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Classification algorithms have been widely used to solve data-driven fault diagnostics 

problems. The number of classification algorithms used has been increasing in recent 

years. Each classification algorithm has its own strengths and weaknesses, and the 

accuracy of classifiers changes with the different features used for training. As a 

result, traditional methods of selecting an appropriate classification algorithm, 

including domain expertise and trial and error, are becoming complex and difficult to 

employ. Classifier fusion has been used to solve this problem of selecting an 

appropriate diagnostic algorithm, and it also improves the generalizability of an 

algorithm. The performance of a classifier fusion algorithm is governed by the 

combination rule adopted for fusing multiple classifiers and how the bias and 

variance are balanced by the combination rule. However, research still needs to 

determine which combination rule optimally balances the bias and variance during 

classifier fusion. Therefore, this research develops a fusion methodology that 



  

combines the classifiers by balancing the bias and variance. This methodology 

reduces the number of false negatives and positives, thereby improving the overall 

accuracy of the algorithm for fault detection. A cost function that considers bias and 

variance errors was developed to evaluate the performance of the algorithm. 

Sequential quadratic programming–based optimization was employed to find the 

optimal combination of classifiers and balance of bias and variance. The developed 

algorithm was used for fault diagnosis of analog circuits, and the results indicate that 

the developed fusion approach improved diagnostic accuracy over existing classifier 

fusion techniques. 
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Chapter 1: Introduction 

This chapter presents the relevant background information and motivates the 

problem addressed in this thesis. The opportunities for research are presented and an 

overview of this thesis is presented. 

Fault diagnosis is the process of identifying faulty behavior in systems. 

Classification algorithms have been widely used to solve data-driven fault diagnostics 

problems. Classification is a process of identifying to which category a test 

observation belongs to based on the historically observed features whose category is 

known. When the category of the training data is known supervised learning is 

typically used to train a classifiers. The task of supervised learning is to constructor 

learn the underlying relationship between the feature attribute and the category 

attribute (healthy or faulty) based on the available training data to predict health state 

of the system. 

1.1 Motivation 

Prognostics and health management (PHM) is an enabling discipline 

consisting of technologies and methods to assess the reliability of a product in its 

actual life cycle conditions to determine the advent of failure and mitigate system risk 

[1]. Diagnostics plays an important role in PHM regimen by identifying faulty 

behavior and isolating these faults.  

Classifiers are used to identify faults in data driven diagnostics. Any 

classification problem is an ill posed problem, which implies there are multiple 

possible hypothesis for a given set of input feature. While a number of classification 
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algorithms have been developed, each of the developed algorithms has their 

advantages and disadvantages. Their performance or classification accuracy varies 

with the kind of features chosen for training, amount of training data available and the 

model characteristics of the classifier used. The performance of a classifier is also 

referred to as the generalizability of a classifier. Generalizability implies good 

prediction ability on observed features that the classification algorithm has not been 

trained on [2]. As the number of diagnostic algorithms (classification algorithms) has 

been increasing, the classification algorithm selection process has become complex 

and difficult to employ. Classification is an ill posed problem, which implies there 

could be multiple solutions to the same training data set. Hence to solve this problem, 

classifiers have an innate property known as the inductive bias. Inductive bias of the 

classifier is defined as the set of assumptions that a classifier makes in order to solve 

the classification problem. For example a support vector machine (SVM) solves a 

classification problem by finding the maximum margin separating hyperplane [3]. 

This hyperplane is solves as a structural risk minimization problem as proposed by 

Vapnik [4].  This structural risk minimization formulated as shown in equation 1. 

Equation 1 is solved to find the optimal hyperplane        where w is the normal 

to the hyperplane and | | ‖ ‖ is the distance of the hyperplane from the origin of the 

coordinate system [4]. 

    (   )   
 

 
‖ ‖   ∑   

 
                                              (1) 

                ( 
  (  )   )               {    }                         (2) 

where    is the slack variable or the distance margin introduced to allow 

misclassifications, and   is the penalty or the cost for the misclassifications. The 
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function  (  ) is a mapping of    to a higher dimensional space. The maximum 

separable hyperplane so obtained separated the classes in the two class classification 

problem as shown in Figure 1. Inductive bias is not a perfect learning theory and 

leads to errors when solving the learning problem. The errors thereby caused are 

called the inductive errors of the classifier. For the support vector machine the errors 

so caused are as illustrated in Figure 2 

 

Figure 1 SVM Classification 

Optimal Hyperplane 

Support Vectors 

Class I  

Class II  
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Figure 2 Inductive Bias Error in SVM 

1.2 Fusion based Learning 

Classifier fusion has been widely employed to overcome the inductive bias 

problem in single classifier based system.  In classifier fusion an ensemble of base 

classifiers are trained and the prediction of each classifier in the ensemble are 

combined to build the predictive model [5]. A typical framework for a classifier 

fusion technique is as shown in Figure 3. 
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Figure 3 Classifier Fusion Framework 

The typical classifier fusion strategy has two stages the diverse ensemble 

generation stage and the ensemble fusion stage. These two stages are discussed in 

detail in the following two sections. 

