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In this thesis, we are mainly interested in constructing deterministic polynomial-

time algorithms for solving some computational problems that arise in number theory

and cryptography. The problems we are interested in include finite field arithmetic,

primality testing, and elliptic curve arithmetic.

We first present a novel idea to compute square roots over some families of fi-

nite fields. Our square root algorithm is deterministic polynomial-time and can be

proved by elementary means. The approach of taking square roots is generalized to

take nth roots. Then, we present a deterministic polynomial-time algorithm to solve

polynomial equations over some families of finite fields. As applications, we construct

a deterministic polynomial-time primality test for some forms of integers and show a

deterministic polynomial-time algorithm computing elliptic curve “nth roots”.

For example, we prove the following statements. Denote a finite field with q

elements and characteristic p by Fq.



(I) Suppose p ≡ 1 (mod 12), q = 2e3f t + 1 for some e, f ≥ 1 and some t =

O(poly(log q)). There is a deterministic polynomial time algorithm taking

square roots over Fq.

(II) Let re1
1 · · · rem

m be the prime factorization of q − 1. Suppose rj = O(poly(log q))

and a primitive rjth root of unity can be computed efficiently for 1 ≤ j ≤

m. There is a deterministic polynomial time algorithm solving any polynomial

equation with degree O(poly(log q)) over Fq.

(III) Let N = ret+1 for some prime r and some positive integers t and e with re > t.

There is an Õ(r2(log2 N)(t+r log N)) deterministic primality testing algorithm.

If r is a small constant and t = O(log N), the running time is Õ(log3 N).
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Chapter 1

Introduction

In this thesis, we are mainly interested in constructing deterministic polynomial-time

algorithms for solving some computational problems that arise in number theory

and cryptography. The problems we are interested in include finite field arithmetic,

primality testing and elliptic curve arithmetic. We give a short overview of this thesis

in Section 1.1. See [61], [60] and [62] for the related papers. Following the overview,

we state some useful facts in the rest of this section.

1.1 Overview

The main problem we consider in this thesis is the problem of solving polynomial

equations over finite fields. Let Fq denote a finite field with q elements. Let f(x) =

adx
d + ad−1x

d−1 + · · ·+ a0 ∈ Fq[x] be a polynomial with ai ∈ Fq for all i and ad 6= 0.

We assume deg f
def
= d = O(poly(log q)). Then, the problem is to find the solutions of

f(x) = 0 over Fq. (1.1.1)
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The input parameters are Fq and f(x). Since there are d coefficients in f , the input

size is O(d log q) = O(poly(log q)). There are at most d solutions for equation (1.1.1),

therefore, the output size is also O(d log q) = O(poly(log q)).

Interestingly, there are efficient probabilistic algorithms, for example Berlekamp’s

algorithm [13], for this problem. These probabilistic algorithms work very well in

practice. However, there is no known deterministic polynomial-time algorithm in the

literature, even for solving quadratic equations over finite fields. For more background

information about solving polynomial equations, see the introduction in Chapter 4.

Our main contribution is showing a deterministic algorithm to solve f(x) = 0 over

Fq (equation (1.1.1)) for arbitrary f . The proof is totally elementary and does not

assume any unproven hypotheses. The algorithm is polynomial-time if Fq is a finite

field such that for each prime factor r of q − 1, r is small and a primitive rth root of

unity can be computed efficiently. We have the following theorem.1

Theorem 1.1.1. Let re1
1 · · · rem

m be the prime factorization of q − 1. Suppose rj =

O(poly(log q)) and a primitive rjth root of unity can be computed efficiently for 1 ≤

j ≤ m. There is a deterministic polynomial time algorithm solving any polynomial

equation with degree O(poly(log q)) over Fq.

The algorithm for solving polynomial equations is presented in Section 4.1. The

algorithm relies on an algorithm for taking roots, which will be discussed in the next

section.

1Theorem 1.1.1 and Theorem 4.1.5 are the same.
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1.1.1 Taking Square Roots and rth Roots

In Chapter 2, we present an algorithm to take square roots. Clearly, the square root

problem is equivalent to the problem of solving quadratic equations. For arbitrary

finite fields Fq and arbitrary β ∈ Fq, there is no known deterministic polynomial-time

algorithm computing the square roots of β.

For arbitrary prime fields Fp and β with small absolute value, the square roots

of β can be computed by Schoof’s square root algorithm [55], which is deterministic

polynomial-time. However, Schoof’s algorithm becomes exponential-time for β with

large absolute value.

Square roots over finite fields can be computed by probabilistic algorithms such as

Tonelli-Shanks [63, 56]. Some of these probabilistic algorithms becomes deterministic

polynomial-time if a quadratic nonresidue is given as an additional input. How-

ever, there is no known deterministic polynomial-time algorithms to find a quadratic

nonresidue. Probabilistic algorithms for finding a quadratic nonresidue work very

well in practice because half of the non-zero elements in a finite field2 are quadratic

nonresidues. For prime fields, a quadratic nonresidue exists in a small range if the

Riemann Hypothesis is true (see [7]). For other results on the square root problem,

see the introduction in Chapter 2.

We present a novel idea to compute square roots over some families of finite fields.

The problem of taking square root of β with arbitrary size β is first reduced to the

problem of constructing a primitive rth root of unity, ζr. In some cases, ζr can be

2We assume the characteristic of the field is odd since if the characteristic is even, the square

root problem is easy.
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constructed by taking square roots of some small elements bi ∈ Fq, which can be done

by Schoof’s algorithm. In some other situations, ζr can be constructed directly. One

family of finite fields is described in the theorem3 below. More generally, if all prime

factors of q−1 are small and a primitive kth root of unity can be computed efficiently

for certain factors k of q − 1, then our square root algorithm is applicable to Fq. See

Section 2.1 for the other results.

Theorem 1.1.2. Let p ≡ 1 (mod 12) be a prime and q = pn = 2e3f t + 1 for some

n, e, f ≥ 1. Suppose t = O(poly(log q)). Both taking square roots in Fq and finding a

quadratic nonresidue in Fq can be computed in deterministic polynomial time.

In addition, we discuss how to construct primitive rth roots of unity, ζr, in Chapter

2. The interesting cases are r|q−1 and either r = 4 or r an odd prime. We summarize

the cases that ζr can be constructed in deterministic polynomial time below. Let p

be the characteristic of Fq.

• r = 4 and p ≡ 1 (mod 4).

• r = 3 and −3 is a square mod p.

• r = 2 · 3k + 1 for some k ≥ 1, p ≡ 1 (mod r) and p ≡ 13, 25 (mod 36).

• q = ret + 1 with r + t = O(poly(log q)).

In Chapter 3, the idea of our square root algorithm is generalized to take rth roots

for some positive integer r with r = O(poly(log q)). The requirements of the finite

fields are similar to taking square roots.

3Theorem 1.1.2 and Theorem 2.1.1 are the same.
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1.1.2 Applications

Based on our rth root algorithm, we construct a deterministic polynomial-time pri-

mality test for some forms of integers in Section 5.1. We have the following theorem4.

Theorem 1.1.3. Let N = ret + 1 for some prime r and some positive integers t and

e with re > t. There is an Õ(r2(log2 N)(t + r log N)) deterministic primality testing

algorithm. If r is a small constant and t = O(log N), the running time is Õ(log3 N).

In Section 4.2, we construct a deterministic polynomial-time algorithm to compute

elliptic curve “n th root” by our algorithm for solving polynomial equations,

1.1.3 Other Works

In Section 3.7, we show a deterministic polynomial-time algorithm to compute a non-

trivial factor of the r2th cyclotomic polynomial Φr2(x) over a finite field for some prime

r. An efficient probabilistic algorithm for solving polynomial equations is presented

in Section 4.3. We discuss a potentially fast primality test in Section 5.2.

1.2 Useful Facts

We state some useful facts in this section. Most of the proofs will be skipped. For

the topics in algorithms, see [36] and [25]. For background material about number

theory and computational number theory, see [32], [22] and [57]. For information

about finite fields and abstract algebra, see [42] and [8]. For material about elliptic

curves, see [69] and [58]. For the topics in cryptography, see [65] and [38].

4Theorem 1.1.3 and Theorem 5.1.1 are the same.

5



1.2.1 Algorithms

Deterministic algorithms always produce the same correct output. In contrast, prob-

abilistic algorithms may sometimes give incorrect output or fail to give an output at

all. An algorithm is polynomial-time if its running time is polynomial in the input

size5. Running time means the number of operations required by the algorithm in

order to finish the computation.

All running times in this thesis are measured in term of bit operations. We ignore

logarithmic factors in running time and adopt the Õ( · ) notation. For example,

the running time of the Schönhage-Strassen integer multiplication algorithm [54] is

O(n log n log log n), which will be denoted by Õ(n).

Arithmetic Operations

Clearly addition and subtraction over integers can be done in linear time (i.e. O(n),

where n is the input size6). Multiplication, division with remainder and computing

the greatest common divisor (GCD) over integers can be implemented by fast Fourier

transform (FFT) and other fast methods in essentially linear time (i.e. Õ(n)). See

[28], [35], [54], [64] and [24].

The case is similar when the operations are carried over finite fields and polynomial

rings: addition and subtraction are O(n); multiplication, division and computing

GCD are Õ(n). See [29] and [68].

5Output size is ignored since the output size is always polynomial in the input size for all the

problems in considered this thesis.
6For a positive integer N , we have n = O(log N) because N can be represented by O(log N) bits.
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For all cases, exponentiation ae can be computed by successive squaring. It re-

quires O(log e) multiplications.

1.2.2 Finite Fields

A finite field (also called Galois field) has finitely many elements. We denote a finite

field with q elements by Fq. The number of elements in Fq is always a prime power

q = pn for some prime p and positive integer n. Conversely, there is a unique (up

to isomorphism) finite field Fq for any prime power q > 1. The prime p is called the

characteristic of Fq. If d|n, then Fpd is a subfield of Fpn . The subfield Fp is called the

prime field of Fq or a prime field. A prime field is unique up to unique isomorphism.

Note that Fp ' Z/pZ but Fpn 6' Z/pnZ for n > 1.

Quadratic Residues and Nonresidues

In Fq, we have

aq = a for all a ∈ Fq.

It is a generalization of Fermat’s Little Theorem stated below.

Theorem 1.2.1. (Fermat’s Little Theorem) For any prime p,

ap ≡ a (mod p) for any integer a. (1.2.1)

If q is even (equivalently, the characteristic of Fq is 2), then for any element a ∈ Fq,

a = (aq/2)2. The element aq/2 is a square root of a. Therefore, taking square roots

over Fq is trivial for q even.

7



Suppose q is odd. The multiplicative group F×q has q − 1 elements. Since F×q is

cyclic, there is a generator g ∈ F×q such that F×q = 〈g〉 = {1, g, g2, · · · , gq−2}. The

element g is also called a primitive element of Fq. Squaring the elements of F×q , we

obtain the set of all squares

QR
def
=

{
1, g2, g4, · · · , gq−3

}
.

Since the product of two squares is a square and the inverse of a square is a square,

QR is a subgroup of F×q . Let

NR
def
= F×q \ QR =

{
g, g3, g5, · · · , gq−2

}
= gQR.

For any element a ∈ NR, the square root of a does not exist in Fq. The elements in QR

and the elements in NR are called quadratic residues and quadratic nonresidues. We

show in Theorem 1.2.2 below that the least7 quadratic nonresidue in a prime field is

a prime. We will discuss the problems of finding a quadratic nonresidue and taking

square roots over finite fields in Chapter 2.

Theorem 1.2.2. Let p > 2 be a prime. The least quadratic nonresidue in Fp is a

prime.

Proof. Let a be the least quadratic nonresidue. Suppose a = uv with 1 < u, v <

a. Since a is the least quadratic nonresidue, u and v must be quadratic residues.

However, the product uv is also a quadratic residue, which is a contradiction.

7We consider the elements in Fp are integers from 0 to p− 1.
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Enumerating The Elements

In some algorithms given in the later chapters, a simple mechanism for enumerating

a small portion of the elements in F×q is required. In addition, we require the enu-

meration satisfying equation (1.2.3) below. For completeness, we illustrate a method

to obtain an enumeration of half of the elements in any finite field Fq with q = pn.

The finite field Fq can be viewed as a vector space over Fp with dimension n.

Let {T0, T1, · · · , Tn−1} be a basis of Fq over Fp. For 1 ≤ m ≤ q−1
2

, choose k such

that pk−1
2

< m ≤ pk+1−1
2

. Write m − 1 − pk−1
2

= a0 + a1p + · · · + ak−1p
k−1 + akp

k

with 0 ≤ ak < p−1
2

and 0 ≤ aj < p for 0 ≤ j < k. The mth element of Fq in our

enumeration is defined to be

a0T0 + a1T1 + · · ·+ ak−1Tk−1 + (ak + 1)Tk, (1.2.2)

Let element(m) be the procedure returning the mth element in Fq. It is easy to see

that

element(m) 6= −element(j) for 1 ≤ j,m ≤ q − 1

2
. (1.2.3)

1.2.3 Elliptic Curves

An elliptic curve E defined over a finite field F can be represented by the Weierstrass

equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 for some a1, a2, a3, a4, a6 ∈ F.

Denote the points on E with coordinates in F by E(F ). Interestingly, E(F ) is a

well-defined group, which has a lot of applications in number theory and cryptogra-
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phy. The applications include primality proving [9], integer factoring [33], public key

cryptography [37] and identity based encryption [17].

Computing Points

Fix the x-coordinate to x0 ∈ F . If the quadratic equation

f(y) = y2 + (a1x0 + a3)y − (x3
0 + a2x

2
0 + a4x0 + a6) = 0

has solutions in F , say y1 and y2, then (x, y1) and (x, y2) are points on E(F ). Similarly,

fixing the y-coordinate to some y0 ∈ F , if the cubic equation,

g(x) = x3 + a2x
2 + (a4 − a1y0)x + a6 − a3y0 − y2

0 = 0

has solutions x1, x2, x3 ∈ F , then (x1, y0), (x2, y0) and (x3, y0) are points on E(F ).

In either case, we need to solve a polynomial equation over F . It is obvious that

solving quadratic equations and taking square roots are equivalent problems. By

some algebraic manipulation, for example Cardano’s method, cubic equations can be

solved by taking square roots and cubic roots. We will describe how to take rth roots

over finite fields in Chapter 3 and how to solve polynomial equations over finite fields

in Chapter 4. In addition, the elliptic curve “nth root” problem will be discussed in

Chapter 4.

1.2.4 Riemann Hypothesis

The Riemann Hypothesis (RH) is one of the most important open problems in math-

ematics. Most mathematicians believe RH is true. RH has a deep connection to
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the distribution of prime numbers. Occasionally, there are results in computational

number theory that assume RH or its generalizations. One typical example is Miller’s

primality test [44]. RH is not in our scope of study. We informally describe RH and

two common generalizations below.

The Riemann zeta-function over the complex numbers is defined as

ζ(s) =
∞∑

n=1

1

ns
for s ∈ C, <(s) > 1 (1.2.4)

and then analytically continued to all s 6= 1. The function ζ(s) has trivial zeros at the

negative even integers −2, −4, · · · . The Riemann Hypothesis, introduced in 1859,

states that the non-trivial zeros of ζ(s) have real part equal to 1/2 (i.e. <(s) = 1/2).

See [52].

Extended Riemann Hypothesis

The Dirichlet L-function over the complex numbers is defined as

L(χ, s) =
∞∑

n=1

χ(n)

ns
for s ∈ C, <(s) > 1 (1.2.5)

and then analytically continued to all s, where χ is a non-trivial Dirichlet charac-

ter. The Extended Riemann Hypothesis (ERH) says that for any non-trivial Dirichlet

character χ and any s ∈ C with 0 < <(s) ≤ 1, if L(χ, s) = 0, then <(s) = 1/2.

