the pivot is located on the beam itself. In this case,

r = 0.75m and d = 0.75m, thus R = 1 and Îb = 4.44. We found that the results

didn’t differ too much in terms of what initial conditions make the nonlinear linear

system no longer stabilizable (the max φ0 = 0.171). However, we can clearly see that

the system acts differently with the new pivot position. The results and comparison

of the nonlinear and linear systems can be seen in Figs. 3.18, 3.19, and 3.20. Again,

making φ0 any larger than 0.171 caused the ball to leave the beam, as shown in

Fig. 3.21. Fig. 3.22 shows the state of the model when the ball leaves the beam.

Fig. 3.23 shows the control input signal for the nonlinear system at the max φ0

value.

Figure 3.18: Linear model simulation for d = 0.75m with initial condition
[0, 0, 0.171, 0].
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Figure 3.19: Nonlinear model simulation for d = 0.75m with initial
condition [0, 0, 0.171, 0].

Figure 3.20: Difference in nonlinear and linear model simulations for
d = 0.75m with initial condition [0, 0, 0.171, 0].
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Figure 3.21: Nonlinear model for d = 0.75m with initial condition [0, 0, 0.172, 0].

(a) Ball and beam initial states (b) States of system when ball leaves

Figure 3.22: States of the system for nonlinear model initially (θ = 0 and
φ = 0.171) and when the ball leaves the beam (θ = 0.045 and φ = 0.172)
for d = 0.75m.
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Figure 3.23: Input signal for nonlinear model simulation for d = 0.75m
with initial condition [0, 0, 0.171, 0].

3.6 Case d = 1.5m

The next two cases consider a situation when the pivot was outside the beam

(so the motor shaft is connected above the beam). The first case considered was

r = 0.75m and d = 1.5m so R = 0.5 and Îb = 1.11. In this case, the pivot is twice the

radius away from the center of the circle. We find that the system performs better

than if the pivot is inside the beam in terms of the size of domain of attraction. For

this case, the maximum φ0 = 0.187, which is an improvement of 0.16. However, the

time it takes for the system to reach [θ, θ̇, φ, φ̇] = [0, 0, 0, 0] has increased, but not

by a significant amount. Figs. 3.24, 3.25, and 3.26 show the outputs and differences

between the nonlinear and linear models. Again, increasing φ0 over 0.187 causes

the ball to leave the beam, as shown in Fig. 3.27. Fig. 3.28 shows the state of the

model when the ball leaves the beam. Fig. 3.29 shows the control input signal for
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the nonlinear system at the max φ0 value.

Figure 3.24: Linear model simulation for d = 1.5m with initial condition
[0, 0, 0.187, 0].

Figure 3.25: Nonlinear model simulation for d = 1.5m with initial con-
dition [0, 0, 0.187, 0].

26



Figure 3.26: Difference in nonlinear and linear model simulations for
d = 1.5m with initial condition [0, 0, 0.187, 0].

Figure 3.27: Nonlinear model for d = 1.5m with initial condition [0, 0, 0.188, 0].
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(a) Ball and beam initial states (b) States of system when ball leaves

Figure 3.28: States of the system for nonlinear model initially (θ = 0 and
φ = 0.187) and when the ball leaves the beam (θ = 0.014 and φ = 0.175)
for d = 1.5m.

Figure 3.29: Input signal for nonlinear model simulation for d = 1.5m
with initial condition [0, 0, 0.187, 0].
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3.7 Case d = 7.5m

The second case for placing the pivot outside the beam considered placing

the pivot very far from the beam. To observe this setup, we considered making

r = 0.75m and d = 7.5m so R = 0.1 and Îb = 0.04. In this setup, the model can

be stabilized for fairly large values of φ0. The maximum φ0 = 0.463, which is a

significant increase compared to every other case. However, there is a noticeable

increase in time to converge. The time to reach equilibrium is over three times the

amount needed for the cases when the pivot is inside the beam. The results are

shown in Figs. 3.30, 3.31, and 3.32. Fig. 3.33 shows the ball leaving the beam when

φ0 was chosen greater than 0.463, and Fig. 3.34 shows the state of the model when

the ball leaves the beam. Fig. 3.35 shows the control input signal for the nonlinear

system at the max φ0 value.

Figure 3.30: Linear model simulation for d = 7.5m with initial condition
[0, 0, 0.463, 0].
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Figure 3.31: Nonlinear model simulation for d = 7.5m with initial con-
dition [0, 0, 0.463, 0].

