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This dissertation presents an empirical approach for building, storing, and

evolving knowledge about domain-specific software defects. It is based on an itera-

tive methodology, where the patterns of defects are derived from the combination of

pattern identification heuristics and the validation and evolution of the patterns by

domain experts. The approach consists of three main activities: (1) Pattern devel-

opment through reading-based defect analysis of source code versions, (2) Reactive

pattern refinement through a variation of structured interviews, and (3) Packaging

available knowledge about the defects, such as symptoms and advice about preven-

tion, into derivative artifacts, such as lectures and tools.

This approach has been applied to the domain of high performance computing

(HPC), to build defect patterns that consist of a classification scheme for defect types

and subtypes, and specific defect examples representing that type. For each defect

sub-type there is provided a description, a set of symptoms that can help identify if

the defect is present, a set of potential causes of the defect, and suggestions about

cures and preventions.



I verified the feasibility of the methodology within the constraints of available

research opportunities in the HPC domain. I conducted several empirical studies,

evaluating the reliability of the heuristics, the generality of the defect pattern data

though expert opinion, and the usefulness of the patterns through classroom studies

and expert opinion.

The main outputs produced are an experience base which stores and shares

these patterns, so that HPC practitioners can access them at various levels of ab-

straction and submit feedback and an evolved and evaluated set of educational

materials that can be used to help minimize the defects made by novice program-

mers.
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Chapter 1

Introduction

1.1 Introduction

Among the many goals of software engineering, preventing and detecting soft-

ware defects (bugs) has always been an important yet challenging one; developers

find debugging takes a considerable portion of development time; defects found at

a later development phase tend to increase cost. Even worse, defects often remain

uncaught in the production code, and many failures have resulted in major incidents.

Ten years ago, Lieberman [55] described debugging as “the dirty little secret

of computer science”. He wrote that “despite the progress we have made in the past

30 years ... we still face some embarrassing facts about software development ...

Debugging is still, as it was 30 years ago, largely a matter of trial and error.”

Unfortunately, after all the efforts of the software engineering community and

evolution of theory and technologies in software engineering, paradigms such as

object-oriented and component-based approach, programming languages and tools,

debugging has hardly been made easier. On the contrary, the situation only seems to

worsen. The increase in size and complexity of software systems, and more diverse

hardware/network environments contribute to this tendency. These factors imply a

different approach is necessary to tackle this problem.

In this dissertation, we hypothesize that having “knowledge” about recurring
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defects plays a vital role when a developer is writing and debugging the code. Con-

sider the following observations.

1. Debugging is a human problem. Today’s software development is still depen-

dent on the ability of individual developers to construct the software. This will

not change until software development is completely automated, no longer in-

volving human ingenuity. Until that happens, it is totally up to the developers

how many defects are created, found and fixed.

2. Although everyone makes defects, debugging ability varies among developers.

For example, experienced developers tend to know “how to debug” better

than novice developers. Such knowledge can be about the characteristics of

frequently occurring defects in their project, techniques to prevent and/or

diagnose problems, or how to use tools. Obviously, everyone is a novice at

first. Therefore, it is vital to improve a novice’s ability to debug by providing

such knowledge. And everyone is a novice when learning a new language, or

working on a new software domain.

3. An ideal for developers might be to use technology (tool and/or language) that

can automatically detect defects even if they don’t have prior knowledge about

these defects. The availability of good tools can indeed affect the efficiency

of debugging. However, no tool can be made without first recognizing which

types of defects occurs frequently enough that it is worth developing a tool to

detect them. In this sense, knowledge of recurring defects is a valuable input

to researchers and vendors who need to understand the cost-benefit tradeoffs

2



in developing tools.

Therefore, we further hypothesize that if developers can somehow acquire

knowledge about recurring defects, they can either avoid them or find/fix them more

easily. Unfortunately, such knowledge is mostly implicit; it exists within the brain

of individual developers, and is rarely shared. Moreover, developers may not always

be aware of what they really know themselves. As a result, everyone has to spend

time going through a painful learning process to obtain the necessary knowledge by

themselves. To change the situation, we need a means of extracting, accumulating

and sharing such knowledge.

In this dissertation, we develop a framework for building “knowledge” about

recurring defects. There are many obstacles that have to be overcome to realize it.

The goal is to provide solutions to these obstacles and show the feasibility of this

approach.

1.2 Problem domain: high performance computing

Before describing the problem in more detail, we define the domain of the

software we focus on.

One important technology trend in recent years is a shift to parallel architec-

ture. As the performance of single processors is reaching a limit, a wide range of

computer platforms, from high-end supercomputers to desktop PCs, are moving to-

wards multi-processor architectures. Programming for parallel architecture involves

defects that did not exist in serial programs, and debugging is even more difficult

3



[19, 24].

Throughout this dissertation, we address the problem of building knowledge

of defects specifically in the domain of high-performance computing (HPC). In this

domain, we expect that the types of defects that recur in source code are different

from defects in other areas of software development because of the following factors

that make HPC unique:

• Platform: Powerful computation power required of today’s HPC systems is

achieved by massively parallel systems. Software that is designed to run on

such systems is prone to certain kinds of defects that simply do not occur

on conventional machines, e.g., concurrency defects and defects related to

multiple levels of memory hierarchy. In addition, other defects may be much

more difficult to isolate.

• Performance: Since emphasis is put on both correctness and performance,

an HPC program can contain performance defects even if it would produce

correct output. Although few applications are fully optimized to squeeze out

every last bit of speed, it is important that the execution completes within

the time constraints for their user. Achieving good performance on multiple

processors is often difficult.

• Language: To leverage the parallel system resources, developers usually use

special HPC languages and libraries such as MPI [33], OpenMP [27], UPC [18],

Co-Array Fortran [64] and Titanium [75], each with their own ways of handling

issues such as communication and synchronization. New models continue to be

4



developed which claim to simplify these tasks and achieve good performance,

but they may also bring a new kind of difficulty.

• Developers: HPC systems are often developed by scientists and graduate

students who have not had formal training in software engineering. They tend

to prefer known, stable technologies to minimize learning costs and maximize

portability across platforms.

• (Lack of) tools: Tool use (integrated development environments (IDEs),

graphical debuggers, defect detection tools, profiling tools, etc.) is lower than

in other software development domains [20].

• Portability: Portability is very important for HPC applications since they

must be run on various platforms depending on the computational resources

available. New computers are continually developed to replace older machines.

• Validation: Given the nature of HPC applications, it is not unusual that

both the implementation and the underlying scientific theories are constantly

changing during development. In this environment, the correct outputs are

not always known, so debugging is particularly challenging and costly.

Many researchers focus on the problem of debugging parallel programs by

developing new theories and tools to prevent or detect defects. Again, knowledge

of recurring defects is a foundation for such efforts. However, few studies have been

conducted to understand what kinds of defects are really problematic in this domain.

5



1.3 The problem

The problem addressed by this dissertation is building and evolving patterns

of defects in HPC based on empirical data, and developing an experience base using

the accumulated knowledge to demonstrate its usefulness. See Chapter 3 for more

details.

1.4 Proposed solution

This dissertation presents a methodology for iteratively and incrementally

building the knowledge of domain-specific defect patterns through an empirical,

human-based approach. It uses a reading-based approach to identify recurring de-

fects in the change history data, and the identified defect patterns are stored in

the experience base as initial content. The content plays a vital role for extracting

further knowledge from domain experts through semi-structured interviews. The

accumulated knowledge can be packaged into derivative artifacts. We use the data

collected through our involvement in the DARPA High Productivity Computing

Systems (HPCS) program. [49]

1.5 Organization of the dissertation

The dissertation is organized as follows. Chapter 2 describes related work.

Chapter 3 provides the problem statements. Chapter 4 provides the methodology

and problem-solving approach. Chapter 5 describes the approaches for data collec-

tion and presents identified patterns and a defect classification. Chapter 6 describes

6



the design and implementation of the experience base, and describes how the con-

tent of the experience base can be used to extract the tacit knowledge of experts.

Chapter 7 discusses the development of derivative artifacts such as educational ma-

terials and recommendations for technology providers. Chapter 8 concludes the

dissertation with a summary of contributions, lessons learned, and future avenues

of research.
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Chapter 2

State of the Art in the Field

This chapter reviews the state of art research on the topics related to this

dissertation.

2.1 High performance computing (HPC)

2.1.1 Parallel programming models and languages

Deborah L. Wince Smith, Council of Competitiveness President, recently

stated that “HPC has been and will continue to be a key ingredient in Amer-

ica’s innovation capacity.”1 For any branch of science or engineering, computational

power is really a “third leg” of the stool, along with theory and experimentation.

There is always a demand for greater computer power to solve problems in less time

with higher accuracy, and vast investments are being made to realize the desired

performance.

The meaning of “high performance” has dramatically changed over the years,

and so has the technologies supporting it. A recent trend is the massive use of

parallelism. All high-end super computers today are leveraging parallel processing

capability. (For example, the world’s fastest supercomputer today consists of more

1http://www.compete.org/hpc/grand challenge.asp
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than a hundred thousand processors. 2)

As systems become more and more complex, software development is getting

harder. Unfortunately, since today’s compilers are not sophisticated enough to gen-

erate a program that runs efficiently on a parallel platform, an HPC application

needs to be written explicitly to support parallelism.

Over the years, many programming models and languages have been developed

for writing HPC applications. They were created to provide good performance under

massively parallel environments.

Developers of HPC applications need to use an appropriate programming

model and language, such as the following:

• Message passing: Each process executes within a separate address space and

processes communicate by exchanging messages. This model provides explicit

control of interactions between processes. MPI [33] is the most popular tech-

nology. PVM [71] is another example.

• Shared memory: All processes are executed in a shared address space, so they

can communicate through memory access. OpenMP [27] is an example of the

technologies supporting shared memory model.

• Global arrays: Each process resides in a separate address space, but a process

can also access a restricted set of memory elements in the address space of

other processes. Examples of technologies supporting global arrays are UPC

[18], Co-array Fortran [64] and Titanium [75].

2http://www.top500.org/

9



• Declared distribution: The programmer provides hints as to how the data

should be distributed, and the parallelism is extracted by the compiler or

run-time system. High Performance Fortran [14] and MATLAB*P [25] are

examples of technologies supporting this model.

Many HPC languages are defined on top of “base” languages such as Fortran,

C, and C++. For example, The MPI specification defines a set of data types and

library functions for C and Fortran. OpenMP statements are written directives in

the base languages. This makes learning these HPC languages easier for those who

are already familiar with the base language, and it can also make porting easier.

There are also new HPC languages such as X10 [21] and Chapel [17] currently

in active development. While they are designed and implemented in the hope of

increasing productivity, generally it takes a long time for a new HPC language to

become stable, available on many platforms and get adopted by a mass development

community. Typical HPC program may last 20-30 years and thus developers are

reluctant to try new languages which may not be actively supported for the lifetime

of the application.

There are also hybrid approaches, in which multiple programming models are

combined to achieve better performance. For example, the combination of MPI

and OpenMP is used to exploit the characteristics of the architecture consisting of

distributed clusters, each of which has shared-memory access.

Dongarra et. al. [29] provides the guidelines for choosing whether or not

to use particular programming models. Hochstein [38] also provides a good sum-
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mary of programming models and languages that are commonly used to write HPC

applications today.

2.1.2 Software engineering in HPC

Since not all software engineering theories and practices are applicable to HPC,

it is important to understand what practices are currently used in real HPC projects,

and what practices should be chosen in specific contexts.

Current practices

Hochstein [39] describes the state of software engineering practices and use of

technologies observed in five Advanced Simulation and Computing (ASC)-Alliance

projects, all of which are currently in active use for scientific research and active

development. Some key observations related to this dissertation are summarized as

follows:

• Base language and parallel programming model: Most of the codes are

written as a mixture of C/C++ and Fortran. All codes make use of the MPI

library to achieve parallelism. In addition, each code make use of external

libraries for features such as I/O, mesh operations, geometry, linear algebra,

differential equations, etc. in parallel environment.

• Code architecture: While libraries wrap underlying operations for low-level

communication from developers, encapsulation is not perfect. The developers

are still required to write raw MPI code to achieve the desired functionality.

11



Some of the codes use a layered approach which hides the details of message-

passing, so that a programmer can add additional functionality without writing

MPI code. However, these abstraction layers had to be written from scratch.

• Version control: The projects use version control systems such as CVS

and Subversion to coordinate changes to the code. They are integrated into

their development process, and developers are automatically notified by email

whenever code is checked into the repository.

• Testing: Almost all projects use some form of regression testing to catch

defects introduced by modifying the code. Some projects have an automated

system for running regression tests, and others run the regression tests man-

ually.

• (Lack of) formal review: We have not seen any projects that have adopted

a formal process for approving code before it is checked in to the repository.

Individual developers are responsible for performing testing before commits

are made.

• Algorithmic defects: Finding and fixing algorithmic defects is much more

challenging than finding and fixing coding defects.

Related empirical studies

The effect of software engineering practices on HPC has been studied. For

example, Morton [61] has reported lessons learned in porting Fortran/PVM code
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to the CrayT3D and described tradeoffs between performance gains and effort for

porting. In their experience, coding effort can be reduced by “encapsulating the

details of optimization and incorporating them in applications through high-level

subroutines.” Berthou et. al. [11] compared OpenMP, HPF, and MPI to evaluate

the impact of programming models and language features on the performance of

applications and presented the recommended parallelization strategy.

Berlin et. al. [10] conducted evaluated impact of programming language fea-

tures on the performance of parallel applications on cluster architectures. Hochstein

[41] has reported the impact of programming models on development effort. They

reported that novice programmers spend significantly less effort with OpenMP com-

pared to MPI.

2.2 Defects

2.2.1 Role of defects in software development

Debugging is one of the most time-consuming activities in software develop-

ment, taking from 30 to 70 percents of the total development time [69, 48]. Although

it varies significantly depending on context and how “debugging” is defined, defects

are major bottlenecks to development productivity. Many empirical studies have

reported anecdotes on debugging and defects [30, 50, 55, 66, 72]. They emphasize

the importance and difficulty of understanding defects.

In earlier research, people have sought generic strategies for avoiding, prevent-

ing and resolving defects. For example, Boehm et. al. suggested “10 techniques
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that can help reduce the flaws in your code” based on empirical research on defect

reduction [12]. Researchers have continually put effort to understand, evaluate and

predict the characteristics and behaviors of defects. One key observation is that

contexts play an important role as most projects and organizations differ [69], so

defects must be understood along with various context variables they are associated

with.

2.2.2 Defect detection

There are countless techniques and technologies proposed and applied for find-

ing defects. We describe three major approaches.

• Static approach: Static analysis techniques, including dataflow analysis, type

checking, model checking and other formal methods, are powerful tools for de-

tecting software defects. The theory behind these techniques is closely related

to programming language and compiler semantics.

• Dynamic approach: Defects are found by executing the software. Testing is

the most common practice for finding defects in the software.

• Human approach: Reading-based methods [51] are known to be an effective

inspection technique. This type of approach depends on the insights of human

developers to understand the problem and the implementation.

In practice, debugging is performed by a combination of these approaches.
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2.2.3 Defect classifications and measures

Measuring defects has been used as a means of evaluating software develop-

ment, and predicting success/failure of the project and the product. Defining defect

classifications is a key step to conduct data analysis.

Chillarege [23][22] proposed Orthogonal Defect Classification (ODC). It de-

fined 8 defect type attributes (function, interface, checking, assignment, timing/ seri-

alization, build/package/merge, documentation and algorithm) and 6 defect trigger

attributes (bug-fix, DB-recovery, exception handling, timing, workload, user code

and unknown). Other researchers have defined other classification schemes. Ko

[52] summarizes classification schemes defined in various languages, expertise and

programming contexts.

These classification schemes have been found useful. For example, they can

be used to differentiate the occurrences of defects of different types depending on

development phases. One key observation is that the classification schemes are really

context-dependent.

2.2.4 Defect patterns

In recent years, practitioners have been aware of the usefulness of establishing

”patterns” for software defects. Defect patterns are different from design patterns

[35] and anti-patterns [16][15], which have been widely recognized as a useful form

of knowledge about good and bad software designs in software engineering. While

a design pattern is intended to describe a solution to frequently occurring problems
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independent of a particular application domain or a program language, the descrip-

tion of a defect pattern (or a bug pattern, in a more common terminology) is made

at a much lower level, as defects are closely coupled with the details of the imple-

mentations. For this reason, the applicability of defect patterns tend to be limited

to a specific programming language, a property of software, or an application do-

main. Some patterns only describe the characteristics of the defects, while others

go deeper and provide advice for avoiding and/or detecting them.

