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This thesis formulates, analyzes, optimizes and compares total cost models for 

conventional, taxi and dial-a-ride systems in rural areas.  The models are developed 

for a rural region with a town at its center.  By considering characteristics of rural 

areas and rural passengers, the models minimize total cost by optimizing key decision 

variables, i.e. headway and the number of taxis in a system.   

The analysis of these models aims to identify thresholds of demand where 

different systems are preferable and explore the effects of various operating 

conditions on cost and optimized decision variables for each transportation system.  

The results of this thesis show that in general the taxi system has the lowest total cost 

per trip, but the dial-a-ride and conventional bus systems have the lowest user and 

operator cost, respectively.  This analysis gives policymakers in rural regions 



  

guidelines for developing efficient public transportation systems given various 

circumstances.   
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Chapter 1:  Introduction 

1.1 Problem Statement 
According to the Status of Rural Public Transportation Report, about 91 

million people or 36 percent of the United States population live in rural areas 

(CTAA 2000). The U.S. Census Bureau describes rural as a “territory, population and 

housing units not classified as urban (U.S. Census Bureau 2005).”   Rural or non-

metropolitan counties are located outside the boundaries of metropolitan areas and 

have no cities with more than 50,000 residents.  By contrast urbanized areas are 

census block groups or groups having a population density of at least 1,000 people 

per square miles of land.  Additionally, urban areas have a minimum residential 

population of 50,000 people.  Rural areas often comprise open country and 

settlements with fewer than 2,500 residents, while urban areas are more densely 

settled (USDA 2003).  Table one shows average statistics for rural single-counties in 

the U.S. 

 

Table 1.1 Mean Statistics for Rural Single Counties in the United States  

Mean Density 23 people/mi2

Mean Service Area 2329 mi2 

Mean Population 52573 people 

Percentage of population without a car 0.077 

 Source:  CTAA 2000 

Rural areas account for 83 percent of the United States’ land, 21 percent of its 

population, 18 percent of its jobs and 14 percent of its earnings.  Compared to urban 



 

 2 
 

areas, rural areas contain greater percentages of males, whites, elderly, persons in 

poverty, households with incomes below the national median, homeowners and car 

owners (Burkhardt 1999).  

Transportation issues in rural areas are so significant because 32 percent of all 

rural residents are classified as transit dependent (CTAA 2000).  One in 14 

households in the rural United States has no vehicle.  Of this population, 45 percent 

of the rural elderly and 57 percent of the rural poor have no car.  Thirty-eight percent 

of all rural residents live in counties with no public transit service.  Additionally, 

intercity and interstate bus, train, and air services to rural areas have greatly 

diminished and many areas have no taxi service (Burkhardt 1999).   

Captive riders of rural transportation systems include those disadvantaged by 

age, disabilities or income with no alternative to using public transportation systems.  

This is a major issue because rural communities with a high proportion of residents 

without cars are also characterized by high poverty rates (USDA 2005).  Furthermore, 

over 90 percent of individuals on public assistance do not have a car.  These potential 

users of rural transit must be provided efficient ways of traveling to work, school, 

doctor’s appointments, etc.  Many of these users are recipients of government 

programs such as Medicaid and Welfare to Work.   

Over the years, the U.S. federal, state and local governments have tried to 

address the unmet transportation needs of rural United States citizens.  In 1998 there 

were about 1,600 rural transportation systems using over 10,000 vehicles (FHWA and 

FTA 2001).  Most of these systems receive some type of government funding.  The 

federal government’s Surface Transportation Assistance Act of 1978 began the trend 
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of ongoing federal funding for rural transit.  In 1999, the U.S. Department of 

Transportation’s Transportation Equity Act for the 21st Century Congress authorized 

a $134 million ceiling for this program which is now called Section 5311 (Burkhardt 

1999).  In the current transportation bill, SAFETY-LU, over $2 billion has been 

designated for rural transportation.  However, there is still great potential for 

improving and optimizing transportation services in rural areas and these 

improvements can have a great impact on the culture of rural America.    A study by 

Burkhardt submits that rural transit services can generate economic benefit by 

providing a means for resident to get to jobs and enabling rural community residents 

to live independently (Burkhardt 1999). 

The policy implications of rural public transportation are obvious and interests 

in improving the system are justified.  Several papers have examined rural public 

transportation systems qualitatively and analysis has been extensive for system 

optimization in urban systems; however, methodologies for quantitatively developing 

rural systems have not been adequately studied.  Therefore, this thesis attempts to 

develop theoretical models that can be practically applied in efforts to improve the 

rural public transportation system in the United States.   

1.2 Research Objectives 

The goal of this thesis is to formulate, optimize, analyze and compare models 

for conventional bus, taxi and dial-a-ride systems in rural areas.  The first objective is 

to analyze in detail the interactions between various parameters that characterize each 

transportation system.  A model is formulated for each system that optimizes decision 

variables such as headway and number of vehicles in a system. The second objective 
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is to identify thresholds of demand beyond which different systems are preferable. 

The third objective is to explore the effects of various operating conditions on 

optimized decision variables.   

1.3 Organization 

This thesis is organized into six chapters.  The second chapter reviews current 

literature on rural and urban public transportation systems.  First the chapter considers 

literature devoted to exploring types of public transportation systems and the 

characteristics and needs of rural transportation systems.  Then the chapter examines 

literature that theoretically and empirically considers urban public transportation 

models by optimizing total cost functions.   

 Chapter 3 proposes a basic model formulation for rural public transportation 

systems.  The chapter develops optimization models to fairly compare three 

alternative systems at their best.  These models ensure that the most effective design 

choices are used for each of the modes.  The systems studied are conventional bus, 

dial-a-ride and taxi.   

The next two chapters present analyses of the optimization models. In Chapter 

4, a system evaluation is performed.  Values are determined for the decision variables 

and minimized cost for each type of system given a set of input parameters.  

Threshold and sensitivity analyses are performed in the fifth chapter.  The level of 

demand for which each type of system is most appropriate is defined and the effect of 

the input parameters on the model will be determined.  
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 Lastly, chapter 6 summarizes the findings of this thesis and makes 

recommendations on a series of policy issues applicable to the practical use of these 

models. Additionally, recommendations for further research are discussed. 
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Chapter 2:  Literature Review 

 Chapter 2 summarizes previous research related to this thesis.  The review 

considers three categories of literature.  The first section highlights literature that 

deals with various types of transit.  Then the review examines the needs and 

characteristics of rural transportation systems.  The third section reviews literature 

that deals with transit models used to optimize total cost.  

2.1 Types of Transit 

The most conventional type of transit is fixed-route bus systems.  These 

systems have fixed schedules and fixed routes and require substantial demand 

densities to be economically viable (Vuchic 1991).  Systems that deviate from this 

convention are considered paratransit.  These systems are adaptable in their 

scheduling and/or routing.  As a consequence of this characteristic, these systems 

have been deemed more appropriate for rural or low-density service areas (Chang and 

Schonfeld 1991a, Gray 1992).  Paratransit has the potential to provide attractive, high 

quality alternatives to the auto.  Because paratransit is service-oriented, it has the 

potential to lead to net savings in vehicle miles traveled and reductions in time-related 

congestion costs, energy consumption and vehicle emissions.  Also, paratransit 

ensures mobility and access opportunity for those individuals who are unable to use 

auto or conventional transit (Gray and Hoel 992).    

Taxis and dial-a-ride services are considered paratransit.  Taxis systems offer 

service at taxi stands, telephone calls or cruising streets.  They provide individualized, 

but labor-intensive and costly service (Vuchic 1981).  Among various types of 
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paratransit, taxis are also associated with higher social cost with respect to 

congestion, noise and air pollution (Vuchic 1981).  Dial-a-ride is considered most 

suitable for areas where demand is dispersed with poor street networks (Vuchic 

1981).  Service by conventional transit would be inappropriate and taxi service would 

be too costly in these networks.  Dial-a-ride provides cheap door to door service by 

allowing ridesharing.  Types of routing include many to many and one to many (or 

vice versa).  This type of paratransit also offers variability in vehicle size.  These 

vehicles can be as small as taxis, vans, or small to medium size buses.  Dial-a-ride 

can easily be adapted to serve disabled users. 

2.2 Characteristics of Rural or Low-Density Transportation Systems 

Several articles were found that examine the qualitative characteristics of the 

rural public transportation systems or demand in rural or low-density areas.   