Generalized Riemann Hypothesis

Let K be a number field and OK be the set of algebraic integers in K. The Dedekind

zeta-function of K is defined as

ζK(s) =
∑

I6=0

1

(NI)s
for s ∈ C, <(s) > 1 (1.2.6)
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and then analytically continued to all s 6= 1, where I runs through all non-zero ideals

of OK and N denotes the norm function such that NI def
= [OK : I]. The Generalized

Riemann Hypothesis (GRH) states that for any s ∈ C with 0 < <(s) ≤ 1, if ζK(s) = 0,

then <(s) = 1/2.

12



Chapter 2

Taking Square Roots

In this chapter, we discuss the square root problem over finite fields. Let Fq be a

finite field with q elements. Suppose q is odd in this chapter. Otherwise, the square

root problem is trivial. Let β be a square in Fq. The square root problem over Fq is

to find α ∈ Fq such that α2 = β, given Fq and β as inputs. The element α is called a

square root of β. Note that −α ∈ Fq is also a square root of β. Denote a fixed square

root of β by
√

β or β1/2.

The problem of taking square roots over finite fields and the problem of construct-

ing quadratic nonresidues over finite fields are closely related. If one can take square

roots, one can compute (−1)1/2 =
√−1, (−1)1/4 =

√
(−1)1/2, (−1)1/8 =

√
(−1)1/4,

· · · , and eventually obtain a quadratic nonresidue because the 2-part of the mul-

tiplicative group of the field is finite. Conversely, given a quadratic nonresidue as

an input, there are deterministic polynomial time algorithms [63], [56] and [2] for

computing square roots.

There is no known deterministic polynomial-time algorithm for constructing quadratic

13



nonresidues over a general finite field. However, the problem of deciding whether an

element is a quadratic nonresidue in a finite field Fq is easy since, for any non-zero

element a ∈ Fq, a is a quadratic nonresidue if and only if a(q−1)/2 = −1.

Since the number of quadratic nonresidues is equal to the number of quadratic

residues in Fq, one could randomly pick an element a ∈ F×q and then test whether a

is a quadratic nonresidue by checking a(q−1)/2 = −1 in Fq. Such simple strategy gives

an efficient probabilistic algorithm for finding a quadratic nonresidue in Fq.

There are several efficient probabilistic algorithms for taking square roots in finite

fields. Tonelli-Shanks [63, 56], Adleman-Manders-Miller [2] and Cipolla-Lehmer [20,

40] require a quadratic nonresidue as an input. Berlekamp-Rabin [14, 50] takes square

roots by polynomial factoring over finite fields. The idea of Peralta [51] is similar to

Berlekamp-Rabin. For other results, see [10], [11], [12], [15], [18], [43], [45] [46] and

[66].

For the following, let Fp be the finite field with p elements for some odd prime p.

By assuming the ERH (see Section 1.2.4), Ankeny [7] showed that the least

quadratic nonresidue in Fp is less than c log2 p for some constant c. It leads to a

deterministic polynomial time algorithm for finding the least quadratic nonresidue in

Fp. The least quadratic nonresidue must be a prime (see Theorem 1.2.2). Since the

problem of deciding quadratic nonresidues is easy, one could evaluate the Legendre

symbol
(

r
p

) ≡ r(p−1)/2 (mod p) with the primes r = 2, 3, 5, 7, · · · until a quadratic

nonresidue is found. Such quadratic nonresidue must be the least one.

Given β a square in Fp, Schoof [55] showed a deterministic algorithm for computing
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square roots of β in Fp with running time O((|β|1/2+ε log p)9) bit operations1 for all

ε > 0. Thus, his algorithm is polynomial time with any constant β.

We show below that a quadratic nonresidue in Fp can be computed in deterministic

polynomial time for primes p with p 6≡ 1 (mod 240). Let ζr be a primitive rth of

unity. If p 6≡ 1 (mod 16), at least one of

ζ2 = −1, ζ4 = ±√−1, ζ8 = ± 1√
2
(1±√−1)

is a quadratic nonresidue. Therefore, a quadratic nonresidue can be computed by

Schoof’s algorithm in this case. Suppose p ≡ 1 (mod 4) for the following. If p ≡ 2

(mod 3), then
(
3
p

)
=

(
p
3

)
=

(
2
3

)
= −1. So 3 is a quadratic nonresidue. Similarly, if

p ≡ 2, 3 (mod 5), then 5 is a quadratic nonresidue. Suppose p ≡ 4 (mod 5). In this

case, 5 is a square mod p. Let

ζ5 =
a +

√
a2 − 4

2
, where a =

−1 +
√

5

2
. (2.0.1)

Then, ζ5 is a primitive 5th root of unity. Note that a ∈ Fp but ζ5 6∈ Fp. Therefore,

a2 − 4 must be a quadratic nonresidue. In conclusion, the problem of finding a

quadratic nonresidue in Fp is hard only if p ≡ 1 (mod 16), p ≡ 1 (mod 3) and p ≡ 1

(mod 5), which is p ≡ 1 (mod 240).

We present our main results and the idea behind them in Section 2.1 and Section

2.2, respectively. In Section 2.3, we construct a special group and discuss the com-

putation of the operations in that group. In Section 2.4, we provide algorithms for

taking square roots and finding quadratic nonresidues in finite fields.

1|β| denotes the absolute value of β, where β is considered as an integer in (−p−1
2 , p−1

2 ].
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2.1 Main Results

We show deterministic polynomial time algorithms (without any unproven assump-

tion) for computing square roots and finding quadratic nonresidues in some families

of finite fields as stated in the following theorems. In some particular finite fields Fq,

there are algorithms for taking square roots with Õ(log2 q) bit operations.

Theorem 2.1.1. Let p ≡ 1 (mod 12) be a prime and q = pn = 2e3f t + 1 for some

n, e, f ≥ 1. Suppose t = O(poly(log q)). Both taking square roots in Fq and finding a

quadratic nonresidue in Fq can be computed in deterministic polynomial time.

Theorem 2.1.2. Let p be a prime with p ≡ 13, 25 (mod 36). Let r1, r2, · · · , rm be m

distinct primes, where rj = 2 · 3kj + 1 < M with kj ≥ 0 for some upper bound M and

j = 1, 2, · · · ,m. Let q = pn = 2erf1

1 rf2

2 · · · rfm
m t + 1 for some n, e, f1, f2, · · · , fm ≥ 1.

Suppose p ≡ 1 (mod r1r2 · · · rm) and M + t = O(poly(log q)). Both taking square

roots in Fq and finding a quadratic nonresidue in Fq can be computed in deterministic

polynomial time.

Theorem 2.1.3. Let p, r be primes and q = pn = ret + 1 for some n, e ≥ 1. Sup-

pose r + t = O(poly(log q)). Both taking square roots in Fq and finding a quadratic

nonresidue in Fq can be computed in deterministic polynomial time.

2.2 The Idea of Using Group Isomorphism

Let H be a cyclic group. Let G be another group such that G is isomorphic to

H. However, we do not know the exact isomorphism, i.e. the isomorphism formula
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contains an unknown parameter. Denote the isomorphism from G to H by ψ. Pick

a non-identity element g in G. Let d be the order of g. Then, ψ(g) is an order d

element in H. Suppose we can compute an element ζ ∈ H with order d. We must

have

ψ(g) = ζj for some j ∈ (Z/dZ)×.

since the group H is cyclic. If ψ is a simple formula and d is small, we can recover ψ

by trying each possible j.

We further elaborate the group isomorphism idea for computing square root below.

Let Fq be a finite field with q elements. Suppose β ∈ F×q is a square. Then,

α2 = β for some α ∈ F×q .

Let Gα be a group with the following properties:

(i) the group operation in Gα is efficiently computable with β but without the

knowledge of α,

(ii) Gα is isomorphic to the multiplicative group F×q ,

(iii) the isomorphism ψα : Gα → F×q depends on α as a parameter.

Since the isomorphism ψα depends on α while the value of α is unknown, ψα and

its inverse are not at first efficiently computable. We try to match certain elements

in Gα with the corresponding elements in F×q . In the cases we consider, a matched

pair reveals the isomorphism ψα, and therefore α is obtained.

Let r be an odd prime factor of q − 1. Then, q = ret + 1 for some t, e > 0 with

(t, r) = 1. Denote the elements of Gα as [g]. Suppose the order of [g] is rs for some
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s > 0. The order of the element [a] = [g]s is r. Note that there are (re − 1)t possible

elements of [g] leading to an element [a] with order r.

Let ζr be a primitive rth of unity in Fq and suppose ζr could be computed effi-

ciently. For some 0 < j < r, the element [a] with order r must be matched up with

ζj
r , i.e.

ψα([a]) = ζj
r ,

since F×q is cyclic. If both the value of [a] and the value of ζj
r are known, the parameter

α of ψα can be computed. Suppose r is small. For j = 1, 2, · · · , r−1, compute α = αj

from ψα, [a], and ζj
r . Check whether α2

j = β. Eventually, the square roots of β are

obtained.

2.3 A Special Group

Let Fq be a finite field with q odd. Define the set

G′
α

def
= {[a] : a ∈ Fq, a 6= ±α} for some α ∈ F×q .

For distinguishing the elements in G′
α and the elements in Fq, we denote the former

by [ · ]. The number of elements in G′
α is q− 2. By adding the element [∞] to G′

α, we

obtain

Gα
def
= G′

α ∪ {[∞]} .
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Define an operator ∗ in Gα as following: ∀ [a] ∈ Gα and ∀ [a1] , [a2] ∈ G′
α with

a1 + a2 6= 0,

[a] ∗ [∞] = [∞] ∗ [a] = [a] , (2.3.1)

[a1] ∗ [−a1] = [∞] , (2.3.2)

[a1] ∗ [a2] =

[
a1a2 + α2

a1 + a2

]
. (2.3.3)

Interestingly, (Gα, ∗) is a well-defined group, which is isomorphic to the multiplicative

group F×q . The group Gα provides a new computational point of view of the group

F×q . We will use Gα to construct our square root algorithm later.

Theorem 2.3.1. (Gα, ∗) is an abelian group with identity [∞]. The group Gα is

isomorphic to F×q .

Proof. Define a bijective mapping

ψ : Gα −→ F×q , [∞] 7−→ 1, [a] 7−→ a + α

a− α
(2.3.4)

with inverse

ψ−1 : F×q −→ Gα, 1 7−→ [∞] , b 7−→
[
α(b + 1)

b− 1

]
. (2.3.5)

A straightforward calculation shows that ψ is a homomorphism.

Note that Gα is cyclic since F×q is. Since q is odd, there is a unique order 2 element

in F×q or Gα. Clearly, −1 is the order 2 element in F×q . For any α ∈ F×q , we have

ψ([0]) =
0 + α

0− α
= −1.

Therefore, [0] is the only order 2 element in Gα, independent of the choice of α.
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2.3.1 The Power Formulas in Gα

Denote the power of an element in Gα by

[a]k
def
= [a] ∗ [a] ∗ · · · ∗ [a]︸ ︷︷ ︸

k

for all [a] ∈ Gα, k > 0.

We have the following formula for computing [a]k.

Lemma 2.3.2. Let [a] ∈ G′
α and k > 0. If the order of [a] does not divide k, then

[a]k =

[
α · (a + α)k + (a− α)k

(a + α)k − (a− α)k

]
=

[
ak +

(
k
2

)
ak−2α2 + · · ·

kak−1 +
(

k
3

)
ak−3α2 + · · ·

]
. (2.3.6)

Proof. If the order of [a] does not divide k, then ψ([a])k 6= 1. We have

[a]k = ψ−1(ψ([a])k)

=

[
α · ψ([a])k + 1

ψ([a])k − 1

]

=

[
α · (a + α)k + (a− α)k

(a + α)k − (a− α)k

]
.

The last equality in equation (2.3.6) can be obtained by expanding (a± α)k.

Define the following polynomials in Fq[x] for k ≥ 0,

γk(x) =
(x + α)k + (x− α)k

2
=

b k
2c∑

j=0

(
k

2j

)
xk−2jα2j, (2.3.7)

Ψk(x) =
(x + α)k − (x− α)k

2α
=

b k−1
2 c∑

j=0

(
k

2j + 1

)
xk−1−2jα2j. (2.3.8)

Note that γk(x), Ψk(x) ∈ Fp[α
2][x]. The polynomials γk and Ψk can be defined recur-

sively.

Lemma 2.3.3. For k ≥ 0, we have the following recursion equations:

γk+1 = xγk + α2Ψk, (2.3.9)

Ψk+1 = γk + xΨk. (2.3.10)
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Proof. By equations (2.3.7) and (2.3.8),

xγk + α2Ψk =
x

2
((x + α)k + (x− α)k) +

α

2
((x + α)k − (x− α)k)

= γk+1;

γk + xΨk =
(x + α)k + (x− α)k

2
+ x

(x + α)k − (x− α)k

2α

=
1

2
(x + α)k(1 +

x

α
) +

1

2
(x− α)k(1− x

α
)

= Ψk+1.

The lemma follows.

By some algebraic manipulations, the polynomials γ2k, Ψ2k, γ2k+1 and Ψ2k+1 can

be written in terms of γk, Ψk, γk+1 and Ψk+1 as shown in Lemma 2.3.4. As a conse-

quence, only O(log n) polynomial multiplications are required for computing γn and

Ψn.

Lemma 2.3.4. For k ≥ 0,

γ2k = γ2
k + α2Ψ2

k, (2.3.11)

Ψ2k = 2γkΨk, (2.3.12)

γ2k+1 = γkγk+1 + α2ΨkΨk+1, (2.3.13)

Ψ2k+1 = γkΨk+1 + γk+1Ψk. (2.3.14)

Proof. By Lemma 2.3.3,
(

γk α2Ψk

Ψk γk

)
=

(
x α2

1 x

)(
γk−1 α2Ψk−1

Ψk−1 γk−1

)
=

(
x α2

1 x

)k−j (
γj α2Ψj

Ψj γj

)
(2.3.15)

for any k > 0 and 1 ≤ j ≤ k. We have

(
γ1

Ψ1

)
=

(
x
1

)
. Then,

(
x α2

1 x

)k

=

(
x α2

1 x

)k−1 (
γ1 α2Ψ1

Ψ1 γ1

)
=

(
γk α2Ψk

Ψk γk

)
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for any k > 0. Finally, by equation (2.3.15),
(

γ2k

Ψ2k

)
=

(
x α2

1 x

)k (
γk

Ψk

)
=

(
γk α2Ψk

Ψk γk

)(
γk

Ψk

)
,

which implies

γ2k = γ2
k + α2Ψ2

k,

Ψ2k = 2γkΨk;

and (
γ2k+1

Ψ2k+1

)
=

(
x α2

1 x

)k (
γk+1

Ψk+1

)
=

(
γk α2Ψk

Ψk γk

)(
γk+1

Ψk+1

)
,

which implies

γ2k+1 = γkγk+1 + α2ΨkΨk+1,

Ψ2k+1 = γkΨk+1 + γk+1Ψk.

The lemma follows.

We use the polynomials γk and Ψk to compute the power of an element [a]k in

Gα. With the recursion equations, [a]k can be computed efficiently by polynomial

operations in Fq[x]. It is not hard to see that the roots of Ψd, together with [∞], are

the elements in the d-torsion subgroup of Gα.

Proposition 2.3.5. Let [a] ∈ G′
α. For d > 0, [a]d = [∞] if and only if Ψd(a) = 0.

Proof. Since [a] 6= [∞], we have d > 1 and the order of [a] not dividing d− 1. Then,

[a]d = [∞] ⇐⇒ [a]d−1 = [−a] by equation (2.3.2)

⇐⇒ γd−1(a)

Ψd−1(a)
= −a by Lemma 2.3.2

⇐⇒ Ψd(a) = 0 by equation (2.3.10).
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Note that if Ψd(a) = 0, we have Ψd−1(a) 6= 0. Otherwise, if Ψd−1(a) = 0, equation

(2.3.10) implies γd−1(a) = 0. Then, (a + α)d−1 = 2γd−1(a) + 2αΨd−1(a) = 0 leads to

a contradiction.

2.3.2 Singular Curves with a Double Root

We can reinterpret the group law in terms of “singular elliptic curves.” Consider the

curve

E : y2 = x2(x + α2).

