
ABSTRACT

Title of Dissertation: A COMPILER LEVEL INTERMEDIATE
REPRESENTATION BASED BINARY
ANALYSIS SYSTEM AND ITS APPLICATIONS

Kapil Anand, Doctor of Philosophy, 2013

Dissertation directed by: Professor Rajeev Barua
Department of Electrical and Computer Engineering

Analyzing and optimizing programs from their executables has received a lot of

attention recently in the research community. There has been a tremendous amount

of activity in executable-level research targeting varied applications such as security

vulnerability analysis, untrusted code analysis, malware analysis, program testing,

and binary optimizations.

The vision of this dissertation is to advance the field of static analysis of exe-

cutables and bridge the gap between source-level analysis and executable analysis.

The main thesis of this work is scalable static binary rewriting and analysis us-

ing compiler-level intermediate representation without relying on the presence of

metadata information such as debug or symbolic information.

In spite of a significant overlap in the overall goals of several source-code meth-

ods and executables-level techniques, several sophisticated transformations that are

well-understood and implemented in source-level infrastructures have yet to become

available in executable frameworks. It is a well known fact that a standalone exe-

cutable without any meta data is less amenable to analysis than the source code.

Nonetheless, we believe that one of the prime reasons behind the limitations of ex-

isting executable frameworks is that current executable frameworks define their own

intermediate representations (IR) which are significantly more constrained than an

IR used in a compiler. Intermediate representations used in existing binary frame-

works lack high level features like abstract stack, variables, and symbols and are

even machine dependent in some cases. This severely limits the application of well-

understood compiler transformations to executables and necessitates new research

to make them applicable.

In the first part of this dissertation, we present techniques to convert the bi-

naries to the same high-level intermediate representation that compilers use. We

propose methods to segment the flat address space in an executable containing un-

differentiated blocks of memory. We demonstrate the inadequacy of existing variable

identification methods for their promotion to symbols and present our methods for

symbol promotion. We also present methods to convert the physically addressed

stack in an executable to an abstract stack. The proposed methods are practi-

cal since they do not employ symbolic, relocation, or debug information which are

usually absent in deployed executables. We have integrated our techniques with a

prototype x86 binary framework called SecondWrite that uses LLVM as the IR. The

robustness of the framework is demonstrated by handling executables totaling more

than a million lines of source-code, including several real world programs.

In the next part of this work, we demonstrate that several well-known source-

level analysis frameworks such as symbolic analysis have limited effectiveness in

the executable domain since executables typically lack higher-level semantics such

as program variables. The IR should have a precise memory abstraction for an

analysis to effectively reason about memory operations. Our first work of recovering

a compiler-level representation addresses this limitation by recovering several higher-

level semantics information from executables. In the next part of this work, we

propose methods to handle the scenarios when such semantics cannot be recovered.

First, we propose a hybrid static-dynamic mechanism for recovering a precise

and correct memory model in executables in presence of executable-specific artifacts

such as indirect control transfers. Next, the enhanced memory model is employed

to define a novel symbolic analysis framework for executables that can perform the

same types of program analysis as source-level tools. Frameworks hitherto fail to

simultaneously maintain the properties of correct representation and precise mem-

ory model and ignore memory-allocated variables while defining symbolic analysis

mechanisms. We exemplify that our framework is robust, efficient and it signif-

icantly improves the performance of various traditional analyses like global value

numbering, alias analysis and dependence analysis for executables.

Finally, the underlying representation and analysis framework is employed

for two separate applications. First, the framework is extended to define a novel

static analysis framework, DemandFlow, for identifying information flow security

violations in program executables. Unlike existing static vulnerability detection

methods for executables, DemandFlow analyzes memory locations in addition to

symbols, thus improving the precision of the analysis. DemandFlow proposes a novel

demand-driven mechanism to identify and precisely analyze only those program

locations and memory accesses which are relevant to a vulnerability, thus enhancing

scalability. DemandFlow uncovers six previously undiscovered format string and

directory traversal vulnerabilities in popular ftp and internet relay chat clients.

Next, the framework is extended to implement a platform-specific optimization

for embedded processors. Several embedded systems provide the facility of locking

one or more lines in the cache. We devise the first method in literature that employs

instruction cache locking as a mechanism for improving the average-case run-time

of general embedded applications. We demonstrate that the optimal solution for

instruction cache locking can be obtained in polynomial time. Since our scheme

is implemented inside a binary framework, it successfully addresses the portability

concern by enabling the implementation of cache locking at the time of deployment

when all the details of the memory hierarchy are available.

A COMPILER LEVEL INTERMEDIATE REPRESENTATION
BASED BINARY ANALYSIS SYSTEM AND ITS APPLICATIONS

by

Kapil Anand

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor Rajeev Barua, Chair/Advisor
Professor Shuvra Bhattacharya
Professor Manoj Franklin
Professor Angelos Keromytis
Professor Michael Hicks

c© Copyright by
Kapil Anand

2013

To the memory of my mother

ii

Acknowledgments

I would like to thank my advisor, Prof Rajeev Barua, for his continuous guid-

ance throughout my graduate studies. He has not only been instrumental in refining

my ideas, but has also provided invaluable fresh perspective towards new research

problems. I have always enjoyed my long brainstorming discussion sessions with him.

A lot of ideas in this dissertation are direct outcomes of our discussions. He has

been patient and encouraging in tough situations when we failed to achieve desired

results. As a result of his feedback, I appreciate the significance of patience, focus

and thorough experimentation in achieving research excellence. His endless rounds

of comments on my research work have been pivotal in improving my research and

writing abilities.

I would like to thank Prof Angelos Keromytis for his invaluable guidance and

discussion towards the later part of my dissertation. His feedback has been instru-

mental in expanding the envelope of my work in software security. I extend my grat-

itude to Prof Michael Hicks, Prof Shuvra Bhattacharya and Prof Manoj Franklin for

agreeing to serve on my committee and providing feedback in improving the quality

of this dissertation.

Being part of a collaborative research effort, I had the privilege of working

closely with several of my labmates over the years - Aparna, Khaled, Matt, Jim,

Greeshma, Padraig, Mincy, Kungjin, Don, Tim and Fady. I have enjoyed developing

systems together as well as discussing ideas with them during our group meetings. I

would especially like to thank Khaled for his extensive help in chasing the deadlines

iii

while working together in the lab at odd hours. I would like to thank Aparna for

her numerous feedback and revisions to our research papers.

I have been fortunate to have an extensive set of friends during my stay at

College Park- Shalabh, Nitesh, Kaustubh, Rakesh, Raghu, Jishnu, Aparna, Harita,

Satish, Ayan, Vaibhav, Ishwar, Ravi, Ashish, Srikanth, Karthik, Rashi, Shiti, Hi-

manshu, Osman, Daniel and many more. To say the least, thanks for all the fun! I

look forward towards more such amusing times in future. I am also grateful to my

close friends from undergrad era - Shivam, Sagar, Prateek, Shalabh, Tushar, Aditya

for staying in touch despite the distance.

I would also like to thank the people behind Eppley Recreation Center for

providing and maintaining great facilities. A gentle run at ERC was extremely

helpful in unwinding several fruitless days (or weeks) of research. I also thank

Vaibhav and Khurram for starting Cricket@ece group and keeping us in touch with

our favorite sport.

Finally, I cannot adequately express my gratitude to my family for their con-

tinuous support and encouragement during this long journey. You define a meaning

to everything, thanks for being there.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation for executable analysis . 1
1.2 Advantages of executable analysis . 3
1.3 Thesis Statement . 5

1.3.1 Assumptions behind this work 7
1.4 Contribution of this dissertation . 10

1.4.1 Representation . 10
1.4.2 Analysis . 12
1.4.3 Applications . 14

1.5 SecondWrite . 16
1.6 Organization of the Dissertation . 18

2 Related Work 21
2.1 Binary rewriting . 21
2.2 Binary Analysis/Intermediate Representation recovery 24
2.3 Industrial Tools . 26

3 Decompilation to compiler level intermediate representation 28
3.1 Introduction . 28

3.1.1 Benefits of abstract stack and symbols 33
3.1.1.1 Symbolic Execution 34

3.2 Overview of the framework . 36
3.2.1 Disassembler Module . 37

3.3 Deconstruction of physical stack frames 39
3.3.1 Representing the local stack frame 39
3.3.2 Representing procedure arguments 41

3.4 Translating memory locations to symbols 46
3.4.1 Motivation for partitions . 47

v

3.4.2 Reaching definition framework 48
3.4.3 Symbol promotion algorithm 49

3.5 Results . 52
3.5.1 Static characteristics . 55
3.5.2 Un-optimized input binaries 57
3.5.3 Optimized input binaries . 58
3.5.4 Impact of symbol promotion 59
3.5.5 Symbolic Execution . 60
3.5.6 Automatic Parallelization . 62

4 Symbolic Analysis for executables 64
4.1 Introduction . 64
4.2 Related Work . 67
4.3 Contribution . 71

4.3.1 Redundancy elimination . 71
4.3.2 Program Parallelization . 74
4.3.3 Alias analysis . 78

4.4 Overview . 80
4.4.1 Memory abstraction . 82

4.5 Symbolic Abstraction . 83
4.6 Symbolic Value Analysis . 87

4.6.1 Intraprocedural Analysis . 87
4.6.2 Interprocedural propagation 94

4.7 Dependence Analysis . 97
4.8 Value Numbering . 100
4.9 Results . 104

4.9.1 Static characteristics . 104
4.9.2 Value numbering . 108
4.9.3 Program parallelization . 110
4.9.4 Alias analysis . 112

5 Improving memory abstraction 115
5.1 Precise Memory Model . 115
5.2 Motivation . 116
5.3 Recovering precise memory abstraction 119

5.3.1 Static Computation . 120
5.3.2 Dynamic Mechanism . 124

5.4 Results . 125

6 Information flow security of executables 128
6.1 Introduction . 128
6.2 Related Work . 133

6.2.1 Static Information Flow Techniques 133
6.2.2 Dynamic Information Flow Techniques 135
6.2.3 Demand-driven Analysis . 137

vi

6.3 Overview of the system . 137
6.4 Background . 139

6.4.1 Memory Abstraction . 139
6.4.2 Information Flow Policy . 140

6.5 Demand Driven Set . 142
6.6 Demand Driven Information Flow Analysis 145

6.6.1 Information Abstraction . 145
6.6.2 Analysis . 147
6.6.3 Policy Enforcement . 150

6.7 Discussion . 153
6.7.1 Indirect calls and branches . 153
6.7.2 Limitations . 155

6.8 Results . 156
6.8.1 Vulnerabilities . 158
6.8.2 False Positives . 161
6.8.3 Scalability . 163
6.8.4 Information Flow Leakage . 165

6.8.4.1 KeePassX . 165
6.8.4.2 thttpd . 166

6.8.5 Spec Benchmarks and Coreutils 168

7 Cache Locking 171
7.1 Introduction . 171
7.2 Cache Locking Interface . 174
7.3 Related Work . 175
7.4 Motivation . 179
7.5 Theoretical Analysis of Cache Locking 181
7.6 Static Cache Locking . 185

7.6.1 Cache Locking Algorithm . 187
7.7 Dynamic Cache Locking . 194

7.7.1 Program Points . 195
7.7.2 Dynamic Locking Algorithm 198

7.8 Implementation . 202
7.9 Results . 203

7.9.1 Static Cache Locking . 205
7.9.2 Dynamic Cache Locking . 209

8 Conclusions and Future Work 213
8.1 Future Directions . 214

Bibliography 217

vii

List of Tables

3.1 Benchmarks Table . 53

3.2 Corner cases of our analysis. 56

3.3 Improvement in constraints processing with symbol promotion. 62

4.1 Transfer functions for each instruction in a procedure Func. Here, s
denotes the size of dereference in a memory access instruction. 91

4.2 Applications Table . 105

4.3 Parallelization benchmarks . 111

7.1 Application Table . 204

viii

List of Figures

1.1 Contributions of the dissertation . 11

1.2 SecondWrite system highlighed with the contributions of this disser-
tation . 16

2.1 Comparing SecondWrite with other executable tools 22

3.1 Source-code example. Variable names and types in the source-code
recovered by LLVM C-backend have been modified for readability. . . . 29

3.2 A small source-code example and its pseudo-assembly code, showing
the limitation of existing methods for detecting arguments. 30

3.3 An example showing that variable identification and symbol promotion
are different. 31

3.4 An example showing the simplification in symbolic execution con-
straints with symbol promotion. 35

3.5 Constraints for Fig 3.4(b). 35

3.6 SecondWrite system. 37

3.7 A small pseudo-assembly code. The second operand in the instruction
is the destination. 43

3.8 IR of the pseudo-assembly code. SIZE BAR is size of ORIG FRAME BAR,
register names are pure IR symbols. 45

ix

3.9 Symbol promotion. Second operand in the instruction is the destina-
tion of the instruction. 47

3.10 The reaching definition description. Definitions are propagated across
the control flow of program. 49

3.11 Variation of analysis time with lines of code. Outlier program dealII
has been omitted for the ease of presentation. 54

3.12 Percentage of original symbolic accesses recovered in IR. 56

3.13 Partition algorithm visualization . 57

3.14 Normalized runtime of rewritten binary as compared to its corre-
sponding input version (=1.0) compiled by gcc. 58

3.15 Normalized runtime of rewritten binary as compared to its correspond-
ing input version (=1.0) compiled by Visual Studio. 59

3.16 Normalized runtime of rewritten binary as compared to optimized
version (=1.0) compiled by gcc. 60

3.17 Impact of symbol promotion on runtime of rewritten binary v/s un-
optimized input binary (=1.0). 61

3.18 Impact of symbol promotion on runtime of rewritten binary v/s opti-
mized input binary (=1.0). 62

3.19 Automatic parallelization . 63

3.20 Number of induction variables recognized 63

4.1 (a) A sample C code (b) Corresponding assembly code, the second
operand in the instruction is the destination 72

4.2 (a) Value numbering obtained without propagation through memory
locations (b) Value numbering with propagation through memory lo-
cations . 73

4.3 (a) A sample C code (b) Corresponding assembly code, the second
operand in the instruction is the destination 75

4.4 (a) Symbolic expressions obtained with no memory propagations (b)
Symbolic expressions with memory propagation 77

4.5 A sample assembly code, second operand in the instruction is the des-
tination . 79

x

4.6 Organization of the system . 80

4.7 Grammar for symbolic expressions. + and * are standard arithmetic
operators, Int is the set of all integers, IR Variables are symbols in
the obtained intermediate representation 83

4.8 An example CFG showing the limitations of symbolic expressions for
value numbering . 102

4.9 Introduction of Phi for removing the limitations of symbolic expres-
sions for value numbering . 103

4.10 Symbolic Value Set Visualization . 106

4.11 Percentage of symbolic expressions that containing at least one sym-
bolic alphabet propagated through a memory location, out of symbolic
expressions for all IR variables . 107

4.12 Variation of TOP (>) data objects with varying size of symbolic value
set . 108

4.13 Normalized improvement in detection of equivalent computations (No
Symbolic analysis = 1.0) . 109

4.14 Normalized improvement in removal of redundant instruction (No
symbolic analysis=1.0) . 110

4.15 Alias analysis results . 113

5.1 An example demonstrating the imprecision in the presence of indirect
calls, second operand in the instruction is the destination 119

5.2 Data flow rules used to determine stack modifications in a procedure P 121

5.3 Percentage of procedures with unknown CTIs. The static represents
cases when constraint solvers succed 125

5.4 Additional alocs added as a result of constraint solvers, normalized to
original number of alocs . 126

5.5 Variables requiring a new symbolic alphabet in presence of additional
a-locs . 127

6.1 Organization of the system. 138

xi

6.2 Deduction rules for computing Demand Set. Rules constitute a back-
ward analysis, where a conclusion before an instruction is derived
based on the premise after the instruction. 144

6.3 Symbolic Information Grammar:Grammar for information flow ab-
straction. ∪ is the union operator, IR Symbols are symbols in the
obtained intermediate representation corresponding to the registers in
the input executable, intermediate computations and calls to external
library procedures. 146

6.4 Rules for Symbolic Information Analysis. 149

6.5 Vulnerabilities discovered in real-world programs. 157

6.6 Code snipped from csplit showing the format string vulnerability. Sec-
ond operand is the destination in executable code. 159

6.7 Format string vulnerability detection. 161

6.8 Directory traversal attacks. 162

6.9 Size of Demand Set (SR and SM) normalized (=1.0) to all variables
and a-locs respetively. 163

6.10 Scalability of demand driven and exhaustive analysis with increasing
lines of code. 164

6.11 Spec Benchmarks . 167

6.12 Vulnerability detection in Coreutils 168

6.13 Time for analyzing Coreutils . 169

7.1 (a) Weighted CFG of a small part of a program. A, B, C and D
are instructions of 4 byte each (b) A hypothetical memory layout of
the above instructions (c) A dummy 16-byte direct mapped instruc-
tion cache. The alphabets at right hand side of each cache line show
the instructions which are mapped to the line according to the cache
mapping function (d) The execution trace of this part of the program 179

7.2 (a)Number of misses observed for each node with and without locking
(b) Locking of node C in set 0 of cache 181

7.3 Static Cache Locking Algorithm. 192

xii

7.4 Example showing (a) a program outline; and (b) its DPRG showing
nodes, edges & timestamps (c) modified DPRG nodes and timestamps
assuming that execution frequency of proc C is greater than LIMIT . 195

7.5 Dynamic Cache Locking Algorithm. 200

7.6 The Experimental WorkFlow . 202

7.7 Percentage improvement in instruction-cache miss rate over cache
with no locking for varying sizes of a 2-way set-associative cache . . . 206

7.8 Percentage improvement in instruction-cache miss rate over cache
with no locking for different associativities of the cache. The cache
size is kept fixed at 4 Kb. 206

7.9 Improvement in execution time of the applications over cache with no
locking for varying size of a 2-way set associative cache 208

7.10 Variation of execution time improvement for processors with different
clock speeds for a 4kB 2 way set associative cache 208

7.11 Percentage improvement in instruction-cache miss rate, compared with
static cache locking, for a 2-way set-associative cache of size 2 kb,4
kb, 8 kb and 16 kb. 210

7.12 Percentage improvement in instruction-cache miss rate with dynamic
cache locking over cache with no locking for different associativities
of the cache. The cache size if kept fixed at 8 kb. 211

7.13 Improvement in execution time of the applications with dynamic
cache locking, as compared with static and optimal static cache lock-
ing, for varying size of a 8 kb 2-way set associative cache 211

8.1 Future Directions . 215

xiii

Chapter 1: Introduction

Analyzing and optimizing programs from their executables has received a lot of

attention recently in the research community. In recent years, there has been a

tremendous amount of activity in executable-level research targeting varied applica-

tions such as security vulnerability analysis [42, 137], untrusted code analysis [13],

malware analysis [163], program testing [47], and binary optimizations [130, 103].

1.1 Motivation for executable analysis

Traditional source-code analysis frameworks have limited applicability in several

scenarios. It has been demonstrated that executable-level tools can eliminate such

limitations faced by source-code analysis frameworks. Below, we discuss some of

these scenarios.

Absence of source-code: There are several circumstances where the original

source-code is not accessible. Some of the most prevalent reasons are listed below:

→ IP-protected software

→ Third-party library and software components

1

→ Malicious executables

→ Legacy executables

All such situations require executable-level tools for distinct applications. For

example, due to a rapid rise in cyber attacks, there is an increasing need to certify

the behavior and uncover vulnerabilities in IP-protected software and commercial

off-the shelf software components. The availability of such components only in an

executable form has created a huge demand for effective executable analysis tools

to achieve this goal [11, 20, 109].

Further, hundreds of malware are being uncovered almost daily which are

only available in executable form [109]. Security researchers requires novel tools to

understand the behavior of such malware and to develop effective counter strategies.

Various organizations [11] have critical legacy applications that have been de-

veloped for older systems and need to be ported to future versions. In many cases,

the application source-code is no longer accessible requiring these applications to

continue to run on outdated configurations. There is a huge demand of a framework

which can recover functionally correct source-code components from such legacy

software, so that such legacy systems can be ported to secure configurations.

Source-code analysis not sufficient: There are several scenarios where the

source-code analysis is not sufficient. An executable code might demonstrate differ-

ent behavior from the original source code. This phenomenon is popularly known as

What-you-see-is-not-what-you-execute [20]. Modifications can happen to the source

code during compilation (optimizations) or after the compilation process (bad code

2

injection). These modifications can significantly alter the program behavior. Con-

sequently, the exact behavior of any program can only be uncovered by analyzing

the executable code.

Moreover, several components of a typical software might be developed in

multiple languages (Fortran, C and C++). The presence of different languages

complicate the task of analyzing the source-code. In such scenarios, a consistent

representation of the resulting executable code presents a more coherent analysis

opportunity.

1.2 Advantages of executable analysis

Section 1.1 underscored the underlying importance of executable-level tools. In ad-

dition, executable level tools offers many advantages over standard compiler frame-

works. Below, we discuss some of these advantages

• End-user security enforcement. Despite considerable research work on

several computing hierarchies, low-level software vulnerabilities remain an im-

portant source of compromises and a perennial threat to system security. At

the core, there exists a fundamental dichotomy in the capabilities and moti-

vation of producers and consumers of software, vendors and end-users respec-

tively. On the one hand, software producers are probably in the best position

to prevent and mitigate such vulnerabilities: they have access to the source

code. As a result, they can apply security mechanisms that offer high coverage

and effectiveness at low overhead, because they are applied at the point where

3

the most semantic knowledge about the program and the code is available.

On the other hand, it is software consumers that face the risk and bear the

costs of compromise due to software vulnerabilities and are the most motivated

to mitigate a newly discovered vulnerability. However, consumers often only

have access to the program binary and configuration files. An executable-tool

can bridge the gap between incentive/motivation and capabilities on the con-

sumer side by enabling the end-users to retrofit custom security schemes into

untrusted binaries, to prevent them from taking unauthorized actions.

• Platform aware optimizations Binaries compiled for wide distribution are

often targeted for one particular ISA and are rarely optimized for a particular

processor. Binary tools on an end-user platform can apply custom transforma-

tions to take advantage of platform-specific information like exact knowledge

of the memory hierarchy or the precise version of multimedia instructions.

• Whole-program analysis/optimizations. Development toolchains typi-

cally employ separate compilation framework to minimize the compilation

time. Hence, even though the compilers can theoretically do whole-program

analyses, the applicability of such analysis is severely limited. In contrast,

executable-level tools operate on the merged compilation units, allowing them

to perform whole-program analyses on the compiled programs. Inter-procedural

link-time analyses are usually far less precise than compile-time optimizations

since they work on low-level object code without the benefit of the extensive

IR features available in the compiler.

4

• Economic feasibility. An executable-level tool works for the code produced

from any source language and by any compiler. Hence, it is more efficient to

implement the transformations once in an executable-tool than repeatedly in

each compiler. The high expense of repeated compiler implementation often

cannot be supported by a small fraction of the demand1.

1.3 Thesis Statement

In order to effectively operate under the above mentioned applications scenarios,

an executable analysis system needs to perform similar to a source-code analysis

framework. However the reality of executable-tools today has fallen far short of this

desired vision. Existing binary frameworks [102, 107, 81, 33, 122, 66, 130, 149] are

a little more than tools for peephole optimization and instrumentation.

It is conventional wisdom that static analysis of executables is a very difficult

problem. There are several contributing factors towards the complexity of static

analysis such as undecidable nature of static disassembly [82] and loss of semantic

information during the compilation process [91]. These difficulties have resulted

in a plethora of dynamic binary frameworks [102, 107, 81] and frameworks relying

on metadata information [130, 95, 103, 149] to compensate for the loss of informa-

tion during compilation and to circumvent the undecidable nature of disassembly.

However, such metadata information is not present in commercial applications.

Our approach in this work is to enlarge the envelope of the types of program

1This cost barrier to repeated implementation is a partial explanation of why, for example,
there is a dearth of good commercial automatically parallelizing compilers, despite much progress
in research prototypes in that area over three decades.

5

that can be handled by static analysis and rewriting. Our main thesis is scalable

static binary rewriting and analysis using compiler-level intermediate representa-

tion without relying on the presence of metadata information. Below, we discuss

the primary features of our thesis, followed by the assumptions under which we

demonstrate the evidence of our thesis.

• Static Framework: There are several dynamic frameworks for analyzing

executables [102, 107, 81, 33, 131]. Dynamic frameworks analyze a program

while it is executing. Hence, the analysis time gets added to the application

execution time. They have several limitations such as access to small portions

of code at a time and huge overhead for advanced analyses. Without access

to the complete code, it is extremely difficult to reason about the behavior

of an application. Hence, our belief is that we can never attain our vision of

reaching source-code analysis with dynamic framework. Hence, we focus our

attention on static executable analysis frameworks.

• Functionality: Our executable framework recovers a functional representa-

tion from an executable, so that a correct executable can be obtained subse-

quently. This is essential for several applications such as debugging a malware

or enforcing security schemes into applications.

• Capability: An executable framework must have no extra constraints in their

representation as compared to source-code. The presence of such extra con-

straints in frameworks hitherto restricts the application of source-level research

methods directly to executables.

6

• Practicality: Several frameworks assume the presence of metadata informa-

tion such as debug information or relocation information which are not present

in real world applications. A practical executable framework should not make

such unreasonable assumptions.

• Scalability: An ideal executable framework must be able to scale to real

world applications.

1.3.1 Assumptions behind this work

Correctly rewriting all binary programs is very challenging, hence our goal is to an-

alyze and rewrite all compiled binaries. To this end, we declare a set of assumptions

and define a variety of techniques to successfully handle the programs adhering to

these set of assumptions. The methods proposed in this work rely on the follow-

ing assumptions, which constitute our limitations. This work demonstrates that

compiled code meets all these assumptions.

• Disassembly assumptions: The underlying disassembler employed in our frame-

work derives possible addresses using the restriction that an indirect control trans-

fer instruction requires an absolute address operand [135]. A compiled code is

expected to adhere to this convention unless it has been generated to be position

independent. Position-independent code (PIC) is typically generated only for

standalone dynamically linked library code, which we currently cannot rewrite.

Application code (with statically linked libraries or calls to external DLLs) is han-

dled without any restrictions. However, other researchers in our group are looking

7

to overcome this assumption by rewriting PIC code as well.

• Obfuscated Code: In order to protect intellectual property , some commercial

programs employ obfuscation mechanisms to enhance the resistance against re-

verse engineering tools. A variety of obfuscation mechanisms have been proposed

which make it harder to precisely construct a control flow graph. This includes

excessive use of indirect control transfers and usage of non-standard procedure

transfers without using the call/return mechanism. Debray et al [99] have pro-

posed more advanced obfuscation mechanisms such as branch functions to thwart

static disassembly. This work assumes that executables do not employ such kind

of obfuscations mechanisms and recursive disassembly. With these assumptions,

the techniques presented by Smithson and Barua [135] and Wazeer et al [63], are

successful in achieving 100% code coverage.

• Memory assumptions: Similar to most executable analysis frameworks [20, 22,

48, 130], our techniques assume that executables follow the standard compilation

model where each procedure optionally maintains a local frame frame, which grows

in only one direction and each variable resides at a fixed offset in its corresponding

region. We also assume that in x86 programs, a particular register esp refers to

the top of memory stack. This assumption is expected to hold in all practical

scenarios since x86 ISA inherently makes this assumption. For example, call

instruction moves eip to esp and return decrements esp. Moreover, interrupt

handler codes that are part of an operating system, and can be called during an

application program at any time, inherently assume a stack that follows these

8

restrictions. Such handler codes typically allocate their own data on top of the

stack growing in one known direction pointed to by esp. Such mechanisms would

not work in programs without such a stack. An assembly code not adhering to

this convention would be extremely hard to write.

• Memory Consistency:Our framework mimics the assumptions behind all stan-

dard software transformation tools with regards to memory consistency. A ma-

jority of compilers (gcc, LLVM, Visual Studio) and popular binary frameworks

like PLTO [130], DynamoRIO [33], PIN [102], iSpike [103], Diablo [149] reorder

code without taking memory consistency into account. Since synchronization is

highly multiprocessor specific, most programmers are expected to write synchro-

nized programs using standard synchronization libraries [104]. The presence of

synchronization primitives legalizes the applications of all software optimizations.

Recently, the research community is exploring the possibility of preserving mem-

ory consistency in software transformation tools [104]. The key idea is to selec-

tively invalidate the transformations for possibly shared memory locations. In

current implementation, our framework can preserve consistency by declaring all

possibly shared memory regions as volatile in the IR.

• Self Modifying code: Like most static binary tools, we do not handle self mod-

ifying code. Various tools [156] statically detect the presence of self-modifying

code in a program. Such a tool can be integrated in our front-end to warn the

user and to discontinue further operation.

9

In the next section, we discuss some of the limitations of existing executable

frameworks and discuss the contributions made by this work in eliminating these

limitations.

1.4 Contribution of this dissertation

As mentioned above, our main thesis is scalable static binary rewriting and analysis

using compiler-level intermediate representation without relying on the presence of

metadata information. Figure 1.1 depicts the overall contribution of this disserta-

tion. Below we briefly discuss the individual contributions.

1.4.1 Representation

As part of this work, we have tried to resolve what we believe is a fundamental

aberration - in spite of a significant overlap in the overall goals of several source-

code methods and executables-level techniques, several sophisticated transforma-

tions that are well-understood and implemented in source-level infrastructures have

yet to become available in executable frameworks. Many of the executable-level tools

suggest new techniques for performing elementary source-level tasks. For example,

PLTO [130], a link-time optimizer, proposes a custom alias analysis technique to

implement a simple transformation like constant propagation in executables. Simi-

larly, several techniques for detecting security vulnerabilities in source-code [154, 37]

remain outside the realm of current executable-level frameworks.

It is a well known fact that a standalone executable without any meta data

10

Representation

Analysis

Applications

Recovering a compiler representation

Symbolic Analysis

Information-flow security Cache Locking

Figure 1.1: Contributions of the dissertation

is less amenable to analysis than the source-code. Nonetheless, we believe that one

of the prime reasons behind the underlying aberration is that current executable

frameworks define their own intermediate representations (IR) which are signifi-

cantly more constrained than an IR used in a compiler. Intermediate representations

used in existing binary frameworks lack high level features such as abstract stack,

variables, and symbols and are even machine dependent in some cases. This severely

limits the application of well-understood compiler transformations to binaries and

necessitates new research to make them applicable.

In order to achieve our aim of a capable and a functional executable framework,

we present techniques to convert the binaries to the same high-level intermediate

representation that compilers use. We present techniques to segment the flat address

space in an executable containing undifferentiated blocks of memory. We demon-

strate the inadequacy of existing variable identification methods for their promotion

to symbols and present our methods for symbol promotion. We also present meth-

11

ods to convert the physically addressed stack in an executable (with a stack pointer)

to an abstract stack (without a stack pointer). The proposed methods are practi-

cal since they do not employ symbolic, relocation, or debug information which are

usually absent in deployed executables.

The compiler IR is then employed for three distinct applications: binary

rewriting using the compiler’s binary back-end, vulnerability detection using existing

source-level symbolic execution tools, and source-code recovery using the compiler’s

C backend. Our techniques enable complex high-level transformations not possible

in existing binary systems, address a major challenge of input-derived memory ad-

dresses in symbolic execution and are the first to enable recovery of a fully functional

source-code.

1.4.2 Analysis

The effectiveness of any tool is governed by the effectiveness of its underlying analysis

frameworks. A source level program analysis framework typically employs multiple

static analyses for analyzing and optimizing the programs. Symbolic analysis is an

important static analysis method where the values of program variables and expres-

sions are represented through symbolic expressions in an abstract domain. Symbolic

analysis has been shown to improve the efficacy of various program analyses such

as global value numbering and dependence analysis.

However, such source-level symbolic analysis frameworks have limited effective-

ness in the executable domain since executables typically lack higher-level semantics

12

like variable and structures and mainly contain memory locations instead of explicit

program variables. The IR should have a precise memory abstraction for an analysis

to effectively reason about memory operations.

Our techniques of recovering a compiler-level intermediate representation ad-

dress this limitation by recovering several higher-level semantics information from

executables. Below, we propose two techniques to handle the scenarios when such

semantics cannot be recovered.

First, executable specific artifacts such as indirect control transfers complicate

the task of recovering a precise memory abstraction while maintaining the func-

tionality in IR. The lack of a precise memory abstraction constrain the efficacy of

several executable analyses. We propose a hybrid static-dynamic mechanism for

recovering a precise and correct stack memory model in executables in presence of

executable-specific artifacts.

Next, the enhanced memory model is employed to define a novel symbolic

analysis framework for executables that can perform the same types of program

analysis as source-level tools. Frameworks hitherto fail to simultaneously main-

tain the properties of correct representation and precise memory model and ig-

nore memory-allocated variables while defining symbolic analysis mechanisms. The

proposed symbolic analysis framework for executables adapts source-level symbolic

analysis framework to perform well even in the absence of higher level semantics. We

exemplify that our framework is robust, efficient and it significantly improves the

performance of various traditional analyses such as global value numbering (GVN),

alias analysis and dependence analysis for executables. Such a powerful symbolic

13

analysis framework can improve the effectiveness of any binary analysis tool where

it is employed.

1.4.3 Applications

The underlying representation and analysis framework is employed for two sepa-

rate applications. First, the framework is extended to define a novel static analysis

framework, DemandFlow, for identifying information flow security violations in ex-

ecutables. Unlike existing static vulnerability detection methods for executables,

DemandFlow analyzes memory locations in addition to symbols, thus improving

the precision of the analysis. DemandFlow proposes a novel demand-driven mech-

anism to identify and precisely analyze only those program locations and memory

accesses which are relevant to a vulnerability, thus enhancing scalability. Since De-

mandFlow uses static analysis, it does not incur a runtime performance overhead. In

contrast to other similar analyses, DemandFlow also does not require source code.

Next, the framework is extended to implement a platform-specific optimiza-

tion for embedded processors. Various different approaches have been suggested to

enable software involvement in the management of the on-chip memory. Several em-

bedded systems such as Intel’s XScale and ARM’s latest Cortex processors provide

the facility of locking one or more lines in the cache - this feature is called cache

locking. In spite of the presence of cache locking mechanism in modern processors,

there are no methods in the literature to employ cache locking for improving cache

performance. We devise the first method in literature employing instruction cache

14

locking as a mechanism for improving the average-case run-time of general embed-

ded applications. We demonstrate that the optimal solution for instruction cache

locking can be obtained in polynomial time. However, the nature of cache locking in

existing hardware renders such optimal solutions impractical. Instead, we propose

two practical heuristics based approaches to achieve cache locking.

We reckon that portability is one huge issue for successful implementation of

cache locking inside a compiler. Cache locking inside a compiler yields executables

that are tied to a particular cache size known at compile-time. The executables

are not portable to other cache sizes. Cache sizes often increases among successive

processor generations of the same instruction set, as predicted by Moore’s law. This

is particularly troublesome when the same code is downloaded to each node in long-

lived networks of embedded systems, each with possibly different memory sizes.

Modern processors employ diverse memory hierarchy with cache sizes varying in

sizes and correspondingly varying in amount of locking involved.

Since our scheme is implemented inside a binary framework, it successfully ad-

dresses the portability concern by enabling the implementation of cache locking at

the time of deployment when all the details of the memory hierarchy are available.

This work proposes a next-generation cache locking aware memory manager where

the memory manager resides entirely in the install-time system, and NOT the com-

piler. In such a scenario, low-level memory management will be a service provided

by the install-time system in concert with the hardware, just like virtual memory.

Thus the memory management will be transparent to the software toolchain. To

our knowledge, there are no successful install-time-only systems for software involved

15

EXISTING LLVM COMPILER

LLVM
front
end

LLVM IR
Analysis

OUR NEW CODE

Binary reader
&
Disassembler

x86 ISA
XML

Techniques for
obtaining high-
level features

LLVM
IR

LLVM IR Optimized
LLVM IR

x86
backend C

C++

Input
binary

Output
binary

. . .

C backend Output
C code

Symbolic
Execution

Vulnerabilities

Fortran

Symbolic
Analysis

Security
Vulnerabilities

Cache
Cache
Locking

Richer
LLVM IR

Representation Analysis

Application

Application

Figure 1.2: SecondWrite system highlighed with the contributions of this disserta-
tion

cache management in the literature.

1.5 SecondWrite

We have achieved all the above advantages by implementing our techniques in a

binary rewriter called SecondWrite [10], which employs the widely used open-source

Low-level Virtual Machine (LLVM) [96] compiler IR to represent the code. Fig 1.2

shows the flow of SecondWrite system, highlighting the techniques proposed in this

dissertation.

SecondWrite’s custom binary reader and decompiler modules parse the input

binary and produce a functionally equivalent LLVM IR code [135]. The disassembler

also implements several additional techniques [63] to recover procedure boundaries

16

and inserts additional checks that are essential for the IR to be functional in case

of inaccurate recovered boundaries. Our techniques for obtaining a high-level repre-

sentation convert this initial LLVM IR to a richer LLVM representation, containing

abstract stack and symbols. The symbolic analysis framework proposed in this

dissertation is built over the LLVM representation recovered in the previous step.

Thereafter, the recovered representation is employed for two distinct applications.

First, the symbolic analysis framework is extended to define a scalable and precise

framework for uncovering information-flow vulnerabilities in executables. Second,

the recovered representation is employed in implementing a cache locking mechanism

for embedded processors.

SecondWrite is a highly collaborative research effort and was developed as part

of this dissertation in close efforts with Matthew Smithson, Khaled Elwazeer and

Aparna Kotha. Matthew Smithson and Khaled Elwazeer are primarily responsible

for techniques behind the disassembler module, Khaled and Aparna have major con-

tributions in implementing techniques for obtaining a richer LLVM representation

containing semantic variable types and adequate representation of floating point

x86 registers. Aparna also developed methods to parallelize binary executables and

implemented condition handling in SecondWrite.

Converting binaries to compiler-level IR acts as a great baseline for applying

binary-to-binary optimizations, as described below:

→ Ability to do any code transformation Using compiler IR enables every

compiler transformation to run without binary-specific customization on any

17

binary.

→ Ability to do effective compiler analysis and optimization Using com-

piler IR with presence of variables and symbols allows dataflow analysis to

become much more effective.

→ Reuse compiler research A compiler IR allows rewriter to leverage a sub-

stantial body of work on source-level analysis by enabling the application of

existing compiler level research to binary rewriters without any modifications.

→ Binary to source conversion Existing compiler backends can be used to

convert the IR obtained from binary to source languages like C for better code

understanding of binaries with no source.

→ Reuse passes from mature compilers Sharing the IR with a mature com-

piler allows the binary rewriter to leverage the full set of compiler passes built

up over decades by hundreds of developers.

1.6 Organization of the Dissertation

In this dissertation, we demonstrate that a static binary framework based on a

compiler IR enables applications not possible in any existing tool and our results

establish the feasibility of this approach for most pragmatic scenarios. We do not

claim that we have fully solved all the issues; statically handling every program

in the world may still be an elusive goal. However, the resulting experience of

expanding the static envelope as much as possible is a hugely valuable contribution

18

to the community.

The dissertation is organized as follows.

• Chapter 2 highlights our contributions in light of several existing executable

analysis frameworks.

• Chapter 3 presents the techniques for recovering compiler-level intermediate

representation from executables. It constitutes our methods for symbol pro-

motion and for converting the physically addressed stack in an executable to

an abstract stack. Our system is the first to demonstrate that a compiler

intermediate representation can be successfully employed in a static binary

framework.

• Chapter 4 discusses our symbolic analysis framework for executables. The

proposed symbolic analysis framework enhances the efficacy of several trans-

formations on executables such as value numbering by 40% on average.

• Chapter 5 discusses the techniques to improve memory abstraction in pres-

ence of executable specific artifacts such as indirect control transfers. Our

techniques improve the precision of memory abstraction by 15% on average in

programs containing such artifacts.

• Chapter 6 extends our underlying representation and analysis framework for

uncovering information flow vulnerabilities in executables. Our tool uncov-

ers six previously unknown vulnerabilities in popular internet and relay chat

programs at a low false positive rate of 79%.

19

• Chapter 7 addresses the problem of cache locking. We present the first method

in the literature for cache locking that is able to reduce the average-case run-

time of a program. Our mechanism results in 32% improvement in execution

time in memory constrained embedded applications.

• Finally, Chapter 8 postulates future research directions and discusses the con-

clusions of this dissertation.

20

Chapter 2: Related Work

In this chapter, we discuss the related work in the broad field of executable analy-

sis and rewriting frameworks. The techniques related to individual techniques are

discussed separately within each chapter. Fig 2.1 summarizes the comparison of

our framework with existing executable frameworks, in light of individual features

introduced in Section 1.3.

2.1 Binary rewriting

Binary rewriting research is being carried out in two directions: static and dynamic.

