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In this dissertation we use a path-integral Monte Carlo (PIMC) simulation

method to study an open-shell atomic Al impurity doped in two kinds of low

temperature condensed media.

We first use the Multilevel Metropolis PIMC method to study the arrangement

of He atoms around a single Al atom doped in a He cluster. We use these results to

simulate the Al electronic excitation spectrum in the cluster. Our accurate ab initio

Al–He pair potentials and the Balling and Wright pairwise Hamiltonian model are

used to describe the full potential and the electronic asymmetry arising from the

open-shell character of the Al atom in its ground and excited electronic states.

To extend our investigation to more than one impurity atom, we develop a

novel approach to the determination of the interaction between two atoms, each in a

2P electronic state, embedded in a cluster of spherical atoms. The model transforms

accurate ab initio potential energy curves for all the 36 molecular orbital states of the

M–M system into a set of 36 Cartesian states that correspond to assigning the two 3p



electrons to Cartesian orbitals centered on each atom. In this Cartesian state basis, the

matrix elements corresponding to the interaction of each 2P atom with any number of

surrounding spherical ligands can be determined. The lowest eigenvalue of the

resulting 36× 36 matrix defines, in an adiabatic approximation, the potential

governing the motion of the atoms.

We use PIMC simulations to study the structural properties of pure solid para-

hydrogen (pH2) and Al atoms embedded in solid pH2. For a single impurity Al atom,

we predict the 3p electron density to be distributed mainly along one particular

direction. This lowers the static lattice energy. For two Al atoms embedded in solid

pH2 / oD2, we found that if the initial substitution sites are within a distance of ~ 13

Bohr, the Al atoms will significantly distort the lattice structure to allow

recombination, with an accompanying release of energy during the process. For

substitution distances longer than 14 bohr, the dispersion of Al atoms is shown to be

metastable.
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Chapter 1: Introduction to the use of path-integral Monte-Carlo
methods to investigate open-shell systems

1.1 Introduction

In the language of quantum chemistry, an open shell is a valence shell that is

not completely filled with electrons. The resulting unpaired spin and/or orbital

angular momenta introduce major difficulties in the variational solution of the

Schrödinger equation for open-shell systems. Obtaining accurate orbital and energies

for an open-shell system is far more complicated than for a closed-shell system.1

However, much important chemistry involves open-shell encounters.

An even more complicated problem for theory is extended systems involving

open-shell impurities. Experimentally, open-shell atoms have been doped in solid

para-hydrogen and helium droplets, either to study how the embedded atoms effect

the energetics and properties of the system or to understand how the electronic states

of the impurity atom are altered by the solvation.2-11 For the doped hydrogen

systems, the interest also comes from the potential technological application of

energy storage (as will be discussed in more detail in the Introductions to Chapters 3

and 4). Helium droplets have been recently exploited as a weakly perturbing,

homogeneous and ultracold matrix for high-resolution spectroscopy (see more in

Chapter 2).

Previous theoretical investigations of atomic impurities in condensed media

have largely considered impurities that are closed-shell or have spherical charge

distributions. Here, the assumption of a pairwise-additive potential is widely made.

The interactions between particles are taken to be functions of nuclear positions only

with no dependence on the angular orientation of the electrons. This assumption is not
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a plausible one for open-shell atoms, whenever the electronic charge distribution is

non-spherical. Because of the rotational invariance of the Hamiltonian, an isolated

open-shell atom has three-fold (P states) or five-fold (D states) spatial degeneracy.

However, the symmetry is broken by the presence of near-by ligands, so that this

degeneracy is lifted.  For an atom in a P state, for example, the px, py, and pz orbitals

can interact differently with the neighboring ligands.

Alexander et al. were among the first who took into account electronic

anisotropy in modeling open-shell atoms in clusters.12,13 They used the Balling and

Wright model14 in a study of the importance of the orbital degeneracy of the B atom

in solid pH2 (with Krumrine, Jang and Voth).15 Mirijanian, Alexander and Voth

further extended the quantum simulation studies of Alexander and co-workers15 to an

atomic Al impurity.16 In both simulations, neglect of the electronic anisotropy can

lead to major inaccuracies in the calculated binding energy and in the radial

distribution function of the impurity, especially when vacancies are present in the

solid host.15,16

In section 1.2 of this chapter, we review briefly the Balling and Wright model

for a single 2P atomic impurity in clusters of spherical particles. As an extension of

this earlier work, in Chapter 2 we discuss our use of the path-integral, Monte-Carlo

method to simulate the electronic absorption of a single Al atom in helium clusters.

The path-integral method is the best choice to investigate properties of quantum

systems at low temperature, but not absolute zero.  In section 1.3 of this chapter, we

review the basic equations relevant to the Monte-Carlo implementation of the path-

integral method. In Chapter 2, we will turn our attention to the more sophisticated

algorithm needed to describe liquid helium and impurity-doped liquid helium at very

low temperatures.

For open-shell atoms like B and Al, one important question remains

unanswered: When doped with multiple atomic impurities, is the system, albeit at
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ultra-low temperature, stable with respect to recombination, which is a highly

exothermic process? To study more than one doped atom, we must consider the

interaction between open-shell impurity atoms, which depends on the relative

orientation of the p-electrons of both dopants.

In Chapter 3, we develop an accurate description of the interaction of two 2P

atoms in the presence of multiple spherical ligands. We will apply this to the

interaction of two Al atoms embedded in solid pH2, site-substituted in the center of

two adjacent hexagons. In Chapter 4, we will further perform a series of PIMC

simulations of solid pH2 (or oD 2) with two Al atoms initially site-substituted in

different locations. The aim is the understanding of the equilibrium stability of the

trapped Al impurities and the changes in the solid structure when multiple Al dopants

are added.

Chapter 5 contains the conclusions of this dissertation.

1.2 Interaction of a single 2P Atom with multiple spherical ligands

To describe the interaction of one 2P atom embedded in a cluster formed of

spherical ligands, we use a model, first presented by Balling and Wright14 for the

interaction of alkali metal atoms with spherical ligands. This model is based on

explicit consideration of the interaction of the px, py, and pz orbitals of the metal with

each ligand. The 2P atom will be described in an uncoupled, Cartesian basis | lql >

where l, the orbital electronic angular momentum of the atom is 1 and ql {= x, y, or z}

designates the orientation of the real (Cartesian) singly-filled p orbital. The encounter

between an atom in a 2P state and a spherical atom at any position in space can be

described as a rotation of a diagonal matrix that contains the two potentials, VΣ and

VΠ, which describe the interaction of the 2P atom and the spherical partner when the

latter is located on the z axis.14,17
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  Fig 1.1  The interaction of a 2P atom and a spherical ligand located on the z axis.

If the spherical atom is rotated to a position {R , θ, φ}, the interaction is

described by the matrix, still in the basis of the three Cartesian p orbitals,

V(R, θ, φ) ≡ D(φ, θ, 0) V(R) DT(φ, θ, 0) (1.1)

Here, D(φ, θ, 0) is the matrix of the rotation specified by the Euler angles {φ, θ, 0},

and V(R) is a diagonal matrix with elements

ql ql = x y z
x VΠ(R) 0 0
y 0 VΠ(R) 0                                                          (1.2)
z 0 0 VΣ(R)

It can be shown that the transformation of Eq. (1.1) leads to the following

expression for V(R,θ,φ), still in the basis of the x, y and z Cartesian p orbitals.

x2 xy xz

V =VΠ 1 + (VΣ–VΠ) ×
1
R2

  xy y2 yz        (1.3)

xz yz z2

where 1 designates the unit matrix and {x,y,z} designates the Cartesian position of the

spherical ligand. Here we have suppressed the arguments of V and the dependence on

R of VΣ and VΠ. In the basis of the Cartesian orbitals with negative spin projection,
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which we designate by an overbar on each quantum number ( x , y, z ), we have an

identical 3 × 3 matrix, so that in the basis of the six p spin orbitals, the interaction of

the Al atom with a spherical perturber at position {x,y,z} is block diagonal and given

by

V6 (x, y, z)=
V 0
0 V

(1.4)

where V is the 3 × 3 matrix defined by Eq. (1.3).

In the presence of multiple spherical ligands, each located at position

{xi,yi,zi}, the matrix of the complete interaction Hamiltonian is just

V= V6 (xi , yi , zi )
i
∑ (1.5)

In the 6 × 6 basis of the three Cartesian p orbitals (and their two spin projections), the

matrix of the spin-orbit Hamiltonian is

H so =
1
2
a ×

x y z x y z
x 0 i 0 0 0 1
y –i 0 0 0 0 i
z 0 0 0 –1 –i 0
x 0 0 –1 0 –i 0
y 0 0 i i 0 0
z 1 –i 0 0 0 0

(1.6)

where a is the spin-orbit constant of the 2P atom (74.7 cm–1 for Al18).

In the adiabatic limit, we diagonalize the sum of the 6× 6 V matrix and the

6× 6 matrix of the spin-orbit operator for the single 2P atom [Eq. (1.6)]. The motion

of the atoms is governed by the lowest root Va, to which is added the pair-wise scalar

interaction between all the spherical ligands.
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1.3 Path-integral Monte-Carlo simulations

1.3.1 The Path-integral method

Path-integral (PI) simulation is a powerful computational tool to calculate

properties of quantum many-particle systems. It can be applied to systems at finite

temperature, unlike other quantum simulation methods which are essentially zero-

temperature methods.19 For a comprehensive review, see Berne and Thirumalai.20

The PI method is based on the discretization of the path-integral

representation of the density matrix developed by Feynman and Hibbs.21 If the exact

eigenvalues and eigenfunctions for a Hamiltonian H are designated Ei and φi, then the

single-particle quantum partition function is, at constant volume and temperature (a

canonical ensemble; we will extend the method to isothermal-isobaric ensembles in

Chapter 4):

Q1VT = e−βEi
i
∑ = Tr(e−βH) (1.7)

with β=1/kBT. The trace can be carried out in any complete basis. Specifically, if we

work in a coordinate basis, the trace becomes

Q1VT = dq〈q | e−βH | q〉∫ (1.8)

where q designates the coordinates of the particle. The quantity 〈q | e−βH | q〉  is the

diagonal element of the density operator in position space.

We then divide the exponential into p parts (p is called the Trotter number) to

facilitate evaluation of the matrix element. We insert p–1 unit operators in the form

1 = dq∫ | q〉〈q | (1.9)

and split the exponential as follows:
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Q1VT = dq∫ q e−βH/ p ...e−βH/ p ...e−βH/ p q

= dq∫ 1
dq2...dqp q1 e−βH/ p q2 ... qp−1 e−βH/ p qp qp e−βH/ p q1

(1.10)

Instead of one integral over the diagonal elements of the density operator at

low temperature T, we now have p integrals involving off-diagonal terms of the

density operator at a higher effective temperature pT. Instead of integrating over the

spatial coordinates of the original particle, we integrate over the spatial coordinates of

p pseudoparticles. If (as in the systems treated in this dissertation) the Hamiltonian

depends only on the momenta and coordinates, it can be split into two pieces,

H=T+V, where T = P2/2m is the kinetic energy operator and V is the potential energy

operator.

When p is large enough, there exist several accurate high-temperature

approximations to the density matrix.19 We use the simplest, the so called “primitive”

approximation, which is based on the Trotter formula,22

e−βH/ p ≈ e−βT/ pe−βV/ p ≈ e−βV/ pe−βT/ p ≈ e−βV/2 pe−βT/ pe−βV/2 p (1.11)

with error of order O[(β/p)2]. Then T and V are (approximately) decoupled and the

density matrix can be calculated explicitly, as follows:

〈qi | e−βH/ p | qi+1〉 = exp −
β[V (qi ) +V (qi+1)]

2p
⎛
⎝⎜

⎞
⎠⎟
〈qi | e−βT/ p | qi+1〉 (1.12)

The free particle kinetic energy can be shown to be,21

 
〈qi | e−β T/ p | qi+1〉 =

mp
2πβ2

⎛

⎝⎜
⎞

⎠⎟

1/2

exp −
mp
2β2

| qi − qi+1 |2
⎛

⎝⎜
⎞

⎠⎟
(1.13)

Here m  is the mass of the particle and | qi − qi+1 |  is the distance between

pseudoparticles i and i+1. Thus
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Q1VT ≈ ( mp

2πβ2
)3p 2 dq1dq2...dqp∫ exp −

mp
2β2

| qi − qi+1 |2 +
β
p
V (qi )

⎡

⎣
⎢

⎤

⎦
⎥

i=1

p

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(1.14)

with qp+1=q1.

It is straightforward to generalize the above formula to a system of N

indistinguishable quantum particles of identical mass. We have

 
QNVT ≈

1
N !
( mp
2πβ2

)3pN 2 dq1dq2...dqp∫ exp −
mp
2β2

| qi − qi+1 |2 +
β
p
V (qi )

⎡

⎣
⎢

⎤

⎦
⎥

i=1

p

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

(1.15)

Here each vector qi represents the set of 3N  coordinates describing the ith

pseudosystem of N particles, which is often designated a “slice”,19 and the quantity

| qi − qi+1 |2  is the square of the distance between two slices in the 3N coordinate

space. The partition function then appears as a Boltzmann average over all positions

of the slices of an effective potential Veff, which consists of the potential plus a

harmonic potential of force constant mp / β
22  between each slice.

Note that the particles are assumed to obey ordinary Boltzmann statistics.

Whenever the symmetry properties of these quantum particles need to be taken into

account, the above canonical partition function must be modified to include Bose or

Fermi statistics under permutation. Specifically, the states involved in the summation

would be either totally symmetric or totally antisymmetric with respect to the

interchange of any two particles.21 However, studies have shown that identical

particle exchange is significant only for cryogenic liquid helium (both 3He and
4He).23

Extending of Eq. (1.15) to a mixed system is straightforward. Suppose we

have nH2  hydrogen molecules and nAl Al atoms, the partition function is given by
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QNVT ≈
1

nH2 !nAl !
(
mH2 p

2πβ2
)3pnH2 2( mAl p

2πβ2
)3pnAl 2

× dq1dq2...dqp∫ exp −
mH2 p

2β2
| qi,H2 − qi+1,H2 |

2 +
mAl p
2β2

| qi,Al − qi+1,Al |2 +
β
p
V (qi )

⎡

⎣
⎢

⎤

⎦
⎥

i=1

p

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

(1.16)

Here, qi,H2 , qi,Al are the 3 nH2  coordinates of the hydrogen molecules and the 3nAl

coordinates of the Al atoms in the ith slice. Here, also, the effective potential is

 
βVeff =

mH2 p

2β2
| qi,H2 − qi+1,H2 |

2 +
mal p
2β2

| qi,Al − qi+1,Al |2 +
β
p
V (qi )

⎡

⎣
⎢

⎤

⎦
⎥

i=1

p
∑ (1.17)

The average of an observable A for the system can be calculated as

A =

1
p

dq1dq2...dqp A(qi )
i=1

p

∑∫ e−βVeff

dr1dr2...drp∫ e−βVeff
(1.18)

1.3.2 Monte-Carlo implementation

Obviously, one cannot carry out the quadrature exactly, which would require

summing over all possible coordinates of the N-particle slices. Consequently, a more

approximate computational algorithm has been developed to permit use of this PI

technique to compute detailed microscopic properties. This is the Monte-Carlo (MC)

approach, which is based on ideas developed by von Neumann, Ulam, and Metropolis

in the 1940’s to study the diffusion of neutrons in fissionable material.24 The name

“Monte-Carlo” refers to the role that random numbers play in the method.

A straightforward implementation of the MC approach to our system would

be to choose equally from all possible states, and then weight them by their

Boltzmann factor exp(−βVeff). Unfortunately, in this process time is wasted in

sampling statistically unimportant configurations with small values of exp(−βVeff). It

is important to use sampling techniques that choose random numbers from a

distribution adjusted so that the function evaluation is concentrated in regions of
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space that make important contributions to the integral.24 The choice of points is

generated by application of the so-called standard Metropolis algorithm.25 It chooses

states with probability exp(−βVeff), and weights them equally. The detailed algorithm

is:

1. Choose a set of p slices as the initial configuration. Calculate Veff for this

configuration.

2. Displace the pseudoparticles in one slice in position space by a random vector

dq=Δr, where Δ is the maximum displacement allowed in each dimension and

r is a pseudorandom matrix of size 3×N over the range [−1,1]. Calculate

Veff,new for this altered configuration; then calculate the change in the

effective potential relative to the previous configuration, δV= Veff,new−Veff;

3. If δV  ≤ 0, the new configuration is accepted. Otherwise, a random number

0 ≤η≤1 is generated, and the new configuration is accepted only if exp(−βδV)

> η ;

4. Go back to step (2) and iterate.

After a number of iterations, hopefully not too large, the set of slices will

converge to those that make the most substantial contributions to the ensemble

averages.

This algorithm, while in principle capable of any accuracy, converges only

slowly when dealing with quantum system at very low temperatures. In the next

chapter we will detail one important improvement over the standard Metropolis

algorithm, which makes possible the simulation of helium systems.

The Metropolis algorithm generates simulation trajectories that are naturally

weighted to favor thermally populated states of the system. The other widely used

simulation method for chemical systems is Molecular Dynamics (MD). In the MD

method one generates trajectories by iteratively solving the equation of motion of the

system. The trajectories are in real time. By contrast a PIMC simulation explores
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phase space without evolving in real time. For the determination of equilibrium

statistical averages, the two methods should give essentially same results, provided

that ergodicity is ensured (in other words, provided that the time average is equivalent

to the ensemble average).

In Ceperley’s review of the application of path-integral methodology to

condensed helium,19 he compared the PIMC and PIMD methods. He pointed out

“dynamical methods by themselves can not treat problems in which quantum

statistics are important,” because it is not possible for the permutation to change

continuously. Even for systems of distinguishable particles, “there are two major

concerns with MD methods: ergodicity and efficiency.” Ergodicity in MD can be

ensured by using a Nosé thermostat or with a hybrid MC-MD method. For efficiency

in MD, Tuckerman et al.26 have introduced methods to accelerate convergence.

Metropolis MC usually entails single-particle moves, while in MD simulations

one moves all particles simultaneously. In cases where a computer intensive potential

calculation must be done for all the particles simultaneously (as, for example, when a

Car-Parrinello local-density-functional algorithm is used), the MD technique is

advantageous because it moves more particles before a recalculation of the potential

is necessary. In these cases, PIMD simulations can be almost as efficient as PIMC.

As it will be shown in following chapters, our potential model couples all the

particles in the system together, so the interaction potential must be determined for all

the pseudoparticles simultaneously. We move all pseudoparticles in one slice

simultaneously in the MC process.

Another important factor in comparing MD with MC is the cost of calculating

forces vs. that of calculating potentials. In MC, one only needs interactions, while in

MD, one needs the forces, namely, derivatives of the interactions. In pair-wise

additive potential models, the force calculation does not cost much more. In our

potential model, however, derivative calculations are expensive. Another advantage



12

of MC over MD in our work is the simplicity in coding. Finally, MC simulations

correspond naturally to a canonical ensemble, while straight MD simulations

correspond to a constant energy ensemble.  To carry out constant temperature MD

simulations requires the additional complexity of adding Nosé-Hover chains.27-30

1.3.3 The pair correlation function g(r)

By definition, ρg(r) is the conditional probability density that a particle will

be found at r given that another is at the origin, where ρ=N/V is the average number

density for N particles in volume V.31 The number of neighbors within a distance ro

of a central atom is

n(ro ) = 4πρ r2
0
ro∫ g(r)dr   . (1.19)

Consequently, the pair-correlation function (often called the radial distribution

function) g(r), is the probability of finding a pair of particles a distance r apart,

relative to the probability expected for a completely random distribution at the same

density. Thus, g(r) approaches a limiting value of unity at large values of r.

In a canonical ensemble of N particles the pair-correlation function is given by

g(r) = g(r1,r2 ) =
N(N −1) dr3dr4 ...drN∫ exp −βU(r1,r2,...rN )[ ]

ρ2 dr1dr2...drN∫ exp −βU(r1,r2,...rN )[ ]
(1.20)

where ri is the coordinate of the ith particle. Here U is the classical potential energy.31

Equivalently,24

g(r) = ρ−2 δ (ri )δ (rj − r)
j≠i
∑

i
∑ =

V
N 2

δ (r − rij )
j≠i
∑

i
∑ . (1.21)

The second expression in this equation is the one we use to evaluate g(r) from

a computer simulation. We shall define N(r) to be the average number of particles

situated at a distance r and r+dr from a given particle. By measuring the distance

between each pair of particles as the simulation evolves and sorting the values into

bins, we can obtain a histogram of the function N(r). The pair correlation function is
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then

g(r + 1
2δr) =

N(r)
4πρ (r + δr)3 − r3⎡

⎣
⎤
⎦ 3

(1.22)

where 4π (r + δr)3 − r3⎡
⎣

⎤
⎦ 3  is the volume of each bin.

In our path-integral method, the pair correlation function is similarly defined,

with r being the coordinate of a pseudoparticle. If different species (Al, pH2/oD2, He)

are present, pair correlation functions gab(rab) can be defined for each pair,24 using

the same definition as in the single species case. Consequently, the binary Al-H2

system is described by 3 independent gab functions: gH2 −H2 /O2 −O2 , gAl-Al  and

gAl−H2 /O2 , which provide information about the location of the various pairs of

atoms in the solid.

1.3.4 Kinetic energy, potential energy and pressure estimators

For N  indistinguishable particles, an estimator for the kinetic energy is

obtained by applying the thermodynamic relationship E = ∂(βA) ∂β = −∂(lnQ) ∂β

to the partition function of Eq. (1.15) and then subtracting the expectation value of the

potential energy. Here, E is the total internal energy and A is the Helmholtz free

energy. The resulting expression for the average kinetic energy is

 
Ek =

p
2β

3N −
m
β2

| qi − qi+1 |2
i=1

p
∑

⎛

⎝⎜
⎞

⎠⎟
  . (1.23)

This estimator predicts that the translational kinetic energy is given by the difference

between a constant (p times the average thermal energy of the system − 
  
3
2
NkT ) and

the energy stored in the springs between the slices.32-34

For our system with nH2 hydrogen molecules and nAl Al atoms, we obtain a

similar expression for the total energy
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E =
p
2β

3nH2 −
m
β2

| qi,H2 − qi+1,H2 |
2

i=1

p
∑

⎛

⎝⎜
⎞

⎠⎟

+
p
2β

3nAl −
m
β2

| qi,Al − qi+1,Al |2
i=1

p
∑

⎛

⎝⎜
⎞

⎠⎟
+
1
p

V qi( )
i=1

p

∑
(1.24)

Here the first term is the contribution of the kinetic energy of the hydrogen

molecules; the second term, the kinetic energy of the Al atoms; and the last term, the

average total potential energy. We shall refer to the latter as the static lattice energy.

Herman, Bruskin and Berne35 showed that the variance of this “crude” kinetic

energy estimator is large, and the relative error in the determination of the energy

increases with the number of discrete points, p . On the one hand the Trotter

approximation becomes more accurate with large p. However, large p requires more

computational resources and produces a larger relative error in the average kinetic

energy.  For balance, one needs to choose a moderately large value of p.