Let E(Fq) be the points on the curve with coordinates in Fq. The only singular point

on E(Fq) is (0, 0), which is a double root. Let Ens(Fq) be the non-singular points on

E(Fq). Then, the mapping

τ : Ens(Fq) → F×q , ∞ 7−→ 1, (x, y) 7−→ (y/x) + α

(y/x)− α

is an isomorphism from Ens(Fq) to F×q . The inverse is

τ−1 : F×q → Ens(Fq), 1 7−→ ∞, λ 7−→
(

4α2λ

(λ− 1)2
,
4α3(λ + 1)

(λ− 1)3

)
.

For proofs and details, see [69] p56 - p59. Together with the isomorphism ψ, we have

Gα ' F×q ' Ens(Fq).

The isomorphism from Ens(Fq) to Gα is surprisingly simple:

ψ−1 ◦ τ : Ens(Fq) −→ Gα, ∞ 7−→ [∞] , (x, y) 7−→ [y/x] .

It is possible to formulate our algorithms given in the later sections in terms of the

language of elliptic curves.
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2.4 The Square Root Algorithms

Suppose β is a square in F×q for some odd q. We have

α2 = β for some α ∈ F×q .

Consider the abelian group Gα defined in the previous section. Let ζm be a primitive

mth root of unity in Fq, a fixed algebraic closure of Fq. If m divides q − 1, then ζm

is in Fq. We have the following proposition.

Proposition 2.4.1. Let [0] 6= [a] ∈ G′
α. Suppose [a]d = [∞] for some d > 0. Then,

α = ±a(ζk
d − 1)

ζk
d + 1

for some 0 < k <
d

2
.

Proof. Since ψ is an isomorphism, ψ([a])d = 1 in F×q . Therefore, ψ([a]) = ζj
d for some

0 < j < d. We have j 6= d
2
, otherwise, ζj

d = −1. But [a] 6= [0], which is the only order

2 element in Gα. Then,

[a] = ψ−1(ζj
d) =

[
α(ζj

d + 1)

ζj
d − 1

]
,

which implies α =
a(ζj

d−1)

ζj
d+1

. If j < d
2
, we prove the proposition by setting k = j. If

j > d
2
, let k = d− j < d

2
. Finally,

a(ζk
d − 1)

ζk
d + 1

=
a(ζ−j

d − 1)

ζ−j
d + 1

=
a(1− ζj

d)

1 + ζj
d

= −α,

which implies the proposition.

Proposition 2.4.1 suggests a method to compute α. It requires (1) an element

[a] ∈ Gα such that [a]d = [∞], (2) a primitive dth root of unity ζd ∈ Fq and (3) the

index k in the proof. The power of an element [a]n has to be efficiently computable.
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Lemma 2.4.2. Given β a square in Fq, the group operation and the power of an

element in Gα can be computed in polynomial time without the knowledge of α.

Proof. Clearly, the computation of the group operation involving the identity element

or the power of the identity element is trivial.

For any [g1] , [g2] ∈ G′
α, by equations (2.3.2 and 2.3.3),

[g1] ∗ [g2] =

{
[∞] , if g1 = −g2,[

g1g2+β
g1+g2

]
, otherwise.

(2.4.1)

Therefore, the group operation with any elements can be computed in polynomial

time. For any [g] ∈ G′
α, [g]2 can be computed by equation (2.4.1). Then, [g]k can be

evaluated efficiently by the successive squaring method.

Another method for computing [g]k is due to Proposition 2.3.5 and equation

(2.3.6). If Ψk(g) = 0, then [g]k = [∞]. Otherwise, [g]k =
[

γk(g)
Ψk(g)

]
. The polyno-

mials γk(g) and Ψk(g) can be evaluated by the recursion equations in Lemma 2.3.3

and 2.3.4. Note that the coefficients in γ’s, Ψ’s and the recursion equations only

involve integers and β, but not α.

The running time for computing a group operation is Õ(log q) since multiplication

and division in finite fields can be done in Õ(log q) (see Section 1.2.1). Then, the

running time for computing [g]k for k < q is Õ(log2 q) for either of the methods

described in the proof of the Lemma above.

In the following sections, we present deterministic polynomial time algorithms to

find square roots for some families of finite fields. Let element(m) be a procedure

returning the mth element of Fq in a fixed enumeration such that the procedure
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element satisfies equation (1.2.3). Let power(g, k, β) denote a procedure computing

[g]k in Gα.

2.4.1 Case q = 2e3f t + 1

Let Fq be the finite field with q elements and characteristic p such that q = 2e3f t + 1

and p ≡ 1 (mod 12). Note that e ≥ 2 and f ≥ 1 since p ≡ 1 (mod 12). Then, −1

and −3 are squares in the prime field Fp. In this case,
√−1 and

√−3 in Fp can be

computed by Schoof’s algorithm. We have the Algorithm 2.4.3 for computing square

roots in Fq.

Algorithm 2.4.3. squareRoot(β)

{
for m = 1 to t
{

Set g = element(m)

if g2 = β
return ±g

else if power(g, q−1
2e−1 , β) 6= [∞]

return matchZeta4(g, β)

else if power(g, q−1
3f , β) 6= [∞]

return matchZeta3(g, β)
}

}

matchZeta4(g, β)
{

find the largest k such that power(g, q−1
2k , β) = [∞]

compute [a] = power(g, q−1
2k+2 , β)

return ±a
√−1

}

matchZeta3(g, β)
{
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find the largest k such that power(g, q−1
3k , β) = [∞]

compute [a] = power(g, q−1
3k+1 , β)

return ±a
√−3

}

Lemma 2.4.4. Algorithm 2.4.3 always returns the square roots of β.

Proof. Inside the for-loop, if g2 = β, clearly the Lemma is true.

Let α2 = β. Suppose g 6= ±α.

If [g]
q−1

2e−1 6= [∞], there exists 0 ≤ k < e − 1 such that [g]
q−1

2k = [∞] and [g]
q−1

2k+1 6=

[∞]. Let [a] = [g]
q−1

2k+2 . Then, [a]4 = 1. By proposition 2.4.1, α = ±a(ζ4−1)
ζ4+1

= ±a
√−1.

Similarly, if [g]
q−1

3f 6= [∞], there exists 0 ≤ k < f such that [g]
q−1

3k = [∞] and [g]
q−1

3k+1 6=

[∞]. Let [a] = [g]
q−1

3k+1 . Then, [a]3 = 1. By proposition 2.4.1, α = ±a(ζ3−1)
ζ3+1

= ±a
√−3,

where ζ3 = −1±√−3
2

.

We show that the algorithm always returns an answer. If [g]
q−1

2e−1 = [g]
q−1

3f = [∞],

the order of [g] divides 2t. There is a unique subgroup H of Gα with 2t elements

since Gα is cyclic. Then, [g] ∈ H. Since [−g] = [g]−1, we have [−g] ∈ H. We also

have [∞] , [0] ∈ H. Let gm = element(m) for 1 ≤ m ≤ t. There are 2t + 2 elements in

the set {[∞] , [0] , [±g1] , [±g2] , · · · , [±gt]} by the property of the element() procedure

(see equation (1.2.3)). Therefore, there exists some 1 ≤ m0 ≤ t such that gm0 6∈ H.

Then, gm0 leads to the algorithm returning an answer.

For running time, element(m), g2 and power(g, j, β) for j < q can be computed in

Õ(log q), Õ(log q) and Õ(log2 q), respectively. Once a condition in one of the three

if-statements is satisfied, the algorithm must return without further looping. So it

needs Õ(t log2 q) for finishing the loop.
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If g2 = β, no further operations is required. If power(g, q−1
2e−1 , β) 6= [∞], finding

the required k needs Õ(log2 q), computing the power is Õ(log2 q) and computing the

square roots of −1 in Fp by Schoof’s algorithm is O(log9 p). The overall running time

is Õ(log2 q + log9 p). It is similar for the case power(g, q−1
3f , β) 6= [∞]. The running

time is also Õ(log2 q + log9 p).

Therefore, the running time of the Algorithm 2.4.3 is Õ(t log2 q + log9 p).

Proof of Theorem 2.1.1. Since t = O(poly(log q)), square roots in Fq can be computed

by Algorithm 2.4.3 with running time Õ(poly(log q) log2 q + log9 p). For finding a

quadratic nonresidue, we first take square root of
√−1 and obtain (−1)1/4. Then, keep

taking square root of (−1)1/4, (−1)1/8, · · · , (−1)1/2e−1
. At last, we obtain (−1)1/2e

which is a quadratic nonresidue in Fq. Clearly, such algorithm is polynomial time.

2.4.2 Other Cases

Algorithm 2.4.3 in the previous section can be generalized as below.

Lemma 2.4.5. Let p1, p2, · · · , pm be m distinct odd primes such that pj < M for some

upper bound M . Let q = pn = 2e0pe1
1 pe2

2 · · · pem
m t+1 with e0 ≥ 2, ej ≥ 1 and (2pj, t) = 1

for j = 1, 2, · · · ,m. Suppose M + t = O(poly(log q)) and ζ4, ζp1 , ζp2 , · · · , ζpm ∈ Fq are

polynomial time computable. Then, there is a deterministic polynomial time algorithm

for taking square roots and finding quadratic nonresidues in Fq.

Sketch of proof. Since M + t = O(poly(log q)) and ζp1 , ζp2 , · · · , ζpm ∈ Fq can be com-

puted in polynomial time, a deterministic polynomial time algorithm similar to Al-

gorithm 2.4.3 can be defined for taking square roots in Fq. Note that for pj > 3,
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once an order d element [g] ∈ Gα with pj|d is found, we could compute an order

pj element in Gα and match it up with ζpj
as shown in Algorithm 2.4.6 below with

r = pj (see also Proposition 2.4.1). Then, finding quadratic nonresidues can also be

done in deterministic polynomial time

For the prime 2, we have ζ2 = −1. The relation ψ([0]) = −1 is independent

of α. An order 4 element in Gα and a 4th root of unity ζ4 ∈ F×q are required

instead. Therefore, if
√−1 ∈ Fq can be computed efficiently, the 2-part of F×q can be

handled.

Algorithm 2.4.6. matchZeta(r, ζr, g, β)

{
find the largest k such that power(g, q−1

rk , β) = [∞]
compute [a] = power(g, q−1

rk+1 , β)

find j ∈ {1, 2, · · · , (r − 1)/2} such that
(

a(ζj
r−1)

ζj
r+1

)2

= β

return ±a(ζj
r−1)

ζj
r+1

}

For example, let p be a prime and r be a Fermat prime (i.e. r = 22k
+ 1 for

some k ≥ 0). The rth root of unity ζr can be written in terms of square roots

(e.g. equation (2.0.1)) by Gaussian period theory. Suppose taking square roots in

Fp can be done in polynomial time (e.g. p ≡ 3, 5, 6 (mod 7) or p 6≡ 1 (mod 240) or

p = 2e3fs + 1 for some small s). Then, ζr can be computed in polynomial time. For

any q = re1
1 · · · rem

m t + 1 with (1) q a power of p, (2) r1, · · · , rm Fermat primes and (3)

t = O(poly(log q)), taking square roots in Fq can be done in polynomial time.

In particular, let r = 5 and p ≡ 1 (mod 20). Suppose taking square roots in Fp

can be done in polynomial time. Then, a2−4 in equation (2.0.1) is a square in Fp and
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ζ5 ∈ Fp can be computed in polynomial time. In this case, for any q = pn = 2e25e5t+1

with t = poly(log q), taking square roots in Fq can be done in polynomial time.

2.4.3 Computing ζ2·3k+1

Suppose p be a prime with p ≡ 1 (mod 4) and p ≡ 4, 7 (mod 9). We show in Lemma

2.4.7 below that cubic roots in Fp can be computed efficiently. Let r = 2 · 3k + 1

be a prime for some k ≥ 1. The appendix in [61] shows a method to compute ζr in

deterministic polynomial time. Therefore, the r-part of F×q can be handled.

Lemma 2.4.7. Let p be a prime with p ≡ 1 (mod 4) and p ≡ 4, 7 (mod 9). If b is a

cubic residue in Fp, cube roots of b can be computed in polynomial time.

Proof. Let ζ3 = −1±√−3
2

∈ Fp, which can be computed by Schoof’s algorithm in

polynomial time. Since b is a cubic residue in Fp, we have b(p−1)/3 = 1. If p ≡ 4

(mod 9), let a = b(2p+1)/9. Then, a3 = b(2p+1)/3 = b1+2(p−1)/3 = b. Therefore, b(2p+1)/9,

b(2p+1)/9ζ3 and b(2p+1)/9ζ2
3 are cube roots of b. Similarly, if p ≡ 7 (mod 9), let a =

b(p+2)/9. Then, a3 = b(p+2)/3 = b1+(p−1)/3 = b. Therefore, b(p+2)/9, b(p+2)/9ζ3 and

b(p+2)/9ζ2
3 are cube roots of b. Clearly, every step can be computed in polynomial

time and so the cube roots of b can be.

Proof of Theorem 2.1.2. Since p ≡ 13, 25 (mod 36), cubic roots in Fp can be com-

puted in polynomial time by Lemma 2.4.7. Compute
√−1,

√
3,
√

rj by Schoof’s

algorithm. Then compute ζ3 = −1±√−3
2

and ζ4 = ±√−1. With p ≡ 1 (mod rj) and

rj = O(poly(log q)), ζrj
can be computed in polynomial time (see the appendix in

[61]) for j = 1, 2, · · · ,m. Finally, Lemma 2.4.5 implies the theorem.
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2.4.4 Finding ζr by Searching

In the previous discussions, we first reduce the square root problem for arbitrary β

to the problem of finding primitive roots of unity, which is further reduced to the

square root problem for constant size β. Then, Schoof’s algorithm can be used to

compute the square roots of constant size β. In this section, we show another method

to compute primitive roots of unity without the need of taking square roots.

Let p, r be primes and q = pn = ret + 1 for some n, e, t ≥ 1. Let H be the

subgroup of F×q with t elements. Let gm = element(m) be the mth element in F×q

(see equation (1.2.2)). Consider the set {g1, g2, · · · , gt+1} with t + 1 elements. There

exists an element gm0 not in H for 1 ≤ m0 ≤ t + 1. If t is small (i.e. re is large), such

m0 can be found. Let d be the order of gm0 . We have r|d and ζr = g
d/r
m0 is an rth

root of unity in Fq. We have Algorithm 2.4.8 below for finding ζr with running time

Õ(t log2 q), which is faster than our previous methods for computing a root of unity.

Algorithm 2.4.8. findZeta(r)

{
for m = 1 to t + 1

if g
(q−1)/re

m 6= 1, where gm = element(m)

find the largest k such that g
(q−1)/rk

m = 1 and then return g
(q−1)/rk+1

m

}

An algorithm similar to Algorithm 2.4.3 can be constructed for computing the

square roots. We have a for-loop, which is similar to the for-loop in Algorithm 2.4.3,

in the algorithm. The running time of the for-loop is Õ(t log2 q). Algorithm 2.4.6

(or matchZeta4() in Algorithm 2.4.3 if r = 2) is used for matching the elements.

The running time is Õ((log q + r) log q). Compute ζr (or ζ4 if r = 2) by Algorithm

31



2.4.8. The total running time is Õ((t log q + r) log q). If t is a small constant and

r = O(log q), the running time becomes Õ(log2 q). For example, if p = 3e · 80 + 1 is a

prime, the running time of computing square roots in Fp is Õ(log2 p). In particular,

p is a prime for e = 569.

Proof of Theorem 2.1.3. Since t = O(poly(log q)), ζr (or ζ4 if r = 2) can be computed

in polynomial time by Algorithm 2.4.8. Together with r = O(poly(log q)), Lemma

2.4.5 implies the theorem.

If n is large, we have a better strategy for computing ζr. Let Fq = Fp[x]/f(x) for

some monic irreducible polynomial f(x) ∈ Fp[x] with degree n. For 0 ≤ k < p, let

Sk =

{
±

k∏
m=0

(x + m)em ∈ F×q : em ≥ 0 and
k∑

m=0

em < n

}
.

be subsets of F×q . All the elements in Sk are distinct. The size of Sk is

|Sk| = 2
n−1∑
j=0

(
j + k − 1

j

)
= 2

(
n + k − 1

k

)
.

