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Localization is performed in ensemble data assimilation schemes to eliminate

correlations that are contaminated by sampling error. This method is frequently

necessary within numerical weather prediction (NWP) applications due to the com-

putational constraints present, limiting the number of ensemble members to a size

much smaller than the dimension of the system. The most common form of localiza-

tion occurs in the spatial dimensions, reducing the correlations for points that are

distant and likely dominated by sampling error. Spatial localization can introduce

imbalance in the system due to the disruption of physical relationships that are

dictated by gradients or column integrated quantities, which produce fast-moving

gravity waves within NWP models and degrade the forecast.



The first part of this dissertation explores the impact of including a balance

operator within ensemble data assimilation schemes and how the type of spatial

localization interacts with it. The inclusion of a balance operator allows the local-

ization to be performed on the unbalanced portion of the correlation, preserving

the balanced correlation. Two data assimilation schemes are explored: a hybrid 4D

ensemble-variational (4DEnVar) scheme and a Local Ensemble Transform Kalman

Filter (LETKF). Observing system simulation experiments are performed using an

intermediate complexity model, SPEEDY. It is shown that localizing on the back-

ground error as in the hybrid 4DEnVar is more effective than localizing on the

observation error as in the LETKF. Within the LETKF, the balance operator can

only propagate information one way, for example, from streamfunction to tempera-

ture, but not vice versa as in the hybrid 4DEnVar.

Many applications contain variables that are physically unrelated and should

not be correlated, but contain nonzero correlations. The second part of this disserta-

tion presents two forms of variable localization in a unified framework: observation

space variable localization (VO) and model space variable localization (VM). VO

restricts the impact that observations have to certain model variables. VM removes

the cross-correlations during the computation of the background error covariance.

VM is more computationally expensive, but it has the added advantages of not re-

quiring knowledge of observation types and allowing a single observation to impact

multiple model variables whose cross-correlations have been removed.
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Chapter 1: Introduction

1.1 Background and Motivation

Data assimilation refers to the class of methods that initializes the model fore-

cast by optimally combining information on the state from observations, previous

forecasts, and dynamical balances. This optimization requires the characterization

of various errors that exist within the system, including errors due to representa-

tiveness, observation instrumentation, and the forecast model, among others. The

relative weights of these errors determine the influence of each of our information

sources. The background error covariance matrix describes the errors associated

with the a priori information, usually a previous short term forecast. It provides

spatial correlations between every grid point as well as the correlations between

the different variable types. The spatial correlations determine the structure of the

observation impact and its weight relative to the observation error determines the

magnitude.

With the advancement of scientific computing, ensemble methods (Evensen,

1994; Houtekamer and Mitchell, 1998; Whitaker and Hamill, 2002) emerged to com-

pensate for some of the disadvantages of the original Kalman filter (Kalman, 1960),

namely that the background error was impractical to calculate in modern numerical
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weather prediction (NWP). Ensemble methods utilize a Monte Carlo approach to

approximate the background error by sampling a large ensemble of forecasts, allow-

ing the background covariance to vary in time and contain spatial correlations that

are anisotropic. However, computational constraints do not allow for a full sampling

of the NWP system since the dimension is so large. This under-sampling can create

unphysical correlations in the estimated background error. Various methods, such as

localization and inflation, have been devised to handle spurious correlations as well

as typically under-spread ensembles, removing correlations that are likely unphys-

ical and stabilizing model integration (Anderson and Anderson, 1999; Houtekamer

and Mitchell, 2001).

Most frequently used in the spatial dimensions, localization eliminates cor-

relations by modifying either the background error covariance or the observation

error covariance. To apply spatial localization in model space, the background er-

ror is multiplied by a correlation function that decreases with distance, reducing

the correlations for points that are distant and retaining the correlations for points

that are nearby (Houtekamer and Mitchell, 2001). This form of localization is also

applied within ensemble-variational schemes, such as the hybrid 4DEnVar (Kleist

and Ide, 2015b). To apply spatial localization in observation space, the observation

error is multiplied by a correlation function that increases with distance, increasing

the observation error and therefore reducing the impact for observations that are

distant (Hunt et al., 2007). Alternatively, localization in observation space can be

implemented as a form of observation selection, where only observations within a

certain region are considered in the calculation of the analysis (Houtekamer and

2



Mitchell, 1998). Both forms of observation space localization are applied within the

local ensemble transform Kalman filter (LETKF, Hunt et al., 2007). The reduction

of the background error and the increase of the observation error have an equivalent

impact on observation influence through the Kalman gain.

By reducing all correlations to zero beyond a certain distance, large scale

balances that are dictated by gradients or column integrated quantities, such as

geostrophic balance, are disrupted (Cohn et al., 1998; Lorenc, 2003; Mitchell et al.,

2002). Even though localization removes spurious correlations, it introduces im-

balance to the system. Imbalances within NWP initial conditions result in the

production of fast moving gravity waves that degrade the forecast. As computa-

tional resources continue to grow, the model resolution also continues to increase.

The number of ensemble members will likely not be sufficient to fully estimate the

background error in the foreseeable future. Therefore, localization will continue to

be necessary within ensemble data assimilation schemes, despite the imbalances it

causes. The particular implementation of the localization can have an impact on

the degree that the localization affects the balance.

While localization is most commonly applied spatially, it can be applied to

other portions of the ensemble correlations as well. Variable localization, or the

removal of correlations between different variable types, has been implemented in

a number of applications (Clayton et al., 2013; Kang et al., 2011), though the for-

mulation is not consistent. With an increased interest in strongly coupled data

assimilation (Han et al., 2013; Liu et al., 2013; Sluka et al., 2016) and the assimila-

tion of chemistry components (Coman et al., 2012; Liu et al., 2012; Pagowski and

3



Grell, 2012; Schwartz et al., 2014), the need for variable localization will likely in-

crease. A common formulation comparing the different types of variable localization

would be advantageous when constructing a new system as well as an investigation

into their strengths and weaknesses.

1.2 Thesis Objectives

The objectives of this thesis relate to the construction and balance of the

background error covariance matrix. The aims of this thesis are to:

1. Apply a balance operator to the ensemble portion of a deterministic hybrid

4DEnVar scheme within the SPEEDY model.

2. Apply a balance operator to the ensemble mean and spread in an LETKF

within the SPEEDY model.

3. Examine the effect of the balance operator on the analysis and forecast skill

as well as the balance of the analysis within two types of spatial localization.

4. Present a unified framework for two forms of variable localization within three

ensemble data assimilation schemes and identify their strengths and weak-

nesses.

By applying a balance operator within ensemble data assimilation schemes, the

localization can act on the unbalanced part of the ensemble correlations, preserving

the balanced correlations and reducing imbalance. While this method has been

applied within ensemble schemes previously (Clayton et al., 2013), the form of spatial
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localization was not considered. Whether the application of the spatial location is

on the background error or observation error impacts the effectiveness of the balance

operator. As previously stated, the method of variable localization is also not novel.

However, discussions regarding the classification of different variable localization

methods as well as their relative strengths and weaknesses have not been presented.

The first three objectives will be addressed by performing observing system

simulation experiments (OSSEs). These experiments will take place within an in-

termediate complexity global atmospheric model, SPEEDY (Molteni, 2003). The

SPEEDY model will be described in Chapter 2, along with validation of its clima-

tology and variability. Model biases between different horizontal resolutions will be

diagnosed and the observing network and data assimilation configuration will also

be described in Chapter 2. Chapter 3 describes the application of a balance opera-

tor within the ensemble portion of a hybrid 4DEnVar (Objective 1), which utilizes

spatial localization on the background error. Single observation impact tests as well

as OSSEs with a full observing network will be evaluated. Chapter 4 examines how

the balance operator implementation differs within an LETKF (Objective 2), which

utilizes spatial localization upon the observation error. Similar impact tests and

OSSEs are performed, demonstrating that the balance operator is unable to fully

propagate balanced information within this form of spatial localization (Objective

3). Variable localization is explored in Chapter 5, where two forms of variable lo-

calization are identified: model space variable localization and observation space

variable localization (Objective 4). These two forms are formulated within three

data assimilation schemes: the ensemble square root filter (EnSRF, Whitaker and
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Hamill, 2002), LETKF, and EnVar. The strengths and weaknesses of the two forms

of variable localization are shown to be consistent across ensemble schemes.

Through these objectives, it will be shown that the construction of the back-

ground covariance is critical to model performance. Localization, either spatial or

variable, can be applied in model space or observation space. While the background

error and observation error are related through the Kalman gain, there are addi-

tional consequences of choosing to localize in either model space or observation space

that need to be considered for the particular application.
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Chapter 2: System Configuration

Chapters 3 and 4 contain experiments to determine the impact of a balance

operator within two ensemble data assimilation schemes using an intermediate com-

plexity model. This chapter begins with a description of the model’s formulation

(Section 2.1.1), then presents verification for its mean fields and variability (Section

2.1.2), and diagnoses model biases between different horizontal resolutions (Section

2.1.3). Section 2.2 contains a description of the observation network and the chapter

concludes with the data assimilation configuration used in the experiments (Section

2.3).

2.1 SPEEDY Model

2.1.1 Model Description

The SPEEDY model (Simplified Parameterizations, primitivE-Equation DY-

namics) is a global atmospheric general circulation model (AGCM) of intermediate

complexity (Molteni, 2003). It was created for use in climate studies, being global

in scope yet significantly faster computationally than state-of-the-art NWP models,

approximately an order of magnitude for the same spatial resolution. These savings
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come primarily from its simplified parameterization schemes. SPEEDY contains

the same parameterization components as most complex AGCMs (convection, ver-

tical diffusion, cloud cover/thickness, condensation, long- and short-wave radiation,

and momentum and energy surface fluxes) though their formulation is more basic,

making assumptions specifically for a model with very coarse vertical resolution.

Model integration uses a leap-frog time scheme, where the spurious computational

mode is damped through the Robert-Asselin-Williams (RAW) filter (Amezcua et al.,

2011). SPEEDY was first adapted for data assimilation experiment within NWP by

Miyoshi (2005) and has since been used to test many new data assimilation method-

ologies (Greybush et al., 2011; Harlim and Hunt, 2007; Kang et al., 2011, 2012; Li

et al., 2009; Miyoshi, 2011; Sluka et al., 2016; Zhou, 2014) in a framework that is

similar in structure to the models used in the NWP centers, but uses much less

computational resources and contains less uncertainty.

SPEEDY contains a spectral dynamic core with a coarse vertical resolution

of eight σ levels (σ =0.95, 0.835, 0.685, 0.51, 0.34, 0.2, 0.095, 0.02), where the

bottom level represents the planetary boundary layer and the top two levels represent

the stratosphere. Several horizontal resolution options are available (Kucharski,

2012). The following experiments utilize horizontal resolutions of T30 and T63,

corresponding to a standard Gaussian grid of 96 by 48 grid points (approximately

3.75◦ at the equator) and 192 by 96 grid points (approximately 1.875◦ at the equator)

respectively.

Climatological boundary conditions for both model resolutions are the mean

from the ERA-Interim (Dee et al., 2011) for the years 1979-2008. Annual mean
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values are used for the bare-surface albedo and the vegetation fractional coverage.

Monthly mean values are stored for sea-surface temperature (SST), sea ice fraction,

top soil layer temperature, top soil layer moisture, and snow depth, which are in-

terpolated to compute daily values. For the SST field, an anomaly is added to the

climatological value in order to have time varying SST to represent interannual vari-

ability. SST anomalies are provided by the NOAA ERSST V3 (Smith et al., 2008;

Xue et al., 2003) and are available from 1854 to 2010. The incoming solar radiation

at the top of the atmosphere is a daily mean value, resulting in no diurnal cycle.

Topographic height and the land-sea mask are constant.

2.1.2 Model Climatology

The experiments presented use a fraternal twin configuration where the model

itself provides the true state that the performance is evaluated against. As a result,

model performance is not required to closely reflect reality. Nevertheless, if the

results from these experiments are to be applied to a state-of-the-art system in the

future, the model should provide a reasonable representation of the atmosphere. To

evaluate how closely SPEEDY simulates the true atmosphere, a five year nature

run from the T63 SPEEDY will be compared with the NCEP/NCAR Reanalysis

(Kalnay et al., 1996) in both mean statistics as well as variance.

Figure 2.1 shows the zonal mean zonal wind for the December, January, and

February months (DJF). Comparing the nature run to the reanalysis, they contain

the same large scale features: westerly winds in the midlatitudes, weaker easterly
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winds in the tropics, and high velocity jets in the upper atmosphere. The northern

hemisphere jet is fairly accurate in location using SPEEDY, though its maximum is

slightly weaker than in the reanalysis. The maximum in the southern hemisphere jet

is displaced to the north and is higher in the atmosphere in the SPEEDY nature run.

In the southern hemisphere, SPEEDY also has a hint of a double banded maximum

in the upper troposphere, which is not seen in the reanalysis. When comparing the

months of June, July, and August (JJA, Figure 2.2), the large scale similarities are

present again. The jets in both hemispheres, however, are stronger in the nature run

than in the reanalysis. More notable is the structure of the southern hemisphere

jet in the model truth. The jet has a much stronger bimodal configuration than

DJF, with two peaks in wind speed around 55◦S and 25◦S. There is only a slight

indication of this in the reanalysis around 400 hPa. SPEEDY’s jets in both seasons

are elongated into the stratosphere compared to the reanalysis. This is likely due

to the lack of vertical resolution within SPEEDY.

Figure 2.3 shows the DJF mean of mid-level geopotential heights, σ = 0.5 in

SPEEDY and 500 hPa in the reanalysis, in the northern hemisphere. The large

scale features are comparable with a trough extending through Kamchatka, though

the trough is deeper in the reanalysis. Another trough exists in both datasets in

Eastern Europe though SPEEDY contains standing waves around the Himalayas.

The magnitudes of the heights are also lower around the North Pole in SPEEDY,

likely due to SPEEDY treating the North Pole as a rigid boundary at 87◦N. The

comparison for JJA (Figure 2.4) is similar. Heights in the polar regions are too low

in SPEEDY, with standing waves again present in the vicinity of the Himalayas.
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Figure 2.1: Zonal mean zonal wind in m/s for (a) the T63 nature run of the SPEEDY
model and (b) the NCEP/NCAR Reanalysis, shown for DJF. The contouring interval is

5 m/s.

However, a trough exists by the Bering Strait and off the California coast in both

figures.

The variability of a model can be equally as important as its mean state;

therefore, the standard deviation of the nature run fields is compared against the

NCEP/NCAR reanalysis. Figure 2.5 shows the zonal wind in the upper tropo-

sphere, σ = 0.2 in SPEEDY and 200 hPa in the reanalysis, for DJF. The values of

the standard deviation in the nature run are lower than in the reanalysis on average.

However, the spatial distribution is qualitatively similar. They both feature max-

ima in the North Pacific and Atlantic along the storm tracks. The double banded

feature in the southern midlatitudes in both datasets mirrors the zonal mean zonal

wind. It is much more prominent and zonally constrained in SPEEDY than the re-

analysis. Comparing for the months of JJA (Figure 2.6), the spatial distribution is

broadly similar: lower variability in the tropics and higher in the midlatitudes. Both
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Figure 2.2: Zonal mean zonal wind in m/s for (a) the T63 nature run of the SPEEDY
model and (b) the NCEP/NCAR Reanalysis, shown for JJA. The contouring interval is

5 m/s

datasets have a maximum in the eastern Pacific, though SPEEDY has a much larger

magnitude. Similar to the zonal mean, the double banded feature is more distinct

than DJF in SPEEDY with clear separation between the bands. The reanalysis has

this feature to a lesser extent.

The variance of the global geopotential height, σ = 0.5 in SPEEDY and 500

hPa in the reanalysis, is also compared for DJF (Figure 2.7). The spatial pattern

is quite similar with appropriate maxima locations in the North Pacific, North At-

lantic, and South Pacific and low values throughout the tropics. Both datasets

contain a wavenumber-3 pattern in the northern hemisphere. The JJA patterns

(Figure 2.8) are not as closely represented, with the maximum around the Aleutian

islands in the reanalysis missing in SPEEDY. There is also a large area of high vari-

ability in SPEEDY over northeast Asia and western Alaska that is not seen in the

reanalysis. Since SPEEDY has a rigid boundary at 87◦N and S, its representation
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Figure 2.3: Mean northern hemisphere geopotential heights in meters for (a) the T63
nature run of the SPEEDY model at σ = 0.5 and (b) the NCEP/NCAR Reanalysis at

500 hPa, shown for DJF. The contouring interval is 100 m.

of the poleward-most regions are likely not well represented.

This series of comparisons with different reanalysis data sets demonstrate that

the SPEEDY model has a reasonable large-scale circulation, suitable for intermedi-

ate level climate studies as it was designed. The finer scale structure and magnitude

of some of the mean fields are lacking, but the key features are present, giving a

realistic representation of the atmosphere. The variability of SPEEDY also does

not match all of the features of the reanalysis, but the range of values and the large

scale structure are similar. For the experiments presented, the model dynamics and

physics appear accurate enough that any experiments dealing with large-scale bal-

ances should not be fundamentally different were they applied to a state-of-the-art

AGCM.
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Figure 2.4: Mean northern hemisphere geopotential heights in meters for (a) the T63
nature run of the SPEEDY model at σ = 0.5 and (b) the NCEP/NCAR Reanalysis at

500 hPa, shown for JJA. The contouring interval is 100 m.

2.1.3 Model Bias

In the previous section, some of the deficiencies of the model were highlighted

with comparison to the observed atmosphere, though when performing fraternal

twin experiments, these model errors are not critical since our model provides the

true state. Since the T63 resolution will be considered our true state, there will

be model errors when the lower resolution T30 forecast is used with respect to the

higher resolution that will be relevant to the experiment performance.

The method that will be used to diagnose initial model bias is from Danforth

et al. (2007). The authors of that study calculated the initial model bias between

SPEEDY and the NCEP/NCAR reanalysis. Their method is adopted to calculate

the initial model bias between the high resolution and the low resolution SPEEDY

configurations (Figure 2.9). A high resolution truth (xt63) is integrated forward in
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Figure 2.5: Standard deviation of monthly zonal wind in m/s for (a) the T63 nature
run of the SPEEDY model at σ = 0.2 and (b) the NCEP/NCAR Reanalysis at 200 hPa,

shown for DJF.

time with the high resolution model (M63). The high resolution truth is spectrally

truncated to make a low resolution equivalent (xt30) with transformation TTT. Then,

the low resolution state is integrated forward six hours using the low resolution

model (M30) to get a low resolution forecast (xf30). Over a period of five years,

the difference between the T30 equivalent of the T63 truth and the T30 forecast

(xt30 − xf30) is calculated, producing the mean initial bias due to model resolution.

Figure 2.10 contains the initial model resolution bias of the zonal wind in the

upper troposphere (σ=0.2) for (a) DJF and (b) JJA over a five year period. It

is readily apparent that for both seasons the largest errors occur over the poles,

with the stronger bias over the winter pole. There is also a region of small biases

associated with the high topography of the Himalayas, which will be represented

differently in the two resolutions.

The initial model resolution bias in the surface pressure fields (Figure 2.11) is

almost exclusively associated with areas of sharp gradients in topography, such as the
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Figure 2.6: Standard deviation of monthly zonal wind in m/s for (a) the T63 nature
run of the SPEEDY model at σ = 0.2 and (b) the NCEP/NCAR Reanalysis at 200 hPa,

shown for JJA.

edges of the ice sheets in Antarctica and Greenland, the Himalayas, and the Andes,

showing very little seasonal dependence. The lower resolution spectral model cannot

resolve these topographical features to the extent that a higher resolution model can.

The differences in surface pressure result predominantly from the definition of the

surface. Comparing the surface orography from each resolution (not shown), there

are areas that are several hundred meters different, which would lead to significant

differences in surface pressure.

Figure 2.12 contains the initial model resolution bias for midtropospheric tem-

perature (σ=0.51) for the DJF and JJA months. Large biases are again evident in

the polar regions, though the seasonality of the winter pole is not apparent. There

are some additional bias features closely associated with areas of high terrain, where

the difference in the surface definition is reflected in the height of the σ levels.

The biases revealed using the method from Danforth et al. (2007) were due

to the differing spectral model resolutions. Due to the nature of spectral models,
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Figure 2.7: Standard deviation of geopotential height in m for (a) the T63 nature run
of the SPEEDY model at σ = 0.5 and (b) the NCEP/NCAR Reanalysis at 500 hPa,

shown for DJF.

this results in a noisy bias field rather than a bias that is more dynamics-based

and therefore likely smoother. If bias correction were to be applied, these bias

fields would be added into the analysis at every analysis cycle. The noise added

by the bias correction could accumulate and be detrimental to the model forecast.

The SPEEDY model, designed for long-term integrations, has been proven to be

unstable in cases of high frequency instabilities and particularly sensitive to noise

in the initial conditions. Appendix A contains results from previous experiments,

demonstrating the nature of SPEEDY’s instability and various steps that were taken

to reduce it. For these reasons, we have chosen not to apply bias correction.

As presented in Danforth et al. (2007), the six hour forecast comparisons

are supposed to reveal the initial biases that exist between the two models, which

are likely linear in nature. Comparing the mean upper level zonal wind of a low

resolution integration with the nature run for JJA (Figure 2.13), it is clear that

there is significant systematic bias that the previous method did not capture. The
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Figure 2.8: Standard deviation of geopotential height in m for (a) the T63 nature run
of the SPEEDY model at σ = 0.5 and (b) the NCEP/NCAR Reanalysis at 500 hPa,

shown for JJA.

stratospheric zonal wind speed is notably weaker globally. This damped wind speed

is the result of inconsistent stratospheric damping timescales between resolutions.

These timescales are longer than six hours, resulting in the previous method being

insufficient to diagnose such biases as implemented here. If longer forecasts were

created for the comparison, it is likely that this bias could have been diagnosed

using Danforth et al’s method.

2.2 Observation Network

The synthetic observation network used in the following experiments have two

components: a synoptic radiosonde network and an asynoptic satellite network.

All observations are created by adding a Gaussian random error to the T63 true

state, scaled by the observation error associated with each observation type and

instrument. All observation errors are assumed to be uncorrelated.

The radiosonde portion of the observation network consists of 416 station-
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Figure 2.9: Schematic depicting the calculation of the initial model bias.