Rural America and rural transportation are given a close examination, in a 

report released by the Federal Highway Administration (FHWA) and Federal Transit 

Administration (FTA) (2001).  The United States Department of Transportation 

defines rural in two ways.  For highway functional classification, it is defined as 

anything outside of an area with a population of 5,000.  For planning purposes, rural 

is considered areas outside of metropolitan areas 50,000 or greater in population.    

However, in the report rural is considered to be “non-metropolitan areas outside the 

limits of any incorporated or unincorporated city, town or village.”  The report further 

categorizes rural into three distinctive types.  The first type is called basic rural.  This 

includes dispersed counties or regions with few or no major population centers of 

5,000 or more.   These areas are described as having stable or declining populations, 
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agricultural and natural resource based economies and farm-to-market localized 

transportation patterns.  Transportation issues include reduced funding for 

maintenance and preservation of the road and bridge system and high expense to 

service the small public transit dependent segment of the population.  The second 

category is called developed rural.  These are area with dispersed counties or regions 

with one or more population center(s) of 5,000 or more.  Its characteristics include 

stable or growing populations, more diverse transportation and economies with mixed 

industrial and service based cities and rural areas that are agriculture and natural 

resource based.  Developed rural areas face transportation issues such as maintaining 

a regional system that enables access to regional service centers, farm-to-market or 

ranch-to-market transportation, funding for capacity improvements and providing 

public transportation options.  The third type is called urban boundary rural.  This 

consists of counties or regions that border metropolitan areas and are highly 

developed.  In these areas economic and population growth and transportation are 

connected to the urban center.  Transportation issues include balancing economic 

development and preserving rural character, maintaining roads and bridges amidst 

traffic growth, funding capacity improvements and providing adequate public 

transportation. 

This report further characterizes the rural transportation system as 

decentralized because roads are funded and maintained by all levels of the 

government.  The rural public transit system is primarily funded by state and federal 

governments, but locally operated.  Rural transportation is essential for connecting 

people to jobs, family and healthcare, as well as contributing to regional economic 
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growth by connecting business to customers, goods to markets and tourists to 

destinations.  However, the article highlights four geographic challenges of rural 

areas.  These challenges include long distances between population centers, steep 

grades and mountain passes, more dramatic weather events and effects on road 

conditions and a dispersed system with high unit costs for service delivery, operations 

and maintenance.  

Radow and Winters highlight the major differences between urban and rural 

transit systems.  Rural transportation providers must operate in large geographic areas 

with low population densities and serve rural residents that generally have lower 

incomes than urban residents.  Additionally, these rural providers are challenged to 

operate demand-response or subscription services to largely transit-dependent groups 

such as the elderly, youth, low-income and people with disabilities. 

In a 1978 Institute of Transportation Engineers (ITE) Technical Information 

Report that examined the public transportation needs and demands of rural citizens, 

the typical rural county is described as having five distinctive features.  The 

characteristics are as follows:  a geographically scattered population, users’ desire 

travel to a limited number of destinations usually in a nearby town or county seat, trip 

lengths are longer than those provided by urban transit systems, potential population 

densities are insufficient to support conventional fixed-route services and rural 

networks are not highly connective.  Furthermore, the report suggests that rural public 

transportation systems must carefully balance need of users and the travel demand of 

the system.  In these communities, there is a certain amount of fixed travel that is 

deemed necessary to provide adequate standard of living; thus, this type of travel is 
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not affected by price of travel.  In rural areas, the travel demand is still used to 

estimate vehicle requirements, vehicle utilization and operating costs, but is highly 

correlated to the user’s income level and extent of travel occurring relative to a 

precise set of environmental circumstances.  Additionally, travel impedance must 

include price, difficulty associated with arranging the trip, waiting time and 

scheduling compatibility (ITE 1978). 

 In an overview of problems in rural passenger transportation, Burkhardt 

submits that several factors influence the number of persons that can be expected to 

ride a given rural system.  First, he cites a relation with the monthly number of bus-

kilometers served by the system.  As more service is provided, there should be an 

increase in ridership.  Secondly, availability of service, expressed as frequency or 

reservation time, impact the demand of the system.  Next, as the population of the 

system increases, the number of riders increases.  In contrast, ridership decreases as 

trip distances and cost increase (Burkhardt 1978).  

2.3  Models for Rural Public Transportation Systems 

Few articles look at methods of mathematically modeling service 

characteristics of systems for rural or low-density areas.  Specifically, most models on 

rural public transportation discuss estimation procedures for determining demand in 

rural areas. Articles were also found that formulate models for the total cost per 

vehicle mile for rural transportation systems and that perform cost-effectiveness 

comparisons between fixed and flexible routes systems in low-density areas.  

Unfortunately, no articles were found that optimized the total cost of a system as 
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function of service characteristics for rural or low-density areas public transportation 

systems.   

Neumann and Byrne (1978) developed a Poisson model for ridership on rural 

public transportation routes.  The model assumes a loose loop rural transit route that 

leaves a central city and returns to the city picking up people with no drop-offs.  The 

model estimates the probability associated with different groups within the total 

ridership of a particular route.  For example, the model estimates can be used to find 

the probability of different ages, gender or socioeconomic groups using the system.  

To estimate the probability, a maximum likelihood estimator is derived.  This 

estimator is the same as that used in cross-classification trip generation.  The 

advantages of the model include that it is a disaggregate model such that the users are 

disaggregated into socioeconomic groups and usage relationships are developed for 

each group.  Secondly, the model can be used to determine the likelihood that demand 

would exceed capacity of various sizes of buses since it produces probabilities of 

attaining a given number of riders.  

Burkhardt and Lago (1976) also developed a model for predicting demand for 

rural transit systems.  First the authors explain that the range of possible trip rates in 

rural areas is very large.  The possible range of trips for the total area population is on 

the order of 0.01 to 3.0 trips per person per year with a variation of 300 percent.  

However, most of the variation is probably between 0.10 and 0.70 trip per person per 

year for a total population of the area.  The model was based on three assumptions.  

First, the model assumes that transportation systems currently being operated are 

representative of the systems appropriate for rural areas and various conditions.  The 
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second assumption was that counties are the appropriate geographical unit to focus 

projections of aggregate demand, but routes can be used to estimate the distribution of 

demand.  Thirdly, the patterns of travel behavior vary for definite and discoverable 

reasons such as characteristics of transportation services available and characteristics 

of the traveler and service area.   Using regression analysis, several models were 

developed to estimate demand for fixed-route and demand-responsive systems on 

macro and micro patronage levels.   

Ceglowski et al. (1978) examine rural transportation cost.  The model was 

developed while trying to determine potential future demand for the Urban Mass 

Transit Association (UMTA) capital and operating assistance program in rural areas.  

The model calculates a standardized cost per vehicle mile for a specified vehicle type 

given cost and operating characteristics information.  The total system cost are the 

summation of the following major cost categories:  costs dependent on vehicle miles, 

costs dependent on vehicle hours, costs dependent on number of vehicles, capital 

costs and overhead costs.  Two of the major outcomes of this study are that 

economies of scale are not obvious in rural transportation operations and in rural 

transit operations, the bulk of the total system costs are directly attributable to driver’s 

wages, overhead costs and vehicle capital costs. 

A theoretical analysis by Ward (1975) compares conventional and 

subscription bus services for low density urban areas.   In this approach, Ward 

develops supply models for each type of service and determines ranges of relative 

efficiency.  The fixed route feeder system is described in terms of vehicle 

productivity (passenger trips per vehicle hour) and service ratio (ratio of average 
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passenger travel time to auto travel time).  The flexible route feeder service is 

analyzed on the basis of variation of productivity and service ratio with size of service 

sectors.  The study finds that flexible routes have a lower sensitivity of cost to level of 

service provided than fixed route buses.  The flexible route bus offers better service at 

the same or higher level of productivity at all demand levels below 100 passengers 

per square miles per hour.  Additionally, even when unit operating cost are assumed 

to be 50 percent higher than fixed route bus, flexible route bus can provide as good or 

better service for the same cost.  Fixed route feeder systems only become competitive 

when providing a very low level of service.   

2.4 Transit Models for Optimizing Total Cost 

Many studies have been conducted to investigate different aspects of urban or 

high density transit and optimize the total cost function.  Unfortunately, none have 

optimized public transportation systems for rural areas.  However, some studies 

focused on modeling different aspects of paratransit systems, which are popular forms 

of public transportation in rural environments.   