Let H ⊂ F×q be the subgroup of F×q with t elements. If |Sk| > |H| = t, there exists

x + m0 6∈ H for some 0 ≤ m0 ≤ k. Find the largest d such that (x + m0)
(q−1)/rd

= 1.

Then ζr = (x + m0)
(q−1)/rd+1

is an rth root of unity in Fq.

For example, suppose n = blog2 pc + 1 < p − 1 and t < p2 log p

4
√

log p
. Set k = blog2 pc.

By Lemma 2.4.9 below,

|Sk| = 2

(
2blog2 pc
blog2 pc

)
>

22blog2 pc
√
blog2 pc

>
p2 log p

4
√

log p
> t.

There exists 0 ≤ m0 ≤ blog2 pc such that the order of x + m0 equals rs for some

s > 0. Then, ζr = (x + m0)
s ∈ Fq can be computed in polynomial time.
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Lemma 2.4.9. We have the following lower bound for the central binomial coefficient

(
2N

N

)
>

22N−1

√
N

for N > 1.

Proof. We show it by induction. For N = 2, we have
(
4
2

)
= 6 > 8√

2
. For k > 2,

assume
(
2(k−1)

k−1

)
> 22k−3√

k−1
. Then,

(
2k

k

)
=

2(2k − 1)

k

(
2k − 2

k − 1

)
>

(2k − 1)22k−2

k
√

k − 1
>

22k−1

√
k

,

since 2k−1

2
√

k(k−1)
> 1 for k > 2.

2.5 Even Polynomials

Let β be a non-zero square over some finite field F . The problem of computing

the square roots of β is obviously equivalent to the problem of factoring x2 − β.

It is possible to modify our square root algorithms (e.g. Algorithm 2.1.1) to find

a non-trivial factor of x2 − β. The idea is to do the computation over the ring

F [x]/(x2 − β), instead of Gα. In Chapter 3, we will use this idea to generalize our

square root algorithm to take rth roots. For taking rth roots, we will work in the

ring F [x]/(xr − θ), where θ is an rth power over F .

Let f(x) ∈ F [x] be an even polynomial (i.e. f(x) = f(−x)) such that f is a

product distinct2 of linear polynomials. Then, f(x) =
∏

i(x
2 − βi) for some distinct

squares βi ∈ F . In this case, we can modify our square root algorithm to work on

the ring F [x]/(f(x)) for finding a non-trivial factor of f . The modification is similar

2If f has repeated factors, it is easy to find a non-trivial factor of f . See Chapter 4, [71] and [29]

for details.
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to the rth root algorithm shown in Chapter 3. Since we already have an algorithm

for solving arbitrary polynomial equations in Chapter 4, we skip the details of how

to do the modification in this special case.
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Chapter 3

Taking rth Roots

In this chapter, we extend the square root algorithms discussed in the previous chapter

and show deterministic polynomial time algorithms for taking rth roots in some finite

fields. Like the relationship between taking square roots and constructing quadratic

nonresidues, the problem of constructing rth nonresidues, r a small positive integer

and r not the characteristic of the field, is polynomial time reducible to the problem

of taking rth roots, and vice versa. Clearly, if we can take rth roots, we can first

pick a non-zero, non-identity element in a finite field, then keep taking rth roots and

finally obtain an rth nonresidue. For the converse, Shanks’ square root algorithm [56]

can be generalized to take rth root with a given rth nonresidue.

In [12], Barreto and Voloch showed deterministic polynomial time algorithms for

taking rth root in the finite field Fq when (r, q − 1) = 1 or r||q − 1 (i.e. r|q − 1 and

((q− 1)/r, r) = 1). Buchmann and Shoup [18] provided a deterministic algorithm for

constructing kth power nonresidues over finite fields. Their algorithm is polynomial

time under the assumption of ERH (see Section 1.2.4). For other related results, see

35



the introduction in the previous chapter.

3.1 Main Results

We give a definition of a family of finite fields below.

Definition 3.1.1. Let Ft be a family of finite fields such that for all F ∈ Ft, F has

q elements with

(i) q = re1
1 · · · rem

m t + 1,

(ii) r1, · · · , rm are distinct primes and (t, r1 · · · rm) = 1,

(iii) ej ≥ 1 for 1 ≤ j ≤ m, and

(iv) r1 + · · ·+ rm + t = O(poly(log q)).

(v) a primitive rjth root of unity ζrj
can be computed efficiently for 1 ≤ j ≤ m.

Informally, Ft is a set of finite fields in which a primitive `th of unity can be

computed for all prime factors ` of q− 1 except for `|t. For deterministic polynomial

time algorithms constructing primitive rth roots of unity over finite fields, see the

previous chapter or [61].

Denote the union of all Ft for t ≥ 1 by

F def
=

⋃
t≥1

Ft. (3.1.1)

Note that all prime factors of q− 1 are small for Fq ∈ F . Therefore, the factorization

of q−1 can be computed efficiently. The main results are summarized in the theorems

below.
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Theorem 3.1.2. Let Fq ∈ F . For r ∈ {r1, · · · , rm}, there is a deterministic poly-

nomial time algorithm computing an rth root of any rth residue in Fq. Equivalently,

there is a deterministic polynomial time algorithm constructing an rth nonresidue in

Fq.

Theorem 3.1.3. Let Fq ∈ F1. There is a deterministic polynomial time algorithm

constructing a primitive element in Fq.

Proof. For any Fq ∈ F1, an rith nonresidue ζr
ei
i
∈ Fq can be computed in deterministic

polynomial for each i by Theorem 3.1.2. Then the product
∏m

i=1 ζr
ei
i

is a primitive

element in Fq.

3.2 The rth Roots Problem

Let Fq ∈ Ft (see Definition 3.1.1) be a finite field with q elements. Suppose

β = αr for some α ∈ Fq and some integer r > 1. (3.2.1)

The problem of taking rth roots over Fq is to find α, given a finite field Fq, an element

β and an integer r. If q−1 is not divisible by r2, we can compute α easily. Therefore,

assume

r ∈ {r1, · · · , rm} and re||q − 1 for some e ≥ 2

for the rest of the section. We show a deterministic polynomial time algorithm (Al-

gorithm 3.6.1) for finding a non-trivial factor of xr − β. Then α can be computed by

Lemma 3.2.1 below. The input parameters are r, e, β and Fq (includes t, r1, · · · , rm,
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e1, · · · , em defined in Definition 3.1.1), which are globally available. Unlike other al-

gorithms for taking rth roots, Algorithm 3.6.1 does not require an rth nonresidue as

an input and the associated proofs do not require any unproven assumption, like the

Riemann Hypothesis. For the rest of this section, let

ρ = ζr, a fixed primitive r root of unity in Fq. (3.2.2)

Lemma 3.2.1. Given a non-trivial factor of xr − β, we can compute an rth root of

β efficiently.

Proof. Suppose xd +ad−1x
d−1 + · · ·+a0 ∈ Fq[x] is a non-trivial factor of xr−β. Since

xr − β =
∏r−1

j=0(x − ρjα), we have a0 = (−1)dρkαd for some integer k. We also have

(d, r) = 1 because d < r and r is prime. Find integers u, v by the Euclidean algorithm

such that ud + vr = 1. Finally, (−1)duau
0β

v = ρkuα is an rth root of β.

The computations of the square root algorithms in the previous chapter are per-

formed over the group Gα. It is possible to formulate the square root algorithms

as algorithms for factoring the polynomial x2 − β over the ring Fq[x]/(x2 − β). We

generalize this idea and work on the ring Fq[x]/(xr − β) for factoring the polynomial

xr−β. The “problem” of working on the ring Fq[x]/(xr−β) is that there are non-zero,

non-unit elements in Fq[x]/(xr − β). However, if we can find a non-zero, non-unit

element f , then (f(x), xr − β) is a non-trivial factor of xr − β. This idea is similar to

Lenstra’s elliptic curve integer factoring algorithm [33]. He works on the ring Z/nZ

for some composite integer n and try to find a non-zero, non-unit element e in Z/nZ.

Then, (e, n) is a non-trivial factor of n.
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In our algorithms, we need to determine whether f(x) is equal to zero in the ring

Fq[x]/(xr − β) for some polynomial f(x) ∈ Fq[x]. Compute h(x) = (f(x), xr − β). If

h(x) is a non-trivial factor of xr − β, we are done. Otherwise, f(x) is either divisible

by xr − β or relatively prime to xr − β. We have the following algorithm.

Algorithm 3.2.2. isZero(f) /* Comment: is f(x) ≡ 0 (mod xr − β)? */

{
compute h(x) = (f(x), xr − β);
if deg h = 0

return FALSE;
else if deg h = r

return TRUE;
else

output h and halt; /* Comment: found a non-trivial factor of xr − β. */
}

3.3 Step 1: Find a Suitable Element a

Define a rational function ψa(x) over Fq as

ψa(x) =
a− x

a− ρx
for some a ∈ Fq such that ar 6= β.

Then,

ψa(x) ≡ ci (mod x− ρiα) for some ci ∈ F×q for each i = 0, · · · , r − 1.

Consider ψa(x)rt. We have three cases below:

(1) If the multiplicative order of ci divides rt for all 0 ≤ i ≤ r − 1, we have

ψa(x)rt ≡ 1 (mod xr − β). This case is not useful to us. We will show that the

number of possible values of a’s falling into this case is small.
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(2) The multiplicative order of at least one ci’s divides rt and the multiplicative

order of at least one ci’s does not divide rt. Since a − ρx ∈ (Fq[x]/(xr − β))×,

let h(x) = (ψa(x)rt − 1) mod (xr − β) be a polynomial. Then, (h(x), xr − β) is

a non-trivial factor of xr − β and we are done.

(3) If the multiplicative orders of all ci’s do not divide rt, we have ψa(x)rt − 1 ∈

(Fq[x]/(xr − β))×. We want to find such a in this step if we cannot discover a

non-trivial factor of xr − β.

Instead of working with the rational function ψa, we define a polynomial

gk(x, y, z) = (y − x)k − z(y − ρx)k ∈ Fq[x, y, z] for k > 0. (3.3.1)

It is easy to see that in case (1), we have isZero(grt(x, a, 1)) = TRUE; in case (2),

isZero(grt(x, a, 1)) outputs a non-trivial factor of xr − β; and in case (3), we have

isZero(grt(x, a, 1)) = FALSE. In step 1, we either find a non-trivial factor of xr − β or

a value of a such that isZero(grt(x, a, 1)) = FALSE. In general we have the following

lemma.

Lemma 3.3.1. Let di = ord ci, the order of ci in F×q . If di divides k for all 0 ≤ i < r,

we have isZero(gk(x, a, 1)) = TRUE. If di does not divide k for all 0 ≤ i < r, we have

isZero(gk(x, a, 1)) = FALSE. If there exists i0, i1 such that di0 divides k but di1 does

not divide k, isZero(gk(x, a, 1)) outputs a non-trivial factor of xr − β.

Proof. It is obvious.

We have the following algorithm finding a desired a.
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Algorithm 3.3.2. findA()

{
for i = 1 to rt + 1
{

set ai = ith element in Fq;
if ar

i = β
output x− ai and halt;

if isZero(grt(x, ai, 1)) = FALSE
return ai;

}
}

Lemma 3.3.3. There are at most rt distinct values of a ∈ Fq such that ar 6= β and

isZero(grt(x, a, 1)) = TRUE.

Proof. Suppose ar 6= β. The case isZero(grt(x, a, 1)) = TRUE implies ψa(α)rt = 1. So

the multiplicative order of ψa(α) divides rt. There are only rt elements in F×q having

multiplicative order dividing rt since F×q is cyclic. We also have ψa(α) 6= ψb(α)

whenever a 6= b. Therefore there are at most rt distinct values of a’s such that

ψa(α)rt = 1. The lemma follows.

3.4 Step 2: Find a Suitable `

In this section, suppose a ∈ Fq, is a fixed element obtained in the previous step, i.e.

ar 6= β and isZero(grt(x, a, 1)) = FALSE. Let di = ord ψa(ρ
iα), the multiplicative

order in F×q . We have di not dividing rt for all 0 ≤ i < r by Lemma 3.3.1. We have

the following algorithm to find a suitable ` ∈ {r1, · · · , rm}.

Algorithm 3.4.1. findL(a)

{
for j = 1 to m
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if rj 6= r and isZero(g
(q−1)/r

ej
j

(x, a, 1)) = FALSE

return rj;

if isZero(g(q−1)/re−1(x, a, 1)) = FALSE
return r;

}

All the return statements in Algorithm 3.4.1 are conditional. It might seem that

findL(a) may terminate without returning any value and giving any output. We show

below that it is not the case.

Lemma 3.4.2. Suppose every call of isZero in findL(a) returns TRUE or FALSE but

does not output a non-trivial factor of xr−β. If isZero(g
(q−1)/r

ej
j

(x, a, 1)) = TRUE for

all rj 6= r, then isZero(g(q−1)/re−1(x, a, 1)) = FALSE.

Proof. Suppose isZero(g
(q−1)/r

ej
j

(x, a, 1)) = TRUE for all rj 6= r. We have di dividing

(q − 1)/r
ej

j for all 0 ≤ i < r and all 1 ≤ j ≤ m such that rj 6= r. Then, di divides

ret = gcd1≤j≤m
rj 6=r

((q − 1)/r
ej

j ) for all i. Since di does not divide rt for all i, we have

isZero(g(q−1)/re−1(x, a, 1)) = FALSE.

3.5 Step 3: Compute a Non-trivial Factor

Let

` = findL(a) =





rj , if rj 6= r and isZero(g
(q−1)/r

ej
j

(x, a, 1)) = FALSE;

r , otherwise.

Case 1: Suppose ` = rj0 6= r for some fixed j0, is the value obtained from the

previous step. We have isZero(g(q−1)/`
ej0 (x, a, 1)) = FALSE. Since ψa(ρ

iα)q−1 = 1 for
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all 0 ≤ i < r, we have isZero(gq−1(x, a, 1)) = TRUE. Suppose isZero(g(q−1)/`k(x, a, 1))

returns either TRUE or FALSE but does not output a non-trivial factor for 0 ≤ k ≤ ej0 .

By the lemma below, there exists 0 < k0 < ej0 such that isZero(g(q−1)/`k(x, a, 1)) =

TRUE for k = 0, 1, · · · , k0 and isZero(g(q−1)/`k(x, a, 1)) = FALSE for k = k0+1, · · · , ej0 .

Lemma 3.5.1. If isZero(gk(x, a, 1)) = TRUE, then isZero(gnk(x, a, 1)) = TRUE for

any positive integer n.

Proof. If isZero(gk(x, a, 1)) = TRUE, we have ψa(ρ
iα)k = 1 for all 0 ≤ i < r. Then

ψa(ρ
iα)nk = 1 for all 0 ≤ i < r. Finally, isZero(gnk(x, a, 1)) = TRUE by Lemma

3.3.1.

Let d = (q − 1)/`k0+1 and di = ord ψa(ρ
iα). We have di dividing `d and di not

dividing d for all 0 ≤ i < r. Since F×q is cyclic, we have

ψa(ρ
iα)d = ζni

` for some integer ni ∈ (Z/`Z)× for i = 0, · · · , r − 1,

where ζ` is a primitive `th root of unity which can be computed efficiently by the

assumption that Fq ∈ F1 and the property (v) of F1 in Definition 3.1.1.

Lemma 3.5.2. Let N be a prime power with 1 < N 6= r. For some positive integer

D, suppose

ψa(ρ
iα)D = ζni

N for some integer ni ∈ (Z/NZ)× for i = 0, · · · , r − 1,

Then, there exist i0 and i1 such that ni0 6= ni1.

Proof. Suppose n0 = · · · = nr−1 = n for some integer n with (n, N) = 1. Let ζ = ζn
N .

For all 0 ≤ i < r, we have ψa(ρ
iα)D = ζ, which is equivalent to gD(ρiα, a, ζ) = 0.