One of the programming languages for which defect patterns are widely studied

is Java. Allen [2] is frequently referred to as one of the earliest works on Java

bug patterns. PMD [26] and FindBugs [44] are examples of analysis tools which

implement detectors for various Java defect patterns to find them automatically.

Rutar [67] provides a comparison of several bug finding tools for Java.

PHP is another language for which defect patterns are actively studied. Hous-

ton [43] describes “five beginner mistakes to avoid” in PHP programming. PHP-Sat

[13] is a static analysis tool for detecting defects in PHP applications.

Howard [45] presents defect patterns related to security. This is an example

of the patterns focused on a particular aspect of software. Kumar [53] presents

patterns of computer intrusions.

Michail [60] describes defect patterns in GUI applications and a method to

help users avoid them. Sullivan [70] is a comparison of software defects in database

management systems and operating systems.

Again, it should be emphasized that the patterns described in each of the

works above are very different from each other. This means that defect patterns
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need to be identified for each context of interest.

Another point is that while these works explain the defect patterns themselves,

there is little explanation on how these patterns were identified. In most cases, the

patterns seem to derive from the personal experience of the researchers involved in

documenting them. A methodology for developing defect patterns in a new domain is

missing, as well as a methodology to validate patterns. (One possibility for validation

is that after the patterns are implemented as a tool, patterns are evaluated against

real code by applying them. Williams [73] used code mining techniques to identify

defect patterns.) Therefore, when we build patterns for HPC, the methodology for

doing so becomes important. The emphasis is put on making sure the patterns are

supported by empirical evidence.

Defect patterns in parallel computing and HPC

Defect patterns in generic parallel computing have been reported [19, 32, 5,

4]. They almost exclusively discuss synchronization issues such as deadlock, race

conditions, and performance issues, with a few exceptions of sequential defects such

as segmentation fault, bus error, operand range error, and floating point exception

[3]. One key observation, however, that we present in the later chapters, is that the

defects that are “known” to be common in parallel computing are not necessarily

dominant in HPC applications. Therefore, defect patterns developed for generic

parallel computing do not necessarily cover the defects that are important in HPC

applications.
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There are only a few research results on defect patterns specific to HPC.

NERSC [63] provides a tutorial for debugging HPC applications, which includes

a few HPC-specific defects in addition to the generic defects in numerical compu-

tations. The research closest to this dissertation is conducted by Suess [62]. They

reported common mistakes found in students’ code written in OpenMP and dis-

cussed how to avoid them.

2.3 Knowledge building

2.3.1 Experience bases

Knowledge bases (KB) in general are defined in various ways. The Cyc Knowl-

edge Base [54], the world’s largest general knowledge base, defines itself as a for-

malized representation of a vast quantity of fundamental human knowledge: facts,

rules of thumb, and heuristics for reasoning about the objects and events of everyday

life. It is designed to provide a machine-readable form of knowledge so that it can,

for example, allow AI researchers to implement machine learning, natural language

processing, semantic web, and other fields of study which require a means to per-

form automatic reasoning. The other type of knowledge base is intended to store

a human-readable form of knowledge about a particular topic of interest such as

an organization, software support, etc. The typical content includes articles, FAQs

(frequently asked questions), hints and tips, and troubleshooting guides.

An experience base is a knowledge base which stores experience packages. An

experience base in the domain of software engineering was first introduced with the
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purpose of organizational learning. Basili [7] discusses its importance in the con-

text of a quality improvement paradigm (QIP). In QIP, while individual projects

pursue their goal to develop software, the experience factory collects and maintains

knowledge across projects so that they can understand where they can reuse archi-

tectures, designs, what functionality each product has, and how to estimate the cost

of adding new features or changing existing ones. An experience base functions as a

core of the experience factory, which provides an infrastructure to support projects,

analyze project data and package experience.

In CeBASE [6], the experience base was organized to accumulate empirical

models in order to provide validated guidelines for selecting techniques and models,

recommend areas for research, and support software engineering education. As is

represented by the “No Silver Bullet” principle [34], we cannot expect technology or

practice to be effective in all situations. CeBASE is aimed at accumulating empirical

knowledge and experience to support decision-making in specific contexts.

While CeBASE has achieved a certain degree of success, a great diversity of

generic software makes its goal very challenging, since there are often too many

context variables affecting “what works and what doesn’t.” In this dissertation, we

attempt to build an experience base for a specific aspect of software development

(defects) in a particular domain (high performance computing). We believe this

approach will lead to a more useful base, as the target is more focused yet still large

enough to be interesting.
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2.3.2 Educational psychology

Educational psychology is defined by the American Psychological Association

[59] as “the branch of psychology concerned with studying how people learn from

instruction, and with developing educational materials, programs, and techniques

that enhance learning. Educational psychologists conduct scientific research both

to advance theory–such as explaining how people learn, teach, and differ from one

another and to advance practice–such as determining how to improve learning. Al-

though perhaps best known for studying children in school settings, educational

psychologists also are concerned with learning and teaching people from infancy

through old age, in school and outside of school.”

We review several key concepts in educational psychology which are related

to this dissertation.

Development of reasoning

While there are many things taught in education, what is most closely related

this dissertation is the growth of reasoning: the handling of logical relations. Gordon

[36] characterized the process of developing an ability of reasoning with “the capac-

ity to use symbols, concepts and abstractions (and) identify the classification and

definition of experience.” The process is explained using the following key notions.

• Conception and abstraction: the use of symbols and concepts

• Controlled association: detection of hidden similarities

• Classification and definition: introduce order whether among ideas or among
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forms of conduct

Learning problem solving

Henderson [37] has conducted a series of interviews to understand the beliefs

of instructors of physics on the three types of learning activities:

• Using feedback while/after working on problems

• Working on problems (practicing)

• Looking/listening to example problem solutions or lectures

The key observation is that instructors believe that while learning using feedback

while/after working on problems is widely believed to be effective, they have mixed

opinions on the effect of learning by looking/listening to example problem solutions

or lectures. “One instructor did not believe that students can learn how to solve

problems without actually working on problems. Another instructor thought that

students might be able to learn something without working on problems, but that

actually working on problems would be more effective. All five instructors who

believed that learning can take place by looking/listening described the general

student action of looking/listening to example problem solutions.”

Constructivism

Constructivism is a theory which encourages learners to build the structure

of knowledge by themselves, or teach new knowledge by making use of the concept
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that learners already possess. Zan [76] states that “student’s active construction

should be facilitated and promoted” in the constructivistic approach. Note that

constructivism is not referring to pedagogy, which defines concrete methods and

strategies of teaching, but how learning should occur.

In this approach, the learning process is explained by two complementary

processes of accommodation and assimilation [65]. Accommodation is a process to

“fit theory to practice” by fitting the internal representation of some ideas to fit the

realities, while assimilation is a process to “fit practice to theory”, by interpreting the

success and failure of the actions and aligning the internal knowledge representation.

Educational materials should be designed to promote the process. Since each learner

has different background, the actual construction process is unique.

2.4 Research methodologies

In empirical research, the quality of the data and validity of the research results

depend on the experimental methodologies selected for data collection, data analysis

and validation. The contexts in which the research is conducted vary in each study,

and so does which methodologies are applicable and appropriate.

2.4.1 Quantitative methods

Quantitative methods are most suitable when the object of the research can be

modeled with numerical metrics, and a sufficient amount of data can be obtained.

For example, experiments in natural science almost exclusively use a quantitative
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approach. On the other hand, in research areas involving human behavioral aspects,

the phenomenon to be measured tends to be harder to reproduce, as not all param-

eters can be controlled. Campbell [28] describes possible experimental designs and

the associated threats to validity.

The quantitative data is usually analyzed using a statistical method. It is

widely accepted as a convenient means to make objective judgment when interpret-

ing research outputs. However, caution must be taken since statistical methods are

too often misused and misunderstood [46].

An example of a quantitative approach applied to software engineering can be

found in the study of defect data for evaluating development processes or products.

In a traditional development process, in the testing phase the testers fill out defect

reports (known as change requests) when the test cases fail. If the development

process is under control, the number of defects or defect rate diminishes as the testing

phase progresses. Project managers can then decide when to stop testing, or they

can estimate how much more has to be spent for further debugging and testing. If the

number of defects does not follow this diminishing pattern, it indicates something is

going wrong with the software process. To rephrase, this type of research uses the

occurrences of defects as a metric for studying the software process. While simple

approaches just counts the number of defects, a more sophisticated type of study

counts the defects by type.

In software engineering, many technical aspects of software development can

be modeled with numeric measures and analyzed with a quantitative approach.
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2.4.2 Qualitative methods

While quantitative methods based on statistical significance have become the

standard way of processing research results in natural science, limitations exist when

they are applied in other research areas such as in handling the complexity of issues

involving human behavior.

On one hand, getting data suitable for quantitative analysis is hard when

human behavior aspects are of interest. On the other hand, there are often cases

where researchers are interested in more than just statistical significance. There-

fore, qualitative research methods are used to compensate for the limitations of the

quantitative approach.

In a qualitative approach, the focus is put on obtaining a deeper understanding

of the topic. Seaman [68] stated that “the principal advantage of using qualitative

methods is that they force the researcher to delve into the complexity of the prob-

lem rather than abstract it away. The results are richer and more informative.” On

the other hand, “qualitative analysis is generally more labor-intensive and exhaust-

ing than quantitative analysis. Qualitative results often are considered ‘softer’ or

‘fuzzier’ than quantitative results.” To make qualitative analysis feasible and as ef-

ficient as possible, various methods for data collection, analysis and validation have

been developed. We summarize those related to this dissertation.
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Structured interviews

Structured interviewing is a method which collects information using a list

of pre-written questions. In its simplest form, all interviewees are asked the same

questions in a standardized order. Litkowski [56] describes that “when essentially the

same information must be obtained from numerous people for a multiple case-study

evaluation or a single case-study evaluation, it may be beneficial to use structured

interviews.”

The advantages of structured interviews are an ability to replicate interviews

easily. The method is usually quite reliable. It should be noted, however, that

the quality and usefulness of the information heavily depends on the questions and

how they are asked. A substantial amount of pre-planning is required to make

the interview effective [57]. The questions and other materials presented to the

interviewees need to be carefully composed, as they determine the framework of the

information being collected in the interview. A question format can also affect the

characteristics of the information that can be obtained.

Coding

Coding is a method of qualitative data analysis for extracting quantitative

variables from qualitative data [31]. It is often used to transform the primary data

represented as words or pictures to numerical or categorized data. The cost and

reliability of the transformation depends on the characteristics of the original qual-

itative data.
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Maxwell [58] states that “the goal of coding is not to count things, but to

‘fracture’ the data and rearrange them into categories that facilitate comparison

between things in the same category and that aid in the development of theoretical

concepts. Another form of categorizing analysis involves organizing the data into

broader themes and issues.”

Expert validation

Expert validation is a method of validating the results of qualitative analysis

by showing there is an agreement between the researcher’s analysis and the descrip-

tion given by an expert. This method assumes that that the analysis results are

comprehensible to the expert. When conducting expert validation, presenting the

results in an organized way is important. Expecting experts to read through the

unstructured analysis results is asking too much, and may affect their judgment.
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Chapter 3

Problem Statement

This chapter defines the problem we will address in this dissertation using

the Goal, Question and Metrics (GQM) template [8], and presents a set of research

questions associated with the goals.

3.1 Problem Statement

The high-level goal of this dissertation is “to construct a methodology and

technology to collect, improve and apply knowledge about domain-specific defect

patterns using an empirical approach.” Our research is specifically targeted on soft-

ware development for the high performance computing domain. Through a series of

empirical studies, we will identify patterns of recurring defects in HPC applications,

develop classification schemes that cover them, and continually refine the patterns.

The major challenge is to choose an appropriate approach, conduct the study with

available testbeds, and formalize results so that we can iteratively evolve knowledge.

The actual process to execute this research involves the construction of an

experience base. Not only does the experience base system store all the results, it

should also provide a means for stakeholders in the community to access the content

and provide feedback.
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3.1.1 GQM goal

Analyze various empirical data on application development in order to char-

acterize it with respect to patterns of recurring defects from the point of view of

researchers in the context of HPC.

3.2 Hypotheses and research questions

Pursuing the above goal leads to an attempt to answer the following research

questions.

3.2.1 Hypothesis about the existence of defect patterns

H1: There are recognizable classes of defects that frequently appear in the ap-

plications for high performance computing.

The first set of questions addresses whether there exist distinctive defect pat-

terns in the HPC domain. These are the most fundamental questions for this dis-

sertation.

• RQ1-1: What are domain specific defects in HPC?

• RQ1-2: Can we identify defect patterns (causes, symptoms, potential cures

and preventions, and examples)?

• RQ1-3: Can we define a set of templates to describe information about defect

types at different levels of abstraction?
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3.2.2 Hypothesis about the collection and description of knowledge

H2: Common defects can be identified by reading-based source code analysis

The next set of questions is related to the feasibility of data collection and

accumulation, including identification of defect patterns and development of an ex-

perience base.

• RQ2-1: Can we build heuristics to detect defects in the code that can be used

in a reliable way by others?

• RQ2-2: Can we classify defects in a way that is clear to experts and allows

them to add information?

• RQ2-3: Is it possible to automate the detection of some classes of HPC defects?

3.2.3 Hypothesis about the refinement of knowledge

H3: We can build and evolve the patterns based upon expert knowledge

The following set of questions is related to the refinement of knowledge.

• RQ3-1: Can we extract new knowledge by presenting existing knowledge in a

structured way?

• RQ3-2: Can we build and evolve a defect experience base with usable informa-

tion?
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3.2.4 Hypothesis about the application of knowledge

H4: Knowledge accumulated in the experience base can be packaged into a

useful form

• RQ4-1: Can teaching novices about defect patterns reduce the number of defects

made?

• RQ4-2: Can we provide recommendations to researchers of future defect de-

tection tools? Can we develop our own data analysis tool based on the recom-

mendations?

3.3 Constraints

3.3.1 Difficulties in finding defects for developers

A precondition for obtaining defect reports from developers is that develop-

ers recognize defects themselves, since they can never report defects of which they

are unaware. There are several factors that make defects harder to identify from

developers’ point of view.

• Since HPC code is often required to work in various hardware and software

environments, portability is important. If a defect does not cause a failure on

the specific environment the developer is working, the existence of the problem

may not be detected at all by testing.

• If a failure is detected under specific runtime conditions such as input data,

parameters and the number of processes/threads, extensive testing is necessary
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to detect the existence of a defect. A similar situation is that the behavior of

the program is non-deterministic due to concurrency, in which case finding a

defect may need many executions.

• Testing as a means to validate the code is a means of knowing whether some-

thing is wrong. In a simple situation, correctness of the program is often

validated by checking the output against known correct values. When the

correct answer is not known, validating correctness becomes harder. In some

application areas such as numerical analysis and random simulation, the out-

put may contain numerical errors that are hard to verify as reasonable.

• As stated in Chapter 1, poor performance of HPC code is considered a defect

even if the output is correct. In practice, few programs are optimized to

“squeeze out the last drop of performance” from a particular architecture. It

does not matter as long as the code runs fast enough to provide useful output

within time and resource constraints. Even if the program is unacceptably

slow, some problems are just inherently hard to parallelize. Therefore, it is a

difficult judgment whether the code has a performance problem which can be

fixed with a known reasonable method.

3.3.2 Difficulties in recording defects for developers

Even if developers did recognize defects, recording them can involve additional

difficulties.

• If they can make a record of defects while they are debugging, they have an
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opportunity to create an accurate log. However, as debugging is a human-

intensive task, developers need to focus on the main job of investigating what

is wrong with the code. Doing a “side job” may interfere with the debugging

activities.

• If recording of defects are retrospective, developers may not remember all de-

fects they encountered. Whether a defect is recorded depends on how strongly

developers remember it. This is not necessarily bad, since the defects which

required the most effort to track down, are the ones in which we are the most

interested in, and are more likely to remain in the memory of the developers.

Nevertheless, this factor can damage the completeness of defect reports.

• Developers are not necessarily willing to record all defects. For example, they

may not want to report defects if they seem so simple that they feel embar-

rassed to let others know they made such an error. This tendency largely

varies depending on the mind set of individual developers. External factors

can also affect this. In an extreme example, if developers are evaluated based

on the number of defects they made, it would be natural for them to not report

all of them.