This estimate of the kinetic energy is very imprecise for a single quantum

particle. However, for systems with a large number of particles and for relatively

small value of p, the large variance of the kinetic energy estimator for one particle is

compensated by the large number of independent estimates from the different

particles, so it is still a reasonable estimator.34 The advantage for us is that this

estimator does not require derivatives of the potential energy. When the potential

energy is pairwise additive, determination of these derivatives is not difficult.

However, in the anisotropic potential models we use here, the calculation of

derivatives requires considerably more effort. So in this dissertation, unless otherwise

stated, we use the estimator of Eq. (1.24) for the kinetic energy.

Other kinetic energy estimators have been introduced in the literature, one of

which we will indirectly use in our constant pressure simulations. The first is the

virial energy estimator proposed by Herman, Bruskin and Berne.35 For a single

particle in 1-dimension, the kinetic energy is estimated as
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Ek =
1
2p

xi
∂V xi( )
∂xii=1

p
∑ (1.25)

The authors have shown this estimator is better behaved than the crude estimator of

Eq. (1.23). It also avoids the drawback present in the crude estimator that the result is

given as a difference between two large quantities.

Another kinetic energy estimator for a single particle in 1-dimension,36

obtained from integration by parts, has the form

Ek =
3
2β

+
1
2p

(xi − xp )
∂V xi( )
∂xii=1

p
∑ (1.26)

Here the first term corresponds to the kinetic energy of the free particle, the second

term reflects modifications in the kinetic energy due to the effect of the interparticle

interactions.

It is straightforward to extend Eqs. (1.25) and (1.26) to our case of multiple

species and multiple dimensions. The resulting equations are not given here.

Another related problem is the determination of the pressure.24,34,37,38 To

proceed, we first observe that the coordinate derivative in the virial theorem,

x j
∂H
∂x j

= kBT ,39 is the negative of a component of the total force 
 
f

j  on particle j.

 

−
1
3

qi, j
∂H
∂qi, jj=1

N
∑

i=1

p

∑ =
1
3

qi, j fi, j
tot

 

j=1

N
∑

i=1

p

∑ = − pNkBT (1.27)

The factor of 3 here accounts for the 3-dimensional nature of the system. The

total force is the sum of internal forces between particles plus any external forces.

The latter are related to the external pressure, namely24

 

1
3

qi, j fi, j
ext

 

j=1

N
∑

i=1

p

∑ = −PV  . (1.28)

For internal forces, we define

 

α =
mp

2β22
qi, j − qi+1, j( )2

j=1

N
∑

i=1

p

∑  , (1.29)
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so that the effective interaction potential from the Trotter approximation is

Veff = α +
1
p

V qi( )
i=1

p

∑ + constant  . (1.30)

Euler’s homogeneous function theorem states that for a homogeneous

function of degree n [that is, a function such that f(tx, ty)= tnf(x, y)]

.

x ∂f (x, y)
∂x

+ y ∂f (x, y)
∂y

= nf (x, y)  , (1.31)

We can use this result to derive the following equation:

 

−
1
3

qi, j
∂Veff
∂qi, jj=1

N
∑

i=1

p

∑ =
1
3

qi, j fi, j
int

 

j=1

N
∑

i=1

p

∑

= −
1
3

qi, j
∂α
∂qi, jj=1

N
∑

i=1

p

∑ −
1
3p

qi, j
∂V qi( )
∂qi, jj=1

N
∑

i=1

p

∑

= −
2
3
α −

1
3p

qi, j
∂V qi( )
∂qi, jj=1

N
∑

i=1

p

∑

(1.32)

so that

 

PV = pNkBT −
2
3
α −

1
3p

qi, j
∂V qi( )
∂qi, jj=1

N
∑

i=1

p

∑

= pNkBT −
mp
3β22

qi, j − qi+1, j( )2 + 1
3p

qi, j
∂V qi( )
∂qi, jj=

N
∑

i=1

p

∑
(1.33)

We note that this expression for PV is equal to 2/3 of the difference between the crude

kinetic energy estimator and the virial estimator. In constant pressure simulations, we

can use this formula to verify that the estimated pressure is equal to the preset

pressure.
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1.3.5 Statistical errors

Computer simulation is an experimental science subject to systematic and

statistical errors. Inserting periodic boundary conditions and tail corrections can

compensate for the errors arising from the finite size of the simulation box. Another

error endemic to MC simulations is that neighboring configurations are highly

correlated, so that subsequent iterations may not give useful new information on a

computed property. To compensate for this we need to determine the correlation

length, which by definition is the average number of iterations necessary to provide

new information about a property A.

Ceperley19 proposed using the following formula to calculate the correlation

length:

s = 1+ 2
(Ao − A)(Ak − A)

σ 2(A)k=1

∞

∑   . (1.34)

Here Ao is the initial value of A, Ak is the value of after the kth iteration , A = A  is

the mean over all iterations, and σ 2(A) = (Ak − A)
2  is the variance.

We follow instead the method proposed by Fincham, Quirke and Tildesley,40

which is more straightforward to implement. At each of M  steps, we save the

computed values of the property A as well as the variance σ2(A). We then separate

these results into nb blocks each of length Mb (nb Mb = M) and then calculate the

mean value of A for each block

A b =
1
Mb

Aib
ib =1

Mb

∑   , (1.35)

where the sum runs over only the results in block b. We can estimate the variance for

all the blocks



18

σ 2( A b ) =
1
nb

( A b − A)
2

b=1

nb
∑   . (1.36)

We then define the correlation length s as the limiting ratio

s = lim
Mb→∞

Mbσ
2( A b )

σ 2(A)
  . (1.37)

The value of s is the number of additional MC iterations one must accumulate before

the calculation of an average value of the property A will contribute significant new

information. Tildesley et al. propose plotting the quantity Mbσ
2(〈A〉b)/σ2(A) against

Mb
1/2 (Mb

1/2 is simply a convenient variable here, use of the square root as the

abscissa compresses the data to makes an easier visible comparison) and then using

graphical extrapolation to obtain the value of the correlation length s.

In addition, the precision of the calculated property A in the simulation is

limited by an overall variance

σ run (A) = sσ 2(A) /M   . (1.38)

To minimize statistical errors, it is essential that the total number of iterations be

much greater than s.  This defines a “well converged” run.19
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Chapter 2: Path-integral Monte-Carlo investigation and spectral
simulation of an Al atom doped in Helium

2.1 Introduction

In recent years extensive experimental studies of helium droplets and impurity

doped helium droplets have appeared.7,11 The helium environment is unique because

the interaction between helium atoms is very weak. Helium is the lightest noble gas

atom. Consequently, helium atoms have large zero-point motion and solidify only

under pressure. In fact, helium clusters are known to be the only clusters that remain

liquid under all conditions of formation.41 Because the helium quantum liquids are

highly homogeneous compared to traditional solid rare gas cryogenic matrices,

problems of inhomogeneous line broadening do not occur, and matrix induced

perturbations are minimized.

Helium clusters provide a unique quantum environment to study the low

temperature spectra of isolated atoms or molecules. In the bulk, superfluid helium has

the unique property of “self-cleaning”; that is, in bulk helium liquid impurities either

aggregate or are absorbed onto the walls of the container. With the molecular beam

techniques developed about a decade ago for impurity doped helium droplets,3,11

experimentalists can now control impurity aggregation in helium droplets for

isolation spectroscopy. In a molecular beam experiment, helium droplets undergo

collisions with atoms or molecules formed in a free jet expansion. Some of the targets

are absorbed into/onto the helium droplet. Subsequently, the surface helium atoms

evaporate and cool the resulting droplet. By means of this technique, on can form 4He

clusters with N~103−104 atoms (diameter 5−10 nm) at temperatures of T=0.3−0.4K.
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The spectra of a wide range of species attached to or embedded in these nanoclusters

have been measured.3,11

High-resolution spectra in helium droplets at 0.38K of the alkali atoms (Li,

Na, K), as well as Al and Mg have been recorded by Lehmann, Scoles and

coworkers.4-6,8 These experiments revealed that the alkalis are attached to the surface

of helium nanoclusters, while the Al and Mg atoms reside in the interior of the

clusters. Other atomic dopants such as Eu and Ag have been observed to immerse

completely into the helium droplet.3 By contrast, experiment does not provide

unambiguous information on the location of other alkaline earth atoms (Ca, Sr, Ba),

with the exception of Mg. A possible explanation is that they are located in the region

of low helium density near the surface.3

A semi-empirical criterion was proposed by Ancilotto et al, which compares

the gain in energy due to the metal-helium pair interaction against the cost of creating

a cavity within the liquid helium.42 In this work, we will not deal with the solvation

model of atoms in a finite helium droplet. Rather, we assume that the Al atom resides

in the interior of the helium droplets, which was both predicted by a semi-empirical

criterion and verified by experiment.5

Spectra of alkali atoms in helium droplets have been studied by density

functional methods (Cs) and path-integral Monte-Carlo simulations (Li, Na, K) based

on high-level ab initio calculations, including spin-orbit interactions.41,43

Considerable effort has been devoted to the construction of accurate ab initio alkaline

earth (Be, Mg, Ca, Sr, Ba)–helium pair potentials,44-46 because it was found that the

predicted spectra depended critically on the details of the pair-potentials used.3 For

Al atoms, Lehmann, Scoles and coworkers5 used a semi-empirical Hatree-Fock,

damped dispersion (HFD) approach to calculate the Al–He potential energy curves.

These authors used these potential energy surfaces to compare the lower

–energy (12Π1/2) spin-orbit-coupled surface to the spin-orbit free 12Π surface in
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AlHen (n=1, 4, 6–8), where the helium atoms are arranged symmetrically in the xy

plane around the Al pz orbital. They also carried out a density functional calculation

in which Al was treated as a classical object in a quantum liquid. They conclude from

their calculations that the Al electron density is localized in the Al pz orbital,

perpendicular to the plane occupied by the helium ligands

These simple calculations provide qualitative models for how the partially

filled p electron shell in the Al electronic ground state affects the embedding of the

atom into the cluster. Nevertheless, to describe accurately in simulations the many-

body interactions of the open-shell atom is a difficult theoretical challenge. To our

knowledge, no high level simulations have been presented for Al atoms in helium.

In this work, the ground and excited binary Al–He potentials were determined

from accurate ab initio calculations. Subsequently we describe the interaction of Al in

its ground (3p 2P) state with multiple He atoms using the Balling and Wright

model,14 as we discussed in the previous chapter. In section 2.2 of this chapter, we

present the relevant Al–He diatomic potential energy curves, followed by a Balling

and Wright model description of the anisotropic interaction in excited states 2D.

As discussed in the preceding Chapter, thermodynamic properties of quantum

systems can be calculated accurately by path-integral, Monte-Carlo simulations,

provided that the sampling converges in a reasonable amount of time. The easiest

approach is the slice by slice sampling discussed in Chap. 1. However, the primitive

Trotter approximation [Eq. (1.11) in Chap. 1] is accurate only to order O[(β/p)2]. In

order for simulations based on this primitive approximation to be valid, the trotter

number p must be several thousands at the temperatures (T=0.3−0.4 K47) at which

the spectroscopic measurements on impurity-doped helium clusters have been

performed. This means thousands of integrals must be convoluted. The slice-by-slice

sampling becomes slow and convergence requires large CPU times.
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Improvement beyond the primitive approximation involves the use of more

accurate low-temperature approximations to the density matrix. If this lowers the

error, then the Trotter number can be significantly decreased.19 The most

successfully used is the pair-product form based on pair decomposition of the density

matrix, which works perfectly for spherical interactions between helium atoms as

well as between helium and spherical impurities like alkaline atoms.41,47 However,

when the helium-impurity interaction is not isotropic, it is more convenient to work

within the primitive approximation for the helium-impurity interaction.47,48 In this

case, use of the pair decomposition approximation for the helium-helium interaction,

while the primitive approximation is used for the helium-impurity interaction, does

not result in a substantial improvement of the efficiency.48 We, therefore, keep the

primitive approximation in this work.

Another way to improve the sampling is to speed up convergence by better

design of the Metropolis Monte-Carlo method. A review of this approach and an

application to helium systems has been published by Ceperley.19 The implementation

used in our impurity-doped clusters is closely related to recent work on pure helium

clusters by Chakravarty, Gordillo and Ceperley49 and by Brualla.50 Complete details

will be given in section 2.3 below.

Subsequent to the PIMC simulation, we use a semiclassical Franck-Condon

expression to calculate the electronic spectrum corresponding to the 3d←3p, 4s←3p,

4p←3p transitions of the Al chromophore, perturbed and shifted by the helium

cluster. We then compare the 3d←3p spectrum with that observed experimentally by

Lehmann, Scoles and coworkers,5 and compare the 4s←3p spectrum with that of Al

in bulk liquid helium by Takami et al.51 We present the results and discussion in

section 2.4. We conclude with a brief conclusion in section 2.5.
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2.2 Al–HeN potential energy surface

2.2.1 Diatomic potential energy curves

For the He–He interaction, we adopt the well-known Aziz potential.52 To

determine the Al–He ground state potentials, Alexander53 used the coupled cluster

(CCSDT) method with counterpoise corrections. Dunning’s correlation consistent

avtz, avqz and av5z basis sets were used. For the excited states, Alexander53 used

internally-contracted, multireference, configuration-interaction with the Davidson

correction (IC-MRCI+Q) calculations. Basis sets of avqz and av5z were used in

excited states. Calculations, done with the MOLPRO2000 program suite54, were

carried out at 25 different values of the Al−He distances R (3.25, 3.5, 3.75, 4.0, 4.25,

4.5, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5,

12.0, 18.0 and 25.0 bohr). The ground state potentials were extrapolated to the infinite

basis set limit using the Peterson-Dunning formula,55 and the excited states were

extrapolated to the infinite basis set limit using the two-point extrapolation by Martin

and Taylor.56-58 We fit all calculated potential curves to the following form:

V (R) =  c1 exp(−λ1R) + (c2 + c3R)exp(−λ2R) − 1
2 c4 tanh{α(R - λ3)} +1[ ]R−6 (2.1)

Figure 2.1 shows the calculated potential energy curves of the AlHe diatomic

electronic states correlating with the Al ground states (3s23p 2P)+He and Al excited

states (3s23d 2D)+He, (3s24s 2S)+He and (3s24p 2P)+He atomic asymptotes. Table

2.1 summarizes the binding energies (De) and the equilibrium internuclear distances

(Re) from these ab initio calculations.
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  Fig 2.1  Al−He potential energy curves obtained by ab initio calculations. The He-He

interaction potential (dotted line) is also shown.
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  Table 2.1  Binding energy and equilibrium internuclear distance of the Al −He and He−He

interaction.  These values are not reported for states with purely repulsive potential curves.

asymptote state Re/bohr De /cm−1

Al(4p 2P) −He 2Σ n/a n/a
2Π 6.56 93.70

Al(4s 2S) −He 2Σ 19.91 0.23
Al(3d 2D) −He 2Σ n/a n/a

2Π 6.54 125.85
2Δ 6.49 47.93

Al(3p 2P) −He 2Σ 11.07 2.60
(ground state) 2Π 7.43 19.34

2Σ1/2 10.65 2.81
2Π3/2 7.43 19.34
2Π1/2 9.59 4.00

He−He 5.63 7.61

With the inclusion of spin-orbit coupling, the ground state Al (3p)−He

potential splits into a lower 2Π1/2 state and higher states 2Π3/2 and 2Σ1/2. For

comparison, these states are plotted in Fig 2.1. The spin-orbit coupling constant for

the Al ground state is Aso= 74.69 cm−1.18 In table 2.1, we see that when the spin-orbit

coupling is not taken into account, the ground state diatomic interaction between Al

and He (3p 2Π) is more attractive than the interaction between two He atoms

(De=19.34 cm−1 as compared with 7.61 cm−1). However, when the spin-orbit

coupling is included, the potential curve for the lowest Al–He state (2Π1/2), is less

attractive than the He–He interaction. The effects of spin-orbit coupling are much

smaller in the electronically excited states (Aso= 0.54 cm−1 for Al 3d, and Aso= 10.55

cm−1 for Al 4p)18 and, consequently, are not shown here.

For computational expediency, we used a rapid table-lookup algorithm to

interpolate the Al–He ground and excited state potentials, and the He−He potentials.

The potential is first calculated at grids equispaced in r−2, then algebraically

interpolated.24
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2.2.2 Al(2D)–HeN potential

To simulate the electronic transition spectrum semiclassically, we need to

calculate the excited state electronic energy for all nuclear arrangements resulting

from the PIMC simulation on the ground-state potential energy surface. The

interaction between the five-fold degenerate 2D excited state and multiple helium

atoms is treated using the Balling and Wright approach discussed in Chapter 1.2. An

identical model was employed by Krumrine et al.12 in a previous study of the
2D←2P transition of B in the BAr2 complex. For the binary Al−He complex, the

matrix of the electrostatic interaction potential in the basis formed by the five

spherical harmonics with l=2 (d functions) is diagonal and given by [similar to Eq.

(1.2)] V(R)

d+2 d+1 d0 d−1 d−2

d+2 VΔ 0 0 0 0

d+1 0 VΠ 0 0 0                                                  (2.2)

d0 0 0 VΣ 0 0
d−1 0 0 0 VΠ 0
d−2 0 0 0 0 VΔ

with an identical 5×5 block for the ms = −1/2 states

For a helium atom approaching at polar and azimuthal angles (θ, φ), the

interaction matrix is transformed by the following rotation matrix

R(θ, φ) = D(θ)E(φ) (2.3)

where the elements of D(θ) are the Wigner reduced rotation matrix elements

d ′m m
2 (θ) .59,60 Also, E(φ) is a diagonal matrix with diagonal elements [exp(2iφ),

exp(iφ), 1, exp(−iφ), exp(−2iφ)].

The transformation matrix from the definite-m to Cartesian d-functions is



27

T =

dx2 −y2 dxy dzx dyz dz2

d+2 2−1/2 −i2−1/2 0 0 0

d+1 0 0 2−1/2 −i2−1/2 0

d0 0 0 0 0 1

d−1 0 0 −2−1/2 −i2−1/2 0

d−2 2−1/2 i2−1/2 0 0 0

(2.4)

The matrix of the full electronic interaction potential in the uncoupled

Cartesian basis is therefore explicitly given by

V3d (R,θ,φ)=
V55 0
0 V55

(2.5)

where V55 is a 5×5 matrix (identical for both the ms = 1/2 and ms = −1/2 states).  This

is given by

V55 = TTRT(θ, φ)V(R)R(θ, φ)T  . (2.6)

For multiple ligands, the complete potential matrix is the sum of the 10×10

matrices for each ligand. The spin-orbit operator [see in Appendix 2.I, Eq. (2.1.2)]

mixes the ms = 1/2 states and ms = −1/2 states. We diagonalize the 10×10 matrix

which is the sum of the full V matrix and the spin-orbit matrix. The eigenvalues

define, in an adiabatic sense, the excited state energy levels for our spectral

simulation.

2.3 Cluster and spectral simulations

In this study, we will present calculations for Boltzmann statistics only,

ignoring any quantum effects due to the bosonic (or fermionic) nature of the He

cluster. A similar approach was reported recently in a theoretical determination of the

rotational constant of OCS molecules doped into clusters of 4He at the same

temperature.48
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The 4He atoms have such a large zero-point motion that they frequently

change place at low temperature. A dramatic consequence of the exchange is the

superfluidity seen when 4He is cooled below 2.17K. Exchange effects can be

incorporated into the PIMC algorithm by including permutation sampling. In

simulations of pure helium, it is found that only with inclusion of exchange can one

describe accurately properties of the phase transition as well as the response of the

system to rotation. Since permutation space is discrete, one can explicitly construct a

transition table and call up the so-called “heat-bath” transition rule to accept or reject

exchange moves.19,47 The reason for our neglect of particle exchange is that because

the permutation space is very sparse, the fraction of particles involved in the

permutation movement is usually small.19 Converge is slow, especially for

simulations with large Trotter number p.

Also, we do not expect big discrepancies in the calculated spectra due to

neglect of bosonic exchange. As was shown previously by Ceperley,19 the difference

in the pair-correlation functions of “distinguishable” and “indistinguishable“ boson

liquid helium is very small (only 2% at maximum) below the superfluid transition

temperature. This means that the arrangement of helium atoms is not dramatically

affected by the bosonic exchange. The effect of Bose-Einstein statistics is more

obvious in dynamical properties of the system, such as the momentum distribution

and rotational constant. Since our spectroscopic simulation only depends on

differences in excited and ground state energies of the embedded Al atom, which are

governed by the locations of the particles in the system, we do not expect siginificant

discrepancies due to the neglect of particle exchange.

In this section we describe the multilevel Metropolis method and the Frank-

Condon semiclassical spectra simulation. Although another important PIMC

simulation method – the staging method – is not directly used in this work, it serves
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as one justification for our use of the Levy construction in the multilevel Metropolis

method. We outline the staging method in Appendix 2.II.

2.3.1 The Metropolis algorithm revisited

The central requirement in any simulation is finding a method to generate a

sequence of random states so that by the end of the simulation each state has occurred

with the appropriate probability. The solution is to set up a Markov chain of states.24

A Markov chain is a sequence of trials that satisfies two conditions:24

1. The outcome of each trial belongs to a finite set of outcomes,{s0, s1, s2, …},

called the state space.

2. The outcome of each trial depends only on the outcome of the trial that

immediately preceded it.

To construct a Markov chain, let us change the state of the system according to a

fixed transition rule P(s→s′). Repeated application of this transition rule will generate

a random walk. For the state to converge to equilibrium, the transition probability

must be ergodic, i.e., one can move from any state to any other state in a finite

number of steps with a nonzero probability.

The transition probability usually satisfies detailed balance:

π(s) P(s→s′) =  π(s′) P(s′→s) (2.7)

where π(s) is the relative population of state s at equilibrium. If ergodicity is assumed,

then the condition of detailed balance is sufficient to guarantee that in the limit of

many steps, one will sample the limiting distribution π(s).

We can factor the transition probability into an a priori sampling distribution

T(s→s′) and an acceptance probability A(s→s′),

P(s→s′)= T(s→s′) A(s→s′)  . (2.8)

In the generalized Metropolis procedure19 a trial move is accepted or rejected

according to
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A(s→ ′s ) = min 1,T ( ′s → s)π ( ′s )
T (s→ ′s )π (s)

⎡
⎣⎢

⎤
⎦⎥

(2.9)

It is easy to verify that Eq. (2.9) satisfies the detailed balance condition. The

probability T(s→s′) can be chosen to be any convenient sampling distribution. In

particular, in the original Metropolis procedure T(s→s′) = T(s′→s) is chosen to be a

constant distribution inside a cube and zero outside. It then leads to the acceptance

criterion exp(−δV) used in the algorithm introduced in Chapter 1, 1.3.2.