43



Then,

(a− α)D(1− ζr) =
r−1∑
i=0

ζ igD(ρiα, a, ζ) = 0.

Thus, ζr = 1 since a 6= α. We have N |rn which is a contradiction.

By Lemma 3.5.2 (with N = ` and D = d), x − α divides gd(x, a, ζn0
` ) and

there exists 0 < i < r such that x − ρiα does not divide gd(x, a, ζn0
` ). Therefore,

(gd(x, a, ζn0
` ), xr − β) is a non-trivial factor of xr − β. We try (gd(x, a, ζn

` ), xr − β)

to find a non-trivial factor for n = 1, · · · , ` − 1. See procedure factorByZeta (with

N = `) in Algorithm 3.6.1.

Case 2: Suppose ` = r. The situation is similar: we have isZero(g(q−1)/re−1(x, a, 1)) =

FALSE. Suppose isZero(g(q−1)/`k(x, a, 1)) returns either TRUE or FALSE but does

not output a non-trivial factor for 0 ≤ k ≤ e − 1. By Lemma 3.5.1 and the fact

that ψa(ρ
iα)q−1 = 1 for all 0 ≤ i < r, there exists 0 < k0 < e − 1 such that

isZero(g(q−1)/`k(x, a, 1)) = TRUE for k = 0, 1, · · · , k0 and isZero(g(q−1)/`k(x, a, 1)) =

FALSE for k = k0 + 1, · · · , e − 1. Let d = (q − 1)/rk0+2. For i = 0, · · · , r − 1, the

element ψa(ρ
iα)d is a primitive r2th root of unity. Then,

ψa(ρ
iα)d = ζni

r2 for some integer ni such that (ni, r) = 1.

By Lemma 3.5.2 (with N = r2 and D = d), x−α divides gd(x, a, ζn0

r2 ) and there exists

0 < i < r such that x−ρiα does not divide gd(x, a, ζn0

r2 ). Therefore, (gd(x, a, ζn0

r2 ), xr−

β) is a non-trivial factor of xr − β. We try (gd(x, a, ζn
r2), xr − β) to find a non-trivial

factor for each n ∈ (Z/r2Z)×. See factorByZeta (with N = r2) in Algorithm 3.6.1.
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3.5.1 Computing a Primitive r2th Root of Unity

In case 2, we need to find a primitive r2th root of unity, ζr2 . We have ρ, a primitive

rth root of unity, by assumption. Then ζr2 can be computed by finding a non-trivial

factor of xr − ρ. Compute a = findA() in step 1 and ` = findL(a) in step 2. Suppose

all evaluations of isZero in step 1 and 2 do not output. If ` 6= r, we continue with

case 1 in step 3 and a non-trivial factor of xr − ρ is obtained.

Suppose ` = r. We are in case 2. We find d as before. Then (gd(x, a, ζn
r2), xr − ρ)

is a non-trivial factor of xr − ρ for some n. Nevertheless, we cannot compute the gcd

directly because we do not have ζr2 . Suppose

ψa(ρ
iζr2)d = ζni

r2 for some integer ni ∈ (Z/r2Z)× for i = 0, · · · , r − 1.

Consider the polynomial gd(x, a, xn0). We have x − ζr2 dividing gd(x, a, xn0). We

show in the lemma below that there exists 0 < i < r such that x − ρiζr2 does not

divide gd(x, a, xn0). We try (gd(x, a, xn), xr − ρ) to find a non-trivial factor for each

n ∈ (Z/r2Z)×. See factorByX in Algorithm 3.6.1.

Lemma 3.5.3. Suppose x − ζr2 divides gd(x, a, xn) for some n ∈ (Z/rZ)×. There

exists 0 < i < r such that x− ρiζr2 does not divide gd(x, a, xn).

Proof. Let ζ = ζr2 . Suppose x− ρiζ divides gd(x, a, xn) for all 0 < i < r. We have

gd(ρ
iζ, a, (ρiζ)n) = (a− ρiζ)d − ρinζn(a− ρi+1ζ)d = 0 for i = 0, · · · , r − 1.

Let sk =
∑k−1

i=0 i = k(k − 1)/2. Then,

0 =
r−1∑
i=0

ρsinζ ingd(ρ
iζ, a, (ρiζ)n) = (a− ζ)d(1− ρsrnζrn) = (a− ζ)d(1− ζrn),

which implies ζrn = 1 since a 6= ζ. We have r2|rn, a contradiction.
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3.6 The Algorithm

We present the entire algorithm below and prove Theorem 3.1.2 at the end of the

section.

Algorithm 3.6.1. factor(xr − β)

{
set a = findA();
set ` = findL(a);

k0 = the largest k such that isZero(g(q−1)/`k(x, a, 1)) = TRUE;

if ` 6= r
factorByZeta(`, q−1

`k0+1 , a); /* Comment: defined below */

else
if β = ζr

factorByX( q−1
rk0+2 , a); /* Comment: defined below */

else
factorByZeta(r2, q−1

rk0+2 , a);
}

factorByZeta(N, d, a) /* Comment: β 6= ζr in this case */

{
find ζN , a primitive Nth root of unity;
for each n ∈ (Z/NZ)×

isZero(gd(x, a, ζn
N));

}

factorByX(d, a) /* Comment: β = ζr in this case */

{
for each n ∈ (Z/r2Z)×

isZero(gd(x, a, xn));
}

Proof of Theorem 3.1.2. From our discussion in this section, Algorithm 3.6.1 (to-

gether with Lemma 3.2.1) is a deterministic algorithm for computing an rth root of

any rth residue in Fq. We list out the running times below:
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Procedures Running time (bit operations)

Factoring q − 1 O(poly(log q))

findA Õ(r2t log q)

findL Õ(mr log2 q)

Computing k0 Õ(r log2 q)

factorByZeta Õ(Nr log2 q)

factorByX Õ(r3 log2 q)

Computing an rth root from
a non-trivial factor of xr−β

Õ(log2 q)

Therefore, the overall running time is polynomial in the input size.

For constructing an rth nonresidue in Fq, we keep taking rth roots beginning

from ζr and obtain ζr2 = r
√

ζr, ζr3 = r
√

ζr2 , · · · , ζre = r
√

ζre−1 . Finally, ζre is an rth

nonresidue in Fq.

3.7 Finding a Non-trivial Factor of Φr2(x)

Let Fq be a finite field with q elements. Let ζn ∈ Fq be a primitive nth root of

unity, where Fq denotes a fixed algebraic closure of Fq. Denote the nth cyclotomic

polynomial by

Φn(x)
def
=

∏

i∈(Z/nZ)×
(x− ζ i

n).

It is easy to see that Φn(x) ∈ Fq[x] since Φn(x) is fixed by any automorphism which

fixes Fq. Let r be a prime such that r2||q − 1. We have

Φr2(x) = Φr(x
r) =

r−1∑
i=0

xir.
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We consider the problem of finding a non-trivial factor of Φr2(x) in this section.

We may be able to construct a primitive rth root of unity from a non-trivial

factor of Φr2(x). If we have a non-trivial factor of Φr2(x) with constant term not

equal to ±1, a primitive rth root of unity can be constructed from the constant term.

Unfortunately, it is possible to have a non-trivial factor of Φr2(x) with constant term

equal ±1, although the number of such cases is small.

3.7.1 Method 1

Write q = pe1
1 · · · pem

m +1 for some distinct primes p1, · · · , pm and some positive integers

e1, · · · , em, where p1 = r and e1 ≥ 2. Suppose ζp2 , · · · , ζpm are available. Let

ζ = ζr2 ∈ Fq, ρ = ζr ∈ Fq

We try to factor Φr2(x) by Algorithm 3.6.1 with some modifications.

We use Φr2(x) as an input, instead of xr − β. In Algorithm 3.6.1, we work on

ψa(x). Here, we work on the rational polynomial

a− x

a− xr+1
(mod Φr2(x)).

With the corresponding modifications, compute1 a and `. If ` 6= r, we proceed

with the Case 1 in Section 3.5 to obtain a non-trivial factor of Φr2(a). The bad case

is when ` = r. We find d as the Case 2 in Section 3.5. Define a polynomial

hj(x)
def
= (a− x)d − xj(a− xr+1)d.

1We assume Φr(a) 6= 0 and Φr2(a) 6= 0. If Φr(a) = 0 or Φr2(a) = 0, a primitive rth root of

unity can be constructed. We can compute the complete factorization of Φr2(a) by the algorithm in

Chapter 4.
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Then, a non-trivial factor of Φr2(x) can be discovered by the lemma below.

Lemma 3.7.1.

(hj(x), Φr2(x)) for some j ∈ (Z/r2Z)×

is a non-trivial factor of Φr2(x).

Proof. By the construction of a, ` and d,

(
a− x

a− xr+1

)d

= ζni (mod x− ζ i) for some ni ∈ (Z/r2Z)× for all i ∈ (Z/r2Z)×.

If there exist i0, i1 such that ni0/i0 6= ni1/i1, we are done.

Suppose ni/i = j ∈ (Z/r2Z)× for all i ∈ (Z/r2Z)×. Then,

(
a− ζ i

a− ζ i(r+1)

)d

= ζ ij for all i ∈ (Z/r2Z)×.

Equivalently,

hj(ζ
i) = 0 for all i ∈ (Z/r2Z)×.

Let sn =
∑n−1

k=0(r + 1)k = (r+1)n−1
r

and

Tn
def
=

n−1∑

k=0

ζjskhj(ζ
(r+1)k

) = 0 for all n > 0.

We also have 0 = Tn = (a − ζ)d − ζjsn(a − ζ(r+1)n
)d for all n > 0. By the fact that

(r + 1)r ≡ 1 (mod r2), we have

0 = Tr = (a− ζ)d − ζjsr(a− ζ(r+1)r

)d = (a− ζ)d(1− ζj((r+1)r−1)/r).

Finally, ζj((r+1)r−1)/r = 1 since a 6= ζ. We have r2 dividing j((r + 1)r − 1)/r, which is

a contradiction.
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3.7.2 Method 2

We show a second method for finding a non-trivial factor of Φr2(x) in this section.

Suppose we have the same situation as in the previous section. We consider the

rational polynomial

a− xr

a− x(r−1)r
(mod Φr2(x))

and define a polynomial

h′j(x)
def
= (a− xr)d − xj(a− x(r−1)r)d.

Replace hj(x) by h′j(x) and find a, ` and d as before. Suppose ` = r (otherwise, it

falls in Case 1 which is an easy case). Then, a non-trivial factor of Φr2(x) can be

discovered by the lemma below.

Lemma 3.7.2.

(h′j(x), Φr2(x)) for some j ∈ (Z/r2Z)×

is a non-trivial factor of Φr2(x).

Proof. We use a similar technique as in the proof of Lemma 3.7.1. Suppose

(
a− ζ ir

a− ζ i(r−1)r

)d

= ζ ij for some j ∈ (Z/r2Z)×, for all i ∈ (Z/r2Z)×.

Then,

h′j(ζ
i) = 0 for all i ∈ (Z/r2Z)×.

However,

0 = h′j(ζ) + ζjh′j(ζ
r−1)

= (a− ζr)d − ζrj(a− ζ(r−1)2r)d

= (a− ζr)d(1− ζrj),
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which implies r2|rj, a contradiction.

3.7.3 More Variations

Suppose g1(x), · · · , gm(x) are the non-trivial factors obtained in Method 1. It guar-

antees that f1(x)
def
= (x − ζr+1)(x − ζ(r+1)2) · · · (x − ζ(r+1)r

) does not divide gi(x) for

all i = 1, · · · , m. Similarly, Method 2 guarantees the non-trivial factors obtained are

not divisible by f2(x)
def
= (x− ζr)(x− ζ(r−1)r).

We can have more variations by beginning with the rational polynomials

τk(x)
def
=

a− x

a− xkr+1
and σk(x)

def
=

a− xr

a− x(kr−1)r
for 0 < k < r.

Then, the non-trivial factors computed from τk(x) are not divisible by

(x− ζkr+1)(x− ζ(kr+1)2) · · · (x− ζ(kr+1)r

) = f1(x)

and the non-trivial factors computed from σk(x) are not divisible by

(x− ζr)(x− ζ(kr−1)r) = f2(x).

Although the polynomials (i.e. f1, f2) are the same, the computation processes are

different, therefore, the non-trivial factors computed may be different. If any of the

non-trivial factors obtained has a constant term not equal to ±1, then a primitive

rth root of unity can be constructed.
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Chapter 4

Solving Polynomial Equations

The problem of solving polynomial equations over finite fields is a generalization of

the following problems over finite fields

• constructing primitive nth roots of unity,

• taking nth roots,

• constructing nth nonresidues,

• constructing primitive elements (generators of the multiplicative group)

for any positive n dividing the number of elements of the underlying field. By the

Tonelli-Shanks square root algorithm [63, 56] and its generalization for taking nth

roots, constructing nth nonresidues and taking nth roots are polynomial time equiva-

lent for all n. It is clear that primitive nth roots of unity can be computed efficiently

from any nth nonresidue when n is prime. It is obvious that a primitive element is

also an nth nonresidue. In [61], we showed that, for some families of finite fields, once
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we can compute a primitive nth root of unity for some suitably chosen n, we can take

square roots.

The problem of solving polynomial equations is a special case of the problem of

polynomial factoring. There is a deterministic polynomial time algorithm, Lenstra-

Lenstra-Lovász [41], for factoring polynomials over rational numbers. For polynomial

factoring over finite fields, we have Berlekamp’s algorithm [13], which is deterministic

but exponential time. So it only works well in small finite fields. There is a prob-

abilistic version of Berlekamp’s algorithm [14] for large finite fields. We also have

Cantor-Zassenhaus [19], which is a probabilistic algorithm, for polynomial factoring

over finite fields. For a survey of polynomial factoring, see [29].

The problem of solving polynomial equations is to find the solutions of f(x) = 0

over Fq, where Fq is a finite field with q elements and f(x) ∈ Fq[x] is a polynomial

with deg f = O(poly(log q)). We may assume f is a product of distinct linear factors

since squarefree factorization1 (see [71] and [35]) and distinct degree factorization

(see [29]) can be done efficiently. If f has a multiple root, then (f, f ′) is a non-trivial

factor of f , where f ′ is the first derivative of f . Since xq − x is a product of all linear

polynomials in Fq[x], we can work on (f(x), xq − x) instead of f(x).

In addition to the polynomial factoring algorithms discussed above, algorithms

related to solving univariate polynomial equations in finite fields include the following:

Tonelli-Shanks [63, 56], Adleman-Manders-Miller [2] and Cipolla-Lehmer [20, 40] are

1Suppose the input polynomial is a product of some irreducible factors with multiplicity ≥ 1.

Squarefree factorization is the process finding the product of the same set of irreducible factors with

multiplicity equal 1.
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polynomial time square root algorithms, which require a quadratic nonresidue as

an input. Shanks’ algorithm can be generalized to take nth root with a given nth

nonresidue. Schoof’s algorithm [55], which takes square root for the elements in

prime fields, is deterministic but the running time is polynomial only if the input

element is small. In the previous chapters, we have shown deterministic polynomial

time algorithms for constructing primitive rth roots of unity, taking square roots and

taking rth roots over some families of finite fields.

In this chapter, we prove that there is a deterministic polynomial time algorithm

solving polynomial equations over any finite field F in F1 (see Definition 3.1.1). As an

application of our algorithm for solving polynomial equations, we show a deterministic

polynomial time algorithm computing elliptic curve “nth roots” over F . At last, we

show a probabilistic algorithm for solving polynomial equations over arbitrary finite

fields with odd characteristic.

4.1 Factoring by Searching

Let Fq be the finite field of q elements. Let f(x) ∈ Fq[x] be a polynomial. In

this section, we consider the problem of solving the polynomial equation f(x) = 0,

i.e. finding roots of f . As in the discussion in the introduction, we may assume

f is a product of two or more distinct linear factors. With some algebraic and

combinatorial techniques, we show below that, in some finite fields Fq, the problem of

solving polynomial equations is polynomial time reducible to the problem of taking

`th roots for all `|q − 1.
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Write q = pe1
1 · · · pem

m + 1 for some distinct primes p1, · · · , pm. Suppose we can

compute the pjth roots of a for any a ∈ Fq and 1 ≤ j ≤ m. We show a deterministic

algorithm (Algorithm 4.1.1 below) to factor f , where f is product of two or more

distinct linear factors and f(0) 6= 0.