Chang and Schonfeld (1991a) used analytical models to compare average trip 

cost between feeder services of a fixed route conventional bus and a flexible bus route 

subscription system.  Optimized results are found for vehicle size, route spacing, 

headway and service zone areas.  The study then finds favorable situations for the 

operation of temporally integrated systems and formulates and analyzes mathematical 

models of total system costs for an integrated system.   Specifically, the study submits 

that in temporally integrated systems fixed-route systems should be provided during 

higher-demand periods and flexible-route services are provided during lower-demand 
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periods.  In numerical results optimal vehicle size in integrated systems were a 

compromise between the optimal vehicle sizes in pure fixed-route and pure flexible-

route services.  Additionally, the average system cost per trip for integrated systems 

can be lower than either pure system.  It is hypothesized that the benefits of temporal 

integration increase as the relative duration of low-demand periods increases.   

Chang and Schonfeld (1991b) compared average trip cost between 

conventional and subscription bus feeder services with a uniformly distributed, fixed 

demand. This comparative analysis optimized vehicle size and service zone size to 

minimize the objective function of total system cost which included operator and user 

costs.  The results of this study showed that the average cost functions are quite 

similar in magnitude for the two services, but there are significant differences in the 

operator and user costs.  Operator cost for the subscription bus is significantly higher, 

while the user cost is much lower than the conventional bus service.  Additionally, 

sensitivity analyses found that subscription services are favored for cases with smaller 

service areas, higher express speeds, high values of access and wait time and lower 

values of in-vehicle time. 

2.3 Summary 

 This literature review concludes that there is virtually no literature that 

focuses on mathematically modeling public transportation systems for rural areas.  

This thesis will expand the earlier works on urban public transportation to systems 

that exist in characteristically rural areas, i.e. having low-densities and street networks 

that are not dense and rectangular. 
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Chapter 3:  Model Formulation 

In this chapter, the conventional bus, dial-a-ride and taxi systems are designed 

on a framework developed for rural areas.  Additionally, the models have been 

formulated to optimize the objective function of total system cost.   The table on page 

xii defines the notation for variables that are used in this thesis. 

3.1 Total Cost Objective Function 

This analysis optimizes functions for cost of the total system.  The total 

system cost formulated here is the sum of the operator cost Co and the user cost Cu.   

It should be noted that all cost formulations consider roundtrip travel.  The operator 

cost incorporates cost such as the capital, maintenance and fuel costs for the system 

vehicle as well as driver wages.  This cost is found by multiplying the total round-trip 

distance of the system’s route D and the vehicle operating cost O and then dividing 

by the product of the vehicle speed v and headway h.  The generic form of operator 

costs given is given in dollars per hour as:   

o
2DOC
vh

=        (3.1) 

The user cost is a sum of user access cost, wait cost, schedule delay cost and 

in-vehicle cost.  The following expressions represent these expressions which are all 

given in dollars per hour.  The access cost is the cost incurred by the user to travel to 

and from a system pick-up point to his or her destination.  It is modeled as the 

distance d from to the user’s origin to the bus stop and then once the user has arrived 

at the destination bus stop from that point to the user’s actual destination in each 



 

 16 
 

direction.  The distance is multiplied by the demand density q, the value of time vt 

and the area A and divided by the speed v. 

t
x

2 2dq AC
v

v×
=       (3.2) 

 

The wait cost refers to the cost incurred by the user while waiting for service once a 

particular pick-up has been chosen for departure.  For instance, this cost accounts for 

differences in passenger arrival times to a bus stop and how service varies with 

scheduled pick-up times.  The expression of wait cost in Equation 3.3 is determined 

by multiplying the average wait time w, the demand density q, the area A and value 

of time vt for each direction of the trip.  The expression is multiplied by two to 

account for the wait time in both directions of travel. 

       w tC 2wqAv=                       (3.3) 

Schedule delay is defined as the difference between the desired and nearest available 

or actual departure time.  Thus, individuals who travel earlier or later than they would 

like to travel incur schedule delays (de Palma and Lindsey 2001).  The cost associated 

with schedule delay is expressed as the product of half of the headway h, the demand 

density q, the area A and the value of time vt for each direction of the trip.   

                 d d d
hC 2 qA hqA
2

v v⎛ ⎞= =⎜ ⎟
⎝ ⎠

                                                         (3.4) 

The in-vehicle costs accounts for the cost incurred by the user during the time he or 

she is on a system vehicle and traveling to a destination.  The expression for the in-

vehicle cost is shown in Equation 3.5.  It is the product of the average distance 

traveled by users on the system vehicle or half of the system’s route, i.e. D/2, the 
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demand density q, area A, and the value of time vt for each direction of the trip 

divided by the speed the vehicle.   

t t
v

2DqA DqAC
2v v

v v
= =      (3.5) 

Thus, the objective function of the analysis becomes (Chang and Schonfeld 1991a 

and b, Spasovic and Schonfeld 1993): 

C = Co + Cu = Co + Cx + Cw + Cd + Cv    (3.6) 

The final analysis will compare average cost c in dollars/round trip and dollars/ 

passenger mile. 

3.2 Assumptions for Transportation Systems 

 To formulate and compare models, all transportation systems are based on the 

same basic service area.  The following simplifying assumptions are made about the 

service area:   

1. As shown in Figure 3.1, the service area is rectangular (L × W) and served by 

two major perpendicular roads that intersect in the town of the rural area’s 

center.  However, this model could be applied to any radial or diametrical 

network system.  Existing features of the region must be taken into account 

such as land use and geographic constraints, topography and environmental 

factors and the existing transportation network when designing the system 

(Vuchic 2005).  
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Figure 3.1 Service Area for the Rural Transportation Systems 
 
 

2. A circuity factor, cF of 1 is assumed in this thesis with respect to rectilinear 

space.  It should be noted that although they are not depicted in the figure, 

local roads are present. These roads make-up a rectangular, grid street 

network.  However, to account for the differences in the street network such 

as lack of connectivity and road density as well as geographic factors such as 

mountains, lakes and reservations, circuity factors can be used.  Ballou et al. 

(2002) define circuity factors as multipliers used to approximate actual travel 

distances from straight-line distances.  It is found as a ratio of actual travel 

distance to calculated distance.  For straight line distances, the circuity factor 

should be equal to or greater than one because travel distances can not be 

shorter than the straight-line distance.  For example, Ballou et al. found 

straight-line circuity factors for the United States to be 1.79, 1.20 and 1.21 for 

Alaska, east of the Mississippi River and west of the Mississippi River, 

respectively.   Additionally, Ballou et al. submit that cities that are connected 

directly with high-level roads have circuity factors approaching one, while 

L

W

Town at 
center of  
rural area 
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cities on a low-density network with little direct connection and/or significant 

obstacles will have a circuity factor approaching 2 or even higher.  In this 

thesis, circuity factors are used to adjust rectilinear distances.  Thus, 

rectilinear circuity factors can be less than one.   

3. The town, or center of the rural community, serves as the major trip attractor.  

Several places of user interest such as the market, courthouse, doctors’ offices 

and schools are ideally located here.   

 

Several assumptions are made about the demand in the service area used in 

this formulation.   

1. We assume that a demand is uniformly distributed over the service area.  

2. Demand is assumed to be fixed, i.e. perfectly inelastic with respect to price 

and service quality.   

3. The demand in this research studies the round-trip travel of passengers.  Thus, 

q represents the combined two-way demand density. 

Assumptions for the routing and operational characteristics of each system are 

defined below. 

3.2.1 Conventional Bus System  

 Figure 3.2 shows the service area used to formulate the model for the 

conventional bus service.  The following assumptions are made in formulating the 

model.   
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Figure 3.2 Service Area for the Conventional Bus System 

 

1. In this system, each bus only travels along the two major roadways of the 

rural area.  The buses pick up passengers at n stops along the roadways that 

are separated by equal distances s, where s is the length or width divided by 

the number of proposed stops minus one, i.e. s = L/(n-1) or W/(n-1).     

2. Each bus travels the length or width of the service area at an average speed of 

vbus.   

3. All vehicles in the system are assumed to be equal in capacity.   

4. The wait time is assumed to be half the headway h for headways up to 30 

minutes.  Long headways are usually classified as longer than 10 minutes 

(Vuchic 2005).  The industry standard, however, accepts 15 to 20 minutes as 

the maximum time passengers are willing to wait for services (Tan 2004).  

Studies show that people who use transit services with long headways tend to 

use timetable schedules to adjust their arrivals to scheduled departure times.  

Passengers want to arrive only a few minutes before the bus or train is 

W = s(n-1) 

L = s(n-1) 

s
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scheduled to arrive.  Thus, the average wait time becomes somewhat shorter 

for random passenger arrivals and remains approximately constant for long 

headways.  Figure 3.3 shows the function used in this model for wait time. 