Figure 3.32: Difference in nonlinear and linear model simulations for
d = 7.5m with initial condition [0, 0, 0.463, 0].
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Figure 3.33: Nonlinear model for d = 7.5m with initial condition [0, 0, 0.464, 0].
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(a) Ball and beam initial states (b) States of system when ball leaves

Figure 3.34: States of the system for nonlinear model initially (θ = 0 and
φ = 0.463) and when the ball leaves the beam (θ = 0.004 and φ = 0.436)
for d = 7.5m.
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Figure 3.35: Input signal for nonlinear model simulation for d = 7.5m
with initial condition [0, 0, 0.463, 0].

An interesting result discovered from these tests is that we can see a pattern

concerning the boundary of stabilizability, φmax, and the value of d. Obviously,

when d = 0, the models are unstabilizable, because R = r
d

= ∞. As d grows, the

boundary increases until d gets close to r. When that happens, the φmax levels out

around 0.17, and slightly decreases as it reaches r, before increasing again when

d > r. This can be seen in Fig. 3.36
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Figure 3.36: Plot of maximum φ0 value vs d.

3.8 Causes for Ball Leaving the Beam

To understand more clearly what is causing the ball to leave the beam, we

checked the different components of Qρ to determine which terms are the primary

causes for the ball to leave the beam. First, we removed the cos (φ)θ̇2 term in the

calculation of Q̂ρ. By removing this term, we know if θ̇ or φ̇ is causing the ball to

leave the beam (since φ and θ are inside sinusoids, these do not play a direct part in

determining whether the ball leaves the beam). If the ball now leaves the beam with

smaller initial values, then we know that θ̇ is helping keep the ball on the beam.

After running the simulations again, we found that the model performed worse.

For every value of d, the ball left the beam with smaller initial values of φ in both
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the nonlinear and linear systems. For the case d = 0.5m (R = 1.5), the boundary

for stabilizability is φ0 = 0.130 instead of 0.172. When d = 0.37m5 (R = 2), the

boundary is φ0 = 0.128 instead of 0.15. When d = 0.75m (R = 1), the boundary is

φ0 = 0.138 instead of 0.171. When d = 1.5m (R = 0.5), the boundary is φ0 = 0.170

instead of 0.187. When d = 7.5m (R = 0.1), the boundary is φ0 = 0.442 instead of

0.463.

Next, we removed the md sin (φ)θ̈ term in Qρ. Since this term contains θ̈, it is

an important component in the calculation of Qρ. This term is directly affected by

d. When the pivot is located inside the beam, the boundary of stabilizability has

improved (we later find these results are the same as ignoring Qρ). We find that

when d = 0.5 (R = 1.5), the boundary for stabilizability is φ0 = 0.215 instead of

0.172. When d = 0.375 (R = 2), the boundary is φ0 = 0.17 instead of 0.15. When

d = 0.75 (R = 1), the boundary is φ0 = 0.294 instead of 0.171. When the pivot is

located outside the beam, the nonlinear model performs better as well (but not as

well as ignoring Qρ). When d = 1.5m (R = 0.5), the boundary is φ0 = 0.386 instead

of 0.187. When d = 7.5m (R = 0.1), the boundary is φ0 = 0.606 instead of 0.463.

Next, we removed the −mr(φ̇− θ̇)2 term. Since this term is always negative,

removing this term should always improve the performance of the system. This

is confirmed after testing. For the case d = 0.5m (R = 1.5), the boundary for

stabilizability is φ0 = 0.184 instead of 0.172. When d = 0.375m (R = 2), the

boundary is φ0 = 0.154 instead of 0.15. When d = 0.75m (R = 1), the boundary is

φ0 = 0.238 instead of 0.171. When d = 1.5m (R = 0.5), the boundary is φ0 = 0.243

instead of 0.187. When d = 7.5m (R = 0.1), the boundary is φ0 = 0.500 instead of
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0.463.

Finally, we removed the mg cos (φ− θ) term. Without this term, the nonlinear

model simulation immediately has a negative Qρ value for every value of d (except

at [0, 0, 0, 0]). Thus, this term is the major one holding the ball on the beam. This

is unsurprising because it is the term due to gravity, which is necessary for the ball

to stay on the beam.