Dynamic binary rewriters rewrite the binary during its execution. Examples are

PIN [102], BIRD [107], DynInst [81], DynamoRIO [33] and Valgrind [131]. None of

the dynamic binary rewriters we found employ an IR of an existing compiler. This

is not surprising since dynamic rewriters construct their internal representation at

run-time, and hence they would not have the time to construct a compiler IR. Dy-

namic rewriters are hobbled since they do not have enough time to perform complex

compiler transformations either; they have been primarily used for code instrumen-

tation and simple security checks in the past. We do not discuss dynamic rewriters

21

Property Rewrites

correctly

High IR Works

without

Metadata

Scalable

ATOM (Link time) � X X �

PLTO (Link time) � X X �

Spike (Link time) � X X �

UQBT � X X �

IDA Pro / Hex Rays X � � �

Jakstab X X � X

BAP (TIE) X � � X

CodeSurfer/X86 X � � X

SecondWrite � � � �

Figure 2.1: Comparing SecondWrite with other executable tools

further since our methods are primarily directed at static binary frameworks.

Existing static binary rewriters related to our approach include Etch [122],

ATOM [66], PLTO [130], Diablo [149], Spike [103] and UQBT [48]. All these rewrit-

ers define their own low-level custom IR as opposed to using a compiler IR. These

IRs are devoid of features such as abstract frames, symbols and maintain memory

as a flat address space; the limitations of which have already been discussed in

22

Chapter 1. Diablo defines an augmented whole program control-flow-graph-based

intermediate representation with program registers as globals and memory as a black

box. It does not attempt to obtain high-level information such as function proto-

types and is geared mainly towards optimizations like code compaction. Taking

memory as a black box limits its applicability to architectures such as x86 which

contain very small number of registers. ATOM defines a symbolic RTL-based inter-

mediate format with infinite registers but does not do any attempt of analyzing or

modifying the stack layout. It is mainly targeted towards RISC architectures like

Compaq Alpha. PLTO employs a whole program CFG based IR and implements

stack analysis to determine the use-kill depths of each function [58]. However this

information is not used for converting it into high-level IR; rather it is used only

for low-level custom optimizations like load/store forwarding. Etch does not ex-

plicitly build an intermediate representation and allows user to add new tools to

analyze binaries. The primary goal of Etch appears to be instrumentation and has

only been shown to be applicable for simple optimizations like profile-guided code

layout. Some post-link time optimizers like Spike [103] promote memory locations

to symbols employing the symbol table information in the object files. However,

deployed binaries do not contain symbol information, rendering such solutions to be

impractical for executables.

UQBT [48] is a binary translation framework which defines its own custom

intermediate format as opposed to using an existing compiler’s IR; hence it loses

out on the advanced set of optimizations implemented in an already existing mature

compiler infrastructure. The IR involved is high level involving procedure prototype

23

abstraction but the conversion to IR relies on user-provided information about the

number of parameters and their locations, instead of determining that information

automatically from a binary like we do. This severely limits the applicability of

UBQT since only the developers have access to that information, and moreover, the

translation process to an intermediate form is no longer automatic.

Virtual machines [6] implement stack-walking techniques to determine the call-

ing context by simply iterating over the list of frame pointers maintained as metadata

in the dynamic framework; making it orthogonal to our mechanism which statically

inserts run-time checks in the IR.

2.2 Binary Analysis/Intermediate Representation recovery

There are several executable analysis tools such as BAP [35], BitBlaze [137], Phoenix [114]

and others which recover an IR from an executable for further analysis. However,

these tools have several limitations. All these tools define their own custom IR with-

out the features of abstract stack and symbol promotion, facing limitations similar

to tools like Diablo [149] discussed above. Phoenix [114] recovers a register transfer

language (RTL) resembling architecture neutral assembly, which does not expose

the semantics of several complicated instructions. Further, Phoenix and several

other tools [95] require debugging information, which is usually absent in deployed

executables.

Various executable frameworks ease the specification of semantics of native

instructions [141] which is orthogonal to our task of recovering intermediate repre-

24

sentation. Tools like Jakstab [89] address control flow challenges in executables by

resolving indirect branches using multiple rounds of disassembly interleaved with

dataflow analysis. However, they do not recover any high level information from

executables and have been shown to scale to programs of a limited size.

There are some frameworks which recover LLVM IR from executables. S2E [47]

and RevNIC [45] present a method for dynamically translating x86 to LLVM using

QEMU. Unlike our approach, these methods convert blocks of code to LLVM on

the fly which limits the application of LLVM analyses to only one block at a time.

RevNIC [45] recovers an IR by merging the translated blocks, but the recovered IR

is incomplete and is only valid for current execution; consequently, various whole

program analyses will provide incomplete information. RevGen [46] includes a static

disassembler to recover an IR for entire binary. However, the translated code retains

all the assumptions of the original binary about the stack layout. They do not

provide any methods for obtaining an abstract stack or promoting memory locations

to symbols, which are essential for the application of several source-level analyses.

King et al. [90] provide a comprehensive survey of several executable analysis

tools. Balakrishnan et al. [20, 22] present Value Set Analysis for analyzing memory

accesses and extracting high level information like variables and their types. As we

will discuss in detail in Chapter 3, analyzing variables does not guarantee promotion

to symbols in IR. Zhang et al. [164] present techniques for recovering parameters

and return values from executables but they do not consider the scenarios where

the information cannot be derived. As mentioned before, such best effort solutions

are good for executable analysis but do not certify the reliable behavior once these

25

analyses fail.

Jianjun et al. [97] promote stack variables to registers dynamically, relying

on hardware mechanism for memory disambiguation. In contrast, we provide tech-

niques for symbol promotion in a static framework without any hardware support.

2.3 Industrial Tools

There are three popular industrial-level tools for analyzing executables - HexRays [80],

CodeSurfer/x86 [19] and Veracode [13].

The Hex-Rays decompiler [80] (the sister product to the IDA Pro disassem-

bler) is a commercially-available decompiler. Unfortunately, the product and its

research are proprietary, and its inner workings are closely guarded trade secrets.

Thus they are not available for others to replicate. However, two drawbacks are ap-

parent from their website. First, they acknowledge is that their output is not 100%

reliable (perhaps because of the inherent uncertainties of disassembly), whereas our

techniques always generates functional output. Second, they only support binaries

compiled from C/C++ using standard compilers. We conjecture that these could

be because they make language and compiler-specific assumptions. This severely

limits their applicability in practical scenarios.

CodeSurfer/x86 [19] is built on the techniques suggested by Balakrishnan et

al. [20, 22]. As mentioned before, such best effort solutions are good for executable

analysis but do not certify the behavior once these analyses fail. As opposed to

our techniques, it fails to maintain the functionality of the recovered intermediate

26

representation.

Veracode [13] uncovers vulnerabilities in executables. To the best of our knowl-

edge, the techniques used by Veracode are proprietary and have not been published

anywhere. Hence, the underlying techniques cannot be compared. Further, unlike

our techniques, Veracode requires the presence of debug information, which is not

present in deployed executables.

27

Chapter 3: Decompilation to compiler level intermediate rep-

resentation

3.1 Introduction

We have identified the two tasks below as key for translating binaries to compiler

IR. We illustrate the advantages of these two methods through the source-code

recovered from a binary corresponding to the example code in Fig 3.1(a).

• Deconstruction of physical stack frames A source program has an abstract

stack representation where the local variables are assumed to be present on the stack

but their precise stack layout is not specified. In contrast, an executable has a fixed

(but not explicitly specified) physical stack layout, which is used for allocating local

variables as well as for passing the arguments between procedures.

To recreate a compiler IR, the physical stack must be deconstructed to indi-

vidual abstract frames, one per procedure. Since the relative layout of these frames

might change in the rewritten binary, the correct representation requires all the

arguments (interprocedural accesses through stack pointer) to be recognized and

translated to symbols in the IR.

28

int main(){
 int z;
 z = foo(10,20);
 return z;
}
int foo(int a, int b) {
 int temp3,temp1;
 temp1 = a+b;
 if(a>40){
 temp3 = temp1 + 10;
 }
 else {
 temp3 = temp1 - 10;
 }
 return temp3;
}
(a) Original C Code

//Global Stack Pointer
int* llvm_ESP;

char *main(){
 llvm_ESP = llvm_ESP-2; //Local Allocation

 llvm_ESP[1] = 20; //Outgoing argument
 llvm_ESP[0] = 10;
 int llvm_tmp_3 = rewritten_foo();
 return llvm_tmp3;
}

int rewritten_foo()
{
 int* llvm_EBP = llvm_ESP;
 //Local Frame Pointer
 llvm_ESP = llvm_ESP-10;
 //Local Allocation

 int tmpIn1 = llvm_EBP[0]; //Incoming Arg
 int tmpIn2; = llvm_EBP[1];

 int llvm_tmp2 = tmpIn1+tmpIn2;
 llvm_ESP[2] = llvm_tmp2;

 int llvm_tmpIn3 = llvm_EBP[0];
 if (llvm_tmpIn3 > 40){
 int llvm_tmp5 = llvm_ESP[2];
 llvm_ESP[5] = llvm_tmp5 + 10;
 }
 else {
 int llvm_tmp7 = llvm_ESP[2];
 llvm_ESP[5] = llvm_tmp7 - 10;
 }
 int llvm_tmp11 = llvm_ESP[5];
 return llvm_tmp11;
}
(b) Recovered C Code with physical stack

char *main()
{
 int llvm_ESP2[10];

 llvm_ESP2[1] = 20;
 llvm_ESP2[2] = 10;
 int llvm_tmp1 = llvm_ESP2[1];
 int llvm_tmp2 = llvm_ESP2[2];
 int llvm_tmp_3 =
 rewritten_foo(llvm_tmp2,
 llvm_tmp1);
 return llvm_tmp3;
}

int rewritten_foo(int llvmArg1,
 int llvm_Arg2)
{
 int llvm_ESP1[10];

 int llvm_tmp2 = llvm_Arg1+llvm_Arg2;
 llvm_ESP1[2] = llvm_tmp2;

 if (llvm_Arg1 > 40) {
 int llvm_tmp5 = llvm_ESP1[2];
 llvm_ESP1[5] = llvm_tmp5 + 10;
 }
 else {
 int llvm_tmp7 = llvm_ESP1[2];
 llvm_ESP1[5] = llvm_tmp7 - 10;
 }

 int llvm_tmp11 = llvm_ESP1[5];
 return llvm_tmp11;
}

(c) Recovered C Code with abstract stack

char *main(){
 int llvm_tmp3;
 llvm_tmp_3 = rewritten_foo(10,20);
 return llvm_tmp3;
}

int rewritten_foo(int llvm_Arg1,
 int llvm_Arg2){
 int llvm_tmp4;
 int llvm_tmp2 = llvm_Arg1 +llvm_Arg2;
 if (llvm_Arg1 > 40){
 llvm_tmp4 = llvm_tmp2 +10;
 }
 else {
 llvm_tmp4 = llvm_tmp2 - 10;
 }
 return llvm_tmp4;
}
(d) Recovered C Code with abstract
stack and symbol promotion

Figure 3.1: Source-code example. Variable names and types in the source-code re-
covered by LLVM C-backend have been modified for readability.

Unfortunately, guaranteeing the static discovery of all the arguments is impos-

sible. Some indirect memory references with run-time-computed addresses might

make it impossible for an analysis to statically assign them to a fixed stack location,

resulting in undiscovered interprocedural accesses. Existing frameworks circumvent

this problem by preserving the monolithic unmodified stack in the IR, resulting in

a low-level IR where no local variables can be added or deleted.

Some executable tools analyze statically determinable stack accesses to rec-

ognize most arguments [20], aiding limited code understanding. However, the lack

of guaranteed discovery of all the arguments renders such best-effort techniques in-

sufficient for obtaining a functional IR. Fig 3.2 shows an example procedure where

29

Stack q: edx p: esp + 8
allocations a: esp + 20 b: esp + 24

foo(int a, int b) {
 int *p, *q;

 p = &a;
 …
 *q = …;
 … = b;
 }

foo:
1 subl $16, %esp
2 lea 20(%esp), 8(%esp)
3 store …, (%edx)
4 load 8(%esp),%ecx
5 load 4(%ecx)

// Allocate 16-byte stack frame
// Put &a(esp+20) into p(esp+8)
// Store to MEM[q]

// Temp ecx ← p (same as &a)
// Load “b” by using the fact that
 &b = &a + 4 = ecx + 4

Source Code Pseudo Assembly Code

Figure 3.2: A small source-code example and its pseudo-assembly code, showing the
limitation of existing methods for detecting arguments.

the first argument a can be recognized statically while the second argument b is not

statically discoverable. In the assembly-code, &a (esp+20) is stored to the memory

location for p (esp+8) (Line 2), which is loaded later to temporary ecx (Line 4).

The source compiler exploited the layout information (&a+4=&b) to load b by incre-

menting p (&a) by 4 (Line 5). This is safe since the compiler was able to determine

that p does not alias q. However, the executable framework may not be able to es-

tablish this relation, since alias analysis in executables is less precise. Hence, it has

to conservatively assume that *q reference (Line 3) could modify p which contained

the pointer to a. Consequently, the source address at Line 5 is no longer known and

argument b is not recognized.

Our analysis in Section 3.3 defines a source-level stack model and checks if

the executable conforms to this model. If the model is verified for a procedure,

the analysis discovers the arguments statically when possible, but when not possi-

ble, embeds run-time checks in IR to maintain the correctness of interprocedural

dataflow. Otherwise, stack abstraction is discontinued only in that procedure.

Fig 3.1(c) demonstrates the impact of abstract stack on the recovered source-

30

 main() {
 int A[10], i, x;
 x = read-from-file();
 for (i = 0; i < x; i++) {
 A[i] = 10;
 }
 }

main:
1 subl $48, %esp
2 %ebx = read_from_file
3 mov %ebx, 44(%esp) //Initializing x
4 movl $0, 40(%esp) //Initializing i
5 jmp L2 // jump to condition check
 L3:
6 movl 40(%esp), %eax //load i
7 movl $10, (%esp,%eax,4) //Reference A[i]
8 addl $1, 40(%esp) //Increment i
 L2:
9 cmpl 40(%esp), 44(%esp) //compare x and i
10 jl L3

Figure 3.3: An example showing that variable identification and symbol promotion
are different.

code. Fig 3.1(b) employs a global pointer llvm ESP, corresponding to the physi-

cal stack frame in the input binary, for interprocedural communication as well as

for representing local allocations in each procedure. However, in Fig 3.1(c), the

stack pointer disappears; instead, local allocations appear as separate local arrays

llvm ESP1 and llvm ESP2 and arguments are represented explicitly.

• Symbol promotion Another key challenge we solve is symbol promotion, which

is the process of safely translating a memory location (or a range of locations) to a

symbol in the recovered IR. Existing frameworks do not promote symbols; instead

they retain memory locations in their IR [130, 149, 102, 122]. Some post-link time

optimizers like Ispike [103] promote memory locations to symbols employing the

symbol table information in the object files. However, deployed binaries do not

contain symbol information, rendering such solutions unsuitable for our framework.

At first glance, it may seem that the well-known methods for variable identifi-

cation in executables, such as IDAPro [84] and Divine [22], can be used for symbol

31

promotion. However, this is not the case. The presence of potentially aliasing mem-

ory references is a key hindrance to the valid promotion of these identified variables

to symbols.

IDAPro characterizes statically determinable stack offsets in the program as

local variables while Divine divides the stack memory region into abstract locations

by analyzing indirect memory accesses instructions as well.

Fig 3.3 illustrates the key limitations of both these methods. When the code

is compiled, we obtain a stack frame for main() of size 48 bytes (10×4 bytes for A[],

and 4×2 = 8 bytes for i and x). The accesses to variables i and x appear as direct

memory references (Lines 3,4,6,9) while the array A is accessed using an indirect

memory reference (Line 7). Both Divine and IDAPro identify memory locations

esp+44(x) and esp+40(i) as variables based on the direct references. Since the

upper bound for the indirect reference A[i] is statically indeterminable, even Divine

does not generate any useful information about this access. Hence, it creates three

abstract locations — two scalars of 4 bytes each, and a leftover range of 40 bytes.

Despite dividing stack memory region into three abstract locations, none of

them can be promoted to symbols. It is impossible to statically prove from an exe-

cutable that the indirect reference at Line 7 does not alias with references to i or

x. Hence, the promotion of memory locations corresponding to i and x to symbols

would be unsafe since it leads to potentially inconsistent dataflow for underlying

memory locations. (Source-level alias analyses often assume that any A[x] will ac-

cess A[] within its size. However, such size information is not present in a stripped

executable.)

32

Since identification is inadequate for promotion, we have devised a new algo-

rithm to safely promote a set of memory locations to symbols. It computes a set

of non-overlapping promotion lifetimes for each memory location taking into con-

sideration the impact of aliasing memory accesses. Our method is oblivious to the

underlying method employed for identifying these locations. The locations can be

identified by IDAPro, Divine or through a similar method we use.

Fig 3.1(d) shows the improvement in source-code recovery from symbol pro-

motion, illustrating the replacement of all access to local array llvm ESP1 and

llvm ESP2 in procedures foo and main respectively by local symbols. As evident,

this greatly simplifies the IR and the source-code.

3.1.1 Benefits of abstract stack and symbols

The presence of abstract stack and symbols has the following advantages:

→ Improved dataflow analysis since standard dataflow analyses only track sym-

bols and not memory locations.

→ Improved readability of the recovered source-code.

→ The ability to employ source-level transformations without any changes. Ad-

vanced transformations like compiler-level parallelization [148, 165] add new

local variables as barriers and rely on the recognition of induction variables.

Several compile-time security mechanisms like StackGuard [55] and ProPo-

lice [65] modify stack layout by placing a canary (a memory location) on the

stack or by allocating local buffers above other local variables. These methods

33

can be implemented only if the framework supports stack modification and

symbol promotion.

→ Efficient reasoning about symbolic memory in case of symbolic execution, as

discussed next.

3.1.1.1 Symbolic Execution

Symbolic execution, e.g. [39], is a well-known technique for automatically detecting

bugs and vulnerabilities in a program. Among various challenges facing symbolic

execution, handling symbolic memory addresses (addresses derived from user-input)

is an important one. There are two primary approaches for handling symbolic

memory. Previous symbolic executors for executables [137] make simplifying and

unsound assumptions by concretizing the symbolic memory reference to a fixed

memory location. On the other hand, popular source-level tools [39, 38] employ

logical constraint solvers to reason about possible locations referenced by a symbolic

memory operation. Even though the expressions involving symbolic memory become

more sophisticated, these tools outperform the former approaches in terms of path

exploration and bug detection [42].

The presence of a physical stack and the lack of symbols in an executable pose

a difficult challenge in efficiently extending the logical solver based approach for rep-

resenting symbolic memory in executables. The most straightforward representation

of the memory would be a flat byte array. Unfortunately, the constraint solvers em-

ployed in existing source-level symbolic execution tools would almost never be able

34

foo()
{
 int A[10], x,y;
 x = read-from-file();
 y= read-from-file();

 if(x<10)
 {
 A[x] = 30;
 }
 if(y>20)
 {
 return;
 }
 …..
}

x: esp+48 y: esp + 44

 L0:
1 FOO= alloca i32,48
2 ebx1 = read_from_file()
3 store ebx1, 48(FOO) //store x
4 ebx2 = read_from_file()
5 store ebx2, 44(FOO) //store y

6 ebx3 = load 48(FOO) //load x
7 if(ebx3>=10), jmp L2:

L1:
8 store $30, FOO[4*ebx3]

L2:
9 eax = load 44(FOO) //load y
10 if(eax<=20) jmp L3
 return
L3:…..

esp+48: symX
esp+44: symY

L0:
1 FOO= alloca i32,48
2 ebx1 = read_from_file()
3 symX=ebx1
4 ebx2 = read_from_file()
5 symY = ebx2

6 ebx3= symX
7 if(ebx3>=10), jmp L2:

L1:
8 store $30, FOO[4*ebx3]

L2:
9 eax = symY
10 if(eax<=20) jmp L3
 return
L3:….

a) Original Code b) IR without symbol promotion c) IR with symbol promotion

Figure 3.4: An example showing the simplification in symbolic execution constraints
with symbol promotion.

to solve the resulting constraints [38].

Constraints:
 A1=write(FOO,48,ebx1)
 A2= write(A1,44,ebx2)
 read(A2,48)<10
 A3 = write(A2,
 4*read(A2,48),30)
Solve:
read(A3,44) <= 20

Figure 3.5: Constraints for Fig 3.4(b).

The segmented memory representation in our framework, obtained by abstract

stack and symbol promotion, improves the efficiency of such constraint solvers by

enabling them to only consider the constraints related to the segments referenced

by the current memory address expression and ignore the remaining segments.

35

Fig 3.4 illustrates this case. Fig 3.4(a) contains a symbolic memory store to

array A. Fig 3.4(b) and Fig 3.4(c) show the pseudo IR obtained from an executable

corresponding to Fig 3.4(a), without and with the application of symbol promotion.

Fig 3.5 shows the constraints and query generated at Line 10 while symbolically

executing the path L0→L1→L2 in Fig 3.4(b). Here, read(A,i) returns the value at

index i in array A and write(A,j,v) returns a new array with same value as A at

all indices except j, where it has value v.

However, in Fig 3.4(c), symbol promotion has segmented the array FOO in

different segments and references to variables x and y do not refer the segment FOO.

Hence, the solver only needs to solve the following simplified query:

Solve : symY ≤ 20

This example only shows the simplification of constraints with symbol promotion.

The presence of an abstract stack also results in a similar simplification of constraints

by segmenting the memory space within each procedure.

3.2 Overview of the framework

Fig 3.6 presents an overview of the SecondWrite framework. The frontend module,

consisting of a disassembler and a custom reader module, processes the individual

instructions in an input executable and generates an initial LLVM IR. The frame-

work implements several techniques [62] for recognizing arguments passed through

registers and for handling floating point registers. This initial IR is devoid of the

36

EXISTING LLVM COMPILER

LLVM
front
end

LLVM IR
optimizations

OUR NEW CODE

Binary reader
&
Disassembler

x86 ISA
XML

• High IR Enhancements

 (Stack splitting,
 Symbol conversion)

• Optimizations

 (Parallelization,
 Security)

LLVM
IR

LLVM IR
Optimized
LLVM IR

x86
backend C

C++

Input
binary

Output
binary

. . .

C backend Output
C code

Symbolic
Execution

Vulnerabilities

Fortran

Figure 3.6: SecondWrite system.

desired features like abstract stack frame and symbols. This initial IR is analyzed

to obtain an enhanced IR which has all the information and features mentioned

previously.

SecondWrite has been already been employed for several applications such

as automatic parallelization [93] and security enforcements [111]. As discussed in

Section 3.1, the features of abstract stack and symbols are critical for an efficient

implementation of these applications.

3.2.1 Disassembler Module

The disassembler module implements several mechanisms, as proposed by Smithson

and Barua [135], to address code discovery problems and to handle indirect control

transfers. Here, we briefly summarize these mechanisms.

A key challenge in executable frameworks is discovering which portions of the

37

code section in an input executable are definitely code. Smithson and Barua [135]

proposed speculative disassembly, coupled with binary characterization, to efficiently

address this problem. SecondWrite speculatively disassembles the unknown portions

of the code segments as if they are code. However, it also retains the unchanged

code segments in the IR to guarantee the correctness of data references in case the

disassembled region was actually data.

SecondWrite employs binary characterization to limit such unknown portions

of code. It leverages the restriction that an indirect control transfer instruction

(CTI) requires an absolute address operand, and that these address operands must

appear within the code and/or data segments. The code and data segments are

scanned for values that lie within the range of the code segment. The resulting

values are guaranteed to contain all of the indirect CTI targets.

The indirect CTIs are handled by appropriately translating the original target

to the corresponding location in IR through a runtime translator. Each recognized

procedure (through speculative disassembly) is initially considered a possible target

of the translator, which is pruned further using alias analysis. The arguments for

each possible target procedure are unioned to find the set of arguments to be passed

to the translator; a stub inside the translator populates the arguments according to

the actual target.

The method above is not sufficient for discovering indirect branch targets where

addresses are calculated in binary. Hence, various procedure boundary determina-

tion techniques, like ending the boundary at beginning of next procedure, are also

proposed [135] to limit possible targets.

38

The disassembler also implements several additional techniques [63] to recover

procedure boundaries and inserts additional checks that are essential for the IR to

be functional in case of inaccurate recovered boundaries.

3.3 Deconstruction of physical stack frames

In order to recover a source-level stack representation, we first recognize the local

stack frame of a procedure and represent it as a local variable in the IR. As ex-

plained in Section 3.1, this local variable is coupled with the rest of the stack due to

interprocedural accesses. We achieve this decoupling by recognizing interprocedural

accesses and replacing them with symbolic accesses to the procedure arguments.

Below, both these techniques are presented in detail.

3.3.1 Representing the local stack frame

We begin by finding an expression for the maximum size of the local stack frame in

a procedure X. We analyze all the instructions which can modify the stack pointer,

and find the maximum size, P, to which the stack can grow in a single invocation of

procedure X among all its control-flow paths. P need not be a compile-time constant;

a run-time expression for P suffices when variable-sized stack objects are allowed.

An array ORIG FRAME of size P is then allocated as a local variable at the entry point

of procedure X in the IR.

The local variables for the frame pointer and stack pointer are initialized to the

beginning of ORIG FRAME at the entry point of procedure X. Thereafter, all the stack

39

pointer modifications — by constant or non-constant values — are represented as

adjustments of these variables. Allocation of a single array representing the original

local frame guarantees the correctness of stack arithmetic inside the procedure X.

In some procedures, it might not be possible to obtain a definite expression

for the maximum size of the local stack frame. For example, scoped variable-sized

local objects in source-code might result in a stack allocation with a non-constant

amount, whose expression is not available at the beginning of the procedure. Conse-

quently, a single array ORIG FRAME of a definite size cannot be allocated. Neither can

multiple local arrays, one per such stack increment, be allocated since IR optimiza-

tions and compiler backend can modify their relative layout thereby invalidating the

stack arithmetic. In such procedures, we do not convert the physical stack to an

abstract frame. A physical stack frame is maintained in the IR using inline assembly

versions of all the stack modification instructions while the remaining instructions

are converted to LLVM IR. The runtime checks mechanism presented in the next

section is employed to distinguish the local and ancestor accesses.

Persistent stack modification: Returns from a procedure ordinarily restore

the value of the stack pointer to the value before the call. However, in some cases,

the stack pointer might point to a different location after returning from a procedure

call. For example, the called procedure can cleanup the arguments passed through

the stack. To represent this stack pointer modification, which persists beyond a

procedure call, we introduce the following definition:

Balance Number : The balance number for a procedure is defined as the net

40

shift in the stack pointer from before its entry to after its exit. Four different cases

can arise:

Case 1: Balance Number = 0

This is the common case; no modification required.

Case 2: Balance Number < 0

This case arises when a procedure cleans up a portion of the caller stack frame and

is represented as an adjustment of the stack pointer by Balance Number amount in

the caller procedure after the call. The amount need not be a constant.

Case 3: Balance Number > 0

This case implies that a procedure leaves its local frame on the stack and the cor-

responding frame outlives the activation of its procedure. Such procedures are rep-

resented by considering their allocation as part of the caller procedure allocation.

The Balance Number amount is added to the size of ORIG FRAME array in the caller

procedure and the stack pointer is adjusted after the call by this amount.

Case 4: Balance Number Indeterminable

In such a case, we do not convert the physical frame into abstract frame and represent

the stack as a default global variable in the IR, as shown in Fig 3.1(b). This is an

extremely rare case and in fact, it did not appear in our experiments.

3.3.2 Representing procedure arguments

As per the source-level representation, we aim to represent all the stack-based in-

terprocedural communication through an explicit argument framework. We discuss

41

why this is not feasible in all the cases and propose our novel methods based on

run-time checks to handle such scenarios.

We use Value Set Analysis (VSA) [20] to aid our analysis. VSA determines

an over-approximation of the set of memory addresses and integer values that each

register and memory location can hold at each program point. Value Set (VS) of the

address expression present in a memory access instruction provides a conservative

but correct estimate of the possible memory locations accessed by the instruction.

VSA accurately captures the stack pointer modifications and the assignments of

stack pointer to other registers.

The stack location at the entry point of a procedure is initialized as the base

(zero) in VSA and the local frame allocations are taken as negative offsets. In-

tuitively, memory accesses with positive offsets represent accesses into the parent

frame and constitute the arguments to a procedure. A formal argument is defined for

each constant offset into the parent frame and each such access is directly replaced

by an access to the formal argument.

However, the above method for recognizing arguments is suitable only if VS

of the address expression is a singleton set. If the VS has multiple entries, it is not

possible to statically replace it with a single argument.

Fig 3.7 contains an x86 assembly fragment which will be used to illustrate the

handling of interprocedural accesses. Fig 3.8 shows the output IR that results from

Fig 3.7.

We introduce the following definitions to ease the understanding:

42

1. function foo:
2. sub 100, esp // Subtract 100 from sp
3. call bar // call bar

4. function bar:
5. sub 10, esp // Subtract 10 from sp
6. lea 4(esp),edi //Move address esp+4 to edi
7. mov 2, ebx // Move value 2 to ebx
8. mov 15, ecx // Move value 15 to ecx
9. if (esi < 5) jmp B2 //Conditional Branch

10. B1: mov 4,ebx // Move value 4 to ebx
11. mov 16,ecx //Move value 16 to ecx

12. B2: store 10, ebx[edi] // Store 10 to indirect offset (edi + ebx)
13. store 10, ecx[esp] // Store 10 to indirect offset (esp + ecx)
14. store 10, edx[edi] // Store 10 to indirect offset (edi + edx)

Figure 3.7: A small pseudo-assembly code. The second operand in the instruction is
the destination.

CURRENT BASE: Stack pointer at the entry point of a procedure.

addrm: The address expression of a memory access instruction m

VS(addrm):Value Set of addrm

(x,y): Lower and upper bounds, respectively, of the possible offsets relative to

CURRENT BASE in VS(addrm)

LOCAL SIZE: Size of local frame variable ORIG FRAME

SIZEi:Size of ORIG FRAMEi of the ‘ith’ ancestor in the call graph, with the caller

being represented as the first ancestor. SIZE0 is defined as value 0.

Three different cases for memory reference categorization of a memory access

instruction m arise:

Case 1: (x,y) ⊂ (-LOCAL SIZE,0)

43

This condition implies that the current memory access instruction strictly

refers to a local stack location. In Fig 3.7, Line 12 corresponds to this case. Instruc-

tion at Line 6 moves address esp+4 to register edi. Since the size of the current

frame in bar (LOCAL SIZE) is 10 and the local allocations are taken as negative

offsets, this translates to VS of edi as {CURRENT BASE-6}. The VS of ebx at Line

12 is {2,4}; therefore the VS(addrm) is {CURRENT BASE-2,CURRENT BASE-4}, which

translates as a subset of (-LOCAL SIZE,0). In this case, we replace the indirect

access by an access to the local frame as shown Fig 3.8 (Line 12).

Case 2: ∃ N : (x,y) ⊂ (
∑

i‖i∈(0,N) SIZEi,
∑

i‖i∈(0,N+1) SIZEi)

This case implies that the current instruction exclusively accesses the local

frame of Nth ancestor. In such cases, we make the local frame variable of the

Nth ancestor procedure, ORIG FRAMEN, an extra incoming argument to the current

procedure as well as to all the procedures on the call-graph paths from the ancestor to

the current procedure. The indirect stack access is replaced by an explicit argument

access.

Line 13 in Fig 3.7 represents this case. Here, VS of ecx is {15,16} which

translates to the stack-offset range (5,6) which is subset of (0,SIZE1). Line 13 in

Fig 3.8 shows the adjusted offset into the formal argument inArg.

Case 3:

∃ N: { {(x,y) ∩(
∑

i‖i∈(0,N) SIZEi,
∑

i‖i∈(0,N+1) SIZEi) 6= ∅}∧ {(x,y) 6⊂ (
∑

i‖i∈(0,N)

SIZEi,
∑

i‖i∈(0,N+1) SIZEi) } }

This case arises when VSA cannot bound the memory access exclusively to

44

1.function foo:
2. ORIG_FRAME_FOO=alloca i32, 100 // Local frame allocation
3. call bar(ORIG_FRAME_FOO) // call bar

4.function bar(i32* inArg)
5. ORIG_FRAME_BAR=alloca i32, 10 // Local frame allocation
6. edi = ORIG_FRAME_BAR+4
7. ebx = 2 // Move value 2 to ebx
8. ecx = 15 // Move value 15 to ecx
9. if (esi < 5) jmp B2

10. B1: ebx = 4 // Move value 4 to ebx
11. ecx = 16 // Move value 16 to ecx

12. B2: store 10, ebx[edi] // Store 10 to local frame
13. store 10, (ecx-SIZE_BAR)[inArg] // Ancestor Store
14. if ((edx+edi - ORIG_FRAME_BAR) < SIZE_BAR) //Run Time Check
15 store 10, edx[edi] //Local Store
16. else
17. store 10, (edx+edi – SIZE_BAR)[inArg] //Ancestor Store

Figure 3.8: IR of the pseudo-assembly code. SIZE BAR is size of
ORIG FRAME BAR, register names are pure IR symbols.

the local frame of one ancestor or to the local frame of the current procedure. It

also includes cases where VS of the target location is TOP (i.e., unknown).

We propose a run-time-check-based solution to represent such accesses in the

IR. We define all the possible ancestor stack frames in the call graph as arguments

to this procedure. Further, at the indirect stack access, a run-time check is inserted

in the IR to dynamically translate the access to the local frame or to one of the

ancestor stack frames.

Line 14 in Fig 3.7 represents this case. Suppose edx is data-dependent and

hence its VS is TOP. Line 14 in Fig 3.8 shows the run-time check inserted based on

this value. Depending on this check, we either access the local frame (Line 15) or

the incoming argument (Line 17).

We have neglected the return address buffer in our calculations for ease of un-

45

derstanding. It is easily considered in our model by adding the return buffer size to

each ancestor’s local frame size. In the case of dynamically linked libraries (DLLs),

the procedure body is not available; hence the above method for handling the argu-

ments cannot be applied. In order to make sure that the external procedures access

arguments as before, the LLVM code generator is minimally modified to allocate

the abstract frame, ORIG FRAME, at the bottom of the stack in each procedure in the

rewritten binary. Since external procedures are not aware of the call hierarchy inside

a program, their interprocedural references are usually limited to only the parent

frame. When the prototypes of these external procedures are available (such as for

standard library calls), this stack maintenance restriction is avoided altogether by

employing the solution presented for any other procedure.

3.4 Translating memory locations to symbols

Section 3.3 presented methods for deconstructing the physical stack frame into indi-

vidual abstract frames, one per procedure. Even though this representation allows

unrestricted modification of the stack frame, accesses to local variables appear as

explicit memory references to locations within this array, which are not amenable to

standard dataflow analysis. In this section, we propose our methods for translating

these memory operations to symbol operations in the IR.

46

1. store eax, ebx[esi]

2. load 8[esp], edx

…..

3. store ecx, 8[esp]

….

4. load 8[esp], edi

5. load ebx[esi], edx

1. store eax, ebx[esi]

 load 8[esp],sym

2. mov sym, edx

…..

3. mov ecx, sym

….

4. mov sym, edi

store sym, 8[esp]

5. load ebx[esi], edx

…..

1. store eax, 8[esp]

2. load 8[esp], edx

3. load ebx[esi],edx

……

4. store eax,ebx[esp]

5. load 8[esp], ecx

6. load ebx[esi],edx

….

a) b) c)

Figure 3.9: Symbol promotion. Second operand in the instruction is the destination
of the instruction.

3.4.1 Motivation for partitions

As discussed in Section 3.1, maintaining data-flow consistency of the underlying

memory locations across the whole program is imperative while promoting memory

accesses to symbolic accesses. Fig 3.9(a) shows a small example with three direct

accesses to location (esp+8) at Lines 2,3,4; the remaining two are unbounded indi-

rect accesses. The simplest method for maintaining the data-flow consistency across

the program is to load the data from the memory location into the symbol just after

each aliasing definition, store the symbol back to the memory location just before

each aliasing use and promote each candidate stack access to a symbolic access, as

shown in Fig 3.9(b). The load inserted just after the aliasing definition is referred

to as a Promoting Load and the store just before the aliasing use is referred to as

a Promoting Store (shown as bold in Fig 3.9(b)). Although this method ensures

correct data flow propagation, it results in a large number of promoting loads and

stores which might overshadow the benefit of symbol promotion.

47

Fig 3.9(c) illustrates this unprofitable case. In this example, suppose VS of

ebx is TOP. Consequently, the instructions at Line 3, 4 and 6 are aliasing indirect

accesses to the stack location (esp+8). In order to promote the direct memory

accesses at instructions 1, 2 and 5, we need to insert Promoting Stores just be-

fore instruction 3 and instruction 6 and a Promoting Load just after instruction

4. Hence, promoting three direct memory operations entails the insertion of three

extra memory operations, nullifying the benefit.

We propose a novel partition-based symbol promotion algorithm where we

divide the program into a set of non-overlapping promotional lifetimes for each

memory location. It serves as a fine-grained framework where the symbol promo-

tion decision can be made independently for each lifetime (a partition) instead of the

entire program at once. Not doing symbol promotion in a partition does not affect

the correctness of the data-flow in the program. The symbol promotion can be selec-

tively performed in only those partitions where it is provably beneficial. Fig 3.9(c)

shows an intuitive division of the current example into two safe partitions.

3.4.2 Reaching definition framework

We define a new reaching definition analysis on memory locations for computing the

partitions. This is different from the standard reaching definitions on symbols well-

known in compiler theory. For each memory location loc, this analysis computes

the set of instructions defining the memory location loc that reach each program

point. The set of definitions includes stores to the memory location loc using direct

48

Statement s gen[s] kill[s]

d:store x,mem[reg] if([sp+addr]∈VS(mem+reg)) if([sp+addr]∈VS(mem+reg))
d defs(addr) - d

else { } else { }

d: store y,addr[sp] d defs(addr) - d

d: z = load mem[reg] {} {}

d: z = load addr[sp] {} {}

Memory location loc : [sp+ addr]
mem: Non-constant access
addr: Constant
defs(addr): Set of instructions defining the memory location [sp+addr]
in[n]: Set of definitions that reach the begining of node n
out[n]: Set of definitions that reach the end of node n
pred[n]: Predecessor nodes of node n
in[n] = ∪i|i∈pred[n]{(out[p])}
out[n] = gen[n] ∪ (in[n]− kill[n])

Figure 3.10: The reaching definition description. Definitions are propagated across
the control flow of program.

addressing mode as well as possibly aliasing stores.

Fig 3.10 formulates the reaching definition in terms of VS of the memory ac-

cesses. These reaching definitions are propagated across the control flow of the

program, similar to the standard compiler dataflow propagation, allowing the parti-

tions to be formed across basic blocks. The interprocedural version of VSA implicitly

takes into consideration a local pointer passed to a procedure through an argument.

3.4.3 Symbol promotion algorithm

The candidates for symbol promotion in a procedure P, represented by a set LOCS,

are computed as follows:

49

M: Set of memory accesses in P

DM: Statically determinable memory accesses,
⋃

d∈M{d|‖V S(addrd)‖ = 1}

LOCS: Statically determined stack locations in P,
⋃

d∈DM{m|m ∈ V S(d)}

Mathematically, for a stack location loc, a single partition constitutes three

sets of memory accesses: DirectAcc, BeginSet and EndSet. DirectAcc contains stat-

ically determinable accesses to the location loc and constitutes the potential candi-

dates for symbol promotion. BeginSet constitutes the indirect stores that may-alias

with loc and have a control flow path to at least one element of the set DirectAcc.

EndSet consists of all the aliasing accesses such that there is a control flow path

from some element of BeginSet to these accesses. Intuitively, program points just

after the elements in BeginSet represent the locations for inserting Promoting Loads.

Similarly, program points just before the elements of EndSet are the locations for

inserting Promoting Stores.

Algorithm 1 provides a formal description of the method for computing par-

titions for a memory location loc. We begin with an empty partition. We analyze

a store instruction, say ds. If ds is a direct addressing mode instruction then it is

added to the DirectAcc set; otherwise it is added to BeginSet (Line 9-12). Load

instructions using direct addressing where ds is one of the reaching definitions are

added to the DirectAcc set of the partition (Line 16-18). The remaining reaching

definitions at these load instructions are added to the analysis list (Line 19-20). If

ds uses a direct addressing mode, indirect load and store instructions with ds as

one of the reaching definitions are added to the EndSet (Line 24-26). For indirect

50

1 L: Set of loads in P; S: Set of stores in P
2 DL:

⋃
l∈L{l|{loc} = V S(addrl)} //Direct Loads

3 IL:
⋃

l∈L{l|{loc} ⊂ V S(addrl)} //Indirect Aliasing Loads

4 DS:
⋃

s∈S{s|{loc} = V S(addrs)} //Direct Stores

5 IS:
⋃

s∈S{s|{loc} ⊂ V S(addrs)} //Indirect Aliasing Stores

6 Processed: Set of elements processed
7 while DS != ∅‖IS != ∅ do

8 define new Partition P, define new list ActiveList
9 if DS != ∅ then

10 s = DS.begin; add s to P.DirectAcc
11 else

12 s = IS.begin; add s to P.BeginSet
13 add s to ActiveList
14 while ActiveList.size!=0 do

15 s = ActiveList.top; Add s to Processed
16 for dl ∈ DL do

17 if s ∈ in[dl] then

18 add dl to P.DirectAcc
19 for s′ ∈ in[dl] do

20 add s’ to ActiveList if s’/∈ Processed
21 remove dl from DL

22 if s ∈ IS then

23 continue /* No need to store symbol back */
24 for il ∈ {IL,IS} do

25 if s ∈ in[il] then

26 add il to P.EndSet
27 for s′ ∈ in[il] do

28 add s’ to ActiveList if s’/∈ Processed
29 remove il from IL if il ∈ IL

Algorithm 1: Algorithm for computing partitions for a location loc in a
procedure P

stores, the symbol need not be stored back to the memory (Line 22-23). As with

the direct loads, the rest of the reaching definitions are added to the analysis list

(Line 27-29). This analysis is applied repeatedly until the analysis list is empty. At

that point, we have one independent partition. We repeatedly obtain new partitions

until there are no more direct stores or indirect stores to analyze.