5. In this study, average schedule delay is modeled as half the headway.   Due to 

the low densities found in rural areas, headways for the conventional bus 

service are classified as long headways.  To account for the inconvenience of 

longer headways, we consider schedule delay costs for the user. These delays 

are unavoidable with public transportation because vehicles do not depart 

continuously.  Figure 3.3 shows the schedule delay function used in this 

formulation. 
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Figure 3.3 Wait Time and Schedule Delay Functions  
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 The following equations have been derived for each component of the total 

cost of the conventional bus system.   The form of operator cost defined in Equation 

3.1 is used to formulate the operator cost for the conventional bus system.  The 

operating cost O is replaced for the conventional bus operating cost B.  The total 

distance traveled by the vehicle D is equal to the route length for the conventional bus 

system.  The route length is equal to the stop spacing s multiplied by the number of 

bus stops n subtracted by one, i.e. (n-1)s.  The hourly operator cost for the 

conventional bus system is given in dollars per hour as: 

   [ ]o F
bus

2BC ( 1)sc
hv

n= −     (3.7)  

The hourly user wait cost can be formulated in dollars per hour as shown in 

equation 3.8.  Notice that unlike the form in Equation 3.3, the wait time has been 

defined as half the headway for this system.   

           w t t t
hC 2qAw 2qA qAh
2

v v v⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 (for h ≤ 30 minutes)              (3.8)  

The hourly user schedule delay cost is shown in equation 3.9 in dollars per hour.   

                            d d d
hC 2qA qAh
2

v v⎛ ⎞= =⎜ ⎟
⎝ ⎠

    (for 0 ≤ h ≤ ∞)                    (3.9) 

The hourly user in-vehicle cost can be formulated in dollars per hour as  

 F t F t
v

bus bus

2qA( 1)sc qA( 1)scC
2v v
n v n v− −

= = . (3.10) 

The average in-vehicle distance is assumed to be half of the route length, (n-1)s/2. 

It is often assumed that the maximum distance users are willing to walk is 

0.25 miles (Kocur and Hendrickson 1982).  In this model, since service trip origin is 

uniformly distributed over the area, we assume that those users within 0.25 miles 
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walk and all others use a vehicle to arrive at the bus stop.  Thus, we define the 

variables Pw and Po for the percentages of users who are walking and using a vehicle 

to get to the bus stop, respectively.  The following equations are used to determine 

these percentages, where AT is the total served by the bus stop, Aw defines the service 

area within ¼ mile of the bus stop and Ao accounts for the remainder of the service 

area: 

       
T

w
w A

A
P =                         (3.11) 

                     
T

o
o A

A
P =                                                (3.12) 

We assume that on average users within 0.25 miles of a bus stop travel an average 

distance of wAck , where kc is the proportionality constant for determining average 

travel distances.  We model the area as a four-sided diamond along the major 

roadway with right-angle travel and the bus stop located at the center of the area.   

Thus, from Odoni and Larson (1981), kc is equal to 0.471. Users outside of the 0.25 

mile boundary travel an average distance of s/4 between stops and (n-1)s/2 to the 

roadway.  As mentioned in section 3.1, the user is modeled as traveling the same 

access distance at both ends of the trip.  Thus, the access cost can be modeled as the 

following equation.   

( )O w
x F t w

car walk

P Ps ( 1)sC 2 2qAc 0.471 A
4 2 v v

nv
⎡ ⎤−⎛ ⎞= × + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

   

( ) ( )O w
x F t w

car walk

P PC qAc s 2( 1)s 0.471 A
v v

v n
⎡ ⎤

= + − +⎢ ⎥
⎣ ⎦

          (3.13) 
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 From these equations, it follows that the total system cost in dollars per hour 

can be expressed as: 

[ ] ( ) ( )F t O w
F t d F t w

bus bus car walk

qA( 1)sc P P2BC ( 1)s c qAh qAh qAc 2( 1)s 0.471 A
hv v v v

n vn v v v s n
⎡ ⎤−

= − + + + + + − +⎢ ⎥
⎣ ⎦

  

(3.14) 

The average cost given in dollars per trip is given by dividing by the total trip demand 

2qA in the following equation. 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
+++

−
+++−=

walk

w
w

car

0
tF

bus

F
F

bus v
P

)A471.0(
v
P

1)s)-2((svc
v
1)sc(n

2
h

2
hc1)s(

qAhv
2Bc n

v
vvn t

dt

  

(3.15) 

The average cost in dollars per passenger mile can be found by dividing the average 

cost per trip by the total average distance traveled by passengers per trip.  For the 

conventional bus system, the average distance traveled per passenger is shown in 

equation 3.16.  The average distance per passenger is the sum of the user’s average 

in-vehicle distance and the average access distance. 

                ( )T O w w F
( 1)s s ( 1)sd 2 4 P 0.471 A P c

2 4 2
n n⎡ ⎤− ⎛ − ⎞⎛ ⎞ ⎛ ⎞= × + × + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

                                                 

                [ ]T O w w Fd ( 1)s s 2( 1)s P 1.884P A cn n⎡ ⎤= − + + − +⎣ ⎦                      (3.16) 

The average total cost is then minimized by setting its derivative with respect 

to the headway equal to zero and solving for optimized headway.  The following 

equations show this analysis:  

                        [ ] dt vvn ++−−== F
bus

2 cs)1(
vqAh

B40
dh
dc                   (3.17) 
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bus

F

v)(qA
1)sc-4B(

 h*
dt vv

n
+

=         (3.18) 

It should be noted that the optimized headway may not be feasible.  The optimized 

headway is constrained by the capacity of the vehicle.  To compensate for this, the 

headway used will be the minimum of optimized headway, h*, and the headway 

required by the capacity of the system, hcap as shown in equation 3.19.   

  *
capH*=min(h ,h )        (3.19) 

hcap is defined as xl/qA where x is the seat capacity of the vehicle and l is the load 

factor of the vehicle (Chang and Schonfeld 1991b).   

3.2.2  Dial-A-Ride System  

The service area used to model the dial-a-ride system is shown in Figure 3.4.  

The following assumptions are made in formulating the model.   

1. In this model the four quadrants defined by the two perpendicular major roads 

are service zones A1, A2, A3 and A4 for the dial-a-ride system.  All dial-a-ride 

routes are tours starting and ending at the town center.   

2. The users are collected at their doorsteps (i.e. access distance is neglected) 

through a tour of stops.   

3. It is also assumed that dial-a-ride vehicles operate on preset schedules with 

variable routing designed to minimize the tour distance, Dc.  Under this 

assumption, all users along a particular route are traveling between their 

respective service zone and the town center.   Once in town, passengers have 
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the option to transfer to other vehicles to travel to other service zones if 

desired.   

4. As in the conventional bus system, average wait time is assumed to equal half 

of the headway for headways up to 30 minutes.   Otherwise, the wait time is 

capped at 15 minutes.   

5. Dial-a-ride vehicles can be shared among routes. 

6. The schedule delay is modeled as half of the headway as in the model for the 

conventional bus system. 

 

 

 

   

 

 

   

 

Figure 3.4 Total Service Area for the Dial-A-Ride System 

The length of the tour, Dc can be estimated using Stein’s formula (Stein 

1978b).  Stein’s formula is shown in Equation 3.20.   

cD K NA=  (Stein 1978b)                  (3.20)  

where K is a constant, N is the number of points in the collection tour and A is the 

area in which the tour takes place.  Based on the optimized traveling salesman tour 

problem, Stein’s equation assumes that the number of points, N is randomly, 

A4 

A2 A1 

Dc= collection distance 

L

W

L/2

W/2

A3 

N points
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independently and uniformly distributed over an area A (Odoni and Larson 1981).  It 

has been shown that small values of N may be adequate in providing good 

approximations to the expected length of the optimal traveling salesman tour if the 

area is “fairly compact and fairly convex.”   Odoni and Larson define an area as 

“fairly compact and fairly convex” if one dimension is not much greater than the 

other dimension and major barriers or boundaries indentations do not exist in the area.  

Using a set of simulation experiments, the value of K has been found to be 

approximately equal to 0.765 (Odoni and Larson 1981).   In this model, we assume 

that N is determined endogenously and equal to the hourly demand of service 

multiplied by the headway and divided by the number of passengers per pick-up, i.e. 

N = 2qAh/u where u is the average number of passengers per pick-up point (Chang 

and Schonfeld 1991b).   

