
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

MASTER'S THESIS

An Object-Oriented Programming Approach to Implement
Global Spectral Methods: Application to Dynamic Simulation
of a Chemical Infiltration Process

by Jiefei Huang
Advisor: Raymond A. Adomaitis

M.S. 2000-1

ABSTRACT

Title of Thesis: AN OBJECT-ORIENTED PROGRAMMING

APPROACH TO IMPLEMENT GLOBAL

SPECTRAL METHODS: APPLICATION TO

DYNAMIC SIMULATION OF A CHEMICAL

VAPOR INFILTRATION PROCESS

Degree candidate: Jiefei Huang

Degree and year: Master of Science, 2000

Thesis directed by: Professor Raymond A. Adomaitis

Department of Chemical Engineering

Boundary-value problems (BVPs) in relatively simple geometries can be solved

using global spectral methods. These discretization methods are applicable to a

wide range of problems and are suitable for a “rapid prototyping” approach to

simulator development for complex systems. Object-Oriented Programming tech-

niques for solving BVPs are introduced in this work. Object classed are created to

encapsulate trial function sequences, discretized differential and quadrature op-

erators, and other data structures used for spectral discretization and projection

operations. Operator/function overloading subsequently is used to numerically

implement the Galerkin projection method. Emphasis is placed on developing

numerical methods suitable for discretizing 2- and 3-dimensional problems, inte-

grating the resulting ODE/AE systems in time, and reconstructing the solutions

in the physical space. A detailed model of an isothermal carbon-carbon chemical

vapor infiltration (CVI) system was studied as a true test of the ability of the

numerical methods.

AN OBJECT-ORIENTED PROGRAMMING

APPROACH TO IMPLEMENT GLOBAL

SPECTRAL METHODS: APPLICATION TO

DYNAMIC SIMULATION OF A CHEMICAL

VAPOR INFILTRATION PROCESS

by

Jiefei Huang

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2000

Advisory Committee:

Professor Raymond A. Adomaitis, Chair/Advisor
Professor James W. Gentry
Professor Michael T. Harris

c© Copyright by

Jiefei Huang

2000

DEDICATION

To My Parents

ii

TABLE OF CONTENTS

List of Figures iv

1 Introduction 1

1.1 Introduction to the Spectral Methods 1

1.2 Motivation and Goals of This Research 3

1.3 Modeling of a CVI Process . 4

2 Framework of the Numerical Computations and Functions 6

2.1 The MWRtools Functions . 6

2.2 Functions for High Dimensional Computation 9

2.3 Object-Oriented Programming . 13

2.3.1 Introduction . 13

2.3.2 Encapsulation . 13

2.3.3 Polymorphism . 14

2.4 The Classes and Their Methods 15

2.5 A Simple Example . 19

3 CVI Process Modeling 25

3.1 Introduction . 25

3.1.1 Carbon Fiber - Carbon Matrix Composite Materials 25

iii

3.1.2 Chemical Vapor Infiltration (CVI) 27

3.2 CVI Reactor Systems . 28

3.3 Mathematical Model . 32

3.3.1 Equations of Continuity 33

3.3.2 Overall Mass Balance for the Solid Phase 36

3.4 Boundary and Initial Conditions 36

3.5 Dimensionless Equations . 38

4 Numerical Solution Methods 41

4.1 Expansion of Solution . 41

4.2 Fine-scale Discretization . 42

4.3 Trial Functions . 44

4.4 Discretization of the PDE System 47

4.5 Initial Conditions . 53

4.6 Integration of the ODE Set . 56

4.6.1 Implementation . 57

4.6.2 Jacobian Array . 59

5 Results and Discussion 69

5.1 Solution Construction . 69

5.2 Discussion of Results . 69

6 Conclusions and Recommendations for Further Studies 80

6.1 Concluding Remarks . 80

6.2 Further Studies . 81

6.2.1 Improvements of the Numerical Technique 81

6.2.2 Improvements of the CVI Modeling 82

iv

Bibliography 84

v

LIST OF FIGURES

2.1 The subset of current MWRtools functions, with function output,

function name, required input, and optional input. 21

2.2 The table of high dimensional MWR functions, with function out-

put, name, function input. 22

2.3 The table of classes and their methods. 23

2.4 Reactant species concentration in a catalytic pellet at steady state.

Trial function truncation number along r direction is set at 14.

Trial function truncation number along z direction is set at 16. . . 24

3.1 Closeup of a carbon-carbon composite 26

3.2 The isothermal CVI system used in [20]. 31

3.3 Closeup of the carbon preform . 32

3.4 The table of parameters for the preform from [20] 37

3.5 The table of dimensionless variables and parameters 39

4.1 The fine-scale discretization point distribution on the physical do-

main. 43

4.2 The first set of trial functions. 46

4.3 The second set of trial functions. 48

vi

4.4 Comparison of the CH4 residual function terms to the correspond-

ing computational steps of Object-Oriented projection methods. . 54

4.5 Comparison of the H2 residual function terms to the corresponding

computational steps of Object-Oriented projection methods. . . . 55

4.6 Comparison of the ε residual function term to the corresponding

computational steps of Object-Oriented projection methods. . . . 55

4.7 Comparison of the cell element ∂Ra

∂ua in the Jacobian array to the

corresponding computational steps used in Object-Oriented nu-

merical approach. 62

4.8 Comparison of the cell element ∂Ra

∂uc in the Jacobian array to the

corresponding computational steps used in Object-Oriented nu-

merical approach. 63

4.9 Comparison of the cell element ∂Rb

∂ua in the Jacobian array to the

corresponding computational steps used in Object-Oriented nu-

merical approach. 64

4.10 Comparison of the cell element ∂Rb

∂ub in the Jacobian array to the

corresponding computational steps used in Object-Oriented nu-

merical approach. 65

4.11 Comparison of the cell element ∂Rb

∂uc in the Jacobian array to the

corresponding computational steps used in Object-Oriented nu-

merical approach. 66

4.12 Comparison of the cell element ∂Rc

∂ua in the Jacobian array to the

corresponding computational steps used in Object-Oriented nu-

merical approach. 67

vii

4.13 Comparison of the cell element ∂Rc

∂uc in the Jacobian array to the

corresponding computational steps used in Object-Oriented nu-

merical approach. 67

5.1 Comparison of the trial function expansion form of the value of

CCH4, CH2 and ε to the corresponding computations using of Object-

Oriented methods. 70

5.2 Evolution of CH4 concentration at 3, 9, 27 hr. Temperature is

1400◦K and operating pressure is 100 Torr. 71

5.3 Evolution of H2 concentration at 3, 9, 27 hr. Temperature is

1400◦K and operating pressure is 100 Torr. 72

5.4 Evolution of porosity at 3, 9, 27 hr. Temperature is 1400◦K and

operating pressure is 100 Torr. 73

5.5 Evolution of CH4 concentration with 3, 6, 10 trial functions along

each direction (r and z). Temperature is 1400◦K and operating

pressure is 100 Torr. t = 3hr. The number of collocation point in

time is set at 6. 74

5.6 Evolution of H2 concentration with 3, 6, 10 trial functions along

each direction (r and z). Temperature is 1400◦K and operating

pressure is 100 Torr. t = 3hr. The number of collocation point in

time is set at 6. 75

5.7 Evolution of porosity with 3, 6, 10 trial functions along each di-

rection (r and z). Temperature is 1400◦K and operating pressure

is 100 Torr. t = 3hr. The number of collocation point in time is

set at 6. 76

viii

5.8 Evolution of CH4 concentration with 2, 4, 6 collocation points in

time when odaepc.m is called. Temperature 1400◦K and operating

pressure 100 Torr. t = 3hr. 77

5.9 Evolution of H2 concentration with 2, 4, 6 collocation points in

time when odaepc.m is called. Temperature 1400◦K and operating

pressure 100 Torr. t = 3hr. 78

5.10 Evolution of porosity with 2, 4, 6 collocation points in time when

odaepc.m is called. Temperature 1400◦K and operating pressure

100 Torr. t = 3hr. 79

ix

Chapter 1

Introduction

1.1 Introduction to the Spectral Methods

Spectral methods involve representing the solution to a differential equation

model in terms of a truncated series of known smooth, global, orthogonal trial

functions of the independent variables. Spectral methods have been utilized in

many areas, with the major emphasis occurring in two: global atmospheric mod-

eling and fundamental turbulence studies. Most applications have been to time-

dependent mixed initial-boundary-value problems with finite-difference or other

time-stepping schemes to provide integration in time.

The choice of an appropriate spectral method is governed by two main con-

siderations [11]:

(1) Accuracy. A spectral method should be designed to give results of greater

accuracy than can be obtained by more conventional difference methods using

similar spatial resolution or degrees of freedom. The choice of appropriate spec-

tral representation depends on the kind of boundary conditions involved in the

problem.

(2) Efficiency. The spectral methods should be at least as efficient as dif-

1

ference methods with comparable numbers of degrees of freedom. Therefore, for

similar amounts of work, the spectral methods should produce more accurate

results than a finite-difference method.

The accuracy and efficiency of a spectral method depends on making the cor-

rect choice for the test and trial functions. The proper choice depends on the

problem and on the nature of the boundary conditions. When an appropriate

choice is made, spectral methods provide a very high rate of convergence once

sufficient trial functions are included to adequately represent the underlying prob-

lem. If an inappropriate choice is made, the result can be poor accuracy or even

convergence to a spurious solution [11].

The finite-difference formulation may appear to offer a more direct approach

to the numerical solution of partial differential equations than does a spectral

method. It simply replaces the derivatives with finite-difference expansions and

demands that the resulting algebraic equations be satisfied exactly at the grid

points. However, difficulties can arise in imposing boundary conditions, and low-

order finite-difference formulations are often inaccurate, particularly on a coarse

grid.

Spectral discretization methods do, however, have some drawbacks: they can

be difficult to code and may be inflexible compared to finite-difference or finite-

element methods. The finite-difference methods require relatively little algebraic

manipulation and relatively straightforward programming. Finite-element meth-

ods require some preliminary algebraic manipulation and more programming ef-

fort than finite-difference methods. However, the modularity of the finite-element

method lends itself to efficient programming. In solving a new problem, relatively

few changes need be made in an existing computer package. Spectral methods

2

require substantial preliminary algebraic manipulation and programming if an

efficient code is to be generated. Also, the solution of a new problem typically

requires a new set of trial functions, new boundary-condition specification, and

so on, in short, a complete new program.

Therefore, our intention was to develop a computational toolbox consisting of

a common set of numerical tools for implementing the different spectral methods

inside the Matlab computational environment.

1.2 Motivation and Goals of This Research

Boundary-value problems in relatively simple geometries can be solved using

global spectral methods. These discretization methods are applicable to a wide

range of problems and are suitable for a “rapid prototyping” approach to sim-

ulator development for complex systems. These methods can be extended to

systems defined in complex geometries though the spectral element methods or

by replacing boundary conditions with forcing functions to the BVPs. We focus

on the development of numerical methods for high- dimensional systems, espe-

cially 2- or 3- dimensional systems in the physical domain. These methods extend

the quadrature-based MWR methods presented in Lin and co-workers [13]. The

main issues addressed in this work are listed below.

Object-Oriented programming Object-Oriented Programming techniques

for MWR are introduced in this work. Related variables, functions are en-

capsulated in “classes”. Operator/function overloading is used to make the

operations more flexible. This will make programming more straightforward

and the programs easier to manipulate and maintain.

3

High-dimensional projections Numerical techniques for implementing pro-

jection methods on 2- or 3- dimensional systems defined in the physical

domain and for efficiently reconstructing state variable profiles from n-

dimensional trial function expansions are developed.

Heterogeneous systems A more coherent approach to working with hetero-

geneous systems (systems defined by multiple BVPs on one or more spatial

domains) is developed. This approach is based on defining the solution in

a Matlab cell array structure. The residual functions and associated Jaco-

bian arrays are likewise arranged. This meant that matrix multiplication,

methods for solving sets of equations defined in this cell array structure,

and other analogs to linear algebra operations had to be developed for cell

arrays that could contain n-dimensional arrays.

ODE/AE systems A numerical integrator for these cell structures is created.