Figure 2.10: Initial bias between the T63 and T30 resolution from 1982-1987 for zonal
wind at σ = 0.2 in m/s: a) DJF and b) JJA

ary sounding locations (Figure 2.14). The observation locations were constructed

by Miyoshi (2005) to have a realistic distribution. The radiosondes are unevenly

distributed, with more observations occurring over land than over ocean and more

observations in the northern hemisphere than in the southern hemisphere. For each

observation station, prognostic variables u, v, and T are present at all vertical levels,

q at the bottom four levels, and P at the surface, with observations occurring every
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Figure 2.11: Initial bias between the T63 and T30 resolution from 1982-1987 for
surface pressure in hPa: a) DJF and b) JJA

Figure 2.12: Initial bias between the T63 and T30 resolution from 1982-1987 for
temperature at σ = 0.51 in K: a) DJF and b) JJA

six hours. The radiosonde observation errors for each variable type are shown in

Table 2.1.

The asynoptic component of the observations comes from the simulated satel-

lite observations. Observation values, in the form of retrievals at nadir only, are

created in the same manner as the radiosonde data, using the truth and adding a

random Gaussian error to it. The observation locations, error, and variable types

were chosen to mimic the AIRS instrument on the Aqua satellite and SeaWinds

on the QuikSCAT satellite. The simulated AIRS instrument provides retrievals for
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Figure 2.13: Mean zonal wind at the top model level for (top) June, July, August and
(bottom) December, January, February for horizontal resolutions (left) T63 and (right)

T30.

T (full column) and q (lowest four levels) while the simulated SeaWinds provides

information about the surface winds over the ocean, represented as u and v obser-

vations at the lowest model level. Observation locations were chosen to mirror the

satellite tracks as closely as possible, with the observations for AIRS (green) and

SeaWinds (red) over a six hour period shown in Figure 2.14. From the simulated

tracks, observations were taken at two minute intervals and binned hourly, giving

approximately 2,300 observations every six hours. While observation locations vary

by hour, they are identical for each day, i.e. 00z locations are the same for each day.

The observation errors of the satellite data are higher than the radiosonde data,
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Figure 2.14: Observation distribution with radiosondes in blue, QuikSCAT-like
observations in red and Aqua-like observations in green.

Table 2.1: Radiosonde observation error standard deviations for the prognostic
variables in the SPEEDY model.

Observation Type u v T q P

Observation Error 1 m s−1 1 m s−1 1 K 10−4 kg kg−1 100 Pa

shown in Table 2.2.

Table 2.2: Satellite observation error standard deviations for the prognostic variables in
the SPEEDY model.

Observation Type u v T q

Observation Error 1.5 m s−1 1.5 m s−1 2 K 2 × 10−4 kg kg−1

Using both observing system components results in approximately 14,000 ob-

servations per cycle. While much less than the number of observations available

for operational NWP systems, the dimension of SPEEDY is only O(105). Assimi-

lating O(104) observations for a O(105) system gives a ratio that is comparable to
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operational systems.

2.3 Data Assimilation Configuration

A hybrid 4DEnVar was implemented within the SPEEDY system. The back-

ground ensemble and deterministic forecast are saved hourly for a six hour data

assimilation window centered at synoptic times. The background covariances are

composed of 10% static contribution and 90% ensemble contribution, (βf , βe) =

(
√

0.1,
√

0.9), with M = 20 ensemble members used. Several values for the covari-

ance weights and ensemble size were tested, tuning for analysis error reduction and

long-term stability.

The static background error, BBBf , is calculated using the NMC method (Parrish

and Derber, 1992). This method uses a series of lagged forecast pairs to calculate the

climatological statistics of the background error. To generate the background error

for these experiments, one year of 24 and 48 hour forecasts was generated. Statistics

for the background error variance and length scales for the recursive filter (both

contained within UUUf ) and regression coefficients (c,GGG,Ω) for the balance operator (ΓΓΓ,

see Chapter 3 for details) were computed from pairs of forecasts that are valid at the

same time. The coefficients used in the following experiments were calculated using

forecasts generated by the SPEEDY model, though the structure of the coefficients

are comparable to those generated by NCEP’s Global Forecast System (GFS, Figure

2.15), demonstrating that the flow within SPEEDY contains realistic large scale

balances.
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Figure 2.15: Regression coefficient Ω between variables ψ and P as calculated using
the NMC method in (a) SPEEDY at horizontal resolution T30 and (b) GFS at

horizontal resolution T574.

The localization of the ensemble perturbations is applied through a fourth

order recursive filter, FFF (Purser et al., 2003). See Appendix B for the details of

its formulation. Due to the extremely coarse vertical resolution of SPEEDY, the

recursive filter is not applied in the vertical. The recursive filter is less effective

at the boundaries, which for a fourth order filter is four grid points deep. Since

SPEEDY only has eight vertical levels, every point would be a boundary. Instead,

the ensemble correlations are fully localized in the vertical, with each level being

independent of one another.

The analysis perturbations are provided by a local ensemble transform Kalman

filter (LETKF, Hunt et al., 2007), which runs in parallel with the hybrid assimilation

that generates the deterministic analysis. After the LETKF computes an analysis

ensemble, the ensemble is recentered about the hybrid analysis rather than the

calculated analysis ensemble mean. Using the same number of ensemble members as

the hybrid system, the LETKF uses a fixed multiplicative inflation of 8%, horizontal
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localization radius of 750 km, and vertical localization of 0.1 log(p) where p is the

three-dimensional pressure. The multiplicative inflation and localization radii were

also tuned with a series of experiments varying each parameter and evaluating the

analysis root-mean-squared error (RMSE, Figure 2.16). The multiplicative inflation

values tested ranged from 3% to 15% and the horizontal localization parameters

tested ranged from 250 km to 1500 km. Since the localization in the LETKF is

implemented through a distance dependent function rather than a recursive filter,

this vertical localization does not have difficulties with the sparse vertical resolution

of the model. The LETKF also uses a 4D configuration with hourly observation

bins and model forecasts and a time localization length scale of three hours.

Figure 2.16: Analysis RMSE for ψ in LETKF for two years of cycling. a) Fixed
multiplicative inflation parameters ranging from 3% to 15% and b) Horizontal

localization radii ranging from 250 km to 1500 km.

The experiments that follow use a fraternal twin configuration where the truth

is provided by the model itself at the higher resolution, T63, and the analysis and
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forecasts are run at a lower resolution, T30. Having the truth and forecasts at dif-

ferent resolutions adds model error to the system (Section 2.1.3), making it more

realistic and therefore allowing the proposed method to be more applicable to oper-

ational NWP. The true state was initialized from a state of rest on January 1, 1981

with the first year thrown out for spin up. Initial conditions for the T30 ensemble

and deterministic forecasts were chosen from an interpolated true state at different

times with the experiment period running from January 1, 1982 through January 1,

1984.
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Chapter 3: Balance Operators in Ensemble Data Assimilation: Hy-

brid 4DEnVar

3.1 Introduction

Numerical weather prediction (NWP) is an initial value problem that needs

both a representative numerical forecast model and appropriate initial conditions in

order to make an effective forecast. With the chaotic nature of Earth’s atmosphere,

initial conditions must be as close to the truth as possible but also must be balanced

to prevent the production of gravity waves, which propagate through the model and

degrade the forecast. Imbalances in the initial conditions led to the failure of the

first numerical weather prediction forecast by Lewis Fry Richardson in the early

20th century (Kalnay, 2003).

Many methods have been applied over the years to handle imbalances that

data assimilation systems create. In variational schemes, these methods have been

traditionally formulated as a strong constraint, a weak constraint, or initialization.

The two types of constraints, initially formalized by Sasaki (1970), are incorporated

within the data assimilation scheme itself, while initialization is treated as a post-

processing step once the assimilation is complete. Strong constraints assume that
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the balance in the model is perfect and strictly enforces it. Le Dimet and Talagrand

(1986) formulated a strong constraint referred to as “a reduction in control variable”,

where the analysis is found for one variable and the other variables are found through

the appropriate balance equations. In contrast, weak constraints assume that the

model balance is approximate. Lorenc (1986) argues that since the balances that

are typically represented in strong and weak constraints are not present at all scales,

weak constraints are more appropriate than strong constraints in NWP. Many weak

constraints formulations separate the model variables into balanced and unbalanced

components through the use of a balance operator (Lorenc et al., 2003; Parrish and

Derber, 1992; Wu et al., 2002) or add a penalty to the cost function (Courtier and

Talagrand, 1990; Gauthier and Thépaut, 2001; Wee and Kuo, 2004). The addition

of a term in the cost function is problematic since the cost function often becomes

ill-conditioned and minimization is adversely impacted.

Balance operators were originally constructed for global models (Derber and

Bouttier, 1999; Gauthier et al., 1999; Lorenc et al., 2003; Parrish and Derber, 1992),

where geostrophic and hydrostatic balance are prevalent. As grid sizes continue

to decrease as computational power increases and models relax the hydrostatic ap-

proximation, a significant portion of the flow no longer ascribes to these balances.

Vetra-Carvalho et al. (2012) found that hydrostatic balance breaks down at 1.5 km

horizontal resolution in the Met Office Unified Model. Non-geostrophic and non-

hydrostatic cross-covariances can be dealt with in mesoscale models through the

model itself within 4DVar (e.g. Kuo et al., 1996; Zou and Kuo, 1996; Zou et al.,

1995) and ensemble-derived covariances. EnKFs have been used in mesoscale ap-
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plications with much success (e.g. Caya et al., 2005; Snyder and Zhang, 2003; Tong

and Xue, 2005). There have also been attempts at modifying the balance opera-

tor to allow for convective scale motions. Honda et al. (2005) separated the error

into synoptic and mesoscale components, calculating the regression coefficients from

forecasts that have had a low-pass filter applied to them. Barker et al. (2004) added

an additional term to the calculation of balanced pressure to include cyclostrophic

balance.

Initialization procedures are performed outside of the cost function after an

analysis is obtained (Huang and Lynch, 1993; Machenhauer, 1977). In an effort to

reduce the imbalance that the assimilation created, initialization often pulls the anal-

ysis back away from the observations, frequently undoing the work of the assimilation

(Errico et al., 1993; Williamson et al., 1981). In order to reduce the degradation

potentially imparted by the initialization, it is possible to include the initialization

within the analysis calculation itself. Nonlinear normal-mode initialization (Baer

and Tribbia, 1977; Machenhauer, 1977), where the time tendencies of the forecast

model are projected onto the fast gravity wave modes and provide a correction to

the original state, was included in a variational analysis by Courtier and Talagrand

(1990) and Thepaut and Courtier (1991). Operationally, the National Centers for

Environmental Prediction’s (NCEP’s) Global Data Assimilation System (GDAS)

uses a tangent-linear normal-mode constraint (TLNMC, Kleist et al. (2009a)). It

follows the theory of normal-mode initialization, but since the GDAS does not have

a full nonlinear model available within the analysis cycle, a tangent-linear form of

the tendency model is used instead, resulting in a reduction of imbalances in the
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analysis without being computationally prohibitive.

In ensemble methods, the covariances are provided by the model itself, so im-

balances within the analysis should be small provided that the covariances are not

tampered with. However, in an attempt to handle shortcomings such as sampling

error and an under-dispersive ensemble, the covariances that the model provides are

modified. Sampling error due to small ensemble size is mitigated through the use of

localization, eliminating covariances that are likely spurious and unphysical. This

can be achieved by modifying the background error (decorrelating grid points that

are at large distances from one another, e.g. Houtekamer and Mitchell (2001)) or

modifying the observation error (increasing the error for observations that are lo-

cated far from the grid point in question, e.g. Hunt et al. (2007)). These localization

techniques create imbalances within the analysis (Buehner, 2005; Cohn et al., 1998;

Greybush et al., 2011; Kepert, 2009; Lorenc, 2003; Mitchell et al., 2002). By bring-

ing the correlations to zero at a certain distance from the grid point, the balance

between one variable and another variable’s gradient are greatly affected, particu-

larly in height and wind relationships. Localizing in stream function and velocity

potential space rather than zonal and meridional wind space has been shown to

reduce imbalances due to the covariances of stream function and velocity potential

being more isotropic than the covariances of zonal and meridional wind (Kepert,

2009).

This chapter evaluates a method of improving balance in the ensembles: ap-

plying a balance operator to the ensemble perturbations of a hybrid 4D ensemble-

variational (4DEnVar) system and thereby localizing on the unbalanced variables
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only, with the formulation being described in Section 3.2. Section 3.3 outlines the

results of single observation impact tests as well as full network experiments. A

summary and conclusions are presented in Section 3.4. The contents of this chapter

are contained in Thomas and Ide (2017a).

3.2 Method

3.2.1 Balance Operator

In variational methods of data assimilation, analysis control variables are typ-

ically chosen such that their background errors are uncorrelated with one another.

This allows for a much less challenging inversion of the background error covariance

matrix (Parrish and Derber, 1992). In most cases, the multivariate correlations are

provided by a dynamic constraint or balance operator, which represents prominent

physical relationships between the variables. In the atmosphere, the strongest re-

lationships that are typically represented are hydrostatic and geostrophic balance,

which relate the horizontal wind with the temperature and surface pressure.

Following Wu et al. (2002), the increments of velocity potential χ, temperature

T , and surface pressure P are broken down into balanced and unbalanced compo-

nents. The balanced parts are formed by using a statistical linear regression with
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the stream function ψ:

δχ = δχu + cδψ, (3.1a)

δT = δT u + GGGδψ, (3.1b)

δP = δP u + Ωδψ, (3.1c)

where δ indicates the increment, superscript u represents the unbalanced component,

c ∈ RQ×Q, GGG ∈ RQ×Q, and Ω ∈ RS×Q are linear regression coefficients, S is the

number of horizontal grid points per level, and Q is the total number of grid points.

The balanced part of δχ is cδψ, where δψ from a particular level only affects δχ

at that same level, making c a diagonal matrix. The largest contribution from

this correlation is from the planetary boundary layer, as ψ and χ are typically

uncorrelated in the free atmosphere. Hollingsworth and Lonnberg (1986) confirmed

the lack of correlation between the ψ and χ background errors using radiosonde

data over North America. The balanced part of δT is GGGδψ, where each level of

δψ contributes to δT at all levels, i.e. there is a vertical profile of balanced δT for

each vertical level of δψ. The balanced part of δP is Ωδψ, where all levels of δψ

contribute to δP , with the largest contribution being from the lowest model level.

The coefficients in c, GGG, and Ω are estimated using the NMC method (Section 2.3)

and assumed to vary with latitude and height only.

Figure 3.1a shows the GGG regression coefficient for a single level of δψ (σ = 0.34)

as calculated from the SPEEDY model. Any adjustments made to δψ at that level

will project onto a column of balanced δT that is latitude dependent. Since this
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coefficient represents thermal wind balance, GGG and consequently the balanced part of

T become very small close to the equator and minimal adjustments will be made in

the tropics. Figure 3.1b contains the regression coefficients at each level for a certain

latitude, 40◦N. For example, the purple line shows the balanced part of δT that is

correlated with the bottom level of δψ at σ = 0.95. The yellow line corresponds to

the level in Figure 3.1a.

Figure 3.1: a) Linear regression coefficients, GGG, for the SPEEDY model between δψ at
σ = 0.34 and δT at all levels, dictating columns of δT b which are latitudinally dependent.
b) GGG at each level for 40◦N. Each line represents a column of δT b for a single level of δψ.

The wind variables used in this balance operator construction, ψ and χ, are

customarily preferred as control variables over the zonal and meridional wind, u

and v respectively, in both variational (Daley, 1991) and ensemble (Kepert, 2009)

applications. The two cartesian wind components of u and v are highly correlated

with each other and their background errors are anisotropic. The nondivergent and

irrotational wind components of ψ and χ have small cross covariances and contain

isotropic self-correlations, making them more suitable for a symmetric and easily
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invertible background error.

The increment of the model variables is represented as δx = (δψT , δχT , δT T ,

δqT , δP T )T ∈ RN where N is the dimension of the model. The increment for the

variables in the unbalanced space, which are the control variables, are similarly

represented as δz = (δψT , (δχu)T , (δT u)T , δqT , (δP u)T )T ∈ RN . The three balance

equations, (3.1a) - (3.1c), are combined into a matrix, ΓΓΓ ∈ RN×N , which will be

referred to as the balance operator. When applied to δz, it transforms the control

variables to the total model variables:

δx = ΓΓΓδz. (3.2)

The balance operator transformation operates in the vertical only. While the vari-

able transformation does not operate in the horizontal, impacts in the horizontal

arise due to the choice of control variable. Changes to ψ and χ at a particular point

result in changes to u and v away from that point, allowing the balance operator to

represent horizontal correlations that are in close proximity. However, the balance

operator is not able to represent long distance horizontal correlations, such as those

associated with El Niño—Southern Oscillation.

This balance operator is applied within the data assimilation scheme itself, un-

like initialization methods that occur after the analysis is found (e.g. Machenhauer,

1977), often pulling the state away from the observations to bring the analysis into

balance (e.g. Williamson et al., 1981). Within the following sections, ΓΓΓ is instead in-

corporated into the cost function minimization, taking balance into account during
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the analysis calculation.

3.2.2 Variational application within a Hybrid 4DEnVar

Hybrid methods combine the advantages of both variational and ensemble

methods (Buehner, 2005; Hamill and Snyder, 2000; Lorenc, 2003). The flow de-

pendent errors of the ensemble system compensate for the climatological nature

of the 3DVar background. Furthermore, adding a portion of the full rank 3DVar

background covariance to the ensemble covariance compensates for the ensemble

covariance being rank deficient. The hybrid method presented here is the extended

control variable hybrid 4DEnVar as described in Kleist and Ide (2015b) and imple-

mented at NCEP for the Global Forecast System (GFS) in May 2016. It uses a cost

function framework, which can include other penalties for balance, bias, and quality

control, and would be attractive to operational centers that already have a varia-

tional system in place. In this formulation, the ensemble enters the standard 3DVar

cost function through an additional background term representing the weights of

each ensemble member:

J (v) =
1

2

(
vf
)T

vf +
1

2
(ve)T ve +

1

2

K∑
k=1

(dk −HHHkδxk)
T RRR−1 (dk −HHHkδxk)

T (3.3)

The control vector, v = ((vf )T , (ve)T )T ∈ RN+QM is comprised of the control vari-

ables for the static and ensemble parts respectively where N is the dimension of the

model and M is the number of ensemble members. The observation term of the cost

function is constructed as in 3DVar and then summed over each time level, where
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K is the total number of k time levels, dk ∈ RL is the innovation, HHHk ∈ RL×N is

the linear observation operator, δxk ∈ RN is the increment, and RRR ∈ RL×L is the

observation error covariance.

The multivariate correlations for the ensemble portion of the background error

covariance are provided by the ensemble itself, but a balance operator is needed to

provide the multivariate correlations for the static 3DVar portion, where the control

variable is chosen to be in the unbalanced variable space. By having a control vector

whose multivariate correlations are small, the construction of the static background

error, BBBf ∈ RN×N , is simplified. Since the ensemble perturbations already contain

multivariate correlations, ΓΓΓ is conventionally only applied to the unbalanced static

control variable.

The increment at time k, δxk, is constructed as a weighted sum of the static,

or fixed (f), portion and the ensemble (e) portion:

δxk = βfΓΓΓUUUfvf + βe
M∑
m=1

(FFFvem ◦ (XXXe
m)k), (3.4)

where βf and βe are the scalar weighting coefficients for the static and ensemble

covariance respectively, ◦ is the element-by-element multiplication operator or Schur

product, and (XXXe
m)k ∈ RN is the mth column of the background perturbations scaled

by
√
M − 1 at time k. Each part of the control vector is preconditioned on the square

root of its own background error covariance to allow for a more rapid minimization

of the cost function as it is typically ill conditioned. UUUf ∈ RN×N is the square

root of the static background error, BBBf = UUUf (UUUf )T , so the term UUUfvf represents
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the unbalanced static increment, δzf . The ensemble error covariance is a block

diagonal matrix with each block comprised of a forward, (FFF ∈ RQ×Q), and backward,

(FFFT ), recursive filter (Purser et al., 2003). The recursive filter provides the spatial

correlation for the ensemble error covariance matrix by spreading an impulse, or in

this case an ensemble weight, spatially into a quasi-Gaussian shape. This dictates

the geographical extent of the ensemble’s influence, allowing the recursive filter to

also function as the spatial localization of the ensemble perturbations. For more

details on the recursive filter, see Appendix B.

The ensemble portion of the increment contains the ensemble perturbations of

the total variables. The static portion of the control variable is in the unbalanced

variable space. When ΓΓΓ is applied to UUUfvf , the balanced part is incorporated into

the static increment, resulting in a hybrid increment δx in the total variable space.

3.2.3 Ensemble application within a Hybrid 4DEnVar

In ensemble methods, the correlations within the ensemble members provide

statistical information about the errors of the system. This includes information on

the intervariable correlations, which is the same type of information provided by

the balance operator (3.2). However, ΓΓΓ is based on mean climatological statistics

and does not represent the time dependent flow. This could lead to the belief that

implementing a dynamic constraint into an ensemble data assimilation system would

be redundant or even damaging to the numerical forecast. If the ensembles remained

as the model provided, the covariances would be in balance, i.e. the variables would
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be consistent with each other according to model dynamics and physics. Due to

small ensemble size and sampling error, modifications are made to the ensemble to

reduce filter divergence. When attempting to remove spurious correlations through

spatial localization, some physical correlations are also inadvertently removed and

add imbalance to the ensemble. By applying a balance operator to the ensemble

portion of the covariance, the balanced part can be removed from the perturbations

and the localization will work on the perturbations in the unbalanced space only.

This will reduce the imbalance added by the localization.

Within a Hybrid EnVar, ΓΓΓ, is traditionally applied to the static control vari-

able, vf as in (3.4). If ΓΓΓ is to be applied to the ensemble perturbations as well,

instead of having an additional application to the ensemble portion of the incre-

ment, ΓΓΓ is applied to the full increment:

δxk = ΓΓΓ

(
βfUUUfvf + βe

M∑
m=1

(FFFvem ◦ (ZZZem)k)

)
. (3.5)

(ZZZem)k ∈ RN is the mth column of the background perturbations in the unbalanced

space scaled by
√
M − 1 at time k. These perturbations are calculated by applying

ΓΓΓ−1 to the perturbations in the total variable space, (XXXe
m)k, at the beginning of each

analysis cycle. There is no formulation change to the cost function (3.3), only to

the increment used within it.