The following equations have been derived for each component of the total 

cost of the dial-a-ride system.  The operator cost only includes the total distance 

traveled by the vehicle accounts for only the collection tour since all zones are 

adjacent to the town.  However, the model accounts for a tour at both ends of the trip 

in each direction.  The hourly operator cost is formulated in dollars per hour as: 

F

2
D

bus
1/2F

2
D

bus
FD

bus
o c

u
2qA

K
vh
S4c

u
2qhA

K
hv

S4)cNAK(
hv

S4C ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
==     (3.21) 

where S is the operating cost for dial-a-ride systems and AD is the service area served 

by the collection tour. 
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Similarly to the wait cost for the conventional bus system, the users wait cost 

is formulated as in dollars per hour in equation 3.22.         

 w D t D t D t
hC 2qA w 2qA qA h
2

v v v⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 (for h ≤ 30 minutes)      (3.22) 

The user schedule delay is shown in the following equation in dollars per hour. 

                   d D d D d
hC 2qA qA h
2

v v⎛ ⎞= =⎜ ⎟
⎝ ⎠

     (for 0 ≤ h ≤ ∞)                    (3.23) 

The user in-vehicle cost models the average in-vehicle distance as half of the tour 

distance.  It can be expressed as:   
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⎝
⎛=    (3.24) 

Again, the access cost is assumed to be zero, i.e. Cx=0, because the system provides 

door to door service.  

 The total system cost for the dial-a-ride system is formulated in dollars per 

hour as: 

u
2qA

v
KhqA

hqAhqAc
u

2qA
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S4C

2
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21
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vv +++⎟
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⎜
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⎝

⎛
=     (3.25) 

The average cost in dollars per trip is calculated by dividing C by the trip demand 

2qA, as shown in Equation 3.26.  

u
2qA

2v
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⎞

⎜
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⎝

⎛
=     (3.26) 

As in the model for a conventional bus system, the average cost in dollars per 

passenger mile can be found by dividing the average cost per trip by the total average 

distance traveled by passengers per trip.  For the dial-a-ride system, the average 
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distance traveled per passenger is the average collection tour length.  It is can be 

expressed as: 

 F

2
D

F
D c

u
h2qAKc

2
NA2K

dT ==      (3.27) 

The average cost in dollars per trip is then minimized by setting its derivative 

with respect to the headway equal to zero.  We will numerically solve for the 

optimized value of headway.  Equation 3.28 is the formula to be used in this analysis.  

u
hqA2

vh4
K

22u
hqA2

vhqA
SK0

dh
dc 2

D

bus
1/2

2
D

bus
3/2

D

tdt vvv
+++−==   (3.28) 

As in the formulation for the conventional bus system, we must again consider the 

constraints of the vehicle’s capacity.  Thus, the headway used in the model is the 

minimum value of the optimized headway, h* and the headway required by the 

capacity of the system, hcap. 

3.2.3 Taxi System  

For the taxi system, we make the following assumptions in developing a total 

cost function.  The service area is depicted in Figure 3.1. 

1. There is a central base for the taxi located in the town of the rural area.  Users 

must call the taxi stand to request services.  Once a request is received, a taxi 

is immediately notified and dispatched to the location of the pick-up from its 

present location or of the drop-off point of the current passenger.   

2. Queuing theory is used to model the taxi system.  The supply and demand for 

taxis are intertwined through relations for taxi availability and taxi utilization 

(Manski and Wright 1976).  However, as in Manski and Wright, we focus on 
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taxi availability (1976).  The wait time is based on a probability function that 

accounts for queuing in the system due to a back-up of service requests and/or 

traffic.  This model assumes a queuing process where all the taxis in the 

system are servers in parallel with identical exponentially distributed service 

times of µ.  The passenger calls for service are Poisson distributed with a 

mean arrival rate of λ and form a single queue that has a service order of first 

in- first out with unlimited queuing capacity.   In other words, these 

assumptions imply that passenger calls are uncoordinated and random.  

Additionally, we assume that µ is equal to the time needed to travel the 

distance of the average trip, i.e. v/dT.  The number of requests for service per 

unit hour, λ is equal to the demand, Q.   

3. We assume door-to-door service; thus, the cost of access, Cx is zero.   

4. All vehicles are identical with respect to size and cost.  Also, there is an 

infinitely elastic supply of taxi drivers. 

 

The total cost of a taxi system has been derived in dollars per hour.  The 

operator cost is derived by estimating the average distance traveled by the taxi.  The 

average distance between any two random points in a uniformly distributed area can 

be estimated.  Thus, for this system, the average distance for one segment of the 

service is estimated as the (L + W)/3 (Larson and Odoni 1981).   The taxi distance 

includes the travel distance from the taxi stand or drop-off point of the last passenger 

to the pick-up location of the current call and then from the pick-up location to the 

drop-off location.   
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At first glance the origin-destination assumptions for the taxi system seem 

different than the other rural transportation systems.  The taxis in the system are not 

required to pass through the town to respond to request for pick-up; however, the 

conventional bus and dial-a-ride systems provide a many to one service to the town.  

There are three ways that this model compensates for this inconsistency.  First, the 

average taxi distance overestimates the actual distance that the taxi will travel to 

provide service.  For instance, as the number of taxis in the system increases, the 

model does not consider that the taxi closest to the request for service will respond.  

The model assumes that all taxis will travel the same distance.  Secondly, the user of 

the conventional bus and dial-a-ride systems can make connections in town to travel 

to areas in the rural region.  Thus, users of all three systems have access to the entire 

service area.  Lastly, costs per system mile can be used to compare the three systems.  

This type of analysis takes into account that the taxi system is less restricted in the 

routes that it may travel. 

The operator cost considering both directions of the passenger’s trip can be 

formulated as follows:      

TkCo =   (3.29) 

where T is the operating cost for the taxi system, vcar is the speed of the car and lcar is 

the load factor for the car.   

The wait cost is modeled using queuing theory as described in assumption 2.  

This cost is given in the following equation in dollars per hour.   

w tC 2qAwv= (for w ≤ 15 minutes)          (3.30) 
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The average wait time is calculated using Equation 3.31.   The average number of 

requests for taxi service per system hour λ is defined in Equation 3.32, where u is the 

average number of passengers per pick-up point.  The average number of passengers 

served per hour µ is equal to the speed of the taxi divided by the average distance for 

a taxi driver to complete a call, i.e. distance traveled to arrive at the pick-up point of 

the passenger and drop-off at destination.  The average distance is defined in 

Equation 3.33.  k is the number of vehicles in the system having a service rate of µ 

and p(0) is the probability of having zero requests for service in the system. 

                             
( )

( )

k

2

λμ μw = (0)
k-1 !(kμ-λ)

p                             (3.31)          
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2qAλ =                                                                            (3.32) 
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   (3.34) 

Numerical analysis will be used to optimize the wait time based on the number of 

taxis in the system, k.  The schedule delay cost is shown in Equation 3.35.  

                          d d d
wC 2qA qAw
2

v v= =     (for 0 ≤ w ≤ ∞)                (3.35) 

The in-vehicle cost uses the average distance traveled by the passenger.  As in 

the formulation for operator cost, the average distance of one segment of the 

roundtrip is estimated as (L + W)/3 for the user in both directions.   It is formulated in 

Equation 3.36. 
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t t
v F F

car car

2qA 2qAL WC c (L+W)c
v 3 3 3v

v v⎛ ⎞= + =⎜ ⎟
⎝ ⎠

                  (3.36) 

Thus, the total cost function for the taxi system can be expressed in dollars per 

hour as: 

F
car

W)c(L
3v
qA2

2qAw2qAwTkC ++++= t
dt

v
vv                                    (3.37)     

The average cost given in dollars per trip is found by dividing the total system cost by 

the total demand 2qA.  It is expressed as:  

                F
car

W)c(L
3v

ww
2qA
Tkc ++++= t

dt
v

vv                                            (3.38) 

The average cost given in dollars per passenger mile can be formulated by dividing 

the cost per trip by the average distance traveled by users per trip.  The average 

distance was defined in Equation 3.33.  The average distance for the taxi system is 

equal to the average distance used in formulating the operator and in-vehicle cost.   
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Chapter 4: System Evaluation  

To analyze the effects of various input parameters on the minimum total cost 

for the rural public transportation systems, Chapter 4 presents the system evaluation 

results using the optimization models developed in Chapter 3.  Section 4.1 describes 

input parameter values, while section 4.2 evaluates each system individually.   