The idea is simple: suppose f(x)|xd − a for some integer d|q− 1 and some a ∈ Fq

with ord(a) = (q − 1)/d. Let ` be a prime factor of d and ζ` be a primitive `th root

of unity in Fq. Then, xd − a =
∏`−1

i=0(x
d/` − ζ i

`

√̀
a). We have

f(x) =
`−1∏
i=0

(f(x), xd/` − ζ i
`

√̀
a).

We compute (f(x), xd/` − ζ i
`

√̀
a) for each i = 0, · · · , ` − 1. If (f(x), xd/` − ζ i

`

√̀
a) is

a non-trivial factor of f(x) for some 0 ≤ i < `, we are done (or keep factoring until

the complete factorization of f(x) is obtained). Otherwise, f(x)|xd/`− ζ i
`

√̀
a for some

0 ≤ i < `. Then, repeat the process with d′ = d/` and a′ = ζ i
`

√̀
a. In the beginning,

we have f(x)|xq−1 − 1 (i.e. d = q − 1 and a = 1).

Algorithm 4.1.1. factorBySearching(f)

{
set a = 1;
set d = q − 1;

for j = 1 to m
for k = 1 to ej

{
set d = d/pj;

Label 1:
set b = a1/pj ;
set i0 = search(f, j, d, b);
set a = ζ i0

pj
b;

}
}

search(f, j, d, b)
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{
for i = 0 to pj − 1
{

compute g(x) = (f(x), xd − ζ i
pj

b);

if 1 < deg g < deg f
Label 2: output g and halt;

else if deg g = deg f
return i;

}
}

Lemma 4.1.2. Suppose f(x) ∈ Fq[x] is product of linear factors such that f(0) 6= 0.

Algorithm 4.1.1 always outputs a non-trivial factor of f .

Proof. It is easy to see that a always is a pjth residue in Fq at Label 1.

We show by induction that f(x) divides xpjd−a at Label 1 whenever the algorithm

is still running. When j = k = 1, we have a = 1 and d = (q− 1)/p1. Obviously, f(x)

divides xq−1 − 1. For j = j0 and k = k0, denote aj0,k0 = a and dj0,k0 = d at Label 1.

Assume f(x) divides xpj0
dj0,k0−aj0,k0 . Let b = a

1/pj0
j0,k0

and gi(x) = (f(x), xdj0,k0−ζ i
pj0

b)

for i = 0, · · · , pj0 − 1. Then,

xpj0
dj0,k0 − aj0,k0 =

pj0
−1∏

i=0

(
xdj0,k0 − ζ i

pj0
b
)

and f(x) = c

pj0
−1∏

i=0

gi(x)

for some constant c. If there exists gi such that 1 < deg gi < deg f , then gi is a

non-trivial factor of f . The algorithm outputs gi and halts. Otherwise, there exists a

unique i0 such that deg gi0 = deg f and i0 is returned. Denote the pair of j, k followed

j0, k0 by j1, k1. For j = j1 and k = k1, we have a = ζ i0
pj0

a
1/pj0
j0,k0

and d = dj0,k0/pj1 at

Label 1. By the definition of gi0 , f(x) divides xpj1
d − a.

The algorithm always outputs a non-trivial factor and halts at Label 2. Otherwise,

for j = m and k = em, we have f(x) dividing xpm − a at Label 1 but x − ζ i
pjm

a1/pjm
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does not divide f(x) for all i = 0, · · · , pjm − 1 since the algorithm does not output.

It leads to a contradiction.

Theorem 4.1.3. Let Fq be a finite field of q elements such that ` = O(poly(log q)) for

every prime factor ` of q − 1. Suppose there is a deterministic polynomial time algo-

rithm to compute `th roots. Then, there is a deterministic polynomial time algorithm

solving any polynomial equation over Fq.

Proof. By our previous discussion, we may assume the input polynomial f(x) ∈ Fq[x]

is a product of two or more distinct linear factors and f(0) 6= 0. Since `th roots

can be computed in deterministic polynomial time, Algorithm 4.1.1 can factor f in

deterministic polynomial time by Lemma 4.1.2.

Theorem 4.1.4. Let Fq be a finite field of q elements such that ` = O(poly(log q)) for

every prime factor ` of q−1. Given a primitive element in Fq, there is a deterministic

polynomial time algorithm solving any polynomial equation over Fq.

Proof. Denote the given primitive element by a. Note that a is an `th nonresidue in

Fq for all prime factor ` of q − 1. Then, `th roots can be computed by a generalized

Shanks’ algorithm with a as an input. See Section 3.2 in [67] for modifying Shanks’

algorithm to take rth roots. Finally, the theorem follows from Theorem 4.1.3.

Theorem 4.1.5. Let Fq ∈ F1. There is a deterministic polynomial time algorithm

solving any polynomial equation over Fq.

Proof. It is an obvious consequence of Theorem 3.1.2 and Theorem 4.1.3.
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4.2 Elliptic curve “nth root” problem

As an application of our algorithms for solving polynomial equations, we show a

deterministic polynomial-time algorithm to solve the elliptic curve “nth root” problem

in this section.

Let F ∈ F1 (see Definition 3.1.1) be a finite field. Denote an elliptic curve E

defined over F by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 for some a1, a2, a3, a4, a6 ∈ F.

Consider the following problem: given a point Q ∈ E(F ) and a positive integer

n ∈ O(poly(log q)),

(I) decide whether Q = nP for some ∞ 6= P ∈ E(F ),

(II) find P if such P exists.

Although we write the elliptic curve group operation additively, the nature of the

problem above is closer to the nth root problem in finite fields than the multiplicative

inverse problem.

It is well known that multiplication by n is an endomorphism and

n(x, y) =

(
R1(x)

S1(x)
, y

R2(x)

S2(x)

)

for some R1(x), S1(x), R2(x), S2(x) ∈ F [x] with (R1, S1) = (R2, S2) = 1, deg R1 = n2

and deg S1 ≤ n2 − 1. We have S1(x) = Ψ(x)2 for some Ψ(x) ∈ F [x]. All polynomials

R1, S1, R2, S2 and Ψ can be computed in deterministic polynomial time. See [69] for

the details.

58



Suppose (a, b) = Q 6= ∞. Then, Q = n(x, y) implies x is a solution of

f(x)
def
= R1(x)− aS1(x) = 0 (4.2.1)

over F . Let α1, · · · , αm ∈ F be the roots of the equation (4.2.1). For (I), a solution

of Q = nP exists if and only if m > 0. For each αi, compute βi = b S2(α)
R2(α)

. For (II),

{(αi, βi) : 1 ≤ i ≤ m} is the complete set of solutions of P .

Suppose Q = ∞. Then, P ∈ E[n](F )
def
= E[n]∩E(F ), where E[n] is the n-torsion

subgroup of E(F ), where F denotes a fixed algebraic closure of F . Let α1, · · · , αm ∈ F

be the roots of the equation Ψ(x) = 0. Consider the quadratic equation

gi(y)
def
= y2 + (a1αi + a3)y − (α3

i + a2α
2
i + a4αi + a6) = 0.

Let J = {j : gj has a root in F, 1 ≤ j ≤ m} be an index set. In this case, P = ∞

always is a solution of Q = nP . For (I), a solution P 6= ∞ of Q = nP exists if

and only if J is non-empty. Let βj,1, βj,2 ∈ F be the roots of gj for j ∈ J . For (II),

{(αj, βj,k) : j ∈ J and k = 1, 2} ∪ {∞} is the complete set of solutions of P .

Theorem 4.2.1. Let Fq ∈ F1. There is a deterministic polynomial time algorithm

computing elliptic curve “nth roots” over Fq.

Proof. The polynomial equations can be solved in deterministic polynomial time by

Theorem 4.1.5. By the discussion above, the theorem follows.

4.3 A Probabilistic Algorithm

In this section, we discuss a probabilistic algorithm for factoring products of linear

polynomial over an arbitrary finite field F with characteristic not equal to 2. Our
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idea is to use the fact that half of the elements in F× are quadratic residues and the

other half of the elements in F× are quadratic nonresidues.

Let f(x) = (x− α1) · · · (x− αd) ∈ F [x] be a polynomial. We may assume αi are

non-zero and distinct. Suppose α1, · · · , αm are quadratic residues and αm+1, · · · , αd

are quadratic nonresidues for some 0 < m < d. Compute g(x) = (f(x2), xq−1 − 1).

Then, g(x) = (x2 − α1) · · · (x2 − αm). Therefore, g(
√

x) is a non-trivial factor of f .

If all the roots of f are quadratic residues or all the roots of f are quadratic non-

residues, we can shift the roots of f by an arbitrary element a ∈ F and try to factor

the shifted polynomial. The algorithm shown below captures this idea with a as an

input. If the algorithm fails for some a, we can try again with a different a.

Algorithm 4.3.1. factor(f, a)

{
if f(a) = 0

output x− a;

compute g(x) = (f(x2 + a), xq−1 − 1);
if 0 < deg g < 2 deg f

output g(
√

x− a);
}

Proposition 4.3.2. For any finite field F , let f(x) = (x − α1) · · · (x − αd) ∈ F [x]

for some distinct αi ∈ F×. The success probability of Algorithm 4.3.1 for any a ∈ F

is approximately 1− 21−d, where d = deg f ≥ 2.

Proof. The probability of each αi−a being a quadratic residue is approximately 1/2.

Algorithm 4.3.1 does not work when all (αi−a)’s are quadratic residues or all (αi−a)’s

are quadratic nonresidues. Therefore, the overall success probability is approximately

1− 21−d.
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The running time of Algorithm 4.3.1 is Õ(d log q) bit operations, where q is the

number of element in F and d is the degree of f . The most costly operation in

the algorithm is computing GCD, which takes Õ(d log q) bit operations. The other

operations in the algorithm are obviously bounded by it.

Algorithm 4.3.1 can be generalized by replacing the shift operation by a with some

1-1 mapping σ over F . The mapping σ should

• be efficiently computable for both σ and σ−1;

• induce an 1-1 mapping from polynomial to polynomial;

• map quadratic residues and quadratic nonresidues randomly.

In Algorithm 4.3.1, we use σa : x 7−→ x − a and the induced polynomial map is

τa : f(x) 7−→ f(x + a). A more general map is

σa,b,c,d : x 7−→ ax + b

cx + d
for some a, b, c, d ∈ F with ad− bc 6= 0

and an induced polynomial map is

τa,b,c,d : f(x) 7−→ (cx + d)deg ff(
ax + b

cx + d
).
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Chapter 5

Primality Testing

Primality testing is the process of checking whether a positive integer is a prime. The

problem of primality testing is in great interest in modern research since many modern

cryptographic schemes rely on finding large prime numbers. One typical example is

the RSA public key cryptosystem [53].

Directly from the definition, if N is composite, then there exists a prime p ≤
√

N such that N is divisible by p. However, checking all prime p ≤ √
N requires

exponential time to the input size. This idea was known to ancient Greeks.

Another test, called Fermat’s test, is to find an integer a with (a,N) = 1 such

that aN−1 6≡ 1 (mod N). If such a exists, then N is composite by Fermat’s Little

Theorem (Theorem 1.2.1). Fermat’s test does not prove primality. Even if

aN−1 ≡ 1 (mod N) for all a with (a,N) = 1, (5.0.1)

the integer N may not be a prime since there exist infinitely many composite numbers,

called Carmichael numbers (see [6]), satisfying equation (5.0.1). Fermat’s test also
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fails to prove the compositeness of Carmichael numbers.

For some forms of numbers, there are specific primality tests. We have Lucas-

Lehmer (see [70]) for Mersenne numbers (N = 2q − 1 for some prime q) and Pépin’s

test [47] for Fermat number (N = 22n
+ 1). Both algorithms are Õ(log2 N) and

deterministic.

In 2002, Agrawal, Kayal and Saxena (AKS) gave the first deterministic polynomial-

time primality testing algorithm [5]. See also [26]. We will discuss more details of AKS

and the related works in Section 5.2. Before AKS, there were many primality testing

algorithms which are either probabilistic or not polynomial-time: Pocklington-Lehmer

[48, 39], Miller-Rabin [44, 49], Solovay-Strassen [59], Adleman-Pomerance-Rumely [3],

elliptic curve primality proving [30, 9], and some other tests [23], [1] and [4]. See [31]

for a survey.

In this chapter, we show a deterministic polynomial-time primality test for some

form of numbers in Section 5.1 and present a potentially fast primality test based on

AKS in Section 5.2.

5.1 rth Root Primality Test

In this section, we show a deterministic primality testing algorithm, for some form

of numbers. The primality test is constructed by our rth root algorithms presented

in Chapter 3. The idea of our primality test is similar to the Pocklington-Lehmer

primality test [48, 39]. We have the following theorem.

Theorem 5.1.1. Let N = ret + 1 for some prime r and some positive integers t and
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e with re > t. There is an Õ(r2(log2 N)(t + r log N)) deterministic primality testing

algorithm. If r is a small constant and t = O(log N), the running time is Õ(log3 N).

Proof. Firstly, we try to find a primitive rth root of unity ζr over (Z/NZ)× by Al-

gorithm 2.4.8. If ζr 6∈ (Z/NZ)×, Algorithm 2.4.8 will fail and we conclude that N is

composite. Otherwise, try computing ζr2 = r
√

ζr, ζr3 = r
√

ζr2 , · · · , ζre = r
√

ζre−1 over

the ring Z/NZ by Algorithm 3.6.1. If N is prime, we will obtain ζre eventually. If N

is composite, ζre does not exist in Z/NZ by a generalized Proth’s Theorem (Theorem

5.1.4 in the next section). Since Algorithm 3.6.1 is deterministic, it must fail in some

point during computing ζre . Therefore, N is prime if and only if ζre can be computed

successfully by the procedure described.

The running time of Algorithm 2.4.8 and Algorithm 3.6.1 are Õ(t log2 N) and

Õ(r2 log N(t + r log N)), respectively. Since Algorithm 3.6.1 is used e− 1 times, the

overall running time is Õ(r2 log2 N(t + r log N)). The theorem follows.

For N = ret + 1 with r a small constant and t = O(log N), the running time

our algorithm is Õ(log3 N), which is faster than other deterministic primality tests

which are applicable. The running time of the AKS test [5] and Lenstra-Pomerance’s

modified AKS test [34] are Õ(log7.5 N) and Õ(log6 N), respectively. Assuming ERH

(see Section 1.2.4), Miller’s test [44] is deterministic with running time Õ(log4 N).

5.1.1 Proth’s Theorem

In 1878, a self-taught farmer, Francois Proth, proved the following theorem.
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Theorem 5.1.2. (Proth’s Theorem) Let N = 2et + 1 for some odd t with 2e > t.

If

a(N−1)/2 ≡ −1 (mod N)

for some a, then N is a prime.

See [70] for the details of Proth’s Theorem. We will show a generalization of

Proth’s theorem (Theorem 5.1.4). This generalization of Proth’s theorem is well

known. The following lemma is used in the proof of Theorem 5.1.4.

Lemma 5.1.3. Let n = `k for some prime ` and k ≥ 1. Let re be a prime power with

r 6= `. If re|φ(n) and re >
√

n, then n is a prime (i.e. k = 1).

Proof. We have re dividing φ(n) = (` − 1)`k−1, therefore, re|` − 1. If k > 1, then

φ(n) ≥ (`−1)` > r2e > n, which is a contradiction. Thus, k = 1 and n is a prime.

Theorem 5.1.4. (Generalized Proth’s Theorem) Let N = ret+1 for some prime

r and integers e, t ≥ 1. Suppose re > t. If

aN−1 ≡ 1 (mod N) and a(N−1)/r 6≡ 1 (mod N), (5.1.1)

for some integer a, then N is a prime.