2.3.2 The Levy construction

The Levy construction is an early (1939) algorithm for sampling a free-

particle path (V=0, only the kinetic energy component contributes to the effective

potential). In the Levy construction of a Brownian bridge,19,61 one starts with two

fixed end points, q0 and qβ. The middle point qβ/2 is sampled exactly as

 
qβ /2 =

q0 + qβ
2

+η 2β
4m

(2.10)

where η is a normally distributed random vector, with mean zero and unit covariance.

Because the sampling is exact, there are no rejections. By applying this algorithm

recursively in two subintervals (0, β/2) and (β/2, β), we can generate the additional

two points qβ/4 q3β/4. The algorithm continues: one doubles the number of sampled

points at each level, until the difference between intervals is τ= β/p.

A proof that the Levy construction exactly samples the free particle density

matrix is given in Appendix 2.II. This simple yet powerful sampling method,

combined with the multilevel method discussed in the next subsection, can

significantly accelerate simulations of interacting quantum systems at finite

temperature.
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2.3.3 Multilevel Metropolis method

The multilevel Metropolis method is a general sampling technique19,62 that

links together several accept/reject steps. In cases where the probability function is

difficult to compute or where the trial move is hard to construct and hard to get

accepted, we can first evaluate a crude estimate:

A*(s→s′) = min{1,π*(s′)T*(s′→s) / [π*(s)T*(s→s′)]}  . (2.11)

Then we have many rejections without doing too much work, because we either

calculate a simpler (approximate) probability function, or reject unlikely trial moves

at an early stage. In the rare case that this crude estimate gets accepted, one

subsequently performs a second, accurate accept/reject step by including the initial

crude estimate in the final accept/reject probability:

A˝(s→s′) = min{1, π(s′)T(s′→s) π*(s)T*(s→s′) / [π(s)T(s→s′)π*(s′)T*(s′→s)]} (2.12)

This multilevel algorithm can be generalized to include several intermediate

steps. Suppose we partition the configuration state s into l+1 levels (s0, s1, …,  sl),

where s0 remains fixed, the coordinates belonging to s1 are to be sampled in the first

level, s2 in the second level, and so on. (s0′, s1′, …,  sl′) are the new trial positions,

with s0′=s0. The distribution at the finest level must be exact:

πl(s0, s1, …,  sl) = π(s) (2.13)

With a sampling rule Tk at level k, the sampling level k is accepted with

probability

Ak ( ′s ) = min[1,
Tk (sk )π k ( ′s )π k−1(s)
Tk ( ′sk )π k (s)π k−1( ′s )

] (2.14)

If level k sampling is accepted, we go on to the next level; if not, we go back to the

very beginning and start a new partitioning. In the first level, π0 is canceled out

because s0 remains fixed. The acceptance probability is constructed to satisfy detailed

balance at each level:
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π k (s)
π k−1(s)

Tk ( ′sk )Ak ( ′s ) =
π k ( ′s )
π k−1( ′s )

Tk (sk )Ak ( ′s ) (2.15)

as well as in the overall movement from s → s′.

π (s)P(s→ ′s ) = π ( ′s )P( ′s → s) (2.16)

where

P(s→ ′s ) = Tk ( ′sk )Ak ( ′s )
k=1

l
∏ (2.17)

Eq. (2.16) can be proved by multiplying Eq. (2.15) from 1 to l.

We use the Levy construction in the sampling rule Tk. Since the Levy

construction samples the kinetic energy component in the path exactly, the

rejection/acceptance criterion only involves the potential energy component. For a

total level number of l, we pick up a segment of length 2l+1 from the chain of the

pseudoparticles. With the two ends fixed, we sample the middle point from the Levy

construction and accept or reject according to the potential energy criterion. This is

the first level or coarsest level sampling. If the coarsest level is accepted, we continue

to divide each side into half and sample the two new middle points from the Levy

construction. The acceptance/rejection criterion depends on the potential energy

change at this level, as well as that in the previous level. Note the two displacements

must be accepted together, because they belong to the same level. Otherwise they are

rejected.  We continue with this binary division process until we reach the finest

level. Fig 2.2 is a schematic of a multilevel sampling of l = 3.



33

  Fig 2.2  Graphical illustration of the algorithm with a three-level ( l=3 ) sampling. Each point

here represents a pseudo system with one Al and nHe He atoms.

The detailed algorithm can be illustrated graphically as follows:

1. Pick out a segment of the chain

2. Fix the two ends

Update the middle point. Accept with an approximate probability A1*, or

reject and return to the first step (this defines the coarsest level)

The coordinate q4 is sampled using

 
q4′ =

q0 + q8
2

+η 2τ2

m
(2.18)

where η is a normally distributed random vector with zero mean and unit variance,

with dimension equal to that of the coordinates q. We then compute U(q4;4τ) and

U(q4′;4τ) given by

U(q;kτ) = kτ V(q) (2.19)

The difference in U is

δU4τ = U(q4′;4τ) − U(q4;4τ) . (2.20)
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We then proceed to the next step with probability

A1* = A4τ = min[1, exp(−δU4τ)] (2.21)

3. Update new middle points of the resulting chain. Accept with an approximate

probability A2*/ A1*, or reject and return to first step

The coordinates q2 and q6 are sampled using

 

q2′ =
q0 + q4′

2
+η τ2

m

q6′ =
q4′ + q6

2
+η τ2

m

(2.22)

We then compute

δU2τ = U(q2′;2τ) − U(q2;2τ) + U(q6′;2τ) − U(q6;2τ) (2.23)

and proceed to the next step with probability

A2*/ A1* = A2τ = min[1, exp(−δU2τ + δU4τ)] (2.24)

Where A2* refers to the “local” probability in this level ⎯  exp(−δU2τ ).

4. Update the middle points at the finest level. Accept with probability A3/ A2*,

or reject and return to first step. Here A3 should correspond to the exact

distribution.

The coordinates of q1′, q3′, q5′ and q7′ are sampled using the same Levy

construction with steps divided by 2:
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q1 ' =
q0 + q2 '
2

+η τ2

2m

q3 ' =
q2 '+ q4 '

2
+η τ2

2m

q5 ' =
q4 '+ q6 '

2
+η τ2

2m

q7 ' =
q6 '+ q8
2

+η τ2

2m

(2.25)

Note that at the last level, all the points have been updated, except the two ends of

this segment. The finest level is accepted by the probability

A3/ A2* = Aτ = min[1, exp(−δUτ + δU2τ)] (2.26)

Only when this level is accepted, do we replace the old configuration by the new one.

If it is rejected, the algorithm returns back to the very beginning with all the original

positions restored.

After using all the approximate probabilities Eqs. (2.21), (2.24) and (2.26), we

have indeed sampled the exact distribution

exp(−δU4τ) • exp(−δU2τ + δU4τ) • exp(−δUτ + δU2τ) = exp(−δUτ ) (2.27)

The evaluation of thermodynamic properties must be done only after a decision has

been made to accept or reject the finest level (in the latter case, the system is returned

to the original configuration). Only then does the state sample the exact distribution.

In the standard application of the Metropolis algorithm described in Chap 1,

1.3.2, the pseudoparticles are moved slice by slice, the movements are small, and in

each movement the effective potential of Eq. (1.17) must be calculated. In practical

terms, it is time consuming to move away from a starting point. In contrast, the

advantage of the multilevel Metropolis method is that large and coarse displacements

are sampled in the beginning. If they are not accepted, then time is not wasted on

performing small displacements that are unlikely to be accepted. Thus we save

computational effort and can move much faster through phase space.
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2.3.4 Spectral simulation

The Franck-Condon principle states that the nuclear coordinates of a molecule

remain fixed during an electronic transition. The general application of this principle

was proposed by Lax half a century ago.63 For a recent derivation, see Cheng and

Whaley.64 In a form appropriate for our PIMC simulation,12 we have the following

expression for the relative absorption at frequency ω corresponding to a transition

from the electronic ground state of Al to the ith component of the ten 3d states.

 
Ii (ω )∝ dq∫ e−βVeff δ V3di q( ) −V3p q( ) − ω⎡⎣ ⎤⎦ φei µ φg

2
dq∫ e−βVeff (2.28)

where V3p is the potential energy of Al in its electronic ground state embedded in

helium and V3d is the corresponding energy of Al in its 3d excited state, evaluated at

the same position. Because the helium-helium interaction is pairwise additive in our

simulation, and the positions of the He atoms do not change in a Franck-Condon

transition, the contribution of the helium-helium interactions cancel inside the delta

function.

In particular, V3p is the lowest eigenvalue of the sum of the 6×6 potential

matrix (1.5) and the spin-orbit matrix (1.6). Also, V3di  corresponds to the ith root of

the diagonalization of the sum of the Al(3d)–He Hamiltonian matrices [Eq. (2.15)]

plus the matrix of the spin-orbit operator in the basis of the 10 3d states. Here also

φei µ φg
2

 is the square of the transition dipole, and e−βVeff dq∫ e−βVeff  is the

Boltzmann normalization factor corresponding to the distribution of the ground state

Al–(He)N cluster.

It is generally39,65 assumed that the electronic transition dipole moment is

independent of the nuclear coordinates. This constitutes the Condon approximation.

So when one (or both) of the electronic states involved in the nominally atomic

electronic transition is spherical (S symmetry), the transition dipole is simply a

constant which can be brought outside of the integral and ignored.17,41,64,66
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However, this cannot be done in our case where the ground state is P and the excited

state is D . A similar complication arose in the work by Krumrine et al. on the

2s2p2←2s22p absorption spectrum of the B(Ar)2 complex.12

To evaluate φei µ φg
2

, we use the Wigner-Eckart theorem.60,67

′j ′m Tq
k jm = −1( ) ′j − ′m ′j k j

− ′m q m
⎛
⎝⎜

⎞
⎠⎟

′j T k j (2.29)

where Tq
k  is the q  (q  = −k, −k+1, …, k) component of a rank k tensor, Tk, and

′j k j
− ′m q m

⎛
⎝⎜

⎞
⎠⎟

 is a Wigner 3j symbol. The double-bar matrix element is independent

of m, m´ and q.

At each value of the nuclear coordinates which are the output of the PIMC

simulation, both the excited and ground state wavefunctions φei  and φg , are each

linear combinations of the two spin components of the uncoupled Cartesian basis

wavefunctions dx2 −y2 , dxy , dzx , dyz , anddz2  or px, py, and pz, respectively To use

the Wigner-Eckart theorem, we further transform these Cartesian besis functions into

definite-m basis functions, obtaining

φei µ φg = φei d j d j dl dl µ pm pm pk pk φg
m= −1,−1{ }

1,1{ }
∑

k=1

6
∑

l= −2,−2{ }

2,2{ }
∑

j=1

10
∑   ,

(2.30)

where dj designates one of the 10 uncoupled Cartesian d functions and dl designates

one of the definite-m d functions.  The symbols pk and pm are the corresponding

notations for the Cartesian and definite-m functions for the ground 3p state. Also

φei d j  and pk φg  designate the expansion coefficients of the excited and ground

adiabatic electronic states in terms of the Cartesian states. The matrix elements

d j dl  and pm pk  are the elements of the transformation between the Cartesian

and definite-m bases.
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The matrix element dl µ pm  can be evaluated using the Wigner-Eckart

theorem because the dipole operator µ is a rank one tensor.  In an unpolarized electric

field we have:67

dl µ pm ∝ dl µx pm + dl µy pm + dl µz pm

= dl 2
−1/2(−1+ i)µ+1 pm + dl 2

−1/2(1+ i)µ−1 pm + dl µ0 pm
(2.31)

Since the electronic excitation is confined to the Al atom, and since the He atoms

result in only a weak perturbation, we shall assume that the magnitude of the

Cartesian dipole matrix elements are independent of geometry and dependent only on

the dipole selection rules contained in the three matrix elements of Eq. (2.31). The

values of the matrix elements in the Cartesian basis
d j µ pk = d j dl dl µ pm pm pk

m
∑

l
∑ (2.32)

are given in the following table, in units of µ=µx= µy =µz.
px py pz

dx2 −y2 − 3 3 0

dxy − 3 − 3 0

dzx 3 0 3

dyz 0 3 3

dz2 1 1 −2

(2.33)

The other two terms in Eq. (2.30), the expansion coefficients, are identical to

the eigenvectors obtained from diagonalizing the corresponding potential+spin-orbit

matrix. These depend on the geometry of all the atoms. Thus, apart from a constant

factor, the value of φei µ φg  for a given arrangement of the nuclear coordinates is

obtained from two matrix multiplications between the transition dipole matrix [Eq.

(2.33)] and the matrices of ground and excited state eigenvectors.
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In our PIMC simulation we sample only a finite number of nuclear

coordinates. Consequently, we approximate the delta function in Eq. (2.28) by a

boxcar histogram: the spectral region under investigation is divided into equally

spaced bins of width δω. For each integration point, the weight φei µ φg
2

 is

assigned to the particular bin in which V3d(q) − V3p(q) lies. We use a bin width of 5

cm−1. Finally, the total spectral intensity at frequency ω is obtained by summing over

the intensity associated with the transition to each of the 10 3d excited states.

We use same approach to simulate the Al 4p←3p excitation spectra in helium

cluster. The dipole matrix in the Cartesian basis for a p←p transition, similar to Eq.

(2.33), is given by
px py pz

px 0 −1 1
py 1 0 −1
pz −1 1 0

(2.34)

2.4 Results and discussion

We performed path-integral Monte-Carlo simulation at T=0.38 K, the

temperature in the experiments of Scoles, Lehman and co-workers.5 A total of 121

particles are included in a box with size appropriate to the density of bulk liquid

helium, namely 0.0218Å−3.11 When Al is doped, one Al atom replaces a helium atom

without change in the box. In the experiments, the average cluster size 〈N〉 is

≈4000.11 Consequently, the diameter of the cluster is at least three times larger than

our box size, so that periodic boundary conditions can be used. The standard

“mininum image” convention is used,24 and a spherical cutoff of the potentials is set

to half the side length of the periodic box. The Trotter number p is set to 2700.

There are two basic types of moves we used: The first corresponds to the

bisection method we discussed previously. Here caution must be taken to ensure that

the two fixed ends are in the same box when periodic boundary conditions are used.
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Since the trial movements are constructed by the Levy construction, there is no

adjustable step size here, in contrast to the standard Metropolis method. Instead, the

only parameter is the bisection level. For a total bisection level of 3, we obtained an

overall bisection acceptance ratio about 12%.

The other move is a classical motion, which is inserted to improve the

convergence of the algorithm.49,50 This is a collective motion of all the 2700

pseudoatoms corresponding to a given atom (Al or He). In this motion all the

pseudoatoms are displaced by the same amount, with the displacement chosen

uniformly in a cube of size Δcm. Since this “classical” displacement move does not

alter the inter-pseudoatom distances associated with the chosen atom, the acceptance

criterion of the trial displacement is based entirely on the change in potential energy

(min[1, exp(−βΔV)]).

This is equivalent to a classical motion of a “particle” consisting of p

pseudoparticles. Although this motion does not change the chain structure, it helps to

maximize the movement through phase space. For a displacement Δcm for the helium

atoms of 0.015 bohr (and 1/3 of that for the Al atom), we reach an acceptance ratio

for the “classical” movement of ~50%. Because this classical displacement takes

longer than a bisection movement (since potentials of all p pseudosystems need to be

updated), we attempt it less frequently. We perform one classical movement for every

atom after every 500 bisection movements.

The simulation is carried out with blocks of movements. Each block consists

of 500 bisection movements and one center of mass movement for all atoms. Over

6000 of these blocks were done prior to accumulating data for analysis. Then, unless

otherwise stated, an additional 3000 blocks were carried out, for which data was

recorded.

2.4.1 Structure of the Al doped helium cluster
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  Fig 2.3  Al–He pair correlation functions for one Al atom doped in helium. For comparison,

the pair correlation function for pure helium is also shown.

Insight into the structural changes of the liquid upon addition of an Al atom is

given by the Al–He pair correlation function gAl–He(r) shown in Fig 2.3. This is

compared here with the correlation function for pure helium. The He–He pair

correlation function peaks at a distance (6.54 bohr) substantially longer than the He2

equilibrium internuclear distance predicted by the Aziz potential (5.63 bohr). This is

because in the very anharmonic He2 potential the large zero-point motion results in

an average He–He distance which is somewhat larger than the position of the

minimum.

When one Al atom replaces a helium atom, we see from Fig. 2.3 that the Al

atom pushes the surrounding helium atoms away, relative to the He–He spacing. This
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is a consequence, as shown in Fig. 2.1, of the longer minimum in the binary Al–He

interaction as compared to He2. This repulsion will create a helium cavity around the

Al atom. The first shell of the Al–He pair correlation function peaks at ~9.45 bohr,

close to the position of the minimum of the lowest of the spin-orbit-coupled binary

Al–He potential curves (2Π1/2, re=9.6 bohr, see Fig. 2.1), but much larger than the

minimum in the spin-orbit-free 2Π  potential (re=7.4 bohr). This is evidence that the

spin-orbit coupling cannot be neglected.

Also, the width of the first peak is substantially greater than in the case of pure

helium. This suggests that the distribution of helium around Al is not as uniform as in

pure liquid He. However, we see no clear splitting of this peak. This type of splitting

is apparent when Al is solvated in solid para-hydrogen, which we will discuss below

in Chapter 4 of this dissertation. Because of the liquid character of the solvent with a

consequent disordering of the structure, the effect of the anisotropy of the Al

electronic distribution on the pair correlation function is blurred out.

  Table 2.2  Energetic values from PIMC simulations of a helium cluster with a doped atomic

Al impurity at 0.38K. The simulations consisted of a total of N =121 particles and were carried

out with a Trotter number p=2700. The results are based on 3000 configurations from each

run. The energies were computed from expressions given in Sec. 1.3.4. The quantities Ek

and U are the kinetic and potential energies. Ek/N is the kinetic energy per He atom [In the

case of the doped helium cluster, it is Ek/(N−1)]. The errors are estimated using the analysis

described in section 1.3.5.

U
(cm−1)

EkHe/N
(cm−1)

EkAl

(cm−1)

Pure helium −1463.7±1.8 7.56±0.07

Al + helium −1580.2±3.3 7.69±0.08 3.20±1.10
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Table 2.2 lists the total potential energies of 121 helium atoms and the total

potential energy of one Al atom plus 120 helium atoms, as well as the average kinetic

energy per atom. The well depth of the Aziz potential52 we used to describe the

He–He interaction has a minimum of −3.89 cm−1 at a distance of 6.77 bohr. For a He

atom in an hcp lattice with 12 nearest neighbors, an estimate of the potential energy

per He can be obtained by multiplying this well depth of −3.89 cm−1 by 12/2 (we

divide by 2 to eliminate double counting), ~ −23 cm−1. From Table 2.2 we find that

the average potential energy per atom in pure helium, −1463.7/121 ~ −12.1 cm−1, is

only half the value, because the quantum He liquid is a much more disordered state

than a rigid hcp lattice.

When one Al atom replaces a helium atom, the total potential energy

decreases by ~106 cm−1. This implies that it is energetically favorable for Al to reside

inside the helium droplet. We observe that the kinetic energy of the He atoms is very

large compared to the thermal energy at 0.38K (3/2kT= 0.39 cm−1). This is a direct

measure of the large zero-point motion of the He atom. By contrast, the kinetic

energy of the Al atom is smaller, which indicates that the more massive Al atom

behaves more classically at 0.38K.

The strength of the He–He interaction at distance of the first peak in the

He–He g(r) is ~ –4.85 cm−1, while that of the Al–He 2Π  interaction at the first peak

in the Al–He g–He(r) is ~ –7.31 cm−1.  At that same point the Al–He 2Π1/2  potential

is ~ −3.99 cm−1. These energies alone do not account for the decrease of 106 cm−1

when one Al atom replaces a helium atom. A possible explanation is that the

distortion engendered by the Al atom on the helium droplet compresses the liquid

around the Al atom and thereby decreases the range of helium zero point motion. The

process is accompanied by a gain in total potential energy, because the distance

between helium atoms is reduced.
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2.4.2 Absorption spectra

Fig 2.4 shows the predicted Al (32D←32P) absorption spectrum from the

Franck-Condon simulations as described in section 2.3.4. The spectra is blue shifted

from the positions of the 32D3/2←32P1/2 and 32D5/2←32P3/2 transitions in the

isolated atom (32435 and 32325 cm−1, respectively18). The blue shift and broadening

are a result of the solvation of Al in the helium.5 The large blue shift is due to the

stronger repulsion between the helium cavity and the Al 3d excited state as compared

to the Al 3p ground state.

The upper panel of Fig 2.4 shows the calculated spectrum from the simulation.

We see that the shape, width and relative intensity as a function of frequency of the

calculated spectrum is in moderately good agreement with experiment. However, the

blue shift of the predicted spectra is ~200 cm−1 less than seen in the experiment,

where the blue shift is about 1000 cm−1. This disagreement may be due to errors in

the ab initio potential curves, or, more likely, because we use a relatively small box of

121 particles, while the experiment is carried out in nanodroplets consisting of

thousands of atoms.

As will be described in more detail in Appendix 4.II, we carried out an

estimate of the tail correction of the total potential energy to correct for the finite size

of our simulation box. The formula we use is

4πρ r2V (r)dr
rc

∞
∫ (2.35)

Here the cutoff radius rc is set to be half of the box length. The calculated tail

corrections are listed in Table 2.3. Note that we used averaged potentials for each of

the asymptotic atomic states, because at large Al–He distance the spatial orientation

of the Al electron has only a small effect.

Because the E2Δ  state of Al (3d)–He interaction has a long repulsive tail, the

excited state of Al (3d) has a large positive tail correction to the potential energy. To
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compensate for this we add 174 cm−1 to the 3d excited state energy. If we further add

the ground state tail correction of –11 cm−1, we obtain an additional blue shift of 185

cm−1. The resulting spectrum, shown in the lower panel of Fig 2.4, is now much

closer to the experiment.

  Table 2.3  Calculated tail corrections

ΔU (cm−1)

He–Al 3p (2•X2Π+A2Σ)/3 −11.24

He–Al 3d (2•D2Δ+2•C2Π+E2Σ)/5 174.18

He–Al 4s B2Σ −40.00

He–Al 4p (2•F2Π+G2Σ)/3 −8.54

He––He −0.18
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  Fig 2.4  Predicted and experimental spectra for the Al 32D←32P transition in helium. Upper

panel: calculated spectrum without tail correction; Lower panel: calculated spectrum shifted

by tail correction.  In both panels the experimental spectrum is from Ref. 5.
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  Fig 2.5  Contribution to the overall excitation spectrum of transitions to each of the five

electronic states of Al (3d).