In particular, a method for solving the ODE/AE systems that result from

the semi-discrete projection methods is needed. Time is treated differently

from the other distributions because the time intervals over which all the

state variables are defined are the same. In this thesis work, implementing

nonlinear Galerkin projections and other advanced MWR also are investi-

gated.

1.3 Modeling of a CVI Process

Composite materials are increasingly being regarded as the materials of the fu-

ture. They are ideal choices for replacement of metals in the aerospace, auto-

mobile, nuclear, and other manufacturing industry applications. Chemical vapor

4

infiltration (CVI) is among the most commonly used techniques for manufactur-

ing composite materials. The CVI process consists of diffusion of reactant gases

into a porous preform. Reactants undergo chemical reactions on the surface of

the pores to deposit solid material, thereby filling the pores. A detailed two

dimensional, isothermal chemical vapor infiltration model is developed in this

work.

The basic idea of the numerical computations mentioned above can be de-

scribed by the development of this model. Also, a physically based model can

provide an understanding of the process by providing insight into the transport

and reaction mechanisms. It can be used to study the effects of parameter values

on reactor performance at a low cost relative to experimental studies. The model

can be used in reactor design for specific applications, process scale-up, and for

process control applications.

5

Chapter 2

Framework of the Numerical Computations and

Functions

2.1 The MWRtools Functions

MWRtools is a set of Matlab-5 based functions developed for solving boundary-

value problems using globally defined trial function expansions and weighted

residual methods (MWR). The numerical techniques form a computational tool-

box consisting of a common set of numerical tools for implementing the different

MWR techniques used in the numerical solution and analysis of systems described

by ordinary and partial differential equation models. This library represents the

results of efforts to create computational modules that have a one-to-one cor-

respondence with each step of implementing eigenfunction expansion, Galerkin

projection, collocation, and other weighted residual methods. Some of the basic

MWRtools functions directly related to the data structures described in this work

are described briefly below. More information can be found in [1, 2, 13].

Problem Setup

6

[x̂, ŵ, Â, B̂, Q̂] = pd(’geom’, M)

Sets up the physical domain in terms of discrete points in the unit interval

and defines the differentiation operators according to any imposed problem

symmetries. This function is normally called first in the solution procedure.

The inputs are the geometry (’slab’, ’disk’, ’sphe’, or ’peri’) and the number

of discretization points M . The output consists of the discretization grid x̂,

quadrature weights ŵ, the first-order differentiation array Â, and the dis-

crete equivalent to the Laplacian operator B̂. This function also computes

the discretized set of M Jacobi polynomials Q̂, a discrete transformation

array used for filtering and spectral decomposition applications. Â and B̂

are used in the loper object, ŵ is used in the tfun object.

[Ψ] = gdf(x̂, ’f(x̂,p)’, ’x̂’, {’p’, p})

Generates discretized representations of a sequence of trial functions Ψ ac-

cording to the alphanumeric input formula f(x̂,p), the fine-scale discretiza-

tion grid x̂ and the parameter p. The cell array contents consist of the

parameter name ’p’ and its numerical value(s) p. Additional parameters

can be specified by concatenating the parameter name/value pairs. The

functions can be polynomials, eigenfunctions generated by the explicit so-

lution to a Sturm-Liouville problem, or an arbitrary sequence of functions

chosen as part of a Galerkin discretization. This function is normally called

after pd.m. Ψ is used in the tfun object developed in this thesis.

[λ, Ψ, Φ, wef , wad] = sl(’geom’, Â, x̂, a, b, c, d, ŵ, v̂, p̂, q̂, ĝ, errtol, a1, b1,

c0, d0)

7

A Sturm-Liouville problem solver, that computes the vector of eigenval-

ues λ, discretized, orthonormal eigenfunctions Ψ, adjoint eigenfunctions

Φ, discretized weight function wef used to define the orthogonality of the

eigenfunctions, and discretized weight function wad corresponding to the

adjoint eigenfunctions. Input includes the problem geometry factor “geom”

(geom=’slab’ or ’peri’ corresponds to α = 0; geom=’disk’ to α = 1; and

geom=’sphe’ to α = 2), and the differentiation, discretization point, and

quadrature arrays, Â, x̂, and ŵ, respectively. This function is normally

called after pd.m. The maximum value errtol of the infinity-norm bound is

used to discard inaccurate eigenfunctions; a negative value disables error

control. Ψ is used in the tfun object developed in this thesis.

Operational Functions

[Ip] = wip(F̂, Ĝ, ŵ)

The weighted inner product of two sets of discretized functions F̂ and Ĝ.

This is one of the most heavily used subprograms since inner products are

used in nearly every MWR step. The array of inner products Ip is computed

as the vector dot product of the quadrature weight array ŵ with the term-

by-term (Hadamard-Schur) product of all combinations of the discretized

functions represented in F̂ and Ĝ. The number of rows in Ip corresponds to

the number of trial functions in Ĝ; the columns correspond to the functions

in F̂.

Note that this function is overloaded in the object-oriented framework de-

veloped in this thesis.

Solution Reconstruction and Refinement

8

[T] = sp2pd(A, ψ, φ, ..., η)

An important operation is the conversion of the spectrally discretized solu-

tion to a physical-space description. It is the spatially discretized equivalent

to

T (x1, x2, ..., xp) =
L1,L2,...,Lp∑
l1,l2,...,lp=1

al1,l2,...,lpφl1(x1)ψl2(x2) · · ·ηlp(xp)

where the input arguments take the form AL1×L2×...×Lp, ψM1×L1 , φM2×L2 ,

and ηMp×Lp. The operation takes place as a sequence of matrix multiplica-

tions and permutations, described by

T
M1×L2×...×Lp
1 = ψM1×L1AL1×L2×...×Lp

T̄
L2×M1×...×Lp
1 = permute(T

M1×L2×...×Lp
1)

T
M2×M1×L3×...×Lp
2 = φM2×L2T̄

L2×M1×L3×...×Lp
1

T̄
L3×M2×M1×...×Lp
2 = permute(T

M2×M1×L3×...×Lp
2)

...

TMp×Mp−1×...×M1
p = ηMp×LpT̄

Lp×Mp−1×...×M1

p−1

TM1×M2×...×Mp = permute(TMp×Mp−1×...×M1
p)

2.2 Functions for High Dimensional Computa-

tion

Setting up a higher-dimensional computing system motivates the development

of the generalization of matrix multiplication to higher dimensions, where the

algebra involved in the generalized matrix multiplication operations is as follows:

9

A(L1×L2×...×Lp)×(M1×M2×...×Mq) = AL×M

B(M1×M2×...×Mq)×(N1×N2×...×Nr) = BM×N

implies the generalized matrix multiplication operation

AL×MBM×N = CL×N

where

Cl1,l2,...,lp,n1,n2,...,nr =
M1,...,Mq∑

k1=1,...,kq=1

Al1,l2,...,lp,k1,k2,...,kqBk1,k2,...,kq,n1,n2,...,nr

Given this definition, we can define the generalized transpose operation as

[
AL×M

]T
= AM×L

a square array as

AL×M such that L1 = M1, L2 = M2, . . . Lq = Mq, and p = q

the identity array as a square array A with all zero elements except

IL×M : Il1,l2,...,lq,l1,l2,...,lq = 1

and the matrix inverse as

[
AL×M

]−1
AL×M = IL×M

Some functions can perform computations for high-dimensional systems are listed

in Figure 2.2 and described below

[C] = mprod(A, B, p, q, r)

10

Computes the generalize matrix multiplication by reshaping the arrays A and

B to 2-dimensional arrays and then performing a standard multiplication. A is a

p+r dimensional array and B is a q+r dimensional array. The result is reshaped

to the appropriate p+ r dimensional array. The arrays A and B are padded with

singleton dimensions for the cases p = 0 and r = 0; q = 0 is equivalent to the

Kronecker tensor product of A and B, reshaped to a p+ r dimensional array .

[x] = msolve(A, b)

Computes the solution x to Ax = b, when A and b are not necessarily 1 or 2-

dimensional arrays. In its current form, array A must be square according to the

definition of a square n-dimensional array discussed in the previous section. If A

is a p+p dimensional array and b is a p dimensional array, then the solution array

x is p dimensional. The idea here is that A will be reshaped to a 2-dimensional

array and b will be reshaped to a vector. Then the matrix division A \b will be

implemented to create a solution vector x. Finally, x will be reshaped to have

the same size as b.

[B] = mdiag(A)

Convert an n-dimensional array to a diagonal n+ n (square) array.

[B] = extract(A, n)

Extract the n’th element from the last dimension of an arbitrary-dimension

array or a cell whose elements have the same number of elements in their highest

dimension. For example, if A is a array with size I × J ×M , the computation

B = extract(A, 2) will create a array B which is equal to A(:,:,2). B has the size

I × J .

11

[J] = makejacobian(T, Jc)

Set up the Jacobian array in its proper format. Jc is the cell array storing

the derivatives of the T with respect to the state variables. makejacobian.m will

arrange the Jc to a correct format. For more details, please check section 4.6.2.

[y] = moper(A, f, dir)

Apply a linear operator to a multidimensional array along a specific direc-

tion dir on the physical domain. The dimensions of the multi-dimensional ar-

ray A will be rearranged so that they are in the order specified by the vector

[direc, 1 : (direc−1), (direc+1) : ndims(f)]. Then the multi-dimensional matrix

multiplication will be implemented between A and f . Finally, the dimensions of

the solution array are rearranged so that y has the same order of the subscripts

of A.

[C] = msum(A, B)

Compute term-by-term sums of elements in two double/cell arrays. A and B

must have the identical structures. If A and B are double arrays, C = A + B.

If A and B are cell arrays, C {i, 1} = A {i, 1}+ B {i, 1}.

[tout,Y,Q,tfine,phi,dYdp] = odaepc(fn,tint,y0,param,ffun,C,T, M)

Polynomial collocation-based ODE/AE solver integrating a system of differ-

ential equations y′ = F (t, y) from time T0 to TFINAL with initial conditions y0.

tint = [T0 TFINAL]. fn is a string containing the name of an ODE file which

contains the information of residual functions and Jacobian array. C is the ca-

pacitance cell array and M is the number of collocation points in time. Y is the

solution cell array. Time is returned in column vector tout.

12

2.3 Object-Oriented Programming

2.3.1 Introduction

The need for Object-Oriented software is motived by the economic benefits of

software reuse, and the opportunity it affords for improvements in the design

and software maintenance of large software systems. Software users are looking

for programs that are easy to use and, of course, produce correct results in the

shortest possible time. Software developers, on the other hand, want computer

programs that are easy to understand, maintain, and extend. Whenever possi-

ble, new software systems should be assembled from previous developed software

components and frameworks. Software modules should be designed so that they

can be easily adapted to the changing requirements of ongoing development and

employed for multiple projects.

Rather than looking at the actions an application will perform, an Object-

Oriented problem solution focuses on the problem data and the operations that

can manipulate the data. Object-oriented technology provides mechanisms for

explicitly dealing with information hiding through encapsulation, inheritance,

and polymorphism enable systems of objects and their behavior to be represented

in a manner that is efficient and amenable to software reuse. In Matlab, Object-

Oriented programming is the process of translating the computer-world objects

into source code called “classes”.

2.3.2 Encapsulation

Encapsulation is the process of bundling related data and functions into wrapped

objects. It is the key to Object-Oriented program design. The data and functions

13

may belong together because they have similar properties, or perhaps common

behavior. For example, trial functions, their weighting functions and correspond-

ing physical domain directions could be encapsulated in one class. In Object-

Oriented terminology, and particularly in Matlab, the wrapper object is called

a class, the functions inside the class are called methods.

2.3.3 Polymorphism

Polymorphism is the ability of an object or object operation to assume different

forms. Polymorphism is an important tenet of Object-Oriented programming be-

cause it enhances the flexibility of methods and classes within a class hierarchy.

In the case of Matlab, polymorphism is the ability of methods and operators

to have meanings that depend on the context in which they are used. Polymor-

phism comes in the flavor of “overloading”. Matlab enables the programmer

to overload most operators to be sensitive to the context in which they are used.

Some operators are overloaded frequently, especially the assignment operators

and various arithmetic operators such as * and +. The job performed by over-

loaded operators also can be performed by explicit function calls, but operator

notation is usually easier to read.