We implement a simple benefit-cost model to determine whether the symbol

promotion should be carried out for a particular partition. In a partition, the size

of DirectAcc set is the number of memory accesses replaced by symbol accesses. We

define Freqi as the statically determined execution frequency at program point i.

Hence, the benefit of symbol promotion in terms of eliminated memory references:

51

Benefit =
∑

i|i∈DirectAcc

{(Freqi)}

One promoting load/store is needed for each element of BeginSet and Endset,

consequently, the cost:

Cost =
∑

i|i∈BeginSet

{(Freqi)}+
∑

i|i∈EndSet

{(Freqi)}

We calculate the net benefit of each partition as Benefit - Cost. Symbol promotion

is carried out in a partition only if the net benefit is positive.

3.5 Results

Table 3.1 lists all the benchmarks which have been successfully evaluated with the

SecondWrite prototype. It includes SPEC2006 benchmark suite, benchmarks from

other suites and a real world program, Apache server. Benchmarks on Linux are

compiled with gcc v4.4.1 (O0 (No optimization) and O3 (Full optimization) flags)

without any symbolic or debug information. Windows benchmarks are compiled

with Microsoft Visual Studio compiler (O0 (No optimization) and O2 (Maximum

optimization) flags). Only the C and C++ programs are included for Windows

since Visual Studio does not compile Fortran. The benchmarks are compiled for

x86-32 ISA and results are obtained for SPEC2006 ref datasets on a 2.4GHz 8-

52

gcc-O0 8 78.7 86.9

gcc-O3 8 86.9 93.5

gcc-O0 20 77.3 85.6

gcc-O3 15 72.4 71.7

gcc-O0 23 62.1 87.5

gcc-O3 10 34.5 47.5

gcc-O0 26 87.2 95.9

gcc-O3 17 93.7 76.2

gcc-O0 28 75.2 97.2

gcc-O3 28 66.3 82.2

gcc-O0 23 99 98.5

gcc-O3 21 99.1 93.9

gcc-O0 138 40.7 42.8

gcc-O3 89 33.9 48.3

gcc-O0 20 79.5 99.6

gcc-O3 20 84.5 94.5

gcc-O0 94 90.5 90.5

gcc-O3 66 80.4 75.8

gcc-O0 129 72.1 86.2

gcc-O3 60 77.1 92.3

gcc-O0 106 77 82.5

gcc-O3 51 68.9 88.5

gcc-O0 192 64.7 81.9

gcc-O3 164 73.3 76.2

gcc-O0 130 58.2 83.4

gcc-O3 103 36.2 38.7

gcc-O0 268 72.8 78.5

gcc-O3 199 65.1 67.5

gcc-O0 55 97.2 97.2

gcc-O3 55 57.3 82.2

gcc-O0 2691 64.61 65.8

gcc-O3 2052 84.6 60.1

gcc-O0 331 84.3 84.3

gcc-O3 295 79.6 77.5

gcc-O0 1548 85.7 88

gcc-O3 1249 72.3 75.3

gcc-O0 885 65.9 79

gcc-O3 775 61.1 70

gcc-O0 752 70.9 75.5
gcc-O3 625 70.9 69.8

gcc-O0 1126 76.4 75
gcc-O3 598 87.6 74.5

gcc-O0 1482 72.3 74.4

gcc-O3 1283 65.1 68.2

gcc-O0 887 61.3 66.5

gcc-O3 766 56.6 67.9

gcc-O0 1971 47.6 54.54

gcc-O3 1861 53.5 57.8

gcc-O0 2063 71.4 70.8

gcc-O3 1601 60.1 66.2

gcc-O0 2594 78.6 81.4

gcc-O3 2391 62.16 65.7

gcc-O0 1686 76.4 74.1

gcc-O3 1459 33.1 30.7

gcc-O0 5206 66.1 72.2

gcc-O3 4897 63.1 66.2

VS-O0 21 67.1 73.1

VS-O2 19 95.5 66.1

VS-O0 26 53.5 80.5

VS-O2 14 31.4 32.2

VS-O0 26 78.6 85.5

VS-O2 25 74.6 77.3

VS-O0 24 93.9 90.9

VS-O2 22 81.9 79.3

VS-O0 128 37.5 56.1

VS-O2 136 35.4 36.2

VS-O0 133 80.1 81.1

VS-O2 121 70.1 76.9

VS-O0 85 69.1 57.8

VS-O2 67 70.9 65.4

VS-O0 188 76.39 66.1

VS-O2 144 63.31 75.91

VS-O0 128 37.5 56.1

VS-O2 107 59.5 48.3

VS-O0 264 53.5 80.5

VS-O2 241 66.1 67.1

VS-O0 2281 63.1 67.2

VS-O2 2061 59.1 60.3

VS-O0 267 76.9 79.94

VS-O2 263 69.9 80.82

VS-O0 546 58.9 67.3

VS-O2 476 54.71 51.02

VS-O0 1826 54.4 58.17

VS-O2 1696 55.2 60.1

VS-O0 2589 63.3 43.5

VS-O2 2382 57 29.1

VS-O0 5109 62.1 57.1

VS-O2 4872 64.5 67.1

gcc-O0 2459 63.2 68.1

gcc-O3 2046 75.1 79.2

TOTALS 2 Million AVG 67.84867 71.733333

gcc Spec2006 C 236269 Windows

3188

5842

libquant

astar Spec2006 C++

namd Spec2006 C++

Spec2006 C

Linux

Linux

Linux

Linux

Linux

Linux

Linux

milc Spec2006 C 9784

bzip2 Spec2006 C 8293

mcf Spec2006 C 2685

wupwise OMP2001 F 2468

C 1914

Linux

Linux

Linux

Compiler

C

 # of

Func

1607

LOCSource Lang

918

Platform

Linux

4357

bwaves

lbm Spec2006 C 1155

equake OMP2001

art OMP2001

Stack

access

promoted

leslie3d Spec2006 F 3807 Linux

 Stack

locations

promoted

Spec2006 F

Application

Linux

sphinx Spec2006 C 13683 Linux

sjeng Spec2006 C 13847

Linux

omnetpp Spec2006 C++ 20393 Linux

zeusmp Spec2006 F 19068

Linux

solpex Spec2006 C++ 28592 Linux

hmmer Spec2006 C 35992

Linux

cactus Spec2006 C/F 60452 Linux

h264 Spec2006 C 51578

Linux

dealII Spec2006 C++ 96382 Linux

gromacs Spec2006 C/F 65182

Linux

tonto Spec2006 F 108330 Linux

calculix Spec2006 C/F 105683

Linux

gobmk Spec2006 C 157883 Linux

povray Spec2006 C++ 108339

perlbench Spec2006 C 126367

gcc Spec2006 C 236269

lbm Spec2006 C 1155

equake OMP2001 C 1607

mcf Spec2006 C 2685

Windowsart OMP2001 C 1914

Windows

Windows

Windows

Linux

Linux

Windows

bzip2 Spec2006 C 5896 Windows

astar Spec2006 C++ 4377

Windows

sjeng Spec2006 C 13847 Windows

milc Spec2006 C 9784

sphinx Spec2006 C 13683

omnetpp Spec2006 C++ 20393

Windows

Windows

Windows

Windows

Windows

Windows

Linux

apache

server
Real World

Program C 232931

35992

126367

51578

Spec2006 C

perlbench Spec2006 C

h264 Spec2006 C

Windows

gobmk Spec2006 C 157883

namd Spec2006 C++ 3188

hmmer

Table 3.1: Benchmarks Table

53

0

100

200

300

400

500

0 50000 100000 150000 200000 250000

Lines of Code

T
im

e
 (

s
e

c
)

Figure 3.11: Variation of analysis time with lines of code. Outlier program dealII
has been omitted for the ease of presentation.

core Intel Nehalem machine running Ubuntu. The performance analysis of Apache

server is carried out using ab tool [12]. Analyzing executables compiled by a new

compiler causes several engineering challenges with our evolving prototype such as

presence of yet unsupported x86 features like SSE and other advanced instructions.

However, successful experimentation with distinct compilers such as gcc and Visual

Studio demonstrates the lack of any fundamental problem in this regard. In future

work, we aim to expand our support base by evaluating executables compiled by

other compilers such as Intel compiler and LLVM. Unless mentioned explicitly, the

benchmarks in figures are the ones compiled by gcc.

Fig 3.11 plots the variation in the time taken by SecondWrite, with increasing

lines of code, to recover an intermediate representation from an executable. This

constitutes the time spent in disassembling the executable and other analyses includ-

ing abstract stack recovery and symbol promotion. Fig 3.11 highlights the nearly

54

linear scalability of our framework. The analysis time for large programs such as

gcc, containing 250,000 lines of code, is around eight minutes. A particular SPEC

benchmark dealII takes around 35 minutes, forming an outlier to the linear model. It

employs templates excessively which causes the compiler to create multiple versions

of the same procedure for different template parameters. This extensively slows

down several interprocedural analyses resulting in a huge overall analysis time.

3.5.1 Static characteristics

Our symbol promotion techniques promote the stack memory locations to symbols

and direct stack memory accesses to symbol accesses in the IR. On average, 67%

of stack locations are promoted to symbols resulting in promotion of 72% of direct

stack accesses for the programs listed in Table 3.1. For the remaining memory

operations, the net benefit for promotion didn’t meet the corresponding threshold.

Theoretically, our framework can achieve 100% symbol promotion if the promotion

threshold is ignored, but this leads to high overhead in the rewritten binaries due to

Promoting Loads and Promoting Stores. The development of more advanced alias

analysis would improve results of our symbol promotion without adversely affecting

the performance.

Fig 3.12 relates the above promoted symbolic references to the original source-

level artifacts. We enumerated the symbolic references in the input program using

debug information (employed only for counting the references) and compared how

many of these symbolic references are restored in the IR. It shows that our techniques

55

0

20

40

60

80

100

b
w

a
v

e
s

lb
m

m
c

f

n
a

m
d

le
s

li
e

3
d

li
b

q
u

a
n

t

a
s

ta
r

b
z
ip

2

m
il
c

s
je

n
g

s
p

h
in

x

z
u

e
s

m
p

o
m

n
e

tp
p

h
m

m
e

r

s
o

p
le

x

h
2

6
4

c
a

c
tu

s

g
ro

m
a

c
s

d
e

a
l

c
a

lc
u

li
x

p
o

v
ra

y

g
o

b
m

k

p
e

rl

g
c

c

G
M

e
a

n

Benchmarks

%
 P

ro
m

o
te

d

Figure 3.12: Percentage of original symbolic accesses recovered in IR.

Program Version # Proc with # Proc with run-

Physical stack time Checks

gcc gcc-O0,VS-O0 117 0

gcc gcc-O3, VS-Ox 117 10

tonto gcc-O0, gccO3 20 0

Table 3.2: Corner cases of our analysis.

are able to restore 66% of the original symbolic references.

Fig 3.13 presents an insightful result regarding our partition algorithm (Alg 1).

Our partitioning algorithm creates fine-grained promotional lifetimes for each mem-

ory location. On average, around 76% of the memory locations have one partition,

18% have two to five, and 6% have five or more partitions. This is not unexpected

since large procedures are relatively rare.

Table 3.2 lists the programs which hit corner cases during the deconstruction

of physical stack. The analysis of the original source-code revealed that a phys-

ical stack frame was required for procedures that call alloca(). Runtime checks

56

0%

20%

40%

60%

80%

100%

b
w

a
v

e
s

lb
m

e
q

u
a

k
e

a
rt

w
u

p
w

is
e

m
c

f

n
a

m
d

le
s

li
e

3
d

li
b

q
u

a
n

t

a
s

ta
r

b
z
ip

2

m
il
c

s
je

n
g

s
p

h
in

x

z
u

e
s

m
p

o
m

n
e

tp

h
m

m
e

r

s
o

p
le

x

h
2

6
4

c
a

c
tu

s

g
ro

m
a

c
s

d
e

a
l

c
a

lc
u

li
x

p
o

v
ra

y

g
o

b
m

k

p
e

rl

g
c

c

A
V

G

Benchmarks

%
 o

f
lo

c
a

ti
o

n
s

1 2 to 5 5 to 10 >10Number of Partitions

Figure 3.13: Partition algorithm visualization

are inserted in some procedures which accept a variable number of arguments us-

ing the va arg mechanism. Most of the procedures using va arg do not require

runtime checks. This result establishes our earlier hypothesis that scenarios requir-

ing run-time checks are extremely rare and consequently, have negligible overhead.

Nonetheless, not handling these scenarios prohibits obtaining a functional IR and

hence, are imperative for any translation system.

3.5.2 Un-optimized input binaries

Fig 3.14 shows the normalized run-time of each rewritten binary compared to an

input binary produced using gcc with no optimization (-O0 flag). Fig 3.15 shows the

corresponding run-time for binaries produced using Visual Studio compiler with no

optimization (-O0 flag). We obtain an average improvement of 40% in execution time

for binaries produced by gcc and 30% for binaries produced by Visual Studio, with

57

0

0.2

0.4

0.6

0.8

1

1.2

b
w

a
v

e
s

lb
m

e
q

u
a

k
e

a
rt

w
u

p
w

m
c

f
n

a
m

d
le

s
li
e

li
b

q
a

s
ta

r
b

z
ip

2
m

il
c

s
je

n
g

s
p

h
in

x
z
u

e
s

m
p

o
m

n
e

tp
p

h
m

m
e

r
s

o
p

le
x

h
2

6
4

c
a

c
tu

s
g

ro
m

a
c

s
d

e
a

l
c

a
lc

u
li
x

p
o

v
ra

y
g

o
b

m
k

p
e

rl
g

c
c

a
p

a
c

h
e

G
e

o
m

e
a

n

Benchmarks

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e
O0 O3

Figure 3.14: Normalized runtime of rewritten binary as compared to its correspond-
ing input version (=1.0) compiled by gcc.

an improvement of over 65% in some cases (bwaves). In fact, as shown in Fig 3.16,

our tool brings down the normalized runtime of unoptimized input binaries from 2.2

to close to the runtime (1.25) of gcc-optimized binaries.

3.5.3 Optimized input binaries

Fig 3.14 shows the normalized execution time of each rewritten binary compared to

an input binary produced using gcc with the highest-available level of optimization

(-O3 flag). In this case, we obtain an average improvement of 6.5% in execution

time. It is interesting that we were able to obtain this improvement over already

optimized binaries without any custom optimization of our own. One of our rewrit-

ten binaries (hmmer) had a 38% speedup vs the input binary. Although gcc -O3 is

known to produce good code, it missed the creation of few predicated instructions

whereas LLVM did this optimization, explaining the speedup. Fig 3.15 shows the

58

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lb
m

e
q

u
a

k
e

a
rt

m
c

f

n
a

m
d

a
s

ta
r

b
z
ip

2

m
il

c

s
je

n
g

s
p

h
in

x

o
m

n
e

tp
p

h
m

m
e

r

h
2

6
4

p
e

rl

g
o

b
m

k

g
c

c

G
e

o
M

e
a

n

Benchmarks

N
o

rm
a
li
z
e
d

 R
u

n
ti

m
e

O0 O2

Figure 3.15: Normalized runtime of rewritten binary as compared to its correspond-
ing input version (=1.0) compiled by Visual Studio.

corresponding run-time for binaries produced using Visual Studio compiler with full

optimization flag (-O2). As evident, our framework was able to retain the perfor-

mance of these binaries, with a small overhead of 2.7% on average.

3.5.4 Impact of symbol promotion

Next, we substantiate the impact of symbol promotion on the run-time of rewrit-

ten binaries. Fig 3.17 and Fig 3.18 show the normalized improvement in execution

time obtained by applying only LLVM optimizations and by applying our symbol

promotion techniques. It shows that symbol promotion is responsible for improving

the average performance of rewritten binary from 30% to 40% in the case of unop-

timized binaries (produced by gcc) and from 1% to 6.5% in the case of optimized

binaries (produced by gcc). Since our cost metric is based on static profiling, we

59

0

0.5

1

1.5

2

2.5

3

3.5

4

b
w

a
v

e
s

lb
m

e
q

u
a

k
e

a
rt

w
u

p
w

is
e

m
cf

n
a

m
d

le
sl

ie
3

d

li
b

q
u

a
n

t

a
st

a
r

b
zi

p
2

m
il

c

sj
e

n
g

sp
h

in
x

zu
e

sm
p

o
m

n
e

tp

h
m

m
e

r

so
p

le
x

h
2

6
4

ca
ct

u
s

g
ro

m
a

cs

d
e

a
l

ca
lc

u
li

x

p
o

v
ra

y

g
o

b
m

k

p
e

rl
b

e
n

c

g
cc

G
e

o
M

e
a

Benchmarks

N
o

rm
a

li
ze

d
 r

u
n

ti
m

e

Unoptimized Input binary Rewritten binary

Figure 3.16: Normalized runtime of rewritten binary as compared to optimized
version (=1.0) compiled by gcc.

observed a small slowdown with symbol promotion in bzip2 O3.

It is important to note that these results only measure the impact of symbol

promotion. The impact of our method to convert physical frames to abstract frames

is not measured above. However, we can infer that number since without obtaining

abstract frames, none of the existing LLVM passes would run at all, leading to zero

run-time improvement.

3.5.5 Symbolic Execution

KLEE is efficiently designed to obtain a high code coverage on source programs. We

run KLEE in our framework on a set of 50 alphabetically-chosen Coreutils executa-

bles and achieve a code coverage of 73% on average compared to 76% obtained by

KLEE on source programs when running KLEE with the same options and for the

60

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b
w

a
v

e
s

lb
m

e
q

u
a

k
e

a
rt

w
u

p
w

m
c

f

n
a

m
d

le
s

li
e

li
b

q
u

a
n

t

a
s

ta
r

b
z
ip

2

m
il
c

s
je

n
g

s
p

h
in

x

z
u

e
s

m
p

o
m

n
e

tp
p

h
m

m
e

r

s
o

p
le

x

h
2

6
4

c
a

c
tu

s

g
ro

m
a

c
s

d
e

a
l

c
a

lc
u

li
x

p
o

v
ra

y

g
o

b
m

k

p
e

rl

g
c

c

a
p

a
c

h
e

G
e

o
M

e
a

n

Benchmarks

N
o

rm
a
li

z
e
d

 R
u

n
ti

m
e

LLVM Opt LLVM Opt + Symbol Promotion

Figure 3.17: Impact of symbol promotion on runtime of rewritten binary v/s unop-
timized input binary (=1.0).

same amount of time (30 minutes/benchmark) in both cases.

Recall from Section 3.1.1.1 that symbol promotion enables our framework to

efficiently reason about symbolic memory accesses. However, most of the Coreutils

programs do not contain symbolic array accesses, consequently, these programs are

not likely to benefit from our analyses. Instead, a set of programs [42] with known

symbolic accesses were chosen to demonstrate the effectiveness of our analysis. Each

application was run with KLEE without symbol promotion for five minutes. Then,

the applications were run with symbol promotion with the exact same workload. As

evident from Table 3.3, our analysis is highly effective in reducing the time spent

by STP solvers in query processing.

KLEE has been shown to detect various bugs in a particular version of Core-

utils (6.10). Our framework enables the detection of these bugs from their corre-

sponding executables. Further, the presence of a rewriting path in our framework

61

0.5

0.6

0.7

0.8

0.9

1

1.1

b
w

a
v

e
s

lb
m

e
q

u
a

k
e

a
rt

w
u

p
w

m
c

f
n

a
m

d
le

s
li
e

li
b

q
u

a
n

t
a

s
ta

r
b

z
ip

2
m

il
c

s
je

n
g

s
p

h
in

x
z
u

e
s

m
p

o
m

n
e

tp
p

h
m

m
e

r
s

o
p

le
x

h
2

6
4

c
a

c
tu

s
g

ro
m

a
c

s
d

e
a

l
c

a
lc

u
li
x

p
o

v
ra

y
g

o
b

m
k

p
e

rl
g

c
c

a
p

a
c

h
e

G
e

o
M

e
a

n

Benchmarks

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e
LLVM Opt LLVM Opt + Symbol Promotion

Figure 3.18: Impact of symbol promotion on runtime of rewritten binary v/s opti-
mized input binary (=1.0).

Binary No Promotion With Promotion

Time(s) STP Time(s) Time(s) STP Time(s)

htget 300 186 37 27

cut 300 252 111 76

split 300 225 157 88

Table 3.3: Improvement in constraints processing with symbol promotion.

enables us to remedy the above detected bugs directly from executables. We ana-

lyzed the dump for one of the Coreutil executable (mkdir), fixed the corresponding

behavior in IR and obtained a rewritten bug-free executable.

3.5.6 Automatic Parallelization

Kotha et al [93] presented a method for automatic parallelization for binaries. Here,

we substantiate the impact of symbol promotion on their methods for a subset of

PolyBench and Stream suite. Fig 3.19 shows that symbol promotion increases the

speedup of eleven benchmarks by 2.25x for four threads.

62

0

1

2

3

4

5

2m
m

3m
m

doitg
en

gem
m

gsu
m

m
v

ad
i

bic
g

gem
ve

r
at

ax
co

rr

co
va

r

G
eo

M
ea

n

Benchmarks

S
p

e
e

d
u

p

Without symbol promotion With symbol promotion

Figure 3.19: Automatic parallelization

0

2

4

6

8

10

12

2m
m

3m
m

doitg
en

gem
m

gsu
m

m
v

ad
i

bic
g

gem
ve

r
at

ax
co

rr

co
va

r

G
eo

M
ea

n

Benchmarks

N
u

m
b

e
r

o
f

in
d

u
c
ti

o
n

 v
a
ri

a
b

le
s

Without symbol promotion With symbol promotion

Figure 3.20: Number of induction vari-
ables recognized

We further investigate why symbol promotion helped automatic parallelization

significantly. In order to parallelize loops using an affine automatic parallelizer,

it is essential to recognize induction variables. We observe that for x86 binaries,

many induction variables are often present on the stack instead of registers; the

compiler’s induction variable recognizer based on symbols fails to recognize them.

Further, for affine loops of nesting depth greater than two, induction variables of

outer loops are generally placed on the stack. This results in parallelization of only

inner loops even though outer-loop parallelization is legal. Parallelizing inner loops

implies that there is a significant overhead due to synchronization and hence the

speedup is low. On the other hand, symbol promotion promotes the stack allocated-

induction variables corresponding to outer loops also to symbols; consequently, these

induction variables get recognized and it allows the parallelizer to do parallelization

on more beneficial outer loops. Detailed statistics of the number of outer loops for

which induction variables are recognized with and without symbol promotion are

presented in Fig 3.20.

63

Chapter 4: Symbolic Analysis for executables

4.1 Introduction

Analyzing and optimizing programs from their executables has received a lot of

attention recently in the research community. The additional advantages offered by

binary-level tools over traditional source-code level frameworks is the prime reason

for this great interest. Binary-level tools can be employed to analyze executables

produced by any compiler, can be applied in the absence of source code (legacy

binaries) and can be used by an end-user for custom security analysis and platform-

specific optimizations.

A typical source-code level framework employs various static analyses for an-

alyzing and optimizing programs. Symbolic analysis [76, 31, 77, 32] is an important

source-code level static analysis technique which represents the values of program

variables through symbolic expressions. A symbolic analysis tool interprets pro-

grams in an abstract symbolic domain, maps each operation in its concrete domain

to a corresponding operation in the symbolic domain and discovers the program

properties using abstract characteristics. Symbolic analysis methods have been used

regularly in traditional optimizing compilers. For example, optimizations like com-

64

mon subexpression elimination and global value numbering determine an equivalence

of two symbolic expressions and remove the redundant computations [7]. Symbolic

analysis has also emerged as an advanced technique to support the detection of

parallelism in programs. Various parallelizing compilers [76, 31, 77] have employed

powerful symbolic analysis frameworks to resolve data-dependency queries and to

enable critical optimizations like array privatization for effective parallelization of

programs.

However, the symbolic analysis frameworks employed in existing compilers op-

erate only on the program variables. These frameworks handle memory accesses and

memory locations in a very conservative manner. This is not suitable for executa-

bles since executables do not contain explicit program variables and store many of

their variables in memory locations. This problem is exacerbated in the x86 ISA

since its register set is very small, and hence most locations are memory-allocated.

Hence, existing symbolic analysis methods have limited effectiveness when applied

to executables.

There have been a very few methods for employing symbolic analysis for ex-

ecutables. Debray et al [58] suggested an alias analyses technique based on an

underlying symbolic analysis framework. Amme et al [8] proposed a similar sym-

bolic analysis framework for data dependence analysis of assembly code. However,

both these techniques suffer from a major limitation. They restrict their analysis

to registers only; they do not track symbolic values corresponding to the contents

of the memory locations. Consequently, they lose a great deal of precision at each

memory access. This severely limits their ability to effectively adapt various source

65

level analyses for executables.

Just as source-code symbolic analysis tools provide information about the sym-

bolic values of programs variables, an executable-level symbolic analysis framework

should provide information about the symbolic values of the contents of memory

locations. We present a novel symbolic analysis framework for executables which

computes a set of symbolic expressions, a Symbolic Value Set, that each data object

(not just registers but also memory locations) can hold at each program point. The

Symbolic Value Set is an abstraction for representing the possible values of each

data object in terms of other program expressions.

This novel symbolic analysis framework has multiple applications. First, it

improves the efficacy of various analysis like alias analysis and optimizations like re-

dundancy elimination for executables. This results in a more aggressive optimization

of executables. Second, it is useful for simplifying or speeding up subsequent binary

analysis. For example, various bug testing tools employ advanced constraint solvers

for detecting errors in a program. It has been shown that the time for various such

decision procedures to return a satisfying answer for a query can be cut in half by

using program optimization to simplify the query first [34]. Third, it improves the

performance of various advanced transformations for executables. Recently, various

researchers have suggested techniques for performing automatic parallelization from

executables [162, 93]. None of these binary parallelization methods can currently

apply advanced symbolic decisions like symbolic difference [76], which have been

proved to be very effective in source-level parallelization methods. The proposed

symbolic analysis framework will further improve the efficiency of all these paral-

66

lelization efforts by exposing more data independences which cannot be captured

by their existing methods.

Further, our framework does not use any symbolic, relocation, or debug infor-

mation since these are usually absent in deployed executables.

4.2 Related Work

In this section, we discuss related work pertaining to (i) Symbolic analysis, (ii)

Symbolic execution, (iii) Value numbering, and (iv) Binary Analysis.

Symbolic Analysis:There has been an extensive body of work employing

symbolic analysis for analyzing and optimizing programs. Various techniques broadly

differ in the symbolic abstraction which is maintained as part of their analysis.

Cousot [52] proposed an early method of using abstract interpretation to discover

the linear relationships between variables. Patterson [113] and Harrison [78] present

methods for computing value ranges of program variables and employ it for improv-

ing static branch prediction [113]. Rugina et al [124] employ symbolic constraint

solvers to determine the bounds of each variable in terms of its symbolic values at

the entry point of the program. Padua et al [144] developed a system for com-

puting symbolic values of expressions using a demand-driven backward substitution

analysis on Gated-SSA form.

Symbolic analysis has been used extensively in the parallelization community

to support the detection of parallelism and the optimization of programs. Haghighat

et al [76](Parafrase-2) present a symbolic analysis framework for computing a closed

67

form expression of induction variables as well as for analyzing program properties

that are essential in effective detection and exploitation of parallelization. Blume

et al [31](Polaris) present a symbolic range propagation mechanism to determine

the relationship between any two arbitrary symbolic expressions by maintaining a

set of symbolic range constraints for each program variable. They further employ

their symbolic ranges to improve data dependence queries. The SUIF compiler [77]

employs symbolic analysis to represent array indices in a symbolic form of loop in-

dex variables to apply array dependence tests. Fahringer et al [67] present a unified

symbolic evaluation framework, combining both data and control flow, for determin-

ing the symbolic expressions of variables as algebraic functions over program input

data.

All the above methods are source-code symbolic analysis techniques and obtain

symbolic expressions for only the variables. They lose a great deal of precision when

applied to binary executables directly due to the presence of memory accesses. On

the other hand, we present a symbolic analysis framework for executables which

tracks memory locations as well, and does not lose precision in the presence of

memory accesses.

Symbolic execution: There has been a great deal of work on symbolic ex-

ecution in the field of model checking [39, 38, 127]. The only similarity between

symbolic execution and symbolic analysis is that both use symbolic constraints to

represent values, other than that, they are not very related. Our symbolic analysis

is an abstract interpretation method which determines a set of symbolic expressions

for each object. On the other hand, symbolic execution generates and maintains

68

symbolic constraints per program path and does not generalize constraints to all

paths. Symbolic execution relies on constraint solvers to determine the feasibility

of each path and is employed mainly for bug testing of programs.

Value numbering: Various algorithms have been suggested to discover the

equivalence of expressions in a program. Since the equivalence problem is unde-

cidable, compilers typically implement algorithms that solve a restricted problem

of Herbrand equivalence. Most Global Value numbering algorithms are based on

an early algorithm by Kildall [88], where equivalences are discovered using abstract

interpretation on the lattice of Herbrand equivalences. Although the algorithm

is precise, it has exponential cost in compile time. Later methods, including the

algorithms by Alpern, Wegman and Zadeck (AWZ) [7] and Rosen, Wegman and

Zadeck (RWZ) [123], suggest more efficient algorithms for discovering Herbrand

equivalences based on the SSA form of the program. Gulwani et al [71, 72] present

a random interpretation-based GVN algorithm that discovers as many Herbrand

equivalences as the abstract interpretation algorithm of Kildall [88], while retaining

the polynomial-time complexity of more efficient algorithms like AWZ [7]. Van-

Drunen et al [150] present a value-based partial redundancy algorithm, which effec-

tively made value numbering a path sensitive algorithm. Bodik et al [32] combined

value numbering with backward symbolic propagation and path sensitive data-flow

analysis to propose a strong optimization framework.

However, all these value numbering algorithms are based on variables alone and

none of these variables propagate value numbers across memory locations. Hence,

these algorithms have limited application in the case of executables. In contrast,

69

our value numbering algorithm is implemented over a symbolic analysis framework

which tracks symbolic values for memory locations as well, thereby exposing more

equivalence in executables.

Binary analysis and optimization: There has been an extensive body

of work on analyzing executables. The work that is closely related to our work

are alias-analysis algorithms proposed by Debray et al [58], dependence analysis

proposed by Amme [8] and Value Set Analysis method proposed by Gogul et al [21].

Debray [58] developed an alias-analysis algorithm for executables where the basic

goal is to find an over-approximation of the set of values that each register can hold

at each program point. Amme at al [8] also present a similar mechanism for deriving

a set of values for each register but presented methods to avoid the loss of precision

at program join points. However, the biggest limitation of both these methods is

that they do not track memory locations and hence, lose a great deal of precision

at each memory access.

Gogul et al [21] present Value Set Analysis that finds an over-approximation

of the set of constant and memory address ranges that each abstract data object

can hold at each program point. However symbolic analysis is a different problem

from VSA - symbolic analysis derives symbolic expressions (rather than constants

and memory address ranges) which each abstract data object can hold, enabling the

applicability of our frameworks for detecting equivalences as well as for symbolic

analysis to detect program parallelization. There have been other binary analysis

tools like BitBlaze [136], Jakstab [89], BAP [36], UQBT [49] and none of them

perform customized symbolic analysis for executables.

70

There are various binary analysis tools [121, 28, 95] which analyze executables

in the presence of additional information like symbol tables or debugging informa-

tion. Such information is usually absent in deployed executables and our methods do

not make any assumption about the presence of such extra information. In addition,

none of them deal with the problem of symbolic analysis.

Recently, there has been some amount of work on parallelizing executables.

Kotha et al [93] present a method to automatically parallelize executables using a

binary rewriter. They adapt source-level affine parallelization methods for executa-

bles. Yardimci and Franz [162] present non-affine automatic parallelism in a binary

rewriter. Our symbolic analysis methods will further improve the efficiency of all

these parallelization efforts by improving data dependence queries, thereby exposing

more parallelism in programs.

4.3 Contribution

In this section, we discuss various analyses and optimizations which can be efficiently

represented in our framework.

4.3.1 Redundancy elimination

The problem of determining the equivalence of two computations is undecidable

in general. Consequently, compilers typically solve a restricted problem, where

expressions are considered equivalent if and only if they are computed using the

same operator applied on equivalent operands. This form of equivalence, where the

71

 b = a+2;

 c = a + 12;

 d = b + 10;

Symbolic Relations:
c = a+12
d = a+12

Allocations:
a: -4(%ebp) b:-8(%ebp) c: -12(%ebp) d: -16(%ebp)

1 mov -4(%ebp), %eax //Load a
2 add $2, %eax //Compute a+2
3 mov %eax, -8(%ebp) //Store b

4 mov -4(%ebp), %eax //Load a
5 add $12, %eax //Compute a+12
6 mov %eax, -12(%ebp) //Store c

7 mov -8(%ebp), %eax //Load b
8 add $10, %eax //Computer b+10
9 mov %eax, -16(%ebp) //Store d

(a) (b)

Figure 4.1: (a) A sample C code (b) Corresponding assembly code, the second
operand in the instruction is the destination

operators are treated as uninterpreted functions, is called Herbrand equivalence [73].

Value numbering optimization determines when two computations in a program

are Herbrand equivalent and eliminates one of them using a semantic preserving

transformation. Various advanced redundancy elimination algorithms have been

proposed which add semantic interpretation of various operators, thereby coupling

symbolic analysis with the value numbering optimization; resulting in the discovery

of more equivalent computations than defined by Herbrand equivalence [32].

However, all these techniques operate only on variables and treat memory

accesses very conservatively. Although, they are effective in discovering equivalences

in source code, not maintaining symbolic abstractions for memory locations renders

them ineffective for discovering equivalences in the executables.

Fig 4.1(a) shows a small source code example and corresponding relations

between various computations determined through symbolic analysis. The obtained

symbolic relations expose the equivalence between the computations for variables

72

Program Expression Value
Point Number

Line 1 x1 v1
Line 2 x1 + 2 v2
Line 4 x2 v3
Line 5 x2 + 12 v4
Line 7 x3 v5
Line 8 x3 + 10 v6

Program Expression Value
Point Number

Line 1 tmp v1
Line 2 tmp + 2 v2
Line 4 tmp v1
Line 5 tmp + 12 v3
Line 7 tmp + 2 v2
Line 8 tmp + 12 v3

(a) (b)

Figure 4.2: (a) Value numbering obtained without propagation through memory
locations (b) Value numbering with propagation through memory locations

c and d and existing symbolic analysis based value numbering methods [32] are

sufficient in removing the redundant computation (for variable d).

Unfortunately, when source-level symbolic analysis methods are applied to ex-

ecutables, they cannot prove the equivalence between computations c and d in the

example in Fig 4.1(a). Fig 4.1(b) shows a sample code which might arise when the

code example in Fig 4.1(a) is converted to an executable. Fig 4.2(a) shows the sym-

bolic relations and their corresponding value numbers when source-level symbolic

analysis techniques are applied to the assembly code in Fig 4.1(b). Here, variables

a, b, c and d are allocated to memory locations. Since symbolic analysis does not

propagate symbolic expressions across memory locations, a new symbol is defined

for each of the memory load instructions. The value numbers in Fig 4.2(a) depict

that the equivalence of computations at Line 5 (variable c) and Line 8 (variable d)

cannot be established.

The representation of symbolic abstraction for memory locations can eliminate

this limitation as shown in Fig 4.2(b). Suppose, the variable a (memory location

73

-4(%ebp)) has value tmp in the enviroment of symbolic abstraction. The represen-

tation of symbolic abstraction for memory locations implies that the variable %eax

at Line1 and Line 4 are assigned the value tmp in this environment. Similarily, the

memory location -8(%ebp) at Line 3 and the variable %eax at Line 7 are assigned

value tmp+2. Propagation of these symbolic values expose the equivalency between

computations at Line 5 (variable c) and Line 8 (variable d).

The above example shows that maintaining symbolic abstraction for memory

locations in executables has multiple advantages. It helps in more exposing more

equivalent computations and it also results in a more effective redundancy elimina-

tion of memory access instructions. The value numbers in Fig 4.2(b) establish an

equivalence between the load instructions at Line 2 and Line 7 and results in elimi-

nation of the latter, thereby improving a well studied optimization (load redundancy

elimination) for executables [130].

4.3.2 Program Parallelization

Compilers employ various program analysis techniques to exploit concurrency on

multiple processors. The notion of data dependence captures the most important

properties of a program for efficient parallel execution on multicores and parallel

machines. The dependence structure of a program defines the necessary constraints

on the order of execution of program components. Various dependence analyses

like array subscript analysis [157], distance vectors [25], integer programming based

tests [118] and GCD tests [142, 26] have been suggested for determining the depen-

74

 T2 = T1 + 1;
 for i = 0,N
 m = 2*i ;
 j = m + T1;
 k = m + T2;
 A(j) = A(k)

Symbolic Relations
j = T1 + 2i
k = T1 + 2i + 1

A: A_mem
m: 4[%esp], j: 8[%esp], k: 12[%esp], N: 16[%esp]
i: eax, T1: ebx, T2: ecx

1 mov %ebx,%ecx
2 add 1,%ecx //T2 = T1+1

3 mov 0,%eax //Initializing i
L1:
4 mov %eax, %edx //Calculating m
5 mul 2,%edx
6 mov %edx, 4[%esp]

7 mov 4[%esp], %edx //Calculating j
8 add %ebx,%edx
9 mov %edx, 8[%esp]

10 mov 4[%esp], %edx //Calculating k
11 add %ecx,%edx
12 mov %edx, 12[%esp]

13 mov 12(%esp), %edx //Array move
14 movl A_mem[%edx], %esi
15 mov 8[%esp], %edx
16 mov %esi, A_mem[%edx]

17 addl $1, %eax //Increment i
18 cmpl %eax, 16(%esp) //compare N and i
19 jl L1

(a) (b)

Figure 4.3: (a) A sample C code (b) Corresponding assembly code, the second
operand in the instruction is the destination

dence structure of a program and for determining parallel tasks.

However, these data dependence tests are more effective if the array subscript

expressions are represented as affine expressions directly in terms of loop indices and

loop invariants, rather than indirectly via other locations. As discussed in various

parallelizing compilers like Parafrase [76], SUIF [77], Polaris [31], a large percentage

of parallelization benchmarks have array references with symbolic terms other than

loop induction variables and have symbolic loop bounds.

Symbolic analysis has been suggested as an important technique for improving

75

the data dependence decisions taken by a compiler in such scenarios. It is a very

effective technique which represents array subscripts and loop bounds as a sym-

bolic expression, describing its value in terms of constants, loop-invariant symbolic

constants and loop indices. Standard dependence tests can then be employed to

resolve data dependence queries [77, 31]. Advanced symbolic analysis based tests

like symbolic difference [76] have also been proposed to determine the dependence

structure when standard dependence tests fail due to the lack of information about

certain variables at compile time. Symbolic analysis also enables various transfor-

mations like induction variable substitution and array privatization which further

aid in exposing the dependence structure of a program [76, 77, 31].

Fig 4.3(a) shows a small loop example where symbolic analysis is imperative

for establishing the absence of a loop carried dependency. The symbolic relations in

Fig 4.3(a) (obtained by applying symbolic analysis) show that access A(j) is equiv-

alent to A(T1+2*i) whereas access A(k) is equivalent to A(T1+2*i+1). Various

data dependence tests on these array reference expressions can reveal that these ac-

cesses will always refer to a disjoint set of locations (if T1 is even, then T1+2*i will

always have even values; whereas T1+2*i+1 will have odd values, and vice versa).

Consequently, the loop is Fig 4.3(a) is determined to be parallelizable from source

code.