3.3.3 Difficulties in collecting data on defects for researchers

In traditional software engineering research, the primary data source for soft-

ware defects is change requests, which are maintained following the development

practice each project follows. Unfortunately, this kind of data is difficult to obtain
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in many software engineering environments, and this approach is not applicable.

In most scientific computing projects, no formal change requests are created and

maintained.

Figure 3.1 summarizes potential data sources of defects organized into several

categories.

• Raw data: Source code contains the “raw” defect data. All other data sources

are indirect and abstractions.1

• Unstructured data: Many data sources, such as mailing list archives, contain

information on defects. It is embedded in other unrelated information, and it

doesn’t have a common format.

• Structured data: In a well-organized project, defects are recorded in a defect

tracking system. Information has a predefined structure.

• Defect patterns: If some defect patterns are already known in the domain of

interest, they can be provide a useful clue for determining more patterns. At

this level, the data contains abstracted information on the defects, such as

symptoms and possible techniques for resolving or preventing them.

1Raw defect data can also exist in a design document. It is out of scope of this dissertation.
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Figure 3.1: Possible data sources for analysts

In general, the more abstract and structured the available data sources are, the

easier the data collection tends to be. Unfortunately, many of these data sources are

not readily available in the HPC domain. For example, few HPC projects actively

use a defect reporting and tracking system. Defect tracking is mainly accomplished

through informal communiation among project members [39], thus the consistent

information cannot be obtained. The mailing list archives are often available, but

since emails contain a lot of information irrelevant to the defects, extracting defect

data requires significant effort. In this dissertation, we assume the following data is

available.

• Source code with change history. Many HPC projects adopt a code man-

agement system. Some of them are publicly accessible, while others are for

internal use which require permissions to access. In this dissertation, we at-

tempt to capture the change history data at a finer granularity.
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• Defect patterns. This type of data source exists as knowledge hidden in the

brain of experts. In this dissertation, we attempt to extract such knowledge.

3.3.4 Difficulty in finding defects for researchers

The judgment of whether or not a certain behavior is a defect requires the

understanding of what the code is supposed to do. The goal of a scientific project is

often as simple as “perform computation X”. However, X can involve an advanced

scientific theory as background. Furthermore, X keeps changing as the project pro-

gresses. Therefore, researchers need to overcome the learning cost for each project

they analyze.
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Chapter 4

Methodology and Problem Solving Process

While many practitioners recognize the usefulness of defect patterns, and there

are patterns proposed for various languages, properties of software, and application

domains, there seems to be no established methodology for developing defect pat-

terns in new contexts. A methodology for identifying and evolving defect patterns

is important because defect patterns tend to be context-dependent and, therefore,

need to be built for every context of interest. In this chapter, we propose a general

methodology for building, refining and applying defect patterns for a new domain

from empirical data, and demonstrate its realization in the high performance com-

puting domain. The core of our methodology is based on the construction of an

experience base. Knowledge of recurring defects is incrementally and iteratively

accumulated through three separate, but inter-related activities. We describe the

methodologies for each part of the problem-solving process with the underlying ra-

tionale based on the HPC constraints.

4.1 Problem solving approach

Our solution is to build an experience base which can store and share patterns

of recurring defects, so that HPC practitioners can access them at various levels of

abstraction and submit feedback. To realize this under the various constraints de-
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scribed in the previous chapter, we take an approach that consists of three different,

yet closely coupled sub-processes which are illustrated in Figure 4.1.

Figure 4.1: Problem solving approach

• Knowledge collection: pattern identification for bootstrapping and continual

data accumulation

• Knowledge refinement: reactive pattern refinement based on expert feedback

• Knowledge packaging: development of derivative artifacts and validation of

usefulness

By conducting them iteratively and in parallel, the content of the experience base is

gradually evolved. In the rest of this chapter, we describe each sub-process in more
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detail.

4.2 Opportunistic and iterative research

Since resources to run software engineering studies are generally scarce, max-

imum effort should be made to extract as much information as possible from the

available opportunities.In this research, we collect data through a series of class-

room studies as well as interactions with HPC domain experts. We need to actively

motivate potential study participants to provide us with data by explaining the

background of the research project and emphasizing the importance of their help.

At the same time, research methods should be designed to minimize the overhead

of participating in the study. Each study opportunity may become available only at

specific time, so we should be always prepared to work with new participants while

conducting the study and analyzing the results from existing data sources.

An iterative approach implies the data collection and analysis are conducted

in parallel and each phase is repeated over time. One important observation is that

the analysis can become increasingly efficient as more knowledge is accumulated.

For example, it is possible that a defect that was missed in previous analysis is

detected later using the knowledge established from other data. Suppose three data

sets A, B and C were analyzed in this order, and a new defect X was identified when

analyzing the data set C. If the defect X was also in the data set A or B but missed

in the first iteration, it can be detected in the second iteration since the analysis

was performed more carefully to identify the defect X.
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Therefore, the process of knowledge building cannot be driven by a single

activity. Instead, it forms a feedback loop in which knowledge is incrementally built

and evolved as both new and existing data are repeatedly visited. The purpose of

the analysis can also change over iterations. Early iterations are generative and

are focused on identifying individual defects to create initial pattern definitions,

while later iterations are confirmatory and focused on assessing whether previously

identified defect patterns are observed in other data too.

4.3 Process 1: collecting knowledge

4.3.1 Purpose

Since the experience base is merely an empty container in the beginning, we

need to prepare an initial content that is interesting enough to convince others to

access the experience base. Therefore, the first sub-process is to capture data and

build knowledge of recurring defects. As it forms a basis for the entire body of

knowledge to be accumulated, the quality of the analysis in the first sub-process

determines whether the experience base can be widely accepted. For this reason, it

is worthwhile to perform as much analysis as possible.

Furthermore, since we have control over the data we create, it provides an op-

portunity to obtain more detailed, consistent and interpretable results than the data

coming from others. Therefore, this sub-process is also important for continual data

accumulation and improvement even after the initial content has been successfully

built. As more data comes in, the knowledge and the analysis method are gradually
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evolved.

It should be emphasized, however, that the goal of this sub-process is not

necessarily to gain “perfect” knowledge. It should rather be considered as a driving

force to boost the second sub-process, which provides an opportunity to expand the

body of knowledge to broader contexts than are possible in process one.

4.3.2 Research methods and rationale

Reading-based code analysis

The primary method of the data analysis is code inspection. We inspect the

change history data to identify defects that exist in each version of the source code.

To mitigate the labor-intensiveness of this approach, we develop a set of heuristics

to help locate defects.

A rationale is that the source code history is the most commonly available

data type. Other data types (e.g. defect tracking entries) are harder to obtain in

the HPC domain, and tend to be inconsistent. Therefore, methods that require

other data sources are generally not applicable.

Qualitative data collection

As described in Chapter 3, the primary data available in the HPC domain

is raw data (i.e., source code versions). Since the initial analysis begins with the

state in which the characteristics of recurring defect types are unknown, it needs to

be exploratory and focused on “discovering” a set of defects that appear to occur
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frequently. What is most important at this phase is to record as much context

information as possible. Therefore, the primary analysis results are recorded as

text.

Inductive pattern definition

We take an inductive, bottom-up approach to define “defect types”. A defect

type represents a set of similar defects grouped together. Each defect type is derived

by grouping similar defect examples observed in the data analyzed. The benefit of

this approach is that the defect types are automatically given support from concrete

defect examples, so the knowledge associated with them has rich context informa-

tion.

To define defect types, a coding technique is used to identify common char-

acteristics of defects and group similar defects together. The coding is done using

a set of heuristics. We also introduce a set of templates to describe the information

so that it can be recorded in a consistent manner.

4.3.3 Characteristics

Input: The primary data available come from a series of empirical studies con-

ducted at various universities and academic institutions across the United

States. As described in the previous chapter, the types of available data

sources in the HPC domain are generally limited. The data we use will be

described in more details in Chapter 5.
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Output: Delivered out of this sub-process is the information on specific HPC de-

fects identified in the data analyzed as well as the description of defect types.

These outputs of data analysis are expanded to the description of individual

defects that were reported by subjects or found in code analysis, identified pat-

terns, and classification schemes to cover them. The results are a classification

scheme, a set of defect patterns, and an experience base.

Actors: To realize this sub-process, there should be two kinds of actors involved.

The first type of actor is the HPC developers (study subjects) who grant access

to their raw data (source code history) or provide a record of defects. They can

have varied levels of experience. Data coming from various kinds of developers

provides a variety of contexts in which defects are made. Therefore, as long

as they are willing to provide data, they can play this role whether they are

novice programmers or they are experienced professionals. The quality of data

often depends on how motivated they are to cooperate, especially if providing

the data in a useful form requires extra effort from the subject. The second

type of actor is researchers (analysts) who collects and analyzes the data based

upon a set of procedures or heuristics. In addition to coordinating the data

collection process with developers, the researchers need to have the skill to

process the data appropriately. For example, they need an ability to analyze

the code if the data source is source files and use a coding technique to identify

common characteristics. To check that the heuristics embedded in the coding

technique are transferable and provide consistent results, we need to perform
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a reliability study. In this dissertation, the author and other members of the

HPCS project play the role of the researcher.

4.4 Process 2: validating and refining knowledge

4.4.1 Purpose

The purpose of the second sub-process is to evaluate and validate the patterns

developed in the first process, and add more knowledge to refine the patterns. This

sub-process is crucial, because:

• The analysis is reading-based, which does not guarantee correctness by itself.

• The results from the analysis does not cover the entire domain space of interest

as it is linked to available sources. To obtain knowledge about defects beyond

the available data scope, we need to refine what exists with the help of experts

representing other experiences, types of expertise, etc..

4.4.2 Research methods and rationale

Expert validation

A precondition for this sub-process is that the HPC community already pos-

sesses a great deal of implicit knowledge about recurring defects at the level of

individual programmers. Part of the ability of experienced developers is related to

their understanding of the problems that occur during development, as well as of

the strengths and the weaknesses of the languages, what techniques and precau-
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tions can help them prevent or resolve a certain type of defects effectively, etc. We

make use of their knowledge to validate the analysis results obtained in the previous

process. Getting feedback from multiple experts allows us to confirm whether they

make similar comments to the existing content and view the defect information as

relevant to them.

Reactive pattern refinement

Unfortunately, however, the knowledge of experts usually stays within the

minds of individuals and is rarely made explicit. It is not unusual that even the

developers are not fully aware of what they know [9]. Therefore, without any clues

it is hard for them to provide such knowledge even if they are willing to do so. We

addresses this difficulty by making use of the knowledge developed in the first sub-

process. In particular, we use a variation of semi-structured interviews, in which

we obtain a reaction to the existing content in the experience base. The content to

be presented is organized carefully beforehand, so that it can “contextualize” the

questions being asked. By stimulating them with a carefully prepared summary of

the existing content, we attempt to obtain feedback in the form of support or refu-

tation of the existing content (whether or not they agree that the current patterns

are valid), a possible addition or modification to the content (what information is

missing), and suggestions on new defects types that are not covered by the existing

patterns. The obtained feedback is reflected in the pattern definitions.

Note that the knowledge obtained from experts contains the information that
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cannot be obtained with the initial bottom-up approach, such as advice on how

to detect, resolve or prevent each defect type. This kind of knowledge is critically

important to make the defect patterns useful.

4.4.3 Characteristics

Input: The input to this sub-process is the content of the experience base. In our

approach, the content is reorganized specifically to ask for feedback, and used

in the form of semi-structured interviews.

Output: Output is additions, deletions or modifications to the current content in

the forms of comments and suggestions that are either supportive or critical,

or concrete examples of additional defects as code fragments (snippets). The

obtained feedback is reflected in the content of the experience base.

Actors: To realize this sub-process, there should be experts who are willing to re-

view the content and provide feedback. They provide the expert evaluation

of the results to date. There should also be an interviewer who finds appropri-

ate experts, prepares the necessary review artifacts, conducts interviews, and

reviews the results. In this dissertation, we play a role of the interviewer.
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4.5 Process 3: packaging knowledge

4.5.1 Purpose

Knowledge is only useful when it’s actually used. Once sufficient amount of

knowledge has been accumulated, the third sub-process is to package it to produce

useful derivative artifacts. We can consider these artifacts as bi-products of the

knowledge-building process. The specific artifacts derived from the experience base

in the HPC domain are:

• Educational material that can be used for teaching common defect patterns

to novice HPC developers.

• A recommendation document which describes potential technological needs

for detecting and preventing defects.

The purpose of packaging knowledge into these artifacts is to extend the use of

the experience base by making access to the knowledge easier. We also evaluate the

potential usefulness of the accumulated knowledge by testing whether the derivative

artifacts can actually contribute to decreasing defects.

4.5.2 Research methods and rationale

Controlled experiment

To evaluate whether the knowledge obtained through this research is useful, we

conduct a semi-controlled experiment. We use the educational material in actual
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graduate-level HPC courses and test whether the students who were taught defect

patterns make fewer defects in a subsequent programming assignment. As there is a

limit on what we can control in a classroom environment, ideal experiment designs

are difficult to implement. In particular, since we are not allowed to treat students in

the same class unfairly, randomly splitting the students into two groups and give the

lecture to only one of them is not possible. We make use of the data from multiple

HPC courses using an identical programming assignment so that the evaluation is

still possible while minimizing threats to validity within the given constraints.

4.5.3 Characteristics

Input: Input to this activity is the knowledge accumulated in the experience base.

Output: The deliverables are various kinds of secondary products packaged into a

more usable form for specific stakeholders. Specific products to be built include

a report on the requirements of future tool development for HPC defects, and

educational materials to teach novice HPC developers about defect patterns.

Actors: While anyone who accesses the experience base to make use of the con-

tent can be a potential actor of this sub-process, few of them make concrete

products. In this dissertation, we assume we play the role of the creator of

these bi-products. We also conduct an experiment to test them to evaluate

the usefulness of the accumulated knowledge.
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Chapter 5

Collecting Defect Patterns

The first activity of the problem solving approach is to collect data for identi-

fying patterns of defects as a means for “bootstrapping” the experience base, since

the base would never be used without some initial data. As we argued in Chapter

3, while software defects exist everywhere, collecting them in a usable data format

requires us to overcome several challenges. We used two forms of data collection

strategies to identify defects, which were doable within the data collection opportu-

nities we had. The first approach is based on code reading, which has been found to

be effective for identifying defects from source files written by students. Moreover,

since we have control over what we collect, continual data collection provides stable

support for the experience base even after the initial content has been built. The

second approach is based on self reporting from developers. Our study indicates that

collecting defect information from developers’ self reports is also useful, although

the recorded defects are less complete.

The task of identifying initial defect patterns requires exploratory analysis,

which manual analysis is best-suited for. Other less labor-intensive methods are

difficult to implement because of the uncertainty of the characteristics of the defects

to look for, the characteristics of the data available and general lack of applicable

technologies.
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We present a set of heuristics for efficiently reviewing a history of code changes,

and demonstrate the feasibility of the reading-based approach by presenting the

results of the analysis conducted by the author using the data from a series of

classroom studies. We also present the results of the reliability study to show the

heuristics of the method can be taught to other analysts and the analysis based on

code reading is repeatable with a proper tool support.

5.1 Data Sources

The primary data we use comes from a series of software engineering studies

conducted in universities and academic institutions across the United States. These

studies were conducted by the Experiment Software Engineering Group at University

of Maryland, as a leader of the Development Time Working Group in the DARPA

High Productivity Computing Systems (HPCS) project. To explore various issues

related to HPC productivity, the group has collected various kinds of quantitative

and qualitative data. Note that the data collection activities started in 2003, and

the author has only contributed to the efforts made since fall 2005. Therefore, old

raw data was provided by other member of the project. However, all the analysis

related to defects was conducted by the author.
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Figure 5.1: Locations in which the study was conducted

Figure 5.1 shows the locations in which we did the study. The characteristics

of the data are described below.

5.1.1 Subjects in classroom studies

The subjects of these studies are graduate students taking a course on the

topics closely related to high performance computing. Some focus on the HPC sys-

tems, while others put an emphasis on parallel algorithms, but all courses teach

several programming models/languages for HPC and provide programming assign-

ments which use them. The students have varied backgrounds with experience in

generic programming and knowledge of related scientific fields, etc. What is com-

mon among the students is that they are new to these programming models (this is
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the reason they took these courses). During the course, they are required to learn

a new programming model over a short period of time, and apply it to solve the

assignments. To receive a good grade, they are usually motivated to make effort to

produce a good solution.