In classical programming languages, separate tasks are nearly always imple-

mented with separate functions. But sometimes situations arise where two tasks

are very similar and perhaps only differ in the function arguments they use. The

programmer wants give them the same function name and let the computer use

the correct one based on the type of the arguments you give. That is exactly

what overloading is about.

Suppose, for example, that we want to define a matrix multiplication method.

14

This method can work for a loper class and a double array. It also can do the

multiplication between a loper class and a tfun class. In Matlab, we can define

two methods with separate source codes but with the same name :

mtimes(loper, double);

mtimes(loper, tfun);

At run-time, if we call the method “mtimes” with loper and double argu-

ments, the first method will be called. If we call the function with loper and

tfun as arguments, then the second method will be called.

2.4 The Classes and Their Methods

When using well-designed classes, Object-Oriented programming can significantly

increase code reuse and make the programs easier to maintain and extend. Be-

cause object properties are not visible from the command line, they can only be

accessed with class methods. This protects the object properties from operations

not intended for the object’s class. Also, we can create methods that override

existing Matlab functions.

Currently, three classes were written on the basic MWR computational func-

tions described above. A discussion of the classes with their methods is given

below.

loper

[L] = loper(v,dir)

This is the constructor method of the loper class. It is a special method

that initializes the data members of a class object. A class’s constructor

method is called automatically when an object of that class is created. The

15

constructor has the same name as the class. An object named L belonging

to the class loper is created when this method is called. v is a two di-

mensional first-order differentiation or discrete equivalent to the Laplacian

array generated by pd.m. dir is a scalar denoting the direction in physical

space.

[c] = mtimes(L,B)

Computes c = LB. This method overloads the matrix multiplication oper-

ator “×”. L and B can be a loper object and a double array, respectively.

B can also be a tfun object. A double array c will be created.

[p, q] = get(L)

This method can get and return the properties of a loper class object L.

p is the discretized differentiation array and q is its direction in physical

space. Properties of a loper object can not be accessed from outside of the

loper class. When properties of a loper object are needed, a loper class

method such as get can be called.

tfun

A truncated trial function sequences class that contains all the sets of trial

functions used to discretize a distributed state variable. The direction of

each sequence and the weighting function of each trial function is indicated

in the definition of this object.

[F] = tfun(t, dir, w)

16

This is the constructor method of the tfun class. An object of the tfun

class is created when this method is called. All sets of the trial functions

are included in the cell array t. dir is a vector containing the directions in

physical space. And w is a cell array containing all the sets of quadrature

weight arrays.

[p, q, w] = get(F)

This method can get and return the properties of a tfun class object F. The

cell array p contains the trial functions, the vector q contains the directions

and the cell array w contains the weighting functions.

[C] = tfunset(F,L)

Computes C = FL, where F is a tfun object and L is a loper object. The

property v of L multiplies a trial function set t in F where t has the same

direction as L. A tfun object C is created. C has the same weights and

directions as F.

[c] = mtimes(a,F)

Computes c = aF , this method overloads the matrix multiplication opera-

tor ×. a is a double array, F is a tfun object, and c is a double array. The

MWR function c = sp2pd(a, F.t1, F.t2...) is called inside this method.

[S] = times(a,F)

Computes S = a. ∗ F . The term-by-term multiplication operator “.×” is

overloaded using this method. a is a double array and F is a tfun object.

This method creates an sfield object S that has the same directions as F.

17

[c] = wip(A,F)

This method performs the quadrature-based inner product computation.

The wip function in the MWRtools is overloaded here. A is a double array

or a tfun object, F is a tfun object, producing a double array c.

sfield

A scalar field object class which is used for intermediate computations.

[S] = sfield(A,dir)

This is the constructor method of the sfield class. The sfield class has

two properties: field and dir. The input argument A can be a cell array

of trial functions and the input argument dir contains the directions. If A

is a object of the tfun class, the properties val and dir in this tfun object

can be taken as the properties of S. If a double array multiplies a tfun

object term-by-term, a sfield object will be created which has the same dir

property as in the tfun.

[p,q] = get(S)

This method can get and return the properties of a sfield object S. Cell

array p contains the property field of S and q contains the property dir of

S.

[c] = wip(S,F)

This method overloads the weighted inner product operator. S a is sfield

object, F is a tfun object. It returns a double array c.

18

2.5 A Simple Example

We use a relatively simple example here to show the basic ideas described in the

previous sections.

Consider a catalytic pellet inside a gas phase CSTR. If c(t, r, z) is the reactant

species concentration inside the catalyst pellet, the modeling equations for the

process at steady state can be written as

0 =
1

r

∂

∂r

(
r
∂c

∂r

)
+
∂2c

∂z2
− φ2c2 (2.1)

subject to boundary conditions

∂c(t, 0, z)

∂r
= 0 c(t, 1, z) = 1 c(t, r, 1) = 1

∂c(t, r, 0)

∂z
= 0

Here φ is the Thiele modulus. The catalyst pellet-phase concentration profile is

expressed in terms of the truncated trial function expansion

cI,J(r, z) = 1 +
I,J∑
i,j=1

ai,j(t)ηi(r)ψj(z) (2.2)

where ηi and ψj are computed as the eigenfunctions satisfying λrη = ∇2
rη sub-

ject to η′(0) = 0, η(1) = 0 and λzψ = ∇2
zψ subject to ψ′(0) = 0, ψ(1) = 0,

respectively.

The physical domains can be set up with the MWRtools functions :

[r,wr,dr,ddr] = pd(’disk’,40) ;

[z,wz,dz,ddz] = pd(’slab’,40) ;

The eigenfunctions can be computed with the MWRtools library functions :

[lam_r, eta] = sl(’disk’,dr,r,1,0,0,1,wr) ;

[lam_z, psi] = sl(’slab’,dz,z,1,0,0,1,wz) ;

19

Then we create a tfun object P and two loper objects DDR and DDZ :

P = tfun({eta, psi}, [1 2], {wr, wz});

DDR = loper(ddr, 1);

DDZ = loper(ddz, 2);

The Galerkin projection solution is implemented with the following steps :

The residual function rhs is computed by substituting equation (2.2) into

equation (2.1) and is projected on each trial function to generate the I ×J array

rhs:

rhs = 〈R, ηψ〉 = 0

We use Newton’s method to solve this set of nonlinear equations:

aν+1 = aν − Jac−1 R (2.3)

where Jac is the I × J × I × J Jacobian array.

for iters = 1:8

c = 1 + a*P ;

R = DDR*c + DDZ*c - phi^2*c^2 ;

rhs = wip(R,P) ;

Jac = wip(DDR*P,P) + wip(DDZ*P,P) - wip(phi^2*2*c.*P,P) ;

update = msolve(Jac,rhs);

a = a - update ;

end

The solution is reconstructed in the physical space using

c = 1 + a ∗ P;

The results with different value of Thiele modulus are plotted in Figure 2.4.

20

MWR Elements [Output] = Function (Required Input, Optional Input)

Specify geometry x̂, ŵ, Â, B̂, Q̂ pd ’geom’, M

Trial functions Ψ gdf x̂, ’f(x̂,p)’, ’x̂’ {’p’, p}

and λ, Ψ, Φ, sl ’geom’, Â, x̂, ... v̂, p̂, q̂, ĝ, ε, ...

eigenfunctions wef , wad a, b, c, d, ŵ a1, b1, c0, d0

Projection Ip wip F̂, Ĝ, ŵ

Solution T sp2pd A, φ, psi,

refinement . . ., η

Figure 2.1: The subset of current MWRtools functions, with function output,

function name, required input, and optional input.

21

MWR Elements [Output] = Function (Input)

Array multiplication C mprod A, B, p, q, r

Solve Ax = B x msolve A, b

Diagonal array B mdiag A

Extract elements B extract A , n

Jacobian array J makejacobian T ,Jc

operator multiplication y moper A,f ,dir

Term-by-term sums C msum A,B

ODE/AE solver [tout,Y,Q, odaepc fn, tint,y0, param,

tfine,phi,dYdp] ffun,C,T,M

Figure 2.2: The table of high dimensional MWR functions, with function output,

name, function input.

22

Classes Methods [Output] = Method (Input)

Loper constructor L loper v, dir

get propertities p, q get L

L×B c mtimes L , B

Tfun constructor F tfun t, dir, w

get propertities p, q, w get F

tfun times loper C tfunset F , L

a× F c mtimes a , F

a. × F S times a , F

inner product c wip A , F

Sfield constructor S sfield A, dir

get properties p, q get S

inner product c wip S, F

Figure 2.3: The table of classes and their methods.

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.86 0.88
0.9

0.92

0.94

0.96

0.98

z

reactant concentration at t −> ∞ , φ = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.65

0.7

0.75

0.8 0.85

0.9

0.95

z

reactant concentration at t −> ∞ , φ = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.4
0.5

0.6

0.70.80.9

z

reactant concentration at t −> ∞ , φ = 4

r

Figure 2.4: Reactant species concentration in a catalytic pellet at steady state.

Trial function truncation number along r direction is set at 14. Trial function

truncation number along z direction is set at 16.

24

Chapter 3

CVI Process Modeling

3.1 Introduction

3.1.1 Carbon Fiber - Carbon Matrix Composite Materials

Composites are defined as materials in which two or more constituents have been

brought together to produce a new material, which has properties different from

those of the individual constituents. One of the most critical aspects determin-

ing the nature and properties of a composite material is the interfaces between

components. The strength of the composite is often governed by the adhesion

forces which can be physical, chemical or a combination of the two [5, 23].

Carbon fiber-carbon matrix composites form a very specialized group of com-

posite materials. This kind of composite consists of carbon fibers embedded in

a carbon matrix (see Figure 3.1). The aim of these materials is to combine the

advantages of fiber-reinforced composites such as high specific strength, stiffness

and in-plane toughness with the refractory properties of structural ceramics. The

microstructure will differ according to the type of raw materials and the process-

ing conditions. The differences in microstructure exert a considerable influence

25

on the properties of the materials.

Carbon fibers

Carbon - carbon composite

Carbon matrix

. ..
..

Figure 3.1: Closeup of a carbon-carbon composite

Carbon fibers are filaments consisting of non-graphite carbon produced by the

carbonization of synthetic or natural organic fibers or of fibers spun from organic

precursors such as resins and pitches [5]. In the majority of cases (fabricated

using not very high heat treatment i.e., temperature less than 2700◦ C), the

fibers remain as non-graphite carbon.

Reinforced carbon fiber - carbon matrix composites are gaining technical im-

portance in aerospace, automobile and manufacturing industries because their

unique characteristics: they retain strength at high temperature and weigh far

less than their metal equivalents. Over 60% by volume of the carbon-carbon

produced in the world is used in braking systems, especially for aircraft [5, 23].

It is also used to make rocket nozzles, and components of racing cars, high-speed

trains and main battle tanks. Furthermore, because of its extremely good bio-

compatibility, it is of interest as a replacement for metals used in implant surgery.

26

3.1.2 Chemical Vapor Infiltration (CVI)

The chemical vapor infiltration (CVI) approach is one reaction-forming processes

for making these carbon fiber-carbon matrix composites. In CVI processes, reac-

tant gases are introduced to a hot porous preform where they react on the surface

of the fibers to form a solid coating. The coating grows with continued deposition

to form the matrix. As the deposits become thicker, they begin to impinge and

grow into one another to form a continuous solid matrix between the fibers. The

porosity decreases until pore channels become plugged or fully densified. The

main advantage of this process is that relatively low process temperature can

be used to deposit the matrix without damaging the fibers. Also, there is the

potential for many different matrix materials because of the variety of gas-solid

reaction chemistries available.

There have been several types of CVI processes proposed during the years.

they are generally classified as isothermal, thermal gradient, isothermal-forced

flow, thermal gradient-forced flow, and pulse flow.

The primary objectives of CVI are to maximize the rate of matrix deposition

and minimize density gradients. Unfortunately, there is an inherent competition

between the deposition reaction and the mass transport of the gas reactants into

the preform. The deposition occurs preferentially near the outer surface of the

preform because the concentration of the reactant is at its maximum value near

the outer surface; the concentration decreases significantly due to consumption

of the reactant inside the preform. As a result, when the process is carried out

isothermally surface pores tend to close first, restricting the gas transport to the

interior of the preform. This phenomenon is called ’canning’ [24].