Unfortunately, source-level symbolic analysis might not be able to obtain such

affine expressions for array subscripts from an executable. Fig 4.3(b) displays a

possible assembly code version of the loop in Fig 4.3(a). Here, variables m, j and k

are allocated to memory locations. As mentioned before, existing symbolic analyses

76

Symbolic Relations:

Line5 (%edx) (m) = 2*%eax
Line 7(%edx) = x1
Line8 (%edx) = x1+%ebx
Line 10 %edx = x2
Line11 (%edx) = x2+%ebx + 1
Line 13(%edx) = x3
Line14(%edx) (k) = x3
Line 15(%edx) = x4
Line16(%edx) (j) = x4

Symbolic Relations:

Line5 (%edx) (m) = 2*%eax
Line 7(%edx) = 2*%eax
Line8 (%edx) = 2*eax+%ebx
Line 10 %edx = 2*%eax
Line11 (%edx) = 2*%eax+%ebx + 1
Line 13(%edx) = 2*%eax + %ebx +1
Line14(%edx) (k) = 2*%eax + %ebx +1
Line 15(%edx) = 2*%eax+%ebx
Line16(%edx) (j) = 2*%eax+%ebx

(a) (b)

Figure 4.4: (a) Symbolic expressions obtained with no memory propagations (b)
Symbolic expressions with memory propagation

maintain symbolic abstractions only for variables. Hence, new symbols are created

to represent each of the loaded values in the environment of symbolic abstraction.

Symbolic expressions in Fig 4.4(a) corresponding to the assembly code in Fig 4.3(b)

depict that no determinable relation can be obtained between variables j (%edx

at Line 16) and k (%edx at Line 14). Consequently, data dependence analysis

conservatively assumes the presence of a loop carried dependence, which limits the

parallelizability of this loop.

On the other hand, maintaining symbolic abstractions for underlying mem-

ory locations enables the discovery of such affine expressions from executables also.

Fig 4.4(b) shows the obtained symbolic expressions when abstractions are also main-

tained for memory locations. The symbolic expressions for j (%edx at Line 14) and

k (%edx at Line 16) are affine expressions (2*%eax + %ebx and 2*%eax + %ebx+1

respectively) in terms of loop indices and invariants. Consequently, standard data

depenendence can reveal the lack of a loop carried dependence resulting in paral-

lelization of this loop.

77

There has been a recent surge in research methods exploring parallelization

of executables [93, 162]. However, executables-level parallelization is still in in-

fancy stage as compared to source-level parallelization. Our framework will enable

the application of an important source-level analysis framework to the executables,

thereby improving the data dependence decisions capability of all such executable

level parallelization techniques.

4.3.3 Alias analysis

Alias analysis has been extensively studied for source code. Recently, there has been

a surge of interest in extending pointer and alias analysis techniques to low-level

code. Early alias analysis techniques by Debray [58] and Amme et al [8] maintained

internal abstraction for only the variables. Consequently, they lost a great deal of

precision at memory accesses. Gogul et al [21] presented a novel Value Set Analysis

(VSA) framework which eliminated this limitation. VSA is a combined numeric

and pointer analysis which determines an over-approximation of the set of memory

addresses as well as the set of integer values that each data object (a register or a

memory location) can hold at each program point.

Although VSA is a very powerful alias analysis framework for executables, the

symbolic abstraction, as maintained in our technique, can aid the VSA abstraction

in resolving aliasing queries in some scenarios. Fig 4.5 depicts an example of such

a scenario. In Fig 4.5, suppose the variable %ebx at Line 1 has value > in the VSA

abstraction. This represents the fact that VSA could not narrow down the possible

78

1. mov %ebx, 8(%esp) //mov %ebx to 8[%esp]

2. mov (%ebx), %ecx //load from memory location

 //pointed to by %ebx

3. mov 8(%esp),%edx //load from 8[%esp]

4. mov 4(%edx),%eax //load from memory location
 //pointed to by (%edx+4)

Figure 4.5: A sample assembly code, second operand in the instruction is the
destination

set of values of %ebx; hence it is the universal set (>). The VSA abstraction for

the memory location 8[%esp] (and variable %edx) at Line 3 also has value >.

Consequently, the alias relation between memory accesses at Line 2 and Line 4 can

only be established as may-alias, since >+ 4 ≡ > in the VSA abstraction.

However, this result can be improved through our symbolic analysis framework,

where we maintain symbolic value sets corresponding to each data object. In Fig 4.5,

suppose the variable %ebx is defined to have value sym (6= >) in the environment

of symbolic abstraction. The representation of symbolic abstraction for the memory

location 8[%esp] results in the variable %edx at Line 3 also having value sym.

Comparing the memory locations at Line 2 and Line 4 in the symbolic abstract

enviroment reveals that these two instructions access distinct memory locations,

since sym 6= sym+4. Consequently, the alias relation can be established as no-alias

instead of may-alias in previous case.

We do not envision our technique as a replacement to existing alias analysis

79

EXISTING LLVM COMPILER

LLVM front

end

LLVM IR

optimizations

Binary reader

& Disassembler

x86 ISA

XML

Symbolic

Analysis

LLVM IR

LLVM IR

LLVM IR Optimized x86 back-end
C

C++

Ada

Fortran

 Input

binary

Output

binary

. . .

C back-end Output

C code

Redundancy

elimination

Parallelization

Decisions

Alias analysis

OUR NEW FRAMEWORK

Binary

Analysis

Tools

EXISTING SECONDWRITE FRAMEWORK

Figure 4.6: Organization of the system

frameworks; instead we view it as an additional abstract environment for solving

aliasing queries. This is driven by a simple observation that alias analyses are com-

posable. Multiple analysis techniques can be combined to yield a better overall

analysis than any of its components. An aliasing query involving two memory ref-

erences can be resolved if any of the multiple alias analysis methods can resolve

the query. The VSA abstraction, combined with the symbolic abstraction, pro-

vides a stronger alias analysis framework for executables than any existing aliasing

framework.

4.4 Overview

Fig 4.6 presents an overview of the our binary analysis framework. Our framework

is built over existing SecondWrite framework as presented in [93, 111]. SecondWrite

translates the input x86 binary code to the intermediate format of the LLVM Com-

80

piler [96]. LLVM, which stands for Low-Level Virtual Machine, is a well-known,

open-source compiler developed at the University of Illinois; it is now maintained

by Apple Inc. This conversion back to a compiler intermediate representation (IR)

is not a necessity for the work we present; any binary system can use our analy-

sis. However, using LLVM IR enables us to use LLVM′s rich infrastructure, such

as control-flow analysis, dataflow analysis, and optimization passes, so that we did

not have to write our own for the system. LLVM IR obtained above can be passed

through our analysis system to obtained an optimized IR which can be passed to

further binary analysis tools. In addition, LLVM’s x86 code generator can be used

to obtained a rewritten binary.

SecondWrite implements various mechanisms to obtain an intermediate rep-

resentation which contains features like procedure arguments, return values, types

and high-level control flow. SecondWrite also employs extra mechanisms to safely

handle indirect calls and indirect branches [135]. It employs alias analysis frame-

works present in LLVM to discover all the possible target procedures at an indirect

call-site, given by the points-to set of the operand in indirect call instruction. An

edge is added from the indirect call-site to all its possible target procedures. Indirect

branches are mostly present due to jump tables in the binary. Procedure boundary

determination techniques are devised to limit the possible branch targets within the

current procedure and extra control flow edges are added corresponding to the pos-

sible targets determined by alias analysis. If one of the target is outside procedure

boundary, it is handled as an indirect call.

81

4.4.1 Memory abstraction

There are two prerequisites for implementing a symbolic analysis for executables that

can track symbolic information for memory locations. First, a memory abstraction

is needed to represent a large number of runtime addresses by a smaller and finite set

of abstract locations. Second, executables regularly employ the indirect-addressing

mode for accessing memory locations.1 A mechanism is needed to determine the set

of memory locations which can be accessed by any direct or indirect memory access

instruction.

We employ the concept of abstract memory regions and abstract locations (a-

locs), defined by Value Set Analysis (VSA) [21, 22], to build a memory abstraction

for symbolic analysis. The address space of a program is divided into several non-

overlapping memory regions. For a program, the set of memory regions consists of

one abstract region per procedure for its stack frame, one abstract region per heap

allocation and a global region. Each memory region is further abstracted through

a set of a-locs. Intuitively, a-locs correspond to program variables in each memory

region. An a-loc is characterized by two attributes: its relative offset in the region

with respect to other a-locs and its size.

Having defined a-locs as above, VSA computes an over-approximation of the

set of integers and the set of memory addresses (collectively referred to as a value-

set) that each register and each a-loc holds at a particular program point. VSA

1For our purposes, a memory reference uses direct addressing if the address being accessed is a
constant that is part of the instruction, or has a constant offset from the stack pointer. Otherwise it
uses an indirect addressing mode, in which case the location being accessed is statically unknown.

82

Sym := Sym+ T |T

T := T ∗ F |F

F := l|n

l := [IR Variables]

n := [Int]

Figure 4.7: Grammar for symbolic expressions. + and * are standard arithmetic
operators, Int is the set of all integers, IR Variables are symbols in the obtained
intermediate representation

employs advanced affine relation analysis and loop bound analysis to conservatively

bound the memory locations accessed by any instruction. Hence, this algorithm can

be used to determine the set of all possible memory locations referred to by all the

direct and indirect memory access instructions. More details about this algorithm

can be found in [21].

4.5 Symbolic Abstraction

There are a variety of choices to represent the abstraction for symbolic domain

values. Fig 4.7 presents the grammar for representing the symbolic expressions in

our abstraction. As evident from Fig 4.7, symbolic expressions are numeric algebraic

polynomials containing sums of product terms of variables.

Symbolic Value Set: The objects in our abstract symbolic domain are Sym-

bolic Value Sets – a finite set of canonical symbolic expressions defined by the Gram-

mar in Fig 4.7. A Symbolic Value Set represents a conservative over-approximation

of the the set of symbolic values that each data object (IR variables and a-locs)

holds at a particular program point.

83

Various operations are defined on this symbolic expression as described below.

In general, sym terms below refer to symbolic expressions, not individual symbols.

(a) Create Symbolic Expression : Sym(var):

Associates a new symbolic expression with a program variable var, in the symbolic

abstraction domain.

(b) Canonicalize Operator : Can(sym):

Rearranges the symbolic terms present in the symbolic expression sym in a unique

canonical form (such as a lexicographical order determined by the pointers of vari-

ables in IR).

(c) Addition Operator : sym1 + sym2:

Computes a symbolic expression by adding sym2 to sym1 and returns the canoni-

calized version of the result.

(d) Multiply Operator : sym1 ∗ sym2:

Computes a symbolic expression by applying the arithmetic multiplication operator

between sym1 and sym2 and returns the canonicalized version of the result.

Indirect memory references in executables can update any memory location

which aliases with the address of the indirect reference. Symbolic Value Set ab-

straction, which contains a set of symbolic expressions, is sufficient to represent

84

the possible initializations at multiple locations. In order to limit the exponential

growth of symbolic expressions, we employ a limit on the cardinality of symbolic

value set, at the cost of some precision. The following operations are defined on

symbolic value sets:

(a) Union Operation: SymV alSet1 ∪ SymV alSet2

This operator computes the join of two symbolic value sets SymV alSet1 and SymV alSet2

(b) Add Operator : SymV alSet1 ⊕ SymV alSet2

This operator computes a new symbolic value set by adding each symbolic expres-

sion present in SymV alSet2 to each symbolic expression present in SymV alSet1.

Mathematically, this operation can be represented as

SymV alSet1 ⊕ SymV alSet2 = {sym1 + sym2 |

sym1 ∈ SymV alSet1,

sym2 ∈ SymV alSet2}

(4.1)

(c) Multiply Operator : SymV alSet1 ⊗ SymV alSet2

This operator computes a new symbolic value set by applying the multiplication op-

erator between each symbolic expression present in SymV alSet1 and SymV alSet2.

Mathematically, this operation can be represented as

85

SymV alSet1 ⊗ SymV alSet2 = {sym1 ∗ sym2 |

sym1 ∈ SymV alSet1,

sym2 ∈ SymV alSet2}

(4.2)

(d) Widen: ∇SymV alSet1

This operations implements the inherent widening operation in our symbolic

abstraction environment. As mentioned above, the abstract symbolic domain has

infinite ascending chains. In order to limit the exponential growth of symbolic

expressions, widening needs to be implemented at some nodes of the analysis. If

the required cardinality increases beyond a limit, we invalidate the current symbolic

value set.

∇SymV alSet1 = {if |SymV alSet1| > LIMIT,

then >

else SymV alSet1}

(4.3)

86

4.6 Symbolic Value Analysis

This section describes the Symbolic Value Analysis. Symbolic Value Analysis is

a flow-sensitive, context insensitive analysis which computes a conservative over-

approximation of a set of values that each data object (variables and a-locs) can

hold at each program point. The values are represented in an abstract symbolic

domain presented in Section 4.5.

4.6.1 Intraprocedural Analysis

This subsection describes the intraprocedural version of symbolic value analysis.

The inter-procedural version will be described in the next subsection. Symbolic

value analysis is defined as an abstract interpretation over the control flow graph of

a procedure. Symbolic value analysis effectively computes a Symbolic Map at each

program point, which is a representation of a mapping between the data objects

and corresponding symbolic value sets.

Our method assumes that the symbols corresponding to the binary code’s

registers have been converted to single-static assignment (SSA) form in the binary

tool’s intermediate representation (IR) before running our analysis. SSA form is

widely used in many compilers and binary analyzers, including SecondWrite, for

doing data flow analysis. Since in SSA form each variable is assigned exactly once,

a single symbolic map is sufficient to maintain flow-sensitive symbolic value sets for

variables. However, memory locations are usually not implemented in SSA format

in IR. Consequently, a symbolic map is maintained at each program point to repre-

87

sent flow-sensitive symbolic value sets for memory locations. Hence, symbolic value

analysis effectively computes the following symbolic maps:

SR: Map between variables (corresponding to registers in the input binary, and

variables in the IR) and their corresponding symbolic value sets

SMe: Map between a-locs and their corresponding symbolic value sets before a

program point e

Similar to any data-flow analysis, symbolic value analysis is applied iteratively

by traversing the CFG of a procedure in a topological order. The symbolic maps

SR and SMe are initialized as empty sets at the beginning of the analysis. The

iteration is continued until the maps reach a fixed point.

A symbolic map may contain at most one entry for each distinct data object.

A lookup in the map SR corresponding to a variable var not in the map, results in

a single entry symbolic value set containing a new symbolic expression Sym(var).

Correspondingly, a lookup for an a-loc not in the map SMe returns >.

The algorithm is implemented on the intermediate representation of the ex-

ecutable, but we present our algorithm on C-like pseudo instructions for ease of

understanding. Each instruction in the intermediate representation implements a

transfer function which translates the symbolic maps defined at its input to the

symbolic maps at its output.

The following definitions are introduced to ease the presentation.

88

Ri: IR (SSA) variables

e : A program point

SM ′
e: Map between a-locs and their corresponding symbolic value sets after pro-

gram point e

SR(r): Mapping of data object r (variable) in map SR

SMe(r): Mapping of data object r (a-loc) in map SMe

VSe(r): Set of memory addresses that data object r (variable or a-loc) can hold at

a program point e (obtained by Value Set Analysis)

(r, SV): Pairing between a data object r and a symbolic value set SV

VSA includes a concept of fully accessed and partially accessed a-locs. In order

to understand partial a-locs, consider that value set of a particular data object r at

a program point e, VSe(r), contains a list of memory addresses that the data object

r can hold at current program point e. If this object is dereferenced in a memory

access instruction of size s, the a-locs, that are of size s and whose starting addresses

are in set VSe(r), represents the fully accessed a-locs. The partially accessed a-locs

consists (i) a-locs whose starting addresses are in VSe(r) but are not of size s and

(ii) a-locs whose addresses are in VSe(r) but whose starting addresses and size do

not meet the condition to be fully accessed a-locs. As per the notation in VSA [21],

this operation is mathematically represented as:

89

{F, P} = ∗(VSe(r), s)

In above representation, F represents the fully accessed a-locs and P represent

the partially accessed a-locs. As the name suggests, only some portion of a partial

a-loc is updated or referenced in a memory access instruction. Partially accessed

a-locs are problematic since their symbolic expressions are hard to derive after they

are written to; hence, they are treated conservatively in our analysis, as will be

explained below.

Table 4.1 shows the mathematical forms of transfer functions for each instruc-

tion. Each row in this table represents the transfer function corresponding to an

instruction. Below, each of these transfer functions is discussed in detail

1. Assignment : e : R1 := R2

This is the basic operation of symbolic analysis where symbolic analysis behaves

similarly to the concrete evaluation. As presented in Row 1 in Table 4.1, any exist-

ing entry in the symbolic map SR corresponding to the variable R1 (computed in

an earlier iteration) is removed from the map and the symbolic value set of variable

R2 is assigned to variable R1.

2. Arithmetic Operation:e : R3 := R2OP R1

In such scenarios, the symbolic value analysis evaluates the symbolic values accord-

ing to the underlying mathematical operator. The evaluation is defined for addition,

90

Name Operation Transfer Function

1. Assignment e : R1 := R2
SR = {SR− SR(R1)} ∪ {(R1, SR(R2))}

2. Arithmetic Operation e : R3 := R2OP R1
if OP = +

tmp = ∇(SR(R2)⊕ SR(R1))

if OP = ∗

tmp = ∇(SR(R2)⊗ SR(R1))

else

//Create a new symbolic expression

tmp = Sym(R3)

SR = {SR− SR(R3)} ∪ {(R3, tmp)}

3. Memory Load e : R1 := ∗(R2)
{F, P} = ∗(VSe(R2), s)

if |P | = 0

tmp = ∇(
⋃

v∈F

SMe(v))

else

tmp = >

SR = {SR− SR(R1)} ∪ {(R1, tmp)}

4. Memory Store e : ∗(R2) := R1
{F, P} = ∗(VSe(R2), s)

if |F | = 1 & |P | = 0 &

Func is not recursive&

F has no heap a-locs

//Strong Update

SM ′

e = {{SMe − SMe(v)} ∪ {(v, SR(R1))}

| v ∈ F}

else

//Weak Update

SM ′

e = {{SMe − SMe(y) | y ∈ {F ∪ P}} ∪

{(v,∇(SR(R1) ∪ SMe(v))) | v ∈ F} ∪

{(p,>) | p ∈ P}}

5. SSA Phi Function e : Rn+1 = φ(R1, R2, ..., Rn)
SR = {SR− SR(Rn+1)} ∪ {(R1,∇(

⋃

i∈(1,n)

SR(Ri)))}

Table 4.1: Transfer functions for each instruction in a procedure Func. Here, s
denotes the size of dereference in a memory access instruction.

91

subtraction and multiplication operators. In case of addition, the underlying Add(⊕)

operator is employed and the underlying Multiplication(⊗) operator is employed

for evaluating the values in the case of multiplication operation. Subtraction oper-

ation is handled analogous to the addition operation by reversing the sign of each

coefficient in the symbolic expressions of second operand, R1. Hence, we only men-

tion addition operation to simplify the presentation. Since the remaining arithmetic

and logical operations are not represented, a new symbolic expression is introduced

to represent the result of the computation as presented in Row 2 in Table 4.1.

The introduction of a new symbolic expression is governed by a balance be-

tween the precision and analysis cost. The canonical symbolic expression term needs

to include other arithmetic and logical expressions to represent the remaining oper-

ations. The current canonical expression is chosen to limit the analysis cost of extra

operations.

3. Memory Load e : R1 := ∗(R2)

The propagation of symbolic values in memory loads relies on employing the un-

derlying Value Set Analysis. VSA provides a set of fully accessed and partially

accessed a-locs that the object R2 can hold at current program point e correspond-

ing to current dereference size s. If the current memory instruction does not access

any partial a-loc, the symbolic value of variable R1 is computed by unioning the

symbolic values corresponding to each of the possible a-loc. Otherwise, it is assigned

>.

92

4. Memory store e : ∗(R2) := R1

The propagation of symbolic values during memory stores also employs Value set

analysis. The propagation of symbolic values is governed by current memory store

accessing a single a-loc or multiple a-locs. If the current memory store only updates

a single fully accessed a-loc (referred to as a strong update), the existing symbolic

values of the destination memory location is replaced by the symbolic set. The

memory stores which update a partial a-loc or update multiple a-locs are referred

to as weak updates. In such cases, the new symbolic values are unioned with the

existing ones to obtain the updated symbolic value set of fully accessed a-locs. The

partially accessed a-locs are assigned symbolic >.

As explained in VSA [21], memory region corresponding to the stack frame of a

recursive procedure or corresponding to heap allocations potentially represent more

than one concrete a-loc. Hence, the assignments to their a-locs are also modeled by

weak updates.

5. SSA Phi Function: e : Rn+1 = φ(R1, R2, ..., Rn) At join points in the control

flow of a procedure, the symbolic value sets from all the predecessors are unioned

to obtain a new symbolic value set.

As per any flow-sensitive data-flow analysis, the symbolic map at a join point

in control flow graph is determined by unioning the symbolic maps from all the

predecessors. Existing symbolic frameworks have a property that every variable has

only one abstract symbolic value at a certain program point [76]. A new abstract

value is created for a variable at a join point if the variable has different abstract

93

symbolic values on different incoming edges. In contrast, our framework avoids this

loss of precision at join points by unioning the abstract values from all the paths

to obtain a symbolic value set for each data object. This increased precision results

in a more precise dependence analysis and in more effective resolution of aliasing

queries.

4.6.2 Interprocedural propagation

This subsection describes the interprocedural aspect of symbolic value analysis. In-

terprocedural analysis requires the correct handling of symbolic values at callsites

and return points.

Existing binary analysis tools implement various methods to recognize proce-

dure arguments and procedure returns independent of the calling conventions [164,

21, 111]. Various advanced data flow analysis have been suggested to recognize

register arguments, register returns and stack based arguments. SecondWrite also

implements various analyses to recognize the arguments. Once the arguments are

recognized, an intermediate representation is formed where formal arguments and

procedure returns are represented as a part of procedure definition and actual ar-

guments and actual returns are explicitly represented as a part of a call instruction

in the IR.

The symbolic value set of a formal argument for a procedure P is computed by

unioning the symbolic value sets of corresponding actual arguments across all the

call-sites for procedure P. Since binary programs always contain the entire program,

94

such whole-program analysis is always possible. Mathematically, the initialization

of formal fi of procedure P, where aci represents the corresponding actual argument

at a callsite c, is represented as

SR = {SR− SR(fi)} ∪ {(fi,∇(
⋃

∀c∈CallSites(P)

SR(aci)))} (4.4)

In order to propagate the symbolic values of memory locations, the memory

symbolic maps from each call site need to be unioned to determine the symbolic map

at entry point Pentry of a procedure P , similar to the symbolic map propagation at

join point in CFG of a procedure.

SMPentry
=

⋃

∀c∈CallSites(P)

SMc (4.5)

Similarly, at a return site, symbolic value set of return variable is evaluated

from the internal symbolic map for variables. Symbolic map, just after a call in-

struction C, is computed by unioning the symbolic maps at all the return points in

the called procedure P.

SMC =
⋃

∀r∈ReturnSites(P)

SMr (4.6)

95

Since VSA is an interprocedural analysis, it implicitly results in correct inter-

procedural propagation of symbolic values of underlying memory location. At each

memory load or store instruction, VSA provides a set of possible a-locs (belonging

to any procedure) which can be accessed by this instruction. The initialization of

symbolic maps at the entry point of a callee procedure ensures that all the required

symbolic values are propagated from the caller procedures to the callee procedure

and are available at memory loads. Similarly, the join of symbolic maps at exit

point in the caller procedures propagates the symbolic values modification from the

callee procedure back to the caller procedures.

As presented in Section 4.4, we employ the alias analysis frameworks present

in LLVM to discover all the possible target procedures at an indirect call-site and

insert an edge from the indirect call-site to all its possible target procedures in the

IR. This representation ensures that the interprocedural propagation as presented

above is sufficient to propagate the information correctly at indirect callsites. The

union in equation 4.6 is computed across all these possible target procedures P.

The externally called procedures are handled in one of the following three

ways. First, procedures which are known not to affect the memory regions (e.g.

puts, sin) are modeled as identity transformers (a NOP). External procedures like

malloc, which create a memory region, are also modeled as identity transformers

since we already handle these procedures by defining a memory abstraction HeapRgn

corresponding to each allocation site. External procedures like free, which destroy

a memory region, are conservatively modeled as NOP by our analysis. Next, unsafe

but known external procedures (e.g. memcpy) are handled by widening the symbolic

96

value set of all a-locs in the memory regions possibly accessed by the procedure.

Unknown external procedures (which include user defined libraries) are handled by

widening the symbolic value set of registers and all a-locs in all the memory regions.

Recursive procedures: The analysis presented in Table 4.1 handles stores in

recursive procedures as weak updates. However, in some cases default propagation

of symbolic abstraction interprocedurally for recursive procedures might result in

indefinite ascending chains. The widening operator in our analysis implicitly imple-

ments a fixed-point algorithm and prevents such exponential explosion of symbolic

expressions.

4.7 Dependence Analysis

The effectiveness of parallelizing compilers is highly dependent on the accuracy and

the preciseness of data dependence for array references in loop nests. As explained

in Section 4.3, the dependence tests for parallelization require a closed form (affine)

expression for array indices [76] in terms of loop index variables. The symbolic

analysis presented in Section 4.6 discovers such affine expressions for array indices

from executables, even if some of these indices are allocated to memory locations.

The widening operator in the symbolic abstraction might result in some loop

index variables to have value >. In order to obtain a closed form expression for such

loop index variables and for the array indices which are based on these variables,

symbolic analysis is applied on the loop body for two consecutive iterations resulting

in a system of recurrence relations, similar to the method suggested by [76]. These

97

recurrent relations are solved to obtain value of expressions at different loop iter-

ations as a function of loop index variables. For example, a variable i with initial

value 0 and which is incremented by value 2 in each loop iteration is identified as

a recurrence relation {0, 2, +}.

Existing source-level symbolic frameworks [76] obtain these recurrence rela-

tions for only the variables while our framework will obtain this recurrence relations

for IR variables as well as for a-locs. Since a loop-index variable might be allocated

to a memory location in an executable, our framework recognizes recurrence expres-

sions for memory-allocated loop index variables also, which cannot be recognized by

applying existing source-level frameworks to executables.

Existing parallelizing compilers based on symbolic analysis frameworks [76,

31, 77] collect the required information (recurrence relations and affine expressions)

by symbolic analysis and perform dependence testing using a variety of techniques.

Various common dependence techniques, as presented in [69, 77], employ recurrence

relations and affine expressions between array indices to characterize the dependence

structure in two aspects. First, they try to disprove the loop carried dependence

between pairs of subscripted references to the same array variable. Second, if de-

pendence exists, they try to characterize the dependence by determining the actual

distance in terms of number of loop iterations (referred to as distance vector) be-

tween two accesses to the same memory location.

Since our symbolic value set contains multiple symbolic values, instead of a

single abstract symbolic value, it entails some modifications to both these aspects of

dependence tests. First, instead of testing the existence of dependence between two

98

references using their unique abstract symbolic value, the dependence tests need to

be performed for each pair of abstract symbolic values belonging to the symbolic

sets. Two references are considered dependent if the dependence exists for even one

pair of abstract symbolic values. Mathematically, if S1 and S2 denote the symbolic

value set of data objects corresponding to two references d1 and d2, the test for

existence of dependence can be represented as:

Dependence(d1, d2) =
∨

e1∈S1,e2∈S2

Dependence(e1, e2) (4.7)

Next, if the above dependence tests fails to disprove the dependence, then for

loop-carried dependences the distance vector, DistVec, is calculated by unioning the

distance vectors determined from each pairs of abstract values.

DistV ec(d1, d2) =
⋃

e1∈S1,e2∈S2

{DistV ec(e1, e2)} (4.8)

Traditional source-level frameworks represent a single distance vector for two

accesses while the above test gives a union of distance vectors for any two accesses.

Multiple distance vectors arise when array are referenced through pointer accesses,

which can arise in an executable. A parallelization technique can define its own

operation to combine this union of distance vector for determining parallel tasks.

99

1 Input: Control flow graph G
2 Output:
3 ValNum: Map between an assignment instruction I, where I ∈ G, and its value
number

4 Local Definitions:

5 SymHash: Map between a symbolic value set and its value number
6 SymValSet(X): Symbolic value set of a variable X
7 CurValueNum = 0
8 Instruction I : X = (Operation,Operands)
9 for each instruction I in reverse post-order traversal of G do

10 CurExpr = SymValSet(X)
11 if SymHash.HasEntry(CurExpr) then

12 Temp = SymHash[CurExpr]
13 else

14 Temp = CurValueNum;
15 CurValueNum++;
16 SymHash[CurExpr]= Temp

17 ValNum[I] = Temp

Algorithm 2: Value numbering on symbolic expressions

4.8 Value Numbering

As explained through an example in Fig 4.1 in Section 4.3, value numbering on

memory based symbolic analysis frameworks exposes more equivalences than defined

by traditional GVN algorithms. In this section, we present the details of our value

numbering algorithm for recognizing equivalent computations.

Symbolic Value Analysis, as presented in Section 4.6, computes a set of sym-

bolic expressions that each data object can hold at each program point. In order to

employ this analysis for removing redundant computations, an abstract interpreta-

tion based algorithm is implemented on the lattice of symbolic expressions. This is

in contrast with Kildall’s value numbering algorithms [88] which expose equivalence

by implementing an abstract interpretation on the lattice of Herbrand equivalences.

Algorithm 2 describes our algorithm for determining the value numbers. The

100

process mimics the pessimistic version of the GVN algorithm presented in [123],

although the optimistic value numbering algorithm can also be adopted [7]. Al-

gorithm 2 improves over traditional GVN in three aspects. First, the equivalence

relation is determined on underlying symbolic expressions rather than program vari-

ables, consequently, our value numbering discovers more equivalences than GVN

where variable assignment is the only algebraic simplification. Second, memory load

instructions are also considered for discovering equivalent computations whereas

traditional GVN only considers arithmetic and logical assignment operations of the

form X = f(A,B) to determine the equivalence. Third, the propagation of sym-

bolic expressions among underlying memory locations results in a more precise flow

of symbolic values.

The presence of non-singleton symbolic value sets for the computations might

complicate the discovery of equivalent computations in some scenarios. If two com-

putations have the same symbolic value set of cardinality greater than one, then the

representation cannot establish their equivalence. This is the case even if they take

the same value in reality.

Fig 4.8 shows a small example exhibiting this problem. In this example, vari-

able eax and ebx are Herbrand equivalent, reflected by the traditional value num-

bering in Fig 4.8 (right side of block B3). However, without improvement, the

representation so far of our symbolic analysis (which incorporates memory loca-

tions) will not be able to prove this equivalence. According to the symbolic value

propagation mechanism as presented in Section 4.6, the symbolic value set of the

memory location (8[esp]) at the entry point of basic block B3 is a two element set

101

8[esp] esi

1.ecx 8[esp]

2.eax ecx + 8

…..

3.ebx ecx + 8

8[esp] edi

SymValSet(ecx): { sym1,sym2}

SymValSet(eax): { sym1+8,sym2+8}

SymValSet(ebx): { sym1+8,sym2+8}

VN(ecx): v1

VN(eax): v2 : v1+8

VN(ebx): v2 : v1+8

B1 B2

B3

SymValSet(esi) = {sym1} SymValSet(edi) = {sym2}

←

←

←

←←

Figure 4.8: An example CFG showing the limitations of symbolic expressions for
value numbering

{sym1, sym2}. Consequently, the symbolic value sets of computation 2 and 3 in

basic block B3 are also of cardinality two with elements {sym1+8, sym2+8}. These

two computations cannot be considered equivalent in the environment of symbolic

abstraction since it is not possible to statically prove that these computations would

refer to the same symbolic expression at runtime.

In order to discover all such equivalences while maintaining the inherent ad-

vantages of symbolic value sets, a new kind of operation is introduced to represent

the memory loads. If the symbolic value set of a memory load, Mi, has cardinal-

ity greater than one, a new operator φMi
is introduced to represent this operation.

Fig 4.9 shows the introduction of this operator for the example in Fig 4.8. This

operator behaves as an uninterpreted operator in the symbolic analysis framework.

Being an uninterpreted operator, a new symbolic expression is defined to represent

102

8[esp] esi

1.ecx

2.eax ecx + 8

…..

3.ebx ecx + 8

8[esp] ediB1 B2

B3

SymValSet(esi) = {sym1} SymValSet(edi) = {sym2}

←

←

←

←←

SymValSet(ecx): { sym3}

SymValSet(eax): { sym3+8}

SymValSet(ebx): { sym3+8}

])[8(espmiφ

Figure 4.9: Introduction of Phi for removing the limitations of symbolic expressions
for value numbering

the result of this computation. As shown in Fig 4.9, the presence of this uninter-

preted operator as part of symbolic analysis exposes the Herbrand equivalence.

The introduction of this new operator φMi
ensures that the symbolic analysis

framework retains its inherent advantages of exposing more equivalences due to

the tracking of memory locations and semantic interpretation of operators and also

discovers all the Herbrand equivalences which can be discovered by traditional value

numbering.

As explained in Section 4.7, a symbolic value set is more precise than a single

symbolic expression for data dependence analysis. In order to avoid losing this ad-

vantage, symbolic maps still hold a mapping between these uninterpreted operators

and their symbolic value sets. For data dependency tests, the symbolic values of

φMi
are recursively evaluated until we get rid of all such φMi

operators. This in-

103

ternal mapping and demand driven evaluation of symbolic value sets ensures that

introduction of this new uninterpreted operator does not adversely impact the data

dependence decisions.

Similar problem also arises for variables at join points (regular SSA phi). In

such scenarios, we employ the mechanism proposed by [7] to represent phi as an

uninterpreted operator.

4.9 Results

The symbolic analysis framework is implemented on LLVM IR as part of the Second-

Write framework presented in Section 4.4. The evaluation is performed on several

benchmarks from the SPEC2006 and OMP2001 suites and a real world program

(apache server), as listed in Table 4.2. Benchmarks are compiled with gcc v4.3.1

with O3 flags (Full optimization) and results are obtained on a 2.4GHz 8-core Intel

Nehalem machine running Ubuntu.

4.9.1 Static characteristics

Table 4.2 shows the running time and storage requirements of our symbolic analysis

framework on various benchmarks. The numerical value of Limit, the maximum size

of a symbolic value set, was kept to 5 in these experiments. The analysis time and

the required storage is largely a function of number of procedures in the benchmark.

The analysis time is typically low, within one minute, for most of the benchmarks

except for some intensive benchmarks like gcc and dealII.

104

Application Source Lang LOC # Proc Time(s) Mem
(MB)

bwaves Spec2006 F 715 22 4.25 24.47
lbm Spec2006 C 939 30 0.8 1.03
equake OMP2001 C 1607 25 0.64 3.62
mcf Spec2006 C 1695 36 0.31 2.85
art OMP2001 C 1914 32 0.36 2.74
wupwise OMP2001 F 2468 43 1.37 5.68
libquantum Spec2006 C 2743 73 1.30 6.30
leslie3d Spec2006 F 3024 32 8.24 23.72
namd Spec2006 C++ 4077 193 19.46 111.53
astar Spec2006 C++ 4377 111 1.49 8.39
bzip2 Spec2006 C 5896 51 4.8 90.27
milc Spec2006 C 9784 172 41.16 19.68
sjeng Spec2006 C 10628 121 9.93 34.98
sphinx Spec2006 C 13683 210 7.11 31.19
zeusmp Spec2006 F 19068 68 37.85 285.48
omnetpp Spec2006 C++ 20393 3980 21.66 58.24
hmmer Spec2006 C 20973 242 12.13 36.52
soplex Spec2006 C++ 28592 1523 21.21 144.14
h264 Spec2006 C 36495 462 29.56 220.53
cactus Spec2006 C 60452 962 25.65 185.05
gromacs Spec2006 C/F 65182 674 47.82 252.33
dealII Spec2006 C++ 96382 15619 114.30 240.18
calculix Spec2006 C/F 105683 771 192.99 404.32
povray Spec2006 C++ 108339 3678 71.01 242.61
perlbench Spec2006 C 126367 2183 94.18 210.37
gobmk Spec2006 C 157883 4188 60.66 242.19
gcc Spec2006 C 236269 6426 280.37 490.68
xalan Spec2006 C++ 267318 30,062 264.97 183.75

gzip Compress C 10671 98 1.42 20.06
tar Compress C 20518 343 9.58 18.85
ssh Web clinet C 73335 887 40.57 22.55
lynx Browser C 135876 2106 140.08 73.01
apache WebServer C 232931 2026 37.98 232.12

Table 4.2: Applications Table

105

0%

20%

40%

60%

80%

100%

b
w

a
v

e
s

lb
m

e
q

u
a

k
e

m
c

f

a
rt

w
u

p
w

is
e

li
b

q
u

a
n

tu
m

le
s

li
e

3
d

n
a

m
d

a
s

ta
r

b
z
ip

2

m
il

c

s
je

n
g

s
p

h
in

x

z
e

u
s

m
p

o
m

n
e

tp
p

h
m

m
e

r

s
o

p
le

x

h
2

6
4

c
a

c
tu

s

g
ro

m
a

c
s

d
e

a
l

c
a

lc
u

li
x

p
o

v
ra

y

g
o

b
m

k

p
e

rl
b

e
n

c
h

g
c

c

a
p

a
c

h
e

G
e

o
M

e
a

n

Benchmarks

P
e

rc
e

n
ta

g
e

1 2 to Limit TOP

Figure 4.10: Symbolic Value Set Visualization

Fig 4.10 presents an insightful result regarding the functioning of the symbolic

analysis. It divides the objects into various categories according to the size of their

symbolic value set in our abstract domain. On average, around 64% of objects can

be abstracted with a single symbolic expression in our symbolic domain, 16% of

objects need multiple expressions and 20% of objects cannot be represented with

finite symbolic abstraction (>, referred as TOP). Maintaining a symbolic value set

instead of a single symbolic expression allows us to maintain this extra precision for

16% of data objects.

In order to understand the importance of tracking memory locations, we obtain

the fraction of symbolic expressions that containing at least one symbolic alphabet

propagated through a memory location, out of symbolic expressions for all IR vari-

ables. Fig 4.11 shows that 35% of symbolic expressions contain alphabets propagated

through memory locations. In absence of an abstraction for memory locations, the

106

0

10

20

30

40

50

60

70

80

b
w

a
v

e
s

lb
m

e
q

u
a

k
e

m
c

f
a

rt
w

u
p

w
li
b

q
u

a
n

t
le

s
li
e

3
d

n
a

m
d

a
s

ta
r

b
z
ip

2
m

il
c

s
je

n
g

s
p

h
in

x
z
e

u
s

m
p

o
m

n
e

tp
p

h
m

m
e

r
s

o
p

le
x

h
2

6
4

c
a

c
tu

s
g

ro
m

a
c

s
d

e
a

l
c

a
lc

u
li
x

p
o

v
ra

y
g

o
b

m
k

p
e

rl
g

c
c

a
p

a
c

h
e

G
e

o
M

e
a

n

Benchmarks

P
e

rc
e

n
ta

g
e

Figure 4.11: Percentage of symbolic expressions that containing at least one symbolic
alphabet propagated through a memory location, out of symbolic expressions for all
IR variables

analysis would have introduced a new alphabet in all these expressions according to

the rules in Table 4.1. This validates our central contribution that tracking memory

locations is essential for effective symbolic analysis on executables.

Fig 4.12 highlights another interesting aspect of our symbolic analysis frame-

work. It presents the percentage of data objects which are represented as TOP (>)

in the symbolic abstraction for different choices of the maximum size of a symbolic

value set (LIMIT). This result shows that percentage of unrepresentable data ob-

jects reach a stable point and does not decrease further with increase in LIMIT,

validating our choice of LIMIT (5) for representing the symbolic abstractions.

107

20

22

24

26

28

30

32

0 1 2 3 4 5 6 7 8 9 10 11
Maximim limit on size of symbolic value set

%
 o

f
 T

O
P

 (
T

)
d

a
ta

 o
b

je
c

ts

Perlbench h264 cactus

Figure 4.12: Variation of TOP (>) data objects with varying size of symbolic value
set

4.9.2 Value numbering

We implemented the value numbering algorithm as presented in Section 4.8 for

determining equivalent computations and for eliminating redundant computations

from the executables. Fig 4.13 compares the number of equivalent computations

determined in three cases: one when no symbolic analysis is performed, second when

symbolic analysis is employed only for variables (obtained by neglecting the transfer

functions for memory load and memory store in Table 4.1) and third, when memory

based symbolic analysis is employed to determine equivalence. Hence, the second

case is similar to existing source-level methods of symbolic analysis since it tracks

only variables. The third case represents our contribution since it tracks memory

locations as well. As evident from this figure, value numbering employing memory-

108

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

b
w

a
v
e
s

lb
m

e
q

u
a
k
e

m
c
f

a
rt

w
u

p
w

li
b

q
u

a
n

t

le
s
li

e
3
d

n
a
m

d

a
s
ta

r

b
z
ip

2

m
il

c

s
je

n
g

s
p

h
in

x

z
e
u

s
m

p

o
m

n
e
tp

p

h
m

m
e
r

s
o

p
le

x

h
2
6
4

c
a
c
tu

s

g
ro

m
a
c
s

d
e
a
l

c
a
lc

u
li

x

p
o

v
ra

y

g
o

b
m

k

p
e
rl

g
c
c

a
p

a
c
h

e

G
e
o

M
e
a
n

Benchmarks

N
o

rm
a
li

z
e
d

 #
 E

q
u

iv
a
le

n
t

c
o

m
p

u
ta

ti
o

n
s

Without memory-based symbolic analysis With memory-based symbolic analysis

Figure 4.13: Normalized improvement in detection of equivalent computations (No
Symbolic analysis = 1.0)

based symbolic analysis is able to expose around 40% more equivalent computations

in executables than base value numbering (when no symbolic analysis is applied).