1.2.1 Diverse Ensemble Generation 

An ensemble of classifiers are said to be diverse if each classifier makes errors 

on different observed feature instances of training data [6]. Classifier fusion theory is 

based on the idea of training an ensemble of classifiers which do not make the same 

prediction mistakes as others and when they are combined these complementary 

features can be used to overcome inductive errors of a classifier. Hence, diversity 

plays a very important role in classifier training. The errors that classifiers are said to 

be complementary. 

Brown et al. [8] provided a mathematical account of the role of diversity in 

ensemble learning and how it helps to improve classification accuracy. The authors 

concluded that the prediction accuracy of an ensemble based classifier is dependent 
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on the diversity of the classifiers. Theoretically, the more diverse the classifiers are, 

the less correlated the classifier outputs are with each other. As a result, the prediction 

of each classifier of the ensemble could be complementary to each other, which 

implies when one classifier makes a prediction error, other classifiers could be correct 

or vice versa. The complementary nature of these classifiers helps in offsetting 

potential errors, thereby providing greater generalizability for these algorithms. 

Diversity can be achieved by two different means when classifiers are trained. 

It can be achieve by training the classifier with different training data. Techniques 

that fall under this category are bootstrapping, bagging and boosting [7]. Diversity 

can also be achieved changing the classification algorithm used for training [7].  

1.2.2 Ensemble Fusion 

Once a diverse set of classifiers are trained, the goal of ensemble fusion is to 

take advantage of the complementary feature of the trained classifiers in the ensemble 

to overcome their inductive errors. This is essentially done by using a combination 

rule as shown in Figure 3. A detailed review of the classifier fusion techniques is 

done in the literature review section. 

1.3 Bias-Variance Dilemma 

As discussed in previous section the performance of an ensemble of classifiers 

is dependent on how each classifier is trained in the ensemble and how they are 

combined using the combination rule. But, Geman et al. [9] were the first to study the 

underlying factors affecting the performance of classifier fusion based learning. The 

authors found that the generalizability of an ensemble of classifier is governed by two 

errors the bias error and the variance error. The bias error is defined as the difference 
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between the predicted class and actual class of a particular observed feature [10]. On 

the other hand variance of a classifier is a measure of the variance of prediction of the 

classifier with respect to the expected prediction [10]. Given a training 

set     {(     )          } for classifier  , where         ,    is the feature 

vector and    is the corresponding class vector. Let   ̂ be the classifier trained on 

training set    and    ̂ is the prediction of classifier   for input feature   .The bias and 

variance of a classifier are as shown in Equation 3 and Equation 4 respectively. 

                      ∑ |      ̂|
 
                                           (3) 

         ∑ (   ̂   (  ̂))
  

                                                (4) 

 (  ̂)  
 

 
∑    ̂
 
                                                          (5)    

                                                                        (6) 

Geman et al. [9] have mathematically proved that the total error of an 

ensemble of classifiers is as shown in Equation 6. Both the error quantities changes as 

the model complexity of a classifier changes as shown in Figure 4. Model complexity 

of a classifier depends on how the training parameters of a classifier are chosen. For 

example in a least square estimation the model complexity depends on the order of 

polynomial chosen of least square estimation. In a neural network the complexity 

increases with the increase in number of hidden neurons in the neural network. 

Geman et al. [9] have also found that the bias and variance errors are 

inversely proportional as shown in Figure 4. Hence as one component increases the 

other component decreases. An optimal balance between the bias and variance is 

leads to reduction in total error and hence good generalizability as shown in Figure 4. 
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Figure 4 Error change as a function of model complexity 

                                           

1.4 Literature Review 

Diversity in an ensemble of classifiers can be achieved either by 

randomization methods or by metric based methods. Randomization-based methods 

are the most widely used techniques for diversity-generation, where diversity is 

achieved by varying the training data i.e. supplying each classifier with a different set 

of manipulated training data (for example, training a classifier only with part of the 

training data). When a classifier is trained with a manipulated training data set, it 

typically generates prediction results that are diverse. Commonly used methods for 

manipulating training data are bagging [11] (resampling training data using 

bootstrapping and building a classifier on these resampled training sets), and boosting 
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[12] (training an ensemble of classifiers on subsamples of training data that other 

classifiers in the ensemble misclassified). Diversity is also achieved by changing the 

model parameters of a classifiers being trained; for example, in neural networks 

diversity can be achieved by changing the initial weights, the number of hidden 

neurons, the activation function and the training algorithm [8] and for a support 

vector machine this is achieved by choosing the kernel function. Some researchers 

have proposed the use of an evolutionary algorithm to achieve the optimal amount of 

diversity during the training phase [13][14][15].  