In real HPC projects, developers are often scientists and students whose pri-

mary interest and expertise is not programming. When they first start working as

developers in an HPC project, or they adopt a programming model with which they

don’t have prior experience, they need to learn and use it in their project in short

time. In this sense, while the level of expertise in the scientific area is very different,

their situation is expected to be similar to the students participating in the class-

room studies. Therefore, in the context of defect research, studying the behavior of

students is considered as a relevant approximation of many real developers.

5.1.2 Problems used in classroom studies

Table 5.1 summarizes the problems used as assignments. The number in each

cell in the table represents how many courses were used the corresponding problem

and the programming model as an assignment. Appendix A provides the detailed de-

scription for these problems. The size of the problems is smaller than any real HPC

projects, and the typical duration of an assignment is one to three weeks. They are

intended to help students learn and understand specific aspects of HPC program-

ming. They are often simplified versions of the larger problem which appears in

real projects. Therefore, defects that appear in the code solving the problems are
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expected to be a subset of defects in real HPC projects.
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Table 5.1: Summary of the problems and programming models used as assignments

in classroom study

MPI OpenMP UPC/CAF Matlab*P XMT-C

Embarrassingly parallel

Buffon-Laplace needle problem 2 2 2

Dense matrix-vector multiply 1 1

Nearest neighbor

Game of life 3 1 1 1

Sharks and fishes 2 2 1

Grid of resistors 1 1 1

Laplace’s equation 1 1

Quantum dynamics 1 1 1

All-to-all

Sparse matrix-vector multiply 1 1

Sparse conjugate gradient 2 2 1 1

Matrix power via prefix 1 1

Other

Sorting 2 1

(Shared memory)

LU decomposition 1

Shallow water model 1

Randomized selection 2

Breadth-first search 1
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In each assignment, the students are given a written description of the problem,

and asked to implement a parallel solution to that problem. The detailed settings

vary across assignments. The students are either asked to write the entire code from

scratch, write a parallel version based on the sequential code which was provided

by the professor, or write a particular function which can be linked with the given

“skeleton” code. For some problems, professors give additional hints by explaining

a parallel algorithm to be used. The criteria for grading also vary.

In each study, we collect data from 5 to 20 students who have registered for

that course and agreed to participate in the study. By collecting the data from

students solving the same assignment, we can obtain a variety of solutions to each

problem. This is useful for identifying defect patterns, as we can directly compare

implementations to figure out commonality and variability in the defects they make.

We have repeated the study with multiple professors. In each year, the profes-

sor teaching the course uses the same or similar problem sets, with potential updates

on the teaching methods.

Finally, some problem sets were used as a programming assignment by different

professors. There are differences in the details of the problem definitions, so it

provides further variations in the data.

5.1.3 Data collected in classroom studies

We have collected the following data.

• Source code snapshots: While writing a solution to an assignment, students
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are expected to make, find and fix defects in their code. Analyzing a series of

“intermediate” code versions allows us to identify defects which do not show

up in the final submission. Our group developed a small instrumentation tool

to capture code snapshots every time the code is compiled. The tool works as

a wrapper to a real compiler and saves all source files specified as command

arguments. This process is performed in background, so once the tool is set

up the data collection is completely transparent from the students’ point of

view. We installed the tool on the HPC machines which students were given

access to, and asked them to perform all the development tasks there so that

we can obtain the data for all compiles. Of course, we cannot force them to

do so, and we do not get data if the code is developed in other places. For

example, it is possible that a student writes a sequential version on their own

PC first. Fortunately, however, in order to finish an assignment most students

have to compile and run the parallel code on an instrumented machine anyway,

because most of them do not have access to other HPC environment, nor are

they willing to set up their own parallel execution environment.

• Other quantitative data: Using the same instrumentation tool, we collect

other data on development activities such as shell command history and inter-

actions with a job queue. We also use Hackystat [47] to record activities with

text editors such as vi and emacs. These data are useful for studying other

aspects of HPC development. We only use the timestamp values from these

data to estimate the effort spent between each compile. Again, once the tool
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is set up these data can be obtained automatically and transparently.

• Self-reported data (qualitative data): There are other kinds of data that

cannot be automatically collected with the above approach. Such data include

the experience of students, or what activities the students performed outside of

the machine. To collect such data, our group developed a web-based system

to allow students to enter information by themselves. For example, we ask

students to fill in background questionnaire at the beginning of the semester,

and post-study questionnaire at the end. We also ask them to keep logs of

development activities. For this research we use self-reported manual defect

logs.

All collected data is post-processed, cleaned up and put into a database. Keep-

ing the data in a database is not only convenient for data maintenance but also useful

for conducting analysis and storing analysis results. For example, with a set of SQL

queries we can easily retrieve all source code snapshots that belong to a particular

student for a particular assignment. Each version is assigned a unique ID, which

can be used to describe which version contains a particular defect identified.

5.2 Method/technique for reading-based code analysis

The primary data collection approach we employ is to analyze the source files.

Since source code is where defects actually exist, code analysis can be considered

as the most direct way to collect defects. We take a series of versions of the code,

inspect them, and record identified defects for each of them. Information on when
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each defect was inserted to/removed from the source code indicates how long the

defect stayed in the code, which implies the difficulty of debugging it.

While there are other known approaches for defect analysis, they are harder to

apply when we try to identify initial defect patterns. Below we compare a reading-

based approach with other approaches.

• Reading-based analysis (inspection): The approach which we take is soft-

ware inspection, or more specifically, code review. The method involves man-

ual code reading by a human analyst. Unlike an ordinary code review, which is

conducted in the review phase of the development process, we mainly conduct

the analysis offline after all the development is complete. More importantly,

we are not only interested defects in the latest version but also those eliminated

during development. An implication of the reading-based human analysis is

that it is labor intensive. For this approach to be feasible, scalability is an

important factor. Both the size/complexity of the code and the analyst’s

understanding of the code can affect the efficiency of the analysis.

• Tool-based analysis: Code analysis can be faster and easier with the use

of appropriate tools. As we describe later, we developed a tool for assisting

a reading-based method. However, it would be even more desirable if we can

just apply some existing defect detection tools which directly detect defects

in the given source code without human intervention. Unfortunately, we do

not necessarily know in advance what kinds of defects to look for in the code

when starting analysis to build an initial set of defect patterns. Since we need

57



to explore unknown classes of defects, we cannot expect that just applying

existing tools can uncover all defects of interest (remember there are huge

differences in the types of defects in different contexts.) Tools for automatic

defect detection can be used effectively once the patterns of defects begin to be

formed. If there is an existing tool which can detect a certain defect type, we

can just apply it to the data we have. If there is no such a tool, as we describe

in Chapter 7, we can provide other technology providers with the information

on potential tool demands for these defects.

• Testing: Testing is a common practice to find defects in software. To test

each version of the source files, the code needs to be compiled, executed with

prepared test cases, and verified if the output matches the expected result.

Since this process involves program executions, testing is classified as a “dy-

namic analysis” approach. An inherent limitation of this approach is that it

can only capture failures that surfaced during the conducted test runs. Since

many “difficult” HPC defects surface under specific conditions, they are of-

ten difficult to find with a small number of test cases. Furthermore, testing

becomes even more difficult when investigating intermediate versions. Some

versions may not even be compiled. Even if they do compile, it is often the

case that they only have partial functionality implemented. For example, there

may be a version which only implements the initialization process, runs for

only one iteration step, and/or computes something completely different to

produce debugging output. What is a “correct” behavior is different from
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version to version, and it is not easy to automatically figure out the behavior

to be expected for each version, let alone preparing test cases to verify the

output. In our approach, we do not use testing as a primary method of de-

fect detection. We only compile and run the code to confirm that some code

fragment contains a defect.

5.2.1 Methodology for analyzing source code

Now we describe a methodology for analyzing source code data to identify

defects. The purpose is to allow an analyst to start from the state where the

knowledge of defects is not available for the domain of interest, and identify defects

to build patterns iteratively and incrementally. Iteration occurs at two levels. At

an individual level, each analyst gradually increases the understanding of defects

and use it to re-inspect the data to identify defects that were missed in previous

trials. At a higher level, he/she also uses feedback from the knowledge refinement

process, which is described in the next Chapter, to re-inspect the data. In an early

iteration, it is natural that an analyst misses some defects. As the patterns become

mature and new defect types are recognized, an analyst can recognize more defects.

Note that the goal of the activity described in this Chapter alone is not to achieve

“perfect” defect detection. It is usually not possible to check whether all defects in

the given source code have been identified. The patterns are therefore evolutionary.
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Figure 5.2: Methodology for reading-based code analysis

The iteration consists of several key steps.

• Selecting the code to examine

• Code analysis

• Documenting and classifying defects

• Reviewing the accumulated knowledge

Selecting the code to examine

• There is some flexibility with which code to examine first. The efficiency

depends on the order.
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• A general approach to be recommended is to begin with code for the prob-

lem an analyst is already familiar with. Examining many solutions to the

same problem provides an analyst with an insight on a typical algorithm and

program structure used for that problem.

• If there is no such prior knowledge, it is recommended to begin with code that

is easy to understand. The code for smaller problems tends to be easier to

understand, although there are always exceptions.

• If the chosen code turns out to be difficult, it should be marked as delayed

and other code should be tried. The code analysis is iterative, so it is possible

that by examining the same code multiple times, more defects are identified.

Code analysis

While the actual code analysis largely depends on an analyst’s ability to read

code, we need to provide systematic support to make the analysis efficient and less

painful. There are some heuristics we propose.

• Familiarize yourself with the code: Look at a particular version of the

source code to understand the code structure, the algorithm used to solve the

problem, communication pattern, language features used, naming conventions

for variables/functions, coding styles (e.g., many small functions vs. a few

large functions, OO-like vs. procedural). It is often useful to read the

latest (final) version, as it is the end result of the development efforts. (All

intermediate versions converge toward this version.) It is also useful to
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read the early versions too, as the code tends to be small and simple, and

thus easier to understand attributes such as programming style and initial

structure.

– Caveat: some people start from a code which is unrelated to the prob-

lem, such as a “hello world” example, or the code they have previously

written for a different problem. Do not spend too much time in trying

to understand the initial version in these cases.

• Look at changes to examine intermediate versions: Examine a “diff”

between particular versions and examine what has changed to simulate

what a developer did to produce a solution to the problem.

• Look at big changes to determine their intention: Remember that we

captured the source code snapshots every time the compiler was invoked, so the

granularity of code history is not uniform. If the data is fine-grained enough, a

typical pattern of code history consists of “big” changes interspersed between

a series of “small” changes. Suppose we measure the size of a change with

the number of lines added and deleted. Common activities indicated by big

changes are:

– Additions of new functionality

– Code refactoring (e.g., reordering functions in a file, variable renaming,

etc.)

– Addition of comments
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– Attempt for debugging (e.g. commenting/uncommenting a big code

block, addition of print statements, etc.)

– Completion of debugging (e.g. deletion of print statements)

Therefore, we recommend looking at the big changes to determine their inten-

tions to obtain the general understanding of how the code has been developed.

Note, however, it is necessary to look at the unchanged parts of the code as

well, because (1) the defects may exist in the parts that have not been changed

at all, as some defects may not have been noticed by the subject, and (2) the

defects may exist in the global logic, instead of being localized in the region

of the fix, and (3) it may be easier to understand the whole code if the change

is big.

• Look at small changes before big changes to locate fixes: We recom-

mend examining the small changes before big changes, especially if that big

change represents an addition of new functionality, because a common pattern

is developers make a big change after they finish debugging. Therefore, the

change before the big change that often represents a ”fix” of the defect.

• Take notes on the meaning of changes: During the analysis, it is not

unusual that some changes just do not seem to make sense. They could be

random tries and errors to explore a possible cause of the problem, an attempt

to fix a defect under a wrong assumption, or an introduction of a new defect.

When it is difficult to judge whether it is a defect to be recorded, it is recom-

mended to take notes on the current interpretation of such a change, so that
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it can be reexamined later after investigating other versions.

• Skip versions: The number of versions for each file can be up to several

hundreds. Skipping “insignificant” versions is a good strategy to accelerate

the analysis. However, it is important not to lose track of the high-level flow of

the code change. Therefore, it is recommended to first go through all versions

(except those which are identical to the previous version) quickly, and mark

which versions should be examined more carefully.

Recording defects

We need to record defects. This is what is written down during the analysis.

Reading the source code and identifying defects is an intensive task, so the procedure

for immediate recording should be simple.

• Location of the defect: We record the source file version (ID) and the line

number where the defect exists. For the purpose of data processing we assume

it is possible to link each defect to a particular line.

• Defect type: Classify the defect into a particular defect type. This informa-

tion didn’t exist in initial defect recording but it was added after a classification

scheme is developed. We will discuss defect types and classification schemes

later in this chapter as well as in the next chapter.

• Description: Description of the defect.

64



Tool support

We developed a tool which provides a user interface for defect analysis. It is

written as an Eclipse1 plugin. Figure 5.3 shows a screenshot of the tool.

Figure 5.3: Analysis tool

The functionality of the tool:

• The tree view in the left pane can display all source code data in the database

sorted by class, assignment and subject. The names of the files are listed under

1http://www.eclipse.org/
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the subject who wrote them, and the code versions are listed under each file.

The code versions are color-coded based on the number of lines added, deleted

or changed from the previous version: in the default configuration, gray means

no change, black means less than 10 lines of change, pink means 10-50 lines of

change, and red means 50 or more.

• The top right view is a source file view. The source files are displayed using

the C/C++ and Fortran development environments for Eclipse, and all the

standard functionality such as highlighting keywords, searching and navigation

is available. By selecting two items in the source tree view, it is also possible

to display a side-by-side diff.

• By focusing on a particular part of the source file view and pressing a defect

button, a dialog window for entering defect information pops up. The file ID

and the line number are automatically recorded. All information is stored into

the database.

• The table view in the bottom right can display the list of defects identified

and recorded. If a particular defect entry is clicked, the corresponding source

file is opened and the defect location is focused. By doubleclicking the entry

it is possible to modify an existing entry.

Reviewing the accumulated knowledge

As described above, in the first iteration the knowledge available is minimal.

In case of the author, only basic things such as that concurrency is a common source
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of issues in parallel computing in general are known initially. After some data is

analyzed, it is useful to review the defects identified so far and reflect the knowledge

obtained to the subsequent analysis, because the analysis can be faster and more

effective if similar defects exist in other code and the analyst knows what defects to

look for.

5.2.2 Analysis results

Qualitative results

The primary result that directly come out of the analysis is the list of defects

identified in the source code. Table 5.2 lists the defects that were identified two

or more times. While these defects are not directly verified to be valid in this

phase, it suggests that it is possible to identify some distinctive defects by analyzing

problems at this level of complexity. Therefore, the basic feasibility of the code

analysis method was confirmed. This was not obvious, because one anticipated

criticism of this approach is the reading-based method is too labor-intensive to get

any meaningful results.
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Table 5.2: List of defects

Name Short description

Bottleneck in message scheduling Inappropriate message scheduling causing per-

formance bottleneck

Bottleneck with file I/O Performance problem due to multiple pro-

cesses accessing the file or filesystem at the

same time

Corrupted file output File corruption because the data is written to

the same file by multiple processes/threads at

once

Dependency on the number of pro-

cesses

An implementation that runs correctly only

with specific number of processes

Excessive use of collective commu-

nication

Scalability problem due to an excessive use of

collective communications

Fragmented Messages Messages are sent in too small chunks

Hidden Serialization in Library

Functions

Library functions containing internal serializa-

tion

Inadequate Communication Pat-

tern

Inadequate communication pattern leading to

a performance problem
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Table 5.3: List of defects (continued)

Message Type Mismatch Data type mismatch between message sender

and receiver

Missing Barrier Missing barrier

Missing MPI Finalize Missing finalization function

Missing wait Missing wait function

Overlapped memory areas Overlapping memory buffers for sending and

receiving

Passing NULL to MPI Init Invalid parameter to the initialization function

Potential deadlock Deadlock that can occur under specific condi-

tions

Using the same randomization

seed in all processes

Loss of the degree of randomness due to im-

proper initialization

All processes hold the entire mem-

ory space

Inefficient memory allocation
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Table 5.4: List of defects (continued)

Calling omp get num threads in a

serial section

The method works properly only in parallel

section

Calling upc free from multiple

threads

Only one thread may call upc free for each al-

location

Missing upc barrier before exit upc barrier should be called before exit to

avoid an issue with some threads exiting be-

fore others finish using the data.

upc memget or upc memput

from/to multiple threads

The function can only be used with a shared

object with affinity to any single thread

Note that since our interests are in identifying HPC defects, we excluded some

type of defects from the analysis.