This figure also shows that symbolic analysis based only on variables is not sufficient

in exposing more equivalences in executables and exposes only 3% more equivalences

than discoverable when no symbolic analysis is applied. This validates our central

contribution – that tracking memory locations is essential to get good results for

symbolic analysis on executables.

Fig 4.14 compares the static counts of redundant instructions removed in the

three scenarios above and shows that memory-based symbolic analysis improves the

removal of redundant computations by around 32%. The removal of redundant

computations will improve the efficiency and efficacy of any subsequent binary anal-

ysis and will also improve the runtime of rewritten binary in case this analysis in

109

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

b
w

a
v
e
s

lb
m

e
q

u
a
k
e

m
c
f

a
rt

w
u

p
w

li
b

q
u

a
n

t

le
s
li
e
3
d

n
a
m

d

a
s
ta

r

b
z
ip

2

m
il
c

s
je

n
g

s
p

h
in

x

z
e
u

s
m

p

o
m

n
e
tp

p

h
m

m
e
r

s
o

p
le

x

h
2
6
4

c
a
c
tu

s

g
ro

m
a
c
s

d
e
a
l

c
a
lc

u
li
x

p
o

v
ra

y

g
o

b
m

k

p
e
rl

g
c
c

a
p

a
c
h

e

G
e
o

M
e
a
n

Benchmarks

N
o

rm
a
li
z
e
d

 #
 R

e
d

u
n

d
a
n

t
In

s
tr

u
c
ti

o
n

s
Without memory-based symbolic analysis With memory-based symbolic analysis

Figure 4.14: Normalized improvement in removal of redundant instruction (No
symbolic analysis=1.0)

employed in a binary rewriter.

4.9.3 Program parallelization

Next, we substantiate the impact of symbolic analysis on dependence tests for the

purpose of program parallelization. As presented in Section 4.7, various paralleliza-

tion methods first try to disprove dependence between pairs of subscripted references

to the same array variable and next try to characterize the dependence by determin-

ing the distance vector between two accesses to the same memory location in terms

of number of loop iterations. The dependence tests are considered to be successful

when a precise answer can be obtained for any of the above tests.

We implemented various common dependency tests like ZIV tests (Zero induc-

110

Application Suite # Tests #Success #Success %
(Without mem (With mem Imp
based sym based sym
analysis) analysis)

2mm Polybench 18 14 18 28.5
3mm Polybench 26 20 26 30.0
atax Polybench 6 3 4 33.3
bicg Polybench 13 6 10 66.7
covariance Polybench 19 16 19 18.7
doitgen Polybench 25 10 23 130.0
gemm Polybench 14 12 14 16.67
gemver Polybench 26 22 26 18.18
gesummv Polybench 13 9 12 33.3
jacobi Polybench 27 13 13 0
ft NAS 127 37 43 16.2
lu NAS 4866 1438 2078 44.5
bt NAS 2866 1844 2237 21.3
sp NAS 3317 2287 2815 23.1

AVG 34.3

Table 4.3: Parallelization benchmarks

tion variable), SIV test (Single induction variable), and MIV test (Multiple induction

variables) as presented in [69]. We measured the number of array references where

any of the dependence tests was able to eliminate dependence, or was able to provide

a precise answer to the distance between dependencies.

We have tested our framework on executables of benchmarks from the Polyhe-

dral Benchmark suite [115] and the NAS benchmark suite [108]. Table 4.3 describes

the usage and success frequency of dependence tests for each of the benchmarks. It

lists the number of times the test was applied in each benchmark and the number

of times the test was able to give a precise answer in two situations: using the mem-

ory based symbolic analysis and using only variable based symbolic analysis. Since

dependence tests rely on affine expressions for loop indices, none of the dependence

tests succeed when no symbolic analysis is applied. Hence, we omit the results for

the case of no symbolic analysis. This table shows that the memory based symbolic

analysis framework improves the precision of standard dependence tests on executa-

111

bles by 34% on average. The improvement in the precision of dependence tests will

further enhance the ability of binary-level parallelizers.

Existing binary-based parallelization techniques [93, 162] implement custom

methods to recognize induction variables from binaries. These techniques are or-

thogonal to our method, consequently, we have not compared our techniques with

these methods. Nonetheless, our symbolic analysis framework can obviate the need

for any custom induction variable recognition method for binary-parallelization.

4.9.4 Alias analysis

As mentioned in Section 4.3.3, although Value Set Analysis (VSA) is a powerful

alias analysis algorithm for executables, there are a few scenarios where the symbolic

abstraction can aid VSA abstraction in resolving aliasing queries. We identified a

few scenarios where VSA yields imprecise answer to aliasing queries. One example

of such a scenario is allocation of arrays with statically unknown size since VSA

does not declare memory abstractions for such arrays. The underlying reason is

that their algorithm relies on an Aggregate Structure Identification algorithm [120]

which requires constant static bounds of arrays to represent array access constraints

for constraint solvers. Another common example is accessing an element of an array

with an input dependant index.

In order to evaluate the effectiveness of our symbolic analysis, we compare

it with VSA in only those portions of binary code where VSA results in imprecise

answers due to the above limitations. In order to identify such locations in the

112

0

20

40

60

80

mcf sjeng h264

Benchmarks

%
 o

f
a

li
a

s
in

g
 q

u
e

ri
e

s
 r

e
s

o
lv

e
d

Figure 4.15: Alias analysis results

code, we implemented a custom data flow analysis that identifies whether the mem-

ory address accessed in a memory access instruction is input dependent (statically

unknown, hence > in VSA). The analysis begins by defining the variables resulting

from known I/O external function (e.g. fread) as input dependant. This informa-

tion is then propagated interprocedurally accross the whole program in a method

similar to program slicing method presented by Horwitz et. al. [83]. The above

data-flow analysis is implemented on the source code to identify the code locations

where VSA yields imprecise answers to aliasing queries. The symbolic analysis and

VSA results are compared in the corresponding code locations in the executables.

Fig 4.15 lists a few sample benchmarks for our custom data flow analysis

identified a significant number of code locations. For each benchmark, Fig 4.15

presents the percentage of aliasing queries which symbolic analysis was able to re-

113

solve (must-alias or no-alias); among queries for which VSA provided an imprecise

answer (may-alias). As evident from the figure, our method can resolve between

10% and 65% of aliasing queries that could not be resolved using VSA alone. This

result establishes that symbolic analysis can aid VSA in improving the precision of

aliasing decisions in executables. In the above examples, we found no imrovement

in the resolution of aliasing queries when we switched off the transfer functions for

memory loads and stores – this shows the importance of tracking memory locations

for improved alias analysis as well.

114

Chapter 5: Improving memory abstraction

5.1 Precise Memory Model

Executable specific artifacts such as indirect call transfer instructions (CTI) com-

plicate the task of recovering a precise memory abstraction while maintaining the

functionality in IR. A memory abstraction involves associating each stack memory

reference to a set of variables on the memory stack. This is useful since most pro-

gram analysis techniques require variables rather than memory locations. In order

to recover such an abstraction, we need to determine the value of stack pointer at

each program point in a procedure relative to its value at the entry point. This

is usually accomplished by analyzing each stack modification instruction, including

CTIs which can possibly modify the stack pointer due to several reasons such as

cleanup of arguments passed on the stack.

However, the modification in the value of stack pointer cannot be easily de-

termined in all scenarios. For example, in case of an indirect CTI, the stack modi-

fication is deterministic only if all its statically determined possible targets modify

the stack pointer by the same value. However, such targets might modify the stack

pointer by different values, or a call to an external function with an unknown pro-

115

totype might have a statically indeterminable impact on the value of stack pointer.

Existing frameworks such as IDAPro [84] and CodeSurfer/X86 [21] require that the

return from a CTI should always modify the stack pointer by a deterministic con-

stant value. In above mentioned scenarios, CodeSurfer/X86 recovers an imprecise

memory abstraction that does not associate stack memory references to variables on

stack, hurting the analyzability of IR. In contrast, IDAPro aims to recover a precise

memory abstraction; but when it cannot, it makes unsafe assumptions yielding a

non-functional IR.

We present techniques for recovering a precise memory model and functional

IR in such scenarios. Our mechanism formulates a set of constraints using control

flow constructs in the caller procedure to compute the value of stack modification

at a call-site. The constraints are solvable in most scenarios. When the constraints

cannot be solved, it embeds run-time checks to maintain the functionality of IR.

This enhanced memory model improves the precision of several analysis techniques

for executables.

5.2 Motivation

In this section, we demonstrate the limitation of existing frameworks in obtain-

ing a functional IR with a precise memory model and the relative importance of

considering the underlying memory model for symbolic abstraction.

A source program has an abstract stack representation where the local vari-

ables are assumed to be present on the stack but their precise layout is not specified.

116

In contrast, an executable has a fixed physical stack layout.

To recreate an IR, the physical stack must be deconstructed to individual

abstract frames, one per procedure. Since, each frame comprises variables from the

source code, a memory model is defined as precise if each such frame can be divided

into abstract locations analogous to the original variables.

Previous methods [21] have approached this problem in two steps. First, all

the instructions in a procedure which can modify the stack pointer are analyzed to

compute the maximum size to which the stack can grow in a single invocation of the

procedure among all its control-flow paths. Next, each such abstract frame is further

abstracted through a set of a-locs. An a-loc is characterized by two attributes:

its relative offset in the region with respect to other a-locs and its size. The a-loc

representation requires the determination of the value of the stack pointer at each

program point in a procedure relative to its value at the entry point.

As highlighted in Section 5.1, this is usually accomplished by tracking each

update to the stack pointer. However, several artifacts might result in a non-

deterministic stack modification, invalidating the inherent assumption in previous

frameworks [21]. Next, we analyze such scenarios in more detail. We characterize

the impact of a CTI I on the value of stack pointer by introducing the following

definition:

StackDiff(I) = Stack Pointer after I - Stack Pointer before I.

The term StackDiff can be applied to either the CTI or a corresponding called

procedure, and represents the stack modification amount in either case. StackDiff

of a CTI can be positive if the called procedure cleans up its arguments, or zero

117

if it does not. In theory, it can be negative if the procedure leaves some local

allocations on the stack, although we have not observed this in compiled code.

Several approaches have been suggested to calculate the value of StackDiff by

symbolically evaluating all the stack modification instructions in a procedure [21].

As per these methods, StackDiff at an indirect CTI is deterministic if all possible

targets have the same value of StackDiff. Thereafter, the stack pointer in the

caller procedure is adjusted by StackDiff amount. This adjustment is imperative

for maintaining the correctness of data-flow in caller procedure.

However, StackDiff cannot be determined statically in all scenarios. For

example, possible targets of an indirect CTI might have different StackDiff, or

an external function with an unknown prototype might have a statically unknown

StackDiff. In such scenarios, existing frameworks either result in an imprecise

memory abstraction or fail to maintain the correctness. As per CodeSurfer/X86,

“if it cannot determine that the change is a constant, it issues an error report”

(Section 4.2) [21]. Hence, the corresponding frame cannot be represented through

a-locs, resulting in an imprecise memory model. IDAPro applies a constraint-

based mechanism to compute the values of StackDiff independent of the called

procedures. However, when the underlying method fails to determine a unique

solution, it compromises the correctness by accepting one feasible solution (which

could be wrong) out of an infinite number of possible outcomes [133].

Fig 5.1 illustrates an example of such a scenario. In Fig 5.1, a local region

of size 24 is allocated in a procedure, consequently, the memory access at Line 2

results in the discovery of an a-loc at offset 16. Suppose the possible targets of the

118

 main:
1 sub 24, $esp //Local Allocation
2 mov $10, 8(%esp) //Access (%esp+8)
3 call *%eax // An Indirect call
4 mov $20, 12(%esp) //Access
 //(%esp+12+UNKNOWN)
 ……

Figure 5.1: An example demonstrating the imprecision in the presence of indirect
calls, second operand in the instruction is the destination

indirect CTI at line 3 have different StackDiff values. Consequently, esp after Line

3 has an unknown offset relative to its value at the entry point of the procedure.

Hence, no a-loc can be identified at Line 4. On the other hand, if StackDiff value

is calculated wrongly, it results in an incorrect data-flow at Line 4.

Our hybrid mechanism maintains the precision as well as functionality. Our

static mechanism enables abstraction through a set of a-locs and dynamic mech-

anism guarantees the correctness when StackDiff cannot be computed.

5.3 Recovering precise memory abstraction

In this section, we discuss our hybrid static-dynamic solution to obtain a functional

representation with a precise memory model. We first present a symbolic constraint

mechanism to determine the value of StackDiff for each CTI where it is unknown.

Next, we discuss our solution for maintaining the functionality even when StackDiff

at some CTIs cannot be solved. Our analysis employs the prototypes of well-known

library functions, similar to to the IDAPro’s FLIRT database [84], for determining

119

their StackDiff value. We assume that existing methods [21] are able to determine

the value of StackDiff for each procedure, which holds true under the assumptions

of standard compilation model.

5.3.1 Static Computation

A CTI I can result in an unknown StackDiff in three cases, which we collectively

refer to as Unknown CTIs.

Case 1: I is a direct CTI to an external procedure with unknown prototype.

Case 2: I is an indirect CTI with unresolved targets.

Case 3: I is an indirect CTI and its targets have different StackDiff.

In such scenarios, our symbolic constraints based mechanism employs several

boundary conditions imposed by the control flow inside the corresponding caller

procedure to determine StackDiff. The proposed constraint formulation does not

require us to determine the precise set of targets of an indirect CTI, which itself is

an extremely challenging problem.

We define symbolic values XI and SI for representing StackDiff and local stack

height at a CTI I. Every stack modification instruction in a procedure is analyzed

to derive an expression of SI in terms of the XIs. The resulting expressions are

transformed into a linear system of equations that can be solved to calculate the

value of XIs.

Fig 5.2 presents the rules for generating symbolic constraints and equations

in a particular procedure P. It presents rules for analyzing each stack modification

120

Unknown Symbolic Values : XI , where XI = StackDiff of procedure call I
Initial/Helper Variables :
Targ(T): Set of procedures targeted by call target address T
StackDiff(f): StackDiff of procedure f
Y SET(F) = ∪f∈FStackDiff(f)
BeginP = Entry point of procedure P; PredBB = Predecessors of basic block BB;
BeginBB,EndBB = Entry point,terminator of basic block BB

SI = Stack height after instruction I;
SBB = Stack height at beginning of basic block BB;
PrevI = the previous instruction to I (I 6= BeginBB)
SI’ = if (I 6= BeginBB) then SPrevI else SBB
R : A register, Size(R): Size of register R, N: A constant
Initial Conditions : SBeginP = 0
Data flow rules :

For every instruction I:

I = push R ⇒ SI = SI’ + size(R)

I = pop R ⇒ SI = SI’ - size(R)

I = add esp, N ⇒ SI = SI’ - N

I = sub esp, N ⇒ SI = SI’ + N

I = jmp L ⇒ SBeginL = SI’

I = call Y ⇒

if (Y SET(Targ(Y)) contains a single constant C)

SI = SI’ + C

else

SI = SI’ + XI

default (if not an invalidation condition) ⇒ SI = SI’

Boundary Conditions :
1. ∀ BB: ∀ Pred ∈ PredBB, SBeginBB = SEndPred
2. I = ret : Constraint SI’ = 0
Invalidation Conditions :
1. I = esp ← ... /* Any assignment except in data-flow rules*/
2. I accesses return address

Figure 5.2: Data flow rules used to determine stack modifications in a procedure P

121

instruction, a set of initialization and boundary conditions for solving the symbolic

equations and a set of conditions which invalidate our symbolic constraints for the

current procedure.

In an x86 program, several instructions can modify the value of stack pointer.

The local frame in a procedure is usually allocated by subtracting a constant value

from esp. Similarly, the local frame is deallocated by adding a constant amount to

esp. Push and pop instructions implicitly modify the stack pointer by the size of

amount pushed onto the stack. The rules in Fig 5.2 incorporate the deterministic

modification at each CTI. An indeterministic modification is modeled symbolically

as XI. The dataflow rules in Fig 5.2 obtain an expression for SI considering each

such stack modification instruction.

In order to solve the symbolic equations obtained through dataflow rules,

Fig 5.2 generates two constraints based on the control flow in procedure P. These con-

ditions hold true for every executable following the standard compilation model [21]:

→ ∀Pred ∈ PredBB, SBeginBB = SEndPred: This condition implies that at a merge

point in the control flow of a procedure, the stack height at the end of every

predecessor basic block must be equal. Otherwise, any subsequent stack access

might access different stack locations depending on the path taken at run time,

resulting in an indeterminate behavior.

→ SI’ = 0 ∀ ret ∈ P: In an x86 program, a return instruction loads an ad-

dress from the location pointed by esp and sets the program counter to the

loaded value. Since the return address is pushed by the caller procedure and

122

a compiled program usually does not access the return address directly, esp

can refer to the return address only if stack height SI’ is zero. Thereafter

the return instruction may optionally specify an operand to clean up some

incoming arguments, so StackDiff could be positive or zero.

Fig 5.2 also formulates the following conditions which invalidate the assump-

tions behind our boundary conditions. In such situations, we discontinue our static

mechanism and rely on our dynamic mechanism to maintain the correctness of IR.

→ I = esp ← ... : Any assignment to esp other than those in data-flow rules

implies a local frame allocation of variable size. In such a scenario, the bound-

ary conditions fail to obtain a solution for XI. However, this condition arises

in extremely rare circumstances of variable size arrays on stack frame.1

→ I accesses return address: In a usual compiled code, StackDiff is either zero

or positive. In theory, procedures could have a negative StackDiff, implying

that the procedure leaves some local allocations on the stack. In such scenarios,

esp would not point to the return address at the point of return. Hence, a

return must be implemented by explicitly accessing the return address from

the middle of the stack. This invalidates the assumption behind our boundary

condition 2 and we resort to run-time checks.

The resulting symbolic equations are solved by employing a custom linear

solver that categorizes the equations into disjoint groups based on the variables

1Code produced by popular compilers contains x86 idioms like leave instruction which implic-
itly assign a previously stored value to esp. Such idioms are currently handled explicitly in our
framework.

123

used in every equation. A group is solved only if the number of equations is equal

to the number of unknowns. We keep propagating calculated values to other groups

until no more calculated values are present. Once we obtain a solution of XI for

each I in a procedure, we can obtain a safe abstraction of abstract memory regions

into a set of a-locs using the methods in [21, 74].

5.3.2 Dynamic Mechanism

As mentioned above, the above method does not guarantee a solution for all the

scenarios. For example, the above method fails to determine the value of StackDiff

in basic blocks containing multiple CTIs each with an unknown XI value. Below,

we discuss our dynamic mechanism to handle all the three cases of Unknown CTIs

presented in Section 5.3.1.

Case 1: Since this case represents control transfer to an external procedure, the

body of the called procedure cannot be modified. Such scenarios are handled by

employing a trampoline mechanism to call the external procedure. The trampoline

dynamically computes the shift in stack pointer value before and after the call using

inline assembly instructions.

Case 2 and Case 3: Recall from Section 4.4 that an indirect CTI is translated to

the corresponding location in IR using a switch statement inside a call translator

procedure. In such scenarios, StackDiff is declared as an explicit return variable

in the prototype of call translator procedure. The definition of the call translator is

modified to return the value of StackDiff for the called procedure in each switch

124

0

20

40

60

80

100

bzi
p2

sj
en

g

om
net

pp

so
ple

x

h26
4

ca
ct

us
dea

l

povr
ay

per
lb

en
ch gcc

xa
la

n

G
eo

M
ea

n

Benchmarks

%
 o

f
p

ro
c

e
d

u
re

s
Static computation Runtime check

Figure 5.3: Percentage of procedures with unknown CTIs. The static represents
cases when constraint solvers succed

statement.

5.4 Results

Fig 5.3 and Fig 5.4 present the statistics regarding our hybrid mechanism for ob-

taining precise memory model and functional IR. We only present statistics for

benchmarks containing non-negligible Unknown CTIs (negligible defined as ≤ 10 or

number of procedures containing Unknown CTI ≤ 1%). Of 33 programs in Table 4.2,

11 had non-negligible unknown CTIs. Fig 5.3 presents the fraction of procedures

containing Unknown CTI in each of these benchmarks. It divides this fraction into

scenarios where the static mechanism was able to determine the value of StackDiff

and where the dynamic mechanism was required to maintain the functionality. Case

1 (Section 5.3.1) does not arise since we employ the prototypes for standard library

125

0

10

20

30

40

50

60

bzi
p2

sj
en

g

om
net

pp

so
ple

x

h26
4

ca
ct

us
dea

l

povr
ay

per
lb

en
ch gcc

xa
la

n

G
M

EA
N
-C

G
M

EA
N
-C

++

Benchmarks

%
 o

f
n

e
w

 a
-l

o
c

s

Figure 5.4: Additional alocs added as a result of constraint solvers, normalized to
original number of alocs

procedures. We never hit the invalidation conditions stipulated in Fig 5.2, further

justifying the assumptions behind our constraint formulation.

Fig 5.4 illustrates the additional a-locs derived as a result of successful con-

straint solutions, normalized with respect to original a-locs of type Stack. As ev-

ident, we were able to obtain 10% more a-locs in C benchmarks and 30% more

a-locs in C++ benchmarks on average. This result reinforces the relative impor-

tance of our mechanism in C++ benchmarks. This enhanced a-locs abstraction is

employed in our symbolic value analysis framework.

Fig 5.5 captures the enhancement in the precision of Symbolic Value Anal-

ysis with the presence of additional a-locs derived by the constraint mechanism.

According to the rules in Table 4.1, a load instruction accessing an unknown mem-

ory location is represented by a new symbolic alphabet. Fig 5.5 demonstrates the

126

0.4

0.5

0.6

0.7

0.8

0.9

1

bzi
p2

sj
en

g

om
net

pp

so
ple

x

h26
4

ca
ct

us
dea

l

povr
ay

per
lb

en
ch gcc

xa
la

n

G
eo

M
ea

n

Benchmarks

N
o

rm
a
li

z
e
d

 a
g

a
in

s
t

o
ri

g
in

a
l

a
-l

o
c
s

Figure 5.5: Variables requiring a new symbolic alphabet in presence of additional
a-locs

decrease in the number of load instructions requiring a new alphabet while employ-

ing additional a-locs. The presence of additional a-locs enhances the precision of

symbolic value analysis by 10% to 50% in several programs.

127

Chapter 6: Information flow security of executables

6.1 Introduction

The rapid rise in cyberattacks has exposed serious security vulnerabilities in soft-

ware systems. Information flow violations collectively comprise one of the most

critical vulnerabilities in this regard. Such violations subject the programs to se-

vere security attacks like format-string attacks [132], directory-traversal attacks [56],

cross-site scripting, SQL-injection [143] and also result in the leakage of confidential

and sensitive information to untrusted parties [147].

Research has led to a number of approaches proposed to mitigate the suscep-

tibility arising due to information flow violations in programs. The most popular of

these methods model the violations as violations to an information flow policy, and

enforce the policy through a tracking mechanism [110, 119, 64, 50, 87, 163]. The

inherent idea is to mark the untrusted (or confidential) information in a program as

tainted, propagate the tainted labels through the program’s data and control flow

and enforce the required policy by raising an alarm at every illegal use of the tainted

information.

Despite significant research efforts, existing approaches fall short with regards

128

to several desired characteristics of security techniques: practicality, defined as the

ability to handle off-the shelf programs without any performance overhead; pre-

cision, defined as the ability to uncover policy violations without excessive false

positives; scalability, defined as the applicability to large real-world programs; and

extensibility, defined as the ease of handling multiple security policies and the ability

to counter rapidly-evolving threats.

Regarding practicality, several existing information flow tracking systems are

constrained by their underlying frameworks. A significant number of previous infor-

mation flow systems either leverage dynamic binary frameworks or statically analyze

the applications written in high-level languages like C, C++. Both the approaches

have limited applications in real-world scenarios, as discussed next.

Information-flow tracking based on dynamic frameworks [110, 119, 64, 50]

experiences high runtime overhead unless the tracking mechanism is implemented

in hardware [56]. Further, dynamic frameworks only detect the violations arising in

a single execution path. Therefore, static techniques seem to present an appealing

alternative.

However, most static information flow systems detect violations from programs

written in high-level languages [143, 132]. These methods have limited applicability

in many real-world scenarios where the source-code of third-party and proprietary

executables is not available to end-users who want to protect their systems. Further,

it is a well known fact that compilers are a source of vulnerabilities in programs [21]

and source-code analysis is insufficient in detecting the violations arising due to

compiler-introduced bugs.

129

There has only been limited work in uncovering vulnerabilities in executables

using static mechanisms, and these have their own drawbacks. The existing static

mechanisms for detecting vulnerabilities in executables fail to combine precision and

scalability. Such frameworks [53, 155, 61] ignore memory and aliasing issues, result-

ing in an imprecise analysis and limited vulnerability detection. As demonstrated

by existing source code mechanisms [101], a precise points-to analysis is imperative

for achieving a low false positive rate. Analyzing memory accesses is even more

essential for executables than source code since executables mainly contain memory

locations instead of explicit program variables. The paucity of registers in x86 ISA

further underscores this requirement. Hence, ignoring aliasing issues limits the ca-

pability of existing tools for executables to reliably expose vulnerabilities without

plaguing the results with false alarms.

However, analyzing memory accesses in an elementary manner in executa-

bles might adversely impact the scalability of the system. As observed in several

source-level frameworks, an exhaustive analysis of memory accesses constrains the

scalability of the underlying system [79, 143]. Hence, previous source-level infor-

mation flow systems [143, 53, 132] balance precision and scalability in the presence

of pointer operations by employing innovative frameworks such as thin slicing [143]

and type inference mechanisms [132]. However, no counterpart methods of such

frameworks have been proposed for executables, resulting in severe precision and

scalability challenges for static executable analysis systems.

Further, several existing information flow frameworks lack extensibility since

the underlying single-bit taint tracking mechanism cannot be extended to detect var-

130

ious advanced information flow violations. Even though single bit taint mechanisms

are more efficient in terms of memory usage, they lack the ability to enforce multiple

policies concurrently, which limits its capability to protect against the attacks that

exploit multiple vulnerabilities in an orchestrated manner [139]. As presented by

Chang et al. [43], single-bit frameworks cannot expose file-disclosure vulnerabilities.

We present DemandFlow, a novel information flow mechanism for executables

to address the above limitations of practicality, precision, scalability and extensibil-

ity. DemandFlow eliminates a major limitation of existing static information flow

frameworks for executables by employing precise mechanisms for propagating in-

formation across memory locations. In addition, DemandFlow boosts scalability by

propagating information across only those program variables and memory locations

which are critical for the flow of information regarding a particular policy. Instead of

analyzing the whole program, DemandFlow proposes a novel demand-driven analy-

sis tailored to an actual policy.

Several demand-driven mechanisms have been proposed for popular compiler

analyses like pointer analysis and interprocedural data flow analysis [79, 59]. One of

our major contributions is the application of such popular compiler scalability con-

cepts to address the precision and scalability challenge in information flow analysis

of executables.

DemandFlow also provides an easily extensible mechanism for detecting several

kind of vulnerabilities. We note that information flow tracking is a special case

of program data-flow analysis. Hence, instead of propagating a single-bit taint

information, DemandFlow computes an information abstraction which can be easily

131

extended to represent several different policies. The analysis cost for maintaining

an information abstraction, instead of a single-bit taint information, is ameliorated

by the ensuing simplification while enforcing multiple policies simultaneously in a

program. Further, our information abstraction enables the attribution of violation

of a policy to the culprit information source.

DemandFlow is used as an analysis tool, similar to how static analysis mech-

anisms are used, complementing other bug-finding tools and dynamic information

flow trackers. The primary contributions of our work are the following:

→ Precise Static Analysis: DemandFlow employs a powerful static analy-

sis mechanism that precisely handles memory aliasing issues in executables.

Previous static information flow systems for executables ignore aliasing issues

resulting in an imprecise analysis.

→ Demand-driven Framework: DemandFlow achieves scalability while rea-

soning about memory accesses by tailoring the analysis to a particular infor-

mation flow policy. Instead of doing an exhaustive analysis over the complete

program, it computes the set of program objects critical for preserving the

flow of information with respect to a particular information flow policy and

propagates information for only such program objects.

→ Diverse Evaluation: We apply DemandFlow on several information flow

violations such as format string attacks, directory traversal attacks, and in-

formation flow leakage. DemandFlow uncovers six previously undiscovered

format string and directory traversal vulnerabilities in popular ftp and inter-

132

net relay chat programs. It also exposes an unknown information (password)

leakage vulnerability on KeePassX, a popular password manager application.

DemandFlow reliably detects previously known vulnerabilities in a variety

of real-world programs at a low false positive rate of approximately 1 per

20,000 lines of code. DemandFlow is scalable and analyzes large programs

such as MySQL (1.7 million lines of code) in around 7 minutes. The scalabil-

ity is further demonstrated by evaluating DemandFlow on all the programs in

SPEC2006 suite.

The rest of the chapter is organized as follows. Section 6.2 discusses the re-

lated research work. Section 6.3 presents an overview of DemandFlow framework.

Section 6.4 provides background about memory abstraction and information flow

policies. Section 6.5 and Section 6.6 describe our demand-driven information flow

mechanism. Section 6.7 discusses some practical limitations of DemandFlow, fol-

lowed by the evaluations in Section 6.8.

6.2 Related Work

6.2.1 Static Information Flow Techniques

Language Based Techniques There has been a plenty of work in information flow

tracking at compile-time for programs written in custom type-safe programming

languages [125, 106]. Sabelfeld and Myers [125] present a comprehensive survey of

this approach. This approach guarantees information flow security, but is limited to

the programs written in specific languages. On the other hand, DemandFlow can

133

be applied to binary programs compiled from any language.

Source-code analysis Several tools have been suggested to track information-

flow through source-code analysis. Livshits and Lam [101] propose a query language

which can be used to represent taint-style vulnerabilities. Tripp et. al. [143] present

an improved and scalable static taint analysis framework for JAVA programs utiliz-

ing an advanced pointer analysis and thin-slicing algorithm. Shankar et. al. [132]

propose a type qualifier based approach for detecting format string vulnerabilities

in C programs. Ashcraft et. al. [17] propose various compiler annotations and belief

inference techniques to statically detect security holes in C programs.

Jovanovic et. al [86] present Pixy for statically detecting vulnerabilities in

web applications. Xie et. al [158] statically expose vulnerabilities in scripting lan-

guages using precise information about memory locations. Balzarotti et. al [23]

propose a framework to validate the functionality of taint sanitization functions in

web applications.

All the above proposed approaches detect security vulnerabilities using source

code and cannot be directly applied to executables. The precision of these ap-

proaches is driven by the underlying advanced pointer mechanisms, for which no

counterpart mechanisms exist in executables, until now.

Executable-code analysis There has been a very limited amount of work

on detecting information flow violations by statically analyzing the executable code.

Major works in this approach are the vulnerability detection mechanism suggested

by Cova et. al. [53], privacy leak detection [61] and integer flow vulnerabilities [155].

A major limitation of all these methods are that they ignore memory and aliasing is-

134

sues in their analysis, resulting in an imprecise vulnerability detection. As presented

by Livshits and Lam [101], a precise points-to analysis is imperative for achieving a

low false positive rate in any static framework.

An industrial tool, Veracode [13], uncovers vulnerabilities in executables. To

the best of our knowledge, the techniques used by Veracode are proprietary and have

not been published anywhere. Hence, the two could not be compared. Further,

unlike DemandFlow, Veracode requires the presence of debug information, which

is not present in deployed executables. A large number of other static executable

analysis tools such as IDAPro [2], Divine [21], and several more, do not aim to

uncover information flow vulnerabilities.

6.2.2 Dynamic Information Flow Techniques

There has been a large number of research tools for tracking information flow at

runtime. Here, we only discuss some of the most popular and related dynamic

techniques.

Schwartz et. al. [129] present an extensive survey discussing various dynamic

taint mechanisms and their respective limitations. Newsome and Song [110] devel-

oped an early taint analysis mechanism to detect buffer overflow through runtime

binary translation. However, they observed a huge slowdown of 37x. Several dif-

ferent approaches have been suggested to amortize the cost of taint propagation.

Frameworks like LIFT [119], GIFT [94], Dytan [50] and tools proposed by Chang

et. al. [43], Xu et. al. [160] and Jee et al. [85] aim to mitigate this overhead through

135

software techniques. TaintDroid [64] utilizes the optimizations present in the under-

lying virtual machine while Saxena et. al. [128] employ binary instrumentation to

counter this overhead. As demonstrated by several frameworks [56, 147], in spite of

these optimizations, dynamic methods still experience huge runtime overhead unless

the tracking mechanism is implemented in hardware. On the other hand, Demand-

Flow detects vulnerabilities through static analysis and hence, does not result in

any runtime overhead. Unlike our information abstraction which enables attribu-

tion, most of the dynamic frameworks employ single-bit taint tracking mechanisms.

Maintaining an attribution mechanism in dynamic frameworks will further add to

their overhead.

Several dynamic frameworks aim to mitigate their overhead using static schemes.

However, such static schemes are completely different from DemandFlow. Frame-

works like Chang et. al. [43] employ source code slicing mechanism to detect safe

program locations while approaches like Xu et. al. [160] and Jee et al. [85] miti-

gate overhead by optimizing the actual taint instrumentation code in a local region.

In contrast, DemandFlow presents a novel static framework on executables which

computes fine-grained demand-driven program locations over the whole program.

Several systems have been proposed to apply information-flow analysis for

detecting malicious software. For example, Panorama [163] and TaintDroid [64]

provide a complete system-wide information flow system to distinguish malware

and benign software. These methods propose new policies for detecting malicious

activities while DemandFlow enables the enforcement of user-defined policies in

applications.

136

Chang et. al. [43] were the first to recognize that taint tracking is a special

case of data-flow analysis. However, they rely on availability of source-code and

unlike DemandFlow, do not maintain an information abstraction.

6.2.3 Demand-driven Analysis

Demand-driven algorithms are popular in several compiler analyses. Heintze and

Tardieu [79] present a demand driven approach for pointer analysis to tailor the com-

putation to only a set of specific queries. Duesterwald et al. [59] propose demand-

driven algorithms for interprocedural data-flow analysis. Our idea of demand-driven

security analysis of executables is inspired by these compiler concepts.

Guyer et al. [75] propose a complementary client-driven approach of adapting

the analysis to a particular set of queries. It dynamically varies the precision of

analysis by employing flow-sensitivity or context-sensitivity depending on the re-

quirement, but still computes an exhaustive solution. This idea can be combined

with our demand-driven mechanism to obtain the benefits of both.

6.3 Overview of the system

Fig 6.1 presents an overview of the DemandFlow system. DemandFlow is built over

the existing SecondWrite framework as presented in [10]. SecondWrite translates the

input x86 binary code (including stripped executables) to the intermediate format of

the LLVM Compiler [96]. SecondWrite implements various mechanisms to obtain an

intermediate representation (IR) which contains features like procedure arguments,

137

Binary
Reader &
Disassembler

x86
ISA
XML

Demand
Objects
Computation

LLVM
IR Demand

Driven
Information
Flow

Information
Flow
Policy

Policy
Enforcement

 Input
binary

Figure 6.1: Organization of the system.

return values, types and high-level control flow. The recovered IR represents the

symbols corresponding to the binary code’s registers in a single-static assignment

(SSA) form. SSA form is widely used in many binary analyzers. Existing binary

analysis tools implement various methods to recognize procedure arguments and

procedure returns [21]. SecondWrite also implements various analyses to recognize

the arguments. Once the arguments are recognized, formal arguments and returns

are represented as a part of a procedure definition and actual arguments and returns

are explicitly represented as a part of a call instruction in the IR.

This conversion to a compiler IR is not a necessity for our work. In fact, any

existing static binary framework, for example those proposed by Balakrishnan and

Reps [21] or Debray et al. [58], can also be employed for our analysis. Section 6.7

discusses various practical issues regarding the underlying binary framework. The

LLVM IR obtained is passed through the demand-driven information flow frame-

work.

An information flow policy, corresponding to each vulnerability, is formulated

by specifying the initialization and enforcement conditions. Our Demand Object

138

Computation block in Fig 4.6 employs these initialization conditions to compute

the required set of data objects (registers and memory locations) imperative for

implementing the policy. Next, Demand-driven information flow analysis computes

a set of information flow expressions only for the set of data objects computed

by Demand Object Computation block. These information flow expressions are

employed at the specified enforcement locations to detect policy violations. Multiple

information flow violations can be detected by just specifying the initialization and

enforcement conditions.

6.4 Background

6.4.1 Memory Abstraction

The memory abstraction for DemandFlow is defined by building on the concept

of abstract memory regions and abstract locations (a-locs), defined by Value Set

Analysis (VSA) [21]. VSA divides the address space of a program into several non-

overlapping memory regions. Three kind of memory regions are defined: the set

of memory regions associated with procedure stack frames in the program (Stack),

the memory region associated with global data of the program (Global) and the

memory regions associated with heap-allocations sites (HeapRgn). Each memory

region is further abstracted through a set of a-locs. Intuitively, a-locs correspond

to the program variables in each region. An a-loc is characterized by two attributes:

its relative offset in the region with respect to other a-locs and its size.

Having defined a-locs as above, VSA computes an over-approximation of

139

the set of integers and the set of memory addresses (collectively referred to as a

Value-Set) that each register and each a-loc holds at a particular program point.

VSA employs affine relation and loop bound analysis to conservatively bound the

memory locations accessed by any instruction. Hence, this algorithm can be used

to determine the set of all possible memory locations referred to by all the direct

and indirect memory access instructions. More details about this algorithm can be

found in [21].

6.4.2 Information Flow Policy

Several information flow tracking systems express an information flow policy using

the concept of labels [110, 119, 64]. Depending on the policy, labels can either

refer to the input coming from an untrusted source or to an internal confidential

information. There are four dimensions that characterize a policy: label description,

label initializations, label propagation and label checks.

Label description, LB, specifies the underlying labels and optionally a union

operator, Operator, governing merging of the labels at information join points in

the program. Label initializations, LBInit, correspond to the sources which intro-

duce labels into the program. Label propagation, governs the flow of these labels

through the operations in a program. Label checks, LBCheck, denote the sensitive

(or untrusted) program locations where an information flow violation might arise if

an untrusted (or confidential) information reaches such locations.

The analysis framework, as presented in Sec 6.6, implements the underlying

140

label propagation mechanism. Consequently, an information flow policy is specified

in our framework via the remaining three dimensions:

Policy ≡ { {LB, Operator}, LBInit, LBCheck}

The above specification of information flow policy can also be defined using an

information policy lattice I with domain of values specified as a set DI and a meet

operator ∧I , where DI corresponds to the set of labels LB and ∧I corresponds to

the meet operator Operator. This framework provides a generic and programmable

framework for specifying several kinds of information flow policies such as format

string vulnerability, directory traversal attacks or information leakage. We describe

the policy specification using the example of format-string vulnerability.

Format string flaws arise due to an unsafe implementation of variable-argument

procedures in C library. In case of a variable-argument procedure like printf, a

format string argument specifies the number and type of other arguments. How-

ever, there is no runtime routine to verify that the procedure was actually called

with the arguments specified by the format string. As detailed in [54], an attacker

can corrupt the format string and thereby take control of the program by modifying

relevant memory locations.

In order to expose a format string vulnerability, a tool needs to detect the

flow of information from an untrusted source to the format string argument of

a variable argument procedure. All program inputs that can be controlled by an

attacker are treated as tainted values and the tainted information is propagated

141

through the program. The presence of a tainted value in the format string argument

of any variable argument procedure signifies the presence of a vulnerability. This

can be formally described as

DI(LB) := {tainted,untainted}

∧I(Operator) := {tainted ∧I untainted ≡ tainted}

(6.1)

6.5 Demand Driven Set

In an exhaustive analysis, the information is propagated over the complete flow

of a program. However, such an exhaustive analysis might implicitly propagate

information along data objects which do not impact the current policy enforcement

decision. Recall from Section 6.1, this redundant propagation of information flow

in a program limits the scalability of an analysis and forces the analysis to make

imprecise decision to maintain scalability.

Next, we present our analysis to compute the set of data objects necessary

to enforce a particular information flow policy. This required set of data objects

(variables and memory locations) is represented as Demand Set.

Demand Set =



















SR : Set of required variables

SM : Set of required a-locs

Sets SR and SM are collectively referred to as Demand Set. We refer to an

element of set Demand Set as a Demand Object. Set SM consists of a-locs from all

three memory regions Stack, Global and HeapRgn mentioned in Section 6.4.1. We

142

employ the logical inference form1 for representing the deduction rules for computing

the sets SR and SM.