Once diversity is achieved for the trained classifiers, a combination rule is 

used to combine the classification results. The most common means of classifier 

fusion include averaging [16][17], majority voting [18][19][20], weighted majority 

voting [21], and a localized fusion [22][23] based approach that improves the 

weighted majority voting algorithm by evaluating the performance of classifiers in 

the neighborhood of the test points. Bonissone et al. [24] proposed a fusion 

methodology based on Cartesian and regression trees that reduce the computation 

time in the localized fusion approach.   

1.5 Research Gaps 

In averaging based fusion technique [16][17] prediction of the classifiers are 

combined by averaging all the predictions. Given an ensemble of 

classifiers   ̂   ̂     ̂, where B is the number of classifiers in the ensemble the 

averaging based fusion rule combines the classifiers based on the equation as shown 

in equation (7). The drawback of this approach is that the fusion technique does not 
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consider the performance of each classifier in the ensemble. This implies classifiers 

which have poor performance are weighted equally as classifiers which have good 

performance, hence making this fusion techniques much weaker than single classifier 

based systems. 

 ̂  
 

 
∑   ̂
 
                                                             (7) 

The majority voting based fusion technique polls the multiple classifiers in the 

ensemble. The highest polled classifier is then chosen as the class of the observed 

feature. This approach has the same drawback as the averaging based fusion 

technique. 

Weighted majority voting [21], localized fusion [22][23] based approach and 

the Cartesian and regression tree based approach proposed by Bonissone et al. [24] 

utilized the bias compensation technique where in the classifiers are weighted by 

inverse of the bias error of a classifier as shown is equation (8). Where    is the bias 

of the classifier. 

 ̂     ̂     ̂ +..+   ̂                                             (8) 

   
 

  
                                                             (9) 

The difference between localized fusion technique and weighted fusion 

technique is that, the localized fusion technique computed the bias only in the 

neighborhood of the feature whose class needs to be predicted by the classifier. This 

is illustrated as shown in Figure 5. The neighborhood is identified by finding the 

nearest neighbors. Figure 5 illustrates the 3 nearest neighbors.  
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Figure 5 Bias Computation in Localized Fusion 
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Chapter 2: Developed Fusion Algorithm 
In this chapter the developed fusion technique is discussed in details the three 

stages of the classifier fusion problem (i) training (ii) fusion parameter computation 

and (iii) classifier fusion are discussed in details. The sequential quadratic 

programming technique used to optimize the formulated objective function is 

discussed in detail in chapter 3. 

 

 

Figure 6 Developed Fusion Framework 

2.1 Algorithm Training 

Diversity in this ensemble learning framework has been achieved by two means. The 

first method used for generating diversity is by using bootstrapping and the second 
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method is by using different classification algorithms. The following subsections 

describe the steps involved in achieving these two means of diversity.  

2.1.1 Bootstrapping  

The bootstrapping method was originally proposed by Efron [25]. When 

bootstrapping is used, resampling of training data is done such that sample 

observations are picked randomly by replacement from the original training data to 

form new training data sets which are the same size as the original training data set 

[26]. As shown in Figure 4, considering an original training data which has 5 

observations, the bootstrapped training sets also consist of 5 observations but these 

observations are picked by randomly resampling from original training data set. 

Individual classifiers are then trained on these data sets. Once the classifiers are 

trained, their classification performance can be evaluated by cross-validation, wherein 

they are evaluated on observations that they have not been trained on. This procedure 

gives an unbiased estimate of the classification error and is discussed in detail in 

section 2.2.1  

 

Figure 7 Bootstrapping. 

Original Training Set Bootstrapped Training Sets 
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The aim of bootstrapping is to increase the diversity of the training data. As suggested 

previously, increasing the diversity during training improves the generalizability 

when a suitable combination rule is applied. Diversity is achieved by using 

bootstrapped training data with different initial weights in the neural networks as well 

as using various classifiers (neural networks and support vector machines).  

2.1.2 Classifiers 

Once the bootstrapped training data have been generated, the classifiers need to be 

trained on these diversified data sets. Different classifiers are employed to overcome 

the problem of inductive bias. While, in this paper, a support vector machine and 

neural networks are employed; other classifiers can also be used in this fusion 

framework.  

2.1.2.1 Least Square Support Vector Machine 

Support vector machine (SVM) classification is based on Vapnik–Chervonenkis 

theory for structural risk minimization [27]. The objective of SVM is to find the 

optimal hyperplane        where w is the normal to the hyperplane and | | ‖ ‖ 

is the distance of the hyperplane from the origin of the coordinate system Error! 