• Simple typo that can be caught as a compile error, which is usually found and

fixed immediately. Some typo that are simple but not caught with a compiler

(e.g., = vs. ==) causes a problem, and we record such defects.

• Missing error checks. Almost all code we inspected has some statements miss-

ing error checks. We accept it unless the error checks are related to the char-

acteristics of parallel execution.

• Missing memory de-allocation. Many codes do not free memory at the end of
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the program. While this is considered a memory leak in generic programming,

this is usually acceptable as long as the program is completed and the memory

is returned to the operating system. However, if the memory leak occurs inside

the main computation loop and the memory consumption keeps increasing, we

record it as a defect since this can cause real issues.

• Simple defects in the base language that has nothing to do with parallelism

nor a parallel language feature.

There are some additional observations.

• As many students solving the same problem produce similar implementation,

the analysis can be done efficiently by just looking for “anomalies” from a

standard solution.

• The defects that do not always produce a failure seem to be quite common.

These defects are expected to be hard to debug.

Classification

In our approach, the defect classification scheme is defined and refined through

the iterative process. An initial classification scheme is shown in Table 5.5, which was

built from the defects in Table 5.2 by coding defect descriptions and grouping similar

defects together. The scheme is then refined based on the feedback from experts.

We will discuss the refinement process in the next chapter. The defect types added

in the refinement process are not included except for the memory management type,

which is needed to present the quantitative results.
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Table 5.5: Initial classification scheme for HPC defects

Type Sub-type Brief Definition

Use of language fea-

tures

— Erroneous use of parallel lan-

guage features

Space decomposition — Incorrect mapping between the

problem space and the problem

memory space

Side-effect of

parallelization

I/O hotspots Serial constructs causing

correctness and performance

defects in parallel contexts

Hidden serialization in

library functions

Synchronization
Deadlock Incorrect/unnecessary

synchronizationRace

Performance
Load Balancing Performance defects in parallel

contextsMessage scheduling

Memory management — Inadequate memory management

Algorithm — Program logic not matching the

intended purpose of the code
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Quantitative analysis

The quantitative analysis is conducted in the following way. Each raw defect

record consists of the information on the location of the defect (source file version and

line number) and the defect type. Two quantitative measures, the defect occurrence

and duration, are computed from the raw data.

The defect occurrence, i.e., how frequently the defect occurs, is the most direct

measure to assess the importance of defect patterns. It can be computed by simply

counting the number of defect instances identified in the data analyzed.

The defect duration, i.e., how long the defect stayed in the source code, is also

important because it represents relative difficulty of fixing that defect. We use the

following algorithm to calculate the defect duration.

1. Suppose a defect is identified in a particular line of the version X. Compare

it the previous version (X − 1) of this file, and check if the content of the line

also exists in (X − 1).

2. If the corresponding line does not exist in (X − 1), that means the defect was

first inserted in X. If it does exist, check previous versions (X − 2), (X − 3),

etc. until the version the defect was inserted is found. If the corresponding

line exists in the first version of the source file too, the defect was inserted in

the very beginning.

3. Similarly, compare version X with the subsequent versions (X + 1), (X + 2),

etc. until the version no longer contains the line containing the defect. If the

corresponding line exists in the final version, it means the defect was never
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fixed.

The version comparison can be implemented using a text diff algorithm which

matches the content of two files and determines which lines have changed. There are

a number of different diff algorithms, but they can usually detect changes in blocks

so the content can be matched to some extent even if they are not in the same line

number. We implemented a tool to calculate the defect duration using the Python

difflib library 2.

Note that this is an approximation of the actual defect duration, since if the

line containing a defect is modified the defect is not fixed, the duration may be

calculated shorter. To mitigate this problem, we allow multiple defect entries to be

grouped as a set pointing to the same defect instance. The duration of this defect is

then the range that covers the duration of all entries in the group. For example, if

the duration of the entry A is (X, Y ) and the duration of the entry B is (Z,W ), and

A and B point to the same defect instance, the duration is (min(X, Z), max(Y, W )).

Once the duration (X, Y ) is determined, an effort metric is further computed

using an empirical algorithm for estimating effort presented in [40]. The algorithm is

to use the duration of the development time for which the defect stayed in the code as

a measure of effort. If the subject never takes a break, the effort is simply calculated

by (the timestamp for Y) - (the timestamp for X). Since development is interrupted

for various reasons, we need to exclude break time to obtain a meaningful estimation.

The algorithm is to assume that a time period with no development activities longer

than a threshold t is a break and assign a compensation value tc as the effort spent

2http://docs.python.org/lib/module-difflib.html
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during this period. Based on the observational study conducted by Hochstein [40],

we set t to 45 minutes and tc to 5 minutes.

Figure 5.4 and 5.5 show the boxplots of the distributions of defect occurrences

per subject. Each figure presents the distributions of the number of defects iden-

tified from the solutions of the Game of Life problem in MPI and C written by 21

students. There were 264 defect instances identified in 1,397 source file versions.

The distributions are shown by defect type: (1) Language usage, (2) Side effect,

(3) Space decomposition, (4) Synchronization, (5) Performance, (6) Algorithm, (7)

Memory management, (8) Other, and (9) Total. Figure 5.4 presents the distribu-

tions for defects that were resolved during development, while Figure 5.5 shows the

defect distributions for those that remained unfixed in the final version.

Figure 5.4: Distribution of the number of defects per subject (defects that were

fixed during development
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Figure 5.5: Distribution of the number of defects per subject (defects that were

never fixed)

The analysis results show that each student made 10.2 defects (5.4 resolved,

4.8 not resolved) on average during development. One observation is there are a

considerable percentage of defects that were never fixed. The defects left in the final

version do not necessarily lead to a failure (i.e., a run-time error which the students

can observe), as some HPC defects surface only under specific conditions and input

parameters, or validating whether the output is correct is difficult. Unless students

test the code extensively, these defects stay unnoticed.

Figure 5.6 shows the distribution of estimated time spent to fix defects for

each defect type. This indicates how difficult the defects were to find and fix.
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Figure 5.6: Distribution of the estimated time (in hours) spent to fix defects by type

Figure 5.7 shows the same results for the defects that were never fixed, assum-

ing the duration of the defect ends at the final version. This indicates how early

they were inserted to the code.

Figure 5.7: Distribution of the estimated defect duration (in hours) for those never

fixed

The results indicate there are differences in average time to fix between defect

types. For example, the side effect of parallelization type (e.g. I/O hotspots) is
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inserted early in the code, and it takes time to fix.

While the dataset is a representative of novice HPC developers solving a small

problem, it is not clear how the quantitative results can be generalized to broader

contexts. For example, few algorithmic defects have been found in this dataset, even

though many HPC practitioners suggest algorithmic defects are most common yet

hard to debug.

5.2.3 Reliability study

Since the above results were obtained solely based on the analysis by the

author, the following questions come up.

• Are the analysis results valid? As we previously argued, the primary purpose of

the analysis is to develop initial defect patterns which is verified and refined in

a separate sub-process, so the validity of the qualitative results (defect lists)

are evaluated there. On the other hand, the reliability of the quantitative

results (occurrences and time to fix) needs a different kind of evaluation.

• Can other analysts repeat the reading-based method (including the heuristics)

to identify defects? This is important when other researchers repeat the study

in the HPC domain as well as other software domains.

A general difficulty in studying these questions is the analysis requires enough

understanding of the problem and the solution. We conducted a reliability study

with a graduate student who has previously taken an HPC course in which we

conducted a classroom study, and thus has basic knowledge and experience with
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HPC development at the time of the reliability study. We chose the Game of Life

problem in MPI and C, since the subject of the reliability study has solved the same

problem before, thus understood the problem and the basic approach for a parallel

solution well.

For the study, we used the dataset from one particular student, which consists

of 192 unique source file versions (245 overall versions including 53 unchanged ones).

The study was conducted in two separate sessions. In the first session, we provided

the description of the problem and the heuristics, and told the subjects to go through

investigate intermediate versions. In this session, the purpose was to verify whether

they can apply the heuristics to identify defects that were found and fixed during

development. In the second session, we presented the classification scheme and told

them to identify defects in the final version. The purpose was to verify whether the

defects can be detected with the help of already established knowledge about the

defect patterns.

The results are summarized as follow.

• The subject reported 14 defects, while the analysis by the author has identified

16 defects. 9 out of these defects were common. This supports these are indeed

defects, and the reading-based method can reliably detect them.

• All of 5 defects only reported by the subject of the reliability study are con-

firmed to be valid. They have been excluded because they are simple enough

to be detected by a compiler. The version of the heuristics presented to the

subject didn’t explicitly say what kinds of defects should be excluded. That
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information has been added.

• The analysis of 7 defects which were missed by the subject are summarized as

follows.

– One defect missed in the final version is that the program fails to run

correctly when it is run with one process.

– Four defects missed in the intermediate versions are of the space decom-

position type: incorrect conditions for determining the boundary of the

local problem space and incorrect indexing related to parallelism. Note

that these defects were identified in the intermediate versions which the

heuristics suggest to skip. They were caught by the author since this data

was analyzed more thoroughly than the heuristics suggest. Considering

the amount of time the subject spent analyzing the code, missing these

defects is acceptable. However, additional training or heuristics may be

needed to detect decomposition defects effectively.

– Two defects missed in the intermediate versions are defects that do not

have to do with parallelism: one is a pure sequential defect related to the

use of the fscanf() function in C which a compiler doesn’t detect, and the

other one is a pure error which is to assign assign 0 instead of 1 when

the cell is alive. Again, it is understandable that these were missed, since

the heuristics given to the subject did not cover them. We can argue

these are not as important as others for the purpose of building patterns,

although they have stayed in the code for long time.
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5.3 Data collection from self-reported defect logs

One major criticism to the reading-based approach is that it is too labor-

intensive. If there is an easier, less costly means to collect defect data which can be

used to identify patterns, it is natural to argue that it should be tried before taking

the reading-based approach.

An example of such an alternative approach is to ask developers to report the

errors they made. Project developers are usually the best people to be asked about

the defects that occurred in the project code, as they are the ones who actually

insert, find and fix defects. Similarly, students participating in a classroom study

should be aware of the issues they ran into and how they managed to solve them.

Therefore, if we can make them keep a record of the defects, we can then use it

to identify patterns. A self-reported defect report is more or less “subjective” as

developers can report defects only if they recognize and remember them. It is

expected that the more impressive defects are, the more likely they will be reported.

This is desirable because developers are expected to better remember the defects

they had difficulty in finding and fixing, and our goal is to reduce debugging costs

by identify such defects.

In the rest of this section, we describe experience from two studies in which

we attempted to obtain self-reported defect data from novice (student) developers.
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5.3.1 Modes of data collection from self-reported defect log

Defect recording can be concurrent (i.e., developers fill out defect forms during

development, as soon as they find and fix defects), or retrospective (i.e. they remem-

ber the characteristics of defects and fill out the forms later). Concurrent recording

can minimize the risk of losing information because of forgetting, but since debug-

ging is a labor-intensive task, recording defects while working can interfere with

their thinking process. Retrospective recording can be implemented easily, but it

has a risk of losing information about defects that were made but forgotten. In the

studies we conducted, we took a concurrent approach.

We developed and used several versions of defect forms. The form can be

a paper or a computer-base logging tool. Appendix B presents the actual forms

actually used.

5.3.2 Results

Iteration 1: pilot classroom study

In the first study, we asked students to fill in the defect form 1, which is

shown in Appendix B. Out of 11 students who participated in the study, 8 students

filled in at least one defect entry. The total number of defect entries collected was

29. However, 12 of these defects reported referred to a compile-time error. The

remaining 17 defect reports were examined and classified using the classification

scheme presented in Table 5.5. The results are summarized as follows.

• Sequential error leading to incorrect outputs, e.g., typing ’-’ instead of ’+’ in
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one of the conditions, typo in variable names, failure to initialize a variable,

underflow due to integer division, wrong copy/paste. (6)

• Defects related to side-effects or parallelization, e.g., failure to understand

which part of the program is executed by all processes and which part is run

by one process (5)

• Defects related to synchronization, e.g., missing blocking, I/O race condition.

(3)

• Defects related to parallel language features, e.g., failure to call an initializa-

tion function (2)

• Defects related to space decomposition, e.g., array out of bounds (1)

Since we could not capture source code data in this course, we were not able

to directly compare the results with those from the code analysis. One observation,

however, is that 6 of the 17 defect entries (including the compile-time errors) describe

issues which can also occur in sequential programming using a base language, thus

only 11 would be classified as HPC defects, which means each student who was

willing to to keep a defect log recorded only 1.4 defects on average, as opposed

to 5.4 resolved defects per subject observed in the code analysis. Therefore, a

hypothesis is that self-reported defect logs do not provide the data as complete as

what the code analysis. Nevertheless, since the goal of this process is not to achieve

perfect detection, the data obtained can still be useful as the source of base patterns.

Moreover, the fact that the reported defects can be classified into the defect types
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suggests that these types are reasonably defined.

Iteration 2: revised classroom study

In the next study, we revised the defect form to explicitly ask whether the

students think each defect is related to parallelism. The defect form 2 is also shown

in Appendix B. We made this version of the defect form available online on the web

system, so that students can directly fill-in defect entries on the computer.

We were not able to collect much data from this study either. Out of 10

students who participated in the study and provided us with other data such as

source code snapshots, only 5 students filled in at least 1 entry, and the total number

of entries recorded is 13 (2.6 defects per student). Below is a summary of these

defects.

• None of the entries were simple compile-time errors, and only one entry was

related to a pure sequential defect, which is mistyping ’==’ as ’=’ in the if

statement.

• Five entries were related to space decomposition.

• Two entries were related to synchronization, e.g., too many barriers causing

a performance problem, and incorrect output order due to improper synchro-

nization.

• Two entries were related to the use of parallel language features.

84



• One entry was reported to be related to insufficient memory allocation, al-

though the student didn’t report how he verified it.

• Two entries were related to side-effects parallelization.

Again, the results suggest that the self-reported logs can provide data on HPC

defects to a limited degree, and that they support that the initial classification is

reasonably defined. If the self-reported log is not an effective means of primary data

collection, it is possible to use a mixed method. For example, if the subjects are

presented with the results of code analysis right after they finished the assignment,

they may be able to recall the problems they had and verify whether or not they

actually recognized the same defects during development. To make this possible,

the code analysis needs to be performed near real time.

One caveat, however, is that we received complaints from the study subjects

that keeping logs is a labor-intensive task for them. While we want to collect as much

data as possible, we need to keep the data collection simple from their perspective.

The students are usually busy with working on an assignment itself, and if the data

collection requires too much overhead, they ignore the procedure or enter incorrect

information. As a result, the obtained data can be inaccurate and inconsistent.

Moreover, collecting defect data can involve additional difficulties since some people

seem to feel uncomfortable about admitting they have made some defects. Extra

care must be taken to ensure that the data is kept anonymous, and the collected

information is never used against the subjects. For example, it would be difficult

to collect defect logs in an environment where the defect rate is used to evaluate
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the performance of individual programmers. In the next chapter, we attempt to

obtain peoples’ knowledge using a very different approach, so that we can obtain

information avoiding these issues.
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Chapter 6

Developing Experience Base and Extracting Expert Feedback

Having identified a set of recurring defects in the previous chapter, we now

discuss the second activity of the problem solving approach: knowledge refinement.

There are two main goals for this activity. The first goal is to organize the anal-

ysis results into the structures which can represent the knowledge of “defect pat-

terns” at various levels of abstraction. We built an experience base system named

HPCBugBase1 and put the structured information as its initial content. Users of

the experience base system are expected to have different demands; some users may

want to directly look at raw defect examples as they appear in the source files, while

others may be more interested in the description of higher-level defect types. The

experience base system needs to provide a good interface to allow various users to

access the information as they wish. At the same time, it is important that users

can keep track of the relationships between the information at different levels: how

high-level patterns are supported by low-level empirical evidence. Furthermore, the

system should also have a mechanism to allow users to provide feedback. We dis-

cuss how we structure the patterns, and describe how we design and implement the

experience base.