The isothermal CVI process must be carried out at low temperatures and

27

pressures to enhance infiltration. Chemical reaction rather than diffusion should

be the rate-limiting step in the deposition process. Diffusion is a slow process, and

the low temperature and pressure lead to very low deposition rates. Hence, this

method requires infiltration times on the order of several weeks and is restricted to

thin components. These limitations add considerably to the cost of components

and limit the application of this material.

3.2 CVI Reactor Systems

Mathematical models can provide insight into the physicochemical processes gov-

erning CVI as well as valuable guidelines for experimental research. The use of

mathematical models can avoid time consuming and expensive trial and error

practices and help in rapid evaluation of novel reactor designs and modes of

operation.

Modeling studies of CVI have been increasing in number and complexity in the

last several years. There is a large literature on the mathematical modeling and

simulation of different CVI systems. McAllister and Wolf [16] developed a model

for isothermal CVI of carbon-carbon composite substrates during propylene py-

rolysis. The orthogonal collocation method was used along with a Runge-Kutta

technique in their study. The numerical solutions were compared to predict ex-

perimental results. Chung and McCoy [6] studied a CVI process at steady state

with layered, woven fabrics. Gupte and Tsamopoulos [12] developed a forced

flow CVI model for ceramic composites. Skamser and Johnson [24] simulated the

deposition of alumina matrix within fibers using thermal gradients to optimize

the process parameters. Vaidyaraman and coworkers [27] simulated a forced flow-

thermal gradient CVI process for carbon-carbon composites. Their work focused

28

on the reaction kinetics instead of gas transport. However, all of the above are

restricted for one dimensional problems. Although one dimensional models are

adequate for a preliminary evaluation of the process, high dimensional models are

necessary to account for the finite geometry of the preform. Furthermore, im-

portant approximations in the physical description of the process introduced by

one dimensional models can be eliminated when using high dimensional models.

Middleman [18] developed a two dimensional single pore model at steady state.

McAllister and Wolf [17] modeled a two dimensional CVI process of a multiple

substrate reactor. Deepak and Evans [7] developed a mathematical model for CVI

in a microwave-heated preform. A simplified dusty gas model was used in their

study. Morell and coworkers [21] modeled a two dimensional CVI process with

volume heating. A dusty gas model was used to describe the multi-component

gaseous species diffusion and the modeling equations were solved by the method

of lines. Ofori and Sotirchos did research on the pore structures inside the preform

[25] and they also developed two and three dimensional CVI models [22] with a

generalized form of the dusty gas model. The model equations were solved by the

Galerkin finite element method. Midha and Economou [19, 20] developed a model

of two dimensional CVI with radio frequency heating. Isothermal and thermal

gradient simulation are compared and the governing equations were discretized

spatially using a Galerkin finite element formulation.

A two dimensional simulation of isothermal isobaric CVI is presented in this

thesis work because this is the most widely accepted model of CVI. The model

is developed based on the work of Midha and Economous [19, 20]. In their work,

a dusty-gas model was used to describe the multi-component diffusion mecha-

nism. Because the emphasis of this thesis work is on the numerical techniques

29

rather than the details of the model development, we assume only two gas species

methane and hydrogen are involved in the CVI process. Therefore, a simplified

gas diffusion mechanism is used in our work.

The analysis of the densification of a porous substrate by CVI requires the

consideration of diffusion and reaction of gases in a porous substrate occurring

simultaneously with the deposition of a solid product. The work presented here is

to incorporate a scheme for the formation of carbon deposits during the pyrolysis

of methane into a model which accounts for the diffusion, reaction and porosity

changes occurring during carbon infiltration. This model enables the prediction

of the porosity as functions of reaction conditions and time of deposition. The

porosity is defined as the ratio of void volume to the total volume of the preform.

The modeling partial differential equations are generated from reacting species

mass balances on CH4 , H2, and the deposited carbon matrix (which is directly

related to porosity).

The reactor system modeled in this work is shown in Figure 3.2 which is the

same as in [20]. The cylindrical carbon perform is placed coaxially in a cylindrical

quartz reactor. A radio frequency (RF) induction coil surrounds the reactor and

is used to provide volumetric heating of the preform to desired temperature. The

gaseous reactant flows continuously in the reactor, maintaining a constant species

concentration at the surface of the preform. The gaseous precursor diffuses into

the porous preform and chemically reacts at the elevated temperature to deposit

solid carbon within the pores.

30

Preform

Inlet

Exhaust

Metallic Chamber

Induction Coil

Reactor

z

r

Figure 3.2: The isothermal CVI system used in [20].

31

3.3 Mathematical Model

Mathematical modeling of the CVI process involves the description of the trans-

port and reaction phenomena occurring inside the composite. The system is

characterized by the time evolution of species concentration and pore structure.

In general, important processes include the diffusion of gaseous species into and

out of the fiber-matrix composite and the chemical reaction.

The system under consideration is a preform of cylindrical geometry with

radius R∗ and height 2Z∗. Due to the symmetry considerations, the domain

of the CVI model consists only of the upper-right quadrant of the preform (see

Figure 3.3). The fibrous structure consists of cylindrical fibers randomly oriented

in three dimensional space.

r *

z*

R*

CARBON
PREFORM

Z *

Figure 3.3: Closeup of the carbon preform

32

The deposition of carbon by the decomposition of methane is taken as a model

chemical system in the present work. Despite the fact that the gas phase chem-

istry is relatively well understood, knowledge of surface processes is still very

incomplete. Experimental investigations [21] have shown that the decomposition

reaction is first order in methane concentration. Hence, simplified chemical kinet-

ics are used whereby the deposition of carbon is described by an overall reaction

in the reactor :

CH4(gas)→ 2H2(gas) + C(solid)

was assumed with the rate of reaction given by

Rrxn = CCH4k exp(−
E

RT
) (3.1)

RCH4 = −CCH4k exp(−
E

RT
) (3.2)

RH2 = 2CH2k exp(−
E

RT
) (3.3)

where CCH4 and CH2 are the concentration of CH4 and H2 in the carbon preform,

respectively. k is the rate constant and E is the activation energy of the reaction.

The values of these parameters were taken as 2.24×1014 1/s and 3.64×105 J/mol,

respectively. T is the temperature in the preform.

3.3.1 Equations of Continuity

If we take NCH4 and NH2 to be the molar flux of CH4 and H2 , εe to be the

accessible porosity, Deff to be the effective diffusivity of CH4−H2, the equation

of continuity can be written as :

33

∂

∂t
(εeCCH4) +∇ ·NCH4 = εeRCH4 (3.4)

∂

∂t
(εeCH2) +∇ ·NH2 = εeRH2 (3.5)

where

∇ ·NCH4 =
1

r∗
∂

∂r∗
(r∗NCH4,r∗) +

∂NCH4,z∗

∂z∗
(3.6)

∇ ·NH2 =
1

r∗
∂

∂r∗
(r∗NH2,r∗) +

∂NH2,z∗

∂z∗
(3.7)

NCH4,r∗ and NCH4,z∗ are the molar flux of CH4 in r∗ and z∗ directions. NH2,r∗

and NH2,z∗ are the molar flux of H2 in r∗ and z∗ directions. And we can relate

the molar flux to the concentration gradient by

NCH4,r∗ = −Deff

∂CCH4

∂r∗
(3.8)

NCH4,z∗ = −Deff

∂CCH4

∂z∗
(3.9)

NH2,r∗ = −Deff

∂CH2

∂r∗
(3.10)

NH2,z∗ = −Deff

∂CH2

∂z∗
(3.11)

Deff is the effective binary diffusion coefficient, which is obtained from the fol-

lowing relation [20]

Deff = DABS1 (3.12)

34

where DAB is the binary diffusion coefficient between CH4 and H2 estimated at

a reference temperature using the Chapman-Enskog theory [4]:

DAB = Dref
AB(

P ref

P
)(

T

T ref
)1.65 (3.13)

in which Dref
AB is a reference binary diffusivity at a reference temperature T ref

and a reference pressure P ref .

S1 represents the pore structure parameter which depends on the particular

pore structure model used. The pore structure of the three dimensional carbon

preform was represented by a network of uniformly sized cylindrical capillaries of

a certain radius. S1 is given by

S1 =
εe

3
(3.14)

ε is the total porosity of the preform, which is defined as the ratio of void volume

of the preform to the total volume of the preform. According to [22], the accessible

porosity εe is equal to the total porosity for values of ε > 0.1. Hence, we do not

differentiate between the two and we will use symbol ε representing porosity in

this study.

With these definitions, the equations of mass transport for the gaseous species

CH4 and H2 become

∂

∂t
(εCCH4) =

1

r∗
∂

∂r∗
(r∗S1DAB

∂CCH4

∂r∗
) +

∂

∂z∗
(S1DAB

∂CCH4

∂z∗
) + εRCH4 (3.15)

∂

∂t
(εCH2) =

1

r∗
∂

∂r∗
(r∗S1DAB

∂CH2

∂r∗
) +

∂

∂z∗
(S1DAB

∂CH2

∂z∗
) + εRH2 (3.16)

35

3.3.2 Overall Mass Balance for the Solid Phase

The evolution of porosity as well as its dependence on position can be obtained

from the following equation

dε

dt
= −

Mc

ρ
εRcarbon (3.17)

where Mc is the molecular weight of the carbon deposit and ρ is the density of

the carbon deposit. Density within the preform is always uniform because we

assume the porosity is uniformly distributed throughout the preform. Densities

in the range of 1.9 to 2.4 g/cm3 are typically observed for CVI carbon. Simulation

shows that changing the assumed carbon density from 1.8 to 2.3 g/cm3 changed

the value of total porosity very little. The density of carbon 2.27 g/cm3 in this

study is used as the same as in [20]. Rcarbon is the reaction rate of producing solid

carbon:

Rcarbon = CCH4k exp(−
E

RT
) (3.18)

The transport parameters for the structural preform are listed in Figure 3.4.

3.4 Boundary and Initial Conditions

The composition of the mixture in the gas phase surrounding the preform is

assumed to be the same everywhere, with negligible mass transport limitations

between the gas phase and the external surface of the preform. The composition

of the gas mixture at the external surface of the preform is known and equal to

that in the feedstock gas. Therefore, at r∗ = R∗, z∗ = Z∗,

36

Parameter Value Unit Description

Mc 12.01 g/mol molecular weight of carbon

ρ 2.27×106 g/m3 density of carbon

DAB 59.4986 m2/hr binary diffusion coefficient

ε0 0.7 initial porosity

CR
CH4

0.685 mol/ m3 CH4 concentration out of preform

CR
H2

0 mol/ m3 H2 concentration out of preform

T 1400 oK temperature in the reactor

P 100 torr nominal pressure

Z∗ 0.0381 m half of the height of the preform

R∗ 0.0142 m radius of the preform

k 8.064 ×1017 1/hr reaction constant

E 3.64 ×105 J/mol activation energy

Figure 3.4: The table of parameters for the preform from [20]

CCH4 = CCH4,R (3.19)

CH2 = CH2,R (3.20)

In this study, the feed gas is composed of pure methane. We assume the

volumetric flow of CH4 is sufficient to dilute the H2 produced to the point where

it is negligible. Therefore,

CH2,R = 0 (3.21)

37

We assume that at the center of the preform there is no flux of any of the gaseous

species. This gives the boundary conditions at r∗ = 0 as

∂CCH4

∂r∗
= 0 (3.22)

∂CH2

∂r∗
= 0 (3.23)

Because we are interested in the long-time behavior of the process, the concen-

tration of CH4 and H2 is set equal to zero at the initial state. The initial porosity

of the preform ε0 was assumed as 0.7 which is uniform through the entire preform.

3.5 Dimensionless Equations

We make the system of equations dimensionless by defining the parameters and

variables as in Figure 3.5.