Reference source not found.. Given an input feature vector                 where 

    
  and its corresponding class is               , where    {    }, the aim 

of the support vector machine is to find an optimal hyper plane   such that the 

objective function shown in Equation (10) is minimized subject to the constraints in 

Equation (11). To solve for the hyper plane, the following objective function is 

minimized which results in a hyperplane that optimally separates the two classes. 

    (   )   
 

 
‖ ‖   ∑   

  
                                            (10) 
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                ( 
  (  )   )               {    }                       (11) 

where    is the slack variable or the distance margin introduced to allow 

misclassifications, and   is the penalty or the cost for the misclassifications. The 

function  (  ) is a mapping of    to a higher dimensional space. 

2.1.2.2 Neural Network 

Given an input feature vector                , where     
  and its corresponding 

class                     {    }, the neural network has N neurons in the input 

layer (where N is the size of input feature vector), one or more hidden layers and an 

output node [28]. A sigmoid activation function is used in each neuron in the hidden 

layer. The output of the neural network is the class label of the input features. We 

used a gradient-based approach to train the neural network without back propagation. 

2.2 Fusion Parameter Computation 

The diverse classifiers generated in the previous step need to be suitably combined. 

Here, a cost function has been formulated and minimized to obtain the most suitable 

combination of these classifiers. The fusion parameter computation includes two 

steps: performance evaluation and fusion optimization. 

2.2.1 Performance Evaluation 

To evaluate the classification performance, the bias and variance errors of each 

classifier need to be computed for the unseen observations by cross-validation. Bias 

and variance errors cannot be minimized simultaneously, because a reduction in 

either one of the two components could lead to an increase in the other, as shown in 
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Error! Reference source not found.. Therefore, the total error of a classifier is used 

to evaluate classification performance, which is a combination of both of these 

factors, as shown below [9]: 

 

                                                                              (12) 

 

To estimate the bias of the classifiers, conventional validation methods will segment 

the training data into disjoint sets, e.g., training and validation data sets. For example, 

a data set can be segmented into two parts wherein 70% of the data are used to train 

the classifier and the remaining 30% are used for optimizing the classifier parameters 

[29]. But such a method is biased by the validation data. To choose how much data to 

use for training and validation, cross-validation has been thought to provide an 

unbiased estimate. In cross-validation, each of the trained classifiers is evaluated for 

accuracy on unseen observations.  

2.2.1.1 Bias 

If training data are resampled into B bootstrapped sample sets, each classifier is 

trained on different sample sets. Once all the classifiers are trained, the performance 

of each classifier is evaluated on the unseen observations in the training data. The 

errors computed are the false positive error (  ) and false negative (  ) error, as 

shown in (13).  

    ∑
 

|   |
   (   ̂    )

 

   

                                      

(13) 
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   ∑
 

|   |
   (   ̂    )

 

   

                                       

where    ̂ is the output of the classifier trained on the bootstrap sample set  ;    is the 

actual class output with the input feature   ; N is the total number of observations in 

the training data; and Mbi is the sample indices in the bootstrap sample set   for i
th

 

observation       , and |Mbi| is the number of such samples. 

2.2.1.2 Variance 

In ensemble learning, classifiers with high variance are susceptible to small changes 

in the input features. For example, neural networks that have too many hidden layers 

and nodes can have an over-fitting problem that results in high variance and low bias 

and therefore poor generalizability performance [30]. The variance of the classifier is 

given by equation (14): 

  

      ∑ (   ̂   ( (  )̂))
  

                                                          (14)                                           

where  ( (  )̂) is the expected fusion outcome of the classifiers. Since a weighted 

fusion methodology will be employed, the expected value is given by the following 

equation: 

 

 ( ( )̂)  ∑       ̂
 
                                                              (15)  

where   is the weight of the i
th

 classifier.   
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2.3 Fusion 

In this step, all the classifier model outcomes are combined with the weights 

computed by SQP optimization. The fusion output is computed by using a weighted 

sum of the classifier outputs, as shown in Equation (16). A signum function is used as 

a classification problem is being solved in this paper. The weighted sum of the 

outputs gives more priority to the classifiers that have shown better performance with 

the lowest cost of false positives and false negatives. 

 ( )̂      (∑     ( )̂ )
 
                                               (16)  

The signum function (sgn) is used as decision threshold. This signum function 

is as defined in equations below. 

 

   ( )   
          

    0 if x=0 
    1 if x>0 
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Chapter 3: Objective Function Formulation and Optimization 
This chapter summarized the steps involved in formulating the objective 

function and how this function is optimized. The primary objective of this fusion 

methodology is to equip users with a tool that is capable of optimally combining the 

results of different classification algorithms. The fusion optimization method helps 

achieve a balance between the bias–variance errors, thereby improving the 

classification accuracy and thus the generalizability. 