The second goal is to evolve the patterns. Since the initial defect patterns

in the experience base were derived from the data having limited contexts, they

1http://www.hpcbugbase.org/
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need be refined in order to cover a broader range of defects that appear in real

HPC applications. As we discussed earlier, the HPC community already possesses

a great deal of implicit knowledge about recurring defects at the level of individual

practitioners, but such knowledge is mostly hidden within the minds of individuals.

We demonstrate that our approach can help the process of making tacit knowledge

explicit by conducting a series of interviews with different types of HPC stakeholders.

By presenting them with the initial content in the experience base, all interviewees

are able to provide feedback, which results in the enhancement of defect patterns

and the experience base system. The interview results also show how the views of

various users on defects are very different. This diversity supports the need of the

experience base system.
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6.1 Organizing knowledge of HPC defects

Figure 6.1: HPCBugBase: defect experience base

Based on the low-level raw data obtained from the code analysis, we prepared

the initial content for the defect experience base. Figure 6.1 is a screenshot of the

front page of the experience base. Figure 6.2 describes the content structure we

introduced to organize the content. There are five categories defined.

• Classification scheme

• Defect type

• (Description of) specific defects
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• Individual defect instance (code sample)

• Article

Figure 6.2: Structure of pages

Each content category is described below. Note that the structure is not

permanent, so it can be changed if the feedback from users suggests a better page

structure.
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6.1.1 Defect classification scheme

A defect classification scheme is a collection of defect types, which we describe

next. It is intended to cover all defects recurring in the HPC code. As we keep

evolving the scheme, we obtain multiple versions of the scheme. There are also

schemes developed by other researchers.

As shown in the Table 5.5 of the previous chapter, the initial classification

scheme consists of top-level defect types: use of language features, side-effect of

parallelization, space decomposition, synchronization, performance, and algorithm.

In addition, the catch-all type called “other defect types” has been prepared to allow

users to suggest a new defect type.

6.1.2 Defect type

A defect type is an abstract representation of a set of defects. It is defined by

comparing and grouping similar defects together.

When discussing “defect patterns” in this dissertation, we mainly refer to the

knowledge described at this level. In addition to the characteristics of defects that

belong to the defect type, an important content of each defect type is the knowledge

on how to detect defects and how to avoid defects.

It is possible to define defect types with different abstraction levels, which

form a type hierarchy. The defect types used as top-level types of a classification

scheme have a highest level of abstraction, as they are meant to cover a broad range

of defects independent of language and platform. The “sub-types” with lower level
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of abstraction are context specific, and they can include more detailed advice on

defect detection and prevention.

For example, we define “performance defect” as one of the top-level defect

types. While it covers a quite wide range of defects, since there are so many defects

identified that damage execution speed, giving reasonable advice for how to detect

and/or avoid them is difficult. Therefore, we define “message scheduling problem”

as a sub-type of the performance defect to describe more specific information.

Template

The template for defect types includes the following entries.

• Name of the defect type (name)

• List of sub-types and specific defects that belong to the defect type (entries)

• Advice for detection, how does someone know there is a defect? (symptoms)

• Advice for solving and avoiding a defect (cures and preventions)

6.1.3 (Description of) specific defect

The description of each individual defect identified constitutes the information

at the second lowest level. Typically each defect description corresponds to multiple

instances of the same or very similar defects. At this level, we focus on describing a

defect itself: why it is a defect. If necessary, sample code or pseudo-code is used.
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Template

Template

• Name of the defect (name)

• What was wrong in the code? (fault description)

• List of defect instances (examples)

• Other findings and contexts (other findings)

6.1.4 Individual defect instance (code sample)

We call the actual samples of HPC applications containing defects the “defect

instances”. The information stored in the entries of this can be the complete or

partial source files with the information on the location of defects, or the links (URL

or reference information) pinpointing the location of some source code containing

defects. They are the lowest-level data directly connected to individual occurrence

of defects in HPC applications.

While it is not always possible to provide a copy of the code samples in the

experience base due to copyright issues, concrete examples are important to present

how each defect appears in actual implementations. They can also be used to

evaluate a defect detection tool by testing whether it can detect the defect instances.

Template

• Link to a defect description (defect)
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• Source code containing the defect (code)

• Where the defect was found: file, version and line number, or a link to the

source code containing the defect (location)

• When the defect was inserted into the code and when it was fixed (time to

find and fix)

• Other findings and contexts (other findings)

6.1.5 Article

Finally, there are other kinds of information that are useful but do not fit into

the structure above. Currently we do not use a template for these articles.

• Anecdotal information about defects

• Good programming practices

• Information on potential data sources

• Thoughts on available technologies

• Links to external references

6.2 Design and implementation of HPCBugBase

There are various types of potential users who could make use of empirical

knowledge about defects. The experience base must be flexible enough to meet the

needs of each of these users. At the same time, the base must support incremental
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evolution of the content. In this section, we describe the requirements of the EB,

and a design that meets these requirements.

6.2.1 Potential users

The experience base system should interact with the users in the “give-and-

take” manner. On one hand, users act as “consumers” of knowledge who access

the content to obtain the information they need. On the other hand, they are also

expected to act as “producers” of new knowledge as feedback to the existing content.

Of course, not all users have to act as both, but the key is to encourage as many

users as possible to participate in the knowledge refinement process.

• HPC developers: As consumers, their motivation is to identify defect sam-

ples similar to theirs to help debug their code. When they are designing a new

project, they might also look for hints to prevent defects. As producers, they

can submit their defect samples and/or suggestions to improve the system.

• Technology providers: As consumers, their motivation is to use the infor-

mation in the system to verify whether their technology such as a programming

language or a defect detection tool can solve the problems that occur in HPC

systems. Their interest is in the empirical support of their technology by con-

firming it can be used to avoid and/or detect the defects recurring in real HPC

projects. If they are designing a new technology, their motivation is to iden-

tify defect-prone language features and tool demands. As producers, they can

propose new language/ language feature to prevent particular types of defects.

95



• Professors: Professors who are teaching an HPC-related course need and

information on the defects made by novices so that they can provide more

effective lectures and assignments. As consumers, their motivation is to plan

a course to teach how to avoid defects. As producers, they can submit their

experience in teaching in HPC.

• Students: Students learning an unknown HPC language in an HPC course

are usually novice HPC programmers. Their experience can vary from none to

some basic level. As consumers, their motivation is to learn common pitfalls

in HPC programming. They want to know when they should be careful about

making defects. As producers, they can commit their defect samples.

• Software engineering researchers: As consumers, Software engineering

researchers who seek good software engineering practices for HPC need to

understand problems in HPC development from empirical evidence. As pro-

ducers, they can propose practices suitable for HPC. They can also submit

the results of empirical study to evaluate claims of tools/languages.

Figure 6.3 illustrates the characterization of these users with regard to the

relative experience and expertise in software development using an HPC language.

96



Figure 6.3: Characterization of the users of HPCBugBase

6.2.2 Requirements

In order to fulfill the requirements of the users above, the experience base

system must provide the following.

• A means to access the data. The content of a base Wiki system consists of a

set of pages containing texts and images, with the links to other pages. Unless

pages and links are carefully structured, it can end up with many unstructured

pages and users can easily get lost as they move between pages by clicking the

links. The other way to access Wiki content is by search. Its effectiveness

depends on whether appropriate keywords are embedded in the content.

• A means to input the data. Entering new data should be easy and efficient

enough. Authoring individual Wiki pages manually can be time-consuming.

• A means to accept feedback from users. While a base Wiki system provides
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an interface to allow users to directly edit the Wiki text, they need to learn a

small number of rules and grammars, which can be an adoption barrier. Since

we do not want to lose the opportunity to capture the response of users just

because they do not feel comfortable with Wiki editing, we should provide a

simpler, easier-to-use interface.

• A means to assess the quality of the content. As more users put information

into the system, it becomes an important issue how to manage the information

on the reliability of each entry. A mechanism for quality assurance is needed.

• A means to present credits: As the input from users is vital, there should be

a mechanism to remark who has contributed to the content. This can be a

good motivation for some users to contribute to the content.

• A means to ensure anonymity: Complementary to the previous requirement,

there are also cases in which we should not reveal which applications the defect

samples came from, and/or which developers made them.

As we implement the experience base system using a Wiki, some of the re-

quirements above are automatically fulfilled. When the base Wiki system lacks the

necessary functionality, however, we need to extend the system to add necessary

features.

• A form-based interface to accept user feedback

• An interface to allow users to submit defect examples

• An interface to allow users to add keywords for each entry
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Finally, there are several non-functional requirements to keep the system us-

able.

• Response time: should be short enough under normal conditions.

• Availability

6.2.3 Implementation

The front end of the Wiki interface is a set of “pages”, each of which can store

arbitrary texts as ordinary web documents. While being able to describe detailed

information in free texts can make the system flexible, it is desirable from the

efficiency of data access that these pages are organized to follow a certain structure.

The second activity is to refine the identified patterns through the reviews by

domain experts. This activity is closely coupled with the development and improve-

ment of an experience base (EB) for HPC defects. As described in Chapter 4, the

EB is the core of the entire problem solving approach in this dissertation. It should

(1) store the defect patterns identified by data collection activities, (2) encourage

stakeholders in the HPC community to access existing patterns to gain knowledge

and submit feedback to refine the patterns, and (3) serve as a repository of empir-

ical evidence which forms the basis for derivative products developed by packaging

accumulated knowledge. While all of these functions above are important, the re-

quirements on the user interface for the first and third functions are less severe as

these are mainly accessed by software engineering researchers who are usually highly

motivated to use the system from the beginning. On the other hand, the second
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function, which we will discuss in this chapter, needs to be accessed by broader users,

thus requires a good use interface. As described in Chapter 1, many developers of

an HPC project are scientists and students who are not necessarily willing to use a

complicated technology if they have to make a lot of extra efforts. Therefore, it is

crucial that the experience base system is designed and implemented to be useful

and easy enough for them, because otherwise the knowledge stored in the system

would never be accessed. In the first part of this chapter, we describe the design

and implementation of the web-based experience base system named HPCBugBase.

Front page user interface

The front page is the entry point of the experience base website, unless a user

directly visits other pages from external search engines or other links.

• Brief introduction

• The list of the current defect types (classification scheme)

• Shortcut links to the important features of the system

Backend database

The base Wiki system stores all the content in MySQL database. The source

files and defect samples are stored in a separate database.
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Content structure

The system directly stores the content structure described in Section 6.1. Each

“Wiki page” contains the text describing an entry describing one of the five cate-

gories. We use the functionality of the base Wiki system to tag the page with the

category it belongs to.

The following data entry templates have been defined. We do not define a

template for the “Article” category because the content in this category is free-

format text.

When recording the various kinds of defect data described above, one approach

is to use data entry forms with pre-defined formats. While this approach makes

the data uniform and the data analysis easier, there is a risk of making data input

difficult and losing information. In this experience base, we provide several templates

for data input. However, the use of the templates is voluntary. When the data does

not fit the existing templates, to the user may create a new template or enter the data

entry in a free-form manner. Even if the template is used, it should be permitted

to have some items left blank when they are not available.

Initial content

We have entered the initial content generated from the data obtained in Chap-

ter 5. At this phase, all content was entered manually.

This scheme has been written in a separated page using the template for defect

classification schemes. In addition, the scheme has been put on the front page so
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that it is visible to the first-time users.

Feedback form

As a Wiki system, the content can be directly edited by anyone if they are

familiar with a Wiki grammar. There are problems. It is tedious to directly modify

the wiki content Even if they know the grammar, modifying the content consistently

with existing content may not be easy Changes are visible to other users.

We have modified the base Wiki system to allow users to submit their feedback

by just filling out the forms. On the top of each page, there is a link to the feedback

form.

6.3 Evaluating and refining defect patterns

In this section, we describe a series of interviews we conducted to validate

the usefulness of the knowledge stored in the experience base system. Through the

interviews, we attempt to obtain insights on several things. First, we would like

to evaluate the validity for the initial defect patterns from several aspects. The

following questions should be answered.

• Are the initial defect patterns derived from the data analysis “valid”, i.e., are

they indeed the type of defects observed in HPC applications?

• If it is a valid pattern, whether it is unique to novice programmers, or it is

also frequently occurring in the code written by an experienced developer
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Second, we would like to extract new knowledge about HPC defects from the

interviewees. Since we attempt to let them provide it as feedback to the existing

patterns, it leads to the validation of the hypothesis that presenting the initial

patterns helps extract tacit knowledge. The knowledge obtained is incorporated into

the experience base system, so this is really the realization of knowledge refinement.

• Whether they can suggest a new defect example for the existing defect types

• Whether they can suggest a new defect type

• Whether they can suggest advice for defect detection and/or prevention

Finally, we would like to characterize the interviewees with regard to the per-

ception of defect patterns.

• Which defects they think are important

• How they would use the experience base

6.3.1 Interviewees

The interviewees are selected from the experts who agreed to help us in order

to cover a variety of stakeholders in the HPC community. Due to the above pur-

poses, we did not interview complete novices. Figure 6.4 illustrates the type of the

interviewees.
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Figure 6.4: Characterization of the interviewees

• Interviewee 1, 5 and 6 are considered to have similar expertise in HPC lan-

guages. Interviewee 1 is both an HPC developer and a professor. Interviewee

5 is a professor teaching courses for HPC programming. Interviewee 6 is an

experienced HPC developer who is actively working with raw MPI program-

ming.

• Interviewee 4 is also an experienced programmer, and he is one of the core

developers in an HPC project. However, he never directly modifies the code

that would affect the low-level processing for parallelism. He does not have

prior experience with a specific HPC language.

• Interviewee 2 is a professor with expertise in programming language and com-

pilers. His interests and technical expertise are close to technology providers.

He has deep insights on generic parallel programming and emerging languages,

although he does not have as much experience with HPC languages as inter-
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viewee 1, 5, or 6.

• Interviewees 3 (interviewed as a group of three people) work for a technology

vendor. They have high-end expertise in parallel scientific computing, and de-

velop applications, libraries and benchmarks for advanced HPC technologies.

6.3.2 Interview procedure

The first interview was conducted in person. All the subsequent interviews

were done by phone. In an in-person interview, we presented the interview mate-

rial as well as the content of the experience base using a projector. In the phone

interviews, we sent the URL of the experience base system beforehand so that the

interviewees they can look at the content in front of their PC. During the interview,

we presented the interview material that was prepared as the “overview page” on

the experience base. The overview page was carefully organized beforehand, so that

it can help the interviewees efficiently walk through the top-level defect types and

understand the context of the study. The idea is to demonstrate that tacit knowl-

edge about defect patterns which usually exists in the brain of experts can be made

explicit more easily if they are presented with initial knowledge they can respond

to. The interviews were conducted in the following order.

1. Introduction of the interview. Our motivation for building an experience base,

differentiating factors for HPC which can affect the characteristics of recurring

defects and the information we want to get from the interview are explained.

A question to be asked is as follows:
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• Are there anything unclear?

2. Explanation of the sample problem used to explain defect types and sequential

implementation. Questions to be asked are as follows:

• Is the sample problem clear?

3. Explanation of each defect type and examples. For each type, the following

questions are asked.

• Is this defect type clearly described?

• Is the defect type named appropriately?

• Is this defect type frequently observed in HPC code?

• Is this defect also made by experienced HPC developers, not only novices?

• Have you seen a bug of this type in your project?

• Can you think of other examples for this defect type?

• Other comments on this defect type?

4. Other defects

• New defect type?

• Restructuring of the defect classification scheme?

5. Explanation of the experience base system, especially about the mechanism

to accept feedback

• What else would you like to see in the experience base system?
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In each section, we ask these questions to get response in a structured way.

At the same time, we encourage the interviewees to speak freely as they think

of something to say. When necessary we ask follow-up questions to clarify their

comments and get additional thoughts about particular topics that come up.

6.3.3 Evaluation criteria

We processed the interview results qualitatively and quantitatively. The qual-

itative measures are defined from the answers to the evaluation form we ask the

interviewees to fill out after the interview. The questions include:

• Whether they think the examples are good representatives for the defect type

described.

• Whether they think the content is clearly written.

• Whether the interviewees would recommend using the EB system to each

user type defined in Section 6.2.1. The answers imply whether they think

the content is valuable to these users. An expected reaction is they would

recommend the EB to at least one user type. For other types of users, we

hope to get insights on why they wouldn’t recommend the current system.