4.1 Input Parameter Values 

 This section presents input parameters for the system evaluation.    The inputs 

shown in Table 4.1 were used to calculate the optimized minimum cost for each type 

of system.   For example, the service areas from Figures 3.1, 3.2 and 3.4 are defined 

to have rectangular area with a length and width of 48 miles and total area of 2304 

square miles in this study.  The operating cost for the bus is set at $80/vehicle-hour, 

while the dial-a-ride system’s cost is $60/vehicle-hour and $30/vehicle-hour for the 

taxi system.  The value of time cost for passengers is $12/passenger-hour and the 

value of schedule delay is $5/passenger-hour.  The walking, bus/dial-a-ride and 

car/taxi speeds are 2.5mph, 20mph and 40mph, respectively.  The demand is 

uniformly distributed and studied for demands of less than 5 trips per hour.  The 

inputs for cost and speed are from previous studies (Chang and Schonfeld 1991 a and 

b).  The costs have been adjusted to reflect inflation.  
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Table 4.1 Definitions and Baseline Values for System Evaluation 

Symbol Definition Units Baseline 
Value 

A Total service area  miles2 2304 
AD Total area served by dial-a-ride services miles2 576 
Ao Service area outside of ¼ of a mile of bus 

stop  
miles2 2302.625 

AT Total area served by bus stop miles2  
Aw Service area within ¼ of a mile of bus stop  miles2 1.375 
B Bus operating cost  $/vehicle- hour 80 
C Total cost  $/hour  
c Average cost  $/trip or 

$/passenger-mi 
 

cF Circuity factor  1 
Co Total operator cost  $/hour  
co Average operator cost $/trip or  

$/ passenger-mi 
 

Cd Total schedule delay cost  $/hour  
cd Average schedule delay cost $/trip or  

$/ passenger-mi 
 

Cu Total user cost  $/hour  
cu Average user cost  $/trip or  

$/ passenger-mi 
 

Cv Total in-vehicle cost $/hour  
cv Average in-vehicle cost  $/trip or  

$/ passenger-mi 
 

Cw Total wait cost $/hour  
cw Average wait cost  $/trip or 

$/ passenger-mi 
 

Cx Total access cost  $/hour  
cx Average access cost   $/trip or  

$/ passenger-mi 
 

d Average user access distance  miles  
D Equivalent average system round trip 

distance 
miles  

Dt Distance of one collection tour  miles  
dT Average total distance traveled by passenger miles  
h Headway hours/vehicle  

H* Minimum of h* and hcap  hours/vehicle  
h* Optimized headway hours/vehicle  
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Symbol Definition Units Baseline 
Value 

hcap Headway constrained by capacity of vehicle hours/vehicle  
K Constant for Stein’s Formula  0.765 
k Number of taxis in system    
kc Proportionality constant  0.471 
L Length of service area miles 48 

lbus Load factor for bus  1.0 
lcar Load factor for car  1.5 
n Number of bus stops in the system  7 
N Number of passengers in one collection tour   
O System operating cost  $/vehicle-hour  

p(0) Probability of having zero requests for taxi 
service in system 

  

Po Percentage of users beyond ¼ mile of stop  0.9994032
Pw Percentage of users within ¼ mile of stop  0.0005968
q Demand density in both directions trips/square 

miles/hr 
 

Q Demand in both directions trips/hr   
s Distance between stops  miles 8 
S Dial-A-Ride operating cost  $/vehicle-hour 60 
T Taxi operating cost  $/vehicle-hour 30 
u Average number of passengers per pick-up 

point 
 1 

v Average service speed miles/hour  
vbus Average bus speed  miles/hour 20 
vcar Average vehicle speed  miles/hour 40 
vd Value of schedule delay $/passenger-

hour 
5 

tv  Value of time $/passenger-
hour 

12 

vwalk Average walk speed  miles/hour 2.5 
w Average wait time hours  
W Width of service area  miles 48 

wmax Maximum wait time passengers are willing 
to wait  

hours 
0.25 

xbus Seat capacity of bus  seats/vehicle 16 
xcar Seat capacity of car  seats/vehicle  
λ Average number of requests for taxi service 

per system-hour 
 

 

µ 
Average number of passengers served per 
hour (v/dT) 

passengers/hour 
0.625 
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4.2 Evaluations 

Using the input values shown in Table 4.1, we evaluated the models 

developed in Chapter 3 using two basic steps.  First the optimized values were 

determined for the decision variables used for each system.  For the conventional bus 

and dial-a-ride systems, headway was optimized to minimize total cost.  The number 

of vehicles was optimized in the taxi system to minimize total cost.  The second step 

involved using the determined values for the decision variables to calculate the 

minimized cost.  Each cost is divided into several components.  Besides determining 

the total cost, operator, user, wait, schedule delay, access and in-vehicle cost are 

evaluated.  Additionally, each system was evaluated in terms of total cost and average 

cost.   

4.2.1 Evaluation of Conventional Bus System 

 Figures 4.1 through 4.3 show the cost of the conventional bus system.  Several 

trends are evident in the plots for the conventional bus system.  First, for the total cost 

of the system, in $/hr, all cost increase with demand.  Although the operator cost is 

the most expensive component of the total cost per hour, none of the component costs 

seem to dominate the model.  In Figures 4.2 and 4.3, we see that the average operator 

cost decreases non-linearly as demand increases.  This shows that as demand 

increases, the marginal cost per trip or per mile decreases for the operator.  In other 

words, the fixed cost associated with conventional bus system is spread across more 

trips. 
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Figure 4.1 Costs for the Conventional Bus System in $/hr
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Figure 4.2 Average Costs for the Conventional Bus System in $/trip 
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Figure 4.3 Average Costs for the Conventional Bus System in $/mi 
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4.2.2 Evaluation of Dial-A-Ride System 

 This section discusses the results of the model evaluation for the dial-a-ride 

system.  To optimize the headway for the dial-a-ride system a numerical analysis was 

performed.  For example, for a demand of 0.5 trips/hour, the optimized headway was 

determined to be 5.04 hours/vehicle.  In Figures 4.4 through 4.6 the cost of the dial-a-

ride system is considered.  We can see that in Figure 4.4 the total cost of the dial-a-

ride increases with demand.  However, unlike for the conventional bus system, it is 

evident in all three figures for the dial-a-ride costs that the operator cost is a larger 

fraction of the total cost.  This is expected because of the more personalized service 

provided by dial-a-ride services.  This type of service leads to higher cost for the 

operator and low cost for the user.  As shown in the figures, the user has no access 

cost expenses due to the door to door service offered by dial-a-ride.  In Figure 4.5, 

there is a slight increase in dial-a-ride user costs as demand increases.  This is due to a 

slight increase in the in-vehicle cost that occurs as demand increases, since tours get 

longer; however, this levels off as demand increases and headway is limited by 

vehicle size.  User schedule delay decreases as demand increases.  This occurs 

because as demand increases, headway increases and vehicles arrive more frequently.  

Otherwise, in Figures 4.5 and 4.6, user cost is approximately constant regardless of 

the demand.  
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Figure 4.4 Costs for the Dial-A-Ride System in $/hr 
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Figure 4.5 Average Costs for the Dial-A-Ride System in $/trip 
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Figure 4.6 Average Costs for the Dial-A-Ride System in $/mi 

4.2.3 Evaluation of Taxi System 

A numerical analysis was also performed for the taxi system, using queuing 

theory to determine the users’ wait time.  Table 4.2 shows an example of the 

numerical analysis performed for the evaluation of this system.   For example in the 

table, where Q is 1 trip/hr, the wait time for minimum cost is 2.84 hours with three 

taxis serving the area.  Note that with either one or two taxis in the system, the 

equation for wait time outputs a negative value because λ>kµ.  This indicates that this 

value is infeasible.  Additionally, these analyses show how the wait time decreases 

for additional taxis in the system.  For example, for a Q of 1 trip/hour, the wait time 

would be 0.04 hours with five taxis in the system, but the total cost increases as a 

result. 
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Table 4.2 Example of the Numerical Analysis for the Taxi System* 

Q = λ k w Operator Cost User Wait Cost Total 
0.5 1 -25.6 30 -425.6 -395.6 

 2 0.636025 60 18.78012 78.78012 
 3 0.088069 90 11.09718 101.0972 
 4 0.01378 120 9.834267 129.8343 
 5 0.002047 150 9.634804 159.6348 
 6 0.000278 180 9.604721 189.6047 
      
Q = λ k w Operator Cost User Wait Cost Total 

1 1 -3.01176 15 -41.6 -26.6 
 2 -13.2129 30 -215.019 -185.019 
 3 0.939214 45 20.29607 65.29607 
 4 0.17858 60 12.63586 72.63586 
 5 0.042013 75 10.31421 85.31421 
 6 0.009935 90 9.768897 99.7689 

*The shaded cell denotes the wait time for a system optimized for lowest cost. 
 