3.1 Objective Function Formulation 

The errors of false positive and false negative are calculated via cross-

validation, as discussed in the previous section. For a given classifier   , let the false 

positive error be    and the false negative error be   ,       (i.e., there are B 

classifiers trained on the bootstrapped data).                        

Let us assume that the cost of having a false positive is    and that the cost for 

a false negative is   . The cost factors,    and   , serve as prioritizing parameters, 

and they are relative terms that are used to prioritize the significance of false positives 

and false negatives in the cost function. For users who depend on system diagnostics 

for scheduling maintenance, the cost of a false positive is the cost incurred when a 

healthy system is erroneously classified as faulty, and the cost of a false negative is 

due to the erroneous classification of a faulty system as healthy. These costs may not 

necessarily be tangible; some of the intangible types of cost, such as safety, customer 

satisfaction, availability etc., could be incorporated. Quantifying these costs is out of 

the scope of this paper as these costs typically vary across organizations and 
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applications. The total cost of the misclassification is as shown in Equation (17). The 

cost factors    and    can be changed based on the condition shown in Equation (18) 

                                          (   )                  (17) 

                                                               (18) 

Now, we use a weighted sum of all the classifiers to obtain the final result. Let 

           be the weights assigned to each classifier. The objective function 

associated with the fusion of all these classifiers is as shown in (19). This objective 

function consists of two main components: the bias component and the variance 

component.  

                    ( )   (∑ (      )
 
   )   ∑     

 
                (19) 

where, 

∑     
 
                                                                  (20) 

                                                                     (21)  

3.2 Sequential Quadratic Programming 

To minimize the above nonlinear Equation (19), nonlinear optimization 

techniques need to be used to find the optimal weights so as to reduce the objective 

function value. This problem of minimization is equivalent to a constrained nonlinear 

minimization [31]. The idea of using Sequential Quadratic Programming (SQP) is to 

find the optimal weights in B dimensional space [32]. SQP is an iterative quadratic 

programming–based approximation technique that is used to find the optimal values 

for the objective function in Equation (22)       subject to equality and inequality 

constraints, where   is the set of weights           . The non-linear problem in 

this case is the minimization of the objective function  ( ) subject to inequality and 
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equality constraints in the vectors shown in Equations (23) and (24), respectively. The 

set of all points in the constrained space are referred to as the feasible set of the 

optimization problem. The algorithm can converge to an optimal state if the initial 

seed point is close to the optimal parameters’ values. The initial seed point can move 

closer to the optimal solution in each iteration of the SQP computation.  

    ( ( ))                                                                       (22) 

s.t.           ( )                                                                          (23) 

           ( )                                                                           (24) 

A slack variable z is introduced in Equation (23) such that  ( )      

and    . The slack variable is introduced to convert the inequality constraint to an 

equality constraint. This is done for representation purpose, and later the slack 

variable is eliminated when the objective function is constructed. The Lagrangian for 

the minimization problem is given by Equation (25), where   and   are the set of 

Lagrangian multipliers associated with each of the constraints. This Lagrangian is 

sometimes referred to as the extended Lagrangian because it considers the slack 

variable  . The feasible solution    for the above constrained optimization problem 

needs to satisfy the first order necessary optimality conditions as shown in Equations 

(26)-(30) [33].  

  (     )   ( )        (   )                                 (25) 

  (  )        (  )        (  )                            (26) 

 (  )                                                         (27) 

 (  )                                                          (28) 

                                                                (29) 
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                                                               (30) 

The   operator is used to define the gradient of a particular function. Hence 

  (  ) and   (  ) are the gradients of  (  ) and  (  ), respectively, at   . 

The optimization problem is obtained by solving a sequence of QP sub-problems, as 

shown in Equations (31)-(34) [33].  

 

 
  

   (  )     (   )
     (   )

                  (31) 

s.t.         (  )
      (  )                                             (32) 

  (  )
      (  )                                  (33) 

      *                                               (34) 

   is the extended Lagrangian at     iteration given by   (      ).  (  ) in 

the above equation is the Hessian of the extended Lagrangian function   .    is the 

set of weights {          }computed in the     iteration.    and    are the 

change vectors, i.e., they define the change of the variable    and    . This QP sub-

problem is a quadratic sub-problem with linearized constraints. This iteration is 

solved to obtain    and    for the     iteration. This can then be used to compute 

     and      for the next iteration    :  

                                                            (35) 

                                                              (36) 

where   is the parameter used to ensure the convergence of the optimization 

problem. The SQP is an iterative process, where a sequence of feasible points    is 

computed such that they converge towards the optimal solution. The iteration can be 

terminated when the solution to the k
th

 iteration meets the optimality conditions (26)-

(30). 
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Chapter 4: Results and Data Analysis 

The developed fusion method was used for diagnosing faults in different 

analog circuits. An analog circuit is termed faulty whenever, one or more critical 

components vary beyond their tolerance range. In this paper, two circuits are tested: a 

Sallen-Key band pass filter [34] as shown in Figure 8 and a biquad low pass filter as 

shown in Figure 10 [34]. The two case studies are discussed in the following two sub 

sections. 