The success criteria is that the interviewees return a positive response to these ques-

tions. As we interview people with different backgrounds, experiences and interests,

we further demonstrate the diversity of people’s perception on defects by comparing

the reactions of interviewees.
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The quantitative measures are defined in terms of the amount of increased

knowledge, including:

• The number of newly identified defect types

• The number of newly identified defect examples for existing defect types

• The number of newly identified techniques for defect preventions

The success criteria is that each interviewee can provide at least one contribution for

any of these. In the subsequent sections, we summarize the results of the interviews.

6.3.4 Interview 1

The first interview was conducted in person. In a two-hour interview, one new

defect type, five new defect examples, and three techniques for defect prevention

have been suggested.

Added defect type

• Memory management, with three sub-types

Added defect examples

• For space decomposition: inconsistency in the assumption on the origin of a

Fortran array.

• For side-effects of parallelization: I/O error due to the global limit on the

number of files that can be opened at the same time
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• For synchronization: example of all-to-all communication causing race condi-

tions

• For synchronization: change in the output value due to the different order of

summation in an integral operation- hard to distinguish actual defects from

acceptable side-effects of parallelism

• For algorithm: problem with the use of the PETSc library

Newly added techniques for defect prevention

• For misuse of language features: overload the operator in an appropriate way.

The interviewee recommended the use of Fortran 90’s interfaces and presented

concrete examples using the code from his project.

• For space decomposition: prepare a function that manipulates a global and

local index, and test that part carefully

• For performance defects: when you need to organize some complicated com-

munication patterns, it should be centralized so that it can be optimized in-

dependent of other modules

These techniques can be interpreted as concrete instances of modular pro-

gramming or encapsulation in the term of software engineering. The interviewee

also suggested the encapsulation at the level of developers, i.e., by restricting who

can modify the particular parts of the code.
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Qualitative evaluation and lessons learned

This was the first expert validation conducted, and we were encouraged by

the positive reaction to the interview material as well as the concept of a defect

experience base. The interviewee quickly responded to the examples presented and

provided us with related examples as well as additional insights on the defect types.

What we found especially valuable was advice on defect prevention techniques, which

is hard to derive in the data collection process described in the previous chapter.

6.3.5 Interview 2

The second interview was conducted by phone. The interviewee was a pro-

fessors who has taught a programming course using an emerging platform and pro-

gramming model.

Added defect type

• Subtype of performance defect: ratio of computation and communication

Added defect examples

• For synchronization defect: Loss of messages when multiple processes sending

to the same “mailbox” in the parallel programming language for Cell processor
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6.3.6 Interview 3

The third interview was also conducted by phone. In this interview, three

people were interviewed together. They work for a technology vendor.

Added defect examples

• For Erroneous use of language features: small corruption of the data caused

by incompatible data type and data size

Newly added techniques for defect prevention

• For space decomposition defect: a standard approach to mitigate this issue

is to explicitly define parameters related to the interactions (e.g., the rank of

left-hand and right-hand process.) A technique which was useful in sequential

programming, such as computing adjacent processes with a modulo operation

can be rather harmful in parallel computing since it complicates boundary

conditions. If they were writing a sequential program knowing that program

was going to be parallelized, they would have written the sequential code

differently in the first place.

Qualitative evaluation and lessons learned

The interviewees generally commented that while defect types look reasonable,

the examples presented are far simpler than what they deal with in real projects.

They often run into more fundamental issues such as hardware failures or compiler
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bugs.

The interviewees have decades of experience in this area, and during the inter-

view, they were able to point out potential defects that can occur by just looking at

a sequential example code. This suggests that they actually have a lot more knowl-

edge than what we could extract. In this sense, the interview material we prepared

did not “stimulate” them well enough.

Another observation is that interviewing multiple people at once is not a good

idea, because individual views on defect patterns are so different that asking the

questions to a group seems to inhibit free responses rather than validating and

reinforcing each other.

6.3.7 Interview 4

The fourth interview was also conducted by phone. The interviewee was an

experienced application developr in an HPC project, but as his job responsibility

was not directly related to low-level parallelism, he did not have prior experience

with an HPC language.

Added defect type

• Failure to understand other people’s code (library code) due to lack of docu-

mentation
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Added defect examples

• I/O bottleneck: the temporary code inserted for debugging caused a problem

• Memory management: the library code caused an out-of-memory problem.

They had to change the OS settings to fix the issue until the library was

rewritten.

6.3.8 Interview 5

The fifth interview was also conducted by phone.

Added defect type

• Subtype of performance defect: Amdahl’s Law defect (failure to scale up to a

large number of processors)

• Subtype of performance defect: failure to exploit locality

• Subtype of performance defect: too much synchronization

Newly added techniques for defect prevention

• For space decomposition: The parallel codes should be written correctly from

the start to run correctly on one processor

• For Erroneous use of language features: Understand semantic subtleties and

variations. Understand the subtleties of variations of the language features
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Qualitative evaluation and lessons learned

• The interviewee managed to provide extensive feedback on the classification

scheme taxonomy: renaming of defect types, restructuring of defect types and

specific defect examples. On the other hand, he did not provide specific defect

examples. It is understandable, since he is a professor rather than a project

developer

• His criticism was the description of some defect types was too abstract from his

point of view. He argued that if students are presented a pattern description

that is too abstract, it becomes difficult for them to determine whether it is

related to the problem in their code.

• He stressed the importance of performance defects, based on the argument

that the whole point of HPC is to gain good performance.

• He strongly supported the idea of educating students with defect patterns. He

used the content in his course.

6.3.9 Interview 6

The sixth interview was also conducted by phone. The interviewee was an ex-

perienced developer in an HPC project, but unlike the interviewee 4, the interviewee

6 was actively using MPI in a daily job.
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Added defect examples

• Language usage: forgetting to add an extra argument (IERR). Compiler won’t

catch this

• Space decomposition: failure to distinguish operator functions which request

an index with guard cells or without them

• Synchronization: excessive use of non-blocking communication degrading per-

formance

• Performance: use unnecessary broadcast to distribute info to processors

• Memory management: out-of-memory error because in an adaptive mesh the

particles were congregated in a fairly small area of space

• Algorithm: redundant guard cells when calling the Paramesh library

• Algorithm: problems with interpolation to find the values of guard cells

• Algorithm: initialization of the domain in parallel

Newly added techniques for defect prevention

• Language usage: refer to the good documentation in the reference manual,

frequently asked questions (FAQs), and support pages.
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Qualitative evaluation and lessons learned

• The interviewee has managed to provide many new defect examples for given

defect types. She recognized and remembered defects very well on instance

basis, but she did not suggest changes to defect types. This is direct opposite

to the interview 5, where the interviewee suggested a lot of restructuring but

no concrete examples. Different type of experts can contribute to different

aspects of knowledge

• The interviewee was able to clearly tell which examples we presented were

made by non-novices. She pointed out she has seen one particular defect

(potential deadlock) was made by a fairly experienced peer developer. She

was also able to point out she hasn’t seen some defects in the real code for

long time.

6.3.10 Discussions

Validity of the initial content

• The interviewees confirmed that the experience base contained real defects

made by various types of HPC developers. Note that some “errors” in the

description were found and corrected during the interviews, i.e., some code

examples had a typo or other defect which was not related to the defect they

were meant to illustrate. While this was an intended effect, it suggests that

the defect types ad examples have been examined by the interviewees very
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carefully.

• The evaluation of the relevance of the defect types and examples varied across

interviewees. As described below, their comments led to the evolving the ex-

isting content and obtaining the insights on the characteristics of interviewees.

Knowledge refinement

No defect types and examples we originally recorded were deleted, and there

were several useful inputs. Table 6.1 below shows the number of “contributions”

from each interviewee (or interviewees for the third interview). Note that the column

I1, I2, etc. in the table represent the interviewee 1, 2, etc., respectively. The results

show that all interviewees managed to add new items. Note that the content on the

experience base was updated after the third interview, so the last three interviewees

were able to look at the contributions made by the first three interviews.

Table 6.1: The number of contributions from interviewees

Interviewee I1 I2 I3 I4 I5 I6

# of added new defect types 1 1 1 3

# of added new examples 5 2 1 2 8

# of added new prevention techniques 3 1 2 1
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Table 6.2: Updated classification scheme

Top-level defect

type

Sub-type Brief definition

Use of paral-

lel language

features

– Erroneous use of parallel language

features

Space decompo-

sition

– Incorrect mapping between the

problem space and the problem

memory space

Side-effect of

parallelization

(hidden

serialization)

I/O hotspots Serial constructs causing correctness

and performance defects when ac-

cessed in parallel contexts

Hidden serialization in

library functions

Synchronization
Deadlock Incorrect/unnecessary

synchronizationRace
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Table 6.3: Updated classification scheme (continued)

Performance

Message scheduling

Performance defects in parallel

contexts

Load balancing

Failure to exploit

locality

Excessive synchro-

nization

Communication vs.

computation ratio

Scalability prob-

lems

Memory hierarchy

Memory

management

Memory allocation Inadequate memory management

Memory cleanup

Algorithm – Program logic not matching the in-

tended purpose of the code

(Environment)
External libraries Failure to understand/use code

written by other peopleCompiler
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The updated classification scheme after these interviews is shown in Table

6.2 and 6.3. The newly added types are shown in bold fonts. There are two new

top-level defect types that did not exist in the initial classification scheme: Memory

Management and Environment. Both defect types are not unique to HPC applica-

tions, but the interviewees pointed out these tend to be more frequent and serious

due to the differentiating factors of HPC. Memory management often becomes a

problem because an HPC application often needs to be executed near the limit of

the resources available, so a small unexpected behavior easily leads to a defect. The

memory management type defects had been classified “Other”, as they did not seem

prevalent in the student data. The Environment defect type was not represented in

the student data. For example, defects related to the misuse of external libraries

especially is often difficult to avoid because they are so many serial and parallel

libraries of which the quality, execution performance and the applicable semantics

are not clearly documented. As in other software domains, there is general lack of

documentation.

There are several sub-types of performance defects that have been added

through the expert validations. Note that these new types are found to be similar

to the taxonomy of performance bottlenecks developed by Hollingsworth [42], which

include “ExcessiveSyncWaitingTime”, “SyncRegionTooSmall”, “ExcessiveIOBlock-

ingTime”, “TooManySmallIOOps”, “CPUbound”, “tooMuchPauseTime” and “WAY-

tooMuchPauseTime”.

Finally, Interviewing experts turned out to be an effective way for obtaining

advice to prevent defects. This kind of knowledge was hard to derive from code
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analysis.

The above results confirm the basic feasibility and validity of the knowledge

extraction process using the existing content on the experience base through a series

of interviews.

Characterization of interviewees

While the number of the interviewees is too small to derive statistically signif-

icant results, the following observations can be made about the interviewees.

• HPC developers and professors who have advanced experience with the current

HPC languages (interviewee 1, 5, and 6) were able to provide more additions

(as shown in the Table above) than other interviewees. They recognized some

defect types as recurring even in the code written by experienced developers.

They were also most enthusiastic about the concept of collecting HPC defect

patterns into the experience base.

• There were differences among these interviewees on what defects they think

is important. Each user we talked to had very different views. For example,

interviewee 5 put more emphasis on performance defects than other defect

types. Interviewee 1 said “Side-effects of Parallelization” (in particular the

examples with file I/O) is challenging, and he suggested a new defect type

“Memory Management”. On the other hand, interviewee 6 named “Space De-

composition”, “Synchronization” and “Memory Management” as particularly

challenging defect types, but “Side-effects of Parallelization” is not a frequently
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occurring defect type in their projects since they can mostly avoid it by using

appropriate libraries. This means the experience base should cover various

defect types which have different occurrences depending on the contexts.

• Interviewees 3 expressed they do not make the defect examples in the ex-

perience base, probably because they are “too experienced” to consider these

defects as issues. The problems they often run into while debugging are related

to the issues such as hardware failures or compiler bugs. While hardware are

currently out of our scope, in the future it may be worth considering whether

the experience base can also cover the type of defects they make.

• Interviewee 4 does not have prior experience with HPC languages, and nat-

urally he has never seen defects that belong to the defect types such as “Er-

roneous Use of Language Features”. He pointed out that the significance of

defect examples may not be easy to understand until he actually deals with

them. In the next Chapter, we will discuss the development of the education

material for novice HPC developers and students.

Other observations

• In general, interviewees had many things to say about defects. Our approach

for capturing their knowledge using the initial defect patterns was successful

and the interviewees actively commented on the patterns we presented. How-

ever, it seems important to convince interviewees that our purpose is to obtain

knowledge of defects rather than to evaluate the ability of an interviewee. As
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suggested from the results in Chapter 5, once they feel as if their ability is

evaluated they tend to become more cautious and reluctant to admit they

made any. Therefore, a question such as “What defects did you make?” does

not work very effectively. In the interviews, we focused on the questions about

defects themselves, and avoided directly asking who made them. When the

interviewees quoted specific defects they have seen, they always talked about

other people’s examples.

• As described above, interviewee’s perception of defects is quite diverse. There-

fore, to capture as much information as possible, we should interview them

individually rather than as a group. This may depend on the culture of the

group. If they need to convince peer developers that they are a good devel-

oper, and if admitting some defects are recurring in their code is considered

harmful, they inevitably inhibit each other.

• The interviewees 3 can be considered as both very experienced HPC developers

and technology providers. Therefore, it may be interpreted as suggesting a

gap between what technology providers think is important and the problems

novice and experienced developers run into in real projects. This leads to

the development of the recommendations for technology providers in the next

Chapter.
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6.3.11 Threats to validity

• Selection of the interviewees: We could not choose interviewees from random

population. Selection was opportunistic but chosen from a mix of stakeholder

types.
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Chapter 7

Applying and Packaging Knowledge of Defect Patterns

The third activity of the problem solving approach is to apply the knowledge

obtained to develop derivative artifacts. As described in the previous chapter, the

knowledge stored in the experience base is structured with several levels of abstrac-

tion, so that users can use it and return feedback in various ways. In this chapter,

we attempt to further package the knowledge to make it useful for specific purposes.

The benefit of offering such artifacts is an easier access to the knowledge by those

who are not necessarily motivated to use the experience base directly.

In particular, we develop two kinds of artifacts.

• Educational material: The first artifact is educational material that can be

used for training novice HPC developers. A typical place where the material

can be used is an HPC course offered at universities. It can be also used by a

lead scientist in an HPC project who needs to train a new project member in

short time. The base artifact is a set of presentation slides. The full slides take

about an hour to go though. They can be used as a whole class lecture or they

can be tailored (e.g., by selecting the slides for a particular pattern or replacing

some examples) depending on the needs of the professor and the class goals.

In addition, we have prepared a supplemental homework assignment to help

in the understanding of the material. The assignment is to identify defects
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from the given source code containing seeded defects.

• Technology recommendations: The second artifact is a description of po-

tential technological needs in high performance computing community. The

purpose is to provide developers of tools and languages with useful information

about what capabilities would be useful in preventing and detecting defects

based on the empirical data we have collected. The main artifact is a recom-

mendation document. If some of the recommendations are picked up and a

solution is provided by a technology developer, there would certainly be bene-

fits the HPC community. For a technology developer, the artifact can become

a source of research ideas.

7.1 Educational material

A professor teaching a graduate/undergraduate course usually gives students

one or more programming assignments to make sure they understood of the topics

being taught, such as HPC architectures, parallel languages, parallel algorithms, and

HPC programming itself. To produce a solution for the given assignment problem,

students need to develop and debug the code, making their own tries and errors.

While this is a necessary and important experience to understand difficulties in

writing an HPC application and to learn how to deal with it, it is often time-

consuming and inefficient. If a professor explicitly teaches recurring defect types

before the assignments, students can anticipate the type of defects they may have

to deal with, and use the knowledge to make debugging more efficiently and improve
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the quality of the final solution.

In a real HPC project, scientists cannot spend much time learning program-

ming, since their main purpose is to accomplish some scientific task rather than

becoming a good programmer. Learning basic usage and syntaxes of an HPC lan-

guage is usually not very difficult. What is difficult is learning practical issues: how

to avoid, detect or fix defects to create a program that works. Having educational

material on defect patterns can reduce such learning efforts.

We have developed educational materials with the goal to fulfill these needs.

Since we created the first version of the artifacts, it has been used in six graduate-

level courses (including the two courses used for evaluation, which we describe later).

The content has been incrementally improved according to the feedback from the

professors. We describe the content of the material, and demonstrate its usefulness.

7.1.1 Content of the artifacts

The base artifact is a presentation package consisting of a set of slides. The

content is organized as follows. The actual slides are presented in Appendix C.