This gives the modeling equations 3.15, 3.16 and 3.17 in dimensionless form

as

∂

∂t
(εCCH4) = αr

1

r

∂

∂r
(rε

∂CCH4

∂r
) + αz

∂

∂z
(ε
∂CCH4

∂z
)− ζCCH4ε (3.24)

∂

∂t
(εCH2) = αr

1

r

∂

∂r
(rε

∂CH2

∂r
) + αz

∂

∂z
(ε
∂CH2

∂z
) + 2ζCCH4ε (3.25)

dε

dt
= −γζCCH4ε (3.26)

For equation 3.24, the left hand side can be written as

38

Dimensionless variables and parameters

r = r∗

R∗

z = z∗

Z∗

αr = DAB
3R∗2

αz = DAB
3Z∗2

γ = Mc

ρ

ζ = k exp(− E
RT

)

Figure 3.5: The table of dimensionless variables and parameters

∂

∂t
(εCCH4) = ε

∂CCH4

∂t
+ CCH4

dε

dt

To avoid the singular problem at r = 0, the first term in the right hand side of

Equation 3.24 is expanded:

1

r

∂

∂r
(rε

∂CCH4

∂r
) =

ε

r

∂CCH4

∂r
+
∂ε

∂r

∂CCH4

∂r
+ ε

∂2CCH4

∂r2

=
ε

r

∂

∂r
(r
∂CCH4

∂r
) +

∂ε

∂r

∂CCH4

∂r

39

Then we can rewrite equation 3.24 as the following form

∂CCH4

∂t
=

αr

r

∂

∂r
(r
∂CCH4

∂r
) +

αr

ε

∂ε

∂r

∂CCH4

∂r
+ αz

∂2CCH4

∂z2
+
αz

ε

∂ε

∂z

∂CCH4

∂z

− ζCCH4 + γζC2
CH4

(3.27)

We can rewrite equation 3.25 following a similar calculation procedure

∂CH2

∂t
=

αr
r

∂

∂r
(r
∂CH2

∂r
) +

αr
ε

∂ε

∂r

∂CH2

∂r
+ αz

∂2CH2

∂z2
+
αz
ε

∂ε

∂z

∂CH2

∂z

+ 2ζCCH4 + γζCCH4CH2 (3.28)

The dimensionless boundary and initial conditions are :

r=0
∂CCH4

∂r
= 0

∂CH2

∂r
= 0

r=1 CCH4 = CCH4,R CH2 = CH2,R

z=0
∂CCH4

∂z
= 0

∂CH2

∂z
= 0

z=1 CCH4 = CCH4,R CH2 = CH2,R

t=0 CCH4 = 0 CH2 = 0

40

Chapter 4

Numerical Solution Methods

The Galerkin technique can be seen as an extension of the eigenfunction expansion

method to nonlinear systems. The Galerkin method is based on choosing a trial

function expansion and projecting the residual onto each function, making the

residual orthogonal to the sequence of trial functions. In this work, the Galerkin

method is used to spatially discretize the partial differential equations governing

the CVI process (described in chapter 3) to a set a ordinary differential equation.

The resulting ODE set is integrated by a orthogonal-collocation based time inte-

grator. Our goal is to develop a set of numerical tools for implementing the MWR

techniques for high dimensional computation inside the Matlab computational

environment. We introduced Object-Oriented techniques into the development

of the numerical tools in the chapter 2 to make the implementing/programming

simple and straightforward.

4.1 Expansion of Solution

The concentration of CH4 and H2 are expressed in terms of the trial function

expansions:

41

CCH4(r, z, t) = CR
CH4

+
I∑
i=1

J∑
j=1

aij(t)φi(r)ψj(z) (4.1)

CH2(r, z, t) =
I∑
i=1

J∑
j=1

bij(t)φi(r)ψj(z) (4.2)

The porosity value is a function of r and z although its governing equation has a

form of an ordinary differential equation. This is because the rate of change of ε

depends on the concentration of methane CCH4 . Therefore, we must expand the

porosity in the form:

ε(r, z, t) =
I∑
i=1

J∑
j=1

cij(t)ηi(r)ξj(z) (4.3)

In these truncated trial function expansions, a, b and c are the mode amplitude

coefficients and φ, ψ, η, ξ are the trial functions. The means by which the trial

functions are represented and computed is described in the following section.

4.2 Fine-scale Discretization

The MWRtools function pd.m is used to define the discretized physical domain

and the differentiation and quadrature operators according to the specific domain

geometry. The method of choosing the number of fine-scale discretization points

depends strongly on the problem and aspects of the MWR solution procedure. In

general, the number must be greater than the trial function truncation number.

Furthermore, accurate residual calculations for nonlinear problems require more

discretization points. Furthermore, the choice of the point position must balance

the interpolation performance against the accuracy of quadrature weights. In

pd.m, the fine-scale discretization point locations are chosen as the fixed end

42

points as 0 and 1, and the interior points as the roots of the Jacobi polynomial.

Thus, the fine-grid discretization point density increase towards each end of the

interval. To demonstrate the computation procedure, we use 14 points on each

(r and z) direction. The Matlab commands are :

[r, wr, dr, ddr] = pd(′cyln′, 14);

[z, wz, dz, ddz] = pd(′slab′, 14);

The distribution of the discretization points on r and z directions is shown on

Figure 4.1.

In this work, we denote the r direction is direction 1 and z direction is direction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

z

Figure 4.1: The fine-scale discretization point distribution on the physical do-

main.

43

2. We create four loper objects to store the discrete 1st-order differentiation and

Laplacian operator arrays (dr, dz , ddr and ddz) :

DR = loper(dr, 1);

DZ = loper(dz, 2);

DDR = loper(ddr, 1);

DDZ = loper(ddz, 2);

4.3 Trial Functions

A time-consuming step in the implementation of Galerkin solution procedure is

the actual computation of the trial functions. The trial functions are computed

satisfying the following relations:

λrφ = ∇2
rφ (4.4)

λzψ = ∇2
zψ (4.5)

subject to homogeneous boundary conditions :

r=0 dφ
dr

= 0

r=1 φ = 0

z=0 dψ
dz

= 0

z=1 ψ = 0

This trial function problem fits the Sturm-Liouville form [13]

1

xαv(x)

d

dx

(
xαp(x)

dψ

dx

)
+ q(x)

dψ

dx
+ g(x)ψ = λψ (4.6)

44

for x ∈ (0, 1). The solutions ψ(x) are subject to boundary conditions

a
dψ(0)

dx
+ bψ(0) + a1

dψ(1)

dx
+ b1ψ(1) = 0 (4.7)

c
dψ(1)

dx
+ dψ(1) + c0

dψ(0)

dx
+ d0ψ(0) = 0 (4.8)

Two sets of discretized, normalized trial functions are obtained after the sl.m

function is called.

[lamr, phi] = sl(′cyln′, dr, r, 1, 0, 0, 1, wr);

[lamz, psi] = sl(′slab′, dz, z, 1, 0, 0, 1, wz);

The three trial functions along r or z direction are plotted in Figure 4.2.

A tfun object P1 is created to store the information of the two sets of trial

functions φ and ψ.

P1 = tfun({phi, psi}, [1 2], {wr, wz});

Choosing the trial functions η(r) and ξ(z) to expand the solution of porosity

ε is not so obvious as those chosen for φ(r) and ψ(z). Because the value of ε at

the domain boundary is not fixed, we choose η(r) and ξ(z) as polynomials that

do not satisfy a pre-selected boundary condition:

η(r) = ri (4.9)

ξ(z) = zj (4.10)

with i = 0, 1, . . . , I and j = 0, 1, . . . , J .

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

r

φ
(r

)

φ (:,1)
φ (:,2)
φ (:,3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

z

ψ
 (

z)

ψ (:,1)
ψ (:,2)
ψ (:,3)

Figure 4.2: The first set of trial functions.

46

The matlab commands are

i = 1 : 3

eta(:, i) = r. ∧ (i− 1);

xi(:, i) = z. ∧ (i− 1);

end

Using the Gram-Schmidt orthogonalization, we make the ηi orthonormal with

respect to weight wr and ξi orthonormal with respect to weight wz. Two functions

are defined as orthonormal over a domain Ω if they satisfy

〈ηj, ηk〉 =
∫
Ω

〈ηj , ηk〉dω =


0 if j 6= k

1 if j = k
(4.11)

These operations are performed with the following MWRtools functions; these

trial functions are plotted in Figure 4.3 .

eta = gs(eta, wr);

xi = gs(xi, wz);

A tfun object P2 is created to store the information of the trial functions η

and ξ.

P2 = tfun({eta, xi}, [1 2], {wr, wz});

4.4 Discretization of the PDE System

Solving this system using a semi-discrete projection method is not difficult. How-

ever, extending this approach to more complex systems can be much more chal-

lenging primarily due to the “book-keeping” problem. To overcome this problem,

we propose to store the solution in the form of the Matlab cell array data struc-

tures. The unknown mode amplitude coefficients a, b and c can be arranged in

47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

6

8

r

η
(r

)

η (:,1)
η (:,2)
η (:,3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

z

ξ
(z

)

ξ (:,1)
ξ (:,2)
ξ (:,3)

Figure 4.3: The second set of trial functions.

this way :

48

S(t) =




a1,1(t) a1,2(t) a1,3(t)

a2,1(t) a2,2(t) a2,3(t)

a3,1(t) a3,2(t) a3,3(t)



b1,1(t) b1,2(t) b1,3(t)

b2,1(t) b2,2(t) b2,3(t)

b3,1(t) b3,2(t) b3,3(t)



c1,1(t) c1,2(t) c1,3(t)

c2,1(t) c2,2(t) c2,3(t)

c3,1(t) c3,2(t) c3,3(t)




The solution can be written in time-discretized form by extending the number of

dimensions of each array by one in each array’s final dimension.

To discretize the PDE system, we substitute the trial function expansion

solution into the PDE equations, then project the resulting functions onto each

trial function to obtain a residual array that is of the same form and size as S(t).

For the mass balance equation of CH4, the semi-discrete form of Equation

3.27 becomes

〈
∂CCH4

∂t
, φψ〉 = 〈RHSCH4, φψ〉 (4.12)

Where RHSCH4 is the right-hand-side of Equation 3.27. The left-hand-side of

Equation 4.12 is

〈
∂CCH4

∂t
, φψ〉 = 〈

∂

∂t
(CR

CH4
+

I∑
i=1

J∑
j=1

aij(t)φi(r)ψj(z)), φψ〉

49

=
daIJ

dt
(4.13)

Therefore, Equation 4.12 can be rewritten as

daIJ

dt
= 〈RHSCH4, φψ〉 (4.14)

For the mass balance equation of H2, the semi-discrete form of equation (3.28)

becomes

〈
∂CH2

∂t
, φψ〉 = 〈RHSH2, φψ〉 (4.15)

where RHSH2 is the right-hand-side of equation (3.28). The left-hand-side of

equation (4.15) is

〈
∂CH2

∂t
, φψ〉 = 〈

∂

∂t
(
I∑
i=1

J∑
j=1

bij(t)φi(r)ψj(z)), φψ〉

=
dbIJ

dt
(4.16)

Thus, equation (4.15) can be rewritten as

dbIJ

dt
= 〈RHSH2, φψ〉 (4.17)

For the governing equation of the porosity ε, the semi-discrete form of equation

(3.26) becomes

〈
dε

dt
, ηξ〉 = 〈RHSε, ηξ〉 (4.18)

where RHSε is the right-hand-side of equation (3.26). The left-hand-side of

equation (4.18) is

50

〈
dε

dt
, ηξ〉 = 〈

d

dt
(
I∑
i=1

J∑
j=1

cij(t)ηi(r)ξj(z)), ηξ〉

=
dcIJ

dt
(4.19)

Thus, equation (4.18) can be rewritten as

dcIJ

dt
= 〈RHSε, ηξ〉 (4.20)

These operations result in transferring the PDE equations to a semi-discrete

ODE system which can then be written as

C
dS

dt
+ R(S, t) = 0 (4.21)

where C is the capacitance cell array created by the Matlab command:

C = mdiag(ones(3, 3); ones(3, 3); ones(3, 3)); It has the form

C =





{
Ca

1,1

} {
Ca

1,2

} {
Ca

1,3

}
{
Ca

2,1

} {
Ca

2,2

} {
Ca

2,3

}
{
Ca

3,1

} {
Ca

3,2

} {
Ca

3,3

}




{
Cb

1,1

} {
Cb

1,2

} {
Cb

1,3

}
{
Cb

2,1

} {
Cb

2,2

} {
Cb

2,3

}
{
Cb

3,1

} {
Cb

3,2

} {
Cb

3,3

}




{
Cc

1,1

} {
Cc

1,2

} {
Cc

1,3

}
{
Cc

2,1

} {
Cc

2,2

} {
Cc

2,3

}
{
Cc

3,1

} {
Cc

3,2

} {
Cc

3,3

}





51

where, for example

{
Ca

1,1

}
=




1 0 0

0 0 0

0 0 0




0 0 0

0 0 0

0 0 0




0 0 0

0 0 0

0 0 0





,
{
Ca

1,2

}
=




0 1 0

0 0 0

0 0 0




0 0 0

0 0 0

0 0 0




0 0 0

0 0 0

0 0 0





, etc.