4.1Case Study 1: Sallen-Key Band Pass Filter 

Its components, such as capacitors C and resistors R, have a tolerance range of 

10%, which is obtained from the filter’s data sheet specifications. The C1, C2, R2 and 

R3 are considered to be critical components in the filter since they can affect the 

frequency response of the circuit. The values of these components can be varied 

manually by using a variable capacitor and resistor. In this paper, eight seeded faulty 

conditions were introduced to test the proposed method, as summarized in Table 1. 
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Figure 8 Sallen-Key band pass filter. 

 

 

 

Table 1: Seeded Faulty Conditions 

Fault Condition Nominal value Sample Faulty Value 

C1 greater than nominal 5nF 6 nF,7 nF, 8 nF 

C1 lesser than nominal 5nF 1.5 nF, 2.5 nF, 3.5 nF. 

C2 greater than nominal 5nF 6 nF,7 nF, 8 nF 

C2 lesser than nominal 5nF 1.5 nF, 2.5 nF, 3.5 nF. 

R2 greater than nominal 1kΩ 1.24 kΩ, 1.61 kΩ, 2.21 kΩ 

R2 lesser than nominal 1kΩ 372.3 Ω, 669 Ω, 836 Ω 

R3 greater than nominal 2kΩ 2.31 kΩ, 2.53 kΩ, 3.66 kΩ 

R3 lesser than nominal 2kΩ 0.883 kΩ, 1.5 kΩ, 1.79 kΩ 

The circuit is defined as healthy when the critical component values vary 

within 10% of their nominal value. The condition of the circuit is defined as faulty 

when the components’ parameter values change by greater or lesser than 10% of the 

nominal values.  
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The circuit was excited by using an input sweep signal of bandwidth 1–100 

kHz for 100 ms. The output response of the circuit was then captured using an NI 

USB-6212 data acquisition board at a sampling rate of 200k samples/sec. The 

bandwidth of the sweep signal was larger than the operation frequency of the circuit. 

To obtain healthy features, a sweep signal was applied to the circuit with nominal 

values for the critical components for 150 times. Faulty features were obtained based 

on the faulty values in Table 1 for 50 times each. Hence, we obtained 50 × 3 = 150 

responses for each fault condition. The total output responses, including healthy and 

faulty, are 150 + 50 × 3 × 8 = 1350. 

Features were extracted from the output response using discrete wavelet 

transform. The response was decomposed into 5 decomposition levels. The energy 

calculated at each of these 5 decomposition levels represents our features.   

To evaluate the performance of the proposed fusion method, the feature set 

was divided equally into two parts: one for training and the other for testing. Hence, 

the training and test data sets are each 675 × 5 in dimension. Both the training and test 

data sets consist of a healthy data set 75 × 5 in dimension and an unhealthy data set 

600 × 5 in dimension. The test data was used to compare the performance of 

optimized fusion methodology with other techniques in the literature. The training 

data were resampled by a bootstrapping technique into 6 sample sets. The 6 bootstrap 

sample sets were used to train 6 classifiers, of which 3 were neural networks and the 

others were least square support vector machines.  
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A comparison of the optimized fusion methodology with others widely used 

fusion techniques and classifiers is shown in Table 2. It is observed that the fusion 

techniques outperformed single classifiers. False positives (false alarms) denote the 

alarms that were triggered even when there was no occurrence of a fault in the circuit; 

these are also referred to as false alarms. False negatives refer to situations where the 

alarms have not been triggered when there was an occurrence of fault in the circuit; 

they are also referred to as missed alarms. Considering field applications, where noise 

is likely to degrade the extracted features, an additive white Gaussian noise with a 

signal to noise ratio of 10dB was added to the input feature. The comparison results 

are shown in  

Table 3. It was observed that the optimized fusion approach provides more 

accurate diagnostic results in the presence of noise. The results were also compared 

when a limited amount of training data was used for training the classifiers, which is 

the common situation for many applications. In this case the classifiers were trained 

with a training set which is 270 × 5 in dimension. The training set contained healthy 

data set of 30 × 5 in dimension and unhealthy feature of 240 × 5 in dimension. 
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Table 2: Comparative Analysis 