Fig 6.2 presents the rules for computing Demand Set. The rules are applicable

to operations in the IR, but we present C-like pseudo instructions for ease of un-

derstanding. The rules constitute a backward analysis, where the instructions are

traversed in a demand-driven backward dataflow order.

At the beginning of the analysis, set SM is initialized as an empty set while set

SR is initialized with the variables employed at program locations of possible infor-

mation flow violations, which includes all elements in set LBCheck. For example, in

case of a format string vulnerability, set LBCheck comprises format string arguments

at all the format string callsites in a program.

Given an initial set of elements in Demand Set, the rules presented in Fig 6.2

analyze each program operation to update Demand Set accordingly. In case of an

assignment operation, if the destination is already a Demand Object, the source

operand is also added to the set. In case of arithmetic and logical operations, both

the source operands are added to set SR, is it already contains the destination.

The memory load and store operations employ Value Set Analysis (VSA) [21]

to update Demand Set. In case of a memory load operation, the a-locs present in

the value set of the source operand are added to set SM only if the loaded value is

already a Demand Object. Similarly, a value employed in a memory store operation

is considered a Demand Object, if any of the possibly accessed a-loc is an element

1The expression Premise #1 Premise #2 .. Premise #n
Conclusion

states that whenever the given set of premises
have been obtained, the specified conclusion can be taken for granted as well.

143

Helper Variables
VS(R): Value Set of object R; R → z : a-loc z ∈ VS(R)

OP : Arithmetic, Logical and Casting operators
ARGT : Set of parameters of procedure T
RETT : Set of variables at actual return-sites in procedure T
FORMi : Variable for ith formal parameter of a procedure
ACTi : Variable for ith actual parameter at a callsite
F: An internal procedure; X: An external procedure

Initialization
SR ← LBCheck; SM ← { }

Rules

I:R1=R2
R1 ∈ SR
R2 ∈ SR

I:R1=R2 OP R3
{

R1 ∈ SR
R2 ∈ SR

R1 ∈ SR
R3 ∈ SR

I:R1=*R2
R1 ∈ SR R2→ z

z ∈ SM

I:*R1=R2
R1→ z z ∈ SM

R2 ∈ SR

I: R1=call F

{

∀i∈ARGF
FORMi ∈ SR

ACTi ∈ SR
∀i∈RETF

R1 ∈ SR
i ∈ SR

I: R1=call X















∀i∈ARGX
R1 ∈ SR
ACTi ∈ SR

∀i∈ARGX
R1 ∈ SR ACTi → z

z ∈ SM

Figure 6.2: Deduction rules for computing Demand Set. Rules constitute a backward
analysis, where a conclusion before an instruction is derived based on the premise
after the instruction.

of set SM.

Interprocedural rules in Fig 6.2 depend on whether the called procedure is an

internal or an external procedure. The distinction is required due to the absence

of procedure body of externally called procedures. In case of a call to an internal

procedure, an actual argument value at the call site is added to set SR if the

corresponding formal argument to the procedure is already present in set SR. A

return value also results in a similar update of set SR. If the actual return value at

144

the call-site is present in SR, then all the return variables in the procedure definition

are also considered as Demand Objects.

A call to an external procedure is handled in one of the following two ways. If

the prototype of the called procedure is available, then the call is modeled by adding

all actual arguments and their underlying a-locs to Demand Set if the return value

is a Demand Object. Otherwise, a call to a procedure with unknown prototype is

modeled as NOP to avoid excessive loss of precision.

The Demand Set, comprising SR and SM, captures all the variables and memory

locations which can possibly impact the value of the elements in set LBCheck. This

reduced set is employed to compute the information flow in the program.

6.6 Demand Driven Information Flow Analysis

Our demand-driven information flow analysis, Symbolic Information Analysis, is

a flow-sensitive, context insensitive analysis which computes a conservative over-

approximation of a set of sources of information reaching each demand driven data

object (variables and memory locations) at each program point. This analysis em-

ploys Demand Set computed through the mechanism in Section 6.5.

6.6.1 Information Abstraction

Symbolic information analysis represents the values in an abstract domain defined

by the Symbolic Information Grammar presented in Fig 6.3. The sentences gen-

erated by the Symbolic Information Grammar constitute the underlying symbolic

145

INF := INF ∪ TjT

T := [IR Symbols]

Figure 6.3: Symbolic Information Grammar:Grammar for information flow ab-
straction. ∪ is the union operator, IR Symbols are symbols in the obtained interme-
diate representation corresponding to the registers in the input executable, interme-
diate computations and calls to external library procedures.

information abstraction. An element of this grammar represents an object in our

abstract domain and is represented as SymInf.

SymInf = An element of Symbolic Information Grammar

The analysis computes a SymInf object for each element of Demand Set. As

evident from Fig 6.3, each SymInf object is a logical union of symbols in the inter-

mediate representation (IR). IR symbols comprise the symbols in the intermediate

representation corresponding to calls to external library procedures, local computa-

tions or any other information source such as a protected file or a secure memory

location. SymInf abstraction captures a conservative over-approximation of the set

of sources from which information can flow to a particular element of Demand Set.

SymInf abstraction has two advantages over the standard single bit taint ab-

straction. First, this abstraction enables the attribution of each policy violation to

the corresponding culprit information source or a set of sources. There can be mul-

tiple sources of external information in a program and some of these sources might

not result in a violation. The ability to attribute a violation to the actual informa-

tion source is imperative if the framework is employed for rectifying the violations,

in addition to the detection of violations. Second, this abstraction efficiently solves

146

the challenge of time of detection/time of attack gap [129] faced by several existing

information flow frameworks [137]. Single-bit taint analysis raises a warning when

tainted values are used in an unsafe manner. However, there is no guarantee that

the program integrity has not been violated before this point. Several frameworks

such as BitBlaze [137] circumvent the problem of too-little taint information by per-

forming post hoc instruction trace analysis on the execution traces to determine the

time of attack. SymInf abstraction obviates the need of any such post hoc analysis.

6.6.2 Analysis

The analysis computes flow-sensitive SymInf abstraction for all elements of Demand

Set with respect to a particular information flow policy. A flow-sensitive analysis

needs to compute the abstraction at each program point. Since we assume that the

IR supports SSA form for variables, a single symbolic map is sufficient to maintain

flow-sensitive SymInf abstraction for variables. Since memory locations are usually

not implemented in SSA format, a map is maintained at each program point to

represent flow-sensitive abstraction for memory locations. Hence, the analysis effec-

tively computes the following maps, which collectively constitute the information

flow abstraction for Demand Set.

IR: SymInf for elements in SR

IMe: SymInf for elements in SM after program point e

Fig 6.4 presents the rules for computing the abstraction. The rules presented

in Fig 6.2 compute Demand Set using a backward propagation mechanism while the

147

rules presented in Fig 6.4 forward propagate the information abstraction over the

elements of Demand Set.

These rules analyze each program operation to update the information ab-

straction maps accordingly. In case of assignment and arithmetic operations, the

abstraction is computed for the destination only if the source operands are present

in Demand Set. The information flow abstraction is represented by the union (∪)

of abstract values of individual source operands. Analogous to the rules in Fig 6.2,

VSA is employed to compute the abstract values for memory load and store op-

erations. In case of a memory load operation, the value is computed by unioning

abstract values of all the individual a-locs possibly accessed by this operation.

Similarly, a memory store operation is modeled by updating the value of all possi-

bly accessed a-locs with abstract values of the stored operand. As per standard

compiler representation, this corresponds to weak-updates.

A call to an internal procedure is handled by forward propagating the SymInf

abstraction from an actual argument at the callsite to the corresponding formal

argument of procedure definition when both the arguments are Demand Objects.

Similarly, the value for the required return variables at a callsite is computed using

corresponding actual return values in procedure body.

A call to an externally called procedure is handled in a conservative manner.

This rule models the flow of information from all sources available to this call to all

possible destinations. As evident from the Fig 6.4, this rule also results in addition

of a new information source, IR symbol of called procedure, to SymInf abstraction.

First, all the possible sources of information to this particular call are deter-

148

Helper Variables
VS(R): Value Set of object R; R → z : a-loc z ∈ VS(R)

IM’e: SymInf for SM before program point e
ARGT : Set of parameters of procedure T
RETT : Set of variables at actual return-sites in procedure T
FORMi : Variable for ith formal parameter of a procedure
ACTi : Variable for ith actual parameter at a callsite
F: An internal procedure; X: An external procedure

Initialization
IR ← { }; IMe ← { } ∀e

Rules

I: R1=R2
R1 ∈ SR R2 ∈ SR

IR(R1)← IR(R2)

I: R1=R2 OP R3















R1 ∈ SR R2 ∈ SR

IR(R1)← IR(R1) ∪ IR(R2)

R1 ∈ SR R3 ∈ SR

IR(R1)← IR(R1) ∪ IR(R3)

I: R1=*R2
R1 ∈ SR R2→ z z ∈ SM

IR(R1)← IR(R1) ∪ IM’I(z)

I: *R1=R2
R1→ z z ∈ SM R2 ∈ SR

IMI(z)← IMI(z) ∪ IR(R2)

I: R1=call F



















∀i∈ARGF
FORMi ∈ SR ACTi ∈ SR

IR(FORMi)← IR(FORMi) ∪ IR(ACTi)

∀i∈RETF
R1 ∈ SR i ∈ SR

IR(R1)← IR(R1) ∪ IR(i)

I:R1=call X































let TMP= ∪i∈ARGX {IR(ACTi) ∪z∈VS(ACTi) IM’I(z)}

∀i∈ARGX
R1 ∈ SR ACTi ∈ SR

IR(R1)← IR(R1) ∪ TMP ∪ X

∀i∈ARGX
R1 ∈ SR ACTi ∈ SR ACTi → z z ∈ SM

IMI(z)← IMI(z) ∪ TMP ∪ X

Figure 6.4: Rules for Symbolic Information Analysis.

149

mined. This includes the actual argument values as well as a-locs accessed by

these arguments. Next, the values of return variable as well as all possibly accessed

a-locs are updated to reflect the flow of information from all these sources. The IR

symbol corresponding to the actual called procedure is also added to the abstract

values of return as well as above a-locs. The precision of analysis can be improved

by adding the actual semantic model corresponding to popular external procedures

such as sprintf.

Our analysis handles well-known information cancellation idioms like xor a

value with itself [129]. Fig 6.4 handles information flow for all arithmetic, logical or

casting operators. The negation operator is implicitly handled using the assignment

rule. In order to limit the exponential growth of information sources, a widening

operator is employed to impose a limit on the cardinality of each SymInf object,

defined as L, at the cost of some precision. L, was kept to 20 in our framework.

6.6.3 Policy Enforcement

SymInf abstraction can be represented using a lattice framework, referred to as

symbolic lattice V. We introduce the following definitions to aid the understanding:

S: Set of all sentences generated by Symbolic Information Grammar (Fig 6.3)

SL : Subset of S with cardinality limit of L,
⋃

p∈S{p|‖p‖ ≤ L}

S’L : SL∪ S

150

The domain of values of lattice V is the modified set of sentences, S’L, described

above. The empty set φ represents the unique largest element, >, and set S is

the unique smallest element, ⊥ of the lattice. Lattice V, can mathematically be

represented as follows:

DV := S’L

∧V := ∪

(6.2)

Section 6.4.2 formulated an information flow policy through a lattice I = {DI,∧I},

referred to as policy lattice. The symbolic lattice described above can be mapped

to obtain the policy lattice. The labels derived by the resulting policy lattice can

be employed at the program locations given by LBCheck (Section 6.4.2) to detect a

violation.

Given a policy lattice I, let us define a function φI which maps the domain of

values in symbolic lattice V to the domain of values in lattice I.

φI : DV → DI (6.3)

Each element, S, of set DV is a sentence generated by the grammar in Fig 6.3. Each

sentence, in turn, comprises of IR symbols (terminal symbols of this grammar).

Let T(S) denote the set of IR symbols in a sentence S.

LBInit (Section 6.4.2) specifies the sources through which the information flow

labels enter the program. For example, IR symbols corresponding to the library

151

procedures that introduce untrusted values in the program. As per the rules in

Fig 6.4, these IR symbols are part of SymInf abstraction computed by the analysis.

IR symbols in a program can be divided in two categories based on whether

LBInit maps such symbols to a label or not. Based on these categories, a function

LBMAP, mapping IR symbols to the domain of values in policy lattice, can then be

defined as follows:

LBMAP(r) :if LBInit.hasEntry(r)

return LBInit(r)

else

return >

(6.4)

If IR symbol r has an entry in LBInit, LBMAP returns the corresponding label,

otherwise it returns the element > in lattice I. For example, in the case of format

string vulnerability, the external procedures that do not represent any information

source are mapped to the lattice element untainted. This does not impact the

precision of the analysis, since the relation > ∧ x = x holds true in any lattice.

Having defined LBMAP as above, we can define function φI . It maps each con-

stituting IR symbol in DV to a lattice element in DI and merges the lattice elements

using the meet operator of lattice I. Mathematically, this function can be defined

as follows:

φI(S) :
∧

t∈T(S)

{LBMAP(t)} (6.5)

152

Henceforth, a tainted label at any location specified in LBCheck signifies a

vulnerability. For example, in case of format string vulnerability, tainted label

for format string arguments flags a warning. Given an information flow policy, we

can always define a corresponding function φI which maps the symbolic lattice to

policy lattice. The existence of such a mapping provides an extensible and generic

framework for specifying any information flow policy.

As presented by Chang et al. [43], single-bit taint frameworks cannot expose

several vulnerabilities, like file-disclosure vulnerabilities, which require multiple-bit

information to be tracked simultaneously. The mapping presented above enables

DemandFlow to reliably expose such vulnerabilities.

6.7 Discussion

We now consider some practical issues of DemandFlow.

6.7.1 Indirect calls and branches

The underlying binary system employed for DemandFlow, SecondWrite, implements

various mechanisms [135] to address code discovery problems and to handle indirect

control transfers. Here, we briefly summarize their mechanism.

A key challenge in binary frameworks is discovering which portions of the code

section in an input executable are definitely code. Smithson et al. [135] proposed

speculative disassembly, coupled with binary characterization, to efficiently address

this problem. SecondWrite speculatively disassembles the unknown portions of the

153

code segments as if they are code. However, it also retains the unchanged code

segments in the IR to guarantee the correctness of data references in case the dis-

assembled region was actually data.

SecondWrite employs binary characterization to limit such unknown portions

of code. It leverages the restriction that an indirect control transfer instruction

(CTI) requires an absolute address operand, and that these address operands must

appear within the code or data segments. The code and data segments are scanned

for values that lie within the range of code segment. The resulting values are guar-

anteed to contain, at a minimum, all of the indirect CTI targets.

The indirect CTIs are handled by appropriately translating the original target

to the corresponding location in IR through a translator procedure. Each recognized

procedure (through speculative disassembly) is initially considered a possible target

of the translator, which is pruned further using alias analysis. The arguments for

each possible target procedure are unioned to find the set of arguments to be passed

to the translator; a stub inside the translator populates the arguments according to

the actual target.

This method is not sufficient for discovering indirect branch targets where

addresses are calculated in binary. Hence, various procedure boundary determina-

tion techniques, like ending the boundary at beginning of next procedure, are also

proposed [135] to limit the possible targets.

The above mechanism of handling indirect control transfers is not a necessity

for DemandFlow; methods suggested by any other binary framework [21, 58] can

also be employed.

154

6.7.2 Limitations

Here, we present some limitations of DemandFlow.

Implicit flows As evident from Fig 6.4, DemandFlow only performs explicit

information flow, that is information-flow based on data computations, and is not

capable of detecting vulnerabilities or illegal flows arising due to implicit information

flow, that is program’s flow of control. As is well accepted by the community [92],

handling implicit flows results in a large number of false positives. Hence, most

of the practical static information flow tools, excluding the tools that enforce non-

interference through language-based techniques, ignore implicit flows. In the future,

we plan to expand DemandFlow to handle implicit flows also.

Limitations of static executable analysisAs discussed at a recent Dagstuhl

Seminar [91], static analysis of executables provides a variety of benefits over dy-

namic mechanisms. However, several executable artifacts like indirect calls pose

a significant challenge to the scalability of sound static analyses. It was decided

that the verification of a browser is a laudable long-term goal of static executable

analyses.

Since DemandFlow is based on static analysis of executables, our evaluation

is limited to the applications which can be reliably handled through any static

mechanism. Our theoretical frameworks have no inherent scalability limitations.

The evaluations are presented for large server and client programs like apache, lynx

and MySQL; continuous progress in improving the scalability of static techniques

in general will broaden the application of our framework to even larger applications

155

like Chrome.

Dynamically generated code Static analysis tools have a limitation that

the code analyzed might not be the code which actually executes. A small percentage

of programs include self-modifying code, few packed executables unpack themselves

at runtime and browsers like Chrome employ just-in time compilation mechanism

to dynamically generate a portion of code. It is impossible for any analysis tool

to statically reason about the code generated at runtime. Various methods [156]

statically detect the presence of runtime code generation in a program. Such a tool

can be integrated in our front-end, to at least warn the user.

Obfuscated code SecondWrite has not been tested against binaries with

hand-coded assembly or with obfuscated control flow. We will investigate such

programs in the future.

6.8 Results

In this section, we evaluate DemandFlow on a set of real-world programs listed

in Fig 6.5 and a wide set of compute-bound programs including the complete

SPEC2006 benchmarks suite. DemandFlow’s versatility is demonstrated by extend-

ing the underlying analysis for three different information flow violations - format

string vulnerability, directory traversal attack and information flow leakage. Sec-

tion 6.8.1, 6.8.2 and 6.8.3 discuss the uncovered vulnerabilities, false alarms statis-

tics and scalability for these programs respectively. Since SPEC2006 benchmarks

have no known vulnerabilities, their false alarms aspects are discussed separately in

156

Application LOC Vulnerability Type

mingetty 1.08 500 - -
csplit 8.17 1,060 NEW Format String
muh 2.05c 2857 CVE-2000-0857 Format String
pfingerd 0.7.8 4689 NISR16122002B Format String
gzip 1.2.4 5830 CVE-2005-1228 Directory Trav
ez-ipup3.0.10 6,335 CVE-2004-0980 Format String
gif2png 2.5.2 9354 CVE-2010-4695 Directory Trav
wu-ftpd 2.6.0 17576 CVE-2000-0573 Format String
tar 1.13.19 20518 CVE-2001-1267 Directory Trav
KeePassX0.4.3 26089 - -
yafc 1.1.1 32,241 NEW Directory Trav
tnftp 2010 34,762 - -
gftp 2.0.19 42,390 - -
irc2 2011 44,837 NEW Directory Trav
wget 1.13 46,611 - -
sudo 1.8 53,144 CVE-2012-0809 Format String
openssh 6.0p 73335 - -
opensshd 6.0p 73335 - -
ayttm 0.6.3 80,013 NEW Format String
curl 7.30.0 122,248 NEW Directory Trav
BitchX 1.1 133,728 NEW Format String
lynx 2.8.7 135,876 - -
apache 2.2.17 232,778 - -
MySQL 5.6.11 1,741,774 - -

Figure 6.5: Vulnerabilities discovered in real-world programs.

Appendix 6.8.5. Section 6.8.4 highlights DemandFlow’s extensibility by extending

the framework for detecting information-flow leakage. The programs are compiled

with gcc v4.4.1 without any symbolic or debug information. Results are obtained

on a 2.4GHz 8-core Intel Nehalem machine running Ubuntu. The underlying dis-

assembly mechanism (Section 6.7.1) employed in SecondWrite results in 100% code

coverage in the above set of programs.

DemandFlow is highly scalable and analyzes each of the the programs in Fig 6.5

in less than a minute, except MySQL (1.7 million LOC) which took seven minutes.

157

The results on compute intensive SPEC benchmarks (Appendix 6.8.5) demonstrate

a moderate storage requirement of under 100 MB.

Fig 6.5 includes commonly-used server programs (pfingerd, muh, wu-ftpd, openssh,

apache), popular client programs (ez-update, yafc, tnftp, gftp, wget, openssh, curl,

lynx), internet relay chat clients (irc2, ayttm, BitchX) and several utility programs

(mingetty, gif2png, csplit, tar, gzip, sudo, KeePassX). These are widely deployed

applications and their integrity is essential for a smooth functioning of the system.

6.8.1 Vulnerabilities

In this section, we discuss DemandFlow’s ability to uncover standard vulnerabilities

such as format string and directory traversal attacks. As explained in Section 6.4.2,

format string flaws arise due to an unsafe implementation of variable-argument pro-

cedures in C. A directory traversal vulnerability typically arises when a filename

supplied by an user is employed in a file-access procedure without sufficient valida-

tion. A malicious user can malform the name by including a .. (dot dot) within the

response, thereby gaining an ability to ascend outside the authorized directory. This

vulnerability can be uncovered in a similar manner, by assigning a tainted label to

the inputs coming from an untrusted channel and raising an alarm at any use of a

tainted value as a filename argument to any file-access function.

Fig 6.5 shows that DemandFlow uncovers six previously unknown vulnerabili-

ties, apart from detecting all previously known vulnerabilities in this set of programs.

Next, we discuss the characteristics of these zero-day vulnerabilities.

158

(a) Source code snippet (b) Executable code snippet

static char * suffix ;

main:
……:
switch (..){
 case 'b':
 //Unsafe Initialization
 suffix = optarg;
 break;}

make_filename:
…….
sprintf(filename_space,
 suffix, //Format string Arg
 num);

0x8056160: Fixed location for optarg;
0x80561ac: Memory address of suffix

(Address) (Instruction)
main:
…….
804afb4: mov 0x8056160,%eax //Load from optarg
804afb9: mov %eax,0x80561ac //Store to suffix
804afbe: jmp 804b0b6 <main+0x1f8>

make_filename:

804a18e: mov 0x80561ac,%eax //Load from suffix
.......
804a1c6: mov %eax,0x4(%esp) //Initialize format arg
804a1ca: mov %edx,(%esp)
804a1cd: call 8048ec0 <sprintf@plt>

Figure 6.6: Code snipped from csplit showing the format string vulnerability. Second
operand is the destination in executable code.

csplit : csplit is a well-known GNU Coreutil program. DemandFlow detected a

possible format string vulnerability in this utility. Fig 6.6 shows the corresponding

source-code snippet as well as executable code snippet. csplit declares a global

variable suffix, which is initialized in procedure main using an input argument

(optarg). Next, suffix is employed directly as a format string argument in a

call to sprintf. DemandFlow flagged this unsafe information flow from an external

source to a format string argument. We notified the Coreutil developers about this

vulnerability. They pointed to an implicit sanitization procedure, but are validating

its behavior for this new vulnerability.

Fig 6.6(b), the global variable suffix is allocated to a memory location in the

executable. DemandFlow would not have uncovered this unsafe flow if the infor-

mation is not propagated across memory locations. This example underscores the

importance of our precise memory analysis for exposing information flow vulnera-

159

bilities in executables.

ayttm: ayttm is vulnerable to a previously unknown format string attack. In

ayttm, a procedure http connect populates a variable inputline by receiving data

from network using a call to external procedure recv. Then, inputline is assigned

to a variable debug buff using snprintf, which is further used as a format string

argument in a printf call. This vulnerability has been confirmed by the developers.

BitchX : DemandFlow exposes a format string vulnerability in napster plugin

in BitchX. The behavior is similar to the vulnerability in csplit, where an input

argument value is employed as a format string argument in a call to vsnprintf.

yafc, irc2, curl : DemandFlow exposes directory traversal vulnerabilities in

each of these three programs. The underlying behavior of the uncovered vulnerabil-

ities is similar in all these programs. These programs employ getenv to derive the

name of the current directory and prepend the resulting value to derive the name

of a file. This resulting filename is employed to open a file using a fopen call with-

out any sanitization. As per several existing attacks [1], an attacker might corrupt

the environment variables, Hence, employing environment variables for deriving a

filename renders the application susceptible to directory traversal attacks. We have

notified the respective developers.

In all these programs, maintaining the actual information source as part of

SymInf abstraction, instead of a single bit taint information, directly exposes the

corresponding unsafe source without any post-hoc analysis. This eases the task of

understanding the behavior of the uncovered vulnerabilities.

160

0

1

2

3
m

in
g

e
tt

y

c
s

p
li

t

m
u

h

p
fi

n
g

e
rd

g
z
ip

e
z
-i

p
u

p
d

g
if

2
p

n
g

w
u

-f
tp

d

ta
r

K
e

e
P

a
s

y
a

fc

tn
ft

p

g
ft

p

ir
c

2

w
g

e
t

s
u

d
o

o
p

e
n

s
s

h

o
p

e
n

s
s

h

a
y

tt
m

c
u

rl

B
it

c
h

x

ly
n

x

a
p

a
c

h
e

M
y

S
Q

L

Programs

F
a
ls

e
 P

o
s
it

iv
e
s

DemandFlow Source

Figure 6.7: Format string vulnerability detection.

Next, we establish the importance of reasoning about memory accesses for

vulnerability detection. In order to simulate the functionality of previous tools [53],

which do not track memory locations, the analysis presented in Section 6.6 is mod-

ified to compute SymInf abstraction for only the variables. This is accomplished by

disabling the rules in Fig 6.4 for memory access instructions and by computing only

IR. The resulting analysis fails to unmask even a single vulnerability in the programs

listed in Fig 6.5. This demonstrates the importance of a precise memory analysis

for implementing a robust information flow mechanism in executables.

6.8.2 False Positives

Fig 6.7 presents the false positives reported by DemandFlow for each of the programs

in Fig 6.5 while detecting format string vulnerabilities, comparing the resulting

161

0

2

4

6

8

10
m

in
g

e
tt

y
c
s
p

li
t

m
u

h
p

fi
n

g
e
rd

g
z
ip

e
z
-i

p
u

p
d

g
if

2
p

n
g

w
u

-f
tp

d
ta

r
K

e
e
P

a
s

y
a
fc

tn
ft

p
g

ft
p

ir
c
2

w
g

e
t

s
u

d
o

o
p

e
n

s
s
h

o
p

e
n

s
s
h

a
y
tt

m
c
u

rl
B

it
c
h

x
ly

n
x

a
p

a
c
h

e
M

y
S

Q
L

Programs

0

0.04

0.08

0.12

0.16

0.2

False Positive False Positives/1000 LOC

0.9

Figure 6.8: Directory traversal attacks.

statistics with the false positive reports generated by existing source-level static

analysis tools (Oink [4], CQual [132] and others [75]) we ran against the same

programs2. DemandFlow reports similar false alarms as existing source-level tools

for the programs listed in Fig 6.5.

Fig 6.8 presents the corresponding statistics obtained for the directory traver-

sal vulnerability. Even though DemandFlow reports eight false positives for lynx

and ayttm, it translates to less than 0.1 false alarms per 1000 lines of code. To the

best of our knowledge, no existing source-level static analysis tool has reported di-

rectory traversal vulnerability statistics for the above set of programs, consequently,

the results could not be compared.

The false positive rate (FP/Total Reports) is 79.1% for above programs which

2The programs with no corresponding results by source-tools are conservatively assumed to
have zero false positives.

162

0

0.05

0.1

0.15

0.2

0.25

0.3

m
in

g
e

tt
y

c
s

p
li

t

m
u

h

p
fi

n
g

e
rd

g
z
ip

e
z
-i

p
u

p
d

g
if

2
p

n
g

w
u

-f
tp

d

ta
r

K
e

e
P

a
s

y
a

fc

tn
ft

p

g
ft

p

ir
c

2

w
g

e
t

s
u

d
o

o
p

e
n

s
s

h

o
p

e
n

s
s

h

a
y

tt
m

c
u

rl

B
it

c
h

x

ly
n

x

a
p

a
c

h
e

M
y

S
Q

L

Programs

N
o

rm
a
li

z
e
d

 t
o

 a
ll

 v
a
lu

e
s
 i

n
 t

h
e
 p

ro
g

ra
m

SR SM

Figure 6.9: Size of Demand Set (SR and SM) normalized (=1.0) to all variables
and a-locs respetively.

is slightly better than 84% false positive rate [43] reported by source-tools like Oink

and CQual [4, 132]. In total, only around 50 false positives were reported in programs

coming from more than 5 million lines of code. Corresponding statistics for SPEC

benchmarks are presented in Appendix 6.8.5.

6.8.3 Scalability

Recall from Section 6.3, our demand driven analysis enhances DemandFlow’s scal-

ability. Here, we quantify this enhancement.

Fig 6.9 presents the size of Demand Set, SR and SM, as determined using the

rules in Fig 6.2, for detecting format string vulnerability. The sizes of SR and SM

are normalized against the total number of variables and a-locs in the program

respectively. Fig 6.9 shows that these rules are highly efficient in decreasing the

163

0

100

200

300

400

500

600

700

0 50000 100000 150000 200000 250000 300000

Lines of Code

T
im

e
 (

s
e

c
)

Demand Exhaustive

Figure 6.10: Scalability of demand driven and exhaustive analysis with increasing
lines of code.

overall analysis requirement. This enables DemandFlow to only analyze around

20% of total objects, on average, without sacrificing the precision. KeePassX, being

a C++ program, does not have many format string calls. Hence, it has relatively

small SR and SM set.

Fig 6.10 highlights the ensuing enhancement in DemandFlow’s scalability as

a result of employing a Demand Set. It plots the variation in the time taken to

analyze the programs in a demand-driven manner with increasing lines of code and

compares it with an exhaustive analysis over the complete program. The exhaustive

analysis is implemented by discarding the Demand Set and applying the rules in

Fig 6.4 for all program objects. Fig 6.10 includes the programs listed in Fig 6.5 as

well as programs from complete SPEC2006 benchmark suite. As evident, demand-

driven analysis is approximately 10x more scalable than the exhaustive analysis.

For example, the time to analyze gcc, a large SPEC2006 benchmark with 250,000

164

lines of code, reduces to less than a minute as compared to more than 11 minutes in

exhaustive analysis. This scalability becomes more evident in programs like MySQL

where demand mechanism was able to finish the analysis in 7 minutes (not shown

in the graph) as compared to more than an hour of exhaustive analysis.

6.8.4 Information Flow Leakage

6.8.4.1 KeePassX

We employ DemandFlow to understand the flow of password information in KeeP-

assX [3], a popular open-source password manager utility. It stores the passwords

in an encrypted database, protected by a master password.

KeePassX decrypts the stored passwords using a special unlock procedure.

The callsites to procedure unlock are marked as confidential locations while all the

unknown external procedure callsites (writing to file, mapping with keyboard symbol,

console output) are marked as untrusted locations. The resulting analysis reveals

various program points where confidential information flows into untrusted channels.

These locations include methods for keyboard symbol conversion for auto-typing the

password to a desired location and writing to a file for exporting the databases.

The information flow for auto-typing a password involves possibly unsafe op-

erations. The auto-typing to a desired location is accomplished through a hot-key

mechanism. On pressing the hot key, the utility looks up the correct entry in the

database and executes its auto-type sequence. However, the manual analysis of

the code revealed that KeePassX only compares the title of the current window

165

while searching for the correct entry. This results in a previously unknown infor-

mation leakage in this application. A malicious webpage, whose title matches the

title of an entry present in the database, will be able to obtain the corresponding

username/password information. We tested this mechanism by creating a dummy

webpage with the same title as a secure entry, and we were able to transfer the

corresponding login information to the dummy webpage.

6.8.4.2 thttpd

thttpd is a small web-server application. Previous dynamic information flow tracking

methods have demonstrated the leakage of password information due to thttpd’s

inherent authentication mechanism [147]. Here, we demonstrate the presence of

this leakage using DemandFlow.

thttpd stores the authentication information in an internal database. Any con-

nection request is first validated by comparing the username and password specified

by the user with the internal database. We assign the global variable corresponding

to the database file with the confidential label. The network procedures used by

httpd for connecting to the user (e.g. send authenticate) are marked as untrusted

program locations. The mapping of the symbolic lattice onto the lattice described

above reveals that arguments to untrusted procedures, both at program locations

where the authentication is valid and invalid, contain confidential labels.

The comparison of the above result with the previous method [147] highlights

an inherent limitation of static information flow systems over dynamic systems.

166

App Lang LOC # Proc Time Mem FP FP
(s) (MB) Fmt Dir

Str Trav

bwaves F 715 22 0.1 .15 0 0
lbm C 939 30 0.1 0.17 0 0
mcf C 1695 36 0.1 0.2 0 0
libq C 2743 73 0.8 0.5 0 0
leslie3d F 3024 32 1.0 2.5 0 0
namd C++ 4077 193 0.5 0.50 0 1
astar C++ 4377 111 1.5 0.25 0 0
bzip2 C 5896 51 1.2 1 0 0
milc C 9784 172 1.2 1.56 0 0
sjeng C 10628 121 1.4 2.6 0 2
sphinx C 13683 210 1.3 3.5 0 0
zeusmp F 19068 68 3.1 3.75 0 0
omnetpp C++ 20393 3980 22.9 87.5 0 0
hmmer C 20973 242 1.5 3.72 0 0
soplex C++ 28592 1523 1.5 10.3 0 0
h264 C 36495 462 4.2 26.4 0 0
cactus C 60452 962 3.1 8.3 0 1
gromacs C/F 65182 674 9.6 46.1 1 0
dealII C++ 96382 15619 1.2 3.1 0 0
calculix C/F 105683 771 20.1 70.7 0 0
tonto F 108330 4086 3.5 5.8 0 0
povray C++ 108339 3678 1.8 3.1 0 0
perlbench C 126367 2183 24.6 59.7 0 0
gobmk C 157883 4188 12.9 30.2 0 2
gcc C 236269 6426 62.4 110.5 0 0
xalan C++ 267318 14441 4.5 9.82 0 0

Figure 6.11: Spec Benchmarks

RIFLE [147], being a dynamic method, assigns an individual label to each different

username and password. The experiments, as presented by Vachharajani et al. [147],

demonstrate that in the case of an unauthorized user access, the reply consists of

the labels of all the usernames since the whole file is scanned. In the case of an

authorized access, the reply contains the labels of usernames upto the authorized

username in the database and the password of the current user.

On the other hand, a static framework like DemandFlow does not have any

access to data and can only track the leakage of statically visible information in a

program. It is not possible to assign the labels corresponding to individual elements

in the database, the label can be applied at the granularity of the complete database.

Consequently, DemandFlow establishes a somewhat coarser information flow leakage

167

0

0.5

1

1.5

2

2.5

1 11 21 31 41 51 61 71 81

COREUTILS

N
u

m
b

e
r

o
f

F
a

ls
e

 P
o

s
it

iv
e

s
Format String Directory Traversal

Figure 6.12: Vulnerability detection in Coreutils

as compared to RIFLE.

6.8.5 Spec Benchmarks and Coreutils

In this section, we demonstrate DemandFlow’s scalability by applying the analysis

on the complete SPEC benchmark suite. SPEC benchmarks suite contain several

large real-world applications and comprise a diverse set of real and environment

intensive applications.

Fig 6.11 lists the running time, storage requirements and possible vulnerabil-

ities reported by DemandFlow for each of the programs in SPEC benchmark suite.

As evident from the table, the analysis time is typically low, under a minutes all

the benchmarks. The storage requirements for most of the benchmarks are under

168

0

1

2

3

4

5

6

7

8

1 11 21 31 41 51 61 71 81

COREUTILS

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 6.13: Time for analyzing Coreutils

100 MB, well within the memory available on modern systems. Similar to KeeP-

assX example, the time and storage requirements are typically lower for C++ and

Fortran programs due to relatively smaller number of format string calls. A limited

overall storage requirement validates the computation of information flow expres-

sions instead of a single-bit taint information, as employed by most information-flow

frameworks. DemandFlow raises only one false alarm regarding format-string vul-

nerability and only a few misleading instances of directory traversal vulnerability

for the complete set of the benchmarks. This translates to an extremely low false-

positive rate of .007 per 1000 lines of code (7/106).

The statistics presented in Fig 6.12 demonstrate that DemandFlow reports

three instances of format-string vulnerability in complete Coreutils suite. One on

these three instances is a possible true positive (csplit in Fig 6.5). Further, it only

169

reports 15 false samples for directory traversal vulnerability. This translates to a low

false-alarm rate of 0.107 per 1000 lines of code (18/140,000). and all 89 programs in

the latest stable version of GNU Coreutils (Version 8.10) while Coreutils and form

the core user-level environment installed on many Unix systems.

Fig 6.13 plots the running time for analyzing GNU Coreutils. The time spent

ranges from 0.5 seconds for smaller applications like test to 7 seconds for larger ones

like shasum.

170

Chapter 7: Cache Locking

7.1 Introduction

Modern embedded systems employ several memory technologies to meet stringent

run-time and power consumption constraints. SRAM and DRAM are the two most

common memories used for storing program code and data. Due to the relative cost

and performance of these memories, a large amount of DRAM is often complemented

with a small-size on-chip SRAM. The proper use of SRAM in embedded systems is

imperative in meeting run-time and energy constraints.

SRAM is most commonly managed in the form of a hardware-cache. A cache

dynamically stores a subset of the frequently used data or instructions following a

fixed replacement policy.

Various different approaches have been suggested to enable software involve-

ment in the management of on-chip memory. One approach involves the addition

of lightweight software-controlled memory like Scratchpad memory (SPM) which

rely on explicit compiler support for data allocation. Another approach involves

explicit modifications to the cache memory structure and availability of program-

mer level cache control instructions to enable direct software involvement in cache

171

replacement decisions.

On similar lines, several embedded systems like Intel’s XScale and ARM’s

latest cortex processors provide the facility of locking one or more lines in the cache

- this feature is called cache locking. An address, once locked in the cache, always

results in a hit on subsequent accesses unless an unlocking operation is explicitly

carried out. Thus, the software can influence the replacement decision made by the

cache and thereby alleviate the potential mistakes resulting from cache hardware

management. As an example, suppose a soon-to-be-accessed element is susceptible

to replacement according to the underlying cache replacement policy in favor of an

element that will not be accessed soon, locking this element in the cache will result

in a better cache performance.

However, current methods regarding instruction cache locking are geared to-

wards improving real-time predictability of applications [117, 116, 68, 151]. These

methods employ instruction cache locking for adapting the cache to multi-task real

time systems.

We presented the first method in literature [9] employing instruction cache

locking as a mechanism for improving the average-case run-time of general embed-

ded applications, thus widening its applicability beyond hard real time systems.

Our scheme is implemented inside a binary rewriter; hence is applicable to binaries

compiled using any compiler or software development toolchains and to programs

whose source code is not available e.g. legacy code or third party software. Cache

locking technique can be applied to both instruction and data caches but in this

work, we limit ourselves to the problem of instruction cache locking.

172

Liang and Mitra [98] extended our earlier work [9] and presented an optimal

algorithm for static instruction cache locking. However, both these methods only

explore static cache locking, where instructions are locked once before the start of

the program and remain locked during the entire execution of the program.

In this work, we extend our earlier instruction cache locking mechanism and

propose a novel dynamic cache locking algorithm, where the addresses locked in the

cache are updated dynamically during the execution of a program. Our mechanism

identifies the program points with significant shift in program locality and employs

a cost-driven model to compute the set of lines which should be locked at each

such program point. The input program is instrumented to achieve the locking

of required lines at each program point. This mechanism accounts for changing

program requirements at runtime and dynamically modifies the cache content.

We also demonstrate that an optimal solution to dynamic instruction cache

locking can be obtained in polynomial time, contrary to the previously held belief [9]

about instruction cache locking being a NP-complete problem. However, as we will

discuss in later sections, such an algorithm cannot be implemented practically with

current support for instruction cache locking. Hence, we propose a heuristic based

approach for deriving a solution for dynamic cache locking.

The rest of the section is organized as follows. Section 7.2 describes the un-

derlying cache locking interface. Section 7.3 overviews related work and lists the

advantages of our method. Section 7.4 presents a small example to depict the benefit

of instruction cache locking. Section 7.5 formalizes the cache locking problem and

its complexity. Section 7.6 presents our solution for static cache locking while Sec-

173

tion 7.7 presents the dynamic counterpart. Section 7.8 presents an overview of our

implementation framework. Section 7.9 presents our method’s results for different

cache and architecture configurations on a variety of benchmarks.

7.2 Cache Locking Interface

There are two most common kind of locking mechanisms present in modern embed-

ded systems - way locking and line locking. Way locking is a coarse grain approach to

cache locking where locking is available at the granularity of ways of a set-associative

cache. Locking a particular way in cache implies the way is locked in each set of the

set-associative cache. This kind of locking is present in ARM’s cortex processors [15]

and ARM11 family of processors [14].

Line locking is a more fine-grained approach to cache locking. In this interface,

the locking mechanism is available at the granularity of single cache line as opposed

to single way in way locking. In this interface, it is possible to have a different number

of locked lines in different sets of the cache. Intel’s XScale [159], ARM9 family and

BlackFin 5xx family processors [30] support this kind of locking mechanism.

In this work, we explore the line locking interface present on embedded sys-

tems. These platforms provide special co-processor-based lock instructions for lock-

ing an address specified as their argument in the cache. In such processors, way

0 of the cache can’t be locked; we respect this constraint in deriving our results.

However, we emphasize that our method does not require any such constraint and

can be applied for locking lines in all the ways of any set.