As another test of the system, the constraint that the ball remain on the beam

was removed. This is a plausible test if we made the circular beam into a tube so

that the ball never leaves the system. The model dynamics are not affected, but

Qρ is no longer needed. Testing for the same initial conditions, we find that when

d = 0.5 (R = 1.5), the boundary for stabilizability is φ0 = 0.215 instead of 0.172.

When d = 0.375 (R = 2), the boundary is φ0 = 0.17 instead of 0.15. When d = 0.75

(R = 1), the boundary is φ0 = 0.294 instead of 0.171. When d = 1.5 (R = 0.5), the

boundary is φ0 = 0.546 instead of 0.187. When d = 7.5 (R = 0.1), the boundary is

φ0 = 1.224 instead of 0.463. Thus, the system is stabilizable for much larger initial

conditions by removing the constraint that the ball remain on the beam.

The results for testing Qρ are plotted in Fig. 3.37
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Figure 3.37: Plot of Max φ0 vs d after altering Qρ.
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Chapter 4: Nonlinear Controls

4.1 Feedback Linearization

To truly test the nonlinear model, nonlinear control techniques were consid-

ered for controlling the nonlinear model. A common approach to solving nonlinear

systems is feedback linearization. The goal of feedback linearization is to determine

a transformation of the nonlinear system into a linear system with suitable control

input. The general class of nonlinear systems take the form

ẋ = f(x) + g(x)u

y = h(x)

So, with a state feedback control u = α(x) + β(x)v (α and β not related to motor

values), and a change of variables z = T (x), the nonlinear system can be transformed

into an equivalent linear system if the system is feedback linearizable.

According to Chapter 13.3, of [2], the nonlinear system with domain D is

feedback linearizable if and only if there is domain D0 ⊂ D such that

1. The matrix G(x) = [g(x), adfg(x), ..., adn−1f g(x)] has full rank ∀x ∈ D0

2. The distribution D = span{g(x), adfg(x), ..., adn−2f g(x)} is involutive in D0.
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where

ad0fg(x) = g(x)

adfg(x) = [f(x), g(x)]

adkfg(x) = [f(x), adk−1f g(x)]

Here, [f(x), g(x)] = ∂g
∂x
f(x) − ∂f

∂x
g(x) refers to the Lie Bracket. A nonsingular

distribution 4 = span{f1(x), f2(x), ..., fn(x)} (so the span is Rn) is involutive if

and only if

[fi(x), fj(x)] ∈ 4, ∀ 1 ≤ i, j ≤ k

To test involutivity, we calculated first tested the rank of G(x) in varying

regions, and found it was nonsingular in large regions around zero. To test these

regions for involutivity, we found D, and then computed the Lie brackets of every

vector. To confirm that each Lie bracket was still an element of the span, we

computed the determinant of the matrix containing all the Lie brackets, and tested

to ensure it had determinant equal 0. Testing our model, we found the system

is not involutive in any significant region. This is consistent with our inability to

determine a change of variables to transform the nonlinear system into a linear

system. A transform could not be found to successfully create a linear system.
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4.2 Lyapunov Studies

From the LQR calculations, we obtain the unique S matrix that solves the

Riccati equation

ATS + SA− SBR−1BTS + Q̂ = 0 (4.1)

with K = R−1BTS

Using this S matrix, we can create a candidate Lyapunov function

V (x) =
1

2
xTSx

V̇ (x) =
1

2
(xTSẋ+ ẋTSx)

(4.2)

Here, ẋ = [A − BK]x + fl(x), with fl(x) = gcl(x) − (A − BK)x, and gcl(x) is the

closed loop vector field of the system (so fl(x) is the ”leftover” terms after removing

the linearized equation from the nonlinear model). Thus

V̇ (x) =
1

2
xT (S(A−BK) + (A−BK)TS)x+

1

2
xTSfl(x) +

1

2
fl(x)TSx (4.3)

We know Eq. 4.1 so

V̇ (x) = 1
2
xT (−Q− SBTR−1BTS)x+ 1

2
xTSfl(x) + 1

2
fl(x)TSx

V (x) > 0 and V̇ (x) ≤ 0 for small enough fl(x) and ‖fl(x)‖ → 0 as x → 0 at least

as fast as ‖x‖2, so it is a viable Lyapunov function. We would like to solve where

V̇ (x) = 0 because this is the boundary of the region we can prove is the domain of

attraction of [0, 0, 0, 0]. Considering the case where d = 0.5, we computed V̇ (x) for

various regions of x, and found several states where V̇ (x) = 0. Ignoring the case of

[0, 0, 0, 0], we find that these solutions require at least one state being greater than
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0.2. However, it was observed that the system is unstabilizable or the ball flies off

the beam when φ0 > 0.2. Testing for the other states beginning at 0.2 reveals the

system is unstabilizable or the ball flies off the beam. Thus, the smallest boundary

of the domain of attraction is the ”circle” of radius 0.2 for every state. Testing for

the other cases of d reveal similar results.