 Figures 4.7 through 4.9 show the cost of the dial-a-ride system.  Again, as 

observed with the previous systems, operator cost makes up the largest fraction of the 

total cost.  In Figure 4.7, the brown line shows the minimum number of taxis needed 

to service the given demand.  As expected, the total cost and operator cost closely 

follow this curve.  First we observe that these cost increase at a very fast rate.  This is 

due to the small number of passengers per trips that can be serviced with each 

vehicle.  With the other systems, increased demand can easily be accommodated for 

larger demands without the need for additional vehicles in the system.  Secondly, in 

this system the operator cost, on average, is at least double all other components of 

the cost.  As in the dial-a-ride system, this is a result of the personalized service 

provided by the taxi system.  The user access cost is zero due to the door-to-door 

service.   
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In Figures 4.8 and 4.9, we make two very interesting observations.  First, the 

plots of average total cost, user wait cost and user schedule delay cost are saw-

toothed.  This is due to the constraint that there must be an integer number of taxis in 

the system.  The wait cost increases until the limit for the amount of demand that can 

be served is reached, then the number of taxis increases.  For instance, one spike 

corresponds to a set of wait times that can be serviced optimally with a particular 

number of taxis.  At the start of the spike, the shorter wait time corresponds to a 

smaller demand.  As the demand increases, so does the wait time and the user wait 

cost.  However, the operator cost per trip decreases as demand increases within the 

analysis for an equal number of taxis.  At the peak, the system has reached the 

optimal demand that can be serviced with that number of taxis.  The next point 

corresponds to the next integer of taxis needed to optimally service that demand.  

Additionally, as the demand increases, the peak in the plot for operator cost occurs at 

a slightly lower cost.  Second, the average in-vehicle cost is constant because the 

model for this cost is independent of demand.  It assumes that a passenger’s trip is 

independent of other users of the system and that the same average distance is 

traveled from all origins to destinations.  
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Figure 4.7 Costs for the Taxi System in $/hr 
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Figure 4.8 Average Costs for the Taxi System in $/trip 
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Figure 4.9 Average Costs for the Taxi System in $/mile 



 

 47 
 

Chapter 5: System Analysis 

This chapter compares the three rural transportation systems and analyzes how 

each modeled system is affected by various input parameters.  In Section 5.1, a 

threshold analysis is used to determine which service type has the minimum total cost 

under given circumstances.  The cost per trip is used to identify the critical demand 

Q, at which each type of public transportation mode, conventional bus, dial-a-ride or 

taxi is preferable.  These analyses provide useful guidelines to policy makers for 

determining efficient public transportation system designs.  In Section 5.2, a 

sensitivity analysis is performed to investigate the effects of various input parameters 

on the resulting optimized values for the conventional bus, dial-a-ride and taxi 

evaluations specified in Chapter 4.  These analyses show how sensitive the 

conclusions of this work are to the values of input parameters.   

5.1 Threshold Analysis 

In this analysis, we consider different demand densities in an effort to find 

ranges within which each mode best serves the rural area.  “Best” is defined as the 

system that minimizes the total system cost.  In other words, we want to find the 

mode that is best suited for a particular demand or range of demand.  Usually, 

determining the best public transportation system for a rural region is based on 

various other policy issues that each region must address independently.  Often there 

is a balancing act between the costs of the user and those of the operator.   
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5.1.1 Threshold Analysis in $/trip 

Figures 5.1 through 5.3 show the results of the threshold analysis.   It should 

be noted that because the optimization process for the taxi system constrains the 

solution to an integer number of taxis in the system, the cost plots for the taxi has 

fluctuations.  The models for the conventional bus and dial-a-ride systems do not 

constrain the models to an integer number of vehicles. The decision variable in these 

models is headway. These models ensure that the headway can be accommodated by 

the size of the vehicle, but it does not constrain the number of conventional buses or 

dial-a-ride vehicles to an integer.  Thus, these resulting curves are a smooth. 

In Figure 5.1 we see that the average cost per trip in scenario ranges from $55 

to $220 per trip for all systems.  However, considering overall total cost the taxi 

system seems to be the most appropriate service for demands less than 3 trips/hr.  At 

this point, the conventional bus and taxi systems are equally viable.  Upon closer 

review of the comparison of systems, we see that the user cost of the dial-a-ride 

systems can be as much as about $15 per trip cheaper than the other services.  On the 

other hand, the conventional bus system is much less expensive than the other 

systems when considering operator cost.   
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Figure 5.1 Comparison of Total Cost of Three Systems in $/trip 
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Figure 5.2 Comparison of User Cost of Three Systems in $/trip
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Figure 5.3 Comparison of Operator Cost of Three Systems in $/trip 

 
 

5.1.2 Threshold Analysis in $/mi 

 Figures 5.4 through 5.6 compare the average cost of all three types of rural 

public transportation in $/passenger-mile.  Figure 5.4 show that the conventional bus 

system has the least total cost when considering the average number of passenger-

miles traveled by the system.  This occurs because the conventional bus service does 

not provide door-to-door service.  The conventional buses stay on major roads and do 

not deviate from their preset routes, while dial-a-ride and taxi systems provide more 

personal service.  On average the conventional bus passenger’s average travel 

distance is longer and thus, the cost per passenger-mile is less than the other systems.   

This is even more evident when examining operator cost in Figure 5.6.  However, for 
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user cost at lower demand densities, the taxi becomes competitive with the 

conventional bus system.  
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Figure 5.4 Comparison of Total Cost of Three Systems in $/mile 
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Figure 5.5 Comparison of User Cost of Three Systems in $/mile 
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Figure 5.6 Comparison of Operator Cost of Three Systems in $/mile 
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5.1.3  Threshold Analysis for Demand within ¼ Mile of Bus Stops 

 Two assumptions for the conventional bus system model make this system 

(and model) unlikely to be worthwhile in real-life applications.  The model assumes 

that conventional bus system users outside of the ¼ mile perimeter of the bus stop 

have access to automobiles.  Access to an automobile means that users either have a 

car to drive, can borrow a car or can get a ride to the bus stop.  Secondly, the model 

assumes that these users will use the vehicles to get to the bus stop instead of just 

driving straight to town.  These are issues that are usually associated with 

conventional bus systems inability to ensure mobility and access opportunity to 

individuals in low-density areas.  To better compare the conventional bus system to 

the other models, this section only examines the service area within ¼ mile of the bus 

stops for all rural public transportation systems.  Thus, this entire population is 

efficiently served by all systems.  In other words, all users can directly access all 

three systems by walking to the system pick-up point. 

 Figures 5.7 through 5.9 show the comparison of public transportation systems 

serving only the demand within walking distance to the bus stops.  It should be noted 

that the costs in this analysis are extremely high due to the low demands and large 

distances.  The analysis demonstrates the difficulty of developing cost efficient public 

transportation system with such low population densities and large service areas.  

Figure 5.7 depicts the comparison of the total cost for the three systems.  The total 

cost of all three systems decreases non-linearly with an increasing demand.  The 

conventional bus is has the lowest total cost.  Figure 5.8 shows that within smaller 
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areas, the dial-a-ride system has lower user costs.  In Figure 5.9, the plot shows that 

conventional bus is the least expensive. 
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Figure 5.7 Comparison of Total Cost of Three Systems 
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Figure 5.8 Comparison of User Cost for Three Systems 



 

 55 
 

 

0

10000

20000

30000

40000

0 0.002 0.004 0.006 0.008 0.01

Demand (trips/hr)

O
pe

ra
to

r C
os

t p
er

 T
rip

 ($
/tr

ip
)

Conventional Bus
Dial-A-Ride
Taxi

 
Figure 5.9 Comparison of Operator Cost for Three Systems 

 

5.2 Sensitivity Analysis 

 It is important in any analysis of a model to determine how the model 

responds to changes in input parameters.  This section determines these relations for 

each type of rural public transportation.  The analysis examines how the service area, 

operator cost, value of time, speed and demand affect the total cost as well as the 

decision variables used to optimize each system.  If the model is very sensitive to 

changes in a particular input parameter, that parameter should be predicted as 

accurately as possible and decisions should be made more cautiously.  Unless 

otherwise stated the service area from Figure 3.1 and the baseline values from 

Chapter 4 are used in this analysis. The analysis assumes a demand density of 0.001 

trips/square miles/hour. 
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5.2.1 Effects of Service Area 

 In Figures 5.10, 5.11 and 5.12, we examine the effects of service area on the 

model.  In this analysis, the service areas range from 25 to 5625 square miles.  We see 

that on average total cost initially decreases and then increases with service area.  For 

the conventional bus and dial-a-ride systems, there is a trade-off between lower 

headways and higher operator cost per trip that causes this effect.  For the taxi, the 

operator cost per trip is higher at lower demands, but at higher demands user cost 

increases. 