This method allows for the ensemble localization, implemented as a recursive

filter in the matrix FFF, to work only on the control variables in the unbalanced

space rather than the model variables. This preserves the balanced part and allows
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for a propagation of information outside of the physical localization radius of the

ensemble. This formulation was previously adopted by the UK Met Office in their

operational hybrid ensemble-4DVar (Clayton et al., 2013) and is being investigated

by the Chinese Meteorological Administration for a future implementation of the

GRAPES Hybrid 3DEnVar (Chen et al., 2015).

3.3 Experiment Results

3.3.1 Impact Tests

To assess the impact of adding the balance operator to the ensemble portion of

the increment, single observation experiments are performed. Within 3DVar, or al-

ternatively (βf , βe) = (1, 0) within a hybrid 4DEnVar, the multivariate correlations

are determined solely the balance operator. Using this data assimilation scheme

when assimilating a single observation isolates its effect. Figure 3.2a shows the

analysis increments for T (contour) and ψ (shaded) at the lowest model level where

a single T observation has been assimilated. The T increment is isotropic about the

observation location as an effect of the climatological covariances and lack of flow

dependence. Since there are no wind observations, δψ is determined solely by the

multivariate covariances, which in this static case is ΓΓΓ. The ψ increment is negatively

correlated with δT , which can be surmised by examining Figure 3.1b that contains

a negative regression coefficient for the lowest model levels of both T and ψ. As

also indicated by Figure 3.1, the smaller coefficients and therefore a weaker balance

operator response occurs at matching levels of T and ψ. Figure 3.2b, a vertical cross
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section through the observation location, shows the larger multivariate correlations

and larger response higher in the troposphere. The ψ response to the T observation

exhibits thermal wind balance, with an increase in ψ and therefore the heights above

the increase in T .

Figure 3.2: Analysis increments from the assimilation of a single T observation using
3DVar: (a) lowest model level and (b) vertical cross section at 39◦N. T is contoured with

0.2 K interval and ψ is shaded.

To isolate the balance operator effect on the ensembles, the next set of tests

use 100% ensemble contribution, (βf , βe) = (0, 1). Figure 3.3a shows the analysis

increments for T (contour) and ψ (shaded) at the level of the observation location

using the standard EnVar configuration (CTL). This figure shows the standard

case where the increment away from the observation is derived from the localized

ensemble perturbations, demonstrating flow dependence. δT is roughly isotropic,

but δψ exhibits a dipole about δT , increasing the height gradient and therefore the

meridional wind at that location.

As in the static 3DVar case, the adjustment to both δψ and δT by ΓΓΓ in the

ensemble case should also be small at the level of the observation and larger at
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Figure 3.3: Analysis increments from the assimilation of a single T observation at the
lowest model level using 4DEnVar: (a) CTL and (b) BAL. T is contoured with 0.2 K

interval and ψ is shaded.

adjacent levels. Figure 3.3b shows the analysis increment for BAL at the level of

the observation. As expected, the differences between BAL and CTL are small.

There is a slight reduction (increase) in δT in areas with a positive (negative) δψ

increment due to the negative value of GGG at this level. If the analysis increment is

decomposed into its balanced and unbalanced parts (Figure 3.4), this adjustment is

depicted as the balanced part of δT .

Figure 3.4: Decomposition of δT into its (a) balanced and (b) unbalanced components.
T is contoured with 0.02 K interval for (a) and 0.2 K interval for (b).

Due to GGG having larger values at adjacent levels, the adjustment by ΓΓΓ should
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be larger in these areas as well. Figure 3.5 shows a latitudinal cross section of the

analysis increments through the observation location. The localization of vertical

ensemble correlations keeps the analysis increments confined to the observing level

in CTL (Figure 3.5a). When ΓΓΓ is added to the ensemble correlations in BAL, there

is a much larger difference above the level of observation (Figure 3.5b). Information

from the bottom level is now propagated vertically outside of the localization radius

through ΓΓΓ. These correlations in the vertical exhibit thermal wind balance: there

is an increase in δψ, and therefore the heights, above the positive δT at the lowest

model level. Also, above negative (positive) δψ in the lowest model level, there is

now an increase (decrease) in δT throughout the column. The adjustment in the

upper levels is qualitatively similar to the static case (Figure 3.2b), which was solely

determined by the balance operator, though the effects of the flow dependence in the

lower level ensemble covariances is apparent by the slight asymmetry of the vertical

response. With a modification to both δψ and δT above the observing level, there

is a two-way propagation of information between the variables; δT impacts δψ and

δψ also impacts δT .

The configuration within SPEEDY uses strict vertical localization due to the

recursive filter handling the coarse vertical resolution poorly. This allows the BAL

configuration to show a maximum effect since ΓΓΓ is the only means of propagating

observation information vertically. In reality, NWP models rarely use vertical local-

ization as strict as this system. In practice, this likely would reduce the impact of

the BAL configuration if the vertical localization length scale was large. Figure 3.5c

shows the single observation response when no vertical localization is used within
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Figure 3.5: Vertical cross section of the analysis increments taken at 39◦N when
assimilating a single T observation at the lowest model level for (a) CTL, (b) BAL, and
(c) CTL with no vertical localization. T is contoured with 0.2 K interval and ψ is shaded.

the EnVar. Only CTL is shown, as CTL and BAL with no vertical localization are

nearly identical. While higher in magnitude, the response is qualitatively similar to

BAL, exhibiting thermal wind balance. In this case, the thermal wind relationship

is derived from the ensembles rather than from climatology, demonstrating that the

lack of vertical information in CTL is due to the localization only and not a defi-

ciency in the ensemble covariances. Figures 3.5b and c demonstrate the extremes of

vertical localization and the associated BAL impact. In reality, vertical localization

within ensemble data assimilation schemes falls in between and it is expected that
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the relative impact of ΓΓΓ would as well.

In addition to the single observation test, a single cycle analysis is performed

using the full suite of observations (Figure 2.14) and the same background. Figure

3.6 shows the CTL and BAL T analyses at σ = 0.835 for the same background at

1982/06/01 00z as well as the difference between them. Comparing Figures 3.6a and

3.6b, several features are common, such as the negative increments in the Bering

Sea and south of Hawaii, the dipole south of New Zealand, and the large increment

on the Antarctic Peninsula. The magnitude of the BAL increments are larger than

the CTL increments, which follows as a natural consequence of Figure 3.5b. In

CTL, each observation primarily impacts the levels immediately adjacent to the

observation since the ensemble correlations are fully localized in the vertical. Only

the 10% static part can have an impact throughout the column in CTL. For BAL,

the ensemble can also propagate information outside of the localization radius. This

results in more information affecting each level, creating increments with larger

magnitude.

Examining Figure 3.6c, the primary differences between these configurations

occur in the southern hemisphere and over the ocean. These areas have few ra-

diosonde observations compared to the northern hemisphere and over land. While

there is satellite coverage in the southern hemisphere, the simulated satellites only

observe T and q or lowest level winds. In contrast, the radiosondes observe all 3D

variables at all levels, with the exception of upper level q. When a region is well ob-

served, ΓΓΓ would not typically need to make large adjustments since the observations,

if they are close to the truth, should bring the analysis most of the way towards
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Figure 3.6: Single analyses for (a) CTL and (b) BAL at 1982/06/01 00z using the
same background. (c) is the difference between (b) and (a). Shown for T at the second

model level.

a balanced state. In a region that is not well observed, ΓΓΓ would be expected to

make larger corrections; if only one of the variables is observed, the other variables

would need to be adjusted throughout the column to be brought into balance. This

results in larger differences between BAL and CTL in regions with few radiosonde

observations.

The single observation impact test demonstrates how ΓΓΓ propagates the ensem-

ble covariance information outside of the localization radius, with small adjustments

at the level of the observation and larger adjustments at adjacent levels. The single

analysis impact test shows that the propagation of information can lead to larger
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magnitude increments in BAL than CTL. The uneven distribution of observations

also leads to larger differences between BAL and CTL in regions in which all obser-

vations are not regularly observed.

3.3.2 Full Experiment Results

The full suite of simulated observations was assimilated for two parallel exper-

iments: CTL and BAL. Two years of cycling were completed using the configuration

described in Section 2.3 and the first month was rejected due to spin up. The pro-

posed advantage of adding ΓΓΓ to the ensemble is the improvement of balance. When

imbalances exist within the system, gravity waves are produced, which degrade the

forecast. A signature of this in the forecast fields would be an increase in surface

pressure tendency. Figure 3.7a depicts the zonally averaged surface pressure ten-

dency for CTL and BAL over the two year period, excluding the first month due

to spin up, with the difference and 95% confidence intervals (Figure 3.7b). Little

difference is seen in the northern hemisphere (Figure 3.7a), though there is some

statistically significant degradation shown in Figure 3.7b in the areas surrounding

the Himalayas. In the southern hemisphere, BAL exhibits a lower surface pressure

tendency than CTL, where it was indicated previously that ΓΓΓ was producing greater

adjustments. This signifies that the inclusion of ΓΓΓ in the ensemble perturbations has

increased the balance in this region.

In many other initialization methods, to bring the state into balance, the

analysis is moved away from the observations. In contrast, the method presented
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Figure 3.7: (a) Zonal mean surface pressure tendency for CTL and BAL and (b) the
difference between the two experiments with 95% confidence intervals.

here attempts to correct for imbalance within the minimization itself, rather than

after the assimilation. To assess the skill of the analysis, root-mean-square errors

(RMSE) were calculated with respect to the high resolution true state. Figure 3.8

shows the results, calculated globally for ψ, χ, and T at each vertical level. The

impact on q is neutral (not shown). This is expected since this particular formulation

of ΓΓΓ does not modify the moisture field; any improvement in humidity skill would

be due to the improved wind field only. The largest improvement is seen in T .

This is encouraging since T has the strongest relation to ψ. Tropospheric ψ and

the lowest level χ show a marginally positive impact, also corresponding to regions

that are affected by ΓΓΓ. There is a large decrease in skill in upper level ψ and to a

smaller extent in χ. This is due to the model bias discussed in Section 2.1.3. The

regression coefficients of (3.1a) - (3.1c) are derived using the low resolution model,

which results in a statistical relationship between T and a damped stratosphere

rather than the “true” stratosphere. When ΓΓΓ is incorporated, it only exacerbates
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the bias that already exists in this area.

Figure 3.8: Analysis RMSE calculated globally with height for CTL (black) and BAL
(red). Shown for variables (a) ψ, (b) χ, and (c) T .

When all of the variables are observed, ΓΓΓ does not need to make as large of

an adjustment as when only one variable is observed. When computing the analysis

skill by hemisphere (Figure 3.9, shown for T only), ΓΓΓ has a much larger positive

impact in the southern hemisphere, where the observations are comprised mostly

of satellite data, as discussed for the single cycle case. Figure 3.10a shows the

zonally averaged RMS of difference in δT with height. The midlatitudes contain the

largest differences, where geostrophic balance acts strongly, with a maximum in the

midtroposphere. As in the RMSE of the analysis, the southern hemisphere shows

greater differences between the increments of CTL and BAL.

Another conclusion of the single cycle case was that BAL has larger magnitude

increments. To investigate whether this translates to the cycling system, rather than

calculate the RMS of the increment difference, the difference of the RMS increment

is calculated instead, shown in Figure 3.10b for T with latitude and height. There is

no consideration of increment sign, just the size of the increment for each experiment.
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Figure 3.9: Temperature analysis RMSE for the CTL (black) and BAL (red)
experiments over (a) the Northern and (b) Southern Hemispheres.

The size of the increment for BAL is larger than CTL for all latitudes and heights,

with the largest increases occurring in the northern hemisphere midlatitudes. This

is where the maximum amount of total observations is located. As stated in Section

3.3.1, ΓΓΓ allows the ensemble covariances to impact levels away from the observation

location, resulting in each level being affected by more observations and therefore

producing larger increments. Both RMS difference figures (Figures 3.10a,b) have

maximum differences in the midlatitude middle troposphere. The expected impact

of ΓΓΓ can be deduced by examining the structure of GGG. Figure 3.10c shows the sum

of the absolute value of GGG, which represents the accumulated impact of ΓΓΓ on δT

summed over all of the levels of δψ (3.1b). In agreement with the RMS differences,

the maximum accumulated impact is in the midlatitude middle troposphere.

An improvement in the balance of the initial conditions reduces the production

of fast moving gravity waves, which should improve the long-term forecast skill. To

assess the forecast skill in these experiments, anomaly correlation coefficients (AC)
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Figure 3.10: (a) RMS of the difference between the T analysis increments for the BAL
and CTL configurations. (b) The difference between the RMS of the T analysis

increments for the BAL and CTL configurations. (c) The sum of the absolute value of GGG
over all vertical levels.

are computed in which 10 day forecasts initialized at 00z each day for the two year

period are compared with the verifying truth. SPEEDY does not contain a diurnal

cycle, so sampling at a single time each day is representative of the forecast behavior.

Figure 3.11 shows the difference between the global AC for T and ψ with height

for each experiment. The ψ AC show a similar degradation in the upper levels due

to the bias in the stratosphere, though tropospheric ψ and all levels of T showed

improvement for all forecast days calculated.
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Figure 3.11: Difference in global AC between BAL and CTL by height and forecast
day. Shown for (a) ψ and (b) T .

The statistical significance of these differences is shown in Figure 3.12, which

contains the 95% confidence intervals for an upper and lower level of ψ and T . The

forecast degradation for the upper level ψ is significant out to 8 days, but neutral

by day 10. The T AC at the same level are improved over the 10 day forecast range.

Though the improvement is small, it is statistically significant at all calculated

forecast lengths. The lower levels show a highly significant improvement in the first

five days for both T and ψ and remains significant through 10 days, though less

so with time as would be expected. The impact of ΓΓΓ on the forecast skill mirrors

the impact on the analysis skill: degradation in the stratospheric wind fields where

large model bias is present and significant improvement in T at all levels and the

wind fields in the troposphere.
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Figure 3.12: Difference in global AC between BAL and CTL with 95% confidence
intervals for (left) ψ and (right) T at (top) an upper and (bottom) lower model level.

3.4 Summary and Discussion

By applying a balance operator, ΓΓΓ, to the ensemble portion of a hybrid 4DEn-

Var, the balance of the SPEEDY system is improved. Implemented within the in-

termediate complexity model, SPEEDY, this method allows the localization to act

on the perturbations in the unbalanced space only and the balanced part remains

unaffected. There is a reduction of the surface pressure tendency in the southern

hemisphere where ΓΓΓ has a larger impact. The forecast and analysis skill for T and
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lower level ψ are improved, though the analysis and forecast skill of the stratospheric

wind fields degrade due to the poor treatment of the zonal wind bias.

The added cost of including ΓΓΓ for the ensemble perturbations is minimal.

Rather than performing an extra balance operator step each time the increment is

calculated, the preexisting balance operator step for the static part of the increment

is merely being performed on the whole increment instead. The only added cost is

the transformation of the ensemble perturbations to the unbalanced space, which

only needs to be done once at the beginning of each analysis cycle. For the man-

ner in which ΓΓΓ is formulated here, it is highly parallelizable; it only works on the

column, not on neighboring points. Each ensemble member can also be calculated

independently.

SPEEDY is an intermediate complexity model and developed with climate

applications in mind. It has a slower error growth than the state-of-the-art models

have, so conclusions of improvements out to 10 days are not directly applicable to the

more complex models in terms of forecast length. While many of the complexities

of the major models are absent in SPEEDY, the key balances of hydrostatic and

geostrophic balance are present and well represented. The configuration of these

fraternal twin experiments also allowed for the clean evaluation of a known model

bias. BAL did not perform well in these areas, which may draw concern for the

application to a more realistic setting since the main NWP models have many biases,

though this bias between resolutions was quite large (20 m s−1 in some locations).

The potential advantages of localizing the perturbations in the unbalanced space

could outweigh adverse impacts from model bias, particularly at such a low cost in
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the computation of the analysis.

In the future, this method will be tested within NCEP’s Gridpoint Statistical

Interpolation (GSI, Kleist et al. (2009b)) for use in the GFS. The hybrid and balance

operator formulations used in these experiments were chosen to mimic operations

as closely as possible for greater ease of transition. One notable difference is that

these experiments use an LETKF to create the ensemble perturbations compared

to the EnSRF used operationally (Whitaker et al., 2008), but since the mean state

estimation of the ensemble system is discarded and the ensemble is recentered about

the hybrid estimation, the difference in ensemble method should have a minimal

impact.

The GSI employs another method to increase balance, the tangent-linear

normal-mode constraint (TLNMC, Kleist et al. (2009a)). Using 3DVar, Kleist et al.

(2009a) found that the TLNMC compensates for the deficiencies within the pre-

scription of the balance operator coefficients. On the other hand, in the attempt to

fully replace the balance operator with the TLNMC, the balance operator proved

to be of benefit. The experiments of this chapter use a hybrid 4DEnVar data as-

similation scheme rather than 3DVar. With the TLNMCs application to the whole

increment within the hybrid 4DEnVar formulation of the GSI rather than just the

static, 3DVar-like portion, it is unknown what the interaction of the TLNMC would

be with an ensemble application of a balance operator. The ensemble portion of the

increment has 4-dimensional time information, which may not require the TLNMC

as greatly as the static portion, if at all.

Both the ensemble balance operator and the TLNMC would have a similar ef-
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fect outside of the vertical localization radius to increase balance, possibly reducing

the impact of the BAL configuration in the presence of the TLNMC. Since the two

operators function in a comparable manner, it would be desirable if the computa-

tionally inexpensive BAL could replace the costly TLNMC. However, BAL uses the

same balance operator coefficients as the 3DVar, which the TLNMC provided an

adjustment for within Kleist et al. (2009a). It is probable that the TLNMC would

also adjust the increments of BAL, increasing the balance of the analysis and pro-

viding additional benefit. The interaction of the TLNMC and the ensemble balance

operator will be explored in the future.
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Chapter 4: Balance Operators in Ensemble Data Assimilation: Lo-

calization

4.1 Introduction

Ensemble methods of data assimilation use statistics calculated from a large

number of model forecasts to approximate the background error. In numerical

weather prediction (NWP) applications, the ensemble size is typically much smaller

than the dimension of the problem due to computational cost, O(100) ensembles

for an O(109) model, resulting in a large amount of sampling error. This can cause

spurious correlations between two variables that are physically unrelated. For grid

points that are close in distance, the correlations are likely dominated by signal, but

for grid points that are at a large distance from one another where the true corre-

lation is small, sampling error likely dominates (Hamill et al., 2001). Utilizing this

assumption, the method of localization was devised to remove these long distance

correlations, which are likely noisy and often degrade the analysis.

A common form of localization operates on the background error covariance,

referred to as BBB localization. Detailed in Houtekamer and Mitchell (2001), this

method calculates the Schur product of the background covariance and a correla-

56



tion function. The most commonly used correlation function is that of Gaspari and

Cohn (1999), which ranges from one to zero as the distance increases, retaining

the covariances for grid points that are physically close to one another and elim-

inating covariances for points that are distant. This method is regularly used in

the perturbed observation form of the ensemble Kalman filter (Burgers et al., 1998;

Houtekamer and Mitchell, 1998) and ensemble-variational hybrids (Buehner, 2005;

Lorenc, 2003).

Localization is also frequently applied to the observation error covariance, re-

ferred to as RRR localization. A simplified version of this is implemented through

observation selection where each grid point assimilates only a subset of local obser-

vations. Houtekamer and Mitchell (1998) noted that excluding remote observations

from the calculation of a particular grid point improved the overall analysis. How-

ever, concerned with abrupt cutoffs between areas of observation influence, a more

sophisticated version of RRR localization was implemented by Hunt et al. (2007) in the

local ensemble transform Kalman filter (LETKF), where the method of observational

selection was paired with a modification of the observation error covariance. In this

method, the observation error was multiplied by a function that increases with dis-

tance from the observation to the analyzed grid point. This results in observations

that are far away from a grid point having extremely large errors associated with

them and subsequently having minimal impact on the analysis. The LETKF em-

ploys this method of localization rather than BBB localization, since the background

error is never explicitly calculated within that data assimilation scheme. While

these localization methods differ in their implementations, they achieve the same
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goal. Through the Kalman gain, the background and observation error covariances

work in opposing manners to determine the influence of each observation; decreasing

the background error and increasing the observation error have the same qualita-

tive impact. Greybush et al. (2011) highlight one notable difference: the optimal

length scale for RRR localization schemes is shorter than the optimal length scale for

an equivalent BBB localization scheme.

While localization greatly reduces undesirable noise in the ensemble correla-

tions, it disrupts geostrophically and hydrostatically balanced correlations (Buehner,

2005; Cohn et al., 1998; Greybush et al., 2011; Kepert, 2009; Lorenc, 2003; Mitchell

et al., 2002). By reducing analysis increments to zero at a certain distance, balances

that are dependent on gradients or column quantities are disrupted. In Chapter 3,

a method of preserving balance in localized ensembles was investigated. In a hybrid

4DEnVar formulation, the balance operator is applied to the full increment rather

than the static portion only. This results in the localization being applied to the

perturbations in the unbalanced variable space, thereby retaining the balanced part

of the correlation. The impact is especially evident for temperature and streamfunc-

tion correlations, where rather than having a vertically localized increment, there is

a balanced increment throughout the column. That formulation was implemented

within an intermediate complexity global atmospheric model and observing system

simulation experiments were performed. The change in the application of the bal-

ance operator reduced the surface pressure tendency, indicating improved balance,

and forecast and analysis skill were generally increased. Regions that contained

high amounts of model bias between the high resolution truth and the low reso-

58



lution forecast experienced analysis and forecast degradation due to the balance

regression coefficients being based on the low resolution model.

The hybrid 4DEnVar of Chapter 3 utilizes BBB localization. The purpose of

this chapter is to apply the balance operator methodology to an EnKF that uses RRR

localization, LETKF, and explore the strengths and weaknesses in their application.

The methods for both EnVar and LETKF are described in Section 4.2 as well as

how the different forms of localization impact the effect of the balance operator.