In previous work12 on the BAr2 complex, each electronically adiabatic

excited state was found to be close in character to one of the asymptotic 3d diabatic

states (Dx2-y2, D z2, D xy, Dxz, D yz). Consequently, the total spectrum could be

analyzed nicely in terms of contributions from transitions into each diabatic state. The

peaks in the spectrum could then be assigned, separately, to these individual

transitions.12

Here, however, all five diabatic states are strongly coupled by the interaction

with the surrounding helium atoms so that all asymptotic atomic states make a

substantial contribution to each adiabatic state. We can, therefore, only assign the

spectrum in terms of contributions into the five adiabatic states labeled 1, 2, 3, 4 and

5. This is shown in Fig 2.5. We find that the first four states contribute with almost

equal intensity, at different frequencies. In contrast, the 5th state contributes a smaller

and flatter peak at the blue end of the absorption peak. The separation between the 1st
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and 5th adiabatic states is about 1800 cm−1. As we observe in Fig 2.1, this difference

in energy is consistent with the separation between the lowest C2Π  and highest E2Δ

potential energy curves of the binary Al(3d) −Ηe complex at an internuclear distance

corresponding to the first peak in the Al–He correlation function (8–11 bohr).

Fig 2.6 shows the predicted spectrum for the higher energy (see Fig. 2.1) Al

42S←32P transition in helium, compared with the experimental51 spectrum. These

are plotted as a function of wavelength rather than frequency, to correspond to

Ref. 51. The spectra are also blue shifted from the corresponding atomic transition.

Although the both spectra have the same width and shape, the blue shift in the

simulated spectrum is larger: ~25 nm, or, equivalent, ~2000 cm−1). This difference is

too large to be attributed to the missing tail corrections (Table 2.3). We note,

however, the experiment was carried out at 1.7K, nearly a factor of five higher than

the temperature of our simulation temperature, and furthermore the experiment was

done in bulk liquid He.

  Fig 2.6  Predicted spectra for the Al 42S←32P transition in helium, compared to the

experimental spectrum reported by Hui et al.51
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Fig 2.7 shows our prediction for the Al 42P←32P transition in helium, as well

as the assignment of the transition to the three adiabatic electronic states arising from

Al (4p). To our knowledge, no experiments have been done reported for this

transition. We predict a large blue shift (~7000 cm−1) relative to the corresponding

atomic transition.

  Fig 2.7  Predicted spectrum for the Al 42P←32P transition in helium. The contributions from

transitions to each of the three distinct adiabatic electronic states of Al(4p) are also shown.

2.5 Conclusion

To summarize, we have used the Multilevel path-integral Monte-Carlo

simulation method to determine the arrangement of He atoms around a single Al atom
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doped in a He cluster. We subsequently predict the spectrum corresponding to the

3d←3p, 4s←3p and 4p←3p electronic transitions of the atom. Starting from ab initio

Al–He pair potentials for the ground and lowest excited electronic states, we use the

Balling and Wright pairwise Hamiltonian model to describe the interaction between

the open-shell Al atom and an arbitrary number of He atoms. By describing this

interaction as a sum of pairwise 6×6 Hamiltonian matrices, rather than the sum of

pairwise scalar potentials, we can treat accurately the electronic anisotropy of the Al

atom. A similar approach is used to describe the interaction of Al in its excited 3d and

4p states with multiple He atoms.

To carry out an accurate path-integral simulation in a reasonable time, we

used a multilevel Monte-Carlo scheme. This involves first performing a large coarse

displacement of the system in configuration space, but then refining only if the initial

displacement is accepted. As we have shown, this technique is formally equivalent to

a much more computationally intensive series of small displacements.

Our calculations show that insertion of Al into the cluster significantly

influences the He packing. He atoms are pushed away from the embedded atom,

relative to the He–He spacing in the pure liquid. This effect extends beyond the first

solvation shell. The addition of an Al atom decreases the potential energy of the

system by creating a helium cavity inside the liquid.

Using the results of our PIMC simulation, we then carried out a Franck-

Condon simulation of the spectrum association with the 3d ← 3p electronic excitation

of the solvated Al. With inclusion of an appropriate tail correction, the calculated

spectrum agrees well with experiment, in shape, width and position. The blue shift of

the calculated spectrum associated with the 4s←3p transition of solvated Al is about

25 nm (2000 cm−1) more than seen in experiments on Al embedded into bulk liquid

He. This discrepancy may come from the different conditions under which
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experiment and simulation are performed. We predict that the spectrum associated

with the 4p ← 3p transition will be blue shifted by ~7000 cm−1 (nearly 1 eV).
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Chapter 3: An ab initio based model for the simulation of
multiple 2P atoms embedded in a cluster of spherical ligands,
with application to Al in solid para-hydrogen

We present here a novel approach to the determination of the interaction

between two atoms, each in a 2P electronic state, embedded in a cluster of spherical

atoms. This chapter is reproduced from a previously published paper by Wang,

Alexander and Krumrine [ Q. Wang, M. H. Alexander, and J. Krumrine, J. Chem.

Phys. 117, 5311 (2002)].

3.1 Introduction

The embedding of atomic impurities in solid hydrogen has received

considerable recent experimental attention,2,9,68,69 because of the potential

technological utility of cryo-propellants. Atoms such as Li, Na, B, Al, N, and O have

been successfully trapped in solid hydrogen.9 As a complement to experimental

work, simulation studies allow insight into the efficiency of impurity trapping and the

degree to which these impurities will modify the solid.15,16,70-73 Crucial to the

success of these simulations is the accuracy of the description of the interaction

between the embedded atom and the host.  The accurate description of the atom-host

interaction is complicated by the open-shell nature of most atomic radicals.  Several

recent studies reveal that neglect of this electronic anisotropy can lead to major

inaccuracies in the calculated binding energy and in the radial distribution function of

the impurity, especially when vacancies are present in the solid host.15,16

The interaction of Al or B with multiple pH2 clusters or the solid have been

based on the accurate description of the binary B(Al)–H2 cluster.  A recent paper74

has shown that sophisticated ab initio calculations of this binary interaction, coupled
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with a description of the nuclear motion in the cluster which includes accurately the

electronic orbital and spin angular momenta of the atom, can provide a description of

the lower bound vibration-rotation levels of the Al–oH2 complex which agrees, to

within experimental uncertainty, with optical spectroscopic experiments.  Simulations

of clusters involving more than one H2 molecule,13 as well as simulations of a B or

Al atom in solid pH2,15,16 have incorporated these accurate binary interactions within

a model, developed first by Balling and Wright,14 which allows the interaction

potential for the solid to be obtained by diagonalizing a sum of 6 × 6 matrices.17

From the viewpoint of embedding either B or Al in solid pH2 it is crucial to

consider how recombination of these atoms will be mediated by the solvent

molecules.  The ease of this recombination will set an upper limit to the capacity of

the cryosolid to store embedded atoms.  Early work in this direction by Voth and

Jang71 neglected the electronic anisotropy of both the B–H2 and B–B interaction.  As

we shall show in the present article, it is straightforward to go beyond this

approximation by extending the ideas inherent in the approach of Balling and

Wright14 to develop an accurate description of the interaction of two 2P atoms in the

presence of multiple spherical ligands.

In the next section we shall describe new ab initio calculations which were

done to determine the long-range behavior of the 18 states of Al2 (9 singlet and 9

triplet states) which correlate with both atoms separately in their ground 2P electronic

state.  The spin multiplicity of the triplet states then implies a total of 36 distinct

states.  To describe, simultaneously, the interaction of the two 2P atoms with each

other and with the spherical ligands, it is most convenient to work in a diabatic

representation, which correlates with an asymptotically correct description in which

the orientation of the singly-occupied p orbital on each atom is well defined with

respect to a body-frame axis.  In Sec. 3.3 we show how a simple valence-bond-based

model, related to the atoms-in-molecules (AIM) ideas of Moffitt,75 can be developed
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to describe relations between this approximately diabatic basis and the molecular

orbital description of the Al2 molecular states.

Section 3.4 then describes how the interaction with each spherical ligand can

be added on to this description of the atom-atom interaction.  Our entire approach is

closely related to the recent work of Batista and Coker76 on the simulation of I2

molecules embedded in liquid xenon, in which they used a diatomics-in-molecules

(DIM) based approach to model the interaction potential. In Sec. 3.5 we report our

development of an efficient computer code to calculate the resulting interaction

potential and its derivatives, for future use in simulation studies. Section 3.6 presents

a demonstration calculation, which shows how the interaction between two Al atoms

site-substituted in solid pH2 is significantly altered by the pH2 molecules that separate

the two metal atoms. We close with a brief conclusion.

3.2 Ab initio calculations

The encounter of two atoms both in 2P electronic states gives rise to six triplet

states: 3Πg, 3Πu, 3Δu, 3Σg–, and two states of 3Σu+ symmetry which we label 13Σu+

and 23Σu+; as well as six singlet states: 1Πg, 1Πu, 1Δg, 1Σu–, and two states of 1Σg+

symmetry, which we label 11Σg+ and 21Σg+. Because of the spin degeneracy of the

triplet states and the spatial degeneracy of the Π and Δ states of both multiplicities,

there are in fact 36 distinct electronic states. To determine the potential curves for the

corresponding states of the Al2 dimer as a function of the atom-atom distance R, we

carried out state-averaged multi-configuration, self-consistent field calculations, SA-

MCSCF (the state averaging was applied separately to all states of a given

multiplicity).77 Subsequently, we performed internally-contracted, multi-reference,

configuration-interaction (ICMRCI) calculations78,79 of the interaction potentials.

The augmented correlation-consistent valence quintuple zeta (av5z) basis sets of

Dunning and co-workers were used.80-82 Only the outer p orbitals on each atom were
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included in the active space, so that the 1s, 2s, 2p, and 3s orbitals on the Al atom were

kept doubly occupied.

At each value of R the two pairs of states of the same symmetry (3Σu
+ for the

triplets and 1Σg+ for the singlets) were transformed so as to maximize the overlap

between the orbitals of each pair, and the asymptotic orbitals of each pair of states,

computed at R = 30 bohr.  This diabatizing transformation was then applied to the

ICMRCI energies for these pairs of states, at the same value of R.  In this way the

sum of the orbital and overlap contribution to the mixing of the two states of the same

symmetry is minimized, so that all the mixing manifests itself in the CI coefficients.

Figure 3.1 displays the dependence at long range of the six diabatic potentials

of both singlet and triplet multiplicity for Al2.  As can be seen, at long range the 3Πu

curve is the most attractive.  The latest spectroscopic investigations indicate that this

likely remains the lowest state at the molecular minimum, even though the 3Σg+ state

is the lowest electronic state of the bound molecule.83 Figure 3.2 displays the

dependence on R of the coupling between the two diabatic states of Σg+ symmetry

(singlets), which we designate 1V12, and between the two diabatic states of Σu+

symmetry (triplets), which we designate 3V12.  These diabatic couplings are large in

magnitude, especially the coupling between the two singlet states.
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  Fig 3.1  Potential curves for all the singlet (upper panel) and triplet (lower panel) electronic

states of Al2 which correlate with the separated atoms both in their ground electronic state.

The two triplet states of Σu
+ symmetry and the two singlet states of Σg

+ symmetry have been

diabatized, as described in Sec. 2.2 of the text. For clarity, dashed lines are used to

designate the states of Π symmetry.
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  Fig 3.2  Diabatic coupling potentials: 1V12 between the two singlet states of Σg symmetry

and 3V12 between the two triplet states of Σu symmetry.

3.3 Valence bond description of the 2P−2P diabatic states

To describe the interaction of two 2P atoms embedded in a cluster formed of

spherical ligands (as, for example, Al atoms embedded in pH2), we would like to use

the ab initio based interaction potentials presented in Sec. 3.2 combined with a model,

similar to that presented by Balling and Wright,14 for the interaction of each of the

two metal atoms with the spherical ligands.  This model is based on explicit

consideration of the interaction of the px, py, and pz orbitals with each ligand.  The 2P

atom will be described in an uncoupled, Cartesian basis | l ql > where l, the orbital

electronic angular momentum of the atom is 1 and ql = x, y, or z designates the

orientation of the real (Cartesian) singly-filled p orbital.  The encounter between an

atom in a 2P state and a spherical atom (or pH2) at any position in space can be

described as a rotation of a diagonal matrix which contains the two potentials, VΣ and

VΠ, which describe the interaction of the 2P atom and the spherical partner when the

latter is located on the z axis.14,17
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As mentioned in the Introduction, this approach is closely related to the earlier

work of Batista and Coker76 in which they modeled the interaction of two I atoms

embedded in liquid xenon.  These authors used a diatomics-in-molecules (DIM)

approach.84 Applications to molecular dynamics of the DIM and closely-related

orthogonalized Moffitt method go back over thirty years.85-87

It would be straightforward to describe similarly the interaction between each

spherical ligand and both 2P atoms if we knew the Cartesian orientation of the two p

orbitals.  Unfortunately, these are coupled together in any molecular orbital

description.  Thus, prior to determining the ligand-metal interaction, it is necessary to

transform the 36 diabatic states, which are described by definite values of the

projection Λ of the total electronic angular momentum and the projection Σ of the

total electronic spin, into an uncoupled basis consisting of the product of the

Cartesian spin-orbital on Al atom a (the Cartesian orbital multiplied by its spin, α or

β) and the Cartesian spin-orbital on Al atom b.  We shall denote this the qaqb basis,

which is a product basis of what Moffit would describe as “approximate atomic

functions”.75 The Al–Al axis is assumed to define the z-axis.

In the MCSCF calculations described in the preceding section only the two Al

3p orbitals make up the active space.  It is straightforward, by analysis of the

coefficients of the MCSCF wavefunctions, to extract the contribution of each

covalent (valence bond) qaqb orbital occupancy to the MCSCF state wavefunctions.

At long range, because the MCSCF wavefunctions dissociate properly, all ionic

(qaqa´) contributions to the wavefunctions vanish.  The diabatization of the two 3Σu

states and the two 1Σg states ensures that the asymptotic description of these two

states in terms of qaqb states [see Eq. (3.3) below] remains valid at all values of R.

The transformation between the valence-bond-like qaqb basis (columns) into

the 9 triplet molecular orbital diabatic states with MS = 1 (rows) is given by
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xayb xbya
3Σg– 2–1/2 2–1/2                                                                        (3.1)
3Δu,xy 2–1/2 –2–1/2

xazb xbza
3Πgx 2–1/2 2–1/2                                                                        (3.2)
3Πux 2–1/2 –2–1/2

(with a similar expression for the Πgy and Πuy states in terms of yazb and ybza), and

xaxb yayb zazb

Δu,x2-y2 2–1/2 –2–1/2 0

1 Σu
+ 6–1/2 6–1/2 (2/3)1/2                                               (3.3)

2 Σu
+ 3–1/2 3–1/2 –3–1/2

We obtain an entirely similar expression for the triplet states with MS = –1, except

that each of the Cartesian spin-orbitals has spin state β.

For the states, both singlet and triplet, with MS=0, the comparable

transformations from qaqb states into definite Λ and definite Σ (MS) states is given by

the following matrices:

xax b xaxb yayb yayb zazb zazb
1Δg,x2-y2 1/2 –1/2 1/2 –1/2 0 0

1 1Σg+ 12–1/2 –12–1/2 12–1/2 –12–1/2 3–1/2 3–1/2

2 1Σg+ 6–1/2 –6–1/2 6–1/2 –6–1/2 –6–1/2 6–1/2  (3.4)
3Δu,x2-y2 1/2 1/2 –1/2 –1/2 0 0

1 3Σu
+ 12–1/2 12–1/2 12–1/2 12–1/2 3–1/2 3–1/2

2 3Σu
+ 6–1/2 6–1/2 6–1/2 6–1/2 –6–1/2 –6–1/2

xayb xayb xbya xbya
1Σu

– 1/2 –1/2 –1/2 1/2
1Δg,xy 1/2 –1/2 1/2 –1/2                                           (3.5)
3Σg – 1/2 1/2 1/2 1/2
3Δu,xy –1/2 –1/2 1/2 1/2
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and

xazb xazb xbza xbza
1Πgx 1/2 –1/2 1/2 –1/2
1Πux 1/2 –1/2 –1/2 1/2                                           (3.6)
3Πgx 1/2 1/2 1/2 1/2
3Πux 1/2 1/2 –1/2 –1/2

with a similar matrix relating the Π states of y symmetry to the Cartesian spin-orbit

labeled states yazb , yazb , ybza , and ybza .

Strictly speaking, the qaqb states are not true valence bond states because the

overlap does not enter into the transformation between these and the molecular orbital

states.  However, the nearest-neighbor distance in solid H2 is ~7.2 bohr.  We will be

interested primarily (see Sec. 3.5 below) in the simulation of two Al atoms separated

by at least 10 bohr, where overlap factors will be small.  This neglect of the overlap

terms is equivalent to what has been called the ZAOA (zero atomic overlap

approximation) in the DIM literature.86,88,89

In the molecular orbital basis, the matrix of the electronic Hamiltonian Hel,

exclusive of spin-orbit coupling, is diagonal, except for the two diabatic states of Σu

symmetry (for the triplets) and the two diabatic states of Σg symmetry (for the

singlets).  The transformation [defined by Eqs. (3.1)–(3.6)] into the qaqb basis gives

rise to numerous off-diagonal components, although the matrix of Hel is still diagonal

in the total spin-projection quantum number, and the matrix is divided into blocks by

the reflection symmetry of the qaqb states.  The matrix elements of Hel in the qaqb

basis can be expressed in terms of the diagonal matrix elements of Hel in the diabatic

molecular orbital basis plus the two off-diagonal coupling terms 1V12 and 3V12.  The

explicit form of these matrix elements is given in Appendix 3.I.

The transformation described by Eqs. (3.1)–(3.6) pertains to the MCSCF

wavefunction, and is an orthogonal transformation, valid at all R.  As R decreases,
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ionic terms will make a contribution to the MCSCF wavefunction.  In addition,

double (and higher order) excitations will make a contribution to the IC-MRCI

wavefunction at all values of R.  Consequently, the diabatic states, obtained by the

transformation described by Eqs. (3.1)–(3.6), and the corresponding diabatic energies

(Appendix 3.I), are characterized by a single valence-bond-like qaqb electron

occupancy only asymptotically.  However, since the CI corrections to the

wavefunction are small, and since the ionic terms vanish asymptotically, to an

excellent degree of approximation the valence-bond qaqb labels provide an excellent

description of the behavior of the two p electrons in each state.

We write the spin-orbit Hamiltonian as the sum of the usual atomic spin-orbit

Hamiltonian on each 2P atom, taken separately,
Hso(a,b)= Hso(a) + Hso(b) (3.7)

The distances are large enough that we can safely neglect any spin-other orbit terms

coupling the two atoms.  In the 6 × 6 basis of the three Cartesian p orbitals (and their

two spin projections), the matrix of the spin-orbit Hamiltonian is

H so =
1
2
a ×

x y z x y z
x 0 i 0 0 0 1
y –i 0 0 0 0 i
z 0 0 0 –1 –i 0
x 0 0 –1 0 –i 0
y 0 0 i i 0 0
z 1 –i 0 0 0 0

(3.8)

where a is the spin-orbit constant of the 2P atom (74.7 cm–1 for Al18).  Consequently,

the matrix elements of the spin-orbit Hamiltonian in the basis of the 36 qaqb valence-

bond states are given by
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qa ′qb ′ |Hso | qaqb =δqa′qa qb ′ |Hso |qb +δqb′qb qa ′ |Hso |qa (3.9)

where qb ′ |Hso |qb  and qa ′ |Hso |qa  correspond to matrix elements of the one-

atom spin-orbit matrix are given by Eq. (3.8).

Adding the 36 × 36 matrix of the spin-orbit Hamiltonian to the full 36 × 36

matrix of the Al2 dimer, and diagonalizing the resulting Hamiltonian, we obtain fully

adiabatic electronic states in the presence of the spin-orbit coupling.  Figure 3.3

shows the dependence on R of the potential curves of these fully adiabatic states at

long range.  The most attractive of these corresponds to the 3ΠΩ=0 state.  This

strongly attractive potential would govern the interaction between two Al atoms

embedded in a cluster of spherical atoms, provided that the spherical ligands did not

interfere with the coupling between the electronic and spin orbital angular momenta.

As we will see below, in solid pH2 the ligand–Al interaction does significantly effect

the strength and range of the attractive interaction between the two Al atoms.

  Fig 3.3  Fully-adiabatic Al2 potential curves obtained by diagonalizing the sum of the 36 × 36

matrix of the electronic plus spin-orbit Hamiltonian.
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3.4 Interaction of the two 2P atoms with multiple spherical ligands

Balling and Wright14 developed a model to describe the interaction of

multiple spherical atoms with a single atom in a 2P electronic state. The coordinate

system is defined by the orientation of the three p Cartesian orbitals on the 2P atom.

As discussed in the preceding section, if the spherical ligand were located along the z-

axis, the interaction could be described in terms of two potentials, VΣ and VΠ.90 If the

spherical atom is rotated to a position {R, θ, φ}, the interaction, still in the basis of the

three Cartesian p orbitals, is described by the matrix

V(R, θ, φ) ≡ D(φ, θ, 0) V(R) DT(φ, θ, 0) (3.10)

Here D(φ, θ, 0) is the matrix of the rotation specified by the Euler angles {φ, θ, 0},59

and V(R) is a diagonal matrix with elements

ql ql = x y z
x VΠ(R) 0 0
y 0 VΠ(R) 0                                                        (3.11)
z 0 0 VΣ(R)

It can be shown that the transformation of Eq. (3.10) leads to the following

expression for V(R,θ,φ), still in the basis of the x, y and z Cartesian p orbitals.

x2 xy xz

V =VΠ 1 + (VΣ–VΠ) ×
1
R2

  xy y2 yz      (3.12)

xz yz z2

where 1 designates the unit matrix and {x,y,z} designates the Cartesian position of the

spherical ligand. Here we have suppressed the arguments of V and the dependence on

R of VΣ and VΠ.  In the basis of the Cartesian orbitals with negative spin projection
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quantum number ( x , y, z ) we have an identical 3 × 3 matrix, so that in the basis of the

six p spin-orbitals, the interaction of the Al atom with a spherical perturber at position

{x,y,z} is block diagonal and given by

 
V6 (x, y, z)=

V 0
0 V

(3.13)

where V is defined by Eq. (3.12).

In the presence of multiple spherical ligands, each located at position

{xi,yi,zi}, the matrix of the complete interaction potential is just

 
V=

i
∑ V6 (xi , yi , zi ) (3.14)

In the adiabatic limit, we diagonalize the sum of the 6× 6 V matrix and the 6× 6 matrix

of the spin-orbit operator on the single 2P atom [Eq. (3.8)]. The motion of the atoms

is governed by the lowest root Va, to which is added the pair-wise scalar interaction

between all the spherical ligands.

This simple, yet effective, model can easily be extended to the interaction of

two 2P atoms embedded in an environment of multiple spherical ligands.  The

interaction between the two Al atoms is described by the block-diagonal 36 × 36

matrix defined in Appendix 3.I to which is added the 36 × 36 matrix of the combined

spin-orbit Hamiltonian [see Eqs. (3.8) and (3.9)].  The transformation to the valence

bond qaqb states, defines, for each state, the Cartesian orientation of each of the p

orbitals.  Consequently, the interaction with each spherical ligand can be described by

a separate 36 × 36 matrix Vi(xi,yi,zi) with matrix elements

 
qa ′qb ′ |Vi | qaqb =δqa′qa V6( )qb ′qb +δqb′qb V6( )qa ′qa (3.15)

where the matrix elements of V6 in the Cartesian states of either atom a or atom b are

given by Eqs. (3.12) and (3.13).
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In the adiabatic limit, the interaction matrix Vi is summed over the positions

of each ligand, to which is added the 36×36 matrices of the spin-orbit operator [Eq.