 Figures 5.11 and 5.12 examine how the decision variables, headway and 

number of taxis in the system are affected by service area.  In Figure 5.11, we see that 

headway decreases as area increases in the conventional bus and dial-a-ride systems.  

The headway for both systems decreases non-linearly.  The number of taxis in the 

system is shown to increase somewhat linearly with service area in Figure 5.12.   
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Figure 5.10 Effects of Area on Average Cost of System in $/trip 
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Figure 5.11 Effects of Area on Optimized Headway 
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Figure 5.12 Effects of Area on Optimized Number of Taxis in the System 
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5.2.2 Effects of Vehicle Speed 

 Figures 5.13 to 5.15 show how the model responds to vehicle speed.  This 

analysis examines speeds from 5 to 75 mi/hr.  In Figure 5.13 it is shown that as speed 

increases, the total cost per trip decreases non-linearly for all systems.  This is a result 

of the operator, in-vehicle and scheduled delay costs decreasing with increased 

vehicle speed.  At about 55 miles/hour, the total costs for the conventional bus and 

taxi intersect.  All three types of rural public transportation begin to converge at 75 

mi/hr.  As expected, it is shown in Figures 5.14 and 5.15 that both the headway and 

number of taxis in the system decrease with as vehicle speed increases.   It should be 

noted that this analysis does not take into account the effects of vehicle speed on the 

operating costs. 
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Figure 5.13 Effects of Speed on Average Total Cost of System in $/trip 
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Figure 5.14 Effects of Speed on Optimized Headway 
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Figure 5.15 Effects of Speed on the Optimized Number of Taxis in the System 
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5.2.3 Effects of Operator Cost 

 The effects of operator cost on total cost and the decision variables are shown 

in Figures 5.16 through 5.18.  Operator cost is studied between the values of $10 and 

$110 per vehicle-hour.   

As anticipated, the total cost increases as operator cost increases in Figure 

5.16.  The total cost per trip for the dial-a-ride system is strongly affected by the 

operator cost.  On the other hand, the total cost for the taxi system increases at a much 

slower rate as the operator cost increases.  Furthermore, in Figure 5.17 the headways 

for the conventional bus and dial-a-ride models increase with an increased operator 

cost.  In Figure 5.18 it is shown that the number of taxis in the system decrease with 

an increased operator cost.  At an operator cost of $20/vehicle-hour, the taxi model 

compensates for the higher operator cost by decreasing the number of taxis in the 

system. 
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Figure 5.16 Effects of Operator Cost on Average Cost of System in $/trip 
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 Figure 5.17 Effects of Operator Cost on Optimized Headway  
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Figure 5.18 Effects of Operator Cost on Optimized Number of Taxis in the System 
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5.2.4 Effects of Value of Time 

 In Figures 5.19, 5.20 and 5.21 we examine the effects of value of time on the 

model.  The values of time studied range from $6 to $30 per passenger-hour.  As 

shown in Figure 5.19, the average total cost increases with an increased value of time.  

It should also be noted that at about $6/passenger hour, the conventional bus and taxi 

systems are nearly equal.  At this point, either alternative is viable when considering 

average total cost. In Figure 5.20 the optimized headway declines at a decreasing rate 

with an increased value of time.  Figure 5.21 shows that as user’s value of time 

increases, the optimized number of taxis in the system increases. The shift in the 

curve for the taxi system at $14/passenger hour is a result of the model adjusting the 

number of taxis in the system to minimize total cost.  At this value of time, the total 

cost is decreased by introducing an additional taxi into the system and decreasing the 

user wait time.   
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Figure 5.19 Effects of Value of Time on Average Cost of System in $/trip 
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Figure 5.20 Effects of Value of Time on Optimized Headway 
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Figure 5.21 Effects of Value of Time on Optimized Number of Taxis in the System 
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5.2.5 Effects of Demand 

 In this section we explore the effects of demand on headway and the number 

of taxis in the system.  The effect of demand on cost is thoroughly discussed in 

Section 5.1.   In Figure 5.22, as the demand increases, the optimized headway 

decreases at a non-linear rate.  Additionally, the dial-a-ride system has a shorter 

headway for densities less than 5 trips/hr.  As expected, Figure 5.23 shows that the 

number of taxis in the system increases almost proportionally with increased demand.   
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Figure 5.22 Effects of Demand on Optimized Headway 
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Figure 5.23 Effects of Demand on the Optimized Number of Taxis in the System 
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Chapter 6:  Conclusions and Recommendations 

6.1 Summary of Results 

The primary outcomes of this research are: 

1. Optimization models have been developed for conventional bus, dial-

a-ride and taxi systems in rural areas in order to consistently compare 

these modes.  The decision variables were headway for the 

conventional bus and dial-a-ride systems and number of taxis in the 

system for the taxi system. 

2. Demand thresholds among the three modes have been determined for 

average total cost, average user cost and average operator cost for 

various circumstances.   

3. For each mode, the effects of several input parameters, including 

service area, vehicle speed, operator cost and value of time on the total 

cost and the decision variables have been examined.  

6.2 Conclusions 

 In this thesis, several forms of public transportation are analyzed and models 

developed in an effort to provide rural transportation services at minimum total 

system cost.  Models are developed and evaluated for conventional bus, dial-a-ride 

and taxi transportation systems.  After threshold and sensitivity analyses, several 

characteristics of the models are identified for each type of system.   The major 

conclusions of this thesis are listed below.  
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1. The taxi system has the least expensive total cost per trip.  However, 

when considering user cost the dial-a-ride has the lowest cost per trip.  

This can mostly be attributed to this system having no access cost due 

to the door-to-door service that it provides as well as the operator cost 

being dispersed amongst more passengers per route.  The conventional 

bus system, on the other hand, has a lower operator cost.  This is a 

result of fewer vehicles being required to operate the conventional bus 

system.  The dial-a-ride and taxi services provide more personal 

service to the user; thus, they often require more vehicles and longer 

routes.    

 

2. The analysis of cost per passenger-mile resulted in the conventional 

bus system having the least total cost per trip.  On average the 

conventional bus passenger’s average travel distance is longer and 

thus, the cost per passenger-mile is less than the other systems.    

 

3. When examining a specific population for which all rural public 

transportation systems can provide service without the use of an 

automobile, the conventional bus system had the lowest cost per trip.     

This is due to the extremely low cost associated with the conventional 

bus service compared to the other modes because they offer door-to-

door service. 
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4. The models respond differently to various input parameters.  The total 

cost per trip increases with increased operator cost and value of time 

demand, but decreases with increased speed and demand.  Headway 

increases with increased operator cost, but decreases with increased 

service area, speed, value of time and demand.  The number of taxis in 

the system increases with increase service area, value of time and 

demand but decreases with increase speed and operator cost. 

 

5. These models provide policymakers in rural regions some methods for 

evaluating the public transportation options in region.  First, the 

models can easily be modified to consider important characteristics of 

their region such as area, major existing roadways, speed limits and 

demand.  Next, guidelines for developing public transportation 

systems can be observed for policymakers.  Lastly, the models can be 

used to balance operator and user costs according to budgetary needs 

of the agency as well as the socioeconomic needs of the users.   

6.3 Recommendations for Further Research 

The following suggestions are made for further research: 

 

1. Although these models are applicable to many geographical regions, it would 

be interesting to consider other rural area types.  For example, these models 

assume that there is a town that serves as an attractor for the trips.  However, 

future research might consider rural regions that do not have a concentrated 
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center of activity.  Instead, a region might have several small towns in which 

none attract the majority of the population.   

 

2. This research assumes that passengers are uniformly distributed within a 

rectangular service area and over time.  Future research should consider other 

spatial and temporal distributions of demand.  For example, passenger 

distribution could be a function of distance from the town or major roadways 

that service the region.  Additionally, the model could be modified in the 

future to analyze areas with various shapes rather than just rectangular ones. 

 

3. To specifically deal with the characteristics of rural passengers, some studies 

that analyze the value of rural passengers’ time and actual times that rural 

passengers are willing to wait for service would be beneficial to the models 

developed here. Moreover, it would be fascinating to compare these results 

with those of urban residents.   

 

4. In analyzing a taxi system, the arrival rate should be considered as a function 

of exogenous factors, such as the distance from the pick-up point to the town, 

value of time and/or the connectivity of the street network.  This could better 

link within the model the temporal characteristics of a region to the relation 

between taxi availability and the taxi utilization.   
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