Results in a single observation setting and a full observing network are presented

for LETKF in Section 4.3 and a summary and conclusions are discussed in Section

4.4. The contents of this chapter are contained in Thomas and Ide (2017b).

4.2 Balance Operators and Localization

Traditionally used in variational schemes, balance operators represent the mul-

tivariate correlations present in the model state. These correlations are based on

known physical relationships such as geostrophic and hydrostatic balance. Following

Wu et al. (2002), the variables of velocity potential χ, temperature T , and surface

pressure P are broken down into two components: a “balanced” component that is

correlated with streamfunction ψ and an “unbalanced” component, which becomes

the analysis control variable (1) in Chapter 3. The matrix ΓΓΓ ∈ RN×N , referred to

as the balance operator, transforms ensemble perturbations from the unbalanced

variable space, represented by ZZZ = (ψT , (χu)T , (T u)T , qT , (P u)T )T ∈ RN×M , to the

total variable space, represented by XXX = (ψT , χT , T T , qT , P T )T ∈ RN×M , where N is
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the dimension of the model, M is the number of ensemble members, and both sets

of perturbations are normalized by
√
M − 1. Application of ΓΓΓ to δz incorporates the

balanced component, XXX = ΓΓΓZZZ, where application of ΓΓΓ−1 to XXX removes the balanced

component. Application of ΓΓΓT modifies ψ based on χ, T , and P . The regression

coefficients with which the correlations are based are climatological, but model de-

rived, i.e., they are static in time but consistent with the balance recognized by the

model.

The balance operator is applied within the ensemble systems to separate the

balance and unbalanced parts of the perturbations. Doing so ensures that the bal-

anced portion of the analysis increment is not affected by spatial localization, as it

is in conventional ensemble methods. The balance operator’s interaction with local-

ization is represented schematically for four cases in Figure 4.1. Figure 4.1a shows

a depiction of the background error covariances for ψ and T without any localiza-

tion, XXXXXXT . Correlations from the ensemble are depicted in red, with the primary

feature being a strong spatial correlation along the diagonal. Because of inadequate

ensemble size, sampling error exists in the calculation of the covariances and noise

appears away from the diagonal, resulting in distant, unphysical correlations. The

effect of the balance operator is shown in yellow, highlighting how ψ and T can

impact each other at great distances, particularly in the vertical. Areas that are

colored orange represent multivariate correlations that have contributions from the

balance operator in addition to the ensemble forecasts.

Figure 4.1b depicts the conventional case when spatial localization based on

the physical distance between grid points is applied to the background covariance,
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Figure 4.1: Illustration of a subset of the background covariance for variables ψ and T
where red represents ensemble-derived correlations, yellow represents ΓΓΓ derived

correlations and orange represent correlations from both sources. a) No localization, b)
conventional spatial localization, c) ΓΓΓ in EnVar, d) ΓΓΓ in LETKF

ρ◦ (XXXXXXT ) where ρ ∈ RN×N represents the localization function and ◦ is the element-

wise Schur product. Since XXX = ΓZΓZΓZ, the impact of the balance operator is also

localized. With the application of the spatial localization, this case only retains the

correlations, whether univariate or multivariate, near the diagonal of each block.

By reducing all of the correlations to zero beyond a certain distance, relationships

that rely on gradients or vertically integrated quantities are disrupted. This has

significant implications for correlations that dictate the large scale balance.
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4.2.1 Application within a BBB localization method: EnVar

Chapter 3 demonstrates the benefit of the balance operator when applied to

the ensemble portion of a Hybrid 4DEnVar in an intermediate complexity model. In

that case, the balance operator allows for a propagation of the balanced multivariate

correlations outside of the spatial localization radius. In this section, the formulation

for its ensemble-only counterpart, EnVar, is presented.

In 3DVar, ΓΓΓ is used to transform the control variable. In the EnVar, the control

variable is the weight for each ensemble member (ve ∈ RQM where Q is the number

of grid points); therefore, ΓΓΓ is not applied to the control variable but to the ensemble

perturbations. The increment is written as:

δx = ΓΓΓ
M∑
m=1

(FFFvem ◦ZZZem) = ΓΓΓEEEzUUUve. (4.1)

The perturbations in the unbalanced space for each ensemble member, ZZZem ∈ RN , are

created at the beginning of each analysis cycle by applying ΓΓΓ−1 to the total model

perturbations for each member, m. The matrix representation of the Schur product

of the ensemble perturbations is EEEz ∈ RN×QM . The control vector is preconditioned

on the square root of its error covariance matrix, LLL = UUUUUUT ∈ RQM×QM , which is a

block diagonal matrix that provides the spatial correlation of the ensemble weights

and localizes the perturbations. For this implementation, each block of LLL contains

both a forward and backward recursive filter, FFF ∈ RQ×Q and FFFT respectively. The

recursive filter, described in Purser et al. (2003), applies covariance localization in
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the unbalanced space rather than model space, ensuring that the balanced covari-

ances remain unaltered. Once the increment is found in the unbalanced variable

space, ΓΓΓ is applied to include the balanced variables once again to obtain the full

increment.

The analytical solution for the ensemble weight is written as:

ve = (PPPa)−1 UUUT (EEEz)
TΓΓΓTHHHTRRR−1d, (4.2)

where

PPPa = III + UUUT (EEEz)
TΓΓΓTHHHTRRR−1HHHΓΓΓEEEzUUU, (4.3)

is the analysis covariance, HHH ∈ RL×N is the observation operator, L is the number

of observations, RRR ∈ RL×L is the observation error covariance and d ∈ RL is the

innovation. (4.2) shows that when calculating ve, ΓΓΓT is applied before the local-

ization (UUUT ). The localization matrix has no knowledge of where the observations

are located, so it does not constrain the increment to be close to the observations.

It propagates any information that is present spatially, whether the information is

from the observations or the balance operator. Once ve is found, the increment

is calculated as in (4.1), where ΓΓΓ is applied to the increment last. This permits

the application of both ΓΓΓ and ΓΓΓT to be felt, allowing for a two-way propagation of

information. Information from ψ is passed to the other variables and information

from the other variables is also passed to ψ.

Figure 4.1c depicts this case, where the localization is applied to the pertur-
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bations in the unbalanced space only, ΓΓΓ(ρ ◦ ZZZZZZT )ΓΓΓT . The localization eliminates

the noise for points that are distant for both the self-correlations and the cross-

correlations, but the cross-correlations still have an impact from ΓΓΓ, including for

points that are distant. The balanced correlations are able to be propagated outside

of the radius of localization.

4.2.2 Application within an RRR localization method: LETKF

The method of localizing the covariances for the unbalanced variables only

will now be applied to a different ensemble method, one utilizing observation error

localization: the local ensemble transform Kalman filter (LETKF, Hunt et al., 2007).

In this data assimilation scheme, the analysis is calculated locally at each grid point,

only considering the observations that fall within a certain radius from that point.

The observation error is also calculated locally with a distant-dependent localization

function, ρO, applied to it, so that observations that are closer to the grid point in

question have a smaller observation error associated with it. Ensemble weights are

calculated locally and applied to the background perturbations to create the analysis

mean and spread.

To make use of the perturbations in the unbalanced space, the background

ensemble needs to be transformed to the unbalanced variables as in the EnVar: by

applying ΓΓΓ−1 globally to each ensemble member. The analysis weights are then cal-

culated locally as in the standard LETKF. These calculations require the ensemble

perturbations in observation space, which is equivalent for the full and unbalanced
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perturbations since the unbalanced perturbations have to be transformed back to

the full perturbations in order to apply the observation operator. This results in

the analysis weights of each method also being equivalent. What differentiates this

method from the standard LETKF is that the ensemble weights are locally applied

to the ensemble mean and spread in the unbalanced space after they are found,

producing an analysis ensemble in the unbalanced space:

z̄a = z̄b + ZZZbw̄a
z , (4.4a)

ZZZa = ZZZbWWWa
z , (4.4b)

where w̄a
z ∈ RM is the analysis weights calculated using the perturbations in the

unbalanced space and WWWa
z ∈ RM×M is the square root of the analysis covariance

in ensemble space used to transform the background perturbations to the analysis

perturbations:

P̃PP
a

= WWWa
z (WWWa

z)
T

= III + ZZZTΓΓΓTHHHT (ρO ◦RRR)−1HHHΓΓΓZZZ,

(4.5)

where ρO ∈ RL×L is the RRR localization function. It is an exponential function that

increase with the distance from the observation to the analysis grid point, thereby

increasing the observation error and reducing the impact of observations that are

far away from the grid point being analyzed.

The analysis weights are calculated at each grid point using the following

equation:

w̄a
z =

(
P̃PP
a
)−1

ZZZTΓΓΓTHHHT (ρO ◦RRR)−1d. (4.6)
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Once the weight is applied to the background perturbations, the balance operator is

applied globally to each ensemble member, transforming from the unbalanced space

back to the full variable space. This allows for a propagation of information from

the anchor variable, in this case ψ, to the other variables and moves the ensemble

towards a balanced state.

Acknowledging the equivalence between EEEz and ZZZ, the similarities between the

two ensemble formulations are apparent. The major difference between this equa-

tion and (4.2) is the spatial localization. The EnVar applies the localization on

the background error, while the LETKF applies the localization on the observation

error. When the analysis weight is calculated in the LETKF, ρO is applied to the

observation error, which reduces the impacts of observations that are at a large dis-

tance from the grid point being analyzed. When an observation is sufficiently far,

the inverse of ρO ◦RRR is zero. The application of the transpose of the balance opera-

tor in the weight calculation (ΓΓΓTHHHT (ρO ◦RRR)−1d) cannot force the weight to become

nonzero. The local implementation of the LETKF equations further enforces this;

when an observation is fully outside the radius of observation selection, there is no

information that the balance operator can attempt to propagate during the compu-

tation of the analysis weights. This presents a major disadvantage when applying

the balance operator within an observation space localization scheme. When the full

analysis ensemble is calculated from the analysis ensemble in the unbalanced space,

ΓΓΓ is applied to the unbalanced variables which produces a one-way propagation of

information from ψ to the other variables. However, the other variables have no

avenue to impact ψ; there is not a two-way passing of information. Figure 4.1d
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depicts the LETKF case, where ΓΓΓ can only propagate information one way due to

the RRR localization. The equivalent schematic covariance is written as ΓΓΓ
(
ρ ◦ZZZZZZTΓΓΓT

)
.

The noise of the distant correlations is eliminated as in cases (b) and (c), but distant

balance correlations of case (c) only appear on one side of the matrix, resulting in

a covariance matrix that is not symmetric.

The background covariances in the unbalanced space are transformed to the

full variable space when used in the analysis weight calculation in order for the ob-

servation operator to be applied (HΓZHΓZHΓZ). This results in the analysis weights being

equivalent for the unbalanced and the full variables (w̄a
z = w̄a

x). The analysis en-

semble is brought into balance when the balance operator is applied to the analysis

ensemble in the unbalanced space at the end of the cycle. The LETKF calculates its

preferred analysis based on the observations and background ensemble and then the

balance operator shifts χ, T , and P away from their analyzed states to be brought

into balance with the analyzed ψ, unlike the EnVar that takes balance into account

during the minimization and adjusts all of the variables in the analysis. While the

LETKF adjustment is not a preferred means of bringing the analysis into balance,

there is no unique balanced state for each unbalanced state (Daley, 1991).

If there was no localization applied within either of the data assimilation

schemes presented, the application of the balance operator would have no impact.

The formulations with and without the balance operator would be equivalent, em-

phasizing the importance of the details of the localization implementation.
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4.3 Results

4.3.1 Single Observation Tests

To demonstrate the impact of the balance operator in the LETKF, a single

observation impact test is performed. To showcase the effect of ΓΓΓ, two tests were

conducted. A single temperature observation was assimilated for both tests, with 1

K innovation and observation error. The first case (Figures 4.2 and 4.3) assimilates

an observation at the lowest model level. The second case (Figure 4.4) assimilates

an observation in the upper troposphere.

Figure 4.2: Analysis increment at the lowest model level with the assimilation of a
single T observation at that level: (a) CTL and (b) BAL. T is contoured with 0.2 K

interval and ψ is shaded.

Figure 4.2a shows the analysis increment for LETKF CTL at the lowest model

level where a single T observation is assimilated. δT (contoured) is mostly isotropic

and δψ (shaded) exhibits a dipole about δT , which is similar to EnVar CTL (Figure

3.3a). The T -ψ cross-covariances are defined solely by the ensemble perturbations in

both LETKF and EnVar CTL. As expected, both CTL’s behave similarly. However,
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Figure 4.3: Analysis increment at 39◦N with height for the assimilation of a single
temperature observation at the lowest model level: (a) CTL and (b) BAL. T is

contoured with 0.2 K interval and ψ is shaded.

Figure 4.4: Analysis increment at 30◦S with height for the assimilation of a single
temperature observation at σ = 0.2: (a) EnVar BAL and (b) LETKF BAL. T is

contoured with 0.3 K interval and ψ is shaded.

the BAL’s exhibit much different behavior. The EnVar showed a slight adjustment

to both δψ and δT . For LETKF BAL (Figure 4.2b), there is no change to δψ

compared to CTL (4.6) but there is an adjustment to δT , a larger adjustment than

the EnVar. There is a reduction (increase) in δT in the broad area of positive

(negative) δψ.

A vertical cross section through the observation location shows how ψ and T

adjust hydrostatically. By comparing a vertical cross section of the LETKF CTL
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increments (Figure 4.3a) with the EnVar CTL increments (Figure 3.5), the difference

in the vertical localization is apparent. LETKF CTL and BAL has more relaxed

vertical localization than EnVar CTL and BAL, allowing both δT and δψ to extend

to the second model level, rather than being constrained to the bottom level only.

This difference contributes to the larger adjustment seen in the Figure 4.2b. The

regression coefficients between ψ and T in ΓΓΓ are at a minimum at corresponding

levels with the largest coefficient occurring at adjacent levels. With no increment

above the bottom model level, the EnVar did not have a large adjustment at the

level of the observation. For the LETKF, the increments in CTL extend above the

bottom model level. When the balance operator is applied, the second model level’s

δψ is able to impact the lowest level δT , rather than just from δψ at the same level.

Figure 4.3b shows the vertical cross section for LETKF BAL. Similar to the

increment at the level of the observation, δψ remains unchanged; this time it is evi-

dent throughout the column. This provides a stark difference from the EnVar BAL

vertical cross section, where δT at a level hydrostatically leads to δψ throughout

the depth of the troposphere. Instead of a slight adjustment to both δψ and δT ,

LETKF BAL shows a moderate adjustment to δT only, with cooling above regions

with positive δψ and warming above regions with negative δψ.

As mentioned in Section 4.2.2, the balance operator within the LETKF only

imposes a one-way adjustment to bring the state into balance rather than the two-

way adjustment of the EnVar. The lack of two-way communication has major

implications for the assimilation system. In the EnVar BAL, there was a degradation

in the stratospheric ψ compared to CTL (Figure 3.8a). This was due to the balance
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operator being derived from a model that had a damped stratosphere; so when T

is observed, it produces a vertical profile of δψ consistent with the damped model

rather than the true model. In Figure 4.4a, a single T observation is assimilated

in the upper troposphere with EnVar BAL. The impact on δψ extends through the

troposphere and up into the stratosphere. Figure 4.4b shows the analysis increment

when LETKF BAL is used instead. δψ is equivalent to the increment that was

computed from CTL; there is no adjustment due to the balance operator. This

should result in different stratospheric performance between the EnVar and LETKF,

which is explored further in Section 4.3.2.

4.3.2 Full Observation Network

By construction, the addition of the balance constraint in the LETKF has a

one-way impact: ψ alters the other variables, but remain unchanged itself (4.6).

To evaluate whether the one-way effect is enough to have a positive impact on the

forecast, two experiments with the full observing system were run: a standard 4D-

LETKF as described in Section 2.3 (CTL) and a second experiment with the balance

operator incorporated (BAL).

The global root-mean-square errors (RMSE) of the analysis is shown in Figure

4.5. There is a slight negative impact in the BAL analysis skill of ψ and χ (Fig-

ure 4.5a,b), though this is due to the cycling only and not the ψ and χ analyses

themselves. The largest analysis impact is for T (Figure 4.5c), which is negative

for the troposphere. As discussed in Section 4.2.2, full column T is adjusted after
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the analysis weights are calculated, moving T away from what the LETKF calcu-

lates to be the optimal analysis in order to be brought it into balance with ψ. The

improvement in the top level T is significant, but confined to the southern polar

region, where BAL has a better representation of the Antarctic circumpolar vortex

(not shown). Because q is not a part of the ΓΓΓ formulation, it has no measurable

change in its analysis skill (not shown) as expected. Analysis skill would only be

impacted through a change in the flow and ψ and χ, as described in Section 4.2.2,

do not change for individual analyses with BAL except for χ at the bottom model

level.

Figure 4.5: Global analysis RMSE with height for CTL (black) and BAL (red) for
variables (a) ψ, (b) χ, and (c) T .

The balance operator has a larger impact in the southern hemisphere on the T

RMSE (Figure 4.6), as in the EnVar (Figure 3.9). A notable difference between the

EnVar and the LETKF is that the latter has a larger negative impact as opposed to

a larger positive impact in the former. For the EnVar, it was conjectured that the

larger impact in the southern hemisphere was due to the lack of observations (Section

3.3.1). The majority of observations in the southern hemisphere are T retrievals.
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Due to the EnVar’s two-way interaction, ΓΓΓ is able to make larger adjustments since

not all variables are observed. The LETKF’s one-way interaction does not allow

ΓΓΓ to make adjustments based on T observations. The difference in the T analyses

between the LETKF BAL and CTL are based solely on the magnitude of δψ. Since

the southern hemisphere is less observed and less skillful, the increments are larger

than the northern hemisphere increments on average (Figure 4.7). This results

in a larger adjustment to the temperature in the LETKF BAL in the southern

hemisphere than in the northern hemisphere.

Figure 4.6: As in the right panel of Figure 4.5, for (a) the northern hemisphere and (b)
the southern hemisphere.

In the EnVar, the main region that experienced a degradation by including

the balance operator in the ensemble was the stratosphere. This was due to the

large model bias between the T63 and T30 resolutions. The lower resolution was

used to calculate the regression coefficients and therefore when the balance operator

was included, it specified a relationship between the troposphere and a damped

stratosphere. This resulted in significant degradation in skill of upper level ψ (Figure
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Figure 4.7: Zonally averaged RMS analysis increment for LETKF CTL with height for
variable ψ.

3.8). LETKF does not have such a response: ψ shows only a slight degradation in

the analysis RMSE. This is expected due to the effect of the localization on the

balance operator. As shown in the single observation case in Section 4.3.1, ΓΓΓ is

not able to communicate between the stratosphere and the troposphere in LETKF

BAL due to the RRR localization. This makes it unable to propagate the incorrect

T − ψ relationship either. In addition, the adjustments from ΓΓΓ in LETKF BAL are

primarily to T rather than ψ due to the one-way adjustment, reducing the ability

of the improper regression coefficients to negatively impact ψ.

One of the motivations to improve balance in the analysis is to reduce the

production of gravity waves which degrade the long term forecast (e.g. Baer and

Tribbia, 1977). Adjustments to increase balance, unfortunately, often degrade the

short term forecast since the previously calculated analysis is altered and moved

towards a more balanced state (e.g. Williamson et al., 1981). To assess the forecast
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skill in these experiments, the global anomaly correlation coefficients (AC) for the

BAL and CTL experiments are examined. With little change to the analysis for ψ,

χ, and q, the AC do not show significant differences between experiments either,

as expected (not shown). Also in line with the analysis results (Figure 4.5c), T is

the variable with the largest difference in the AC (Figure 4.8). Early in the forecast

period, the detriment of the analysis adjustment is evident in the degraded AC. Fig-

ure 4.9a demonstrates that this is significant out to five days, shown for the bottom

model level. At longer forecast times, however, there is an improvement in the AC

for BAL over CTL in the troposphere. This demonstrates the benefit of balanced

initial conditions for long term forecasts, with the improvements being marginally

significant globally. When calculating the AC for the southern hemisphere only

where ΓΓΓ is acting more strongly (Figure 4.9b), the late forecast improvement is sig-

nificant to at least the 95% confidence level, indicating that the improvement seen

is likely due to the increased balance in the initial conditions.

As a measure of balance, the global surface pressure tendency was reduced

significantly for EnVar BAL (Figure 3.8). For the LETKF, however, there is no

significant difference in the surface pressure tendency between CTL and BAL (not

shown). This further suggests that the one-way adjustment towards a balanced state

is insufficient for NWP.
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Figure 4.8: Global T anomaly correlation coefficient difference between BAL and CTL
by forecast day with height.

4.4 Summary and Conclusions

In Chapter 3, a balance operator was implemented in the ensemble portion of

a Hybrid 4DEnVar and showed significant improvements to the analysis and forecast

skill. This chapter compares that implementation with one in a 4D-LETKF. These

two ensemble data assimilation methods employ different forms of localization: the

EnVar localizes on the background error and the LETKF localizes on the observation

error. This chapter demonstrates that the observation error localization does not

allow for a nonzero ensemble weight outside of the localization radius. Therefore, the

only balanced information that gets transferred is from the anchor variable to the

unbalanced variables and not vice versa. This results in the unbalanced variables

being pushed away from the originally calculated analysis rather than all of the

variables adjusting towards a balanced analysis.
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Figure 4.9: Lowest level T anomaly correlation coefficient difference between BAL and
CTL (a) globally and (b) for the southern hemisphere.

The same set up as the Chapter 3 experiments is employed to allow for direct

comparison. Using an intermediate complexity model, SPEEDY, a balance operator

was included within a 4D-LETKF. There was a degradation in the analysis skill,

particularly in T , which is consistent with the previously mentioned adjustment to

the unbalanced variables. The forecast skill impact is neutral for most variables;

however, the forecast skill for T is negative for short forecast lead times, but trends

positive with forecast length, eventually becoming significantly positive by days 8

through 10. The effect is greater in regions where the balance operator made a larger

impact, indicating that the increased balance in the T analysis leads to the increased

forecast skill later in the time period. As with Chapter 3, caution must be taken

when applying the results from these intermediate complexity model results with

that of a state-of-the-art model. Developed as a climate model, SPEEDY’s error

growth is much slower than that of an NWP model, so conclusions about forecast

length must be adjusted.
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The method of the balance operator application is computationally efficient

in terms of computational costs and is roughly equivalent to its application in the

EnVar system; the ensemble members must be transformed to the unbalanced space

at the beginning of each cycle, but the analysis weights are calculated as in the

control case. While EnVar does not require the additional step of transforming each

ensemble member into the full variables as in the LETKF, this task can be done in

parallel. Even though the cost of this method is not great, the results of the method

are not convincing enough to implement in a more complex system. The theoretical

formulation of why the LETKF implementation should not be as effective as the

EnVar implementation is supported by the underperforming results.