Proof. Suppose there exists an integer a satisfying equations (5.1.1). Let d be the

order of a in (Z/NZ)×. Then re|d. Let b ≡ ad/re
(mod N). The order of b in

(Z/NZ)× is re. Note that re >
√

N .

Suppose N = `k for some prime ` and k ≥ 1. Since (N, r) = 1, we have ` 6= r.

The order of b, re divides φ(N). By Lemma 5.1.3, k = 1 and N is a prime.
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Suppose N = `k1
1 · · · `km

m for m > 1, some distinct primes `1, · · · , `m and integers

k1, · · · , km ≥ 1. Let di be the order of b in (Z/`ki
i Z)×. Since bre ≡ 1 (mod `ki

i ),

we have di = rsi for some 0 ≤ si ≤ e. Without loss of generality, assume s1 =

max(s1, · · · , sm). If s1 < e, we have brs1 ≡ 1 (mod `ki
i ) for all 1 ≤ i ≤ m. By

the Chinese Remainder Theorem, brs1 ≡ 1 (mod N) but re does not divide rs1 ,

contradiction. Therefore, s1 = e. We have re|φ(`k1
1 ), which implies k1 = 1 by Lemma

5.1.3. Write `1 = ret1 + 1 and N/`1 = re0t0 + 1 with (r, t0) = 1. Then N =

(t0t1r
e0 + t1 + t0r

e0−e)re + 1. We have e0 ≥ e, otherwise, t = t0t1r
e0 + t1 + t0r

e0−e is

not an integer. However, N = `1(N/`1) > re+e0 ≥ r2e > N , contradiction.

5.2 A Potentially Fast Primality Test

In 2002, Agrawal, Kayal and Saxena [5] gave the first deterministic, polynomial-time

primality testing algorithm. The main step was the following.

Theorem 5.2.1. (AKS) Given an integer n > 1, let r be an integer such that

ordr(n) > log2 n. Suppose

(x + a)n ≡ xn + a (mod n, xr − 1) for a = 1, · · · , b
√

φ(r) log nc. (5.2.1)

Then, n has a prime factor ≤ r or n is a prime power.

The running time is Õ(r1.5 log3 n). It can be shown by elementary means that the

required r is O(log5 n). So the running time is Õ(log10.5 n). Moreover, by Fouvry’s

Theorem [27], such r exists in O(log3 n), so the running time becomes Õ(log7.5 n). It is
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conjectured that such r exists in O(log2 n), which makes the running time Õ(log6 n).

However, the conjecture is still not proved yet.

In [34], Lenstra and Pomerance showed that the AKS primality test can be im-

proved by replacing the polynomial xr − 1 in equation (5.2.1) with a specially con-

structed polynomial f(x), so that the degree of f(x) is O(log2 n). The overall running

time of their algorithm is Õ(log6 n).

With an extra input integer a, Berrizbeitia [16] has provided a deterministic pri-

mality test with time complexity 2−min(k,b2 log log nc)Õ(log6 n), where 2k||n− 1 if n ≡ 1

(mod 4) and 2k||n + 1 if n ≡ 3 (mod 4). If k ≥ b2 log log nc, this algorithm runs in

Õ(log4 n). The algorithm is also a modification of AKS by verifying the congruence

(1 + mx)n ≡ 1 + mxn (mod n, x2s − a)

for a fixed s and some clever choices of m. The main drawback of this algorithm

is that it requires a satisfying the Jacobi symbol
(

a
n

)
= −1 if n ≡ 1 (mod 4) and

(
a
n

)
=

(
1−a
n

)
= −1 if n ≡ 3 (mod 4). Since there is no deterministic algorithm to find

such a yet, Berrizbeitia’s algorithm is considered as a probabilistic test.

We attempt to improve the AKS primality test in another direction. We suggest

that equation (5.2.1) may be checked with only the single value a = −1. If a certain

conjecture (Conjecture 5.2.8) about cyclotomic polynomials holds, we obtain a deter-

ministic primality testing algorithm with running time Õ(r log2 n). The requirement

of r is exactly the same as in AKS. Therefore, the running time would be Õ(log5 n)

if r is O(log3 n).
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5.2.1 The Algorithm

Let SimplePrimalityTest(n) be an O(
√

n) primality test algorithm. We show our algo-

rithm below.

Algorithm 5.2.2. PrimalityTest(n)

{
if n < n0 = 8× 105, return SimplePrimalityTest(n);
if n = ae for some prime a and some e > 1, return COMPOSITE;

find smallest r such that ordr(n) > log2 n;
if 1 < (a, n) < n for some a ≤ r, return COMPOSITE;
if n ≤ r, return PRIME;

if (x− 1)n 6≡ xn − 1 (mod n, xr − 1), return COMPOSITE;
return PRIME;

}

Throughout this section, suppose n > 1 is an integer and Algorithm 5.2.2 returns

PRIME at the last line. Therefore,

• n is not a non-trivial power of a prime (that is, n 6= pe for some e > 1),

• ordr(n) > log2 n,

• all prime divisors of n are greater than r

• (x− 1)n ≡ xn − 1 (mod n, xr − 1).

Let p be a prime dividing n such that ordr(p) > 1. Since ordr(n) > 1, such a

prime p exists. Let

G =

{
(
n

p
)ipj (mod r) : i, j ∈ Z

}
⊂ (Z/rZ)×.
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Let t = |G|. Let h(x) be an irreducible factor of Φr(x) in Fp. Then, deg(h) =

ordr(p) > 1. Let

F = (Z/pZ)[x]/(h(x)),

which is isomorphic to the finite field Fpdeg(h) . Let

P = {f ∈ Z[x] : f(x)n ≡ f(xn) (mod p, Φr(x))}

and

G = {f(x) (mod p, h(x)) : f ∈ P} ⊂ F×.

In F , it can be shown that f(x)n = f(xn) implies f(x)n/p = f(xn/p) (see [5] for a

proof). Since p is the characteristic of F , we have f(x)p = f(xp). Therefore, for all

f ∈ G, we have f(x)m = f(xm) for all m ∈ G.

5.2.2 Upper bounds of |G|

Some upper bounds of the size of |G| can be shown as follows.

Lemma 5.2.3. Suppose n is not a power of p. Then, |G| ≤ n
√

t.

Proof. The proof is essentially the same as the proof of Lemma 4.8 in [5].

Lemma 5.2.4. Suppose n is not a power of p. If ordr(n) >
√

t ≥ √
384, then

|G| ≤ n
√

t−2/5.

Proof. Suppose n2/5 ≤ p ≤ n3/5. Let

Î =

{
(
n

p
)ipj : 0 ≤ i, j ≤ b

√
tc

}
.
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The size of Î satisfies |Î| = (b√tc + 1)2 > t. Since G = Î (mod r) and |G| = t,

there exist m1,m2 ∈ Î with m1 < m2 such that m1 ≡ m2 (mod r). Consider the

polynomial ψ(T ) = Tm2−m1 − 1 ∈ F [T ]. For all f(x) ∈ G,

ψ(f(x)) = f(x)m2−m1 − 1

=
f(xm2)

f(xm1)
− 1

= 0.

Therefore, ψ(T ) has at least |G| roots in F .

Let

M = max

{
(
n

p
)b
√

tcpb
√

tc−1, (
n

p
)b
√

tc−1pb
√

tc
}

.

Note that M ≤ nb
√

tc−2/5 ≤ n
√

t−2/5 since both p, n
p
≥ n2/5. We claim that m1,m2

can be chosen such that m2−m1 ≤ M . This implies that |G| ≤ deg(ψ) = m2−m1 ≤

nb
√

tc−2/5.

To prove the claim, let m′
1 ≡ m′

2 (mod r) with m′
1, m

′
2 ∈ Î and m′

1 < m′
2.

If m′
2 < nb

√
tc, then m′

2 ≤ (n/p)ipj with either i < b√tc or j < b√tc. Then

m′
2 ≤ M , so m′

2 −m′
1 ≤ M . We can set m1 = m′

1 and m2 = m′
2. The case m′

1 = 1

and m′
2 = nb

√
tc is not possible; otherwise, 1 ≡ nb

√
tc (mod r), so ordr(n) ≤ b√tc.

Finally, assume 1 6= m′
1 < m′

2 = nb
√

tc. The definition of Î shows that m′
1|nb

√
tc = m′

2.

Choose m1 = 1 and m2 = m′
2/m

′
1. Since m′

1 ≥ min
{

p, n
p

}
≥ n2/5, this completes the

proof of the claim.

Now suppose that p < n2/5 or p > n3/5, Let nδ = min
{

p, n
p

}
with 0 < δ < 2

5
.

Then n1−δ = max
{

p, n
p

}
. Let

Ĩ =
{
nδin(1−δ)j : 0 ≤ i ≤ A and 0 ≤ j ≤ B

}
,
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where A =

⌊√
t(1−δ)

δ

⌋
and B =

⌊√
tδ

1−δ

⌋
. Then |Ĩ| = (A + 1)(B + 1) > t. As before,

there exist m3, m4 ∈ Ĩ, such that m3 ≡ m4 (mod r) with m3 < m4. Note that

m4 ≤ nAδnB(1−δ) ≤ n2
√

tδ(1−δ) ≤ n
√

24t/25 < n
√

t−2/5 for t ≥ 384. All the elements in

G are roots of the polynomial Tm4 − Tm3 . Therefore, |G| ≤ m4 ≤ n
√

t−2/5.

5.2.3 Producing elements of G

One way to find a lower bound on the size of G is to produce a large number of

elements of G. If we have chosen r so that n is a primitive root mod r, then this is

easy.

Lemma 5.2.5. Assume that n is a primitive root mod r and that (x− 1)n ≡ xn − 1

(mod n, xr − 1). If (m, r) = 1, then

xm − 1 ≡ (x− 1)e (mod n, xr − 1)

for some integer e.

Proof. Write m ≡ nf (mod r). Then

xm − 1 ≡ xnf − 1 ≡ (x− 1)nf

.

Consider the cyclotomic field of rth roots of unity Q(ζ), where ζ is a primitive rth

root of unity. The cyclotomic units are generated by the quotients (ζa − 1)/(ζ − 1)

with (a, r) = 1. The index of these units in the full group of units of the ring Z[ζ] is

the class number of the real subfield Q(ζ +ζ−1). This class number tends to be rather
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small, so the cyclotomic units are of small index in the full group of units. Let p be

prime and let p be a prime ideal of Z[ζ] dividing p. The field Z[ζ]/p is isomorphic to

Fp[x]/(p, h(x)), where h(x) is an irreducible factor mod p of Φr(x). Work on Artin’s

primitive root conjecture (see, for example, [21]) shows that the reduction mod p of

the group of units of Z[ζ] should often be quite large. In fact, it is conjectured to be

the full multiplicative group of Z[ζ]/p for a positive density of primes p. Since the

index of the cyclotomic units tends to be small, we expect that the cyclotomic units

also generate a large subgroup of the multiplicative group. Therefore, the polynomials

xm−1 should generate a large subgroup of Fp[x]/(p, h(x)), so we expect that the group

G should be large for many p.

In the next section, we formulate a conjecture on cyclotomic polynomials (Conjec-

ture 5.2.8) that can be regarded as a way of producing a large number of polynomials

in G. In the case that n is a primitive root mod r, the following lemma shows that

the group obtained is contained in the group generated by x− 1.

Lemma 5.2.6. If n is a primitive root mod r and (x− 1)n ≡ xn− 1 (mod n, xr− 1),

then

Φm(x) ∈ {(x− 1)e : e ∈ Z} ⊂ F×

for (m, r) = 1.

Proof. Since

Φm(x) =
∏

d|m
(xm/d − 1)µ(d)

where µ(d) is the Möbius function, the previous lemma yields the result.
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5.2.4 Cyclotomic polynomials

We conjecture that once equation (5.2.1) is verified with a = −1, the size of G is

larger than the upper bounds in Lemma 5.2.3 and 5.2.4. If the conjecture is true,

then n must be a prime when Algorithm 5.2.2 returns PRIME at the last line.

In particular, we have the mth cyclotomic polynomial Φm(x) ∈ G for all m > 0

with (m, r) = 1 as shown in Lemma 5.2.7. Since there are infinitely many distinct

Φm(x) in Z[x], some of them must be congruent to each other in F . We will show

that there exist r distinct Φq(x)’s in F for q prime (see Lemma 5.2.14). By Lemma

5.2.15, for primes p1 and q1, Φp1(x) and Φq1(x) are distinct whenever p1 6≡ q1 (mod r).

Conjecture 5.2.8 suggests a generalized situation that Φp1···pk
(x) and Φq1···qk

(x) are dis-

tinct unless pi ≡ qσ(i) (mod r) for all 1 ≤ i ≤ k and some permutation σ. Proposition

5.2.16 proves Conjecture 5.2.8 with k = 2.

Lemma 5.2.7. If (x− 1)n ≡ xn − 1 (mod n, xr − 1), then for k ≥ 1 with (k, r) = 1,

Φk(x)n ≡ Φk(x
n) (mod p, Φr(x)). (5.2.2)

Proof. We use induction. By the hypothesis, Φ1(x) = x − 1 satisfies the conclusion

because p|n and Φr(x) divides xr − 1. Suppose Φi(x)n ≡ Φi(x
n) (mod p, Φr(x)) for

1 ≤ i < k with (i, r) = 1.

For k > 1 with (k, r) = 1, the congruence (x − 1)n ≡ xn − 1 (mod n, xr − 1)

implies that

(xk − 1)n ≡ xkn − 1 (mod n, xkr − 1).
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Since p|n and Φr(x) divides xkr − 1,

(xk − 1)n ≡ (xn)k − 1 (mod p, Φr(x)).

By the identity T k − 1 =
∏

d|k Φd(T ),


∏

d|k
Φd(x)




n

≡
∏

d|k
Φd(x

n) (mod p, Φr(x)). (5.2.3)

For any proper divisor d′ of k, (d′, r) = 1 and Φd′(x)n ≡ Φd′(x
n) (mod p, Φr(x)) by

the induction assumption. Let g(x) = (Φd′(x), Φr(x)) ∈ Fp[x]. If g(x) 6= 1, let α ∈ Fp

be a root of g(x). Then, αd′ = 1 and αr = 1. But (d′, r) = 1 implies that α = 1.

However, Φr(1) =
∑r−1

i=0 1 = r 6= 0 in Fp since r, p are distinct primes. Therefore,

(Φd′(x), Φr(x)) = 1. so equation 5.2.3 yields

Φk(x)n ≡ Φk(x
n) (mod p, Φr(x)).

Conjecture 5.2.8. Let p1, p2, · · · , pk be prime numbers that are distinct mod r and

none of them are congruent to −1, 0, 1 (mod r). Similarly, let q1, q2, · · · , qk be primes

that are distinct mod r and none of them are congruent to −1, 0, 1 (mod r). Let h(x)

be an irreducible factor of Φr(x) mod p. Then,

Φp1p2···pk
(x) ≡ Φq1q2···qk

(x) (mod p, h(x))

if and only if there is a permutation σ of {1, 2, . . . , k} such that

pi ≡ qσ(i) (mod r) for i = 1, 2, · · · , k.

One direction of this conjecture can be proved. In Section 5.2.6, we give evidence

for the other direction.
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Proof of “⇐”. We prove a stronger version of the statement:

pi ≡ qi (mod r) for i = 1, 2, · · · , k,

implies

Φp1p2···pk
(x) ≡ Φq1q2···qk

(x) (mod p, Φr(x)).

We show it by induction. For k = 1, the statement is true by Lemma 5.2.15. For

k > 1, suppose pi ≡ qi (mod r) for i = 1, 2, · · · , k. By the induction assumption,

Φp1p2···pk−1
(y) ≡ Φq1q2···qk−1

(y) (mod p, Φr(y)).

Put y = xpk . We have

Φp1p2···pk−1
(xpk) ≡ Φq1q2···qk−1

(xpk) (mod p, Φr(x
pk)).

Since Φr(x) divides Φr(x
pk),

Φp1p2···pk−1
(xpk) ≡ Φq1q2···qk−1

(xpk) (mod p, Φr(x)).