R(t) =




Ra

1,1(t) Ra
1,2(t) Ra

1,3(t)

Ra
2,1(t) Ra

2,2(t) Ra
2,3(t)

Ra
3,1(t) Ra

3,2(t) Ra
3,3(t)



Rb

1,1(t) Rb
1,2(t) Rb

1,3(t)

Rb
2,1(t) Rb

2,2(t) Rb
2,3(t)

Rb
3,1(t) Rb

3,2(t) Rb
3,3(t)



Rc

1,1(t) Rc
1,2(t) Rc

1,3(t)

Rc
2,1(t) Rc

2,2(t) Rc
2,3(t)

Rc
3,1(t) Rc

3,2(t) Rc
3,3(t)





.

Elements of this cell array include the projection of the modeling equations

52

Ra
p,q(t) = −〈RHSCH4 , φpψq〉 (4.22)

Rb
p,q(t) = −〈RHSH2 , φpψq〉 (4.23)

Rc
p,q(t) = −〈RHSε, ηpξq〉 (4.24)

To compute the values of Ra
p,q(t), R

b
p,q(t) and Rc

p,q(t), we must calculate

RHSCH4, RHSH2 and RHSε. The programming details for implementation of

this procedure in the Matlab environment are given in Figure 4.4, 4.5 and 4.6.

c1, c2 and e are used to represent CCH4 , CH2 and ε. We project RHSCH4 , RHSH2

and RHSε onto a tfun object storing the information of the trial functions by

calling the wip.m method of the tfun class, respectively.

Ra = −wip(RHSCH4 , P1);

Rb = −wip(RHSH2 , P1);

Rc = −wip(RHSε, P2);

4.5 Initial Conditions

At the initial state (t = 0), the concentration of CH4 is set to zero. Therefore

CCH4(r, z, t = 0) = CR
CH4

+
I∑
i=1

J∑
j=1

aij(t = 0)φi(r)ψj(z) = 0

I∑
i=1

J∑
j=1

aij(t = 0)φi(r)ψj(z) = −CR
CH4

We project both sides of the above equation onto the trial functions φ and ψ

53

RHS terms of Eq. 3.27 Equivalent Matlab code

αr
r

∂
∂r

(r
∂CCH4

∂r
) alphar ∗ (DDR ∗ c1)

αr
ε
∂ε
∂r

∂CCH4

∂r
(alphar ∗ (DR ∗ e). ∗ (DR ∗ c1))./e

αz
∂2CCH4

∂z2 alphaz ∗ (DDZ ∗ c1)

αz
ε
∂ε
∂z

∂CCH4

∂z
(alphaz ∗ (DZ ∗ e). ∗ (DZ ∗ c1))./e

ζCCH4 zeta ∗ c1

γζC2
CH4

gamma ∗ zeta ∗ c1.2

Figure 4.4: Comparison of the CH4 residual function terms to the corresponding

computational steps of Object-Oriented projection methods.

〈
I∑
i=1

J∑
j=1

aij(t = 0)φi(r)ψj(z), φψ〉 = 〈−CR
CH4

, φψ〉

Because both φ and ψ are orthonormal functions, we have

〈φpψq, φiψj〉 = 0 (p 6= i, q 6= j) (4.25)

Thus

aIJ(t = 0) = 〈−CR
CH4

, φψ〉 (4.26)

The concentration of H2 at the initial state is also set to zero, and so from

Equation 4.2, we have

CH2(r, z, t = 0) =
I∑
i=1

J∑
j=1

bij(t = 0)φi(r)ψj(z) = 0

54

RHS terms of Eq. 3.28 Equivalent Matlab code

αr
r

∂
∂r

(r
∂CH2

∂r
) alphar ∗ (DDR ∗ c2)

αr
ε
∂ε
∂r

∂CH2

∂r
(alphar ∗ (DR ∗ e). ∗ (DR ∗ c2))./e

αz
∂2CH2

∂z2 alphaz ∗ (DDZ ∗ c2)

αz
ε
∂ε
∂z

∂CH2

∂z
(alphaz ∗ (DZ ∗ e). ∗ (DZ ∗ c2))./e

2ζCCH4 2 ∗ zeta ∗ c1

γζCCH4CH2 gamma ∗ zeta ∗ c1. ∗ c2

Figure 4.5: Comparison of the H2 residual function terms to the corresponding

computational steps of Object-Oriented projection methods.

RHS terms of Equation 3.26 Equivalent Matlab code

γζCCH4ε gamma ∗ zeta ∗ c1. ∗ e

Figure 4.6: Comparison of the ε residual function term to the corresponding

computational steps of Object-Oriented projection methods.

55

Both sides of the above equation are projected onto the orthonormal trial

functions φ and ψ

〈
I∑
i=1

J∑
j=1

bij(t = 0)φi(r)ψj(z), φψ〉 = 〈0, φψ〉

bIJ(t = 0) = 0 (4.27)

The initial porosity ε is set to a constant value ε0 (ε0 = 0.7) as same as in

[20], from trial function expansion equation 4.3,

ε(r, z, t = 0) =
I∑
i=1

J∑
j=1

cij(t = 0)ηi(r)ξj(z) = ε0

The above equation is projected onto orthonormal trial functions η and ξ.

〈
I∑
i=1

J∑
j=1

cij(t = 0)ηi(r)ξj(z), ηξ〉 = 〈ε0, ηξ〉

Hence

cIJ(t = 0) = 〈ε0, ηξ〉 (4.28)

The MWRtools function wip.m is called to implement these calculations

a0 = wip(repmat(−CRCH4 , 14, 14), P1);

b0 = zeros(3, 3);

c0 = wip(repmat(ε0, 14, 14), P2);

4.6 Integration of the ODE Set

The solution S can be rewritten in time-discretized form by extending the number

of dimensions of each array by one. For example, the two dimensional coefficient

56

array aIJ will be a three dimensional array aIJK now. The last dimension denotes

the discrete points in time tk, k = 1, . . . , K.

A ordinary differential/algebraic equations solver odaepc.m is developed based

on the method of orthogonal-collocation described by Villadsen and Stewart [29].

The derivative of a function y is given by

dy

dx
|(xi)=

N∑
j=1

Ax(i, j)y(xj) (4.29)

If A is the (K × K) discrete time-differentiation array, the problem to be

solved becomes

C[AS]k + R(S) = 0 (4.30)

where [AS]k denotes discrete time-differentiation operation, operating on the

last non-singleton dimension of each matrix making up the cell array S. In the

discretized-time case, the capacitance cell array structure is defined so that the

product CS produces the result equivalent to CS(tk). Therefore, we can define

the corresponding residual cell array and Jacobian cell and solve this system using

the Newton-Raphson iterations, taking into account the initial conditions.

4.6.1 Implementation

The numerical procedures are implemented with the following steps:

1. Constant model parameters and the basis functions for the spatial dis-

cretizations are set up and stored in a cell array.

2. Parameters and forcing functions that are explicit functions of time are

defined at the collocation points in time and are stored in the cell array

57

ffun. When odaepc is called, the forcing functions in time are spectrally

filtered, if required.

3. The “right-hand-sides” of the ordinary differential/algebraic modeling equa-

tions are defined in a Matlab function similar in structure to what is

required for a standard ODE solver. The format is slightly different to ac-

count for the cell array format. For example, in a problem consisting of

three different modeling equations, after discretization, the residual func-

tions (Ra, Rb, and Rc) in time resulting from the projection operations

would be arranged as

R(t) =



−[Ra]

−[Rb]

−[Rc]



.

4. The capacitance cell array C or the template cell T must be specified; if T

is specified, C is generated as the diagonal equivalent to T using mdiag.m.

5. After the transient solution is computed, slices in time can be extracted us-

ing extract.m. Steady state solutions can also be computed using msolve.m.

58

4.6.2 Jacobian Array

If the problem has three state variables in discretized form (ua, ub,uc), the

Jacobian array elements must be supplied in the form

Jtemp =





{
∂Ra

∂ua

}
{
∂Ra

∂ub

}
{
∂Ra

∂uc

}




{
∂Rb

∂ua

}
{
∂Rb

∂ub

}
{
∂Rb

∂uc

}




{
∂Rc

∂ua

}
{
∂Rc

∂ub

}
{
∂Rc

∂uc

}




In this work, the cell elements in the above equation is calculated in this way:

1. Substitute the trial function expansion into the modeling equations 3.27,

3.28 and 3.17.

2. Find the derivatives of the right-hand-side of the modeling equations with

respect to the coefficients.

3. Project the derivatives onto the trial functions.

The calculation of ∂Ra

∂ua is shown below

d

da
(RHSCH4) =

∂

∂a
(
αr

r

∂

∂r
(r
∂

∂r
(CR

CH4
+

I∑
i=1

J∑
j=1

aij(t)φi(r)ψj(z))))

59

+
αr

ε

∂ε

∂r

∂

∂a

∂

∂r
(CR

CH4
+

I∑
i=1

J∑
j=1

aij(t)φi(r)ψj(z))

+ αz
∂

∂a
(
∂2

∂z2
(CR

CH4
+

I∑
i=1

J∑
j=1

aij(t)φi(r)ψj(z)))

+
αz

ε

∂ε

∂z

∂

∂a

∂

∂z
(CR

CH4
+

I∑
i=1

J∑
j=1

aij(t)φi(r)ψj(z))

− ζ
∂

∂a
(CR

CH4
+

I∑
i=1

J∑
j=1

aij(t)φi(r)ψj(z))

+ γζ
∂

∂a
(CR

CH4
+

I∑
i=1

J∑
j=1

aij(t)φi(r)ψj(z))
2

d

da
(RHSCH4) =

αr
r

∂

∂r
(r
∂

∂r
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)) +
αr
ε

∂ε

∂r

∂

∂r
(
I∑
i=1

J∑
j=1

φi(r)ψj(z))

+ αz
∂2

∂z2
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)) +
αz
ε

∂ε

∂z

∂

∂z
(
I∑
i=1

J∑
j=1

φi(r)ψj(z))

− ζ
I∑
i=1

J∑
j=1

φi(r)ψj(z)

+ 2γζ(CR
CH4

+
I∑
i=1

J∑
j=1

aij(t)φi(r)ψj(z))
I∑
i=1

J∑
j=1

φi(r)ψj(z)

Finally, we project the above equation onto the trial functions φψ:

〈
d

da
(RHSCH4), φψ〉 = αr〈

1

r

∂

∂r
(r
∂

∂r
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉

60

+ 〈
αr

ε

∂ε

∂r

∂

∂r
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉

+ αz〈
∂2

∂z2
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉

+ 〈
αz
ε

∂ε

∂z

∂

∂z
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉

− ζ〈
I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉

+ 2γζ〈CCH4

I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉 (4.31)

The corresponding programming implementation in Matlab is shown in Fig-

ure 4.7.

Follow the similar computing procedure, we can obtain the other cell elements

in the Jacobian array.

〈
d

dc
(RHSCH4), φψ〉 = 〈

αr

ε

∂CCH4

∂r

∂

∂r
(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉

+ 〈
αr
ε2
∂CCH4

∂r

∂ε

∂r
(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉

+ 〈
αz
ε

∂CCH4

∂z

∂

∂z
(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉

+ 〈
αz
ε2
∂CCH4

∂z

∂ε

∂z
(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 (4.32)

61

Terms in ∂Ra

∂ua Equivalent Matlab code

αr〈
1
r
∂
∂r

(r ∂
∂r

(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉 alphar ∗ wip(DDR ∗ P1, P1)

〈αr
ε
∂ε
∂r

∂
∂r

(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉 alphar ∗ wip(((DR ∗ e)./e). ∗ (DR ∗ P1), P1)

αz〈
∂2

∂z2 (
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉 alphaz ∗ wip(DDZ ∗ P1, P1)

〈αz
ε
∂ε
∂z

∂
∂z

(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉 alphaz ∗ wip(((DZ ∗ e)./e). ∗ (DZ ∗ P1), P1)

ζ〈
I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉 zeta ∗ wip(P1, P1)

2γζ〈CCH4

I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉 2 ∗ gamma ∗ zeta ∗ wip(c1. ∗ P1, P1)

Figure 4.7: Comparison of the cell element ∂Ra

∂ua in the Jacobian array to the

corresponding computational steps used in Object-Oriented numerical approach.