These results can be easily extended to other Ensemble Kalman filter algo-

rithms. The Ensemble Square Root Filter (EnSRF; Whitaker and Hamill (2002))

is a commonly used EnKF and is operational at the National Centers for Envi-

ronmental Prediction (Whitaker et al., 2008). The balance operator formulation is

applied in a similar manner as in the LETKF: by computing the ensemble mean in

the unbalanced variable space using the perturbations in the unbalanced space (see

Appendix C for details). What sets it apart from the LETKF is its ability to have

the spatial localization applied in either model space or observation space. When

the spatial localization is applied in model space, the balance operator functions

as it does in the EnVar: there is a two-way propagation of balanced information.

However, since the full background error is localized, it is computationally expen-

sive. More frequently, the observation space spatial localization is applied. This

causes the balance operator in the EnSRF to function as in the LETKF: there is
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only a one-way propagation of balanced information outside of the localization ra-

dius. While it is computationally less expensive, it will likely not have a positive

impact on the forecast skill. Therefore, it is not recommended to include the balance

operator within an EnSRF that is localized in observation space.
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Chapter 5: Variable Localization in Ensemble Data Assimilation

5.1 Introduction

Ensemble data assimilation methods approximate the background error covari-

ance using an ensemble of forecasts. The more ensemble members that are included

in the estimation, the more accurately the sample covariance represents the true

background error. Unfortunately, due to computational restraints, a limited num-

ber of ensembles must be used for numerical weather prediction (NWP) applications.

For the state-of-the-art models, usually O(10-100) ensembles are used to represent

a 108 or greater system. The background covariance in this case contains a large

amount of sampling error and is not a full rank matrix. These spurious correlations

negatively impact the system, resulting in nonzero correlations for variables that

are physically unrelated. Two grid points that are at a great distance from one

another likely have a very small true correlation. For these points, sampling error

likely dominates and contaminates the analysis (Hamill et al., 2001). These distant

correlations are frequently eliminated through the method of localization.

Most commonly used in the spatial dimensions, localization can be applied

to the background error covariance matrix or the observation error covariance ma-

trix (Greybush et al., 2011). To localize on the background error covariance, it is
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multiplied by a correlation function whose values range from one to zero as the

distance between grid points increases, frequently the fifth order piecewise poly-

nomial of (Gaspari and Cohn, 1999). This method, described in Houtekamer and

Mitchell (2001), preserves the covariances for points that are in physical proximity

and eliminates covariances for points that are distant. This requires the calculation

of the full background error covariance, which is computationally prohibitive for

NWP applications. Spatial localization can also be applied to the observation error

covariance. A simple form of this is to only consider observations within a local re-

gion of an analysis grid point (Houtekamer and Mitchell, 1998). However, this could

result in an abrupt cutoff of areas of observation influence. To curtail the negative

impacts associated with these cutoffs, Hunt et al. (2007) proposed multiplying the

observation error covariance matrix by a function that increases with distance in

addition to the consideration of local observations, increasing the observation error

and therefore reducing the impact of observations that are far from a grid point.

Increasing the observation error and reducing the background error have a similar

effect on the analysis increment through the Kalman gain. Greybush et al. (2011)

compare these two formulations of spatial localization and found that their perfor-

mance was comparable, though noting that the optimal length scale for localization

on the background error is longer than the optimal length scale for localization on

the observation error.

Typically, the length scales chosen for spatial localization are global in scope

and applied to all variables equally. There is a great deal of evidence that this is far

from optimal. Anderson (2007) notes that different localization functions are appro-

81



priate for different state variables. Chen and Oliver (2010) emphasize that the same

localization function may not be suitable at all times. To address the lack of spatial

homogeneity, Anderson and Lei (2013) developed an empirical localization function

(ELF) that computes a non-Gaussian localization function between each observation

type and state variable. Kang et al. (2011) also address the need for localization

between the model variable types for certain applications. The authors implement

a form of covariance localization that removes the spurious cross-covariances that

arise between physically unrelated variables, which stabilized their carbon system.

A strict form of variable localization was attempted by Clayton et al. (2013) in a

Hybrid 4DVar scheme for global NWP by removing the cross-covariances between

all variable types, but improvement was not seen in their case.

This chapter presents a unified view on the localization between variable types,

called variable localization, presenting two different forms within three types of

ensemble data assimilation schemes. Section 5.2 presents the two forms of variable

localization qualitatively, while Section 5.3 describes their formulation within three

ensemble data assimilation schemes. Section 5.4 presents a single observation case

within one of the variable localization formulations. Discussion and conclusions are

presented in Section 5.5. The contents of this chapter are contained in Thomas and

Ide (2017c).
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5.2 Variable Localization

In the earlier implementations of variational schemes, multivariate assimilation

of observations required the construction of a balance operator or some other func-

tion to create cross-correlations between the analysis variables (Parrish and Derber,

1992). One considerable advantage of ensemble Kalman filters (EnKFs) is that the

multivariate information can be naturally derived from the ensembles themselves

rather than relying on a time invariant climatology. There are situations where por-

tions of the correlation provided by the ensemble should be removed. For instance,

grid points or observations that are located at a great distance from one another

likely have small true correlations, which is difficult to represent in an ensemble

whose size is much smaller than the dimension of the model. Spatial localization, a

method commonly applied in EnKFs, removes these distant correlations.

Sampling error due to small ensemble size can also result in correlations be-

tween variable types that are not physically related. These multivariate correlations

can be removed by a method called variable localization, which is less commonly

applied within EnKFs. The most severe form of variable localization, removing all

of the multivariate correlations, results in a univariate EnKF. This is typically un-

desirable as it loses the primary advantage that the ensemble methods have over the

static covariance methods. However, there are situations that benefit from removing

the correlation between certain variables.

Kang et al. (2011), hereafter referred to as K11, implemented a form of variable

localization within a local ensemble transform Kalman filter (LETKF, Hunt et al.,
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2007) to analyze carbon. Using an extension of the intermediate complexity model,

SPEEDY (Molteni, 2003), carbon C and surface carbon fluxes CF were added to the

standard set of prognostic variables of zonal wind u, meridional wind v, temperature

T , specific humidity q, and surface pressure P . In previous applications of the

SPEEDY system for data assimilation (Harlim and Hunt, 2007; Li et al., 2009;

Miyoshi, 2005), synthetic observations of the meteorological variables were created

and assimilated. For K11’s implementation, C observations were also added to the

system. While CF was not directly observed, the cross-correlations calculated by

the ensembles were able to update CF in the analysis. The initial experiments

performed poorly. By allowing for cross-covariances between all of the variables,

the spurious correlations and poor initial conditions of CF negatively impacted

the analysis of the meteorological variables; for example, q and CF should not be

correlated. A form of variable localization was then implemented to eliminate the

cross-correlations between variable types that do not have a direct physical relation.

When the true correlation between two distant grid points is small, sampling

error dominates and degrades the analysis (Hamill et al., 2001). This line of rea-

soning also applies to different variables. When the true correlation between two

variable types is small, sampling error dominates and the removal of these cross-

correlations should improve the analysis. Variable localization refers to the set of

methods that selectively remove cross-correlations between variables. Due to the

differences in formulation among EnKFs, variable localization can be implemented

in various ways. These methods can generally be divided into two categories: ap-

plication in observation space or application in model space. Observation space
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variable localization, which will be referred to as VO, removes the effect of the

cross-correlations by allowing an observation to only impact certain control vari-

ables. Model space variable localization, which will be referred to as VM, removes

the cross-correlations directly through the construction of the background error co-

variance matrix.

The VO form restricts an observation’s impact and is straightforward to im-

plement since it requires no change to the background error, which is not explicitly

constructed in many NWP applications due to computational restraints. Only a

subset of observations is used to calculate a subset of analysis variables, rather than

all of the observations being used to calculate the analysis for all variables. For

example, if T and u are to be uncorrelated, u observations are not assimilated when

calculating the analysis for the variable T and vice versa.

The VM form of variable localization removes the correlations between model

variables through the construction of the background error covariance. While this

can be implemented as a Schur product between the background error and a cor-

relation matrix as in the spatial localization, this is cost prohibitive within NWP

applications since the background error covariance has dimensions of N ×N where

N is the dimension of the model. Instead, the background covariance matrix can be

extended to create an additional ensemble, thus zeroing out the correlations between

groups of variables. This application is advantageous compared to VO since it does

not require knowledge of the observation types. There also does not need to be a

direct correspondence between the model variable types and the observation types.

To illustrate the relationship between the two forms of variable localization,
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consider the background ensemble perturbations, XXXb ∈ RN×M , about the background

ensemble mean, x̄b ∈ RN , and normalized by
√
M − 1 where M is the number of

ensemble members. These perturbations can be partitioned into multiple groups of

control variables. For two groups:

XXX =

XXX1

XXX2

 , (5.1)

where XXX1 ∈ RN1×M and XXX2 ∈ RN2×M . The two groups of control variables are

mutually exclusive, i.e. N = N1 + N2. For the clarity of notation, the superscript

b is dropped and the perturbations are assumed to refer to the background unless

otherwise stated.

The background perturbations are frequently represented in observation space

in EnKFs with YYY = HXHXHX ∈ RL×M where HHH ∈ RL×N is the linearized observation

operator transforming the perturbations from model space, XXX, to observation space,

YYY, and L is the number of observations. Similarly to XXX, HHH can also be partitioned,

though it can be partitioned along either dimension, creating submatrices of groups

of control variables or observations:

HHH =

HHH11 HHH12

HHH21 HHH22

 =

(
HHHM1 HHHM2

)
=

HHH1O

HHH2O

 , (5.2)

where HHHMj =
(

HHHT
1j HHHT

2j

)T ∈ RL×Nj is the observation operator partitioned in model

space and HHHiO = (HHHi1 HHHi2 ) ∈ RLi×N is the observation operator partitioned in obser-
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vation space. Unlike the groups of control variables, the groups of observations do

not need to be mutually exclusive, i.e. L1 +L2 does not necessarily need to be equal

to L and observation types can overlap between sets. The observation operator dic-

tates which control variables each observation type projects on to. Partitioning HHH in

observation space allows the separation of impact by observation type. Partitioning

HHH in model space allows the separation of impact on particular control variables.

These two types of HHH’s can also create two types of partitioned YYY’s. To partition

YYY in observation space, HHH in observation space is applied to the total background

perturbations:

YYY =

HHH1OXXX

HHH2OXXX

 =

YYY1O

YYY2O

 , (5.3)

where YYYiO ∈ RLi×M . When HHH is partitioned in observation space, the observations

are split into multiple groups. Therefore, each YYYiO is the background perturbations

corresponding to the observations contained in the HHHiO group only, which allows the

control variables to be impacted by only certain observations.

To partition YYY in model space, HHH in model space is applied to the background

perturbations corresponding to that variable set:

YYY = (HHHM1XXX1 + HHHM2XXX2) = (YYYM1 + YYYM2) , (5.4)

where YYYMj ∈ RL×M . When HHH is partitioned in model space, the control variables are

split into multiple groups. Correspondingly, each YYYMj contains the projection from

the observations onto certain control variables only. This permits only a portion of
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the background perturbations to be considered, dictating which cross-correlations

are included. (5.1) - (5.4) are formulated for two groups of control variables and

observations, though more than two groups can be used.

In EnKF methods, the background error covariance matrix, PPP, is approximated

by the background perturbations (PPP = XXXXXXT ). When the partitioning of control

variables is included:

PPP =

XXX1XXX
T
1 XXX1XXX

T
2

XXX2XXX
T
1 XXX2XXX

T
2

 . (5.5)

The off-diagonal components of PPP represent the cross-correlations between the two

groups of variables XXX1 and XXX2. Similarly, the background error can be represented

in observation space as:

YYYYYYT =
(
YYYM1YYY

T
M1 + YYYM2YYY

T
M1 + YYYM1YYY

T
M2 + YYYM2YYY

T
M2

)
. (5.6)

VM removes the cross-correlation terms from (5.5), decorrelating the two vari-

able groups:

ρVM ◦PPP =

XXX1XXX
T
1 0

0 XXX2XXX
T
2

 , (5.7)

where ρVM ∈ RN×N is a localization function comprised of blocks of zeros and ones,

removing the cross-correlations between variable types from the background error

directly. While intuitive, this form can be difficult to implement within NWP since

the size of PPP is prohibitive to store the matrix explicitly.

An equivalent localization function can be constructed to localize the pertur-
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bations in observation space. Rather than applying it to the background covariance

directly, the localization function is applied to part of the Kalman gain, controlling

the analysis increment. Shown for a single observation:

ρV O ◦XXXYYYT = ρV O ◦

 XXX1

XXX2

( XXXT
1 XXXT

2

) HHHT
M1

HHHT
M2



= ρV O ◦

 XXX1XXX
T
1 HHHT

M1 + XXX1XXX
T
2 HHHT

M2

XXX2XXX
T
1 HHHT

M1 + XXX2XXX
T
2 HHHT

M2

 ,

(5.8)

where ρV O ∈ RN is a function that is also comprised of zeros and ones. For se-

rial assimilation, a different ρV O needs to be constructed for each observation type

that has the variable localization applied to it. When assimilating observations in

batches, ρV O is applied to analysis increment itself, selecting which portion of the

background to update. This form is more computationally efficient than (5.7), lim-

iting the impact of the observations to certain control variables only. However, the

cross-correlation terms will remain after the application of ρV O if an observation

from one group impacts control variables from both groups.

An alternate method for localizing in model space can be formulated that does

not require the full construction of PPP. The control variable is split into two mutually

exclusive groups as in 5.1. The perturbation matrix is then extended to separate
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the perturbations from the two groups:

X̃XX =

XXX1 0

0 XXX2

 ∈ RN×2M . (5.9)

The tilde in this notation represents a matrix or vector that has been extended

to include multiple groups of variables. Extending the perturbation matrix creates

a second ensemble and removes the correlation between them. The background

covariance constructed using this extended set of perturbations does not include the

cross-correlation terms:

PPP = X̃XXX̃XX
T

=

 XXX1 0

0 XXX2


 XXXT

1 0

0 XXXT
2

 =

XXX1XXX
T
1 0

0 XXX2XXX
T
2

 , (5.10)

giving the same result as (5.7), but at a cheaper computational cost.

Combining the extended background covariance and the observation operator

partitioned in model space, YYY is extended as well:

ỸYY =

(
YYYM1 YYYM2

)
=

(
HHHM1XXX1 HHHM2XXX2

)
∈ RL×2M . (5.11)

Previously in (5.4), YYYM1 and YYYM2 combined into a single YYY to represent the back-

ground perturbations projected onto an observation. In ỸYY, the contribution from

each control variable group is separated. For example, if streamfunction ψ and

velocity potential χ are control variables in each set and the zonal wind u is the

observation being considered, YYYM1 contains the rotational portion of the wind per-
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turbations at the observation location while YYYM2 contains the divergent portion.

Forming the background error in observation space using ỸYY also removes the cross-

correlation terms from that matrix:

ỸYYỸYY
T

=
(
YYYM1YYY

T
M1 + YYYM2YYY

T
M2

)
. (5.12)

The two types of partitioning for HHH and YYY demonstrate how the two forms of

variable localization, VO and VM, function. VO limits an observation’s impact on

control variables. The partitioning in observation space, HHHiO and YYYiO, only include

Li observations. When the analysis is calculated for a particular variable type,

only a subset of observations will be contained in YYY. In contrast, VM modifies

the background covariance directly and has no concern for observation groups. All

observations are included within HHHMj, but only a portion of the background error,

XXXj, is considered within YYYMj, excluding the cross-covariances of (5.5). In VO, the

total background perturbations are projected onto a subset of observations. In VM,

a subset of the background perturbations is projected onto all of the observations.

Both forms result in a portion of PPP being considered in the analysis.

The form of variable localization applied in K11 is VO where subsets of obser-

vations are used to calculate the analysis for different control variables in an attempt

to remove the unphysical, spurious correlations between carbon and the other vari-

ables. Several configurations of VO were tested in K11. One of the configurations,

referred to as C-univ, split the observations into two groups: (u, v, T, q, P ) and (C).

The meteorological observations are used to calculate YYY1O and the carbon observa-
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tions are used to calculate YYY2O. When the analysis for the meteorological variables

is computed, YYY1O is used. Likewise, when the analysis for the carbon variables is

computed, YYY2O is used. By also applying ρV O, the localization function only al-

lows the meteorological observations to impact the meteorological analysis and the

carbon observations to impact the carbon analysis.

VM considers all observations simultaneously, but it separates the control vari-

ables into groups to be decorrelated. In Chapter 3, a balance operator is applied

to a Hybrid 4DEnVar. The control variables include streamfunction ψ and unbal-

anced velocity potential χu, which dictate the rotational and divergent components

of the wind respectively. These two wind components are weakly correlated in the

free atmosphere (Hollingsworth and Lonnberg, 1986), though because of sampling

error, cross-correlations will likely exist in the ensemble derived PPP. VO is unable to

remove these cross-correlations. Wind observations should impact both of the wind

components ψ and χu; thus, VO cannot remove the cross-correlations by restricting

observation impact and is unable to accommodate this scenario. VM removes the

cross-correlations independent of the observation types and would be able to be

applied for these control variable types, either using ρVM or X̃XX.

These two forms of variable localization, VM and VO, are analogous to the

two forms of spatial localization: background error covariance, or BBB, localization

and observation error covariance, or RRR, localization (Greybush et al., 2011). BBB

localization removes the correlation between two grid points that are at a great

distance from one another. It does so by directly modifying the background error,

PPP, which is also commonly referred to as BBB. This form removes cross-correlations
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in model space with no regard to the observations that are being assimilated and is

analogous to VM. RRR localization removes the correlation between an observation and

a grid point that are at a great distance from one another, restricting an observation’s

impact to grid points that are nearby. There frequently is also a modification to the

observation error covariance matrix, RRR. This observation space spatial localization

is analogous to VO.

Both of these spatial localization forms have an impact on the Kalman gain

matrix. Defined as the ratio between the background error covariance and the total

covariance in observation space, changes to either PPP or RRR alters the Kalman gain and

therefore the analysis increment. If PPP increases, the observation provides a greater

correction to the background. If RRR increases, the observation’s impact is reduced.

Each covariance matrix works in the opposite sense through the Kalman gain.

Greybush et al. (2011) compared the formulation of these two forms of spatial

localization and applied them within a toy model as well as an intermediate com-

plexity model. The authors found that the performance in skill and balance were

comparable when using each localization scheme’s optimal length scale, though the

optimal length scale of the RRR localization was shorter than that for the BBB localiza-

tion. The authors also found that while trying to find the optimal length scale for

each form, the form of localization was more important than the data assimilation

scheme used.

In the following section, the two forms of variable localization, VM and VO, are

explored and applied to different data assimilation schemes. Similar to the findings

of Greybush et al. (2011), the differences between these two forms of localization
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schemes are greater than the differences in their application in various assimila-

tion algorithms. Their relative strengths and weaknesses are consistent across the

ensemble schemes presented.

5.3 Formulation

The two forms of variable localization discussed in the previous section, VO

and VM, can be applied in many EnKF schemes. In this section, both of these

forms are applied in three ensemble data assimilation schemes: the ensemble square

root filter (EnSRF), the local ensemble transform Kalman filter (LETKF), and an

ensemble-variational (EnVar) algorithm.

The variations of the EnKF solve a form of the original Kalman filter equations

(Kalman, 1960). These equations update a prior state, or background, xb ∈ RN , and

its error covariance, PPP ∈ RN×N , to include observation information. The resulting

analysis state, xa ∈ RN , and its covariance, PPPa ∈ RN×N , are computed based on the

relative errors of the background and observations:

xa = xb + δxa, (5.13a)

PPPa = (III−KHKHKH)PPP, (5.13b)

where

δxa = KKKd, (5.14)

KKK = PPPHHHT (HHHPPPHHHT + RRR)−1, (5.15)
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δxa ∈ RN is the analysis increment, KKK ∈ RN×L is the Kalman gain, d ∈ RL is

the innovation, or the difference between the observation and the background in

observation space, and RRR ∈ RL×L is the observation error covariance matrix. By

acknowledging the duality between Optimal Interpolation (Daley, 1991) and varia-

tional methods, Courtier et al. (1994) present a variant formulation of (5.13b) and

(5.15):

PPPa = [PPP−1 + HHHTRRR−1HHH]−1, (5.16)

KKK = PPPaHHHTRRR−1. (5.17)

5.3.1 EnSRF

The early EnKF schemes relied on the addition of random perturbations to

the observations in order to prevent an underestimation of the analysis error covari-

ance (Burgers et al., 1998; Houtekamer and Mitchell, 1998). Whitaker and Hamill

(2002) noted that the addition of perturbations to the observations degrades the

accuracy of the analysis. They proposed an alternate formulation that does not

require the observations to be perturbed, called the Ensemble Square Root Filter

(EnSRF). Assimilating observations one at a time, the analysis increment δxa ∈ RN

is computed using the traditional Kalman gain and unperturbed observations:

δxa = KKKd, (5.18a)

KKK = XXXYYYT (YYYYYYT +R)−1, (5.18b)
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where x̄a = x̄b + δxa. Once an observation is assimilated, the resulting analy-

sis becomes the new background for the next observation, updating XXX,YYY, and d.

Assimilating observations serially reduces the size of the matrices greatly (d, R,

YYYYYYT ∈ R1 and XXXYYYT , KKK ∈ RN). This allows for matrix inversions that are much

simpler than if all of the observations were assimilated simultaneously.