To study the Lyapunov stabiliyu further, we considered varying the value of

Q̂ in 2.17. The first two cases considered increasing or decreasing the coefficient

in front of the identity matrix. First, we considered decreasing Q̂ from 10 ∗ I4x4 to

5 ∗ I4x4. This resulted in slightly better results in terms of maximum φ0 when the

pivot was located on or outside the beam, but performed the same if the pivot was

located inside the beam. When we increased Q̂ to 50 ∗ I4x4, the model performed

worse except at d = 0.375, where max φ0 remained the same. Next, we focused on

the ball states, φ and φ̇. We gave these states more weight so that the ball movement

is minimized. First, we tested [1, 1, 10, 10]∗I4x4. We found that the nonlinear model

performed better, and performance improved more as we moved the pivot further

from the center of the beam circle. Next, we tested [1, 1, 1, 10] ∗ I4x4. Again, the

performance improved, though when the pivot is outside the beam, it does not

improve as well as [1, 1, 10, 10] ∗ I4x4. Finally, we tested a case where the beam

state is weighed less, and the velocities are given the most weight. The performance

improved when the pivot is outside the beam. However, when the pivot is inside

the beam, the performance is worse. Fig. 4.1 shows the results for various values of

the Q̂.
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Figure 4.1: The max initial phi value vs pivot distance when altering
the Q in LQR.
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Chapter 5: New Coordinate System

5.1 Model

Figure 5.1: A new coordinate system for testing.

It is helpful to study the ball and circular beam using a slightly different coor-

dinate system. Define θ and ψ as shown in Fig. 5.1. Notice that, in this coordinate

system, ψ = 0 at every equilibrium point and that any value of θ can be an equilib-

rium value with an appropriate control signal, since ψ = φ−θ. This is fundamentally

different from the ball and straight beam where there is only one equilibrium value

for the beam, while the ball can have its equilibrium value anywhere on the beam.

In fact, the circular beam and ball most resembles the inverted pendulum on a cart
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when it is near an equilibrium point.

The x, y positions and velocities from Eqs. 2.1, 2.2, 2.3, and 2.4 become

x =r sin (ψ) + d sin (θ)

y =r cos (ψ)− d sin (θ)

ẋ =r cos (ψ)ψ̇ + d cos (θ)θ̇

ẏ =− r sin (ψ)ψ̇ − d sin (θ)θ̇

(5.1)

Following the same derivation for total energy and the Lagrangian equations, the

equations describing the dynamics of the ball and circular beam in these new coor-

dinates are

Qθ = (Ib +md2)θ̈ +mrd cos (ψ + θ)ψ̈ −mrd sin (ψ + θ)ψ̇2 +mdg sin (θ) (5.2)

0 = mrd cos (ψ + θ)θ̈ +mr2ψ̈ −mrd sin (ψ + theta)θ̇2 −mgr sin (ψ) (5.3)

0 ≤ mdθ̈ +mdθ̇2 cos (ψ + θ)−mrψ̇2 +mg cos (ψ) (5.4)

In the following analysis, we will assume that the motor dynamics and possible

saturation can be ignored. This is reasonable, provided one has a very large and

powerful motor. It allows us to focus on the fundamental aspects of the dynamics.

Using Qθ as the control, it is then possible to approximately linearize Eq. 5.2

by letting

Qθ =
1

Ib +md2
(−mrd sin (ψ + θ)ψ̇2 +mgd sin (θ) + û) (5.5)

û = θ̈ +
mrd cos (θ + ψ)ψ̈

Ib +md2
(5.6)

The accuracy of this approximation can be improved by choosing the inertia of the

beam to be large compared to the mass of the ball, as is the case for the inverted
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pendulum problem, where the control is simplified by choosing a powerful motor

and a heavy cart. One can then view the ball (or the pendulum) as a (small)

perturbation of the beam dynamics. Under these assumptions, the beam dynamics

become a simple double integrator, as shown is Eqn. 5.7.