 Least Square 

Support 

Vector 

Machine 

Neural 

Network 

Averaging 

Localized 

weighted 

Fusion 

Optimized 

Fusion 

False 

Positives 

(percentage) 

2 (2.67%) 

5 

(6.67%) 

2 (2.67%) 0 (0%) 0 (0%) 

False 

Negatives 

(percentage) 

0 (0%) 

4 

(0.67%) 

3 (0.5%) 0 (0%) 0 (0%) 

 

Table 3: Comparative Analysis with AWGN (SNR 10dB) 

 Least Square 

Support 

Vector 

Machine 

Neural 

Network 

Averaging 

Localized 

weighted 

Fusion 

Optimized 

Fusion 

False 

Positives 

 

(percentage) 

15 (20%) 

17 

(22.67%) 

13 

(17.33%) 

11 (14.66%) 6 (8%) 

False 

Negatives 

(percentage) 

16 (2.67%) 

21 

(3.5%) 

11 

(1.83%) 

10 (1.66%) 3 (0.5%) 
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Table 4: Comparative Analysis with Truncated Training Data 

 
Least Square 

Support Vector 

Machine 

Neural 

Network Averaging 

Localized 

Weighted 

Fusion 

Optimized 

Fusion 

False 

Positives 

(percentage) 

14 (18.67%) 

19 

(25.34%) 

15 (20%) 11 (14.66%) 4 (5.34%) 

False 

Negatives 

(percentage) 

33 (5.5%) 

35 

(5.83%) 

33 (5.5%) 27 (4.5%) 14 (2.3%) 

As can be seen from the Tables 3 and Table 4, lower percentages of false 

positives and negatives were observed in the proposed method compared to the other 

popular fusion algorithms, including average fusion [16][17] and localized fusion 

approach with bias compensation [23]. Apart from the comparison to the popular 

fusion techniques, the algorithm’s performance was also compared with a single least 

square support vector machine (LS-SVM) classifier and a neural network classifier. 

The optimized fusion technique outperformed other classification techniques. In the 

current scenario, the cost of false positives and the cost of false negatives have been 

assumed to be the same. But for the users of diagnostic algorithms these costs could 

be altered to prioritize the reduction of either false positives or false negatives. For 

example, a higher cost factor for the false negative (  ) compared to the cost of a 

false positive (  ) would lead to prioritization of the reduction of the number of false 
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negatives over false positives.  Figure 9 below shows a change in the number of false 

positives and false negatives with the cost parameter   . 

 

Figure 9 Change of false positive/ negative with cost parameter C1 

4.2 Case Study 2: Biquad Low Pass Filter 

Similar to Sallen-Key band pass filter this biquad low pass filter circuit also 

has critical components that affect the frequency response of the circuit. The critical 

components for the circuit were capacitors C1 and C2, and resistors R1, R2, R3 and 

R4 as shown in Figure 8. Table 5 summarizes the 12 seeded faulty conditions.    

The data acquisition and feature extraction are similar to case 1, except we 

decomposed the output signal into 8 levels by using discrete wavelet transform. To 

obtain healthy features, a sweep signal was applied to the circuit with nominal values 

for the critical components for 50 times. Faulty features were obtained based on the 

faulty values in Table 5 for 10 times each. Hence, we obtained 10 × 5 = 50 responses 

for each fault condition. The total output responses, including healthy and faulty, are 
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50 + 10 × 5 × 12 = 650. The feature set was divided equally into two parts: one for 

training and the other for testing. Hence, the training and test data sets are each 325 × 

8 in dimension. Both the training and test data sets consist of a healthy data set 25 × 8 

in dimension and an unhealthy data set 300 × 8 in dimension. 

 

Figure 10 Biquad Low Pass Filter 

Table 6 shows the comparative analysis on LS-SVM and fusion techniques. The 

results indicate a very similar performance for LS-SVM, localized weighted fusion 

and the optimized fusion technique. Averaging technique on the other hand had a 

very high false positive percentage. Table 7 shows the comparative analysis of the 

algorithms when additive white Gaussian noise with an SNR of 10dB was introduced 

in the extracted features. The results clearly demonstrate that the optimized fusion 

technique had a better performance when compared to other classification techniques. 

The performance of the algorithms was also analyzed with a truncated training data 

set of size 195 × 8. The training set contained healthy data set of 15 × 8 in dimension 

and unhealthy feature of 180 × 8 in dimension. Good performance in fault detection 
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can be observed with a truncated data using an optimized fusion technique as shown 

in Table 8.  From the graph shown in Figure 11 we observe that the cost parameters 

C1 and C2 can be used to prioritize the reduction in false positives and false negatives. 