The covariance matrices, PPP and PPPa, are symmetric positive definite and can

be broken down into their matrix square roots, which are not unique. In standard

ensemble methods, PPP is approximated by the ensemble perturbations (5.5) and YYYYYYT

represents the background error covariance in observation space. The analysis co-

variance is similarly represented by the analysis spread, PPPa = XXXa(XXXa)T . The analysis

perturbations in the EnSRF are updated using a reduced Kalman gain rather than

the traditional gain of the conventional Kalman filter equations:

XXXa = (III− γKKKHHH)XXX, (5.19)

where

γ =

(
1 +

√
R

YYYYYYT +R

)−1
. (5.20)

Another popular deterministic square root filter, the Ensemble Adjustment

Kalman Filter (EAKF, Anderson (2001)), is theoretically similar to the EnSRF. It

computes the same analysis ensemble mean and covariance, assimilating observa-

tions one at a time, though the membership of the analysis ensemble differs. Starting

from the same analysis mean calculation, it then applies a rotation and scaling to
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the background perturbations through an adjustment matrix (XXXa = AAAXXX) in order

to make the background error the identity matrix and compute the new analysis

ensemble through the use of singular value decomposition. See Tippett et al. (2003)

for a comparison of several square root filters.

Houtekamer and Mitchell (2001) perform spatial localization upon the back-

ground error covariance matrices in KKK through the use of a Schur or element-wise

product between the covariance matrix and a correlation function:

KKK = [(ρSM ◦XXXXXXT )HHHT ][HHH(ρSM ◦XXXXXXT )HHHT +R]−1, (5.21)

where ρSM ∈ RN×N is the covariance localization function which is based on the

distance between each pair of grid points and SM stands for spatial localization

in model space, e.g. a fifth-order piecewise Gaussian approximation with compact

support of Gaspari and Cohn (1999). It retains the covariances for grid points that

are in close proximity to one another, whose true correlation is likely large, and

removes them for points that are distant, whose true correlation is likely small.

This localized KKK is modified as in the traditional formulation in order to compute

the analysis perturbations.

Alternatively, the background covariance can be localized in observation space,

after the application of HHH:

KKK = (ρSO ◦XXXYYYT )(YYYYYYT +R)−1. (5.22)
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In this formulation, the localization function, ρSO ∈ RN is based on the distance

between the observation being assimilated and each grid point, and SO stands

for spatial localization in observation space. This form of localization prohibits

the observations from impacting grid points that are far from its location. As

discussed in Greybush et al. (2011), the optimal length scale for the observation

space localization is shorter than for the model space localization with the model

space localization being more severe for the same length scale. Since only one

observation is being assimilated at a time, YYYYYYT is a scalar and does not need to be

localized. Due to this removal of additional localization along with the reduction in

size of ρSO and the elimination of the need to calculate XXXXXXT explicitly, localizing in

observation space is computationally preferred. This is also the preferred form of

localization for the EAKF.

Like spatial localization, localization between variable types can also be ap-

plied in two ways as described in Section 5.2: in model space and in observation

space. To apply these forms of variable localization within the EnSRF, the strat-

egy of the spatial localization is followed. Beginning with VM, another covariance

localization function is included in KKK:

KKK = [(ρSM ◦ ρVM ◦XXXXXXT )HHHT ][HHH(ρSM ◦ ρVM ◦XXXXXXT )HHHT +R]−1. (5.23)

The localization of the covariance terms function as (5.7) and the cross-correlations

between XXX1 and XXX2 are removed from KKK. Due to the commutative nature of the Schur

product, these localization functions can be applied interchangeably. If all the cross-
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correlations are to be retained and no variable localization is to be applied, ρVM = 1,

(5.23) reduces to (5.21).

Continuing to follow the methodology of the spatial localization, an additional

localization function is also added to the observation space form of KKK:

KKK = (ρSO ◦ ρV O ◦XXXYYYT )(YYYYYYT +R)−1. (5.24)

The numerator of KKK is localized as in (5.8). By assimilating a single observation at

a time, no variable localization is necessary on YYYYYYT ∈ R, though as in (5.6), the

effect of the cross-correlations remain in that term. If no variable localization is to

be applied to an observation type, ρV O = 1, (5.24) reduces to (5.22).

One disadvantage of this formulation is that the cross-correlation terms, XXX1XXX
T
2

and XXX2XXX
T
1 , remain (5.8). For many cases, this term becomes zero due to the construc-

tion of HHH. The first cross-correlation term, XXX1XXX
T
2 , is multiplied by the HHH component

for the second set of control variables, HHHM2. Likewise, the second cross-correlation

term is multiplied by the HHH component of the first set of control variables. If the ob-

servation being assimilated only impacts variables from one control variable group,

the cross-correlation terms vanish. However, if the observation impacts variables

from both control variable groups, as a wind observation would for the aforemen-

tioned ψ and χu control variables, the cross-correlation terms would remain and the

variable localization would be ineffective. The VO formulation cannot remove the

cross-correlation between control variables that are impacted by the same observa-

tion.
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The alternate form of VM described in Section 5.2 is applied to the EnSRF,

where the background perturbations were extended, producing an additional ensem-

ble and thereby removing the cross-correlations from the covariance matrices (5.10

and 5.12). A new KKK is constructed by using the extended background covariances:

KKK = (ρSO ◦ X̃XXỸYY
T

)(ỸYYỸYY
T

+R)−1, (5.25)

and the analysis mean is computed as in the traditional EnSRF (5.18). The analysis

perturbations are also computed as in the traditional EnSRF, (5.19) - (5.20), with

the exception of the γ term where ỸYY replaces YYY.

The spatial covariance localization in this alternate VM formulation is applied

as in the standard form in observation space, through ρSO. The variable localization,

however, is not applied through ρV ; it is applied as a natural consequence of ex-

tending the background covariance. The cross-covariances between XXX1 and XXX2 have

been eliminated through the extension of the matrix to 2M , yet an observation can

still impact all of the model variables if it is desired. This also allows the variable

localization to be applied in model space without computing the full N×N back-

ground error covariance, granting significant computational savings when compared

with the previous model space formulation.

To compare the alternate VM to VO (5.8), the numerator of KKK is constructed
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for VM using the extended perturbations:

X̃XXX̃XX
T

HHHT =

 XXX1 0

0 XXX2


 XXXT

1 0

0 XXXT
2


 HHHT

M1

HHHT
M2



=

 XXX1XXX
T
1 HHHT

M1

XXX2XXX
T
2 HHHT

M2

 .

(5.26)

The cross-correlation terms, XXX1XXX
T
2 and XXX2XXX

T
1 , do not appear in this formulation. VM

is able to remove the cross-correlations between the control variable groups without

regard to what observations are assimilated. If an observation does not project onto

the second variable set, HHHM2 = 0 and the second row of the Kalman gain is also

zero. This results in (5.26) being equivalent to (5.8). If HHHM2 is nonzero, these forms

differ. The ỸYYỸYY
T

term removes the cross-correlation terms as well, computed as in

(5.12). Again, if an observation does not project onto the second control variable

group, (5.12) simplifies to (5.6).

5.3.2 LETKF

Another deterministic square root EnKF is the local ensemble transform Kal-

man filter (LETKF, Hunt et al., 2007). This filter separates the solution for the

analysis into several independent, local calculations in which the analysis for each

grid point uses only the observations within the local region. The analysis ensemble

mean is calculated by adding a local linear combination of the various background
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perturbations to the background mean:

x̄a = x̄b + δxa = x̄b + XXXw̄a, (5.27a)

XXXa = XXXbWWWa, (5.27b)

where w̄a ∈ RM controls each ensemble member’s contribution to the analysis mean.

Rather than pre-multiplying the background perturbations with a transformation

matrix as in the EnSRF and the EAKF, the LETKF post-multiplies the background

perturbations with the weight matrix, WWWa ∈ RM×M . The analysis ensembles of the

EnSRF, EAKF, and LETKF have different membership, but the ensembles span

the same analysis covariance. Hunt et al. (2007) derived these weights by first

constructing a cost function:

J(w̄) =
1

2
w̄T w̄ +

1

2
(d−YYYw̄)TRRR−1(d−YYYw̄), (5.28)

and then setting the gradient to zero and solving for the weights analytically. Com-

bining the weight with XXX as in (5.27a) produces the analysis increment:

δxa = (XWXWXWa) (YWYWYWa)TRRR−1ddd, (5.29)

where weights for the ensemble spread are the symmetric square root of the analysis

covariance in ensemble space:

WWWa = (III + YYYTRRR−1YYY)−
1
2 . (5.30)

102



For comparison with the EnSRF, the ensemble mean update can be written in terms

of a Kalman gain:

KKK = (XWXWXWa) (YWYWYWa)T RRR−1, (5.31)

which is mathematically equivalent to (5.17).

Since the calculations are performed in ensemble space, the physical space

representation of the background covariance, XXXXXXT (5.5), is not computed; therefore,

the spatial localization is not easily implemented by applying a correlation function

to the background perturbations. The LETKF, instead, applies two forms of spatial

localization to RRR. First, when the analysis is calculated locally at each grid point,

it only incorporates the observations that fall within a specified radius. Separate

weights are calculated for each grid point, but they are applied to all variable types,

allowing the cross-covariances to work across the variables, but not at long distances.

Second, to curtail the effect of a sudden cutoff at the edge of areas of observation

influence (Hunt et al., 2007), RRR is also multiplied by a diagonal correlation matrix,

ρSR ∈ RL×L, that is based on distance from the observation to the grid point being

analyzed (RRR→ ρSR◦RRR). This alternate form of spatial localization gradually reduces

an observation’s influence on neighboring grid points as the distance increases.

K11 implemented a form of variable localization in the LETKF through the

observation selection. Groups of analysis variables are chosen as well as groups of

observations corresponding to each analysis group. The formulation here is demon-

strated for two groups each, but theoretically, this formulation can also be extended

to as many groups as variable types. The groups of analysis variables must be
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mutually exclusive, but the groups of observations need not be.

To construct the background perturbations, YYY is first computed using the full

background perturbations. Then, the rows corresponding to the observations of

interest are selected to create YYYiO (5.3) where i refers to the subset of observations.

A different analysis weight is calculated for each subset of analysis variables using

only the observations within the corresponding subset. These weights are derived

by constructing separate cost functions, setting the gradient of each cost function

to zero, and solving for each weight. Once the weights are found, the analysis

increments can be created:

δxai = XXXw̄a
i = (XWXWXWa

i ) (YYYiOWWWa
i )
T (ρSRi ◦ RRRi)

−1 di, (5.32)

where RRR−1i ∈ RLi×Li and di ∈ RLi . The weight matrix, WWWa
i ∈ RM×M , is similarly

constructed using only the observations from each set:

WWWa
i = (III + YYYT

iO(ρSRi ◦RRRi)
−1YYYiO)−

1
2 . (5.33)

The analysis mean is updated using each increment and the perturbations are

updated using each weight matrix:

x̄a = x̄b + ρV i ◦ δxai , (5.34a)

XXXa
i = XXXiWWW

a
i , (5.34b)
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where ρV i ∈ RN is variable localization function, comprised of zeros and ones,

allowing the first weight to update the first set of analysis variables only and the

second weight to update the second set of analysis variables only. Similarly to the

serial assimilation of the EnSRF, the weights for each observation group need to be

computed iteratively. Once the first weight is found and the analysis is updated,

the analysis mean and spread become the new background for the calculation of

the second weight. The serial assimilation of the groups is not significant if the

control variables and observations from each group are independent. If they are not

independent, the analysis for the second group will be different compared to if the

analysis is not calculated iteratively. Consider the computation of YYY2O. This term

contains the background perturbations from the first control variable group:

YYY2O = HHH2OXXX =

 XXX1WWW
a
1

XXX2

 . (5.35)

If HHH2O does not project onto the first set of control variables, the change in XXX1 after

the first analysis update to XXX1WWW
a
1 is of no consequence. However, if the observations

from the second group project onto the first group of control variables, the iterative

calculation of weights becomes significant.

The standard LETKF formulation calculates one set of analysis weights that

is applied to all of the variables. VO calculates multiple sets of analysis weights

that are applied to different control variables, which restricts the impact of each

observation group. This formulation is comparable to the EnSRF formulation in
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Section 5.3.1, though there are subtle differences due to the serial nature of the

EnSRF. In the EnSRF formulation of VO, an observation is restricted to impact

only certain analysis variables. In the LETKF VO, an analysis variable is restricted

to be impacted by certain observations. Table 5.1 provides a comparison of the

analysis increments for each data assimilation scheme and variable localization form.

Even though the background error is not explicitly computed in the LETKF, a

form of variable localization can be constructed that eliminates the cross-correlations

between the analysis variables directly. In this form of VM, the observation types

are not divided into multiple sets and are considered simultaneously. However, the

control variables are again broken down into mutually exclusive groups of variables

that are to be uncorrelated.

Each group of variables has its own set of ensemble weights, which are vertically

concatenated into one vector, w̃ =
(

w̄T
1 w̄T

2

)T ∈ R2M . A single background error

matrix is also constructed containing the background perturbations from each set of

variables and ensuring no correlation exists between the two groups, as in the EnSRF

(5.9). The background perturbations in observation space ỸYY are also computed as

in the EnSRF (5.11), though all of the observations are considered instead of only

one.

The concatenated matrices are substituted into the original LETKF formula-

tion (5.29) to solve for both sets of weights simultaneously and compute a single

increment:

δxa = X̃XXw̃ =
(

X̃XXW̃WW
a
)(

ỸYYW̃WW
a
)T

(ρSR ◦RRR)−1 d, (5.36)
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where

W̃WW
a

=
(

III + ỸYY
T

(ρSR ◦RRR)−1 ỸYY
)− 1

2 ∈ R2M×2M . (5.37)

The weight matrix is also extended and used in conjunction with X̃XX to calculate XXXa:

XXXa = X̃XXW̃WW
a
CCC, (5.38)

where CCC =

(
III III

)T
∈ R2M×M .

To compare with the VO formulation (5.32), the concatenated terms ỸYY and w̃

are expanded. This results in two weights that are dependent on each other:

w̄a
1 = WWWa

M1 (YYYM1WWW
a
M1)

T (ρSR ◦ RRR)−1(d−YYYM2w̄
a
2), (5.39a)

w̄a
2 = WWWa

M2 (YYYM2WWW
a
M2)

T (ρSR ◦ RRR)−1(d−YYYM1w̄
a
1), (5.39b)

where

WWWa
Mj =

(
III + YYYT

Mj(ρSR ◦RRR)−1YYYMj

)−1
. (5.40)

One significant difference between the weights for each form of variable localization

is that VM has an additional term. For w̄a
1, this term is YYYT

M1RRR
−1YYYM2w̄

a
2, which

represents the influence of one observation on model variables from different groups.

This is how the VM is able to address the ψ and χu scenario described in Section 5.2.

If a single observation does not project onto analysis variables from both groups,

this term is zero.

Another notable difference is the background perturbations in observation
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space: VO uses YYYiO and VM uses YYYMj. Examining their structure highlights how

the localization for each form operates. The background perturbations in VO are

represented by YYYiO ∈ RLi×M . Only certain observations are considered when com-

puting a particular analysis grid point. In contrast, YYYMj ∈ RL×M in VM uses all of

the observations when computing an analysis grid point. These perturbation matri-

ces also consider different portions of the background covariance: YYYiO is calculated

using the full background perturbations, XXX, while YYYMj only considers part of the

background perturbations, XXXj. Combined, this illustrates how the two localization

schemes work. VO does not localize the covariance itself, but selects rows of obser-

vation impact to include in the analysis. VM localizes the covariance directly and

allows all observations to potentially impact all control variables.

The differences between the two forms of variable localization in the LETKF

parallel the differences seen in the EnSRF. Both EnKF formulations face the same

drawback of VO: its inability to remove background covariances from two variables

affected by the same observation. It makes no difference that the EnSRF consid-

ers only one observation at a time while the LETKF splits the observation types

into groups. Likewise, both formulations are benefited by the application of VM

in this regard. It removes intervariable correlations without consideration of the

observations. This conclusion mirrors one of the findings of Greybush et al. (2011)

for spatial localization, where the authors determined that the choice of data as-

similation algorithm was less impactful than the choice of spatial localization form

when determining localization length scales.
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5.3.3 EnVar

Ensemble-variational (EnVar) schemes use a cost function framework to incor-

porate ensemble perturbations into the background error covariance. The Hybrid

3DEnVar (Kleist and Ide, 2015a; Wang, 2010) draws parallels with the LETKF

in its formulation, particularly evident through the cost function derivation of the

LETKF. The primary difference between the formulations is the implementation of

spatial localization: the LETKF applies it to RRR and the EnVar applies it to PPP.

For simplicity and ease of comparison with the other EnKFs in the previous

sections, the 100% ensemble covariance formulation of the EnVar is used rather

than the hybrid form, removing the static parts of the increment and cost function.

Following the notation of Wang (2010), the increment within an EnVar scheme is

computed using a set of ensemble weights multiplied by the ensemble perturbations

from each member normalized by
√
M − 1 :

δx =
M∑
m=1

(αm ◦XXXm) = EEEααα, (5.41)

where δx ∈ RN is the increment, αm ∈ RQ represents the weights for each m ensem-

ble member (analogous to w̄ in the LETKF), Q is the number of model grid points,

XXXm ∈ RN represents the normalized background perturbations for each member,

EEE =
(

EEET1 EEET2
)T ∈ RN×QM represents the Schur product of ensemble perturbations,

and ααα ∈ RQM is a vertical concatenation of the weights for each member. A varia-
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tional cost function is constructed to solve for the weights:

J(ααα) =
1

2
αααTLLL−1ααα +

1

2
(d−HHHEEEααα)TRRR−1(d−HHHEEEααα), (5.42)

where LLL ∈ RQM×QM is the covariance for the ensemble weights. It is a block diagonal

matrix with submatrices that define the spatial correlation of the control variable,

which dictates the spatial localization. This cost function is of the same form as the

LETKF cost function (5.28), where ααα is equivalent to w̄ and HEHEHE is equivalent to YYY.

In practice, the cost function is minimized iteratively, but the control variable

can be solved analytically by setting the gradient to zero and solving for ααα. Once

found, the increment is formed:

δx = (EEEVVV) (HEVHEVHEV)T RRR−1d, (5.43)

where

VVV = (LLL−1 + EEETHHHTRRR−1HEHEHE)−
1
2 ∈ RQM×QM . (5.44)

This increment is of the same form as (5.29) in the LETKF, where VVV is analogous to

WWWa. The primary difference is in the application of the spatial localization. In the

LETKF, it is applied through RRR and a local implementation of the analysis equations.

The EnVar applies the localization through LLL and uses a global implementation.

To apply VO within the EnVar framework, the same methodology of the
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LETKF is used by computing multiple sets of weights:

δxi =
M∑
m=1

(αmi ◦XXXm) = EEEαααi. (5.45)

The weights are calculated by solving separate cost functions iteratively using groups

of observations as in (5.32), setting their gradients to zero, and solving for each αααi

to create separate increments:

δxi = EEEVVVi (HHHiOEEEVVVi)
T RRR−1i di, (5.46)

where

VVVi =
(
LLL−1i + EEETHHHT

iORRR−1i HHHiOEEE
)− 1

2 . (5.47)

Once the increment is found, the analysis is computed in the same manner as LETKF

(5.34a). As in LETKF VO, the increments must be computed serially, with the anal-

ysis for the first group of observations becoming the background for calculating the

analysis for the second group of observations. Comparing with (5.32), the equiva-

lence between the EnVar and the LETKF is apparent. The EnVar also suffers from

the same drawback in its implementation of VO; the formulation cannot accommo-

date a single observation having impact across both control variable groups.

Similarly to the LETKF, VM can also be formulated for the EnVar. The model

variables are broken down into mutually exclusive groups that are to be dissociated.

The increment then includes multiple groups of weights multiplied by each group of
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perturbations:

δx =
M∑
m=1

(αm1 ◦XXXm
1 ) +

M∑
m=1

(αm2 ◦XXXm
2 ) = ẼEEα̃αα, (5.48)

where ẼEE is the extended Schur product for the multiple variable groups:

ẼEE =

(
EEE1 0

0 EEE2

)
∈ RN×2QM . (5.49)

Similarly to X̃XX in the VM form of the EnSRF and the LETKF, the extension of the

EEE matrix removes the cross-correlation between the groups of variables. The weight

error covariance, LLL, is extended in the same manner to form L̃LL. The control variable

is also extended to include both sets of ensemble weights, α̃αα =
(
αααT1 ααα

T
2

)T ∈ R2QM .

As in the LETKF, a single cost function is constructed to solve for both sets of

weights, considering all of the observations simultaneously. Even though in practice

the cost function is solved numerically, the analytical solution is written for the

increment to compare with the other EnKF schemes [(5.25) and (5.36)]:

δx = ẼEEα̃αα =
(

ẼEEṼVV
)(

HHHẼEEṼVV
)T

RRR−1d, (5.50)

where

ṼVV =
(

L̃LL
−1

+ ẼEE
T

HHHTRRR−1HHHẼEE
)− 1

2 ∈ R2QM×2QM . (5.51)

Refer to Table 5.1 for a comparison of the analysis increments for the three data

assimilation schemes and each form of variable localization.

The concatenated matrices and vectors are then expanded in order to compare
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the analysis weights with VO (5.46) and with the LETKF (5.39a,5.39b):

ααα1 = VVV1 (HHHEEEVVV1)
T RRR−1(d−HHHEEE2ααα2), (5.52a)

ααα2 = VVV2 (HHHEEEVVV2)
T RRR−1(d−HHHEEE1ααα1). (5.52b)

where

VVVi =
(
LLL−1i + EEETi HHHTRRR−1HHHEEEi

)− 1
2 . (5.53)

Similarly to the LETKF, when comparing the VM weights with its VO counterpart

(5.46), an additional term is seen. This term, of the form EEET1 HHHTRRR−1HHHEEE2ααα2, is the

term that allows one observation to impact both variable sets directly. There is

also a similar difference in the observation operators (HHHiO in VO compared to HHH in

VM) and the background perturbations (EEE in VO compared to EEEi in VM). Both VM

implementations are capable of removing the cross-correlation terms while allowing

observation impact on both control variable groups simultaneously.