(3.9)] and the Al–Al interaction (discussed in the preceding paragraph).  The resulting

matrix is diagonalized.  To the lowest root is added the scalar pair-wise interaction

potential between all the spherical ligands.  This then defines the potential for the

motion of any atom in the ensemble.

In the case of a single 2P atom the orientation of the p orbitals refers to the

(arbitrary) space-fixed axis system.  For the present situation of two 2P atoms, the

orientation of the p orbitals in the qaqb basis is defined with respect to a body-frame

system where the vector joining the two 2P atoms defines the z axis.  Accordingly, the

coordinates {xi,yi,zi} which define the position of each ligand must be referenced to

this same body frame.  This is discussed in more detail in Appendix 3.II.

3.5 Computational implementation

In order to pursue eventually simulation studies, we have developed a fast

FORTRAN subroutine to calculate the potential for two Al atoms embedded in N pH2

molecules as well as the 3N+6 derivatives necessary for the determination of the

forces.  The 18 Al–Al diabatic energies, plus the two off-diagonal diabatic coupling

potentials were fitted with accurate functional forms containing 4–6 parameters per

term.  For computational expediency, we used a rapid table-lookup algorithm to

calculate the Al–Al diabatic energies, the Al–H2 V Σ and VΠ potentials, and the

H2–H2 potential, as well as their derivatives. In this algorithm, the potential is first

calculated at a grid of points equi-spaced in r–2, and then algebraically interpolated.24

To determine the potential for a given arrangement of the N+2 atoms requires

the determination of one set of 14 Al–Al potentials (12 diagonal diabatic potentials

and two off-diagonal diabatic potentials), the transformation of the resulting terms

into the qaqb basis (see Appendix 3.I), the determination of 4N Al–pH2 potentials (VΣ
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and VΠ for each Al–pH2 pair), the transformation of the resulting 2N matrices into

the qaqb basis following Eq. (15), the diagonalization of the resulting 36 × 36 matrix,

and the determination of N(N–1)/2 H2-H2 potentials.  In the present application we

took the H2–H2 potential of Silvera and Goldman.91

In addition there are 3N+6 derivatives of the potential which must be

determined in order to calculate the forces which are necessary in a molecular

dynamics based simulation, such as those of Voth and co-workers.15,16,71 The vector

joining the two Al atoms ( 

R  )defines the z axis in the body-frame coordinate system.

The x and y axes are defined by the orientation of  

R  in the space-frame.  As is

discussed in more detail in Appendix 3.II, the derivatives of the potential with respect

to the position of any of the pH2 ligands can be determined using the Hellman-

Feynman theorem, which requires only the derivative of the Vi matrix of Eq. (3.15)

for the particular Al–H2 pair.  For the remaining 6 coordinates (associated with the

two Al atoms), the derivatives involve numerical differentiation of the lowest root of

the full 36 × 36 potential matrix.

A series of tests showed that the total computational time scaled nearly

linearly with N.  This indicates that the rate determining step, despite the efficient

table lookup method, is the calculation of the 4 N Al–pH2 potentials, and the

transformation of these contained in Eq. (3.15).

3.6 Test calculation

To investigate the role that the intervening pH2 molecules play in moderating

the Al–Al interaction, we carried out the following simple simulation.  We assume

that solid pH2 crystallizes in a hexagonal close-packed lattice.92  The structure of the

hcp lattice (illustrated schematically in Fig 3.4) consists of an overlapping series of

infinite hexagonal planes.  We substituted two Al atoms at the center of adjacent

hexagons in one plane, as illustrated in Fig 3.5.  We then allowed the Al atoms to
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move, symmetrically, along the line which connects the two site-substitutional

positions.  Within the hcp lattice each site-substituted Al atom is surrounded by 12

nearest neighbors (at a distance of 7.163 bohr, which corresponds to the zero-pressure

density of solid H2 of 23.10 cm3/mole92), six next-nearest neighbors (at a distance of

10.129 bohr), and two next-next-nearest neighbors (at a distance of 11.696 bohr).  To

simulate the effect of embedding the two Al atoms in the pH2 lattice, we included all

pH2 molecules which were situated within 11.7 bohr of at least one of the

substitutional sites, which is a total of 36 pH2 ligands.  Figure 3.6 shows the position

of these 36 ligands with respect to the two Al atoms.

  Fig 3.4  Schematic picture of an hcp lattice.  The lattice consists of layers of hexagonal

planes.  Neighboring planes are displaced with respect to the adjacent planes.  For more

information, see http://cst-www.nrl.navy.mil/lattice/struk/a3.html.  Each vertex has 12 nearest

neighbors:  6 at the vertices of the surrounding hexagon in the same plane, and 6 arranged in

equilateral triangles in the two adjacent planes.  The solid and dashed connection lines do

not indicate actual bonds, but are inserted merely to guide the eye and illustrate the relative

position of the hexagonal planes.
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  Fig 3.5  Position of site-substituted Al atoms in two adjacent hexagons in one hcp plane.  In

our demonstration calculation the atoms are allowed to move symmetrically back and forth

along the line which connects them.  The solid and dashed connection lines do not indicate

actual bonds, but are inserted merely to guide the eye.

  Fig 3.6  Section of the hcp lattice of pH2, showing the two site-substituted Al atoms (white)

surrounded by all 36 pH2 molecules which lie within 11.7 bohr of one or the other of the Al

atoms.  For purposes of illustration, in this figure the crystal is oriented so that the hexagonal

planes, labeled “A” – “E” can be distinguished.  The pH2 molecules in planes A and E lie

directly above and below the two Al atoms, as indicated by the dashed connection lines.

These connection lines do not indicate actual bonds, but are inserted merely to guide the

eye.
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The potential energy for motion of the Al atoms along their line of centers was

determined by constructing and diagonalizing the full 36×36 matrix, discussed in the

preceding sections.  Figure 3.7 shows the dependence on the Al–Al distance of the

energy of the lowest root, which provides, in the adiabatic model, the potential for the

relative motion of the Al atoms.

  Fig 3.7  Potential of interaction between two Al atoms, site substituted in two adjacent

hexagons of an hcp lattice of pH2, constrained to move symmetrically along the line of

separation (see Fig 3.5).  The upper, parabolic curve corresponds to a calculation in which all

Al– pH2 interactions are included, but the Al–Al interaction potential is set to zero.  The lower,

barrierless curve, corresponds to a calculation in which all Al–pH2 interactions are included

and the Al–Al interaction is assumed to be given by the most attractive (3Πu) of the Al–Al

interaction potentials (see Figs 3.1 and 3.3).  Finally, the middle curve depicts the lowest

eigenvalue of the 36 × 36 matrix of the full interaction potential as developed in the present

paper.

For comparison, we also present in Fig 3.7, the potentials which arise from a

calculation in which we include the interactions between both Al atoms and the 36
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pH2 ligands, without including any interaction between the two Al atoms.  This

potential then corresponds to the lowest eigenvalue of the sum of the Balling and

Wright 6 × 6 matrices for the interaction of the two Al atoms with all the hydrogens.

The resulting potential is centered at a distance of 12.34 bohr, which is nearly equal

to the distance between the two substitutional sites (12.41 bohr, see Fig 3.5).

If we were to include just the pH2 ligands which lay a certain distance from

one of the Al atoms, then, because of the symmetry of this distribution around the

substitutional site, the most favorable position of the Al atom would be at this

substitutional site.  However, because all pH2 ligands are included which lie within a

given distance from either pH2, the distribution of these is not symmetrically placed

with respect to the position of either Al atom.  Consequently, the pH2 ligands which

are centered around the one Al atom act to attract, slightly, the other Al atom, so that

equilibrium separation between the two Al atoms is slightly less than the distance

between the substitutional sites.

In the second comparison contained in Fig 3.7, we assume that the 6 × 6

Balling and Wright model described the interaction of each Al atom with all the

hydrogens, as described in the preceding paragaraph, and that the most attractive of

the Al2 potentials (3Πu,Ω=0, see Figs 3.1 and 3.3) describes the interaction between

the two Al atoms.  In other words we assume that the presence of the pH2 molecules

does not interfere with the spin and orbital angular momentum coupling of the two 3p

electrons on the separate Al atoms, so that they can couple as favorably as possible.

In this case, we observe that the strong attractive limb of the 3Πu state can overcome

the relatively weak Al–pH2 interactions, which, as we have seen in the preceding

paragraph, tend to hold the Al atoms at their substitutional sites.  Consequently, when

the 3Πu potential is added, there is no apparent barrier to recombination of the two Al

atoms.
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However, as can be seen in Fig 3.7, when the electronic anisotropies of the

Al–Al and Al–pH2 interactions are taken into account simultaneously, then there

appears a substantial barrier to recombination of the Al atoms.  The 3Πu state

corresponds to a σaπb – σ bπa  orientation of the two 3p electrons.  However, the

interaction of the σ orbital with the intervening two hydrogen molecules is strongly

repulsive, which tends to overcome the attractiveness of the 3Πu state, at least at long

range.  As the two Al atoms approach closer (inside of ~10 bohr), the depth of the

3Πu attraction becomes progressively larger and eventually dominates, which would

lead to eventual recombination. The slight kink in the middle curve in Fig 3.7

corresponds to an avoided crossing. Examination of the eigenvectors show that at

long range the lowest adiabatic state has, as we would expect, predominately

3Π character. At shorter distances, where the σ  interaction becomes unfavorable, the

lowest adiabatic state shifts to predominately 1Σg+ character which corresponds to a

more favorable πxπx+ πyπy orientation of the 3p electrons.

3.7 Conclusion

We have presented a novel approach to the determination of the interaction

between two atoms, each in a 2P electronic state, embedded in a cluster of spherical

atoms.  The model is based on the prior determination of accurate ab initio potential

energy curves for the M2 system, for all the 36 electronic states which correlate with

dissociation into ground-state M(2P) atoms, and the subsequent transformation of the

two 1Σg
+ and two 3Σu

+ states into a diabatic basis in which the electronic character

remains as similar as possible to the separated atom limit.  Consequently, making use

of a valence-bond-like (or atoms-in-molecules) model, we transform the 36 molecular

orbital states, which have a definite multiplicity and D∞h spatial symmetry, into a set

of 36 Cartesian (qaqb) states which correspond to assigning the two p electrons to

approximate Cartesian orbitals centered on either atom.
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It is then easy to use the earlier Balling and Wright model14 to determine, in

this 36 state basis, the matrix elements corresponding to the interaction of each 2P

atom with any number of surrounding spherical ligands.  The lowest eigenvalue of the

resulting 36× 36 matrix defines, in an adiabatic approximation, the potential

governing the motion of the atoms.  Our construction of the interaction potential is

closely related to recent work of Batista and Coker on the interaction of two I atoms

in liquid xenon.76

We presented an application to the determination of the interaction of two Al

atoms embedded in solid pH2, site-substituted in the center of two adjacent hexagons.

High accuracy, multi-reference, configuration-interaction calculations were used to

determine the necessary Al2 potential energy curves.  The results of this model

calculation show that the interaction between the two Al atoms is significantly

modified by the presence of the intervening pH2 models.  When the Al atoms are

separated by distances greater than 10 bohr, the interaction with the pH2 molecules

impede the two 3p electrons from aligning themselves correctly for the lowest

electronic state of Al2.  Consequently, there appears a significant barrier (at long

range) to recombination of the two Al atoms.  This barrier is not present if the

competing electronic anisotropy of the interactions is not taken into account.

This model could be adapted without modification to the interaction of other

2P atoms in either pH2 or other spherical environments (Ar, He).  Full many-body

simulation studies, along the lines of those we have carried out for a single B or Al

atom in pH2,15,16 can now be done to explore to full details of the recombination of

embedded atoms.  In addition, the model presented here could be extended, in a

straightforward manner, to the interaction of atoms in other open-shell electronic

states, or, to the interaction of two atoms in different electronic states.
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Chapter 4: Path-integral Monte-Carlo simulations of solid para-
hydrogen doped with several Al impurities

4.1 Introduction

The embedding of light impurities in solid hydrogen has received considerable

experimental and theoretical attention in recent years, partly because of the potential

technological applications as high energy density materials.10 Fajardo and coworkers

have successfully trapped light impurities such as Li, B, Al, N, O in solid

hydrogen.2,9,93 Spectral studies have also been performed by them and

others.2,9,74,93

On the theoretical side, numerous simulation studies have appeared, in order

to explain observed spectra and to predict the stability of the trapped impurity. Klein

and co-workers used path-integral Monte-Carlo (PIMC) methods70,94 to investigate

the spectra and the nature of trapping sites for a single atomic lithium impurity

trapped in para-hydrogen (pH2) and ortho-deuterium (oD2). We recall that pH2 and

oD2 are the even-j isotopes which are spherically symmetric in the lowest state.

The calculations of Klein and co-workers indicated that a lithium atom

appears to occupy preferentially a site with nearby vacancies. Using centroid path-

integral molecular-dynamics (PIMD), they also looked at the diffusion and melting of

semi-infinite slabs of pH2 containing a Li impurity atom.95 These authors used pair

potentials to describe both the Li-pH2 (or o D 2) and the pH2-pH2 (oD 2-oD2)

interactions. The assumption of pairwise additivity for the impurity atom-ligand

potential is valid for Li, for which the electronic configuration of the ground state is

spherical (2S).
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Jang and Voth used PIMD and centroid molecular dynamics (CMD) to

investigate the stability with respect to recombination of the atomic impurities, Li and

B, trapped in solid pH2.71,72 Their calculations showed that B-doped systems can

achieve a higher impurity concentration than Li-doped systems before recombination

occurs. In their description of the B-H2 interaction Jang and Voth neglected the

angular anisotropy of the electron density of the B atom in its 2P ground state.

Since B has a singly-filled 2p orbital in its ground state, its interaction with a

spherical pH2 partner will depend on the orientation of the B orbital. The binary B-H2

interaction is correctly described by two degenerate Π states and a Σ+ state. If the z-

axis is taken to be the internuclear axis, then these three states correspond to the three

Cartesian orientations of the singly filled p-orbital (pz for the Σ+ state and px and py

for the Π state). However, in the work of Voth and Jang, the B-H2 interactions were

treated using a single potential obtained by averaging over the three orientations of

the 2p orbital.

Alexander et al. were the first to take into account the electronic anisotropy of

the ground state B atom in a cluster,12,13 using the model due to Balling and

Wright,14 discussed in Chap. 2 of this thesis. This work was then extended to include

correctly the orbital degeneracy in simulations of a single B atom in solid pH2 (with

Jang and Voth).15 This investigation showed that the orientation of the B electronic

charge distribution significantly affects the energetics of the trapped atom and the

orientation of the nearby pH2 molecules. Small distortions of the lattice occur to

allow an energetically favorable orientation of the 2p orbital, even in the absence of a

vacancy.

The Balling and Wright model14 was used earlier by Boatz and Fajardo to

estimate the energies of Na in its 3p (2P) excited state embedded in solid Ar. With

this model, they used classical Monte-Carlo simulations to calculate the optical

absorption spectra of Na trapped in clusters, on surfaces and in matrix sites of Ar.96
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More recently, a closely related, but classical molecular dynamics simulation based

on a diatomics-in-molecules (DIM) treatment of the potential was used to study the

magnetic and optical properties of atomic B in rare gas matrices.97,98 In both cases,

the interaction of the 2P electronic states with an arbitrary positioned rare gas atom is

described by the rotation of a diagonal interaction matrix, the elements of which are

the Πx, Πy and Σ
+ interaction potentials. In these treatments the interactions involving

an open-shell atom are described in a more realistic manner by the assumption of a

pairwise-additive Hamiltonian matrix rather than a pairwise-additive scalar potential.

Mirijanian, Alexander and Voth further extended the quantum simulations

studies of Alexander and co-workers15 to an atomic Al impurity.16 The same trend

was found for Al as for B: The orientation-dependent Al-pH2 potential induces some

distortion of the nearest-neighbor ligand shell to allow the Al p-orbital to orient itself

to minimize the repulsive Σ and maximize the attractive Π interactions (For Al-pH2

the VΣ and VΠ potentials are plotted in Fig 4.1).

  Fig 4.1  Potential curves of the Al-pH2 pair. The spherical average over the three possible

orientations of the 3p orbital, Vsph=2/3VΠ+1/3VΣ, is also shown.
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For open-shell atoms such as B and Al, one important question remains

unanswered: when doped with multiple atomic impurities, is the system stable with

respect to recombination, a highly exothermic process? To study more than one

doped open-shell atom, we must consider the interaction between impurity atoms,

which depends on the relative orientation of the p-electrons of both dopants.

As described in Chapter 3 of this thesis, in an earlier article we developed a

theoretical framework for the accurate description of the interaction of two 2P atoms

in the presence of multiple spherical ligands.99 We included a demonstration

application to the interaction of two Al atoms embedded in solid pH2, site-substituted

in the center of two adjacent hexagons. When the hydrogen molecules were fixed at

their lattice positions, there appeared to be a significant barrier to recombination of

the two Al atoms.99 In this chapter we will relax this constraint, to allow for the

motion of the H2 molecules, which may be considerable even at temperatures below

5K. To do so requires a complete quantum simulation.

Toward this goal, we carried out a series of PIMC simulations of solid pH2 (or

oD2) with two Al atoms site-substituted in different initial positions. The aim is to

understand the equilibrium stability of the trapped Al impurities and the changes in

the solid structure when multiple Al dopants are added. In the next section we shall

describe the method. In the results section we describe the calculations we have done

so far. We close with a brief conclusion.

 4.2 Simulation methods

4.2.1 Model and potentials

The modeling of the interactions is fully described in several earlier

papers.16,99 We use the Silvera-Goldman potential91 to describe the interactions

between the pH2 molecules, which we assume spherical. The Al-pH2 and Al–Al
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potentials are based on accurate ab initio calculations by Alexander et al.100 The

same potential has been used to study the Al-oD2 system. We construct the potential

matrix in a basis of diabatic Cartesian states, and then add the matrix of the spin-orbit

operator in the same Cartesian orbital basis. The lowest eigenvalue of the matrix

defines, in an adiabatic approximation, the potential which governs the motion of the

particles.

As discussed in the Introduction, when a single Al atom is embedded in solid

pH2, the three fold degeneracy of Al in its 3s23p electronic ground state is split by the

interaction with pH2 into two degenerate Π states and a Σ+state. The corresponding

potentials are labeled VΠ and VΣ (see Fig. 4.1). In the 6-fold basis of the 3px, 3py and

3pz orbitals with both up and down spin, the matrix is diagonal. The matrix elements

are VΠ and VΣ. This assumes that the pH2 is positioned along one of the Cartesian

axes. Within the Balling and Wright model,14 if the p H 2 molecule is instead

positioned at some arbitrary position (r,θ, φ), then the interaction, in the fixed px py pz

basis can be described by an orthogonal transformation (rotation) of this diagonal

matrix.

The interaction of the Al atom with an arbitrary number of pH2 ligands is then

a sum of similarly rotated matrices. To this is added the matrix of the spin-orbit

operator in the px py pz Cartesian orbital basis. The lowest root of the sum of these

matrices, plus the sum of the scalar H2–H2 interactions, defines the potential for

motion of the Al and pH2 molecules. For comparison, we will use a scalar Al–H2

potential, which is the spherical average over the three possible orientations of the 3p

orbital, namely, 2/3VΠ+ 1/3VΣ.16

When two Al atoms are embedded, the construction of the potential is

considerably more complicated, as described in detail in Chapter 3. First, one needs

accurate ab initio potential energy curves for all the 36 Al2 electronic states which

correlate to dissociation into ground-state Al (2P) atoms. Consequently, making use
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of a valence-bond-like model, we can transform these 36 molecular orbital states into

a set of 36 states which correspond to assigning the two 3p electrons to Cartesian

orbitals centered on each atom. Once this is done, it is straightforward to use the

Balling and Wright model14 to determine, in the 36 state basis, the matrix elements

corresponding to the interaction of each 2P atom with any number of surrounding

spherical ligands. Within the adiabatic approximation, the lowest eigenvalue of the

resulting 36×36 matrix defines the potential governing the motion of the molecules.99

4.2.2 Simulation in a canonical ensemble

For solid p H 2 at 4K the thermal de Broglie wavelength31,101

λ=
 
2π2 / mkBT( )1/2  is ~ 11.6 bohr. Since this is larger than the lattice constant (~ 7.2

bohr), solid pH2 must be treated as a quantum solid.23

The exchange of H2 molecules is unimportant in the solid.19,23,102 Also

because the Al atom is considerably heavier, its behavior will be more nearly

classical. Consequently we assume that all the particles in our simulation obey

Boltzmann statistics, to which the primitive PIMC method described in Chapter 1 is

directly applied. This was the approach followed by Neumann, Zoppi et al. in

simulations of pure pH2 at T=18.9K,33,102,103 except that the “intramolecular”

coordinates of their chain were sampled directly from a multivariate Gaussian

distribution [i.e., the contribution to the Boltzmann factor originating from the first

term in the exponential in Eq. (1.15) is sampled directly]. For our system at 4K, we

found the spread of the free particle to be appreciably larger than the length over

which the potential energy changed significantly, so the rate of accepted moves is low

and efficiency is not greatly improved, as was pointed out by Neumann, Zoppi et

al.33 In this thesis we will report only results obtained by the primitive PIMC

algorithm.

In our simulations, the number of particles is kept at N=180. Initial
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configurations are created by stacking together 5×3×3 copies of the unit cell of the

hcp lattice (containing four particles each), to match the experimental density of pure

solid para-hydrogen, namely 23.1cm3/mol.92 The result is an almost cubical

simulation box (35.81×37.22×35.09 bohr3, or 18.95×19.69×18.57 Å3), to which

periodic boundary conditions are applied. Thus, the static lattice energies we report

below apply to 180 particles in a single simulation box, unless otherwise specified.

(The structure of the hcp lattice is illustrated in Fig 3.4.)

We start the simulation by first obtaining an equilibrated slice configuration

for solid pH2. We adjust the parameters (Trotter number, step size, acceptance ratio)

during the process. In the Monte-Carlo procedure we move each of the p slices

sequentially, but within each slice all N particles are moved simultaneously. The

Metropolis rejection/acceptance algorithm is imposed after the displacement of each

slice. Sequential displacement of all p slices is called a cycle. Over 500,000 cycles

were performed in each run prior to data acquisition to insure initial equilibration of

the system.

While the primitive algorithm is sometimes regarded as inefficient,19 it is easy

to implement. To be cautious, we carried out an error analysis identical to that

described in section 1.3.5 in Chapter 1 for pure solid hydrogen. The “size” of the

quantum particles, which we estimate by the rms delocalization about the average

position, is calculated and compared with previously published simulations for pH2 at

similar temperatures and densities.