62

Terms in ∂Ra

∂uc Equivalent Matlab code

〈αrε
∂CCH4
∂r

∂
∂r (

I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 alphar ∗ wip(((DR ∗ c1)./e). ∗ (DR ∗ P2), P1)

〈αr
ε2
∂CCH4
∂r

∂ε
∂r (

I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 alphar ∗ wip(((DR ∗ e). ∗ (DR ∗ c1)./(e.2)). ∗ P2, P1)

〈αzε
∂CCH4
∂z

∂
∂z (

I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 alphaz ∗ wip(((DZ ∗ c1)./e). ∗ (DZ ∗ P2), P1)

〈αz
ε2
∂CCH4
∂z

∂ε
∂z (

I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 alphaz ∗ wip(((DZ ∗ e). ∗ (DZ ∗ c1)./(e.2)). ∗ P2, P1)

Figure 4.8: Comparison of the cell element ∂Ra

∂uc in the Jacobian array to the

corresponding computational steps used in Object-Oriented numerical approach.

〈
d

da
(RHSH2), φψ〉 = γζ〈CH2

I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉

+ 2ζ〈
I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉 (4.33)

〈
d

db
(RHSH2), φψ〉 = αr〈

1

r

∂

∂r
(r
∂

∂r
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉

+ 〈
αr

ε

∂ε

∂r

∂

∂r
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉

+ αz〈
∂2

∂z2
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉

63

Terms in ∂Rb

∂ua Equivalent Matlab code

γζ〈CH2

I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉 gamma ∗ zeta ∗ wip(c2. ∗ P1, P1)

2ζ〈
I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉 2 ∗ zeta ∗ wip(P1, P1)

Figure 4.9: Comparison of the cell element ∂Rb

∂ua in the Jacobian array to the

corresponding computational steps used in Object-Oriented numerical approach.

+ 〈
αz
ε

∂ε

∂z

∂

∂z
(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉

+ 2ζ〈
I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉

+ γζ〈CCH4

I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉 (4.34)

〈
d

dc
(RHSH2), φψ〉 = 〈

αr
ε

∂CH2

∂r

∂

∂r
(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉

+ 〈
αr
ε2
∂CH2

∂r

∂ε

∂r
(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉

+ 〈
αz
ε

∂CH2

∂z

∂

∂z
(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉

64

Terms in ∂Rb

∂ub Equivalent Matlab code

αr〈
1
r
∂
∂r

(r ∂
∂r

(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉 alphar ∗ wip(DDR ∗ P1, P1)

〈αr
ε
∂ε
∂r

∂
∂r

(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉 alphar ∗ wip(((DR ∗ e)./e). ∗ (DR ∗ P1), P1)

αz〈
∂2

∂z2 (
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉 alphaz ∗ wip(DDZ ∗ P1, P1)

〈αz
ε
∂ε
∂z

∂
∂z

(
I∑
i=1

J∑
j=1

φi(r)ψj(z)), φψ〉 alphaz ∗ wip(((DZ ∗ e)./e). ∗ (DZ ∗ P1), P1)

2ζ〈
I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉 2zeta ∗ wip(P1, P1)

γζ〈CCH4

I∑
i=1

J∑
j=1

φi(r)ψj(z), φψ〉 gamma ∗ zeta ∗ wip(c1. ∗ P1, P1)

Figure 4.10: Comparison of the cell element ∂Rb

∂ub in the Jacobian array to the

corresponding computational steps used in Object-Oriented numerical approach.

65

+ 〈
αz

ε2
∂CH2

∂z

∂ε

∂z
(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 (4.35)

Terms in ∂Rb

∂uc Equivalent Matlab code

〈αr
ε

∂CH2

∂r
∂
∂r

(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 alphar ∗ wip(((DR ∗ c2)./e). ∗ (DR ∗ P2), P1)

〈αr
ε2
∂CH2

∂r
∂ε
∂r

(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 alphar ∗ wip(((DR ∗ e). ∗ (DR ∗ c2)./(e.2)). ∗ P2, P1)

〈αz
ε

∂CH2

∂z
∂
∂z

(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 alphaz ∗ wip(((DZ ∗ c2)./e). ∗ (DZ ∗ P2), P1)

〈αz
ε2
∂CH2

∂z
∂ε
∂z

(
I∑
i=1

J∑
j=1

ηi(r)ξj(z)), φψ〉 alphaz ∗ wip(((DZ ∗ e). ∗ (DZ ∗ c2)./(e.2)). ∗ P2, P1)

Figure 4.11: Comparison of the cell element ∂Rb

∂uc in the Jacobian array to the

corresponding computational steps used in Object-Oriented numerical approach.

〈
d

da
(RHSε), ηξ〉 = γζ〈ε

I∑
i=1

J∑
j=1

φi(r)ψj(z), ηξ〉 (4.36)

〈
d

dc
(RHSε), ηξ〉 = γζ〈CCH4

I∑
i=1

J∑
j=1

ηi(r)ξj(z), ηξ〉 (4.37)

The cell array structure Jtemp is passed to the function makejacobian.m, to

create J in the proper format: a long column of column cell arrays that has the

same structure as C.

66

Terms in ∂Rc

∂ua Equivalent Matlab code

γζ〈ε
I∑
i=1

J∑
j=1

φi(r)ψj(z), ηξ〉 gamma ∗ zeta ∗ wip(e. ∗ P1, P2)

Figure 4.12: Comparison of the cell element ∂Rc

∂ua in the Jacobian array to the

corresponding computational steps used in Object-Oriented numerical approach.

Terms in ∂Rc

∂uc Equivalent Matlab code

γζ〈CCH4

I∑
i=1

J∑
j=1

ηi(r)ξj(z), ηξ〉 gamma ∗ zeta ∗ wip(c1. ∗ P2, P2)

Figure 4.13: Comparison of the cell element ∂Rc

∂uc in the Jacobian array to the

corresponding computational steps used in Object-Oriented numerical approach.

67

J =





{
Ja1,1

} {
Ja1,2

} {
Ja1,3

}
{
Ja2,1

} {
Ja2,2

} {
Ja2,3

}
{
Ja3,1

} {
Ja3,2

} {
Ja3,3

}




{
Jb1,1

} {
Jb1,2

} {
Jb1,3

}
{
Jb2,1

} {
Jb2,2

} {
Jb2,3

}
{
Jb3,1

} {
Jb3,2

} {
Jb3,3

}




{
Jc1,1

} {
Jc1,2

} {
Jc1,3

}
{
Jc2,1

} {
Jc2,2

} {
Jc2,3

}
{
Jc3,1

} {
Jc3,2

} {
Jc3,3

}




and where, for example

{
Jam,n

}
=



[
∂Rai,j
∂am,n

]

[
∂Rbi,j
∂am,n

]

[
∂Rci,j
∂am,n

]



68

Chapter 5

Results and Discussion

5.1 Solution Construction

After convergence of the collocation-based time integration, the solution cell array

S will contain three matrices defining the mode amplitude coefficients a, b and c.

Each is a three dimensional matrix with the last dimension defining the discrete

points in time. To extract the solution at a specific time tk, we call the Matlab

function extract.m

solution = extract(S, k);

Having introduced the concept of Object-Oriented programming, the recon-

struction of spectrally discretized solutions becomes much more straightforward.

Figure 5.1 shows the commands to compute the value of CCH4, CH2 and ε.

5.2 Discussion of Results

Figures 5.2, 5.3, 5.4 show the evolution of CH4, H2 concentration and preform

porosity during isothermal CVI at a temperature of 1400◦K and a pressure of

100 Torr. Densification proceeds in an “outside-in” pattern with a faster rate

69

Solution in function expansion form Equivalent Matlab code

CCH4 = CR
CH4

+
I∑
i=1

J∑
j=1

aijφiψj CCH4 = CRCH4 + a ∗ P3

CH2 =
I∑
i=1

J∑
j=1

bijφiψj CH2 = b ∗ P3

ε =
I∑
i=1

J∑
j=1

cijηiξj ε = c ∗ P4

Figure 5.1: Comparison of the trial function expansion form of the value of CCH4 ,

CH2 and ε to the corresponding computations using of Object-Oriented methods.

of densification at the edges than at the center of the preform. We can see the

maximum value of porosity is at the center of the preform. This densification

pattern is due to mass transfer limitations of the gas within the preform. As

the exterior of the preform densifies, diffusional resistance for the precursor gas

increases, leading to the development of a relatively porous region in the center

of the preform. The initial porosity is set to be 0.7 and it drops to approximately

0.12 after 27 hours. The concentration of CH4 has its maximum value at the

surface of the preform. After it diffuses into the preform, chemical reaction takes

place and H2 is produced. Thus, H2 has a negative concentration gradient from

the center of the preform toward the surface.

The choice of truncation number is a very important issue in the application

of spectral methods. In general, accuracy should increase with higher truncation

numbers. However, computing time will increase dramatically as the number of

trial functions grows. Figures 5.5, 5.6, 5.7 show the evolution of the concentra-

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.61

0.62

0.63

0.64

0.65 0.66
0.67

0.68

z

concentration of CH
4
 after 3 hours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.61 0.62

0.63

0.64

0.65 0.66

0.67

0.68

z

concentration of CH
4
 after 9 hours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.61

0.62 0.63

0.64

0.65

0.66
0.67

0.6z

concentration of CH
4
 after 27 hours

r

Figure 5.2: Evolution of CH4 concentration at 3, 9, 27 hr. Temperature is 1400◦K

and operating pressure is 100 Torr.

tion of CH4, H2 and the porosity with different truncation numbers. Generally,

when the number of trial functions increases, the number of fine-grid discretized

points also must increase. In this work, 14 discretized points are used for 3 trial

functions, 23 discretized points are used for 6 trial functions, and 30 discretized

points are used for 10 trial functions. From the figures, we can see that the shape

of the solution curves changes significantly as the number of trial functions in-

creases, especially when it increases from 3 to 6. When only 3 trial functions are

used, acceptable convergence of the porosity at the domain boundary z = 0 can

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.02

0.04

0.06

0.080.1

0.12

0.14
z

concentration of H
2
 after 3 hours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.02

0.04

0.06
0.08

0.1

0.12

0.14

z

concentration of H
2
 after 9 hours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

z

concentration of H
2
 after 27 hours

r

Figure 5.3: Evolution of H2 concentration at 3, 9, 27 hr. Temperature is 1400◦K

and operating pressure is 100 Torr.

not be reached. Because the polynomials zi were chosen as the trial functions,

when i = 1, the derivative of the trial function with respect to z will not vanish

at z = 0. However, when the truncation number of trial functions is increased,

the spectral method will reduce the influence of the odd trial functions on the

converged solution. The resulting curves will become smoother and more regular.

Time integrator resolution is another important issue that will affect the ac-

curacy of the numerical techniques. When the integrator odaepc.m is called,

the orthogonal collocation method is used. Figures 5.8, 5.9 and 5.10 show the

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
0.57

0.572

0.574

0.576

0.578

0.58

z

ε after 3 hours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.38

0.385

0.39

0.395

0.4

z

ε after 9 hours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.11

0.115

0.12

0.125

0.13

z

ε after 27 hours

r

Figure 5.4: Evolution of porosity at 3, 9, 27 hr. Temperature is 1400◦K and

operating pressure is 100 Torr.

evolution of CH4, H2 concentration and porosity at t = 3 hours with different

collocation points in time. The temperature is 1400◦K and the pressure is 100

Torr. Little difference can be observed from the figures when the number of

collocation points in time is changed from 2 to 6.

73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.61
0.62

0.63

0.64

0.65
0.66

0.67

z

with 3 trial functions in r and z direction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.61

0.62

0.63

0.64

0.65

0.66

0.67
0.68

z

with 6 trial functions in r and z direction

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.61

0.62

0.63

0.64

0.650.66

0.67 0.68

z

with 10 trial functions in r and z direction

r

Figure 5.5: Evolution of CH4 concentration with 3, 6, 10 trial functions along

each direction (r and z). Temperature is 1400◦K and operating pressure is 100

Torr. t = 3hr. The number of collocation point in time is set at 6.