Table 5 Seeded Faulty Conditions 

Fault Condition Nominal value Sample Faulty Value 

C1 greater than nominal 5nF 6nF,7nF, 8nF, 9nF, 10nF 

C1 lesser than nominal 5nF 4nF, 3.5nF, 3nF, 2.5nF, 2nF 

C2 greater than nominal 5nF 6nF,7nF, 8nF, 9nF, 10nF 

C2 lesser than nominal 5nF 4nF, 3.5nF, 3nF, 2.5nF, 2nF 

R1 greater than nominal 6.2kΩ 

7.4kΩ, 8.6kΩ, 10kΩ, 

11.2kΩ,12kΩ  

R1 lesser than nominal 6.2kΩ 

5kΩ, 4.35kΩ, 3.72kΩ, 3kΩ, 

2.5kΩ 

R2 greater than nominal 6.2kΩ 

7.4kΩ, 8.6kΩ, 10kΩ, 

11.2kΩ,12kΩ  

R2 lesser than nominal 6.2kΩ 

5kΩ, 4.35kΩ, 3.72kΩ, 3kΩ, 

2.5kΩ 

R3 greater than nominal 6.2kΩ 

7.4kΩ, 8.6kΩ, 10kΩ, 

11.2kΩ,12kΩ 

R3 lesser than nominal 6.2kΩ 

5kΩ, 4.35kΩ, 3.72kΩ, 3kΩ, 

2.5kΩ 

R4 greater than nominal 1.6kΩ 7.4kΩ, 8.6kΩ, 10kΩ, 
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11.2kΩ,12kΩ 

R4 lesser than nominal 1.6kΩ 

5kΩ, 4.35kΩ, 3.72kΩ, 3kΩ, 

2.5kΩ 

 

 

Table 6 Comparative Analysis 

 

Least Square 

Support Vector 

Machine 

Neural 

Network 

Averaging 

Localized 

weighted 

Fusion 

Optimized 

Fusion 

False 

Positives 

(percentage) 

0 (0%) 1 (4%) 2 (8%) 0 (0%) 0 (0%) 

False 

Negatives 

(percentage) 

0 (0%) 3 (1%) 1 (0.33%) 0 (0%) 0 (0%) 

Table 7 Comparative Analysis with AWGN (SNR 10dB) 

 

Least Square 

Support 

Vector 

Machine 

Neural 

Network 

Averaging 

Localized 

weighted 

Fusion 

Optimized 

Fusion 

False 

Positives 

4 (16%) 4 (16%) 5 (20%) 3 (12%) 2 (8%) 
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(percentage) 

False 

Negatives 

(percentage) 

21 (7%) 

23 

(2.67%) 

23 

(7.67%) 

19 (6.34%) 10 (3.34%) 

 

Table 8 Comparative Analysis with Truncated Training Data 

 

Least Square 

Support 

Vector 

Machine 

Neural 

Network 

Averaging 

Localized 

weighted 

Fusion 

Optimized 

Fusion 

False 

Positives 

(percentage) 

6 (24%) 9 (36%) 8 (32%) 5 (20%) 5 (20%) 

False 

Negatives 

(percentage) 

36 (12%) 

43 

(14.34%) 

40 

(13.34%) 

33 (11%) 24 (8%) 
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Figure 11 Change of False Positive/ Negative with Cost Factor C1 
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Chapter 5:  Conclusion and Contributions 

5.1 Conclusions 

 In this paper, we developed a combination rule to improve the classification 

accuracy and generalizability of diagnostic algorithms. Developed combination rule 

optimizes the balance between bias and variance using sequential quadratic 

programming. Cross validation was used to compute an unbiased estimate of the bias 

and variance of each classifier. The experimental results demonstrate that the 

developed fusion methodology has improved fault diagnostic accuracy over the 

averaging-based fusion technique, the localized fusion technique, and individual 

classifiers (neural network and support vector machine). Furthermore, developed 

algorithm incorporates the cost of false alarms and missed alarms in the learning 

algorithm for computing the combination rule. Taking the cost of false alarms and 

missed alarms into consideration helps in reducing the total cost misclassification the 

system as faulty or health. The performance of the algorithm was analyzed by varying 

the cost factors, and the results demonstrate that the cost factor used in the bias 

equation can prioritize either the false positives or the false negatives. The use of this 

combination rule is not limited by any particular classification algorithm. This 

method would enable the users of classification algorithms for diagnostics to input 

their costs (false positive cost and false negative cost) when choosing the most 

suitable combination rule for their application. 

5.2 Contributions 

This thesis developed a combination rule that optimizes the balance between 

bias and variance leading to improvement in classification accuracy compared to 
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localized fusion and single classifiers. The bias variance balancing solves the bias 

variance dilemma in a classifier fusion problem. 

Developed algorithm incorporates the cost of false alarms and missed alarms 

in the learning algorithm for computing the combination rule leading to reduction in 

the total cost of false alarms and missed alarms. 
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