A rough criterion for choosing the Trotter number p was set by Berne and

Thirumalai,20

 
p >> β2

mr0
2 (4.1)

where r0 is the length scale over which V(x) changes. The Silvera-Goldman H2–H2

potential has a minimum energy of −22.07 cm−1 at 6.52 bohr, and a full width at half
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minimum of ~ 2.13 bohr.  If we set r0 ~ 1 bohr, p should be bigger than 21. Voth et

al.15,16 used p=48 in PIMD studies of both pure and doped pH2. Other PIMC studies

of pure pH2 have used values of p ranging from 4 to 64.33,102 We set the Trotter

number successively to 25, 48, 68 and 98 in order to monitor the convergence.

As a final check to our method, we replaced one pH2 molecule with an Al

atom after first obtaining an equilibrated solid pH2 configuration. The resultant Al-H2

pair correlation function gAl–H2 was compared to that obtained from Voth’s earlier

PIMD simulations under the same conditions.16

We start the simulation of multiple Al dopants by site substituting two pH2

molecules in the center of two adjacent hexagons (either sharing sides, or sharing a

single vertex), or in the center of two next-nearest-neighbor hexagons, or in two

adjacent layers. After a run has completed, we save g(r), as well as the equilibrium

positions and average energies. For comparison, a simulation of Al doped in solid

oD2 was also done for site-substitution in two side-by-side adjacent hexagons.

The maximum step size Δ is taken to be the same in each dimension for pH2.

Since the rms delocalization of particles in a harmonic potential is proportional to

m−1/2, and since Al is ~13 times heavier than H2, we use a smaller step size for the

displacements of the Al atoms by imposing a maximum Al step size of ΔAl=ΔH2/3.

For the Al−oD2 system, we keep the same ratio of step sizes. The value of ΔH2/D2

controls the fraction of random moves which are accepted. In each simulation, we

adjusted ΔH2/D2 to obtain an acceptance ratio xA of ~ 0.35. In this way we neither

wasted nor accepted too many steps.
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4.3 Results and discussion

4.3.1 Solid pH2 and oD2

Some results of our PIMC simulations on pure solid pH2 / oD2 are listed in

Table 4.1. All calculations were performed at a temperature of 4K. Each simulation

was started from a perfect hcp lattice and consisted of a production stage of 3000 ×

NM cycles subsequent to the equilibration stage. Here NM is the “dilution factor”, the

number of cycles skipped between configurations which are saved for analysis. A

total of 3000 configurations were analyzed in each run. The value of NM was taken to

be 150 except the run for Trotter number p=98, for which NM =500. In the Table

ΔH2/D2
 is the maximum step size for pH2 / oD2. Here s is the correlation length for

the effective energy Veff. As an example, the plot of Mbσ
2(〈Veff〉b)/σ2(Veff) vs. Mb

1/2

(as defined in Chapter 1 section 1.3.5) is shown for the run of p=25 in Fig. 4.2. The

pair correlation functions for pH2 and oD2 are plotted in Fig 4.3. For pH2, Trotter

numbers of p=48, 68 and 98 give virtually the same curve, while the p=25 curve is

not converged to the same extent. The sharper peaks in the correlation function reveal

that the heavier oD2 molecules are more localized about their equilibrium lattice sites.
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  Table 4.1  PIMC simulations of solid pH2 / o D2 with the Silvera-Goldman potential and

N=180 particles at 4K. Here, p is the number of beads (Trotter number), ΔH2/D2 is the

maximum step size for pH2 / o D2, xA is the fraction of accepted trial moves (acceptance

ratio), s is the correlation length for the effective energy, and R is the rms delocalization of the

quantum particles. Also Ek and U are the total kinetic and potential energies. The statistical

uncertainties were determined as described in section 1.3.5. The kinetic energy per particle,

Ek/N is also listed. The results are based on 3000 configurations out of each run, with dilution

factor = 150 except for p=98, where a dilution factor of 500 was used. The numbers marked

“p=∞” have been obtained by linear extrapolation as a function of 1/p.102

p ΔH2 /D2 xA s RH2 /D2 EkH2 /D2 UH2 /D2 EkH2 /D2
/N UH2 /D2 /N

(bohr) (bohr) (cm−1
) (cm−1

) (cm−1
) (cm−1

)

pH2 25 0.15 0.333 16 1.348 6786±10 −19949±8 37.70±0.06 −110.8±0.04

48 0.12 0.358 18 1.307 7933±29 −19481±18 44.07±0.16 −108.2±0.10

68 0.10 0.379 20 1.288 8291±34 −19316±15 46.06±0.19 −107.3±0.08

98 0.08 0.408 8 1.270 8526±37 −19256±17 47.37±0.21 −107.0±0.09

∞ 1.235 9155±39 −19012±56 50.9±0.22 −105.6±0.31

oD2 48 0.10 0.301 20 1.088 5381±20 −20935±37 29.90±0.11 −116.3±0.21
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  Fig 4.2  Plot of 
  
Mbσ

2( Veff b
) σ 2(Veff )  against Mb

1/2 [Eq. (1.37)] with p=25. A plateau

value of s=16 is obtained. This means that only one configuration in every 2400 cycles (the

product of s times the dilution factor of 150) contributes completely new information to the

average.

  Fig 4.3  Pair correlation functions for pure pH2 and oD 2. For pH 2, results are shown

corresponding to simulations with different Trotter numbers p.
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Zoppi and Neumann102 determined that the rms delocalization of pure solid

hcp pH2 described by a Lennard-Jones interaction potential at 18.9K with density

ρ=28.27 nm−3 was 0.888 bohr, with a smaller value at higher densities. The rms

delocalization we report here is considerably greater because we are at a lower

density and a lower temperature, where quantum effects are more significant. If we

compare the particle localization, defined as the rms delocalization divided by the

lattice constant (7.163 bohr here), our value of ~0.18 for p≥ 48 agrees well with

Goldman’s theoretical calculation (0.18)92 and Nielsen’s neutron scattering

measurement (0.192±0.006).104 The comparable value for oD2 is 0.15, which also

agrees with Goldman’s theoretical calculation,92 although no experimental value is

available. Because of the heavier mass the quantum delocalization is smaller for D2.

Also listed in Table 4.1 are values for the average kinetic and potential

energies. The correlation length s was estimated separately for the kinetic energy and

potential energy, because these properties converge at different rates. We see that the

kinetic energy is comparable in magnitude to the static lattice energy, and the kinetic

energy per particle is much greater than kBT  (kBT=2.78 cm−1 at T =4K), a

characteristic of a quantum solid. In Kelvin units, the average kinetic energy of a

hydrogen molecule is 63.4±0.2K (p=48), which agrees with the result of Jang and

Voth’s constatnt pressure PIMD simulation (62.7±0.1K) under the same conditions.72

The kinetic to potential energy ratio increases as p increases. Following suggestions

by several authors,102 we used linear extrapolation as a function of 1/p to estimate the

limits as p→∞.

For pH2, the limiting value of the total kinetic energy is about half of the

average potential energy depth. Because of the smaller quantum effect, the kinetic

energy for oD2 decreases about 30%. Also the static lattice energy is 7.5% lower in

the presence of this smaller distortion to the lattice structure than that of pH2. The

potential energy per pH2(oD2), UH2 /D2 /N  (N=180), ranges from −105.6 to
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−116.3 cm−1. In Kelvin units, the average interaction potentials between  hydrogen

molecules is 155.7±0.2K (p=48), which agrees with the result of Jang and Voth’s

constant pressure PIMD simulation (152.3±0.1K) under the same conditions.72 The

Silvera-Goldman potential91 which we use to describe the binary interactions for pH2

(or oD2) molecules has a minimum of −22.07 cm−1 at a distance of 6.52 bohr. At the

lattice distance 7.16 bohr for solid pH2 / oD2, the value of this potential is −18.41

cm−1. For a molecule in an hcp lattice with 12 nearest neighbors, an estimate of the

potential energy per pH2 / oD2 can be obtained by multiplying −18.41 cm−1 by 6, ~

−110 cm−1, comparable to our results in Table 4.1.

Using a discrete variable representation (DVR) method (Appendix 4.I), we

calculate the zero-point kinetic energy per pH2 / oD2 in the dimer to be 2.4 / 2.7

cm−1. In simulations of pure solid pH2 / oD2 we found that the kinetic energy per

molecule in the solid was much higher than that in an isolated dimer. Also, the kinetic

energy is approximately proportional to m–1/2 for pH2 / oD2, which is reasonable

since we use the same potential for both. For a harmonic oscillator, the zero-point

kinetic energy is just  ω 4 .

4.3.2 One Al atom in pH2

The first two rows in Table 4.2 present some results from our simulation study

of Al impurities doped in pH2. Table 4.3 lists the corresponding energies. The pair

correlation function for one Al atom site-substituted in solid pH2 is shown in Fig 4.4.

As discussed in section 4.2.1, simulations were carried out with both the correct

anisotropic Al-H2 potential and a spherically averaged potential. The resulting curves

agree well with those from Voth’s earlier PIMD simulation at the same temperature

and density, and based on the same potentials.16
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One interesting result is that the degree of delocalization of the Al atom

predicted by the spherically averaged potential is considerably greater than when the

orientation dependent potential is used (as shown by the values of RAl in Table 4.2).

This might be a result of the non-uniform electronic density of the Al atom. By

comparing with the pair correlation functions for pure solid pH2 (Fig 4.4), we see that

the embedded Al atom acts to push the nearest neighbor pH2 molecules away.

By fitting with a Gaussian function the first peak of the correlation function

for the spherically averaged Al–H2 potential, we can use Eq. (1.19) to estimate the

number of particles present in the first solvation shell. The number is 12.7. In a rigid

hcp lattice the number of nearest neighbors is 12. Thus, we conclude that for the

spherically averaged AlH2 potential, the nearest-neighbor pH2 molecules are  pushed

away uniformly.

However, as we might have anticipated, for the anisotropic Al–H2 potential,

the displacement of the nearest-neighbor pH2 molecules is no longer uniform. The

first peak in the correlation function splits into two merged peaks. We can fit these

with two Gaussian functions, obtaining 5.7 and 6.7 for the number of particles

contained in the inner and outer shoulders, respectively. Thus the 12 nearest

neighbors are divided into two groups: 6 stay at roughly their nominal hcp positions,

while 6 others are pushed farther away than in the case of the spherically averaged

Al–H2 potential. Those molecules which have been pushed farthest away contribute

to the shoulder peak at ~8.1 bohr.

The H2 molecules which lie outside the first solvation shell are little affected

by the electronic anisotropy, as can be seen in the shape of the second peak in the

correlation function at ~12.4 bohr. The maximum is not shifted. The shape of the

peak is only slightly changed.
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  Table 4.2  PIMC simulations of solid pH2 / oD2 with doped Al impurities at 4K. Total N=180

particles. Trotter number p=48. ΔH2 /D2  is the step size for pH 2 / o D 2
a. x A is the

acceptance ratio, s  is the correlation time for the effective energy, and R  the rms

delocalization of the quantum particles. The results are based on 3000 configurations out of

each run, with dilution factor = 150, except that the rms delocalizations are based on 100

configurations, with a dilution factor of 500.

ΔH2 /D2
a

xA s RH2 /D2 RAl
(bohr) (bohr) (bohr)

pH2 + 1Al [anisotropic Al–H2
potential]

0.12 0.356 40 1.303 0.443

pH2 + 1Al [spherical Al–H2 potential] 0.12 0.356 20 1.314 0.657

pH2 + 2Al [case (a)]b 0.12 0.353 27 1.299 0.663

pH2 + 2Al [case (b)]c 0.12 0.355 20 1.302 0.502

pH2 + 2Al [case (c)]d 0.12 0.354 14 1.296 0.611

pH2 + 2Al [case (d)]e 0.12 0.355 17 1.295 0.561

pH2 + 2Al [case (b), spherical
potential]c

0.12 0.352 18 1.303 0.483

pH2 + 2Al [case (c), spherical
potential]d

0.12 0.354 16 1.287 0.575

oD2 + 2Al [case (a)]b 0.10 0.300 20 1.097 0.505
a
Step size for Al ΔAl=1 3ΔH2

b
case (a): two Al atoms site-substituted at two lattice points in the center of two side-sharing adjacent hexagons

c
case (b): two Al atoms site-substituted at two lattice points in the center of two vertex-sharing adjacent hexagons

d
case (c): two Al atoms site-substituted at two lattice points in the center of two next-nearest neighboring

hexagons
e
case (d): two Al atoms site-substituted at two lattice points in the center of two different layers
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  Table 4.3  PIMC results for energy of solid pH2 / oD2 with doped Al impurities at 4K. The

simulation parameters are listed in Table 4.2. Ek and U are the kinetic and potential energies.

Ek/N is the kinetic energy per particle.

EkAl/NAl EkH2 /D2
NH2 /D2 U

(cm
−1

) (cm
−1

) (cm
−1

)

pH2 + 1Al [anisotropic Al–H2
potential]

16.85±1.37 44.49±0.20 −20041±13.4

pH2 + 1Al [spherical Al–H2 potential] 15.61±1.73 44.57±0.11 −19700±15.1

pH2 + 2Al [case (a)] 37.06±1.30 44.84±0.16 −31597±12.9

pH2 + 2Al [case (b)] 18.83±1.36 45.15±0.15 −20643±9.4

pH2 + 2Al [case (c)] 18.29±1.23 45.18±0.09 −20675±10.1

pH2 + 2Al [case (d)] 16.57±1.41 45.08±0.10 −20700± 7.2

pH2 + 2Al [case (b), spherical
potential]

34.92±1.18 44.89±0.10 −31224± 9.1

pH2 + 2Al [case (c), spherical
potential]

14.75±1.23 45.43±0.11 −19943± 7.8

oD2 + 2Al [case (a)] 39.65±1.69 30.73±0.14 −33097±12.5
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  Table 4.4  Binding energy and equilibrium internuclear distance of the Al −H2 and H2−H2

interaction

  Fig 4.4  A l – H2 pair correlation functions for one Al atom site-substituted in the solid,

determined using the orientation dependent and spherically averaged Al–H2 potentials. For

comparison, the pair correlation function for pure solid pH2 is also shown.

H2−H2 Al(3p 2P) −H2 (ground state) Al −Al

(D2−D2)
2Σ 2Π

Spherical
(2/3VΠ+1/3VΣ)

2Πu

Re /bohr 6.52 9.96 6.53 8.38 5.39

De /cm−1 −22.07 −16.05 −123.01 −30.65 −11471.42

Potential at
lattice
distance/cm−1

−18.41 238.45 −104.26 9.98 −5643.32
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To gain a more descriptive view of how the embedded Al atom(s) affect the

positions of the pH2 molecule, we display, in Fig. 4.5 the average projection of the

positions of the 12 nearest neighbors on the xy and xz planes (the xy plane is defined

as the plane in which Al is hexagonally caged in the center of 6 nearest neighbor H2

molecules, see Fig 4.5). For the anisotropic potential (Fig 4.5.I), we see that the 6

nearest neighbors in the xy plane remain near the original positions, while the 6 others

above and below the plane are pushed up and pushed aside almost uniformly along

the vector which connects the Al atoms with each of the pH2 ligands.

In contrast, Fig 4.5.II shows comparable position projections but for the

simulations based on the averaged (spherical) potential. Here all 12 H2 molecules are

displaced outward to the same extent. One possible explanation of the difference

between two figures is that the electron density of the Al atom is rearranged so that

the p electron is confined to the pz orbital, thereby minimizing the electron density in

the xy plane. In this way, for the interaction involving the 6 in-plane ligands, the

strong head-to-head VΣ repulsion (Fig. 4.1) is avoided while the attractive VΠ

interaction is maximized, so that the total potential energy is lowered. This is

reflected in the average energies shown in Table 4.3. Compared to pure solid H2

(p=48, Table 4.1), embedding an Al atom lowers the total static lattice energy by ~

220 cm−1 if the spherically averaged Al–H2 potential is used, and by ~ 560 cm−1 if

the orientation dependent potential is used. In contrast, however, the kinetic energy of

the H2 molecules does not change much.

As summarized in Table 4.4, the Silvera-Goldman potential91 describing the

pH2–pH2 interaction has a value of −18.41 cm−1 at the lattice distance 7.16 bohr. The

minimum in the Silvera-Goldman potential (−22.07 cm−1) occurs at a closer distance

of 6.52 bohr.  The minimum in the spherically-averaged Al–H2 potential is

−30.6 cm−1 and occurs at 8.38 bohr. The value of the VΠ potential is –104.26 cm−1 at
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the lattice distance. The minimum in VΠ  is –123.0 cm−1 at 6.53 bohr, and, in VΣ,

-16.1 cm−1 at 9.96 bohr.

In the case of the spherically-averaged potential, an estimate of the static

lattice energy change can be obtained by multiplying the Al–pH 2 energy

(-30.6 cm−1) by 12 (the number of nearest neighbors) and then subtracting the 12

pH2–pH2 energies corresponding to the pH2 which was replaced.  This yields

-146.3 cm−1. Our result of ~ –220 cm−1 is lower by ~ 73 cm−1, probably because of

the next-nearest-neighbor contributions and the change in the H2–H2 energy

engendered by the compression of the H2 lattice when the Al atom is embedded.

For the anisotropic Al–H2 potential, an estimate of the static lattice energy

change can be obtained by multiplying –104.26 cm−1 by 6 (for the nearest neighbors

in the same plane, which stay near the original lattice points and presumably mainly

feel the VΠ attraction). We must again subtract the self-energy of the replaced pH2.

We obtain −515.1 cm−1, comparable to the value of ~ –560 cm−1 form the simulation.

Here too, next-nearest-neighbor interactions and the result of the compression of the

H2 lattice by the push of Al atom are probably responsible for the ~ 45 cm−1

discrepancy.
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  Fig 4.5  Positions of the 12 nearest-neighbor pH2 molecules and the central, site-substituted

Al atom impurity resulting from 100 PIMC configurations, with dilution factor of 500 and p=48,

projected onto the xy and xz planes. The small filled circles (•) mark the positions of the hcp

lattice sites. The open circles (o) designate the averaged positions of the pH2 molecules and

the Al atom. The positional spread of the Al atom from simulations with Trotter number p=48

is illustrated by the dotted points. To guide the eye, the hcp vertices lying in parallel xz planes

are connected by straight lines. (I): Anisotropic Al–H2 potential,
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  Fig 4.5  (II): Spherically averaged Al–H2 potential.
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4.3.3 Two Al atoms in pH2

In the investigation of two Al atoms embedded in solid pH2, we studied four

initial locations for the atoms (Fig 4.6). In case (a), the Al atoms are in the center of

two side-sharing adjacent hexagons. This is the closest distance (12.406 bohr) at

which we can site substitute two Al atoms with at least one intervening pH2 molecule.

In case (b), the two Al atoms are centered in two vertex-sharing hexagons, at a

distance of 14.325 bohr. In case (c), the two Al atoms are in two next-nearest-

neighbor hexagons, at a distance of 18.951 bohr. In case (d), the two Al atoms are

initially positioned in the centers of two neighboring hexagons located in adjacent hcp

planes, at a distance of 16.016 bohr.

  Fig 4.6  Position of site-substituted Al atoms in the center of two hexagons. The connection

lines do not indicate actual bonds, but are inserted merely to guide the eye. Case (a): two

side-sharing adjacent hexagons in one hcp plane; Case (b): two vertex-sharing adjacent

hexagons in one hcp plane; Case (c): two next-nearest neighboring hexagons in one hcp

plane; Case (d): two adjacent layers.
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Figure 4.7(I) shows the Al–Al pair correlation functions after the PIMC

simulations were run for these four cases. In case (a), the equilibrated distance

between the two Al atoms is dramatically shifted inward compared with the initial

separation. The Al–Al internuclear separation for the lowest Al2 potential curve

distance predicted by ab initio potentials is Re = 5.39 bohr. Since this value

corresponds to the maximum in the pair distribution function in Fig. 4.7(I), it is

obvious that in case (a) the two Al atoms manage to move the H2 molecules aside and

recombine. For comparison purposes, a similar simulation was done on two Al atoms

embedded in solid oD2. Here, too, the Al–Al pair distribution function indicates that

the two Al atoms combine.

Figure 4.8(I) shows the distortion in the lattice structure reflected in the

Al–H2/D2 pair correlation functions. In combining, the Al atoms actually move away

from the closest hydrogens. This is manifested in the outward shift of the peaks in

gAl-H2(r). This tendency is even stronger in pH2 than in oD2. More insight is gained

by the positional projections of the nearest neighbors shown in Fig 4.9. We see big

distortions to the lattice structure; very few molecules remain close to their original

lattice points. The two vertex H2/D2 molecules which lie between the original sites of

the two Al atoms are pushed away dramatically so that the Al atoms can move toward

each other. The tension on the lattice engendered by this large distortion in the xy

plane is reduced by relocation of molecules out of this plane. Also, the distortion is

not only localized in the layer containing the Al atoms. The four pH2/oD2 molecules

which were initially above and below the final positions of the Al atoms are pushed

away strongly and in a nonuniform manner, both in the xy plane and in the z direction.
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  Fig 4.7  Al–Al pair correlation functions for two Al atoms site substituted in the solid. (I): case

(a) substitution in pH2 and oD2; (II): case (b) substitution in pH2; (III): case (c) substitution in

pH2. (IV): case (d) substitution in pH2. The vertical bars indicate the initial separation

between the Al atoms. In (I) the vertical bar at r=5.39 bohr indicates the Al2 equilibrium

distance predicted by our ab initio calculations.
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  Fig 4.8  Al-ligand pair correlation functions for two Al atoms site substituted in the solid. (I):

case (a) substitution in pH2 and o D2; (II): case (b) substitution in pH2; (III): case (c)

substitution in pH2; (IV): case (d) substitution in pH2. For comparison purposes the pair

correlation function for pure solid pH2 is also shown in each plot.
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  Fig 4.9  Positions of the 22 nearest-neighbor pH2 / oD2 molecules and the two central, case

(a) site-substituted Al atoms resulting from 100 PIMC configurations, with dilution factor of

500 and p=48, projected onto the xy and xz planes. The filled circles (•) are the positions of

the hcp lattice sites. The open circles (o) designate the averaged (centroid) positions of the

pH2 / oD2 molecules and the Al atoms. The positional spread of the Al atom is illustrated by

the dotted points. To guide the eye, the hcp vertices lying in parallel xz planes are connected

by straight lines. (I): 22 H2 + 2 Al, (II): 22 D2 + 2 Al.