We claim that Φp1p2···pk−1
(x) and Φr(x) are relatively prime mod p. To see this, let

α ∈ Fp be a common root mod p of the two polynomials. Then αp1p2···pk−1 = 1 = αr,

so α = 1. But Φr(1) = r 6≡ 0 (mod p). Therefore, the two polynomials have no

common root mod p, which proves the claim. So Φp1p2···pk−1
(x) is a unit mod Φr(x).

Finally,

Φp1p2···pk
(x) =

Φp1p2···pk−1
(xpk)

Φp1p2···pk−1
(x)

≡ Φq1q2···qk−1
(xpk)

Φq1q2···qk−1
(x)

(mod p, Φr(x))

≡ Φq1q2···qk−1
(xqk)

Φq1q2···qk−1
(x)

(mod p, Φr(x))

= Φq1q2···qk
(x).
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In Conjecture 5.2.8, we require pi, qi 6≡ −1, 0, 1 (mod r) for i = 1, 2, · · · , k, oth-

erwise, the conjecture is obviously false. For any prime q, if q ≡ 0 (mod r), then

q = r and Φq(x) ≡ 0 (mod Φr(x)) is not a unit. If q ≡ 1 (mod r), we have Φq(x) ≡ 1

(mod Φr(x)), which is the multiplicative identity. Then, Φqm(x) ≡ 1 (mod Φr(x)) for

any integer m > 0. If q ≡ −1 (mod r), then Φq(x) ≡ −x−1 (mod Φr(x)). The sub-

group of F× generated by −x−1 has only 2r elements, where F = (Z/pZ)[x]/(h(x)).

We have Φqm1(x) ≡ Φqm2(x) (mod Φr(x)) for some1 m1 ≡ m2 (mod 2r).

5.2.5 Lower bound for |G|

Assuming Conjecture 5.2.8 is true, we establish a lower bound for |G| in Lemma 5.2.10

that implies the correctness of Algorithm 5.2.2. See Theorem 5.2.11.

Recall the following.

Theorem 5.2.9. (Stirling’s approximation) For N > 0,

√
2πN(

N

e
)Ne1/(12N+1) < N ! <

√
2πN(

N

e
)Ne1/(12N).

Lemma 5.2.10. If Conjecture 5.2.8 is true, then |G| > 1
11

2r√
r
.

Proof. If r ≤ 5, then 1
11

2r√
r

< 2 ≤ |G| since G has as least two elements, x and x− 1.

Suppose r > 5, i.e. r ≥ 7. If Conjecture 5.2.8 is true, there are
(

r−3
k

)
distinct

Φp1p2···pk
(x) in G by Lemma 5.2.7 and Dirichlet’s Theorem (Theorem 5.2.13). Consider

1For example, let m1 and m2 be distinct primes such that m1 ≡ m2 ≡ m (mod 2r) with m 6≡

−1, 0, 1 (mod r).
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k = r−3
2

. By Theorem 5.2.9,

(r − 3)!

(((r − 3)/2)!)2
>

( r−3
e

)r−3e1/(12r−35)
√

2π(r − 3)
(
( r−3

2e
)(r−3)/2e1/(6r−18)

√
2π( r−3

2
)
)2

=
2r

√
32π(r − 3)

e
1

12r−35
− 1

3r−9

>
e

1
49
− 1

12√
32π

2r

√
r

>
1

11

2r

√
r
.

Therefore, |G| ≥ (
r−3

(r−3)/2

)
> 1

11
2r√

r
, as required.

Theorem 5.2.11. If Conjecture 5.2.8 is true, then Algorithm 5.2.2 returns PRIME

at the last line only if n is a prime.

Proof. If algorithm 5.2.2 returns PRIME at the last line, then r is an odd prime,

n is not a nontrivial power of a prime, n ≥ n0 = 8 × 105, and ordr(n) = r − 1 >

log2 n. Moreover, all prime divisors of n are greater than r, and (x − 1)n ≡ xn − 1

(mod n, xr − 1).

Suppose ordr(n) >
√

t ≥ √
384. Let c = (log2 n)/r > 1 and let

f(c, n) =
n2/5

log n

(
n(c−√c) log n

√
c

)
.

Note that n2/5

log n
is increasing for n >

√
32. So f(c, n) is increasing in n for n >

√
32

and c ≥ 1. The term n(c−√c) log n√
c

is increasing in c for c ≥ 1.

For n > 392 and c ≥ c0 = 1.084,

n2/5

log n

(
n(c−√c) log n

√
c

)
= f(c, n) > f(c0, 384) > 11,

which implies that

1

11

2r

√
r

=
1

11

(
nc log n

√
c log n

)
> n

√
c log n− 2

5 = n
√

r− 2
5 .
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If 1 ≤ c < c0 and n ≥ n0, then n2/5

log n
> 11

√
c0 for n ≥ n0 and

1

11

2r

√
r

>
1

11

(
n
√

r

√
c0 log n

)
> n

√
r− 2

5 .

If n is not a power of p, then Lemma 5.2.4 and Lemma 5.2.10 together imply that

n
√

n− 2
5 ≥ |G| > n

√
n− 2

5 ,

which is a contradiction. Since the algorithm removes nontrivial powers of primes,

we must have that n is a prime.

Now suppose that ordr(n) ≤ √
t. Then, r > t ≥ (ordr n)2 > log4 n. We have

1

11

2r

√
r
≥ 1

11

nlog n
√

r

√
r

> n
√

r

for n ≥ 5 and r ≥ 3, which includes all possible values of n and r. By Lemma 5.2.3

and Lemma 5.2.10, n is a prime.

Note that it is possible to minimize the value of n0 by manipulating the parameters

in the proof of Theorem 5.2.11. However, such minimization is unnecessary for any

practical use of Algorithm 5.2.2 because n0 = 8× 105 is small enough for running an

O(
√

n) algorithm.

5.2.6 Evidence for Conjecture 5.2.8

In this section, we give evidence for Conjecture 5.2.8. In particular, we prove it for

k = 1, 2. Recall that p and r are primes as in Conjecture 5.2.8.

Lemma 5.2.12. For any positive integer M ,

M−1∑

k=0

xk ≡ 0 (mod p, Φr(x)) ⇐⇒ M ≡ 0 (mod r).
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Proof. Let m ≡ M (mod r) with 0 ≤ m < r. Then,

M−1∑

k=0

xk ≡ 0 (mod p, Φr(x))

⇐⇒
m−1∑

k=0

xk ≡ 0 (mod p, Φr(x))

⇐⇒ m = 0

⇐⇒ M ≡ 0 (mod r)

The following result is well known.

Theorem 5.2.13. (Dirichlet’s theorem) Let a, d be two positive coprime integers.

Then, there are infinitely many primes congruent to a mod d.

Lemma 5.2.14. For any positive integer N with (N, r) = 1, there exist infinitely

many primes q such that

Φq(x) ≡
N−1∑

k=0

xk (mod p, Φr(x)).

Proof. Given N > 0 and (N, r) = 1, by Theorem 5.2.13 there exists a prime q with

q ≡ N (mod r). By Lemma 5.2.12,

Φq(x) =

q−1∑

k=0

xk = xN

(
q−N−1∑

k=0

xk

)
+

N−1∑

k=0

xk ≡
N−1∑

k=0

xk (mod p, Φr(x)).

Proposition 5.2.15.

Φp1(x) ≡ Φq1(x) (mod p, Φr(x)) ⇐⇒ p1 ≡ q1 (mod r),

where p1, q1 are primes.
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Proof. If p1 = q1, the proposition is trivially true.

Without loss of generality, suppose p1 < q1. Then,

Φp1(x) ≡ Φq1(x) (mod p, Φr(x))

⇐⇒
p1−1∑

k=0

xk ≡
q1−1∑

k=0

xk (mod p, Φr(x))

⇐⇒
q1−p1−1∑

k=0

xk ≡ 0 (mod p, Φr(x))

⇐⇒ p1 ≡ q1 (mod r),

by Lemma 5.2.12.

Proposition 5.2.16. Let p1, p2, q1, q2 be primes with p1, p2 distinct mod r, and with

q1, q2 distinct mod r. Moreover, assume that pi 6≡ 1 (mod r) for i = 1, 2. Then,

Φp1p2(x) ≡ Φq1q2(x) (mod p, Φr(x)) (5.2.4)

implies

p1 ≡ qi (mod r) and p2 ≡ qj (mod r),

where {i, j} = {1, 2}.

Proof. Case 1: Suppose that all p1, p2, q1, q2 are distinct mod r. Then, r is at least

7. For primes p0 6= q0, Φp0q0(x) = (xp0q0−1)(x−1)
(xp0−1)(xq0−1)

. Therefore, Φp1p2(x) ≡ Φq1q2(x)

(mod p, Φr(x)) implies

(xp1p2 − 1)(x− 1)

(xp1 − 1)(xp2 − 1)
≡ (xq1q2 − 1)(x− 1)

(xq1 − 1)(xq2 − 1)
(mod p, Φr(x))

Multiply both sides by the denominators:

(xp1p2 − 1)(xq1 − 1)(xq2 − 1) ≡ (xq1q2 − 1)(xp1 − 1)(xp2 − 1) (mod p, Φr(x)).

(5.2.5)
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If p1p2 ≡ q1q2 (mod r), congruence (5.2.5) becomes

(xq1 − 1)(xq2 − 1) ≡ (xp1 − 1)(xp2 − 1) (mod p, Φr(x)),

xq1+q2 + xp1 + xp2 ≡ xp1+p2 + xq1 + xq2 (mod p, Φr(x)).

Note that p1 + p2 6≡ q1 + q2 (mod r). Otherwise, p1, p2, q1, q2 are distinct roots of

T 2 − (p1 + p2)T + p1p2 in Fr, which is a contradiction. Then, xq1+q2 + xp1 + xp2

(mod p, xr − 1) and xp1+p2 + xq1 + xq2 (mod p, xr − 1) are polynomials with different

degrees since the three terms xq1+q2 , xp1 , xp2 are not congruent to any of xp1+p2 , xq1 ,

xq2 . Therefore, since Φr(x) = (xr − 1)/(x− 1),

xq1+q2 + xp1 + xp2 6≡ xp1+p2 + xq1 + xq2 (mod p, xr − 1)

=⇒ xq1+q2 − xp1+p2

x− 1
6≡ xq1 − xp1

x− 1
+

xq2 − xp2

x− 1
(mod p, Φr(x))

=⇒ xq1+q2 + xp1 + xp2 6≡ xp1+p2 + xq1 + xq2 (mod p, Φr(x))

This contradiction implies that p1p2 6≡ q1q2 (mod r).

Expanding the terms in congruence (5.2.5), we have

xp1p2+q1+q2 − xp1p2+q1 − xp1p2+q2 − xq1+q2 + xp1p2 + xq1 + xq2 − 1

≡ xq1q2+p1+p2 − xq1q2+p1 − xq1q2+p2 − xp1+p2 + xq1q2 + xp1 + xp2 − 1

(mod p, Φr(x))

Let f(x) = xp1p2+q1+q2 + xq1q2+p1 + xq1q2+p2 + xp1+p2 + xp1p2 + xq1 + xq2 ,

g(x) = xq1q2+p1+p2 + xp1p2+q1 + xp1p2+q2 + xq1+q2 + xq1q2 + xp1 + xp2 .

As before, we first show that f(x) 6≡ g(x) (mod p, xr − 1). Since x − 1 divides
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f(x) − g(x), we must have f(x) 6≡ g(x) (mod p, Φr(x)). As a result, congruence

(5.2.5) leads to a contradiction.

The sum of the coefficients in f(x) (mod xr − 1) is exactly 7. There are only 7

terms in f(x). Since each power of x is congruent mod xr − 1 to a power xj with

0 ≤ j < r, we see that f(x) is congruent mod xr−1 to a sum of seven not necessarily

distinct such powers xj. Since p > r ≥ 7, these cannot cancel each other mod p. A

similar result holds for g(x). If f(x) ≡ g(x) (mod p, xr − 1), then xp2 is congruent to

some term in f(x). The only possibilities are xp1p2+q1+q2 and xq1q2+p1 . Similarly, xp1

must be congruent to xp1p2+q1+q2 or xq1q2+p2 .

If

p2 ≡ q1q2 + p1 (mod r), (5.2.6)

then p1 6≡ q1q2 + p2 (mod r); otherwise, p2 − p1 ≡ q1q2 ≡ p1 − p2 (mod r), which is

impossible. Therefore, p1 ≡ p1p2 + q1 + q2 (mod r). Then, using these congruences

for p1 and p2, we obtain

xq1q2+p2 + xp1+p2 + xp1p2 + xq1 + xq2

≡ xq1q2+p1+p2 + xp1p2+q1 + xp1p2+q2 + xq1+q2 + xq1q2 (mod p, xr − 1)

The only possible term in the left-hand side congruent to xq1q2 is xp1+p2 . But con-

gruence (5.2.6) implies q1q2 ≡ p2 − p1 (mod r). So q1q2 6≡ p1 + p2 (mod r). Hence,

f(x) 6≡ g(x) (mod p, xr − 1).

If p2 ≡ p1p2 + q1 + q2 (mod r), then p1 ≡ q1q2 + p2 (mod r). The case is the same

as before by switching the roles of p1 and p2.
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Case 2: Suppose that some pi is congruent to some qj mod r. we may assume that

p1 ≡ q1 ≡ m (mod r) for some 1 < m < r. Note that m 6= 1 by assumption. By

Lemma 5.2.15, Φp1(x) ≡ Φq1(x) ≡ ∑m−1
k=0 xk (mod p, Φr(x)). Therefore,

Φp1p2(x) ≡ Φq1q2(x) (mod p, xr − 1)

=⇒ Φp1(x)Φp1p2(x) ≡ Φq1(x)Φq1q2(x) (mod p, xr − 1)

=⇒ Φp1(x
p2) ≡ Φq1(x

q2) (mod p, xr − 1)

=⇒
m−1∑

k=1

xkp2 ≡
m−1∑

k=1

xkq2 (mod p, xr − 1)

Let M = {1, 2, · · · ,m− 1}. We see that p2M = q2M as subsets of Z/rZ. Let

a ≡ p2q
−1
2 (mod r). Then multiplication by a (mod r) is a permutation of M . By

Lemma 5.2.17 below, a = 1. Therefore, p2 ≡ q2 (mod r).

Lemma 5.2.17. Let q be a prime and let 1 < m < q. Let M = {1, 2, · · · ,m− 1}.

Suppose 0 ≤ a < q and aM = M in Fq. Then, a = 1.

Proof. If a = 0, then aM = {0} 6= M , so we may assume that a ≥ 1. For any

1 ≤ a < q, multiplication by a (mod q) is a permutation of {1, 2, · · · , q − 1}. If

aM = M , multiplication by a (mod q) is also a permutation of M . As a consequence,

multiplication by a (mod q) also permutes M
def
= {m, · · · , q − 1}. Both M and M

are not empty since 1 < m < q.

Suppose a 6= 1. Let q = ua+v, where the quotient u = bq/ac ≥ 1 and the remain-

der v = q − ua < a ≤ ua. This implies ua > q/2. We claim that {1, 2, · · · , ua} ⊆ M

and {q − 1, q − 2, · · · , q − ua} ⊆ M . Then, |M | + |M | > q, which leads to a contra-

diction.

83



We show by induction that Ak
def
= {1, 2, · · · , ak} ⊆ M for 1 ≤ k ≤ u. Note that

Ak is a set of exactly ak elements in Fq because ak ≤ au < q. Since 1 ∈ M , we have

a · 1 ∈ M . Therefore, 1 ≤ a ≤ m− 1, so A1 ⊆ M . Assume Ak−1 ⊆ M for k > 1. We

have k ∈ Ak−1 because k ≤ 2(k− 1) ≤ a(k− 1). Then, ak ∈ aM = M , which implies

Ak ⊆ M .

The statement {q − 1, q − 2, · · · , q − ak} ⊆ M can be shown by a similar argu-

ment, beginning with q − 1 ∈ M .
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