174

7.3 Related Work

There are many existing methods targeting improvement of on-chip memory perfor-

mance through software involvement. Research in this direction can be broadly cate-

gorized in two approaches: (i) approaches involving an additional software-controlled

memory apart from, or instead of, the cache; and (ii) approaches involving direct

modifications of the cache memory structure.

The first category of methods involve modifications to the memory hierarchy by

introducing additional software-controlled memories like Scratchpad memory (SPM)

and loop caches. Various different kind of methods have been suggested for managing

the data to be placed in SPM [134, 24, 112, 152, 153, 138, 18, 146]. A loop cache [70]

is a small instruction buffer which can be pre-loaded with frequently executed loops

and functions thus accelerating their access-time during program execution. SPMs

and loop caches are used in industry primarily where the run-time behavior of

applications is predictable; or to improve real-time performance. Caches are better

at tracking run-time behavior; hence are widely used in many non-real-time and

soft-real-time systems.

Even though cache locking tries to achieve the same goal of improving local

memory performance, its management strategy is inherently different from the al-

location problems for the above software-controlled memories such as SPM. There

are two reasons for that. First, when a cache locking method decides to lock an

line in the cache, other lines that conflict with it can no longer reside in cache in a

direct-mapped cache, or have reduced number of slots available in a set-associative

175

cache. This opportunity cost does not occur, and is not modeled, by methods for

SPM allocation. In contrast, our cache locking method inherently models this cost.

Correctly modeling this opportunity cost is crucial – a SPM allocator oblivious to

this cost when used for locking could exclude heavily used lines from cache, leading

to poor run-time. Another reason that SPM allocators are not suitable for cache

locking is that a particular element can be placed at any location in SPM, whereas

the cache hardware decides the location of each element in a cache. This results

in entirely different kinds of constraints for the cache locking problem. The energy

model in terms of cache hits and misses suggested in [152] for cache-aware SPM allo-

cation is somewhat similar to the time model we present but their method addresses

a completely different problem.

In the second category, there are methods that involve modifications to the

cache hardware to equip software to dynamically modify cache replacement deci-

sions. Rudolph et al [44] introduce column caching, to provide software the ability

to dynamically partition the on-chip memory into scratchpad memory; Wang et

al [126] proposed the extension of each cache line with evict-me and kill-me bits;

along with a compile time locality analyzer to determine their values. These meth-

ods provide interesting ideas for improving cache performance but rely on hardware

modifications that are unavailable in any commercial processors. In contrast, our

method is a software-only scheme applicable to a variety of commercial processors.

Research has been carried out to exploit the cache features present in existing

hardwares - locking is one such kind of feature available in modern embedded sys-

tems. Hollander et al [29] suggested reuse-distance-based methods for generating

176

cache hints for memory access instructions, available in EPIC architectures, result-

ing in improved data cache performance. In contrast, we don’t target the hardware

with cache hints; rather we target cache locking hardwares.

Instruction cache locking has primarily been employed as a mechanism for

adapting the cache to multi-task real time systems. In multi-task systems, the

presence of caches leads to unpredictability and results in extreme over-estimation of

worst case execution time, as each access can result in a miss in the worst case [117].

I-cache locking has been employed in such scenarios to provide predictability; thus

improving the worst case estimation. The objective of the cache-content selection

problem in such scenarios is to improve the worst case system behavior according to

some of real-time schedulability metrics as described in [117, 116, 68, 151, 16, 40].

In contrast, our objective of cache-content selection is to improve average case run-

time of embedded applications which is completely different objective, requiring a

very different strategy.

There has been very little research on using cache locking for performance

improvement of general embedded applications. Hu et al [161] presented a method

for data cache locking in Itanium and XScale processors based on the length of the

reference window for each data-access instruction. In contrast, we present a locking

scheme for the instruction cache. Further, their method doesn’t involve finding

the optimal number of cache lines to be locked in the cache; rather they rely on

locking every possible line which can be locked in cache. The over-aggressive locking

might provide negative results and does not ensure that the locked cache would give

perform better than cache with no locking. Our method suitably addresses these

177

limitations.

Earlier, we had presented the first method [9] in literature employing instruc-

tion cache locking as a mechanism for improving the average-case run-time of general

embedded applications. However, our previous work only explored a static solution

to cache locking. Liang and Mitra [98] extended our work and presented an optimal

strategy for static instruction cache locking. Later, Liu et al [100] also present a

method for employing instruction cache locking for improving average case perfor-

mance. However, their model does not model cache conflicts and is only applicable

to fully associative caches. Their method relies on techniques like code positions

to eliminate the conflicts. In contrast, our method directly models conflicts and is

applicable to a cache with any associativity.

In this work, we extend our previous work [9] and propose a dynamic solution

for cache locking, which accounts for changing program requirements at runtime

and updates the instructions locked in cache dynamically with program execution.

We summarize the benefits of our scheme: (i) ours is the first method for

employing instruction-cache locking as a mechanism for improving the average case

run-time of general embedded applications, thus widening its applicability beyond

hard real time systems. (ii) ours is the first dynamic method for instruction cache

locking, enabling better results than static schemes. (iii) we provide a profile-based

method and derive the cost-benefit from actual cache statistics; thus our method

is guaranteed to improve over the performance of cache without locking. (iv) our

method has been implemented inside a binary rewriter, widening its applicability to

binaries compiled using any compiler. (v) our method has an inherent mechanism

178

8000

8004

8008

8012

8016

7996 A

B

C

D

B,C

D

A

A

(50)

C

(40)

B

(10)

D

(50)
49

10
40

4010

(a) (d)

(c)

0

1

2

3

(b)

(ABD (ACD)4)10

Figure 7.1: (a) Weighted CFG of a small part of a program. A, B, C and D are
instructions of 4 byte each (b) A hypothetical memory layout of the above instructions
(c) A dummy 16-byte direct mapped instruction cache. The alphabets at right hand
side of each cache line show the instructions which are mapped to the line according
to the cache mapping function (d) The execution trace of this part of the program

that determines the optimal number of cache lines to be locked - it does not lock

each possible cache line, as suggested by some previous methods. (vi) cache locking

is already available on existing hardwares and thus our method does not entail any

new hardware modifications, making our approach readily applicable.

7.4 Motivation

In this section, we present the potential benefits of instruction-cache locking in

improving cache efficiency via a small example. Figure 7.1 shows a weighted control-

flow graph (7.1(a)) and execution trace (7.1(d)) of a small part of a program; its

179

hypothetical memory layout (7.1(b)) and a dummy cache configuration (7.1(c)).

The nodes and edges of the control-flow graph are labeled with their execution

frequencies as observed during a profile run of the program. The execution trace

(7.1(d)) of the program reveals that a single execution of node B is followed by

four instances of node C. This sequence of execution of node B followed by node

C is repeated 10 times during the execution of the program. For simplicity, we

assume that nodes A, B, C and D contain only a single instruction each. For ease

of explanation, the instruction cache is a tiny 16-byte direct mapped cache with

one word per line. The addresses are mapped to the cache lines according to the

standard modulo-based cache mapping function:

Set = (addr) mod
Cache-Size

Associativity ∗Words-Per-Line
(7.1)

According to the above cache mapping function and the memory layout, in-

structions B and C share the same line in the cache. During the execution of the

above program, node B and node C alternately keep replacing each other in the

cache, resulting in a large number of cache misses. The second column in Fig-

ure 7.2(a) shows that this cache configuration leads to 22 misses for this sample

program.

Next, assume the presence of locking functionality inside the instruction cache.

If node C is locked into cache line 0 then C would not be replaced by node B during

the execution of the program. Node C would observe only one compulsory miss while

number of misses for B would remain the same. The third column in Figure 7.2(a)

180

0

1

2

3

22

1

10

10

1

Number of

Misses
without
locking

1D

13Total

1C

10B

1A

Number of

Misses
with
locking

Node

C Locked

(a) (b)

Figure 7.2: (a)Number of misses observed for each node with and without locking
(b) Locking of node C in set 0 of cache

shows the number of misses observed by each node when node C is locked in cache

as shown in Figure 7.2(b). With cache locking, we observe only 13 misses, down

from 22 misses in cache without locking. This example highlights the potential of

I-cache locking as an effective mechanism for reducing cache misses.

7.5 Theoretical Analysis of Cache Locking

The cache-locking problem involves selecting the memory addresses which should be

locked in the cache during each time interval, and the program locations for locking

and unlocking, such that the total number of instruction cache misses over the

lifetime of the program is minimized. The solution to this problem is influenced by

the behavior of the cache mapping function. In a set-associative cache, an address is

mapped to the cache line according to the cache mapping function (7.1). For a given

memory address, this function returns the cache set where the address is mapped in

181

the cache. A particular memory address always gets mapped to the same set in the

cache, given by the above function. Thus, given the full range of instruction-memory

addresses in the current program, the list of addresses which get mapped to a set

during the lifetime of the program can be accurately obtained for each cache set.

Once this mapping of addresses to the corresponding set is obtained, each cache set

can be independently analyzed to determine the memory addresses to be locked in

that set.

At each time instant T, the cache locking problem has two objectives (i) de-

termining the number of lines, L, which should be locked in this set (ii) selecting L

virtual cache lines out of total candidates which should be locked in the set.

In his seminal paper [27], Belady proposed an optimal offline replacement

policy for virtual memory pages, which has been subsequently widely applied for

cache analysis as well. Belady’s algorithm achieves the lowest possible cache miss

rate. Other faster algorithms [140] have also been proposed to achieve the optimal

cache miss rate. Collectively, the class of such algorithms is referred to as OPT

algorithm. We demonstrate that the OPT algorithm can be employed to provide an

optimal solution for cache locking problem in each cache set.

The OPT algorithm analyzes the cache accesses in the trace in the execution

order. The resulting replacement decisions can either be employed for improving

cache performance in future executions or for comparing different cache strategies.

Intuitively, given a trace of block accesses for the program, the OPT algorithm is based

on evicting the block which will be referenced furthest in the future. Consider an

address X that is referenced twice in a program trace at times t1 and t2, t2 ≥ t1.

182

According to OPT algorithm, the decision for keeping X in the cache during the time

interval {t1,t2} is taken at t2 (and implemented at t1 in future executions). X is

not kept in the cache if the total number of elements already in the cache in time

interval {t1,t2} is equal to the cache capacity; otherwise it is kept in this interval.

We observe that the ability to lock an address in the cache provides a tangible

mechanism to implement the solution proposed by OPT algorithm. For example, in

order to keep an element X in the cache during the time interval {t1,t2}, X can be

locked in the cache at t1 and unlocked at t2. Consequently, cache locking mecha-

nism actuates the implementation of OPT algorithm. Based on this observation, we

state the following important lemma.

LEMMA: An optimal solution for cache locking can be derived in a polynomial

time, assuming perfect prior knowledge of memory accesses.

PROOF : OPT is a polynomial time algorithm for obtaining an optimal solution

for cache performance. In other words, the OPT algorithm minimizes the number of

misses in the cache. The Cache locking problem shares the same goal of minimizing

the number of misses in the cache. The capability of locking a line in cache enables

the implementation of each step of OPT algorithm in a constant time. Hence, OPT

is an optimal solution for the cache locking problem as well. The polynomial time

complexity of OPT results in a polynomial-time optimal algorithm for cache locking.

A perfect (or complete) knowledge of future memory accesses enables OPT algo-

rithm to make optimal replacement decisions. Extending this optimal replacement

183

algorithm to the cache locking problem implicitly models the opportunity cost aris-

ing due to precluding the remaining elements from the cache during cache locking

since OPT considers every cache line as a possible candidate for locking.

However, the mechanism of inserting a cache locking instruction for locking

an element in the cache, as presented in Section 7.2, generates several pragmatic

challenges. The OPT algorithm provides a set of addresses which should be locked in

the cache at each program instant. A direct instrumentation of the program with

the instructions for locking these addresses changes the program layout, invalidating

the results provided by OPT algorithm. The other option is to leave a placeholder

before each instruction in the program. These placeholders can later be employed

for inserting cache locking instructions as per the results of OPT algorithm. The

remaining placeholders can be replaced by a NOP instruction. However, the presence

of large number of such NOP instructions results in a huge overhead in execution-time,

negating the improvement in memory performance due to cache locking.

Consequently, the cache locking mechanism present in current hardware leaves

us in a conundrum where the optimal algorithm cannot be implemented. Hence, we

propose two distinct solutions to overcome this practical challenge:

→ Static Cache Locking: We formulate a static solution to instruction cache

locking where instructions are locked once before the start of the program

and remain locked during the entire execution of the program. This solution

obviates any requirement of changing the program layout.

→ Dynamic Cache Locking: In this formulation, we obtain an hybrid be-

184

tween static locking and OPT algorithm. Instead of inserting placeholders at

each point in the program, we insert placeholders only at judiciously chosen

program points. Such program points are chosen based on a possibility of

a large change in program locality. These placeholders are later replaced by

cache locking instructions or NOP as per the requirement.

Section 7.6 presents the solution for Static Cache Locking. Section 7.7 extends

this solution to obtain Dynamic Cache Locking.

7.6 Static Cache Locking

In this section, we formalize the cache locking problem as an optimization problem

and explain our cache locking algorithm in detail. We present a static solution to

instruction cache locking where instructions are locked once before the start of the

program and remain locked during the entire execution of the program.

Since elements in the cache are locked at the granularity of cache lines and not

individual memory addresses, addresses need to be analyzed in terms of cache lines.

In order to mathematically represent this situation, we introduce a new concept of

virtual cache line. Given an instruction address, addr, the Virtual Cache Line is

defined as

Virtual Cache Line =
addr

Words-Per-Line
(7.2)

The remaining analysis for cache locking is carried out in terms of virtual cache

lines. We introduce the following definitions to ease the explanation

185

N: Associativity of the cache; s: A cache set

Xs: Set of virtual cache lines which get mapped to set s

M: Cardinality of set Xs.

K: Hardware specified limits on maximum number of lines which can be locked in a

set

L: Number of lines to be locked, L ≤ K

The static cache locking problem has two objectives (i) determining L: the

number of lines which should be locked in this set (ii) selecting L virtual cache lines,

out of M candidates, which should be locked in the set.

If L lines are locked in this set, L locked virtual cache lines result in L compul-

sory misses and no other misses are observed for these lines. The remaining M - L

virtual cache lines from set Xs perceive the cache as a N - L set associative cache. In

case the total number of virtual cache lines sharing this particular cache set is more

than the associativity of the cache, this decreased associativity might result in an

increased miss rate for the remaining lines.

The number of solutions to the cache-locking problem is exponential since

there are an exponential number of ways to choose up to K lines to lock out of M

contenders. In all likelihood, this is a classical NP Hard combinatorial optimization

problem, which does not have an exact solution, although we have not attempted

to formally prove this. Further, finding an exact solution is complicated by the

186

fact that the increased miss rate for remaining M - L virtual cache lines cannot be

accurately determined unless we know which virtual cache lines are locked in the

current set of the cache, which is one of the objectives of this optimization problem.

Hence, an exact solution will not only have an exponential number of solutions, but

will require a profiling run for each solution to determine the increased miss rate

for the remaining unlocked lines, which is completely infeasible. Consequently, we

explore an approximate solution for this problem, as presented below.

7.6.1 Cache Locking Algorithm

Here, the solution for one cache set is considered in detail; the same method is

employed repeatedly for each set. Our solution is based upon the total time taken

to access each virtual cache line during the lifetime of the program. We introduce a

time model for representing the total time taken to access a particular virtual cache

line during the lifetime of the program in presence of locking.

LOCKLIST: The running list of virtual cache lines locked so far in the set.

LL: The number of elements in list LOCKLIST.

HITLL(xi)/MISSLL(xi): Total number of hits/miss obtained for a virtual cache line

xi assuming that LL number of lines were locked in the current set

F(xi): The total number of accesses to a virtual cache line xi.

THIT/TMISS: Hit and Miss latency of the cache, respectively, in processor cycles.

187

Mathematically, this model is described as

T ime(xi|LOCKLIST) = HITLL(xi) ∗ THIT

+ MISSLL(xi) ∗ TMISS

(7.3)

In our notation, Time(A|B) is the total time to access virtual cache line A during

the lifetime of the program given that all the virtual cache lines in mathematical

set B have already been locked in A’s cache set. (This notation is borrowed from

conditional probability.). LOCKLIST is initialized as an empty list. Every time a

line is selected to be locked, the LOCKLIST is updated with the line. The analysis

presented is only applied to xi /∈ LOCKLIST.

In order to find the virtual cache lines which should be locked in this set,

we introduce a cost-benefit model based on the above time model to find the net

benefit (benefit - cost) of locking a particular cache line. The following relation

between number of accesses, number of hits and number of misses always holds

true, irrespective of the number of lines currently locked (LL) in the set:

F (xi) = HITLL(xi) +MISSLL(xi) ∀ LL (7.4)

Using the above relation and the time model from equation (7.3), the original

access time for virtual cache line xi, assuming that virtual cache lines in LOCKLIST

188

are already locked in this set, can be represented as:

T ime(xi|LOCKLIST) = HITLL(xi) ∗ THIT +

(F (xi)−HITLL(xi)) ∗ TMISS

(7.5)

If line xi is locked in cache, only one miss (a compulsory miss) would be

observed for this line. All the remaining accesses to this line would definitely result

in a hit. Thus the new access time for this line would be given by following relation:

T ime(xi|(LOCKLIST ∪ {xi})) = TMISS +

(F (xi)− 1) ∗ THIT

(7.6)

Subtracting equation (7.6) from equation (7.5), the potential benefit of locking

a particular line xi can be expressed as:

BenLock(xi) = T ime(xi|LOCKLIST)

− T ime(xi|(LOCKLIST ∪ {xi}))

= (F (xi)−HITLL(xi)− 1)

∗ (TMISS − THIT) (7.7)

In order to calculate the cost of locking a line, we only consider the opportunity

189

cost of locking a line and not the actual cost of executing locking. Since we are just

considering a static solution, the cost of executing a single locking instruction is

negligible and hence does not affect our analysis.

In order to represent the opportunity cost of locking a particular cache line, we

need to model the increase in total access time for the remaining virtual cache lines

which map to the set under consideration. So far, |LOCKLIST| = LL virtual cache

lines have been selected for locking. Let, Xsi denotes the set of virtual cache lines

mapped to the current cache set si, excluding the LL elements in the list LOCKLIST.

The elements in LOCKLIST are already locked in cache, hence they won’t observe

any opportunity cost.

According to above terminology, each line xj ∈ Xsi observes HITLL(xj) hits.

Each element belonging to set Xsi is a potential candidate for locking. If line xi

is locked at this step, then each remaining element xj of set Xsi would observe a

lesser number of hits, denoted by HITLL+1(xj). This constitutes the cost of locking

a particular line xi. Mathematically, for each xj ∈ Xsi , the original access time is

represented by equation (7.5). The new access time after locking line xi can be

represented as:

T ime(xj|(LOCKLIST ∪ {xi})) = HITLL+1(xj) ∗ THIT +

(F (xj)−HITLL+1(xj)) ∗ TMISS

(7.8)

The increase in access time for one element xj due to locking the line xi,

190

denoted by CostLock(xi)(xj), can be represented as

CostLock(xi)(xj) = T ime(xj|(LOCKLIST ∪ {xi}))

− (T ime(xj|LOCKLIST)

= (HITLL(xj)−HITLL+1(xj))

∗ (TMISS − THIT) (7.9)

The total cost of locking the line xi can be represented as

CostLock(xi) =
∑

(xj |xj∈Xsi
&xj 6=xi)

CostLock(xi)(xj) (7.10)

The net benefit of locking a particular virtual cache line can be calculated as

NetBenefit(xi) = BenLock(xi)− CostLock(xi) (7.11)

A positive NetBenefit for a cache line implies that locking this line would

result in a lesser total memory access time for the program. Magnitude of the

NetBenefit represents the change in total access time. Thus the cache line with

maximum positive benefit is the ideal candidate for locking at this step.

In order to meet the both the objectives of the problem – determining the

191

N : Cache size in number of lines
K: Number of lines which can be locked in each set
S: Number of sets in the cache.
si: Set where memory address xi gets mapped
Xsi : The set of memory addresses which get mapped to set si
F (xi): Total number of memory accesses to address xi

LL: Iterator over number of lines locked in one set
HITLL(xi): Total number of hits obtained for xi when LL lines are locked in set si
MISSLL(xi): Total number of miss obtained for xi when LL lines are locked in set si
LockList(si): Set of virtual cache lines which should be locked in set si
NumLockLines(si):Number of virtual cache lines which should be locked in set si.
THIT / TMISS : Hit/Miss latency in processor cycles

void Cache Locking Algorithm() {
1. for(each set si in range 0 to S -1) do {
2. for(each LL in range 0 to K -1) do {
3. for (each xi in Xsi) {
4. BenLock(xi) = (F (xi)−HITLL(xi)− 1) ∗ (TMISS − THIT)
5. CostLock(xi) =

∑

xj |xj∈Xsi
&xj 6=xi

CostLock(xi)(xj)

6. NetBenefit(xi) = BenLock(xi)− CostLock(xi)
7. }
8. If there exists a xk such that NetBenefit(xk) is maximum and is positive.{
9. Add xk to LockList(si)
10. NumLockLines(si) = NumLockLines(si) + 1
11. Xsi = Xsi − xk

12. }
13. else {
14. break; //Locking done for this set
15. }
16. }
17. }
18.return
19.}

Figure 7.3: Static Cache Locking Algorithm.

number of cache lines to be locked in the set and selecting the virtual cache lines

to be locked in these lines of the set – we devise a greedy and iterative solution

for this problem. Let us examine the steps taken at the (LL + 1)th iteration. At

192

this point, we have a list LOCKLIST of LL virtual cache lines which should be locked

in the set. The above model is used to calculate the NetBenefit for each of the

virtual cache line xi|xi ∈ Xsi . If the net-benefit is negative for all the elements, the

locking is discontinued for this set, implying that it is not beneficial to lock any more

cache line in this set. The running list LOCKLIST represents the final list of virtual

cache lines which should be locked in this set. If there is at least one element with

positive net-benefit, we find the virtual cache line which has maximum net benefit

for locking. This line is added to the list LOCKLIST and is removed from the locking

candidates set Xsi . The above steps are repeated at each iteration until at least one

of the following two conditions is true: (i) we reach the limit of maximum cache lines

which can be locked in a set or (ii) we reach a point where the net benefit becomes

zero for each virtual cache line in this set. At the end of this process, we get the

number of cache lines (|LOCKLIST|) as well as memory addresses which should be

locked in this set (LOCKLIST). In other words, we obtain the solution for both the

unknowns of cache locking problem. Figure 7.3 describes the psuedocode for the

cache locking algorithm.

In the above cost-benefit model, HITLL+1 cannot be determined precisely till

we know which virtual cache line gets locked during the current step of iteration

and would be different for each virtual cache line. Determing the exact value is

completely infeasible given that the number of profile runs needed would equal the

number of virtual cache lines, which is a very large number. Thus, an approximate

value of HITLL+1 is obtained by locking a dummy (unused) virtual cache line in the

set apart from LL lines already locked. Nevertheless, this approximation always

193

provides conservative estimates for future hit rate – in reality, one less virtual cache

line would be competing for space in cache – and thus locking a line is guaranteed

to show performance improvement.

7.7 Dynamic Cache Locking

In this section, we discuss our mechanism for dynamically updating the contents

locked in a cache. As mentioned in Section 7.5, our dynamic solution is based

on possibly changing the locked contents of cache at the program points having a

possibility of a significant change in the program locality.

The solution consists of the following steps. First, the program code is analyzed

to determine a set of promising program points. Second, a timestamp is associated

with every program point such that the program points are reached during runtime

in the timestamp order. Third, the timestamps are updated to discard the program

points with high execution frequency since they will result in high locking overheads.

The code between two consecutive timestamped program points represents a code

region. Regions correspond to the granularity at which cache locking decisions

are made. Next, a heuristic based algorithm is employed to compute the locked

content in the cache at these refined program points. The cache content is fixed

in a particular region, but may change at region boundaries. We first describe our

method for determining such program points (and regions) and then propose our

solution to determine the locked cache content in each particular region.

194

 main() {
 proc-A();
 proc-B();
 while() {..}
 }

 proc-A(){
 proc-C();
 }

 proc-B(){
 proc-C();
 for() { ...}
 }

 proc-C(){
 ...
 }

 (a)

main

proc_B

proc_C Loop2

proc_A Loop1

1

1.1

1.1.1

1.2

1.2.1 1.2.2

1.3

(b)

main

proc_B

proc_C Loop2

proc_A Loop1

1

1.1 1.2

1.2.2

1.3

(c)

Figure 7.4: Example showing (a) a program outline; and (b) its DPRG showing
nodes, edges & timestamps (c) modified DPRG nodes and timestamps assuming
that execution frequency of proc C is greater than LIMIT

7.7.1 Program Points

The choice of program points is critical to the success of the algorithm. Promising

program points are those after which the program has a significant change in locality

behavior. Further, the dynamic frequency of program points should be less than the

frequency of regions, so that the cost of executing cache locking instructions can

be recouped by corresponding improvement in memory performance. Hence, sites

just before the start of loops are especially promising program points since they are

infrequently executed compared to the insides of loops. Moreover, the loop often

re-uses instructions, justifying the cost of locking lines in the cache.

With the above considerations, we employ a modified version of Data-Program

Region Graph (DPRG), proposed by Udayakumaran and Barua [145], for determin-

ing program points. We modify the original DPRG structure [145] in two aspects.

195

First, the original DPRG was proposed to solve the data allocation problem, hence

it also represents variable accesses. We do not need to represent variables since we

are only targeting instruction cache locking. Second, we refine the program points

obtained through original DPRG structure by discarding the program points with

high execution frequency, since locking at those locations results in high overheads.

The threshold for refining the program points is heuristically determined using pro-

filing, as explained in later sections. Below, we summarize the DPRG structure and

our modifications to this structure.

DPRG defines program points as (i) the start and end of each procedure; (ii)

just before and just after each loop (even inner loops of nested loops). In this way,

program points track most major control-flow constructs in a program. Program

points in a DPRG are the only initial candidate sites for applying cache locking

in the ensuing region. This set is further refined and the actual solution regarding

the elements to be locked in each region is governed by the method proposed in

Section 7.7.2.

Figure 7.4 shows an example illustrating how a program is divided into regions

and then marked with timestamps. Figure 7.4(a) shows the outline of an example

program. It consists of four procedures, namely main(), proc-A(), proc-B()

and proc-C() and two loops, Loop1 and Loop2.

Figure 7.4(b) shows the Data Program Relationship Graph (DPRG) (exclud-

ing variable accesses) for the program in figure 7.4(a). The DPRG data structure

helps in the marking of timestamps and the identification of regions. The DPRG

is essentially the programs call graph appended with new nodes for loops. In the

196

DPRG shown in figure 7.4(b), there are three procedures and two loops. We see that

oval nodes represent procedures and circular nodes represent loops. Edges to pro-

cedure nodes represent calls while edges to loop nodes shows that the loop is nested

in its parent. The program points – namely the starts of procedures and loops –

are represented by the start of the code in each oval or circular node. In case of a

loop, its program point is outside the loop at its start. In case of a procedure, its

program point is inside its body at its start.

Figure 7.4(b) also shows one or more timestamps (e.g 1.1, 1.2) for each node

in the DPRG. Since the start of each node is a program point, this timestamps

the program points as well. Timestamps are derived using the following rule: the

timestamp for each node is the timestamp of its parent appended by a “.” followed

by a number representing which child it is in a left to right order. In this way if the

main() function is assigned a timestamp of 1, the timestamps of all nodes can be

computed by a simple variant of the well-known breadth-first-search graph traversal

method. The figure shows the results. A node may get more than one timestamp if it

has more than one parent. An example of such a scenario is the node for proc-C(),

which is marked with two timestamps: 1.1.1 and 1.2.1. An ordering on timestamps

is their dictionary order. In other words, timestamps are compared according to

the following rule: find their longest common prefix ending with a “.”; the larger

timestamp is the one with the larger subsequent number. For example, 1.2.1 < 1.3

since their longest common prefix ending with a “.” is “1.”, and the subsequent

number (2) for the first timestamp is less than that of the second timestamp (3).

With such an ordering, the timestamps always form a total order among themselves.

197

Timestamps are useful because they reveal dynamic program execution order:

the order in which the program points are visited at runtime is roughly the same as

the total order of their timestamps.

This initial set of program points is further refined by considering the actual

execution frequency at each program point. We define a threshold LIMIT and discard

the program points whose execution frequency is greater than LIMIT, since the

overhead of locking at those points might be too high. The actual value of LIMIT

is determined through heuristics, as discussed in Section 7.9. Since the timestamps

always form a total order among themselves, removing some timestamps from the

list does not impact the relative order of remaining timestamps.

Figure 7.4(c) shows the resulting program points and corresponding times-

tamps after applying the above refinement in this example. Each program point

in this modified graph denotes the beginning point of a region. The code block

between two consecutive program points is considered a region. As evident, a code

block can simultaneously be part of two different regions. The locked content in a

code block will be dynamically governed as per the actual execution path.

7.7.2 Dynamic Locking Algorithm

The above method divides a program into a set of regions, where the program

locality is consistent in a region. Each region can be analyzed separately since only

one region is active at an execution instant. Consequently, the solution for cache

locking in each region is obtained by extending the static cache locking algorithm

198

proposed in Section 7.6 with some modifications, as discussed next.

We introduce the following definitions to ease the description. Similar to static

cache locking method, the formulations are for one particular cache set s.

R: Set of program regions; r: An element of set R; p: A program point;

Execp: Execution frequency of point p; LockInst: Number of cycles for locking a

line

Yr: Set of virtual cache lines accessed in a region r mapped to a particular cache

set s1

Lr :Lines which should be locked in a set s in a region r

The dynamic cache locking problem has two objectives (i) For each region

r, determining Lr (ii) selecting |Lr| virtual cache lines out of |Yr| candidates which

should be locked in the set in this region.

The benefit for locking a line in a region r is same as static cache locking and is

given by Equation 7.7. However, the cost for locking a line in a region is influenced

by two factors. First, only the program addresses belonging to region r need to be

considered for computing the opportunity cost. Second, the locking instructions are

now executed each time a program point is executed. Hence, the cost of locking is

no more negligible and the model needs to be reflect the locking cost.

1Since we are considering solution independently for each cache set, we have simplified the
notation by ignoring the set representation s in the notation for Yr and Lr

199

N : Cache size in number of lines; K: Number of lines which can be locked in each set
S: Number of sets in the cache.
R: Set of regions determined by DPRG
Yr: The set of memory addresses which get mapped to set si in a region r
F (xi): Total number of memory accesses to address xi

LL: Iterator over number of lines locked in one set in region r
HIT r

LL(xi): Total number of hits obtained for xi when LL lines are locked in set si in region
LockListr(si): Set of virtual cache lines which should be locked in set si in region r
NumLockLinesr(si):Number of virtual cache lines which should be locked in set si in region r
THIT / TMISS : Hit/Miss latency in processor cycles
LockInst: Number of cycles for locking a lines;
Execr: Execution frequency at beginning of region r

void Dynamic Cache Locking Algorithm() {
1. for (each region r in set R) do {
2. for (each set si in range 0 to S -1) do {
3. for(each LL in range 0 to K -1) do {
4. for (each xi in Yr) {
5. BenLock(xi) = (F (xi)−HIT r

LL(xi)− 1) ∗ (TMISS − THIT)
6. OppCostDynLock(xi) =

∑

(xj |xj∈Yr&xj 6=xi)
CostLock(xi)(xj)

7. CostDynLock(xi) = OppCostDynLock(xi) + LockInst ∗ Execr
8. NetBenefit(xi) = BenLock(xi)− CostDynLock(xi)
9. }
10. If there exists a xk such that NetBenefit(xk) is maximum and is positive.{
11. Add xk to LockListr(si)
12. NumLockLinesr(si) = NumLockLinesr(si) + 1
13. Yr = Yr − xk

14. }
15. else {
16. break; //Locking done for this set
17. }
18. }
19. }
20. }
22.}

Figure 7.5: Dynamic Cache Locking Algorithm.

200

The opportunity cost of locking a single element is given by Equation 7.9.

However, this opportunity cost is observed only by the elements belonging to region

r. Hence, the new opportunity cost is given by the following equation:

OppCostDynLock(xri) =
∑

(xj |xj∈Yr&xj 6=xi)

CostLock(xi)(xj) (7.12)

Further, the total cost, considering the actual cost of locking, is defined as

follows:

CostDynLock(xri) = OppCostDynLock(xri) + LockInst ∗ Execp (7.13)

Hence, the net benefit of locking a line can be denoted as

NetBenefit(xri) = BenLock(xi)− CostLock(xri) (7.14)

The above net benefit heuristic is applied in each region to determine the set

of lines to be locked in each region. Fig 7.5 presents the pseudo code for dynamic

cache locking algorithm.

201

7.8 Implementation

In this section, we discuss the implementation of binary rewriting scheme for in-

struction cache locking. Figure 7.6 presents an overview of our experimentation

workflow. Our mechanism for cache locking can be implemented inside any existing

binary rewriting framework such as Diablo [57] or SecondWrite [10].

First, the binary rewriter framework is employed to obtain an intermediate

representation (IR) from the input binary. Next, the techniques presented in Sec-

tion 7.7.1 are employed to determine the DPRG regions/program points in the input

binary. Next, the IR is instrumented with dummy placeholders at these program

points and the binary rewriter’s backend is employed to obtain an instrumented

binary.

The instrumented binary is used to obtain an instruction trace of the appli-

cation using a processor simulator (details below). Next, this instruction trace is

used to obtain cache statistics using a cache simulator. This cache simulation is

iteratively applied with increasing number of lines locked per set to determine the

Binary
Rewriter
Front end

Detect
DPRG
Regions

Intermediate
Representation
(IR)

Instrumented
Binary

Simulator/
Cache
Simulator

Determine LockLines

Binary
Rewriter

Rewritten
Binary

Lines to be locked

IR with
placeholders

Input
Binary

Binary
Rewriter
Back end

Figure 7.6: The Experimental WorkFlow

202

final list of virtual cache lines to be locked in the cache in each program region.

As mentioned in Section 7.2, special locking instructions are provided in target

platforms which upon execution lock the elements at specified addresses in the cache

lines. Since our method is based on analyzing the instruction memory addresses of

original binary, the code layout of the re-written binary should be exactly the same

as instrumented binary. Modifying the program layout might render the above

analysis to be incorrect. Hence, after determining the addresses to be locked in

the cache, binary rewriter is employed again to insert the actual lock instruction

corresponding to the required lines and the remaining placeholders are replaced by

NOP instructions.

The workflow in Figure 7.6 corresponds to dynamic locking. In case of static

locking, a single placeholder is inserted only at the beginning of the binary, instead

of determining the placeholders using DPRG, but otherwise the workflow is similar.

7.9 Results

The experiment setup consists of a Intel XScale processor core with clock frequency

600 Mhz (PXA27x family), on-chip 16 kB 4-way set-associative data cache, on-chip

instruction cache and a unified off-chip memory. The ARMulator software, which is

part of ARM Development Suite is used to simulate the processor core. The above

architectural parameters can be easily configured in ARMulator. Dinero IV [60], a

well-known cache-hierarchy simulator is used to simulate the cache. We modified

Dinero to provide the cache statistics at the granularity of virtual cache lines and

203

Application Lines Of Code Num of Instr Num of DynInstr

Sha 207 2501 355452842

Crc 128 1027 75738737

BitCnts 543 3340 149409187

Susan 1456 4040 60516192

Blowfish 3260 2909 868261350

Jpeg 19804 9718 104615385

Dijikstra 268 18612 536074136

Lame 15959 19810 569002359

Gsm 4779 14040 64340338

StringSearch 3072 1839 8051466

QuickSort 79 2298 830913008

Lout 30689 59828 538663

FFT 278 5868 671496345

BasicMath 7367 6375 102147075

Patricia 296 7756 114446172

Rinjdal 1017 4960 578559602

Table 7.1: Application Table

augmented it with the ability to simulate cache locking.

We configured the ARMulator to simulate a perfect zero-wait memory system.

It generates the execution time in terms of processor cycles. The instruction and

data miss statistics provided by Dinero are used to calculate the effect of cache

misses on execution time and is added to the execution time calculated by ARMu-

lator to obtain the total execution time of the application. A sample memory map

file available in ARMulator with average off-chip memory access time of 150ns is

chosen to calculate off-chip memory access latency. As per the XScale’s architecture

204

manual, each locking instruction is assumed to take four cycles and is considered

accordingly while calculating the execution time of resulting binary.

A subset of MiBench benchmarks were randomly selected to substantiate the

performance improvement obtained by our method of cache locking. At this point we

have simply included all the benchmarks that compiled and ran in our infrastructure

in the time available – the benchmarks have not been selected to be favorable to

us in any way. Table 7.1 lists the benchmarks which are used for carrying out

the experiments. All the benchmarks are statically compiled with the GNU-ARM

toolchain.

The results for static cache locking are presented in Section 7.9.1 while Sec-

tion 7.9.2 presents the improvement obtained by dynamic cache locking over the

static mechanism. Section 7.9.2 also compares our static and dynamic mechanisms

with the static mechanism suggested by Liang and Mitra [98]. We refer to the

method suggested in [98] as OPT-static. Based on the execution frequency of pro-

gram regions, the value of LIMIT (Section 7.7.1) was kept to 50 in our experiments.

7.9.1 Static Cache Locking

Various kinds of experiments are performed with different cache configurations for

analyzing the improvement in the instruction-cache miss rate and run-time of the

applications. The cache configuration is varied across two dimensions: size and

associativity. The block size is kept fixed at 4 words.

The percentage improvement in the I-cache miss rate with static cache locking

205

0

5

10

15

20

25

30

35

40

45
S

h
a

c
rc

B
it

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
ij
ik

s
tr

a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a

s
ic

M

p
a

tr
ic

ia

R
in

jd
a

l

A
V

G

Benchmarks

%
 i
m

p
ro

v
e
m

e
n

t

2KB 4 KB 8 KB 16 KB

Figure 7.7: Percentage improvement
in instruction-cache miss rate over cache
with no locking for varying sizes of a 2-
way set-associative cache

0

5

10

15

20

25

30

35

40

S
h

a

c
rc

B
it

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
ij
ik

s
tr

a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a

s
ic

M

p
a

tr
ic

ia

R
in

jd
a

l

A
V

G

Benchmarks

%
 I
m

p
ro

v
e

m
e

n
t

1 Way 2 Way 4 Way 8 Way

Figure 7.8: Percentage improvement
in instruction-cache miss rate over cache
with no locking for different associativi-
ties of the cache. The cache size is kept
fixed at 4 Kb.

compared to the cache configuration without locking is displayed in Figure 7.7 for

different cache sizes. As evident from this figure, the proposed I-cache locking

mechanism results in a consistent improvement in the instruction cache miss rate

over all the benchmarks and cache sizes. We obtain an average improvement of 15%

in the I-cache miss rate for small cache sizes and around 25% for large cache sizes.

Interestingly, the improvement in the I-cache miss rate increases with an increase

in the cache size for most of the applications. This is expected since a small cache

size results in a high opportunity cost in our cost-benefit model as locking a line

prevents many other lines from accessing that cache location, resulting into fewer

lines being locked in the cache.

Figure 7.8 displays the variation of I-cache miss rate improvement with vari-

ation in associativity of the cache. We see that the improvement in the I-cache

miss rate ranges from 15-18% for set-associative caches. Virtually all commercial

206

cached embedded processors support only set-associative caches 2, which establishes

our proposed approach as a robust mechanism for improving memory system per-

formance. The average improvement in case of direct mapped cache is, not surpris-

ingly, limited – having only one way in a set amounts to extremely high opportunity

cost resulting in very little locking. Our goal is not to get improvements in direct-

mapped cache – we never expected to, and such caches are very rare in embedded

systems – but the results are presented for completeness, and show that the method

never degrades performance, even managing a small improvement for direct mapped

caches3.

Next, the impact of instruction cache locking on run-time performance of

various applications is analyzed. Figure 7.9 shows the savings in runtime obtained

by using the instruction cache-locking. Comparing Figure 7.7 and Figure 7.9 brings

out several interesting observations.

First, even though the cache locking scheme results in considerable improve-

ment of instruction cache miss rate consistently over all the applications, not all

applications experience an improvement in run-time performance. The improve-

ment in I-cache miss rates translates to run-time performance improvement only for

those applications where the overall I-cache miss rate is high. This is not surprising

since a technique like ours to reduce the I-cache miss rate will not help if it is not a

problem to begin with.

Revisiting Figure 7.9, we see that the benchmarks on the right-hand side are

2For example, among the ARM processors, only one of the 15 processors listed on ARM’s
website offers a direct-mapped cache.

3For simulation purposes, the architectural constraint of not locking way 0 is relaxed for direct
mapped cache.