û ≈ θ̈ (5.7)

Next, one substitutes these simplified and linear dynamics into Eqn. 5.3. The

ball dynamics can then by linearized by choosing the control to be

û =
1

mrd cos (ψ + θ)
(mrd sin (ψ + θ)θ̇2 +mgr sin (ψ) + u) (5.8)

In fact, this equation is valid for the full dynamics, including the neglected small

effect of the ball on the beam dynamics. The difference between the exact and

approximate descriptions is in the complexity of the control. This is significant

because this new control also drives the beam, making the beam dynamics nonlinear

and complicated. The resulting dynamics become

ψ̈ =
u

mr

θ̈ = tan (ψ + θ)θ̇2 +
g

d

sin (ψ)

cos (ψ + θ)
+ u

(5.9)

Notice that the ball dynamics are linear and decoupled from those of the beam, but

the beam dynamics are both nonlinear and unstable. However, one can now choose

a linear feedback state control that will stabilize the whole system and keep the ball

dynamics linear in the state variables. However, this control does put the nonlinear

dynamics of the beam back into the ball motion. The linearized approximated model
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can then be expressed as shown in Eqn. 5.10.

ψ̇

θ̇

ψ̈

θ̈


=



0 0 1 0

0 0 0 1

0 0 0 0

g
d

0 0 0





ψ

θ

ψ̇

θ̇


+



0

0

1
mr

1


u (5.10)

Then, the nonlinear approximate model can be written as shown in Eqn. 5.11.

ψ̇

θ̇

ψ̈

θ̈


=



0 0 1 0

0 0 0 1

0 0 0 0
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d

0 0 0





ψ

θ

ψ̇

θ̇


+



0

0

1
mr

1


u+



0

0

0

tan (ψ + θ)θ̇2 + g
d
( sin (ψ)
cos (θ+ψ)

− ψ)


(5.11)

Simulating this model using the LQR for the control input, we see that this

model performs much better. Using d = 0.5, so R = 1.5 and I = 10, we find

the nonlinear model is stabilizable and still maintains contact with the beam for

ψ0 = 0.626, which is much better than the previous coordinate system (since θ = 0,

both ψ and φ are the same value). For d = .75, the nonlinear model is stabilizable

up to ψ0 = 0.774. For d = .375, the nonlinear model is stabilizable up to ψ0 = 0.539.

For d = 1.5, the nonlinear model is stabilizable up to ψ0 = 0.434. For d = 7.5, the

nonlinear model is stabilizable up to ψ0 = 0.125. This is different than the previous

coordinate system, because this system performs worse if the pivot is located outside

the arc, whereas the previous system performs better moving the pivot outside the

arc. Figs. 5.2, 5.3, and 5.4 are plots of the case d = 0.5. Increasing ψ0 to 0.627 when

d = 0.5 causes the ball to leave the beam, as shown in Fig. 5.5.
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Figure 5.2: Linear model simulation in new coordinate system with ini-
tial condition [0.626, 0, 0, 0].

Figure 5.3: Nonlinear model simulation in new coordinate system with
initial condition [0.626, 0, 0, 0].
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Figure 5.4: Difference in nonlinear and linear model simulations in new
coordinate system with initial condition [0.626, 0, 0, 0].

Figure 5.5: Nonlinear model in new coordinate system with initial con-
dition [0.627, 0, 0, 0].

Solving for the optimal cost from the LQR, we followed the same procedure

as Eqn. 4.2, and solved for when V̇ (x) = 0. Again, there were multiple states where

V̇ (x) = 0, however, they were not always close to the origin. In this coordinate
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system, the system is also stabilizable for larger initial states. For the case d = 0.5,

so R = 1.5 and I = 10, at least one state is greater than 0.2, but the system is still

stabilizable. Thus, this system is locally stabilizable for a much larger region, which

is evident with the fact the system maintains contact with the beam and remains

stabilizable for much larger regions for this case. We found the system maintains

V̇ (x) < 0 for a region with ‖x‖ ≤ 0.2. In this region, the system is still stabilizable

and the ball maintains contact with the beam.
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Chapter 6: Conclusion

In this thesis, corrections were made to Sheng’s model [1] and some nonlinear

techniques were tested. We compared the performance of the linear model with

the nonlinear model using an LQR control input. We also tested for feedback lin-

earization, and tested Lyapunov stability of the nonlinear model. Finally, a new

coordinate system was tested, using both an approximated nonlinear and linearized

models. Using this new coordinate system, the results of the two systems were

compared.
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