In case (b), the two Al atoms stay close to the original positions. In case (c)

and case (d), the two Al atoms equilibrate at a somewhat shorter distance, but far

from combining into an Al2 molecule [Fig 4.7(II), (III), (IV)]. In cases (b), (c), and

(d) there are more intervening H2 molecules than in case (a). The Al–Al attraction is

not strong enough to push all the H2 molecules away. If we neglect the dip in the

shoulder, the first peak in gAl-H2 (r)  of Fig 4.8 [(II), (III), (IV)] strikingly resembles,

both in position and shape, that in Fig 4.4 for the anisotropic Al–H2 potential. This

indicates that each Al atom affects the H2 lattice structure separately.
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Figure 4.10 shows the planar projections of the positions of the H2 molecules

for case (b), (c) and (d). Cases (b) and (c) are similar to the one Al atom impurity

case; the H2 molecules located in the same xy plane as an Al atom stay close to their

original positions, while some H2 molecules above and below this plane are pushed

away. However, this displacement is not as uniform as in the case of the single atom

impurity. Furthermore, there is a small overall translational motion of the lattice cage

which accompanies the movement of the Al atoms. As a result, the two nearest

neighbor cages move slightly closer in both case (b) and (c). In case (d), however, the

in plane movement is a little larger. Presumably, when the two Al atoms are in

different layers, the lattice distorts differently to accommodate the tension induced by

the strong attraction between the Al atoms.

  Fig 4.10  Positions of the nearest-neighbor pH2 molecules and the two central, site-

substituted Al atoms resulting from 100 PIMC configurations, with dilution factor of 500 and

p=48, projected onto the xy and xz planes. The filled circles (•) are the positions of the hcp

lattice sites. The open circles (o) designate the averaged positions of the pH2 molecules and

the Al atoms. The spread in the positions of the Al atoms is shown by the dotted points. To

guide the eye, the hcp vertices lying in parallel xz planes are connected by straight lines. (I):

23 H2 + 2 Al (case (b) substitution), (II): 24 H2 + 2 Al (case (c) substitution) (III): 24 H2 + 2 Al

(case (d) substitution).
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Table 4.3 presents values for the average energies of solid pH2 / oD2 with

doped Al impurities. The potential energies for case (a) compared with the pure solid

drop by over 12100 cm−1. The lowest of the Al–Al potential used in the simulation

has a well depth of –11471 cm−1 at 5.39 bohr. For this state the zero-point-corrected

dissociation energy is D0 = 11319 cm−1 (determined using the DVR method

described in Appendix 4.I). Clearly, then, the lowering in the energy of the solid

when two atoms are embedded initially at the positions designated as case (a)

corresponds to the release of the Al–Al bond energy.

 Also, as in the pure solid, the static lattice energy for the oD2 system is lower

than for pH2 by ~1500 cm−1, since oD2 is more localized. In cases (b), (c) and (d), the

addition of the two Al atoms reduces the potential energies by 580–610 cm−1 per

atom. This number is close to the case of a single Al atom. This is a further

confirmation that in cases (b) and (c) each Al atom affects the lattice separately.

Further, there is only small interaction between the two Al atoms. The kinetic energy

of the ligand pH2 / oD2 molecules varies little between the pure solid (Table 4.1), the

mono-substituted solid and the bi-substituted solid [cases (a), (b), (c) and (d)]. In

cases (b), (c) and (d), the kinetic energy of the Al atoms is very comparable to the

mono-substituted solid.

However, we observe an increase in the average Al kinetic energy in case (a).

Our DVR calculations show that in the ground vibrational level of the 3Πu state of

Al2 the expectation value of the kinetic energy is 77.2 cm−1 .  This is completely

consistent with the computed average kinetic energy for case (a) substitution: 37.1

cm−1 per Al atom. This means that the kinetic energy of the Al atoms in case (a)

substitution is governed by the Al2 molecular potential.

Figure 4.11(I) presents the potential energy profile associated with the

recombination of the two Al atoms in case (a). The reaction coordinate is chosen to be

the distance between the two Al atoms (x axis). The solid curve corresponds to a



101

calculation in which Al atoms are constrained to move symmetrically along the line

of separation, while all pH2 molecules are frozen at the hcp lattice sites. This curve is

similar to what we published earlier,99 but with the imposition of periodic boundary

conditions. When the pH2 molecules are frozen, we observe a substantial barrier to

the recombination of the Al atoms at a distance of 10–12 bohr.  The height of the

barrier is 147 cm−1, much greater than kBT at 4K (2.78 cm−1).

However, when the constraints on the movement of pH2 molecules is relaxed,

as shown in the dash-dot curve, which corresponds to a calculation in which Al atoms

are still fixed at the nominal value of R, but the positions of all the pH2 molecules are

allowed to relax, the barrier is reduced. As we have discussed in section 4.3.1, the

quantum delocalization of the pH2 molecules is large, their kinetic energies are

greater than kBT. Consequently, solid pH2 is more flexible than a classical lattice, and

can easily undergo large distortions to the lattice structure. It is the quantum nature of

the pH2 molecules that allows the Al atoms to displace the pH2 molecules and

thereby, to combine.
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  Fig 4.11  Total potential energy of 178 pH2 molecules with two doped Al atoms. The Al

atoms are constrained to move symmetrically along the line of separation (see Fig. 4.6). The

solid lines correspond to a calculation in which the hydrogen molecules are fixed at their

lattice positions. The dash-dot lines correspond to a calculation in which the hydrogen

molecules are allowed to relax. (I) case (a) substitution; (II) case (b) substitution; (III) case (c)

substitution; (IV) case (d) substitution.

Since the two Al atoms recombine in case (a), but not in case (b), this

observation may set a limit to the extent to which one could dope Al atoms into solid

pH2.  Suppose we were to dope multiple Al atoms into pH2, with each pair of Al

atoms substituted into sites whose relative positions correspond to case (b). From

simple geometric consideration, this lattice would correspond to a molar ratio of

1 Al : 15 H2, or 0.07 mole percent.
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4.3.4 Effect of electronic anisotropy

To explore the effects of the orientation of the Al electronic charge

distribution on the energetics and stability of the trapped atoms, we carried out two

case (b) and (c) simulations in which we neglected the electronic anisotropy of the Al

atoms. To accomplish this we first assumed that the spherically averaged Al–H2

potential describe the interaction of each Al atom with all the hydrogens, and,

secondly, that the most attractive of the Al2 potentials (3Πu) describes the interaction

between the two Al atoms. Figure 4.12 shows the Al–Al pair correlation functions for

these two cases. Interestingly, in case (b) the equilibrated distance peaks around the

Al2 dimer distance, which indicates that when described by the spherical Al–H2

potential, the two Al atoms have combined. This is in contrast to the results,

presented in the two preceding paragraphs, where we conclude that for case (b) the

two Al atoms do not recombine when the electronic anisotropy of the Al atoms is

described correctly.

In case (b), there is a single H2 molecule which lies midway between the

embedded Al atoms. Consequently, as discussed earlier, the 3p orbitals of the two Al

atoms would prefer to be oriented perpendicular to the Al–H2–Al plane, to minimize

the repulsive energy. However, the orientation of the 3p orbitals in the 3Πu state of

Al2 corresponds to one orbital π and the other orbital σ. Thus, when the electronic

asymmetry is taken into account, the presence of the intervening pH2 molecule in

case (b) prevents the two electrons in the two Al atoms from adopting the orientation

which corresponds to the most attractive Al–Al interaction.

In case (c), the equilibrated distance is somewhat shorter than when the full

electronically anisotropic potential is used, but still remains far from combining into

an Al2 molecule.
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  Fig 4.12  Al–Al pair correlation functions for two Al atoms site substituted in the solid. All Al-

pH2 interactions are assumed spherical, and the Al–Al interaction is assumed to be given by

the (3Πu) potential. Upper panel: case (b) substitution in pH2; Lower panel: case (c)

substitution in pH2. The vertical bars indicate the initial separation between the Al atoms. In

the upper panel the vertical bar at r=5.39 bohr indicates the Al2 equilibrium distance predicted

by our ab initio calculations.
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The lattice distortion is reflected in the Al–H2 pair correlation function in Fig.

4.13. The presence of the Al atoms results in a displacement of the H2 molecules that

is more uniform than in when the anisotropic Al–H2 potential is used. Especially in

case (c), the pair-correlation function gAl−H2 (r)  is essentially identical to spherical

Al–H2 potential in Fig 4.4 for a single Al atom substitute in solid H2, which indicates

that each Al atom affects the Al–H2 lattice structure separately before Al–Al

combination happens.

  Fig 4.13  Al-pH2 pair correlation functions for two Al atoms site substituted in the solid. All

Al-pH2 interactions are assumed spherical, and the Al–Al interaction is assumed to be given

by the (3Πu) potential. Upper panel: case (b) substitution in pH2; Lower panel: case (c)

substitution in pH2. For comparison purpose, the pair correlation function for pure solid pH2 is

also shown in each plot.



106

When the electronically asymmetric potentials are used, in case (b) the H2

molecules in the same xy plane as the Al atoms stay close to their original positions

before combination happens. In contrast, the positional projection in Fig 4.14 shows

that even in case (c), all H2 molecules are pushed outward. And there is also an

overall translational motion of the lattice cage which accompanies the movement of

the two Al towards each other. In case (b), the H2 molecule originated between the

two Al atoms is pushed dramatically to one side. The pushing is directed almost

vertically to Al–Al connection line. The tension so produced on the lattice is reduced

by positioning other H2 molecules originated near the final position of this H2

molecule away, as shown by the arrows in Fig 4.14(I). This drastic reorientation does

not occur when the anisotropic Al–H2 potential is used.
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  Fig 4.14  Positions of the nearest-neighbor pH2 molecules and the two central, site-

substituted Al atoms described by 100 PIMC configurations, with dilution factor of 500 and

p=48, projected onto the xy and xz planes. All Al-pH2 interactions are assumed spherical,

and the Al–Al interaction is assumed to be given by the most attractive (3Πu) potential. The

filled circles (•) indicate the positions of the hcp lattice sites. The open circles (o) designate

the averaged positions of the pH2 molecules and the Al atoms. The positional spread of the

Al atom is shown by the dotted points. To guide the eye, the hcp vertices lying in parallel xz

planes are connected by straight lines. (I): 23 H2 + 2 Al (case (b) substitution), (II): 24 H2 + 2

Al (case (c) substitution).

Table 4.2 and 4.3 also present the results for the rms delocalizations and

average energies. Again, the delocalization and average kinetic energy of the H2

molecules varies little. The average kinetic energy of the Al atoms in case (c) is close

to that for one Al atom in solid H2 when the spherical Al–H2 potential is used, but

that in case (b) is close to the computed average kinetic energy of case (a) determined

with the anisotropic potential (Table 4.3). This is another confirmation that when

recombination occurs, the motion of the two Al atoms is dominated by the Al2

molecule potential.
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When the spherical Al–pH2 potential is used, then, compared to pure solid

pH2 (p=48, Table 4.1), embedding of two Al atoms lowers the total static lattice

energy by ~ 231 cm−1 per Al atom in case (c). This is consistent with the number in

the case of a single embedded Al atom with Al−H2 interaction described by the

spherical potential, because each Al atom affects the lattice separately. The potential

energy for case (b) is decreased by 11743 cm−1 compared to pure solid H2, consistent

with the energy released when two Al atoms combine.

Consequently, the electronic anisotropy of the Al atoms is one of the factors

that helps stabilize a dispersion of Al atoms stable in solid pH2 at distances of ~15

bohr. Without this anisotropy, recombination occurs for substitution distances

< 15 bohr. For substitution distances longer than 18 bohr, however, the attraction

between Al atoms is not strong enough to displace all the intervening hydrogens,

irrespective of whether the open-shell nature of the Al atom is included.

4.3.5 Estimate of lifetime

Due to the deep attractive well of the Al dimer, the recombination of two

embedded Al atoms will release a large amount of energy. Consequently, all the

initial substitutional sites where our simulations do not lead to recombination

correspond to metastable states. In these metastable states, recombination is

statistically very improbable. To verify this, we ran case (b), (c) and (d) simulations

for an additional 6 months, without observing any evidence of recombination.

Eventually, if the simulation were continued long enough, the two atoms would

combine. In this section we use transition state theory to estimate the lifetimes of

these metastable states.

The energy profiles for case (b), (c) and (d) are obtained in the same way as

for case (a) [Fig 4.11(II), (III), (IV)]. The reaction coordinate is chosen to be the

distance between the two Al atoms. The solid curves correspond to calculations in
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which Al atoms are constrained to move symmetrically along the line of separation

with the pH2 molecules frozen at the hcp lattice sites. In each case the height of the

calculated barrier is inserted into the standard transition state expression101

k = kBT
h
exp −Ea kBT( )Q

≠

Qr
(4.2)

to estimate the rate constant for recombination. Here we assume that the partition

function ratio of the transition state and the reactant is 1:1. The rate constants and the

corresponding half lifetimes (ln2/K) are listed in Table 4.5.

  Table 4.5  Estimated recombination lifetime

Ea(cm−1) K(s−1) ln2/K

case (b) 107 1.46×10−6 5.5 days

case (c) 103 5.98×10−6 32 hours

case (d) 91 5.46×10−4 1270 seconds

From this rough estimate, we see that the atomic level dispersion of two Al

atoms as exemplified by the three cases we studied here, will be stable only for

several minutes to several days. We also notice that initial substitutions in case (b),

where a hydrogen molecule sits nominally midway between the two Al atoms,

corresponds to the longest lifetime. In case (c), where two intervening molecules lie

near the line connecting the Al atoms, the lifetime is in hours. In case (d), where the

intervening hydrogen molecules lie farther away from the Al connection line, the

lifetime is even shorter. As we might expect, the degree of metastability depends

strongly on the initial relative arrangement of the particles.

4.4 Conclusion

In summary, then, we have used the PIMC method to study the structure and

energetics of pure solid pH2 / oD2 and the effect of site-substitution doping by one or
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two Al atoms. For pure solid pH2, we first monitored the convergence of the PIMC.

We then showed that the pH2 molecules exhibit large quantum delocalization and

kinetic energies much greater than kBT, two distinct characteristics of a quantum

solid.

Our results for a single Al atom in solid pH2 were essentially the same as

those obtained earlier by Mirijanian et al. with PIMD methods.16 With our new

information on the particle positional spread and average energies, and by comparing

with the pair correlation function for pure solid pH2, we predicted that the 3p electron

density of Al is distributed primarily along a single axis. This lowers the static lattice

energy, but is accompanied by some distortion of the lattice.

For two Al atoms embedded in solid pH2 / oD2, we studied four different

substitution sites. For substitution sites within a distance of ~ 13 bohr, we found that

the two Al atoms greatly distort the lattice structure to allow recombination into the

Al2 molecule. This releases a large amount of energy. This result is different from the

model studies presented in a previous paper,99 where the pH2 molecules were fixed

in place. It is the quantum nature of the pH2 molecules that facilitates recombination

of the Al atoms.

However, when the two Al atoms are embedded initially at distances longer

than 14 bohr, the equilibrated separation between the two Al atoms is little changed

from the initial substitutional sites. The interaction between the two Al atoms is

small, and the Al atoms affect the system separately. This may impose an upper

practical limit to the density of Al atoms which can be substituted before

recombination occurs, which is ~ 6.67% mole percent Al to H2. We estimate the

lifetime of the embedded solids at T=4K to range from several minutes to several

days

We investigated several factors that affect the stability of the dispersion. The

initial relative position of the particles is the most important of these. Of those we
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tested, the optimal arrangement is one in which the intervening H2 molecules remain

as close as possible to the vector seperating between the two Al atoms. The Al

electronic anisotropy is another factor that helps stability. Stability is enhanced if the

local H2 arrangement impedes the two 3p orbitals in the Al atoms from adopting the

arrangement which corresponds to the lowest electronic state of Al2 molecule (3Πu).
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Chapter 5: Overall Conclusions

Guided by the overall goal of studying many-body interactions involving

open-shell particles, we have presented in this dissertation the investigation of atomic

Al doped into two different low-temperature condensed media. We have chosen

Monte-Carlo, path-integral simulations to determine the equilibrium properties of

these multi-dimensional systems. This allows us to carry out quantum simulations at

finite temperatures. To deal with the difficult problem of simulating Al doped in

helium clusters at very low temperatures, we implemented out a multilevel extension

of standard path-integral simulations

To describe one Al impurity atom doped in a cluster of spherical particles (He

or pH2) we used the pairwise Hamiltonian model introduced first by Balling and

Wright. To extend the study to more than one impurity atom, we used an extension of

this idea to describe the interaction between two atoms, each in a 2P electronic state,

embedded in a cluster of spherical atoms. The model requires first accurate ab initio

potential energy curves for the Al2 system, for all the 36 electronic states which

correlate with dissociation into two ground-state Al(2P) atoms. Consequently, we use

a valence-bond-like model to transform these 36 molecular orbital states into a set of

36 Cartesian (qaqb) states which correspond to assigning the two 3p electrons to

Cartesian orbitals centered on either atom.

It is then easy to extend the Balling and Wright model to determine, in this 36

state basis, the matrix elements corresponding to the interaction of each 2P atom with

any number of surrounding spherical ligands. The lowest eigenvalue of the resulting

36× 36 matrix defines, in an adiabatic approximation, the potential governing the

motion of the atoms.
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Our studies of Al in both liquid helium and solid para–hydrogen indicate that

the impurity atoms strongly disturb the structure of the doped media. The electronic

anisotropy of the Al atom plays an important role in both this structural change as

well as in the energetics. We applied our potential model for two Al atoms embedded

in solid pH2 to study the stability of the system with respect to recombination. We

also investigated the effect on these solvated open-shell particles of spin-orbit

coupling, electronic anisotropy. The detailed results and discussion are found in the

four chapters of this dissertation.

Both the potential model we built and the specific simulations we performed

on Al in helium and Al in hydrogen, have potential applications beyond the scope of

this dissertation. The potential models could be adapted without modification to the

interaction of other 2P atoms in either pH2 or other spherical environments (Ar, He).

In addition, the models could be extended, in a straightforward manner, to the

interaction of atoms in other open-shell electronic states, or, to the interaction of two

atoms in different electronic states.

For example, for the interaction of a 2P atom (e.g., the Al ground state) and a

2D atom (e.g., the Al 3d state or a transition metal atom in its ground electronic state)

both embedded in an ensemble of spherical atoms, application of the pairwise

Hamiltonian model is summarized schematically as
Total potential =

lowest eigenvalue of 60 × 60 matrix 

   the  2P − 2D  interaction matrix

+  matrix of the spin-orbit Hamiltonian

+  2P  atom/2D  atom - matrix of interaction with spherical ligands 

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

+  scalar pair-wise interaction potential between all spherical ligands

(5.1)

Here the matrix of the spin-orbit Hamiltonian can be obtained from Eq. (3.9), and the

matrix of interaction between a 2P atom (or a 2D atom) with the spherical ligands

matrix can be obtained from Eq. (3.15).  The difference from the application to two
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Al atoms is that now the electronic-spin-orbit states of atoms a and atom b have

dimensions 6 and 10, respectively. For the 2P − 2D interaction matrix, we first need

potential energy curves for the 60 distinct electronic states (some degenerate) which

correlate with an atom in a 2P state and an atom in a 2D state. Then we need to

develop a suitable valence bond description of each state in terms of a product of

Cartesian-like functions pq dq

Likewise, this model could possibly be extended to more than two atoms in

open-shell electronic states. Following Eq. (5.1), we can develop, straightforwardly,

the matrices of the spin-orbit Hamiltonian and the interaction between each atom and

the spherical ligands. For example, for three Al atoms (a, b, c), we can write

 

qa ′qb ′qc ′ |Vi | qaqbqc =δqa′qaδqb′qb V6( )qc ′qc
+δqa′qaδqc′qc V6( )qb ′qb + δqc′qcδqb′qb V6( )qa ′qa

(5.2)

However, it will be an extensive computational effort to calculate ab initio potential

energy surfaces for the 216 states of Al3, and to decompose these into a Cartesian

qaqbqc valence bond description. The effort will be even greater to extend this model

to n>3.

Since it is relatively easy to obtain the binary potentials, one might wonder

whether we could apply the ideas behind Eqs. (3.9) and (3.15) to determine

interactions involving more than two Al atoms, Namely,

 

qa ′qb ′qc ′ |Vtri | qaqbqc =δqc′qc Vdi( )qaqbqa ′qb ′
+δqb′qb Vdi( )qaqcqa ′qc ′ +δqa′qa Vdi( )qbqcqb ′qc ′

(5.3)

As discussed in Chapter 3, all the valence-bond-like models we have

introduced neglect the overlap between the atomic orbitals. This is certainly justified

at large distances, but will fail in providing a decent description of the atomic

interactions in the limit when they are close. Some questions for future studies are:

How much does this zero-overlap description deviate from the true ab initio potential

energy curves? At what atomic separations does it become reliable?
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Impurity-doped helium nanodroplets continues to be a hot area of

experimental investigation.3-8,11,51 While many theoretical calculations have paid

attention to the rotational motion of impurity molecules in helium,19,47,105 there is a

lack of theoretically predicted spectrum to compare with experimental results.106

Two challenges are the accurate description of the interaction between the particles,

especially for non-spherically-symmetric dopants, and the search for an efficient

simulation method for the very quantum helium system. Certainly, future work

should be devoted to the development of simulation methods which are more efficient

than the PIMC techniques we used here to simulate the electronic excitation spectrum

of Al in helium. We anticipate that continuing experimental studies of the spectra of

atoms and molecules doped into cryogenic helium clusters (e.g., Li, Na, K, Rb, Cs,

Ag, Al, Eu, Mg and their dimer and clusters, organic molecules as glyoxal,

polyaromatics, indoles and porphyrins)3,11,106 will continue to provide a challenge

for theoreticians.

Recently, Mella and co-workers have published quantum diffusion Monte-

Carlo method (QMC) investigations of the Mg atoms in He clusters.107

Unfortunately, as opposed to a path-integral simulation, in any QMC investigation the

temperature is rigorously zero. Also, Mella and co-workers did not take into account

the bosonic symmetry of helium. A challenge facing future applications of PIMC

methods is how to go beyond the primitive approximation for the helium-impurity

interaction (which is generally not isotropic) in an efficient simulation including the

bosonic symmetry? One very promising approach is based on expanding the helium-

impurity interaction in spherical terms and then using pair-product forms.47 However,

this expansion, at least as it has been applied up to now, does not retain the same level

of accuracy as our potential model.

Our, and similar, studies of the stability against recombination of Al atoms

dispersed in solid hydrogen will provide an upper bound to the maximum achievable
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concentration of these atoms.  This could have significant implications toward the

potential use of doped H2 as a rocket propellant. Although there exists some

experimental information that one can achieve an Al concentration of above 10% in

hydrogen,108 based on our simulations, we suspect that at these concentrations the Al

is present as diatomic molecules, or small polymers, rather than as a dispersed atomic

solute.

Solid pH2 is a very flexible quantum lattice.72 It can easily absorb the strain

induced by embedded Al impurities by distortion or expansion. In Chapter 4 above

we have assumed a constant volume canonical ensemble, and we observe large

distortions in the lattice structure. It would be interesting to see how the solid behaves

under constant pressure conditions when the volume is allowed to change. To

examine this effect, one would need to carry out a constant pressure PIMC

simulation. In general, the isothermal-isobaric partition function can be written

as24,31

QNPT = dV exp −βPextV( )∫ QNVT ∝ dVdq∫∫ exp −β PextV +Veff( )⎡
⎣

⎤
⎦  , (5.4)

where QNVT is the canonical partition function we discussed earlier in Eq. (1.16). It is

sometimes an advantage to use scaled coordinates in constant pressure PIMC

simulations. An expression for the partition function written in scaled coordinates for

PIMC simulations is given in Ref. 94. With our potential model, it would be more

straightforward to use Eq. (5.4).