207

0

5

10

15

20

25

30
S

h
a

c
rc

B
i t

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
i j
ik

s
tr

a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a
s

ic
M

p
a

tr
ic

ia

R
in

jd
a
l

A
V

G

S
IG

 A
V

G

Benchmarks

%
 I
m

p
ro

v
e

m
e

n
t

2 kB 4 kB 8 kB 16 kB

Significant for 2 kB

Significant for 4 kB

Significant for 8,16 kB

Figure 7.9: Improvement in execution
time of the applications over cache with
no locking for varying size of a 2-way set
associative cache

0

2

4

6

8

10

12

14

16

18

20

S
h

a

c
rc

B
it

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
ij

ik
s

tr
a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a

s
ic

M

p
a

tr
ic

ia

R
in

jd
a

l

A
V

G

Benchmarks

%
 I

m
p

ro
v

e
m

e
n

t

200 Mhz 400 Mhz 600 Mhz 800 Mhz

Figure 7.10: Variation of execution time
improvement for processors with different
clock speeds for a 4kB 2 way set associa-
tive cache

marked “significant” for different cache sizes. These are the benchmarks that have

a significant I-cache miss rate (which we define as > 1.5%) for that cache size. For

the benchmarks with significant I-cache miss rate, the run-time improvement from

our cache locking method averages 11.5% for a cache size of 8kB. The averages are

shown in Figure 7.9 in the last two columns as AVERAGE and SIG-AVERAGE,

for all the benchmarks, and those with significant miss rates, respectively. For the

benchmarks with very low I-cache miss rates, the benefits from cache locking are,

not surprisingly, low – only 1.7 % for a 2kB cache.

The 11.5% run-time improvement with cache locking for benchmarks with a

significant I-cache miss rate is encouraging and shows the benefit of our method.

For some benchmarks the benefit is even higher – e.g, the Rinjdal benchmark has a

run-time gain of 23%. Overall we see that about 20-60% of the benchmarks show

significant improvement, depending on the cache size and associativity used. The

fact that not all benchmarks benefit from cache locking is not an indictment against

our method – indeed there is a long history of research into techniques that benefit

208

only a class of applications 4. As classes of applications go, benefiting 20-60% of

benchmarks significantly is quite good.

Further, we observe that although increasing cache size results in better per-

formance in terms of instruction cache miss rate reduction, the average percentage

improvement in execution time decreases with an increase in cache size. An increase

in the cache size results in a lower initial miss rate and thus yields smaller run-time

benefits from locking.

Next, in order to analyze the applicability of our approach for different proces-

sor generations, we analyze the improvement in execution time for various processor

frequencies. We vary the processor clock speed while keeping the DRAM latency

constant in nanoseconds – this is equivalent to varying the DRAM latency in cycles.

We obtain a consistent improvement in execution time with an increase in processor

frequency, as displayed in Figure 7.10. Thus our method can be applied effectively

for different generations of processors.

7.9.2 Dynamic Cache Locking

In this section, we present the results for our dynamic cache locking algorithm and

compare the results with our static algorithm (Static in CacheLocking/figures) as

well as the OPT-static algorithm suggested by Liang and Mitra [98].

Figure 7.11 presents the percentage improvement in the I-cache miss rate with

dynamic cache locking, as compared to both static algorithms, for different cache

4e.g. faster garbage collectors only benefit benchmarks with heap data, and among those, only
those with significant garbage – however garbage collection is still worthwhile.

209

0

10

20

30

40

50

60

70

80

90

100
S

h
a

c
rc

B
it

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
ij

ik
s

tr
a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a

s
ic

M

p
a

tr
ic

ia

R
in

jd
a

l

A
V

G

Benchmarks

%
 I
m

p
ro

v
e

m
e

n
t

Static OPT-Static Dynamic

2KB

0

10

20

30

40

50

60

70

80

90

100

S
h

a

c
rc

B
it

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
ij

ik
s

tr
a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a

s
ic

M

p
a

tr
ic

ia

R
in

jd
a

l

A
V

G

Benchmarks

%
 I

m
p

ro
v

e
m

e
n

t

Static OPT-Static Dynamic

4KB

0

10

20

30

40

50

60

70

80

90

100

S
h

a

c
rc

B
it

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
ij

ik
s

tr
a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a

s
ic

M

p
a

tr
ic

ia

R
in

jd
a

l

A
V

G

Benchmarks

%
 I

m
p

ro
v

e
m

e
n

t

Static OPT-Static Dynamic

8KB

0

10

20

30

40

50

60

70

80

90

100

S
h

a

c
rc

B
it

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
ij

ik
s

tr
a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a

s
ic

M

p
a

tr
ic

ia

R
in

jd
a

l

A
V

G

Benchmarks

%
 I
m

p
ro

v
e

m
e

n
t

Static OPT-Static Dynamic

16KB

Figure 7.11: Percentage improvement in instruction-cache miss rate, compared with
static cache locking, for a 2-way set-associative cache of size 2 kb,4 kb, 8 kb and 16
kb.

sizes. As evident from this figure, the dynamic I-cache locking mechanism results in

a consistent improvement in the instruction cache miss rate over all the benchmarks

and cache sizes. We obtain an average improvement in the range of 35% to 40% in

the I-cache miss rate for all cache sizes.

Figure 7.11 shows that OPT-static obtains a slightly better I-cache miss rate

than our static algorithm, thereby revalidating the results presented in [98]. How-

ever, our dynamic mechanism consistently results in a better I-cache miss rate than

both static methods. We also notice a few scenarios (blowfish - 16 kB, FFT - 8 kB)

where our dynamic version performs worse than OPT-static algorithm. We believe

210

0

10

20

30

40

50

60

70

80

90

100
S

h
a

c
rc

B
it

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
ij

ik
s

tr
a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a

s
ic

M

p
a

tr
ic

ia

R
in

jd
a

l

A
V

G

Benchmarks

%
 I

m
p

ro
v

e
m

e
n

t

1 way 2 way 4 way 8 way

Figure 7.12: Percentage improvement in
instruction-cache miss rate with dynamic
cache locking over cache with no locking
for different associativities of the cache.
The cache size if kept fixed at 8 kb.

0

10

20

30

40

50

60

70

S
h

a

c
rc

B
it

C
n

ts

S
u

s
a

n

B
lo

w
fi

s
h

J
p

e
g

D
ij
ik

s
tr

a

L
a

m
e

G
s

m

S
e

a
rc

h

Q
s

o
rt

L
o

u
t

F
F

T

B
a

s
ic

M

p
a

tr
ic

ia

R
in

jd
a

l

A
V

G

S
IG

 A
V

G

Benchmarks

%
 I

m
p

ro
v
e
m

e
n

t

Static OPT-static Dynamic

Significant for 8 KB

Figure 7.13: Improvement in execu-
tion time of the applications with dy-
namic cache locking, as compared with
static and optimal static cache locking,
for varying size of a 8 kb 2-way set as-
sociative cache

this can be overcomed by actually applying OPT-static, instead of applying our

static version, to determine the lines to be locked within each program region.

The results in Section 7.9.1 demonstrate that the improvement in the I-cache

miss rate due to static cache locking increases with an increase in the cache size

for most of the applications. Figure 7.11 demonstrates that dynamic cache locking

mechanism does not display this behavior. It results in a consistent improvement

of around 40% across all cache sizes. This is not surprising since the dynamic

mechanism overcomes the inherent opportunity cost involved in the static locking

mechanism by dynamically adpating the cache content with program demand. An

interesting corollary of this result is that the dynamic mechanism is much more effec-

tive for smaller cache sizes. For example, for cache size of 4 kB, the dynamic method

improves the cache miss rate by 35% as compared to 15% by static method whereas

in case of a 16 kB cache, the relative improvement is 37% over 27% improvement

211

obtained by static mechanism.

Figure 7.12 displays the variation of I-cache miss rate improvement with vari-

ation in associativity of the cache. We see that the improvement in the I-cache miss

rate due to dynamic cache locking ranges from 32-35% for different associativity

of set associative caches, as compared to 15-18% improvement obtained by static

mechanisms. An interesting feature is that dynamic cache locking is also able obtain

20% performance improvement for direct mapped caches. Recall from Section 7.9.1,

static cache locking was mainly effective for set associative caches. This is due to

the reduced opportunity cost in dynamic locking models.

Next, the impact of instruction cache locking on run-time performance of

various applications is analyzed. Figure 7.13 shows the reduction in runtime by using

dynamic instruction cache-locking for a particular cache configuration, as compared

to static algorithms. Similar to Fig 7.9, we average the improvement in execution

time for all the benchmarks as well as the benchmarks with significant initial miss

rate. Figure 7.13 demonstrates that the improvement in miss rate obtained by

dynamic algorithms translate effectively to an improvement in execution time. For

benchmarks with a significant I-Cache miss rate, the dynamic mechanism improves

execution time by 20% on average as compared to 11.5% and 12.5% obtained by

static and OPT-static mechanisms respectively.

212

Chapter 8: Conclusions and Future Work

It is conventional wisdom that static analysis of executables is a very difficult prob-

lem, resulting in a plethora of dynamic binary frameworks. However, a static binary

framework based on a compiler IR enables applications not possible in any existing

tool and our results establish the feasibility of this approach for several pragmatic

scenarios. We do not claim that we have fully solved all the issues; statically han-

dling every program in the world may still be an elusive goal. However, the resulting

experience of expanding the static envelope as much as possible is a hugely valuable

contribution to the community.

In this work, we have presented several component techniques essential for

translating executables to a high-level intermediate representation of an existing

compiler. Our techniques overcome challenges unique to executables: an explicitly

addressed stack, the lack of function prototypes and the lack of symbols. The com-

piler IR allows the application of source-level complex transformations and advanced

symbolic execution strategies on executables and enables functional source-code re-

covery.

Next, we have proposed techniques to obtain a functional and precise represen-

tation from executables and presented methods to adapt symbolic analysis to work

213

effectively on executables. The improved memory model considerably enhances the

precision of our symbolic analysis framework and our symbolic analysis framework

improves the efficacy of various analyses.

We extend our underlying representation and analysis framework to define De-

mandFlow, a novel information-flow framework for executables, which possesses the

desired properties of practicality, precision, scalability and extensibility. Demand-

Flow uncovers seven new zero-day vulnerabilities in popular programs at a false

positive rate comparable to source-level tools.

We demonstrate another application of our framework by formulating an in-

struction cache locking mechanism in a binary rewriter. We present the first method

in literature for improving the average-case run-time of embedded systems, extend-

ing the applicability of cache locking beyond real-time systems. Our results indicate

that on average, the proposed cache locking scheme achieves a 32% improvement in

run-time performance of instruction cache-constrained applications.

8.1 Future Directions

Figure 8.1 presents several possible future extensions of our work. The future ex-

tensions are categorized analogous to the contributions of this dissertation.

First, several enhancements can be made in expanding the scope of our repre-

sentation recovery mechanism. Our current techniques do not handle self modifying

code or dynamically generated code. We have not tested our techniques against

executables with hand-coded assembly or with obfuscated control flow. Further,

214

Representation

Analysis

Applications

Obfuscation

Program Understanding

Platform
Heterogeneity

Hybrid Security
Mechanism

Figure 8.1: Future Directions

SecondWrite’s underlying disassembler [135] distinguishes code and data using re-

strictions of a compiled code.

It is very difficult for any analysis tool to statically reason about the code

generated at runtime. Hence, a natural extension would be to define a hybrid

static-dynamic framework to recover intermediate representation in presence of ob-

fuscated and dynamically generated code. Several dynamic mechanisms [5] have

been proposed in this regard. Such dynamic mechanisms can be integrated with our

static frontend to recover a detailed representation.

Next, given a possible untrusted executable program, a rudimentary task is

to determine the behavior and purpose of the program. There has been exten-

sive research in architecture recovery of software systems by parsing its source

code [41, 105, 51]. Several software engineering methods have been proposed to

identify the modular components of a system and to discover the relations between

such components. Such architecture recovery methods can be applied on our analysis

215

framework for recovering an abstract description of a unknown executable sample.

This will enhance the ability to uncover functionality and possible unsafe behavior

of an unknown executable.

Our current security vulnerability mechanism, DemandFlow, is a static mech-

anism and does report a few false positives. In scenarios where the reporting of false

positives may be considered unacceptable, the analysis can be aided with a hybrid

static-dynamic framework.

Finally, we believe that the ability to obtain a functionally equivalent rewrit-

ten executable can be employed to solve an important challenge posed by increasing

heterogeneity of computing platforms. The increasing heterogeneity of modern pro-

cessors has posed a serious problem to the standard software development tool-chain.

Most of the users do not develop software programs and just install third party soft-

ware on their systems. The third party softwares are distributed in the form of

compiled binaries as revealing the source code would reveal the IP. The software

developers are not aware of the details of the platform where the software is going

to run. Different processors employ different level of features like number of cores,

hardware pipeline, memory systems, functional units and these features cannot be

fully exploited by an existing compiler tool-chain due to the unavailability of such

information while compiling the software. This results in a widening gap between

peak processor performance and sustained processor performance, and software is

able to exploit only a fraction of the available performance on the processor. This

processor performance gap can be bridged by adapting the software to the user

platform using SecondWrite.

216

Bibliography

[1] Directory traversal vulnerability in Rack. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2013-0262.

[2] Idapro disassembler. http://www.hex-rays.com/idapro/.

[3] Keepassx - cross platform password manager. http://www.keepassx.org//.

[4] Oink tool. http://daniel-wilkerson.appspot.com/oink/index.html//.

[5] Ollydbg debugger. http://www.ollydbg.de/.

[6] B. Alpern and et. al. The jalapeno virtual machine. IBM Systems Journal,
39(1):211 –238, 2000.

[7] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables
in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’88, pages 1–11, New York,
NY, USA, 1988. ACM.

[8] W. Amme, P. Braun, F. Thomasset, and E. Zehendner. Data dependence
analysis of assembly code. Int. J. Parallel Program., 28(5):431–467, Oct. 2000.

[9] K. Anand and R. Barua. Instruction cache locking inside a binary rewriter. In
Proceedings of the 2009 international conference on Compilers, architecture,
and synthesis for embedded systems, CASES ’09, pages 185–194, New York,
NY, USA, 2009. ACM.

[10] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and
R. Barua. A compiler-level intermediate representation based binary analysis
and rewriting system. In Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, pages 295–308, New York, NY, USA, 2013.
ACM.

[11] Announcement for Binary Executable Transforms. http://www07.grants.gov/.

217

http://www.hex-rays.com/idapro/
http://www.ollydbg.de/

[12] Apache HTTP server benchmarking tool.
http://httpd.apache.org/docs/2.2/programs/ab.html.

[13] Application Security testing - Veracode. http://www.zynamics.com//.

[14] ARM1156T2-S TechnicalReference Manual. Arm, Revised July 2007. http://-
www.arm.com/products/CPUs/families/ARM11Family.html.

[15] ARM Cortex A-8 Technical reference manual. Arm, Revised March 2004.
http://www.arm.com/products/CPUs/families/ARMCortexFamily.html.

[16] A. Arnaud and I. Puaut. Dynamic instruction cache locking in hard real-time
systems. In Proc. of the 14th International Conference on Real-Time and
Network Systems (RNTS), Poitiers, France, May 2006.

[17] K. Ashcraft and D. Engler. Using programmer-written compiler extensions to
catch security holes. In S&P, 2002, SP ’02, 2002.

[18] O. Avissar, R. Barua, and D. Stewart. An Optimal Memory Allocation Scheme
for Scratch-Pad Based Embedded Systems. ACM Transactions on Embedded
Systems, Special Issue on Memory Systems, 1(1), September 2002.

[19] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum. Codesurfer/x86:a
platform for analyzing x86 executables. In Proceedings of the 14th interna-
tional conference on Compiler Construction, CC’05, pages 250–254, Berlin,
Heidelberg, 2005. Springer-Verlag.

[20] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables.
In CC, pages 5–23. Springer-Verlag, 2004.

[21] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables.
In In CC, pages 5–23. Springer-Verlag, 2004.

[22] G. Balakrishnan and T. Reps. DIVINE: discovering variables in executa-
bles. In Proceedings of the 8th international conference on Verification, model
checking, and abstract interpretation, pages 1–28, 2007.

[23] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Saner: Composing static and dynamic analysis to validate
sanitization in web applications. In S & P, 2008, pages 387 –401.

[24] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratch-
pad Memory: A Design Alternative for Cache On-chip memory in Embedded
Systems. In Tenth International Symposium on Hardware/Software Codesign
(CODES), Estes Park, Colorado, May 6-8 2002. ACM.

[25] U. Banerjee. Speedup of ordinary programs. PhD thesis, Champaign, IL, USA,
1979. AAI8008967.

218

http://www.zynamics.com//

[26] U. K. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, Norwell, MA, USA, 1988.

[27] L. Belady. A study of replacement algorithms for virtual storage. In IBM
Systems Journal, pages 5:78–101, 1966.

[28] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie, and
N. Tawbi. Static detection of malicious code in executable programs. Int.
J. of Req. Eng, 2001.

[29] K. Beyls and E. H. D’Hollander. Generating cache hints for improved program
efficiency. J. Syst. Archit., 51(4):223–250, 2005.

[30] ADSP-BF533 Processor Hardware Reference. Analog Devices, April 2009.
http://www.analog.com/static/imported
-files/processor manuals/bf533 hwr Rev3.4.pdf.

[31] W. Blume and R. Eigenmann. Symbolic range propagation. In Proceedings of
the 9th International Parallel Processing Symposium, pages 357–363, 1994.

[32] R. Bod́ık and S. Anik. Path-sensitive value-flow analysis. In Proceedings of
the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’98, pages 237–251, New York, NY, USA, 1998. ACM.

[33] D. Bruening. Efficient, Transparent, and Comprehensive Runtime Code Ma-
nipulation. PhD thesis, MIT, 2004.

[34] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. X. Song, and H. Yin. Auto-
matically identifying trigger-based behavior in malware. In Botnet Detection,
pages 65–88. 2008.

[35] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A binary
analysis platform. In CAV, pages 463–469, 2011.

[36] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. Bap: a binary analysis
platform. In Proceedings of the 23rd international conference on Computer
aided verification, CAV’11, pages 463–469, Berlin, Heidelberg, 2011. Springer-
Verlag.

[37] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding
dynamic programming errors. Softw. Pract. Exper., 30(7):775–802, June 2000.

[38] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In Proceedings of
the 8th USENIX conference on Operating systems design and implementation,
pages 209–224, 2008.

[39] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically generating inputs of death. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 322–335, 2006.

219

[40] A. M. Campoy, A. P. Jimenez, A. P. Ivars, and J. V. B. Mataix. Using genetic
algorithms in content selection for locking-caches, 2001.

[41] G. CanforaHarman and M. Di Penta. New frontiers of reverse engineering. In
2007 Future of Software Engineering, FOSE ’07, pages 326–341, Washington,
DC, USA, 2007. IEEE Computer Society.

[42] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on
binary code. In IEEE Symposium on Security and Privacy, pages 380–394,
2012.

[43] W. Chang, B. Streiff, and C. Lin. Efficient and extensible security enforcement
using dynamic data flow analysis. CCS ’08, pages 39–50.

[44] D. Chiou, P. Jain, L. Rudolph, and S. Devadas. Application-specific memory
management for embedded systems using software-controlled caches. In DAC
’00: Proceedings of the 37th conference on Design automation, pages 416–419,
New York, NY, USA, 2000. ACM.

[45] V. Chipounov and G. Candea. Reverse engineering of binary device drivers
with RevNIC. In Proceedings of the 5th European conference on Computer
systems, pages 167–180, 2010.

[46] V. Chipounov and G. Candea. Enabling sophisticated analyses of x86 binaries
with RevGen. In Dependable Systems and Networks Workshops (DSN-W),
2011 IEEE/IFIP 41st International Conference on, pages 211 –216, 2011.

[47] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: a platform for in-vivo
multi-path analysis of software systems. In Proceedings of the sixteenth inter-
national conference on Architectural support for programming languages and
operating systems, ASPLOS XVI, pages 265–278, New York, NY, USA, 2011.
ACM.

[48] C. Cifuentes and M. V. Emmerick. UQBT: Adaptable binary translation at
low cost. IEEE Computer, 33(3):60–66, 2000.

[49] C. Cifuentes and M. V. Emmerik. Uqbt: Adaptable binary translation at low
cost. Computer, 33(3):60–66, 2000.

[50] J. Clause, W. Li, and R. Orso. Dytan: A generic dynamic taint analysis
framework. In ISSTA, pages 196–206, 2007.

[51] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, and
H. Zheng. Bandera: Extracting finite-state models from java source code.
In IN PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING, pages 439–448. ACM Press, 2000.

[52] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, pages 84–96, 1978.

220

[53] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static detection of vul-
nerabilities in x86 executables. In Proceedings of the 22nd Annual Computer
Security Applications Conference, ACSAC ’06, pages 269–278, Washington,
DC, USA, 2006. IEEE Computer Society.

[54] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and
J. Lokier. Formatguard: automatic protection from printf format string vul-
nerabilities. In USENIX Security Symposium, 2001.

[55] C. Cowan and et al. Stackguard: automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of the 7th conference on USENIX
Security Symposium, pages 63–78, 1998.

[56] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexible information
flow architecture for software security. SIGARCH Comput. Archit. News,
35(2):482–493, June 2007.

[57] B. De Sutter, B. De Bus, and K. De Bosschere. Link-time binary rewrit-
ing techniques for program compaction. ACM Trans. Program. Lang. Syst.,
27(5):882–945, Sept. 2005.

[58] S. Debray, R. Muth, and M. Weippert. Alias analysis of executable code.
In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 12–24, New York, NY, USA,
1998. ACM.

[59] E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven computation of
interprocedural data flow. In POPL, 1995, pages 37–48, 1995.

[60] J. Edler and M. Hill. Dineroiv cache simulator. Revised 2004.
http://www.cs.wisc.edu/ markhill/DineroIV/.

[61] M. Egele and et al. Pios: Detecting privacy leaks in ios applications. In NDSS,
2011.

[62] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. Scalable
variable and data type detection in a binary rewriter. In Proceedings of the
34th ACM SIGPLAN conference on Programming language design and imple-
mentation, PLDI ’13, pages 51–60, New York, NY, USA, 2013. ACM.

[63] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. University of
maryland technical report - recovering function boundaries from executables.
2013. http://www.ece.umd.edu/ barua/function-boundaries.pdf.

[64] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. Taintdroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation, OSDI’10, pages 1–6, Berkeley,
CA, USA, 2010. USENIX Association.

221

[65] H. ETO and K. Yoda. Propolice: Improved stack-smashing attack detection.
IPSJ SIGNotes Computer Security 14 (Oct 26), pages 4034–4041, 2001.

[66] A. Eustace and A. Srivastava. ATOM: a flexible interface for building high
performance program analysis tools. In TCON’95: Proceedings of the USENIX
1995 Technical Conference, pages 25–25, 1995.

[67] T. Fahringer and B. Scholz. Symbolic evaluation for parallelizing compilers.
In International Conference on Supercomputing, pages 261–268, 1997.

[68] H. Falk, S. Plazar, and H. Theiling. Compile-time decided instruction cache
locking using worst-case execution paths. In CODES+ISSS ’07: Proceedings of
the 5th IEEE/ACM international conference on Hardware/software codesign
and system synthesis, pages 143–148, New York, NY, USA, 2007. ACM.

[69] G. Goff, K. Kennedy, and C.-W. Tseng. Practical dependence testing. In
Proceedings of the ACM SIGPLAN 1991 conference on Programming language
design and implementation, PLDI ’91, pages 15–29, New York, NY, USA, 1991.
ACM.

[70] A. Gordon-Ross, S. Cotterell, and F. Vahid. Exploiting fixed programs in
embedded systems: A loop cache example. IEEE Comput. Archit. Lett., 1(1):2,
2002.

[71] S. Gulwani and G. C. Necula. Discovering affine equalities using random
interpretation. In POPL, pages 74–84, 2003.

[72] S. Gulwani and G. C. Necula. Global value numbering using random inter-
pretation. In POPL, pages 342–352, 2004.

[73] S. Gulwani and G. C. Necula. Global value numbering using random inter-
pretation. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’04, pages 342–352, New York,
NY, USA, 2004. ACM.

[74] B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D. I. Au-
gust. Practical and accurate low-level pointer analysis. In Proceedings of
the international symposium on Code generation and optimization, CGO ’05,
pages 291–302, Washington, DC, USA, 2005. IEEE Computer Society.

[75] S. Z. Guyer and C. Lin. Client-driven pointer analysis. SAS’03, pages 214–236.

[76] M. R. Haghighat and C. D. Polychronopoulos. Symbolic analysis for par-
allelizing compilers. ACM Trans. Program. Lang. Syst., 18(4):477–518, July
1996.

[77] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam.
Interprocedural parallelization analysis in suif. ACM Trans. Program. Lang.
Syst., 27(4):662–731, July 2005.

222

[78] W. H. Harrison. Compiler analysis of the value ranges for variables. IEEE
Trans. Softw. Eng., 3(3):243–250, May 1977.

[79] N. Heintze and O. Tardieu. Demand-driven pointer analysis. In PLDI, 2001.

[80] Hex-Rays Decompiler. http://www.hex-rays.com/.

[81] J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program instru-
mentation for scalable performance tools. Scalable High Performance Com-
puting Conference, May 1994.

[82] R. N. Horspool and N. Marovac. An approach to the problem of detranslation
of computer programs. Comput. J., 23(3):223–229, 1980.

[83] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In Proceedings of the ACM SIGPLAN 1988 conference on Program-
ming Language design and Implementation, PLDI ’88, pages 35–46, New York,
NY, USA, 1988. ACM.

[84] IDAPro disassembler. http://www.hex-rays.com/idapro/.

[85] K. Jee and et al. A general approach for efficiently accelerating software-based
dynamic data flow tracking on commodity hardware. In NDSS, 2012.

[86] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper). In S & P,2006, pages
258–263.

[87] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: Practical
Data Flow Tracking for Commodity Systems. In VEE,2012, pages 121–132.

[88] G. A. Kildall. A unified approach to global program optimization. In Pro-
ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, POPL ’73, pages 194–206, New York, NY, USA,
1973. ACM.

[89] J. Kinder and H. Veith. Jakstab: A static analysis platform for binaries. In
Proceedings of the 20th international conference on Computer Aided Verifica-
tion, CAV ’08, pages 423–427, Berlin, Heidelberg, 2008. Springer-Verlag.

[90] A. King, A. Mycroft, T. Reps, and A. Simon. Analysis of Executables: Benefits
and Challenges. Dagstuhl Reports, pages 100–116, 2012.

[91] A. King, A. Mycroft, T. W. Reps, and A. Simon. Analysis of executables:
Benefits and challenges (dagstuhl seminar 12051). Dagstuhl Reports, 2(1):100–
116, 2012.

[92] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows: Can’t live with
‘em, can’t live without ‘em. ICISS ’08, pages 56–70.

223

[93] A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and R. Barua. Auto-
matic parallelization in a binary rewriter. In Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
’43, pages 547–557, Washington, DC, USA, 2010. IEEE Computer Society.

[94] L. C. Lam and T.-c. Chiueh. A general dynamic information flow tracking
framework for security applications. ACSAC 2006, pages 463–472.

[95] J. R. Larus and E. Schnarr. Eel: machine-independent executable editing.
SIGPLAN Not., 30(6):291–300, June 1995.

[96] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on
Code Generation and Optimization, pages 75–87, 2004.

[97] J. Li, C. Wu, and W.-C. Hsu. Dynamic register promotion of stack variables.
In Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, pages 21–31, 2011.

[98] Y. Liang and T. Mitra. Instruction cache locking using temporal reuse profile.
In Proceedings of the 47th Design Automation Conference, DAC ’10, pages
344–349, New York, NY, USA, 2010. ACM.

[99] C. Linn and S. Debray. Obfuscation of executable code to improve resistance
to static disassembly. In Proceedings of the 10th ACM conference on Computer
and communications security, CCS ’03, pages 290–299, New York, NY, USA,
2003. ACM.

[100] T. Liu, M. Li, and C. J. Xue. Instruction cache locking for embedded systems
using probability profile. J. Signal Process. Syst., 69(2):173–188, Nov. 2012.

[101] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java applica-
tions with static analysis. In Proceedings of the 14th conference on USENIX
Security Symposium - Volume 14, SSYM’05, pages 18–18, Berkeley, CA, USA,
2005. USENIX Association.

[102] C.-K. Luk and et al. Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the ACM conference on Program-
ming language design and implementation, pages 190–200, 2005.

[103] C.-K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney. Ispike: A post-link
optimizer for the Intel Itanium architecture. In In IEEE/ACM International
Symposium on Code Generation and Optimization, pages 15–26, 2004.

[104] D. Marino and et. al. A case for an sc-preserving compiler. In Proceedings
of the 32nd ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’11, pages 199–210, New York, NY, USA, 2011. ACM.

224

[105] B. S. Mitchell and S. Mancoridis. On the automatic modularization of software
systems using the bunch tool. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 32:193–208, 2006.

[106] A. C. Myers. Jflow: practical mostly-static information flow control. In POPL,
1999, pages 228–241.

[107] S. Nanda and et al. Bird: Binary interpretation using runtime disassembly.
In CGO ’06: Proceedings of the International Symposium on Code Generation
and Optimization, pages 358–370, Washington, DC, USA, 2006.

[108] NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html/.

[109] New unique samples added to AV-Test Malware Repository.
http://www.eset.com/us/threat-center/.

[110] J. Newsome and D. Song. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In
NDSS05, 2005.

[111] P. OSullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and A. Keromytis.
Retrofitting security in cots software with binary rewriting. In Future Chal-
lenges in Security and Privacy for Academia and Industry, volume 354 of
IFIP Advances in Information and Communication Technology, pages 154–
172. Springer Berlin Heidelberg, 2011.

[112] P. R. Panda, N. D. Dutt, and A. Nicolau. On-Chip vs. Off-Chip Memory:
The Data Partitioning Problem in Embedded Processor-Based Systems. ACM
Transactions on Design Automation of Electronic Systems, 5(3), July 2000.

[113] J. R. C. Patterson. Accurate static branch prediction by value range propa-
gation. SIGPLAN Not., 30(6):67–78, June 1995.

[114] Phoenix Compiler Infrastructure. http://www.research.microsoft.com/phoenix/.

[115] The Polyhedral Benchmark Suite. http://www.polyhedron.com/MFL6VW74649/.

[116] I. Puaut. Cache analysis vs static cache locking for schedulability analysis in
multitasking real-time systems. In Proc. of the 2nd International Workshop
on worst-case execution time analysis, in conjunction with the 14th Euromicro
Conference on Real-Time Systems, Vienna, Austria, June 2002.

[117] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking
in multitasking hard real-time systems. In Proc. of the 23rd IEEE Interna-
tional Real-Time Systems Symposium, Austin, TX, USA, December 2002.

[118] W. Pugh. The omega test: a fast and practical integer programming algorithm
for dependence analysis. In Proceedings of the 1991 ACM/IEEE conference
on Supercomputing, Supercomputing ’91, pages 4–13, New York, NY, USA,
1991. ACM.

225

http://www.nas.nasa.gov/publications/npb.html/
http://www.polyhedron.com/MFL6VW74649/

[119] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. Lift: A low-overhead
practical information flow tracking system for detecting security attacks. In
Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 39, pages 135–148, Washington, DC, USA, 2006.
IEEE Computer Society.

[120] G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and
its application to program analysis. In In Symposium on Principles of Pro-
gramming Languages, pages 119–132, 1999.

[121] X. Rival. Abstract interpretation-based certification of assembly code. In Pro-
ceedings of the 4th International Conference on Verification, Model Checking,
and Abstract Interpretation, VMCAI 2003, pages 41–55, London, UK, UK,
2003. Springer-Verlag.

[122] T. Romer and et al. Instrumentation and Optimization of Win32/Intel Exe-
cutables Using Etch. In In Proceedings of the USENIX Windows NT Work-
shop, pages 1–1, 1997.

[123] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’88, pages 12–27,
New York, NY, USA, 1988. ACM.

[124] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. SIGPLAN Not., 35(5):182–195, May 2000.

[125] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21:2003, 2003.

[126] J. B. Sartor, S. Venkiteswaran, K. S. McKinley, and Z. Wang. Cooperative
caching with keep-me and evict-me. In INTERACT ’05: Proceedings of the
9th Annual Workshop on Interaction between Compilers and Computer Archi-
tectures, pages 46–57, Washington, DC, USA, 2005. IEEE Computer Society.

[127] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended sym-
bolic execution on binary programs. In Proceedings of the eighteenth interna-
tional symposium on Software testing and analysis, ISSTA ’09, pages 225–236,
New York, NY, USA, 2009. ACM.

[128] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained binary instrumen-
tationwith applications to taint-tracking. In CGO, 2008, pages 74–83, 2008.

[129] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask). In S&P,2010, pages 317–331, 2010.

226

[130] B. Schwarz, S. Debray, G. Andrews, and M. Legendre. PLTO: A Link-Time
Optimizer for the Intel IA-32 Architecture. In In Proc. Workshop on Binary
Translation, 2001.

[131] J. Seward and N. Nethercote. Valgrind, an open-source memory debugger for
x86-linux. http://developer.kde.org/~sewardj/.

[132] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format string
vulnerabilities with type qualifiers. In USENIX Security Symposium,2001,
pages 16–16.

[133] Simplex method in IDA Pro. http://www.hexblog.com/?p=42.

[134] J. Sjodin, B. Froderberg, and T. Lindgren. Allocation of Global Data Objects
in On-Chip RAM. Compiler and Architecture Support for Embedded Comput-
ing Systems, December 1998.

[135] M. Smithson and R. Barua. Binary Rewriting without Relocation Information.
USPTO patent pending no. 12/785,923, May 2010.

[136] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena. Bitblaze: A new approach to
computer security via binary analysis. In Proceedings of the 4th International
Conference on Information Systems Security, ICISS ’08, pages 1–25, Berlin,
Heidelberg, 2008. Springer-Verlag.

[137] D. Song and et al. BitBlaze: A New Approach to Computer Security via
Binary Analysis. In Proceedings of the 4th International Conference on Infor-
mation Systems Security, pages 1–25, 2008.

[138] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and
data objects to scratchpad for energy reduction. In Proceedings of the con-
ference on Design, automation and test in Europe, page 409. IEEE Computer
Society, 2002.

[139] Symantec. Symantec Internet Security Technical Report, volume 17 edition,
2011. http://www.symantec.com/threatreport/.

[140] O. Temam. Investigating optimal local memory performance. In Proceedings of
the eighth international conference on Architectural support for programming
languages and operating systems, ASPLOS VIII, pages 218–227, New York,
NY, USA, 1998. ACM.

[141] A. Thakur and T. Reps. A method for symbolic computation of abstract
operations. CAV’12, pages 174–192, 2012.

[142] R. A. Towle. Control and data dependence for program transformations. PhD
thesis, Champaign, IL, USA, 1976. AAI7624191.

227

http://developer.kde.org/~sewardj/
http://www.hexblog.com/?p=42

[143] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. Taj: effective
taint analysis of web applications. In In PLDI, 2009, pages 87–97.

[144] P. Tu and D. Padua. Gated ssa-based demand-driven symbolic analysis for
parallelizing compilers. In Proceedings of the 9th international conference on
Supercomputing, ICS ’95, pages 414–423, New York, NY, USA, 1995. ACM.

[145] S. Udayakumaran and R. Barua. Compiler-decided dynamic memory alloca-
tion for scratch-pad based embedded systems. In Proceedings of the Inter-
national Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), pages 276–286. ACM Press, 2003.

[146] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic allocation for
scratch-pad memory using compile-time decisions. ACM Trans. Embed. Com-
put. Syst., 5(2):472–511, 2006.

[147] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. Rifle: An architectural frame-
work for user-centric information-flow security. In MICRO 2004, pages 243–
254.

[148] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I.
August. Speculative decoupled software pipelining. In PACT ’07: Proceedings
of the 16th International Conference on Parallel Architecture and Compilation
Techniques, pages 49–59, 2007.

[149] L. van Put, D. Chanet, B. De Bus, B. De Sutler, and K. De Bosschere. DIA-
BLO: a reliable, retargetable and extensible link-time rewriting framework. In
Proceedings of the 2005 IEEE International Symposium On Signal Processing
And Information Technology, pages 7–12, 2005.

[150] T. Vandrunen and A. L. Hosking. Value-based partial redundancy elimination.
In In CC, pages 167–184, 2004.

[151] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program pre-
dictability. In SIGMETRICS ’03: Proceedings of the 2003 ACM SIGMET-
RICS international conference on Measurement and modeling of computer sys-
tems, pages 272–282, New York, NY, USA, 2003. ACM.

[152] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware scratchpad allocation
algorithm. In Proceedings of the conference on Design, automation and test
in Europe, page 21264. IEEE Computer Society, 2004.

[153] M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic overlay of scratch-
pad memory for energy minimization. In International conference on Hard-
ware/Software Codesign and System Synthesis(CODES+ISSS). ACM, 2004.

228

[154] D. Wagner and et. al. A first step towards automated detection of buffer
overrun vulnerabilities. In In Network and Distributed System Security Sym-
posium, pages 3–17, 2000.

[155] T. Wang, T. Wei, Z. Lin, and W. Zou. Intscope: Automatically detecting in-
teger overflow vulnerability in x86 binary using symbolic execution. In NDSS,
2009.

[156] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. STILL: Exploit code detection via
static taint and initialization analyses. In Computer Security Applications
Conference, Annual, pages 289 –298, 2008.

[157] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press,
Cambridge, MA, USA, 1990.

[158] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting
languages. In USENIX Security Symposium, pages 179–192, 2006.

[159] 3rd Generation Intel Xscale Microarchitecture Developer’s manual. Intel, May
2007. http://www.intel.com/design/intelxscale/.

[160] W. Xu, E. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A
practical approach to defeat a wide range of attacks. In USENIX Security
Symposium, pages 121–136, 2006.

[161] H. Yang, R. Govindarajan, G. R. Gao, and Z. Hu. Improving power efficiency
with compiler-assisted cache replacement. J. Embedded Comput., 1(4):487–
499, 2005.

[162] E. Yardimci and M. Franz. Dynamic parallelization and mapping of binary
executables on hierarchical platforms. In Proceedings of the 3rd conference
on Computing frontiers, CF ’06, pages 127–138, New York, NY, USA, 2006.
ACM.

[163] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: capturing
system-wide information flow for malware detection and analysis. In Proceed-
ings of the 14th ACM conference on Computer and communications security,
CCS ’07, pages 116–127, New York, NY, USA, 2007. ACM.

[164] J. Zhang, R. Zhao, and J. Pang. Parameter and return-value analysis of
binary executables. In Proceedings of the 31st Annual International Computer
Software and Applications Conference, pages 501–508, 2007.

[165] C. Zilles and G. Sohi. Master/slave speculative parallelization. In Proceedings
of the 35th annual ACM international symposium on Microarchitecture, pages
85–96, 2002.

229

	List of Tables
	List of Figures
	Introduction
	Motivation for executable analysis
	Advantages of executable analysis
	Thesis Statement
	Assumptions behind this work

	Contribution of this dissertation
	Representation
	Analysis
	Applications

	SecondWrite
	Organization of the Dissertation

	Related Work
	Binary rewriting
	Binary Analysis/Intermediate Representation recovery
	Industrial Tools

	Decompilation to compiler level intermediate representation
	Introduction
	Benefits of abstract stack and symbols

	Overview of the framework
	Disassembler Module

	Deconstruction of physical stack frames
	Representing the local stack frame
	Representing procedure arguments

	Translating memory locations to symbols
	Motivation for partitions
	Reaching definition framework
	Symbol promotion algorithm

	Results
	Static characteristics
	Un-optimized input binaries
	Optimized input binaries
	Impact of symbol promotion
	Symbolic Execution
	Automatic Parallelization

	Symbolic Analysis for executables
	Introduction
	Related Work
	Contribution
	Redundancy elimination
	Program Parallelization
	Alias analysis

	Overview
	Memory abstraction

	Symbolic Abstraction
	Symbolic Value Analysis
	Intraprocedural Analysis
	Interprocedural propagation

	Dependence Analysis
	Value Numbering
	Results
	Static characteristics
	Value numbering
	Program parallelization
	Alias analysis

	Improving memory abstraction
	Precise Memory Model
	Motivation
	Recovering precise memory abstraction
	Static Computation
	Dynamic Mechanism

	Results

	Information flow security of executables
	Introduction
	Related Work
	Static Information Flow Techniques
	Dynamic Information Flow Techniques
	Demand-driven Analysis

	Overview of the system
	Background
	Memory Abstraction
	Information Flow Policy

	Demand Driven Set
	Demand Driven Information Flow Analysis
	Information Abstraction
	Analysis
	Policy Enforcement

	Discussion
	Indirect calls and branches
	Limitations

	Results
	Vulnerabilities
	False Positives
	Scalability
	Information Flow Leakage
	Spec Benchmarks and Coreutils

	Cache Locking
	Introduction
	Cache Locking Interface
	Related Work
	Motivation
	Theoretical Analysis of Cache Locking
	Static Cache Locking
	Cache Locking Algorithm

	Dynamic Cache Locking
	Program Points
	Dynamic Locking Algorithm

	Implementation
	Results
	Static Cache Locking
	Dynamic Cache Locking

	Conclusions and Future Work
	Future Directions

	Bibliography