5.4 Single Observation Demonstration

An example of the VM EnVar formulation using one of the scenarios discussed

in Section 5.2 is now presented. Using a 4DEnVar scheme in the SPEEDY model,

the control variables for this case are (ψ, χu, T u, q, P u), where superscript u rep-

resents the unbalanced portion of each variable. A balance operator provides the

large scale, balanced correlations between ψ and (χ, T, P ). Even though the bal-

ance operator prescribes the cross-covariances between the variables, there will be
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additional correlations provided by the ensemble. To make ψ and (χu, T u, P u) fully

uncorrelated, variable localization is applied. As discussed in Section 5.3.2, a u

observation needs to be able to impact both ψ and χu; therefore, VO cannot ac-

commodate this scenario. If an observation is able to impact more than one control

variable, then those variables will retain their ensemble-derived correlations. VM,

however, can handle this scenario. By separating the variables into two groups, ψ

and (χu, T u, q, P u), two sets of weights are computed and the correlation between

the two groups of variables is removed.

Part of KKK is constructed to show the impact of VM, considering only the two

variables of interest, ψ and χu. First, the XYXYXYT term without the variable localization

is formulated in conjunction with the application of the balance operator, ΓΓΓ:

ZZZZZZTΓΓΓTHHHT =

 ZZZψ

ZZZχ

( ZZZTψ ZZZTχ

) 1 c

0 1


 HHHT

ψ

HHHT
χ



=

 ZZZψZZZTψ(HHHT
ψ + cHHHT

χ) + ZZZψZZZTχHHHT
χ

ZZZχZZZTψ(HHHT
ψ + cHHHT

χ) + ZZZχZZZTχHHHT
χ

 ,

(5.54)

where ZZZ represents the normalized ensemble perturbations in the unbalanced vari-

able space and XXX = ΓZΓZΓZ. The subscript ψ refers to the perturbations and observation

operator for the ψ control variable and the subscript χ refers to the perturbations

and observation operator for the χu control variable. Within ΓΓΓ, c is the part of the

balance operator that represents the balanced correlations between ψ and χ. With

no variable localization, observations with nonzero observation operators for both ψ
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and χu can impact both variables. The cross-correlations between the two variables

are present as well.

When VM is applied to this case, the background perturbations in the unbal-

anced space are extended as they were for the traditional background perturbations:

Z̃ZZZ̃ZZ
T

ΓΓΓTHHHT

=

 ZZZψ 0

0 ZZZχ


 ZZZTψ 0

0 ZZZTχ


 1 c

0 1


 HHHT

ψ

HHHT
χ



=

 ZZZψZZZTψ(HHHT
ψ + cHHHT

χ)

ZZZχZZZTχHHHT
χ

 .

(5.55)

The cross-covariance terms, ZZZψZZZTχ and ZZZχZZZTψ , have been removed, while the impact

for both variables remains nonzero. This allows a single observation where the

observation operators are nonzero for each variable to impact both of those variables,

while simultaneously removing their cross-correlations.

A single observation impact test demonstrates this variable localization imple-

mentation. Assimilating a u observation without any variable localization, (Figure

5.1a), there is a response in ψ and χ that is consistent with an increase in the zonal

wind at the point between the dipoles. There is also some anisotropy associated

with the flow-dependent covariances. When applying VM, any cross-covariances for

ψ and χu present in the ensemble correlations are removed (Figure 5.1b). The over-

all structure is similar between the two cases, with a majority of the information

drawing from the direct impact of u on ψ and χ. However, slight differences are
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present, as displayed in Figure 5.1c. The case with the cross-covariances removed

is smoother than the case that includes the cross-covariances, suggesting that these

covariances may have been subject to sampling error and should not be considered.

Figure 5.1: EnVar analysis increment for ψ (shaded) and χ (contoured) assimilating a
single u observation at the lowest model level (a) without any variable localization and
(b) with model space variable localization. (c) shows the difference with and without

variable localization.

5.5 Summary and Discussion

Variable localization is a method by which to remove the spurious correlations

that exist between variables that are physically unrelated. Two forms of variable

localization were described: observation space variable localization (VO) and model
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space variable localization (VM). Both forms were then implemented within three

data assimilation schemes: the EnSRF, the LETKF, and the EnVar. Differences ex-

ist between the data assimilation schemes, but the forms of variable localization are

implemented in similar ways. VO removes the correlation between model variables

by not allowing an observation to impact certain analysis variables. VM extends the

background error and forces the removal of the cross-correlations directly without

regard to observation type.

For the LETKF and the EnVar, both forms of variable localization are im-

plemented by calculating multiple sets of weights for different variable types. The

method by which these weights are calculated differ for each form. VO computes

each set of weights using its own group of observation types. VM computes two

sets of weights simultaneously considering all of the observation types. While both

formulations need the analysis variable groups to be mutually exclusive, the groups

of observations for VO can overlap. In contrast, VM does not use two separate

groups of observations; all observation types are considered at once. This is re-

flected in how the background error is constructed in each formulation. In VO, YYY is

calculated using the full background perturbations, XXX, then rows corresponding to

individual observations are selected. This gives control over which model variables

feel the impact of a particular observation. In VM, the background perturbations XXX

are localized by variable first, then YYY is constructed for all observations. This form

allows for a single observation to impact multiple analysis variables that also have

their cross-correlations removed.

K11 explored several different configurations for removing cross-correlations
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between different variable sets. One such configuration, referred to as C-univ in

that paper, decorrelates the carbon variables with the meteorological variables in

the analysis. While simplistic, the transport error covariances are not considered

during the analysis of the carbon variables. In the K11 paper, VO is used within

an LETKF to implement this scenario and it yields positive results, stabilizing

the error and resulting in realistic CF fields, though the results are worse than

the other configurations tested due to the lack of representation of the transport

error. VM could also be used effectively in this scenario. The two sets of control

variables for both formulations are (u, v, T, q, P ) and (C,CF ). VO also separates

the meteorological observations from the carbon: (u, v, T, q, P ) and (C).

Another configuration that was tested in K11 is the L-1way method, which

allows for the cross-covariance between the carbon variables and the wind variables,

but it does not allow for the carbon variables to negatively impact the wind, having

a one-way feedback only. This configuration had the best performance of the config-

urations tested in that paper. Using VO, the analysis variables are again split into

the meteorological variables and the carbon variables: (u, v, T, q, P ) and (C,CF ).

The groups of observations, however, are split into overlapping sets: (u, v, T, q, P )

and (u, v, C). The wind observations impact the carbon analysis, but the carbon

observations do not impact the wind analysis. Unfortunately, VM cannot manage

this scenario since it has no means to represent a one-way feedback; it does not split

the observations into sets. In VO, by choosing to use a particular observation type

in both sets, cross-covariances are being introduced among the two analysis variable

sets. VM enforces a full decorrelation of the control variables and cannot implement
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this configuration.

Section 5.4 presented a situation that was manageable by VM only. The

control variables to be decorrelated are the rotational component of the wind ψ

and the unbalanced divergent component of the wind χu. To assimilate a wind

observation, the impact must be able to span both groups of control variables while

also having the cross-correlations removed. VO is unable to accommodate such a

scenario since it removes the cross-correlations by restricting the observation impact.

VM removes the correlations through modification of the background error directly.

Both forms have their advantages and disadvantages and should be considered

in different situations. A careful evaluation needs to be performed before applying

any form of variable localization to ensure that beneficial, physical correlations do

not exist between the variables that are to be separated that were not accounted for.

The benefit of removing the spurious correlations should be sizable since variable

localization comes with a computational cost. The VO forms are generally less

expensive than their VM counterparts. For the EnSRF, VO has little additional

cost since rows of KKK are being zeroed out. VM has a modest additional cost since

the computation of KKK scales by the size of the ensemble (Tippett et al., 2003) and

the size of the ensemble is effectively doubled. The LETKF, however, scales by the

quadratic of the ensemble size (Hunt et al., 2007). The computation of two sets

of weights approximately doubles the computational cost, but the extension of the

matrices to double the size of the ensemble increases the computational expense

four-fold. For VO in the EnVar, solving two separate cost functions doubles the

computational cost. For VM, the control vector is being extended to include an
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additional set of weights, increasing its size by the number of grid points, which

constitutes a doubling. The background covariance matrix is being increased by

a factor of four, though since the matrix is not explicitly calculated and contains

identical sub-blocks, the increase in computation is not as large.

These forms of variable localization may not be appropriate for many current

applications within NWP. However, for applications such as the one presented in

K11, variable localization is necessary. There is an increasing amount of work done

in the assimilation of chemistry components, such as trace gases (Coman et al.,

2012; Liu et al., 2012) and aerosols (Pagowski and Grell, 2012; Schwartz et al.,

2014), where variable localization may be needed. In coupled ocean-atmospheric

modeling, there has been a shift away from weakly coupled data assimilation, where

the individual components exchange information in the forecast but are analyzed

separately (Doblas-Reyes et al., 2011; Ham et al., 2014; Hazeleger et al., 2013; Rob-

son et al., 2012), towards strongly coupled data assimilation, where all observations

from each system are considered in one analysis solution (Han et al., 2013; Liu et al.,

2013; Sluka et al., 2016). With coupled systems, there will very likely be variables

that are sensitive to the noisy correlations that will presumably be present across

system boundaries and would benefit from variable localization. Along with the

current prevalence of ensemble techniques, variable localization may become more

valuable in the future than it has been.
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Table 5.1: Analysis increments from each of the data assimilation schemes and variable localization forms.

Data Assimilation
Scheme

Variable Localization
Form

Analysis Increment

EnSRF None
δx = [(ρSM ◦XXXXXXT )HHHT ][HHH(ρSM ◦XXXXXXT )HHHT +R]−1d

δx = (ρSO ◦XXXYYYT )(YYYYYYT +R)−1d

EnSRF VO δx = (ρSO ◦ ρV O ◦XXXYYYT )(YYYYYYT +R)−1d

EnSRF VM
δx = [(ρSM ◦ ρVM ◦XXXXXXT )HHHT ][HHH(ρSM ◦ ρVM ◦XXXXXXT )HHHT +R]−1d

δx = (ρSO ◦ X̃XXỸYY
T

)(ỸYYỸYY
T

+R)−1d

LETKF None δx = XXX(III + YYYT (ρSR ◦RRR)−1YYY)−1YYYT (ρSR ◦RRR)−1d

LETKF VO δxi = XXX(III + YYYT
iO(ρSRi ◦RRRi)

−1YYYiO)−1YYYT
iO(ρSRi ◦ RRRi)

−1di

LETKF VM δx = X̃XX(III + ỸYY
T

(ρSR ◦RRR)−1ỸYY)−1ỸYY
T

(ρSR ◦RRR)−1d

EnVar None δx = EEE(LLL−1 + EEETHHHTRRR−1HEHEHE)−1EEETHHHTRRR−1d

EnVar VO δxi = EEE(LLL−1i + EEETHHHT
iORRR−1i HHHiOEEE)−1EEETHHHT

iORRR−1i di

EnVar VM δx = ẼEE(L̃LL
−1

+ ẼEE
T

HHHTRRR−1HHHẼEE)−1ẼEE
T

HHHTRRR−1d
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Chapter 6: Summary and Future Directions

6.1 Summary

Ensemble-derived background error covariance matrices are often undersam-

pled for NWP applications since the ensemble size is limited by computing resources.

The method of localization was devised in order to eliminate correlations that are

dominated by sampling error, thereby improving the forecast. Localization is com-

monly applied in the spatial dimensions, removing correlations for points that are

distant whose true correlations are likely small. Spatial localization can be applied

to the background error or the observation error. However, both forms of spatial

localization can result in imbalances by disrupting physical relationships based on

gradients or column integrated quantities. Imbalances can degrade the forecast by

producing fast moving gravity waves within the model.

A method to improve balance within ensemble data assimilation methods was

explored in Chapters 3 and 4. By applying a balance operator to ensemble per-

turbations, the localization is performed on the unbalanced correlations only. This

prevents the localization from acting on the balanced correlations. This method

was implemented within two ensemble data assimilation schemes: a hybrid 4DEn-

Var (Chapter 3) and an LETKF (Chapter 4). It was found that the type of spatial
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localization, whether applied to the background error or the observation error, im-

pacts the effectiveness of the balance operator. The hybrid 4DEnVar employs the

model space localization, which allows for a two-way propagation of balanced infor-

mation outside of the localization radius, i.e. δψ can impact δT and vice versa. The

LETKF applies the spatial localization to the observation error, which only allows a

one-way propagation of balanced information, i.e. δψ can impact δT but δT cannot

impact δψ.

Observing system simulation experiments were performed in the SPEEDY

model, whose climatology and biases were reviewed in Chapter 2. The lower resolu-

tion forecast model has a stratosphere that is significantly damped compared with

the higher resolution truth, though the large scale climatological features matched

well with reanalysis data. When the balance operator was added within the hy-

brid 4DEnVar, the analysis and forecast skill were improved in the troposphere but

degraded for the stratospheric winds where the model bias dominates. This degra-

dation is due to the regression coefficients of the balance operator being based on

the low resolution model rather than the high resolution truth. When the balance

operator was included in the LETKF, the analysis and short term forecasts were

degraded for most variables and locations. Since the localization prevents a two-

way communication of information, δT is adjusted to be brought into balance with

δψ after the analysis is found, moving it away from the observations. The form of

spatial localization used has a significant impact on the effectiveness of the balance

operator.

Localization can also remove correlations between variable types, termed vari-
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able localization. Chapter 5 presented a unified framework, describing two forms

that mirror the two types of spatial localization: observation space variable local-

ization (VO) or model space variable localization (VM). VO and VM were for-

mulated for three data assimilation schemes: EnSRF, LETKF, and EnVar. The

relative strengths and weaknesses of VO and VM were consistent throughout the

three schemes. VO removes the multivariate correlations by restricting an observa-

tion’s impact to only certain control variables. While computationally inexpensive,

a single observation cannot impact multiple control variables whose correlations

are to be removed. VM removes the cross-correlations from the background error

directly. It is more computationally expensive but requires no knowledge of the ob-

servations. In VM, a single observation can impact multiple control variables while

their cross-correlations are also removed.

6.2 Future Directions

In Chapter 3, the addition of the balance operator to the ensemble part of

the hybrid 4DEnVar produced predominantly positive results using an intermediate

complexity model, SPEEDY. To test whether these results translate to more com-

plex models, this method will be applied within NCEP’s GSI for use within the GFS.

The system used in the OSSEs was designed to mimic the GSI to allow for a simpler

transition. One difference between the systems is the computation of the ensemble

perturbations. The experiments from Chapter 3 use an LETKF to generate the

perturbations and the GSI uses an EnSRF operationally, though it has the option
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to use LETKF. Since both systems recenter the ensemble perturbations about the

EnVar deterministic analysis, this difference should be of little consequence.

NWP models continue to increase in horizontal and vertical resolution as com-

putational resources also increase. It is unlikely that the ensemble will be large

enough to eliminate the need of localization in a majority of applications. There-

fore, the impact of the spatial localization on the balance should continue to be

studied as well as ways to alter the implementation of localization to improve bal-

ance. Because of computational costs, many EnKFs within the NWP community

use observation space spatial localization rather than model space (Anderson, 2001;

Whitaker et al., 2008). There are additional disadvantages that have not been ad-

dressed here, for instance, how to define observation locations for radiance data

(Campbell et al., 2010). Model space localization would be more desirable if the

computational cost was reduced. Bishop (2017) explores a variant on the ETKF

to increase the size of the ensemble while including model space localization as a

consequence.

The use of EnKFs within storm scale models is increasing. As global mod-

els also approach convection allowing resolutions, the implications for large scale

balance need to be addressed. The same control variables may no longer be appro-

priate. In the Met Office Unified Model, Vetra-Carvalho et al. (2012) found that

hydrostatic balance breaks down at 1.5 km horizontal resolution. Within a 4DVar,

Honda et al. (2005) separate the control variables into synoptic scale and mesoscale,

computing the balanced component from the synoptic scale only. Li et al. (2015)

construct a multiscale 3DVar, applying a form of variable localization between the
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large scales and the small scales. Spatial localization can also be applied at different

scales, as in Buehner (2012). This allows the larger scales, which are associated

with geostrophic balance, to have a much larger localization radius than the smaller

scales, which likely would improved balance throughout the system.

Bannister (2008) notes that streamfunction is not an ideal choice for the pri-

mary variable within a balance operator due to geostrophic adjustment. Other

formulations of balance operators can be explored in the ensemble data assimilation

context. The inclusion of an independent balance variable could allow for the back-

ground covariance to be more symmetric in the observation space spatial localization

case. Variational methods have extensively explored different control variable op-

tions. The use of potential vorticity has been explored within 4DVar (Cullen, 2003)

and would allow for an unbalanced streamfunction variable (Bannister, 2008). Also

within 4DVar, Fisher (2003) computed a balanced vertical wind through use of the

quasi-geostrophic omega equation. How different forms of balance operators interact

with localization requires further exploration.
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Appendix A: Instability in the SPEEDY Model

Prior to the experiments conducted in Chapters 3 and 4, several preliminary

experiments were run using an older version of the SPEEDY model (Molteni, 2003)

with different observation and data assimilation configurations. The older version

of the model is single resolution and only has seven vertical levels. A simpler obser-

vation configuration of simulated radiosondes was assimilated within 3DVar, which

contained a different formulation for the balance operator than (3.1a) - (3.1c). These

experiments exhibited a large amount of instability, frequently terminating inte-

gration. This instability, caused by regularly spaced observations and noise in the

background error, manifest in a standing wave checkered pattern in the tropospheric

temperature. The results from these experiments guided the configuration for the

experiments within Chapters 3 and 4. This appendix describes the details of the

configuration of the previous experiments and their results, previously presented in

Sabol (2011).

A.1 Formulation

Rather than the utilizing the Hybrid 4DEnVar scheme described in Chapter 3,

the experiments that follow use 3DVar, the static covariance only predecessor. The
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basis for the Hybrid 4DEnVar, this scheme iteratively minimizes a cost function to

find the optimal state considering both the observations and the previous forecast:

J(v) =
1

2
vTv +

1

2
(d−HUHUHUv)TRRR−1(d−HUHUHUv), (A.1a)

OJ(v) = v −UUUTHHHTRRR−1(d−HUHUHUv). (A.1b)

In this formulation, the control variable (v) is preconditioned on the square root

of the background error covariance (BBB = UUUUUUT ). The control variable utilizes a

difference variable set than the previous experiments, substituting the zonal and

meridional wind (u and v respectively) for streamfunction and velocity potential.

In our current 3DVar formulation, different types of observations are assimi-

lated independently of one another; the formulation does not recognize relationships

among the prognostic variables (u, v, T , q, and ps). Analysis increments can be dy-

namically inconsistent and result in imbalances in the next forecast cycle. Therefore,

a dynamic constraint is added to our 3DVar system to represent the intervariable

correlations, different in formulation from the balance operator described in Sec-

tion 3.2.1. One of the strongest of the intervariable relationships in the atmosphere

concerning our prognostic variables is geostrophic balance.

Using geostrophic balance, the horizontal velocity, VVV, is expressed as:

VVV = rVVVg + VVVu, (A.2)
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where VVVg is the vector geostrophic wind that is in balance with T and ps:

fk×VVVg = −RTOln(ps)− Oφ(T ). (A.3)

f is the Coriolis parameter, R is the gas constant for dry air, and φ is geopoten-

tial (related to T through hypsometric relations), VVVu is the unbalanced, residual

velocity, and r is the regression coefficient chosen so that VVVg and VVVu are statistically

uncorrelated. Mathematically, r is represented as:

r =
E[(ε)(εg)T ]

E[(εg)(εg)T ]
, (A.4)

where ε denotes the error of the total wind and εg denotes the error of the geostrophic

wind. This coefficient represents the strength of geostrophic balance, where a value

of r = 1 implies that the wind is fully geostrophic. In practice using the NMC

method (Parrish and Derber, 1992), ε is the difference between the 18 and 24 hour

forecasts of the full wind verifying at the same time and εg is the difference between

the 18 and 24 hour forecasts of the geostrophic wind verifying at the same time.

Computed for each latitude and vertical level using a year’s worth of samples, it is

an expression of how geostrophic the wind at a location is. High values of r occur in

the midlatitudes, where geostrophic balance is strong, and low values occur in the

tropics, where the Coriolis effect is weak (Figure A.1a). The correlation between

VVVg and VVVu is extremely low as shown in Figure A.1b for the zonal average of the

correlation with height.
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Figure A.1: (a) The linear regression coefficient, r, between the total wind and the
geostrophic wind, shown with latitude along the x-axis and σ levels along the y-axis. (b)
The correlation between the unbalanced wind and the geostrophic wind, by latitude and

height.

To use the geostrophic constraint in the incremental 3DVar with precondition-

ing, the control variable is transformed to δz:

δx = GGGUUUzδz, (A.5)

where (UUUzδz)T = [(δuu)T , (δvu)T , (δT )T , (δq)T , (δps)
T ] and:

GGG =



1 0 − rR
f

ΛΛΛyln(ps)− r
f

ΛΛΛyCCC 0 − rRT b

f
ΛΛΛy
(

1
ps

)
0 1 rR

f
ΛΛΛxln(ps) + r

f
ΛΛΛxCCC 0 rRT b

f
ΛΛΛx
(

1
ps

)
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


. (A.6)

ΛΛΛ represents the centered-difference first order derivative in space and CCC represents

the transformation from temperature to geopotential using the hypsometric equa-
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tion.

Incorporating the geostrophy constraint into the cost function (A.1a) results

in:

J(δz) =
1

2
δzT δz +

1

2
(d−HGUHGUHGUzδz)TRRR−1(d−HGUHGUHGUzδz), (A.7a)

OJ(δz) = δz−UUUT
z GGGTHHHTRRR−1(d−HGUHGUHGUzδz). (A.7b)

The background error variances based on the control variable becomes:

BBB = GBGBGBzGGG
T = GUGUGUzUUU

T
z GGGT . (A.8)

A.2 System Description

A.2.1 Model Description

The experiments that follow use an older version of the SPEEDY model com-

pared to the version described in Chapter 2. One of the most significant differences

is the vertical resolution. Rather than eight vertical levels, this version of SPEEDY

has seven vertical levels, with the bottom six levels being identical and one less level

in the stratosphere (σ=0.95, 0.835, 0.685, 0.51, 0.34, 0.2, 0.08). This version of

the model also does not contain a high resolution configuration. There is only one

resolution, T30, which corresponds to a standard Gaussian grid of 96 grid points

zonally and 48 meridionally (3.75◦ × 3.75◦). This results in the truth being at the

same resolution as the analysis and forecast steps. With no other model error, these
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experiments are considered identical twin experiments rather than fraternal twin

experiments.