One important difference between this ensemble and the canonical ensemble

is that the Monte-Carlo moves involve changes in volume (so that the density

fluctuates). In general, changing the volume is computationally more expensive since

all the potentials need to be recalculated. It takes considerably more computer time to

get well converged results in a constant pressure simulation. We did some exploratory

investigations of constant pressure PIMC simulations (not included in this thesis).
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These showed that the flexibility of solid para hydrogen is an additional factor that

reduces the stability of Al atoms dispersed at the atomic level. Where, in the constant

volume simulations, a barrier to recombination of two Al atoms occurs, as the

constant volume restriction is relaxed, the solid para hydrogen can expand or shrink

to allow the two Al atoms to move toward each other, and thereby combine, with a

consequent significant lowering of the total energy.

In summary, we hope that our work will provide some insight into the

complex role that electronic anisotropy plays in many-body systems, and help in

developing an understanding of how to deal with weakly-interacting, open-shell

systems in the condensed phase.
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 Appendix 2.I Matrix elements of D(θ) and Hso

D(θ) = (2.1.1)

cos4 θ
2

⎛
⎝⎜

⎞
⎠⎟

1
2
sinθ 1+ cosθ( ) 3

8
sin2θ −

1
2
sinθ cosθ −1( ) sin4 θ

2
⎛
⎝⎜

⎞
⎠⎟

−
1
2
sinθ 1+ cosθ( ) 1

2
2cosθ −1( ) cosθ +1( ) 3

2
sinθ cosθ 1

2
2cosθ +1( ) 1− cosθ( ) −

1
2
sinθ cosθ −1( )

3
8
sin2θ −

3
2
sinθ cosθ 1

2
3cos2θ −1( ) 3

2
sinθ cosθ 3

8
sin2θ

1
2
sinθ cosθ −1( ) 1

2
2cosθ +1( ) 1− cosθ( ) −

3
2
sinθ cosθ 1

2
2cosθ −1( ) cosθ +1( ) 1

2
sinθ 1+ cosθ( )

sin4 θ
2

⎛
⎝⎜

⎞
⎠⎟

1
2
sinθ cosθ −1( ) 3

8
sin2θ −

1
2
sinθ 1+ cosθ( ) cos4 θ

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Hso = (2.1.2)

1
2
a ×

dx2 −y2 dxy dzx dyz dz2 dx2 −y2 dxy dzx dyz dz2

dx2 −y2 0 −2i 0 0 0 0 0 −1 −i 0

dxy 2i 0 0 0 0 0 0 i −1 0

dzx 0 0 0 –i 0 1 −i 0 0 − 3

dyz 0 0 1 0 0 i 1 0 0 3i

dz2 0 0 0 0 0 0 0 3 − 3i 0

dx2 −y2 0 0 1 −1 0 0 2i 0 0 0

dxy 0 0 i 1 0 −2i 0 0 0 0

dzx −1 −i 0 0 3 0 0 0 i 0

dyz i −1 0 0 3i 0 0 −i 0 0

dz2 0 0 − 3 − 3i 0 0 0 0 0 0

where spin-orbit constant a=0.54 cm−1 for Al (2D).
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Appendix 2.II Staging

Staging is another path-integral sampling technique that improves the

efficiency of the simulation by making collective movements of the

pseudoparticles.26,109-111 It involves a change of integration variables, which serves

to uncouple the harmonic term, and a corresponding reformulation of the effective

Hamiltonian. It rigorously generates a canonical phase space distribution. To use the

Levy construction in our multilevel sampling, we need to prove that the Levy

construction exactly samples the free particle density matrix. Since the Levy

construction is equivalent to one special case of staging, here we outline the staging

method with the aim of justifying the use of the Levy construction in our multilevel

sampling.

For simplicity, we only deal with a single particle in one dimension in this

Appendix. It is straightforward to extend the discussion to our case of multiple

particles, not necessarily of the same type, moving in three dimensions.

For a single particle not subject to an external field (i.e., a free particle, V=0),

we rewrite the density matrix in Eq. (1.13) as

ρ0(xi, xi+1;τ)=
 
〈xi | e

−τ T | xi+1〉 =
m

2πτ2
⎛
⎝⎜

⎞
⎠⎟
1/2
exp −

m
2τ2

| xi − xi+1 |
2⎛

⎝⎜
⎞
⎠⎟

(2.2.1)

where T is the kinetic energy operator and τ is β/p. Then, the path-integral quadrature

in Eq. (1.14) can be written as

Q = dx1dx2...dxp∫ ρ0(x1, x2;τ )...ρ0(xp , xp+1;τ ) (2.2.2)

where xp+1=x1.

Let us divide the polymer chain of p particles into segments of length j (nj=p,

n is an integer). We shall focus on with one segment which starts at y0 = xsj+1, and

ends at yj = xsj+j+1 (s is an integer <n).  We have
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...  ρ0(xsj, xsj+1;τ) { ρ0(xsj+1, xsj+2;τ)  ... ρ0(xsj+j, xsj+j+1;τ)}  ρ0(xsj+j+1, xsj+j+2;τ)  ...
                                     ↓        ↓                   ↓           ↓
                                     y0       y1                  yj-1        yj `

 ρ0(y0, y1;τ)  ... ρ0(yj-1, yj;τ) =
ρ0(y0,  y1;τ )ρ0(y1,  y2;τ )

ρ0(y0,  y2;2τ )
⋅
ρ0(y2,  y3;τ )ρ0(y0,  y2;2τ )

ρ0(y0,  y3;3τ )

⋅ ⋅ ⋅
ρ0(y j−1,  y j ;τ )ρ0(y0,  y j−1;( j −1)τ )

ρ0(y0,  y j ; jτ )
⋅ ρ0(y0,  y j ; jτ )

(2.2.3)

Each fraction term on the right hand side of the above equation can be written

in a common form:

 

ρ0 (yi−1,  yi ;τ )ρ0 (y0,  yi−1;(i − 1)τ )
ρ0 (y0,  yi ; iτ )

=
1

2πτ2 ⋅
mi
i − 1

⎛
⎝⎜

⎞
⎠⎟

1/2
exp −

m
2τ2 | yi−1 − yi |2 +

1
i − 1

| y0 − yi−1 |2 −
1
i

| y0 − yi |2⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

=
1

2πτ2 ⋅
mi
i − 1

⎛
⎝⎜

⎞
⎠⎟

1/2
exp −

1
2τ2 ⋅

mi
i − 1

yi−1
2 − 2yi−1

y0 + (i − 1)yi
i

+
y0 + (i − 1)yi

i
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

(2.2.4)

If we define new variables

mi =
mi
i − 1

, yi−1* =
y0 + (i −1)yi

i
 (so that xsj+i* =

xsj+1 + (i −1)xsj+i+1
i

)(2.2.5)

(2.2.4) is written as

 

ρ0 (yi−1,  yi ;τ )ρ0 (y0,  yi−1;(i − 1)τ )
ρ0 (y0,  yi ; iτ )

=
mi

2πτ2
⎛
⎝⎜

⎞
⎠⎟

1/2
exp −

mi
2τ2 yi−1 − yi−1 *[ ]2⎧

⎨
⎩

⎫
⎬
⎭

(2.2.6)

Putting all together one arrives the following

 ρ0(y0, y1;τ)  ... ρ0(yj-1, yj;τ) =

 

m
2π jτ2

⎛
⎝⎜

⎞
⎠⎟

1/2

exp −
m

2 jτ2
y0 − y j( )2⎡

⎣
⎢

⎤

⎦
⎥ ×

mi
2πτ2

⎛
⎝⎜

⎞
⎠⎟
1/2
exp −

mi
2τ2

yi−1 − yi−1 *( )2⎡
⎣⎢

⎤
⎦⎥i=2

j

∏

(2.2.7)

and
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Q =
m

2π jτ2
⎛
⎝⎜

⎞
⎠⎟

n /2
mi

2πτ2
⎛
⎝⎜

⎞
⎠⎟
n /2

i=2

j

∏ dx1dx2...dxp∫ •

exp −
m

2 jτ2
xsj+1 − xsj+ j+1( )2 − mi

2τ2
xsj+i − xsj+i *( )2

i=2

j

∑
s=0

n−1
∑

s=0

n−1
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(2.2.8)

By use of the new staging variables we have obtained a system of uncoupled springs.

Consequently, we can sample the coordinates directly from a Gaussian distribution.

This allows us to perform collective uncorrelated movements of the particles.

The algorithm is applied as following: First, we select a segment of the chain

and fix the two ends: y0 = xsj+1 and yj = xsj+j+1. The movements correspond to the

intervening j−1 particles. The sampling is performed iteratively since as the index i

decreases, all the y* depend on the preceding y.

1. i = j

mj =
mj
j − 1

, y j−1* =
y0 + ( j −1)y j

j
(2.2.9)

 
y j−1 ' = y j−1 *+η

2τ
mj

(2.2.10)

where η is a normally distributed random number with zero mean and unit variance.

2. i = j−1

mj−1 =
m( j − 1)
j − 2

, y j−2* =
y0 + ( j − 2)y j−1

j −1
(2.2.11)

 
y j−2 ' = y j−2 *+η

2τ
mj−1

(2.2.12)

……

j−1.   i = 2

m2 = 2m, y1* =
y0 + y2
2

(2.2.13)

 
y1 ' = y1 *+η

2τ
m2

(2.2.14)
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In a full application of the staging algorithm, the above procedure is repeated

all over the n segments of the chain. Also the Cartesian coordinate labels are

reassigned by rotating the coordinate labels around the cyclic chain (xi → xi+r, when

i ≤ p-r; xi → xi+r-p, when i >p-r, r is some integer number). Note that the integral is

invariant under a cyclic relabeling of the coordinates. This reassignment insures that

no single point remains fixed permanently.

Note that the above procedure samples free particles (i.e., kinetic terms only)

exactly. With an external potential, there is an extra term in the partition function

exp −
β
p

V xk( )
k=1

p

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. Consequently, the standard Metropolis acceptance-rejection

algorithm is invoked at each trial position. The rejection criterion is based only on the

potential part of the exponent, since the kinetic part is sampled exactly by the staging

algorithm.

Now we go back to the Levy construction. We observe that for j= 2

Eq. (2.2.10) becomes

 
y1 ' =

y0 + y2
2

+η 2τ
2m

(2.2.15)

which is indeed the Levy construction. With the staging coordinates the free particle

density matrix is sampled exactly. Therefore, the Levy construction also samples the

free particle density matrix exactly.
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Appendix 3.I Matrix elements of Hel

For the qaqb states with MS = 1, the matrix of Hel blocks as follows, where we

use a compact notation in which the energy of each diabatic molecular orbital state is

designated by its state label

xaxb yayb zazb

xaxb
1
2 3Δ+ 16 13Σu+ 13 23Σu+

1
3

3V12

– 12 3Δ+ 16 13Σu+ 13 23Σu
1
3 23Σu– 13 13Σu–

1
3

3V12

yayb s
1
2 3Δ+ 16 13Σu+ 13 23Σu–

1
3

3V12

1
3 23Σu– 13 13Σu+

1
3

3V12 (3.1.1)

zazb s s
2
3 13Σu+ 13 23Σu

xayb xbya

xayb
1
2 (3Σg+3Δ) 1

2 (3Σg–3Δ) (3.1.2)

yaxb s
1
2 (3Σg+3Δ)

xazb xbza

xazb
1
2 (3Πg+3Πu) 1

2 (3Πg–3Πu) (3.1.3)

zaxb s
1
2 (3Πg+3Πu)

The matrix of Hel in the space of the yazb and ybza states is identical to Eq. (3.1.3).

For the qaqb states with MS = 0, the matrix of Hel blocks as follows:

xayb xayb xbya xbya
xayb

1
4 [1Σu+3Σg+1Δ

+3Δ]

1
4 [–1Σu+3Σg

–1Δ+3Δ]

1
4 [–1Σu+3Σg+

1Δ–3Δ]

1
4 [1Σu+3Σg

–1Δ–3Δ]

xayb s identical to

(1,1)

identical to

(1,4)

identical to

(1,3)

(3.1.4)
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xbya s s identical to

(1,1)

identical to

(1,2)

xbya s s s identical to

(1,1)

xax b xaxb yayb yayb zaz b zazb
xax b

1
12 [3(1Δ+

3Δ)

+2(21Σg+

23Σu)

+11Σg+

13Σu

+23/2(1V12+
3V12)]

1
12 [3(–1Δ+

3Δ)

+2(–21Σg+

23Σu)

–11Σg+13Σu

+23/2(–1V12

+3V12)]

1
12 [–3(1Δ+

3Δ)

+2(21Σg+

23Σu)

+11Σg+

13Σu

+23/2(1V12+
3V12)]

1
12 [3(1Δ–

3Δ)

+2(–21Σg+

23Σu)

–11Σg+13Σu

+23/2(–1V12

+3V12)]

1
6 [–11Σg–

13Σu

+21Σg+

23Σu –

2–1/2(1V12+
3V12)]

1
6 [11Σg–

13Σu

–21Σg+23Σu

+

2–1/2(1V12–
3V12)]

xaxb s identical to

(1,1)

identical to

(1,4)

identical to

(1,3)

identical to

(1,6)

identical to

(1,5)

yayb s s identical to

(1,1)

identical to

(1,2)

identical to

(1,5)

identical to

(1,6)

 (3.1.5)

yayb s s s identical to

(1,1)

identical to

(1,6)

identical to

(1,5)

zazb s s s s 1
6 [2(11Σg+

13Σu)

+21Σg+

23Σu –

23/2(1V12+
3V12)]

1
6 [2(–11Σg

+13Σu)

–21Σg+23Σu

+23/2(1V12–
3V12)]

zazb s s s s s identical to

(5,5)

and,
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xazb xazb xbza xbza
xazb

1
4 [1Πg+1Πu+3Πg

+3Πu]

1
4 [–1Πg

–1Πu+3Πg+3Πu]

1
4 [1Πg

–1Πu+3Πg–3Πu]

1
4 [–1Πg

+1Πu+3Πg–3Πu]

xazb s identical to (1,1) identical to (1,4) identical to (1,3)  (3.1.6)

xbza s s identical to (1,1) identical to (1,2)

xbza s s s identical to (1,1)

The matrix of Hel in the space of the yazb , yazb , ybza , ybza  states is identical to Eq.

(3.1.6).
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Appendix 3.II Frame transformation and force calculations

In a Cartesian space frame, we assume that the two Al atoms (Ala and Alb)

are at positions {xa,ya,za} and {xb,yb,zb} while the ith pH2 is at {xi,yi,zi}.  We wish to

transform into a body frame defined so that the positions of the two Al atoms in this

body frame are:  {0,0,0} and {0, 0, R}. This transformation can be achieved by first

shifting the origin to the first Al atom, followed by two consecutive rotations around

the shifted x and y axes.

The coordinates of the ith pH2 in the body frame (designated by tildes) are:

 

xi
yi
zi

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ = T

xi
yi
zi

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(3.1.7)

where the SF→BF transformation matrix is

T =
1
ρR

ρ2 –(xb – xa )(yb – ya ) –(xb – xa )(zb – za )
0 (zb – za )R –(yb – ya )R

(xb – xa )ρ (yb – ya )ρ (zb – za )ρ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(3.1.8)

ρ = (yb – ya )
2 + (zb – za )

2⎡⎣ ⎤⎦
1/2

 and the subscript indices a  and b  refer to the

coordinates of the two Al atoms.

The derivatives of the potential with respect to the 6 coordinates which define

the position of the two Al atoms are obtained by numerical differentiation of the

lowest eigenvalue of the 36 × 36 potential matrix V(q).  The derivatives with respect

to any of the 3 coordinates which define the positions of the ith pH2 ligand, qk , where

qk=1 ≡ xi, qk=2≡ yi and qk=3≡ z, are determined using the Hellman-Feynman theorem,

namely
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dV / dqk =CT dV / dqk[ ]C+dVH2 –H2 / dqk (3.1.9)

where C is the column eigenvector of the lowest eigenvalue of the potential matrix V

and VH2 –H2  denotes the sum of the scalar H2 pair potentials between the ith and all

the other pH2 ligands.  As discussed in the text surrounding Eq. (3.15), the

dependence of the V matrix on the position of the ith pH2 ligand is constructed from

elements of the 6×6 block diagonal matrix defined by Eq. (3.13), and which we

designate V6.

The matrix elements of the derivatives of V which appear in Eq. (3.1.9) can be

obtained identically to Eq. (3.15), namely

 
qa ′qb ′

dVi
dqk

qaqb =δqa′qa dV6 / dqk( )qb ′qb +δqb′qb dV6 / dqk( )qa ′qa
(3.1.10)

We recall that the two terms in Eq. (3.1.10) correspond to the interaction between the

ith pH 2 ligand and the first and second Al atom, respectively.  Because V6 is a

symmetric, block diagonal matrix built of two identical 3×3 matrices V [Eq. (3.13)],

determination of the matrix derivative dV6 /dqk involves differentiation of the two 3 ×

3 matrices which represent the interaction of the ith pH2 with the first and second Al

atom, respectively. The differentiation can be done either analytically or numerically;

we found both to be equally efficient.  The analytical form of the derivative of the 3 ×

3 potential between the ith pH2 and the first Al atom (which defines the origin of the

body frame coordinate system), which corresponds to the first term in Eq. (3.1.10) ,

can be written as:
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dV
dqk

=
1
r2

dVΣ
dr

– dVΠ
dr

– 2
r
(VΣ –VΠ )

⎡
⎣⎢

⎤
⎦⎥
Q+

dVΠ
dr
1⎧

⎨
⎩

⎫
⎬
⎭
qk – qa

r

+
1
r2
(VΣ –VΠ )D

(3.1.11)

Here the VΣ and VΠ potentials and their derivatives are evaluated at r  = rai, the

distance between the first Al atom and the ith pH2.  The symmetric matrix Q is the

Cartesian matrix from Eq. (3.12), with the coordinates of the ith pH2 in the body

frame, namely

 

Q=

xi
2 xi yi xi zi
xi yi yi

2 yi zi
xi zi yi zi zi

2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

(3.1.12)

The symmetric matrix D in Eq. (3.1.11) is given by

 

D=
2T1k xk T2k xk + T1k yk T3k xk + T1k zk
s 2T2k yk T3k yk + T2k zk
s s 2T3k zk

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(3.1.13)

where the T matrix is defined in Eq. (3.1.8) and, as stated earlier in this Appendix, the

index k = 1,2,3 corresponds to qk =  xi ,  yi , or  zi . The D matrix is symmetric.  For

visual clarity this is designated by the index “s” in the lower triangles.

The analytical form of the derivative of the potential between the ith pH2 and

the second Al atom is given by the same three equations [(3.1.11)–(3.1.13)], except

with  zi  replaced by  zi –R. The table lookup algorithm discussed in the main text is

used both for the potentials [VΣ and VΠ] and their derivatives with respect to r.
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Appendix 4.I Discrete Variable Representation (DVR)

We use a simple DVR method112 to solve the time-independent Schrödinger

equation (TISE) numerically in the position representation. The DVR method can be

used for a conservative potential V(r) for which bound states exist. Consider the one-

dimensional TISE in the position representation:

 
−
2

2m
∂2

∂r2
ψ (r) +V (r)ψ (r) = Eψ (r) (4.1.1)

We chose a finite region such that ψ(r) is negligible outside the region. The

independent variable r is divided into m–1 equal sectors of length s (=r/m). At the

nodes {r1, r2, …, rm}, V has the values {V1, V2, …, Vm} and ψ has the values {ψ1,

ψ2, …, ψm}. Then, using a 3-point finite difference approximation to the derivative,

the Hamiltonian at point i can be written as:

 
−
2

2m
1
s2
(ψ i+1 +ψ i−1 − 2ψ i ) +Viψ i (4.1.2)

Equation (4.1.1) can be rewritten in matrix form:

 

V1
V2

V3
...

Vm

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

−
2

2ms2

−2 1
1 −2 1

1 −2 1
. . .

1 −2

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

ψ1
ψ 2
ψ 3
...
ψm

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= E

ψ1
ψ 2
ψ 3
...
ψm

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

(4.1.3)

This is a set of homogeneous linear equations whose solutions are the value of

the wavefunctions at the nodes. The eigenvalues E1, E2, …, Em, are the finite-

difference approximation to the eigenenergies for our system. Convergence to the true

energies and wavefunctions can be achieved by increasing the number of sectors and

increasing the range of r which is spanned.

The corresponding approximation to the kinetic energy is also calculated in

matrix form:
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ψ1 ψ 2 ψ 3 … ψm[ ] − 
2

2ms2

−2 1
1 −2 1

1 −2 1
. . .

1 −2

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

ψ1
ψ 2
ψ 3
...
ψm

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

ψ1 ψ 2 ψ 3 … ψm[ ]

ψ1
ψ 2
ψ 3
...
ψm

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

(4.1.4)

where {ψ1, ψ2, …, ψm} is the ground state eigenvector.
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Appendix 4.II Tail Correction

Because of the finite size of the simulation box, the potential used in our

simulations is always truncated. It is useful to have an estimate of how much the

missing long-range part affects our results. Here we estimate the tail correction to the

potential energy decrease when H2 molecule is replaced by Al atom (without tail

correction, ~ 12100 cm−1 when two Al atoms replace two H2 molecules in case (a),

and  ~ 560 cm−1 per atom in other cases).

For pairwise-additive potentials, a popular method24 to estimate tail

correction is to assume that pair correlation function g(r) ≈ 1 in the region of r>rc,

where rc is the spherical cutoff distance. Then for a potential V(r), the long-range

correction to the average total potential energy E for N particles is:

ELRC = 2πNρ r2V (r)dr
rc

∞
∫  (4.2.1)

Strictly speaking, since we use a minimum image convention in handling the

periodic boundary condition,24 we have a rectangular simulation box. Neglecting the

difference between our nearly square box and the sphere, we set rc to be half of the

length of the shortest edge.  The resulting error in the tail correction should be small.

We have at most two Al atoms in our simulation, so there is no need to

consider a tail correction to the Al–Al interaction. For the H2–H2 Silvera-Goldman

pair potential,91, the long-range correction is estimated to be –4.12 cm−1 per H2. For

the Al–H2 interaction, caution must be taken because it is not a pair-wise additive

potential. We use the spherically averaged potential Vsph. The tail correction should

be twice Eq. (4.2.1), since we have two Al atoms.  This turns out to be –11.32 cm−1

per Al atom. So the tail correction for the average potential energy change of

replacing one H2 by a single Al atom is –11.32+4.12 = –7.2 cm−1. In the case of two

Al atoms replacement, it is a further decrease of –7.2×2 = –14.4cm−1.
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