74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.02
0.04

0.06

0.08

0.1

0.12

0.14

0.16

z

with 3 trial functions in r and z direction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.020.040.06
0.08

0.1

0.12
0.14

z

with 6 trial functions in r and z direction

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.02

0.04

0.06

0.08

0.1
0.12

0.14

z

with 10 trial functions in r and z direction

r

Figure 5.6: Evolution of H2 concentration with 3, 6, 10 trial functions along each

direction (r and z). Temperature is 1400◦K and operating pressure is 100 Torr.

t = 3hr. The number of collocation point in time is set at 6.

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.57
0.5720.574

0.576

0.578

0.58

0.582

z

with 3 trial functions in r and z direction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.572

0.574

0.576

0.578

0.58

z

with 6 trial functions in r and z direction

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.57

0.572

0.574

0.576

0.578
0.58z

with 10 trial functions in r and z direction

r

Figure 5.7: Evolution of porosity with 3, 6, 10 trial functions along each direction

(r and z). Temperature is 1400◦K and operating pressure is 100 Torr. t = 3hr.

The number of collocation point in time is set at 6.

76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.61

0.62

0.63 0.64
0.65

0.66

0.67

z

concentration of CH
4
 , with 2 collocation points in time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.61

0.62

0.63

0.64

0.65

0.66

0.67z

concentration of CH
4
 , with 4 collocation points in time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.61
0.62

0.63

0.64

0.65

0.66

0.67

0.68

z

concentration of CH
4
 , with 6 collocation points in time

r

Figure 5.8: Evolution of CH4 concentration with 2, 4, 6 collocation points in

time when odaepc.m is called. Temperature 1400◦K and operating pressure 100

Torr. t = 3hr.

77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.020.04

0.06

0.08

0.1

0.12
0.14

z

concentration of H
2
 , with 2 collocation points in time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.02

0.04

0.06

0.08
0.1

0.12
0.14

z

concentration of H
2
 , with 4 collocation points in time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.02

0.04

0.06 0.08

0.1

0.12

0.14

z

concentration of H
2
 , with 6 collocation points in time

r

Figure 5.9: Evolution of H2 concentration with 2, 4, 6 collocation points in time

when odaepc.m is called. Temperature 1400◦K and operating pressure 100 Torr.

t = 3hr.

78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.57
0.572

0.574

0.576

0.578

0.58

z

ε , with 2 collocation points in time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1 0.5580.56

0.562

0.564

0.5660.568

0.57

z

ε , with 4 collocation points in time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.558

0.56 0.562

0.564

0.566

0.568

0.57

z

ε , with 6 collocation points in time

r

Figure 5.10: Evolution of porosity with 2, 4, 6 collocation points in time when

odaepc.m is called. Temperature 1400◦K and operating pressure 100 Torr. t =

3hr.

79

Chapter 6

Conclusions and Recommendations for Further

Studies

6.1 Concluding Remarks

An Object-Oriented approach was developed to implement global spectral dis-

cretization methods using the Galerkin projection. Data structures for the trial

function sets, discretized linear operators, and the scalar fields that result during

intermediate MWR computations were developed. The methods were specifically

formulated to be applied to 1, 2, 3-dimensional systems.

Time integration using a collocation based integrator was demonstrated. The

collocation based integrator was developed to work with the data structures used

in the spatial discretization steps.

The applicability of global spectral methods was demonstrated on a two di-

mensional isothermal carbon-carbon chemical vapor infiltration (CVI) simulation

problem. Most of the previous studies by other researchers were based on finite-

element formulations.

The convergence of the global spectral method for the CVI problem was stud-

80

ied as a function of both spatial trial function truncation number and time-

collocation discretization point number.

6.2 Further Studies

6.2.1 Improvements of the Numerical Technique

The value of this thesis is primary due to the construction of the Object-Oriented

programming framework and the software tools to implement high-dimensional

simulation and model reduction studies. There are many improvements that can

build on this work:

• Computational efficiency: Based on a Sun Sparc ultra-10 workstation, the

time integration of the CVI problem with 10 × 10 trial functions, two collo-

cation points in time will take about 7 minutes to reach t = 3hr simulated

time. The time integration of the CVI problem with 6 × 6 trial functions,

six collocation points in time will take about 13 minutes to reach t = 3hr

simulated time. Therefore, important progress can be made if some im-

provements on the design and coding of the computing algorithm reduced

the working time.

• Further development in an Object-Oriented approach to organize the phys-

ical parameters will increase the software reuse. The goal is to create a

framework that would require the least possible changes that needed to be

made when the user switches from one simulation problem to a different

one.

81

• Development of Object-Oriented methods for a “heterogeneous” BVP based

simulation problems, where the BVPs are defined on separate physical do-

mains.

• Integration of the Object-Oriented based MWR techniques with Matlab

optimization, control, and other toolboxes.

6.2.2 Improvements of the CVI Modeling

In this work, two gaseous species CH4 and H2 are applied and a simplified gas

diffusion mechanism is used. The transport of the has within the porous medium

occurs by a combination of molecular diffusion, Knudsen diffusion, and viscous

flow. For dilute gaseous mixtures at relatively high operating pressures, a simple

binary diffusion description may suffice. A comprehensive description of the

transport processes accounting for the above mechanisms can be obtained from

the Dusty Gas model [8, 19, 26].

Suppose there are three gaseous species, in a Dusty Gas model; the gaseous

diffusion can be expressed by

[dc
dz

] = −[F][Nz] (6.1)

where [dc
dz

] is the concentration gradient and [Nz] is the molar flux.

Fij = −
xi

Dij

(i 6= j) (6.2)

Fii = −
1

DiK

+
n∑

h=1,h 6=i

xh
Dih

(6.3)

where DiK is the Knudsen diffusivity of species i.

82

For three species example,

F =


1

D1k(r)
+ x2

D12
+ x3

D13
− x1

D12
− x1

D13

− x2

D21

1
D2k(r)

+ x1

D21
+ x3

D23
− x2

D23

− x3

D31
− x3

D32

1
D3k(r)

+ x1

D31
+ x2

D32

 (6.4)

One of the drawbacks of the isothermal CVI process is it’s long reaction

time. This can be overcome by using a thermal-gradient system. In a thermal-

gradient CVI process, the highest temperature is at the center of the preform,

or at one end, depending on the heating mechanism. The reactant gas diffuses

through the preform from the cold to the hot surface. This allows the reactant

gases to diffuse to the hot end before reacting to deposit the matrix at the hot

end. If the gradients are large enough, a moving densification front is created

so that dense matrix grows from the hot end to the cool end of the preform. A

higher deposition rate than for isothermal processes can be achieved without the

‘canning’ problem with such a process. To model a CVI process with thermal

gradients, a temperature governing equation must be added.

83

BIBLIOGRAPHY

[1] Adomaitis, R. A. and Lin, Y. -h. 2000, A collocation/quadrature-based

Sturm-Liouville solver. Appl. Math. Comp., 110, 205-223.

[2] Adomaitis, R. A., Lin, Y. -h. and Chang, H. -Y. 2000, A Computational

Framework for Boundary-Value Problem Based Simulations. Simulation, 74,

28-38.

[3] Bammidipati, S., Stewart, G. D., etc. 1996. Chemical vapor deposition of

carbon on graphite by methane pyrolysis. AIChE J., 42(11), 3123-3132.

[4] Bird, R. B., Stewart, W. E. and Lightfoot, E. N. 1960, Transpot phenomena,

New York: John Wiley & Sons.

[5] Buckley, J. D. 1988, Carbon-carbon, an overview. Ceram. Bull., 67(2), 364-

368.

[6] Chung, G. -Y. and McCoy, B. 1991, Modeling of chemcal vapor infiltration

for ceramic composites reinforced with layered, woven fabrics. J. Am. Ceram.

Soc. , 74(4), 746-751.

[7] Deepak and Evans, J. W. 1993, Mathematical model for chemical vapor

infiltration in a microwave-heated preform. J. AM. Ceram. Soc. , 76(8),

1924-1929.

84

[8] Feng, C. and Stewart, W. E. 1973, Practical models for isothermal diffusion

and flow of gases in porous solids. Ind. Eng. Chem. Fundam., 12(2), 143-147.

[9] Fletcher, C. A. J. 1984, Computational Galerkin methods, New York:

Springer-Verlag.

[10] Funaro, D. 1992, Polynomial approximation of differential equations, New

York: Springer-Verlag.

[11] Gottlier, D. and Orszag, S. A. 1977. Numerical analysis of spectral methods:

theory and applications, CBMS-NSF regional conference series.

[12] Guote, S. M. and Tsamopoulos,J. A. 1990, Forced-flow chemical vapor in-

filtration of porous ceramic materials. J. Electrochem. Soc., 137(11), 3675-

3681.

[13] Lin, Y. H., Chang, H. Y. and Adomaitis, R. A. 1999, MWRtools: a library

for weighted residual method calculations. Computers and Chemical Engi-

neering, 23, 1041-1061.

[14] Lin, Y. S. and Burggraaf, A. J. 1991, Modeling and analysis of CVD pro-

cesses in porous media for ceramic composite preparation. che. Eng. Sci.,

46(12), 3067-3076.

[15] Mason, E. A. and Evans, R. B. 1969, Graham’s laws: simple demonstrations

of gases in motion. J. Chem. Edu., 46(6), 358-364.

[16] McAllister, P. and Wolf, E. E. 1990, Modeling of chemical vapor infiltration

of carbon in porous carbon substrates. Carbon, 29(3), 387-395.

85

[17] McAllister, P. and Wolf, E. E. 1993, Simulation of a multiple substrate

reactor for chemical vapor infiltration of pyrolytic carbon within carbon-

carbon composites. AIChe Journal, 39(7), 1196-1209.

[18] Middleman, S. 1989, The interaction of chemical kinetics and diffusion in the

dynamics of chemical vapor infiltration. J. Mater. res. , 4(6), 1515-1524.

[19] Midha, V. and Economou, D. J. 1997, A two-dimensional model of chem-

ical vapor infiltration with radio-frequency heating. J. Electrochem. Soc.,

144(11), 4062-4071.

[20] Midha, V. and Economou, D. J. 1998, A two-dimensional model of chem-

ical vapor infiltration with radio-frequency heating. J. Electrochem. Soc.,

145(10), 3569-3580.

[21] Morell, J. I., Economou, D. J. and Amundson, N. R. 1992, A mathematical

model for chemical vapor infiltration with volume heating. J. Electrochem.

Soc., 139(1), 328-336.

[22] Ofori, J. Y. and Sotirchos, S. V. 1997, Multidimensional modeling of chemical

vapor infiltration: application to isobaric CVI. Ind. Eng. Chem. Res., 36-2,

357-367.

[23] Savage, G. 1993, Carbon-carbon composites, London: Chapman & Hall.

[24] Skamser, D. J., Jennings, H. M. and Johnson, D. L. 1997, Model of chemical

vapor infiltration using temperature gradients. J. Mater. Res.,12(3), 724-

737.

86

[25] Tomadakis, M. M. and Sotirchos, S. V. 1991, Effective Knudsen diffusivities

and properties of structures of unidirectional fibers. AIChE J., 37(8), 1175-

1186.

[26] Tomadakis, M. M. and Sotirchos, S. V. 1991, Knudsen diffusivities in stru-

tures of randomly overlapping fibers. AIChE J., 37(1), 74-85.

[27] Vaidyaraman, S., Lackey, W. J., Agrawal, P. K. and Starr, T. L. 1996, 1-D

model for forced flow-thermal gradient chemical vapor infiltration process

for carbon/carbon composites. Carbon, 34(9), 1123-1133.

[28] Vaidyaraman, S., Lackey, W. J., Freeman, G. B., Agrawal, P. K. and Lang-

man, M. D. 1995, Fabrication of carbon-carbon composites by forced flow-

thermal gradient chemical vapor infiltration. J. Mater. Res., 10(6), 1469-

1476.

[29] Villadsen, J. V. and Stewart, W. E. 1967, Solution of boundary-value prob-

lems by orthogonal collocation. Chem. Engng. Sci., 22, 1483-1501.

87