A.2.2 Observation Network

The observation network configuration is different than described in Section

2.2, though the method of observation generation is the same: adding a Gaussian

random error to the true state, scaled by the observation error associated with each

observation type. There is no satellite component to the network. The network is

comprised of simulated radiosondes only, which contain the observation types and

errors as the experiments in Chapters 3 and 4 (Table 2.1).

There are three configurations for radiosonde-like observation locations used

in these experiments, designed by Miyoshi (2005). First is the dense observation

network (Figure A.2a). It consists of regular observational coverage at every other

grid point, one out of every four surrounding grid points, for a total of 1056 sta-

tions. The second network is the sparse network (Figure A.2b). It is also regularly

distributed, though the observations occur at every fourth grid point, or one out

of 16 surrounding grid points. This makes a total of 264 observing stations. The

third network is the realistic radiosonde network (Figure A.2c). The observations

are unevenly distributed, with more observations occurring over the land than over

the ocean, and more observations in the northern hemisphere than in the southern

hemisphere. The highest concentration is over Europe, Asia, and the United States,

with the lowest concentration in the Southern Pacific Ocean basin. There are 415
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stations in this configuration.

Figure A.2: Observation networks used in the SPEEDY experiments. (a) Dense
network, (b) Sparse network, (c) Realistic network

A.2.3 Experimental Setup

Several experiments were run with different observation configurations, differ-

ent background error variances, and with and without the geostrophic constraint.

All experiments begin on January 1, 1982 with observations assimilated every six

hours. The initial background is chosen from the truth at a different time in the

integration: February 1, 1982. All experiments also use the same observation er-

ror covariance matrix, RRR, which is a diagonal matrix with no correlation between

observations. A summary of all experiments is provided in Table A.1.

The first set of experiments have a configuration that closely matches the ex-
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periments of Miyoshi (2005), where each experiment uses a different observation

network, but all three use the same background error variance and do not use the

geostrophic constraint. The background error variance was derived as in those ex-

periments: using the NMC method on two months of experiments with the dense

observation network. Finding that the background error contained noise due to the

small sample size, an additional experiment was run for the dense network case

with the background variances zonally averaged. Another set of experiment was

then conducted, increasing the sample size of lagged forecast pairs to one year for

each observing network.

Three more experiments were conducted, this time with the geostrophic con-

straint incorporated. The background error for each observing network used a year’s

worth of samples and no horizontal smoothing was applied. Two additional exper-

iments were conducted for the dense network case only with zonal and horizontal

smoothing.

Table A.1 contains a summary of the described experiments, including whether

it used the geostrophic constraint, which observing network was used, how BBB was

computed, the length of the experiment, and root-mean-squared error (RMSE)

statistics. These statistics were computed from the analysis compared to the nature

run for temperature at the middle model level, σ = 0.51. RMSEs were calculated

globally, north of 20◦N, and south of 20◦S.
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A.3 Results

A.3.1 Without the Geostrophic Constraint

The analysis RMSEs for the three experiments using the BBB calculated with a

two month sample are shown in Figure A.3. After approximately six years, the dense

network case increases in error rapidly, eventually causing the model to terminate.

The exact nature of these errors will be addressed in greater detail in Section A.3.2.

To summarize, they are related to the noisiness of the background error variance and

the regularity of the observations. The relation to observation regularity can be seen

in the success of the realistic observation case, which completed a 15-year integration.

This case exhibits an annual cycle in the analysis RMSE, with higher accuracy

in January (boreal winter) and lower accuracy in July (austral winter). This is

due to the higher amount of observations in the northern hemisphere, allowing

the dynamic instabilities associated with the winter season to be captured in the

northern hemisphere more than in the southern hemisphere.

Using a small sample size of only two months, the background error contains

noise that could contaminate the analysis and build over time. Zonally averaging

the background error for use in the dense network case remedies the situation of

instability in Figure A.3 in the long-term. In fact, a 50-year integration from 1950-

1999 was completed and the analysis remains stable throughout the time period

(not shown).

Figure A.4 shows successful 15-year integrations for the three experiments us-

135



Figure A.3: Analysis RMSE for the midlevel T (in K) for seven-year integrations
without the constraint for the dense network (black) and the realistic network (red).

Both use the background error from the dense NMC case with two months of samples.

ing background errors calculated from one year of samples from their own observing

networks. The realistic and sparse network cases use the unsmoothed background

errors calculated from a year of samples from their respective networks. The dense

network case uses the zonally smoothed background error used for the previous ex-

periment for stability. There is improvement in the realistic and the sparse network

cases over the initial integrations using the dense network background error (not

shown). The dense network still greatly outperforms the other cases, as expected,

with RMSEs of about 10% of the other two networks.

A.3.2 With the Geostrophic Constraint

Three experiments were performed, one for each observing network, with the

geostrophic constraint included. Examining Figure A.5, the system performs well

early in the experiment period, reducing the error over the first couple of weeks.
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Figure A.4: The analysis RMSE for midlevel T (in K) for 15-year integrations without
the constraint. The dense network (black), the sparse network (green), and the realistic

network (red) use their own BBB with additional smoothing for the dense network.

Shortly after, the errors in the dense and sparse cases begin to increase as they did

in the dense non-geostrophic case, except this time it occurs much sooner in the

integration, on the order of months instead of years. As in the non-geostrophic case,

the realistic network case is stable and is able to complete a 15-year integration (not

shown).

For the remainder of this section, we identify the cause and nature of the

increase in errors in the dense network case. When no geostrophic constraint is

used, a smoothing of the variances resolved the problem of long term instability

(Figure A.4). Zonal and horizontal smoothing are applied to the background error

variances for the dense network, but they do not keep the errors from increasing;

they only delay the response (Figure A.6).

Smoothing the errors spatially does not keep the model integration stable. If

the magnitude of BBB is too small (Figure A.7a), the background error becomes much
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Figure A.5: Analysis RMSE for midlevel T (in K) using the geostrophic constraint.
Results are shown for the dense (black), sparse (green), and realistic (red) networks.

smaller than the observation error and the background does not draw closely to the

observations. As a result, the analysis can diverge from the true state, or not reach

a state close to the truth at all. If the magnitude of BBB is too large, the background

draws extremely close to the observations, possibly making the analysis noisier and

contributing to the previous long-term instability. Figure A.7b shows that a very

small change in the scaling parameter can alter the stability and accuracy of the

assimilation. With a scaling factor of 0.48 being too large and 0.45 being too small,

it seems that the analysis is very sensitive to the magnitude of BBB.

In addition to the impact of the errors in the T at the middle model level, the

behavior of the RMSE at other model levels for other variables is investigated as

well as to ensure that these errors are not limited to the particular variable of choice.

For the dense network case using the one year, unsmoothed background error, the

RMSE for T and the zonal wind, u, are shown in Figure A.8 with height over time.
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Figure A.6: Analysis RMSE for midlevel T (in K) using the geostrophic constraint for
the dense network. Background errors are from the NMC method without smoothing

(black), using a zonal mean (green), and using a horizontal mean (red).

The errors for both T and u increase over time for all vertical levels with the highest

errors occurring in the upper troposphere.

For our standard middle model level of σ=0.51, the analysis of the last time

step before model failure (Figure A.9a) is compared with the truth (Figure A.9b).

The analysis for temperature at the middle level is extremely noisy. In fact, there are

large amplitude standing waves in the analysis producing a lattice-like, checkered

pattern. The crests and troughs of each wave occur between the observation loca-

tions. Also, the analysis is warmer than the true state, which shows the horizontal

mean for the temperature bias at the same level over time (Figure A.10).

The extra energy for the warming can come from either of two places: the

analysis increment or the forecast. The bias is examined in each of these steps,

analysis minus background for the former and background minus analysis at the

previous time step for the latter (Figure A.11). The analysis increment has zero
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Figure A.7: Analysis RMSE for midlevel T (in K) using the geostrophic constraint for
the dense network. Background errors are from the NMC method scaled by the factor

indicated. (a) 7-month integration and (b) 22-month integration.

Figure A.8: Analysis RMSE for (a) T and (b) u with height over time. This analysis
uses the dense observing network and an unsmoothed background error.

bias for the level and variable of interest for the first few months (Figure A.11a).

The mean increment then begins to decrease rapidly. A mean negative increment

implies that the background is too warm and that the analysis is trying to cool it

down. This means that the extra energy is not coming from the analysis increment.

When examining Figure A.11b, the bias in the forecast begins to increase after

approximately six months, meaning that the mean temperature increases during
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Figure A.9: The (a) analysis and (b) truth for midlevel T (in K) on 1982/08/09 00z,
the last analysis cycle before the model failure. The analysis is computed using the dense

network and geostrophic constraint, with no smoothing for the background error.

the 6-hour forecast. The extra energy, therefore, comes from the forecast step.

Although there is not a clear bias in the first few months and the errors

do not start to increase until around May 1982, the checkered pattern is present

in the mean analysis bias (analysis - truth) from January 15th to February 15th,

1982 (Figure A.12a). Similar to Figure A.9, the peaks are occurring off of the

observation location, which is logical since the points that have observations should

see the highest accuracy. The mean bias of the checkered pattern is zero, which is

why there is no indication in the horizontal mean statistics. This implies that the

increase in temperature is not the source of the problem, but the checkered pattern

precedes the temperature increase. When we average from July 1st to August 1st,

1982, a higher amplitude bias has developed, though the pattern remains the same

(not shown).

The observations being located exactly in between the troughs and crest of

the waves, along with the success of the realistic observation network, implies that
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Figure A.10: The mean analysis bias for T at σ = 0.51 using the same configuration as
Figure A.9

the regularity of the observations is involved in the long-term instability, perhaps

through the generation of a resonating standing wave. There is no mean bias in

either the analysis increment or the forecast for the realistic case (Figure A.13).

However, if we examine the spatial distribution of the mean analysis error bias for

the beginning of the assimilation as we did in Figure A.12, a weak checkered pat-

tern is present in certain locations, particularly those with high density, regularly

spaced observations (Europe, Asia, and North America; Figure A.14). This check-

ered pattern does not seem to be of a high enough amplitude or widespread enough

to dominate the analysis field, allowing it to remain stable over much longer time

scales.

While the choice of observation network clearly plays a role in the long term

stability, the choice of constraint does as well. As presented in Section A.3.1, the

dense network case without the geostrophic constraint and with an unsmoothed
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Figure A.11: The mean increment in temperature at the middle model level (in K)
using the dense network and the geostrophic constraint with no smoothing in the

background error. (a) The mean increment for analysis minus background and (b) the
increment for the 6-hour forecast minus the analysis.

BBB experiences similar increases in error to what has been outlined in this section.

However, without the constraint the analysis is stable over much longer time peri-

ods than when the constraint is used. This case can also be stabilized by smoothing

the background error, unlike in the geostrophic constraint case. For the geostrophic

constraint, not only are there increments at the observation point, there are analysis

increments off of the observation point as well, producing a dipole about the ob-

servation. This difference in spatial distribution of increments could be responsible

for exciting the standing waves in the analysis at a much quicker rate than in the

non-geostrophic case.

A.4 Summary

A suite of 3DVar experiments were run with an intermediate complexity model,

SPEEDY. Three different observation configurations were tested: a regularly spaced
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Figure A.12: (a) The mean temperature bias in space for the middle model level,
calculated from January 15th to February 15th, 1982. (b) A close-up of (a) with the

observation locations indicated.

Figure A.13: Same as Figure A.11, but with the realistic observation network.

dense network, a regularly spaced sparse network, and an irregularly spaced realistic

network. Both of the regularly spaced networks were unstable and frequently ter-

minated integration. Without the geostrophic constraint, the dense network blew

up after six years of cycling, though when the background error variances were

smoothed, the integration was stable for 50 years. When the geostrophic constraint

was applied, the instability accelerated and the model terminated after only eight

months. The errors of the sparse network began to increase even more rapidly,

within the first two months. It was determined that it was the forecast portion of
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Figure A.14: Same as Figure A.12a, but with the realistic observation network.

the analysis cycle that was contributing to these errors. The model was increasing

the temperature at all levels. A standing wave was created in the temperature field,

with an amplitude exceeding 20 K. The previous method of smoothing the back-

ground error variances did not stabilize the integration in this case, only delayed it.

The realistic network, however, showed no signs of instability throughout any of the

configurations tested.

This set of SPEEDY experiments demonstrated several aspects of the system

that allowed for more stable experiments moving forward. The experiments of this

section were run by an older version of the SPEEDY model. Updating to a newer

version of the model allowed for an increase in the number of vertical levels as well

as additional options for higher resolution. It was determined that the regularly

observing networks were unstable and should not be used in future experiments.

The realistic network, however, was stable over 15 years of cycling, and this ob-

servation configuration was retained. The type of geostrophic constraint used in
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these experiments was also abandoned. The balance operator used by NCEP was

adopted (3.1a) - (3.1c), changing the control variables to be ψ and χ rather than u

and v. Once these changes were in place, the T30 resolution experiments no longer

exhibited the standing wave pattern or instability of the older experiments.
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Table A.1: Summary of 3DVar-SPEEDY Experiments. RMSE calculations are for temperature at σ = 0.51 for 1982/01/10 -
1982/04/01. *Integration began on 1950/01/01.

Observation
Network

Geostrophic
Constraint

B Obs. B Time
B

Smoothing
Complete End Date

Global
RMSE

SH
RMSE

NH
RMSE

Dense No Dense Two months None No 1988/11/27 0.174 0.176 0.171

Dense No Dense Two months Zonal Yes 1997/01/01 0.174 0.176 0.173

Dense No Dense Two months Zonal Yes 1999/01/01∗ 0.174 0.176 0.171

Dense No Dense One year Zonal Yes 1983/01/01 0.176 0.154 0.192

Dense Yes Dense One year None No 1982/08/09 0.164 0.163 0.166

Dense Yes Dense One year Zonal No 1982/08/21 0.160 0.158 0.161

Dense Yes Dense One year Horizontal No 1982/09/10 0.153 0.154 0.151

Sparse No Dense Two months None Yes 1985/01/01 1.881 1.628 2.067

Sparse No Sparse One year None Yes 1997/01/01 1.711 1.609 1.791

Sparse Yes Sparse One year None No 1982/04/13 2.853 3.332 2.216

Realistic No Dense Two months None Yes 1997/01/01 2.192 2.911 1.056

Realistic No Realistic One year None Yes 1997/01/01 1.996 2.615 1.034

Realistic Yes Realistic One year None Yes 1997/01/01 2.140 2.598 1.529
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Appendix B: The Recursive Filter

The recursive filter FFF in (3.4) represents the spatial correlations on the model

grid. Described by Purser et al. (2003), it smoothes an impulse into a quasi-Gaussian

shape. A three-dimensional recursive filter is split up into vertical and horizontal cor-

relations, where the horizontal correlations are further split up into the x-direction

and the y-direction, i.e. FFF = FFFxFFFyFFFz. For each spatial direction, there is a forward

and backward component to the recursive filter:

bi = βai +
n∑
j=1

αjbi−j, (B.1a)

ci = βbi +
n∑
j=1

αjci+j, (B.1b)

where n is the order of the recursive filter, i is the grid point, treated in ascending

order for the forward pass and in descending order for the backward pass, and αj

and β are coefficients that satisfy:

β = 1−
n∑
j=1

αj. (B.2)
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The forward pass, (B.1a), smoothes in the positive direction, with ai’s as the input

and bi’s as the output, and the backward pass, (B.1b), smoothes in the negative

direction, with bi’s as the input and c’s as the output. Thus, these equations can

be represented as b = FFFa and c = FFFTb with FFF and FFFT as the forward and backward

recursive filter. To determine the coefficients for the recursive filter, αj and β, we

follow Purser et al. (2003).

Let D represent a differential operator of order n:

D(n) = 1− σ2δx2

2

d2

dx2
+

1

2!

(
σ2δx2

2

d2

dx2

)2

+ · · ·+ 1

n!

(
−σ

2δx2

2

d2

dx2

)n
, (B.3)

where δx is the uniform grid spacing and σ is the length scale with units of number

of grid points. It has a spectral representation of:

D̂(n) = 1− σ2

(
kδx2

2

)
+
σ4

2!

(
k2δx2

2

)2

+ · · ·+ σ2n

n!

(
k2δx2

2

)n
, (B.4)

where k is the wavenumber. Let K represent a finite difference operator, which

approximates a second order derivative of variable ψ:

d2

dx2
ψi ≈

ψi−1 − 2ψi + ψi+1

δx2
= −K(ψi)

δx2
, (B.5)

where i is the grid point index in the direction of x. This operator can be written

in spectral form with respect to k:

K̂(k) =

[
2 sin

(
kδx

2

)]2
. (B.6)
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This relationship is inverted and expressed k in terms of the finite difference operator,

using an expression for sin−1 as a series:

sin−1 x =
∞∑
i=0

γix
2i+1, (B.7)

with γi = 1
(2i+1)

(2i−1)!!
(2i)!!

. Now, (k2δx2) can be expressed as a power series:

(k2δx2) =
∑
j≥i

gi,jK̂
j. (B.8)

The coefficients of gi,j are found in Table 1 of Purser et al. (2003), defined as bi,j, for

coefficients i and j up to 6. Substituting (B.8) into (B.4), expanding the series, and

grouping the terms according to the power of K, the differential operator becomes:

D?
(n) = 1 + g1,1

σ2

2
K +

[
g1,2

(
σ2

2

)
+
g2,2
2!

(
σ2

2

)2
]
K2 + · · ·

+

[
n∑
j=1

gj,n
j!

(
σ2

2

)j]
Kn.

(B.9)

The 4DEnVar system in our experiments uses a fourth-order recursive filter.

The differential operator of the fourth order is written as:

D(4) = 1 +
σ2

2
K +

[
σ4

8
+
σ2

24

]
K2 +

[
σ6

48
+
σ4

48
+

σ2

180

]
K3

+

[
σ8

384
+

σ6

192
+

7σ4

1920
+

σ2

1120

]
K4.

(B.10)

Since the differential operator can be written as a polynomial in K, its factorized
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form is:

D(4) =
4∏
j=1

(
1− K

κj

)
. (B.11)

By matching the coefficients in (B.10) and (B.11), the roots to the following fourth

degree equation are found, which can also be factored as:

ax4 + bx3 + cx2 + dx+ e

=

(
x− 1

κ1

)(
x− 1

κ2

)(
x− 1

κ3

)(
x− 1

κ4

)
= 0,

(B.12)

with the solutions being (1/κj)’s. By defining a shift operator, Zψi = ψi+1 and

Z−1ψi = ψi−1, K is rewritten as K = −Z−1+2−Z. Substituting into the polynomial

factors of (B.11):

1− K

κj
=
Z−1 − 2 + κj + Z

κj
=

(
1− ζjZ−1

1− ζj

)(
1− ζjZ
1− ζj

)
, (B.13)

where ζ is the smaller of the two solutions to the quadratic equation:

ζ2 − (2− κj) ζ + 1 = 0. (B.14)

In the limit of the order of the differential operator to infinity, the inverse of

the operator is a Gaussian function. The input signal, a, is related to our output

signal, c, through this differential operator, D(n), with the objective of making the

output signal Gaussian in shape:

D(n)c = a. (B.15)
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D(n) is broken down using an LU decomposition into matrices P and Q, which is

used to separate the operation of (B.15) into two parts, including an intermediate

signal, b:

Pb = a, (B.16a)

Qc = b. (B.16b)

These two relations are the backward and forward iterations of the recursive filter,

previously expressed in (B.1a) and (B.1b), respectively, where PPP = FFF−1 and QQQ =

FFF−T . Using the expression from (B.11), the forward and backward recursive filter

iterations are rewritten using the inverse of the differential operator:

bi =
4∏
j=1

(
1− ζj

1− ζjZ−1

)
ai, (B.17a)

ci =
4∏
j=1

(
1− ζj

1− ζjZ

)
bi. (B.17b)

The coefficients αj and β from (B.1a) and (B.1b) can also be determined:

α1 = ζ1 + ζ2 + ζ3 + ζ4, (B.18a)

α2 = − (ζ1ζ2 + ζ3ζ4 + ζ1ζ3 + ζ1ζ4 + ζ2ζ3 + ζ3ζ4) , (B.18b)

α3 = ζ1ζ2ζ3 + ζ2ζ3ζ4 + ζ3ζ4ζ1 + ζ4ζ1ζ2, (B.18c)

α4 = −ζ1ζ2ζ3ζ4, (B.18d)

β = 1− α1 − α2 − α3 − α4. (B.18e)
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Appendix C: Balance Operator in the Ensemble Square Root Filter

Spatial localization within the EnSRF can be applied in either model space:

KKK = [(ρM ◦XXXXXXT )HHHT ][HHH(ρM ◦XXXXXXT )HHHT + RRR]−1, (C.1)

or observation space:

KKK = (ρO ◦XXXYYYT )(YYYYYYT + RRR)−1, (C.2)

where KKK ∈ <N×L is the Kalman gain, YYY = HXHXHX ∈ <L×M is the ensemble spread

in observation space, and ρM ∈ <N×N and ρO ∈ <N are covariance localization

functions in model space and observation space respectively.

To apply the balance operator in either of these localization algorithms, the

background perturbations are transformed to the unbalanced variable space as in

both the EnVar and the LETKF. Then, a new Kalman gain is constructed to com-

pute an analysis in the unbalanced space, shown for both the model space and

observation space localization:

KKKz = [(ρM ◦ZZZZZZT )ΓΓΓTHHHT ][HHHΓΓΓ(ρM ◦ZZZZZZT )ΓΓΓTHHHT + RRR]−1, (C.3)
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KKKz = (ρO ◦ZZZYYYT )(YYYYYYT + RRR)−1, (C.4)

where YYY = HΓZHΓZHΓZ. For the model space localization Kalman gain, ΓΓΓT appears outside

of the localization in the first term, allowing it to vertically propagate information

outside of the localization radius. Along with the transformation from the unbal-

anced analysis back to the full variables with the application of ΓΓΓ, there is a two-way

propagation of information in this method and it functions similarly to the EnVar

formulation. For the observation space localization Kalman gain, ΓΓΓT occurs within

the spatial localization in the first term, not allowing a spreading of balanced in-

formation outside of the localization radius. ΓΓΓ is still applied once the unbalanced

analysis is found to transform to the full variables, but it only allows a one-way

propagation of information among the variables, analogous to the LETKF.
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