• Introduction

• Problem and sequential solution

• Description of defect type 1 (Erroneous use of parallel language features)

• Examples of defects that belong to defect type 1

• Description of defect type 2 (Space Decomposition)
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• Examples of defects that belong to defect type 2

• ...

• Description of defect type 5 (Performance defect)

• Examples of defects that belong to defect type 5

• Closing

Introduction

The introductory part consists of two slides which explain the background of

the material: the difficulty of debugging and testing parallel code, the concept of

developing an experience base to collect and share common defect types, and the

differentiating factors of high performance computing that can affect the character-

istics of defects. This part is intended to motivate students.

Problem and sequential solution

In early versions of the slides, defect types were explained using the real ex-

amples taken from various assignment problems. This was inconvenient because the

problems being solved must be explained before explaining the defect examples.

Therefore, we defined a simple problem which can be explained easily. Figure

7.1 illustrates the problem.
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Figure 7.1: The problem used in the educational material

The problem is a discrete time step simulation of N cells, each of which holds

an integer from 0 to 9. In Figure 7.1, the initial cell values are cell[0]=2, cell[1]=1,

..., and cell[N-1]=3. In each step, cells are updated using the values of neighboring

cells:

cellnext[x] = (cell[x− 1] + cell[x + 1]) mod 10 (7.1)

For example, the cell values from the initial state are cellnext[0]=(3+1), cellnext[1]=(2+6),

etc. The last cell is assumed to be adjacent to the first cell. This step is repeated

for the number of steps specified by an input parameter, and the final cell values

are returned as output.

Following the problem description, a straightforward sequential implementa-

tion in C is presented. This is used as the basis for explaining the defect examples.

All the examples are modified to fit to a scenario for developing a parallel solution

of this problem using MPI. This way, only one problem needs to be explained at the

beginning.

Description of defect type

Each “description of defect type” is directly derived from a top-level defect

type in the experience base. To make the description concise, each defect type is
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summarized in one-page slide.

The description has been improved based on the refinement process described

in the previous chapter.

Examples

Examples are chosen from the defect instances in the experience base, and

modified to fit the process of writing a parallel code of the sample problem. Each

example corresponds to a particular phase of implementation:

• Adding “housekeeping” MPI constructs (header statements, initialization and

finalization functions.)

• Decomposing the problem space into processes and allocating an appropriate

memory space

• Parallelizing data initialization

• Implementing communications between processes

Closing

In the summary slides the content refers to the experience base website so that

students who need more detailed information on each defect type and examples can

visit the experience base system.
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7.1.2 Homework

We also provide material that can be used as a homework assignment. A

typical scenario would be to give it out to students right after the lecture on the

defect types is presented. In this homework, the students are asked to inspect the

given source code and identify defects. The source code is a (faulty) solution to the

approximation of the number pi by a Monte Carlo simulation, and several defects

are embedded by the author. The students are asked to describe why each defect

they identified is considered a defect, which defect type it belongs to, and how it

can be fixed. The actual content of the homework is shown in Appendix C.

The purpose of the homework is to assist in understanding the lecture on the

defect types. To answer the homework, the students are naturally made to review

the presentation material. The problem itself is kept simple enough to be solvable

in short time.

7.1.3 Evaluating usefulness of the educational material

We have evaluated the usefulness of the educational material in two ways.

The first evaluation was conducted by analyzing the source code written after the

students listened to the lecture and compared the results with the base data we

developed in Chapter 5. The second evaluation was conducted by interviewing

students who actually the course and sat through the lecture.

131



Code analysis

The quantitative evaluation of the usefulness was performed by testing the

material in the actual class and measuring whether there was any effect on the

performance of students in the subsequent programming assignments. We conducted

a study in two graduate courses. The data collection in these courses is the same

as other “regular” studies, but the students were given a lecture and a homework

about the defect patterns. To measure the effect, the timing of the lecture and

the homework was set after the lecture on basic MPI programming and before the

assignment to be measured.

The GQM goal is described as follows.

• Analyze the source code data to evaluate it with respect to defect occurrences

and time to fix compared to the base data in the context of classroom studies

using the defect lecture material.

An ideal experiment would be to randomly split the students into two groups

and give the lecture to only one of them. However, since we conduct an evaluation in

real classes, there is a limit on what we can control to make the mode of evaluation

close to ideal. In particular, we are not allowed to treat students in the same

class unfairly. Therefore, we used the results from other courses taking the same

assignment problem as reference data. These courses used exactly the same problem

description and sample input data, so the context factors are as homogeneous as

possible. Figure 7.2 shows the design of the experiment. Note that we do not use

the term “control group”, as we use data from multiple courses without an explicit
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control over the configuration of the lecture and the selection of students.

Figure 7.2: Design of the evaluation of the educational materials

In particular, we chose the Game of Life problem. Before the evaluation, we

had the data for 21 students from two “ordinary” courses which used exactly the

same problem description. These data are used as reference data. In the evaluation,

we asked two more courses to use the same problem description, but after the lecture

on the defect patterns and the homework is provided.

The source code snapshots were analyzed to identify defects as we did in

Chapter 5. To perform quantitative comparison, all versions are inspected rather

than skipping the versions using the heuristics.
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Figure 7.3: Comparison of the number of defects identified for each student

Figure 7.3 presents the boxplots for the number of defects identified for each

student. The statistical analysis indicates that the test group made fewer total

defects at a statistically significant level (P = 0.048). It is a 34% improvement on

average. Furthermore, the test group left fewer defects in the code at a statistically

significant level (P = 0.029). It is a 31% improvement on average, and it suggests

that students with the knowledge of defect patterns can create a higher-quality

product. The test group found 42.3 % of defects on average while the reference

group found 39.8 % of the defects on average.

To further interpret the results, we investigated whether particular defects were

made by each student. The defects chosen are the ones most commonly observed

in this problem, and each of them represents the top-level defect type to which it

belongs. These tend to remain unfixed in the final version. Furthermore, except

for the last one (“all processes holding the entire memory space”), the same defects
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were explicitly covered by the lecture.

• Missing MPI Finalize on some execution path (Use of parallel language fea-

ture)

• Problem space may not be equally divisible (Space decomposition)

• File access by multiple processes (Side-effect of parallelization)

• Potential deadlock (Synchronization)

• Message scheduling bottleneck (Performance)

• All processes holding the entire memory space (Memory management)

Figure 7.4: Comparison of the percentage of students who made specific defects

The result is shown in Figure 7.4. The defect rates for the test group seem

to have improved except for the “Problem space may not be equally divisible” and

“Message scheduling bottleneck”. Out of these six specific defects, 4 have decreased
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by half. On the other hand, the defect type (“message scheduling bottleneck”) had

about the same occurrence, and the defect type (“problem space may not be equally

visible”) has nearly doubled. One explanation is this defect is harder to avoid even

if they know its existence. Another explanation is that the current lecture material

does not explain space decomposition defects and performance defects. Further

studies are required to investigate if either explanation is plausible, or whether

there are other reasons.

Finally, Figure 7.5 shows the comparison of the effort measure (estimated

time to fix defects) for both groups. The test group spent 0.66 hours (median) while

reference group spent 2.93 hours (median) to fix defects.

Figure 7.5: Comparison of average time to fix

There are several threats to validity of this study.

• Since the reference and test data were obtained from different classes, it is

possible that the effect was caused by some factors other than the defect

lecture. It is desirable that the study be repeated with more subjects. (internal
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validity)

• It is possible that just the extra time spent on an additional lecture was

responsible for the improvement. (internal validity)

• It is possible that fewer defects were identified from the test group simply

because data analysis is not as complete as that of the reference group. Val-

idation of the analysis results by other analyst is desirable. Note that the

reliability study in Chapter 5 was conducted using the data from one student

in the test group and no defects identified by the analyst were missed by our

analysis. (internal validity)

• The evaluation was performed with a particular assignment problem (Game

of Life). The result may not be extended to other problem sets. (external

validity)

Interview

We interviewed as a group three students who attended the lecture. We asked

whether the lecture material on the defect patterns was clear, whether the material

was useful, and whether there was any information that was not provided but would

have been useful.

• The interviewees all agreed the lecture material was clear enough to under-

stand the defect types and the examples. One interviewee commented the

lecture was also useful as an introduction of MPI programming, because other
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lectures of the course was more focused on the programming model rather

than programming itself.

• One interviewee commented that examples were easier to understand than

the description of defect types. Another interviewee agreed she had to go

through the examples to understand the definition of the defect types. The

third interviewee said he was able to understand the definition from the start,

but the examples were certainly useful.

• One interviewee said she was able to be careful not to make the same defects

described in the slides. The lecture helped the interviewee avoid a lot of

mistakes that she could have done without the lecture. For example, when

she ran into a synchronization problem, she was able to quickly capture the

defect because she had had an idea of what could go wrong from the lecture

and identify the cause of the problem: the program had a deadlock, and the

cause was the order of send/recv was not in the correct order. It was not

exactly the same defect example, but the lecture material helped her think

about what to look for and what are possible problems. Other interviewees

agreed the lecture helped them write a program more carefully and avoid

some defects because they knew beforehand what some defects look like, so

the lecture was useful for both programming and debugging.

• One interviewee commented she wanted to learn more about MPI program-

ming before the defect lecture. The other interviewees commented they had

an adequate preparation to understand the defect lecture material.
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• They actually encountered the defects explained the lecture, and the material

helped them avoid these defects.

• The interviewees took about two hours to finish the homework. They com-

mented that they looked through the lecture material while working on the

homework, so it gave them a chance to review the material carefully. One in-

terviewee commented that some defects were very easy to find since they were

exactly the same defects that were explained in the lecture, and other defects

were harder to find. They said that having the answers to the homework

returned was also useful.

• They commented that they think the classification scheme was reasonably

defined. One particular defect made by one interviewee was how to use scat-

ter/gather with a 2-dimensional array. It was not in the examples given in

the lecture, but it can be classified as the “Erroneous use of parallel language

features” type. Richer set of examples for each of the defect type might have

been even helpful.

• One interviewee had a defect which didn’t fit into the classification scheme- it

was a sequential defect- a typo between “==” and “=” which led the program

to deadlock, and the interviewee looked for synchronization defects.

In summary, there appears that the lecture had a positive influence on the

thinking and the activities of the students who attended the defects lecture and did

the assignment.

139



7.2 Recommendations for technology developers

Good technology can greatly reduce debugging effort. It would be beneficial

if we can provide potential developers of tools and languages with some qualitative

information on demands of HPC developers, based upon our observations, interviews

and analysis results. A technologist is expected to use the information to gain

insights on technology demands from empirical point of view.

The survey indicates there are actually various technologies available for HPC

development [?, 1]. However, people often complain about the general lack of tools

they can use. This seems to imply there are discrepancies between the functionali-

ties provided by existing tools and what developers really want. One clue from the

results of the previous chapter is the technology providers are too experienced and

consider many defects as “too simple” to deal with. They try to provide a solution

to much more advanced issues, but they are not necessarily what developers con-

sider as dominating problems. Therefore, providing insights on technology demands

from empirical studies can be beneficial for both HPC developers and technology

developers who are looking for research ideas.

The content of the recommendations in this section is preliminary. While it is

based on the insights from the data we collected, and the comments gathered from

the interviews, it has not been verified by domain experts nor has it been presented to

technology developers to obtain feedback. Since the focus is on describing demands

rather than assessing the feasibility of individual recommendations, not all items

may have an immediate solution. The validity of the recommendations should be
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further assessed as the content is updated.

7.2.1 Type of tools

One difficulty in debugging an HPC application is that getting machine re-

sources for “debugging runs” is not easy. To debug a parallel HPC program, de-

velopers often need to run the code on a large number of processors. In many

HPC machines, a job with many processes has to wait time for long time in a job

queue. Having to waiting for several hours just to run a debugging run is not a very

productive environment for debugging.

If defects can be identified without actually executing the code, that is a

particularly attractive approach for HPC development. There are not many static

analysis tools applicable to HPC applications. “Traditional” languages such as

FORTRAN 77, Fortran 90, or C, with MPI are not a popular target for researchers

programming language and static analysis.

7.2.2 Defect types which are desirable to be detectable

Erroneous use of parallel language features

Is it possible to check common language misuse?

• Illegal parameters (compiler passes but illegal)

• Function misuse
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Space decomposition

Space decomposition defects are common in MPI programming. While much

effort has been spent in the area of parallel compilers to derive appropriate decom-

position [74], a general solution to the detection of decomposition defects seems to

be difficult to implement. Hence, it is possible that some specific type of decomposi-

tion defects might still be detectable under certain conditions. For example, when a

sequential code is available, it would be interesting to explore whether it is possible

to check if the parallel code covers the entire problem space, by examining:

• Is it possible to check if the memory buffer is supposed to contain guard cells?

• Is it possible to check whether the code refers to memory using a local index

or a global index?

• Is it possible to check if the array origin declaration is consistent with use?

• Is it possible to check whether indexing in the serial code would be difficult to

parallelize?

Performance

Performance defects are often checked with debuggers and profiling tools,

which keep track of how the code is executed at runtime. An interesting chal-

lenge would be to check performance bottlenecks statically. Since there are so many

factors that can contribute to performance bottlenecks, it would be difficult to esti-

mate how fast the code runs in a general case. Again, detecting some specific type
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of performance defects would be beneficial. Such examples include:

• Is it possible to detect load balancing defects using a static approach?

• Is it possible to detect communication bottlenecks using a static approach?

7.2.3 Some observations

• Demands: Development tools and languages used in HPC development are

different from those used in other software domains. Although HPC applica-

tions are developed, debugged and executed in the most advanced computer

environments, the tools being used tend to be “behind” other domains in some

sense. For example, few modern GUI-based tools for developing and debug-

ging applications are used by HPC developers, while such tools are commonly

available in other domains nowadays. Many developers rely on primitive de-

bugging methods such as inserting print statements, and they often complain

about the general lack of useful tools [39].

• Conservativeness: On the other hand, many HPC developers also say they

are not going to and/or are not able to change the current development prac-

tice unless they are convinced the change will benefit them. While this largely

depends on the discipline of individual developers, they tend to be more con-

servative than developers in other domains. One possible reason is they have

to put emphasis on the availability of technology across platforms, and the

continued availability of these tools over time. They are afraid to depend

on a certain technology that may not be available in all the platforms they
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need to access now and in a future. This is especially true for a programming

language, to which the application is strongly bound. Debugging tools might

be easier be adopted as they are easier to switch if they become unavailable.

However, many developers may be still hesitant unless the tool is mature and

stable enough for long term use.

• Legacy assets: An HPC application often needs to work with an existing

code: external library, or their own old code. Therefore, the technology to

be adopted is bound to these constraints. Compatibility with the existing

assets is very important for adoption. Transition to a new technology, if it

ever happens, is a gradual transition. So new technologies must be made to

co-exist with old technologies.
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Chapter 8

Conclusion

8.1 Summary of contributions

The contributions of this dissertation can be divided into two categories: those

that advance knowledge of software defects in high performance computing, and

those that advance research methodology in empirical software engineering.

8.1.1 Methodological contributions

Iterative method for building knowledge of defects

The main methodological contribution of the dissertation is the proposal for

a methodology for building patterns of domain-specific defects from empirical data.

While many practitioners recognize the usefulness of defect patterns, and there are

patterns proposed for various languages, properties of software, and application

domains, there seems no established methodology for developing defect patterns in

new contexts. This is important because unlike design patterns, defect patterns

tend to specific to the contexts of software domains.
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Approach for bottom-up knowledge building using the analysis of low-

level data

One contribution of this work is an approach of software engineering research

when the available data is not in a format convenient for analysis and processing. In

a conventional approach, researchers usually stayed with “superficial” analysis of the

data in such a situation. In this dissertation, we showed that high-level insights can

be obtained by manually analyzing source file data and building necessary knowledge

bottom up. The analysis is deeper and more specific.

Heuristics for analyzing code history data

Another contribution of this work is a set of heuristics for analyzing code

history data efficiently and reliably. They form a basis that are effective and they

can be further evolved.

Infrastructure for defect data analysis

Another contribution is the tools developed for collecting, organizing and an-

alyzing data. Again, they form a base set that can evolve.

Reactive knowledge refinement through structured interviews

Another contribution is an approach for extracting the tacit knowledge of do-

main experts through a variation of structured interviews. The key idea is that

experts can provide their knowledge more easily when they are presented with con-
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crete base materials they can respond to, rather than just being asked what they

know about the topic. In this dissertation, we used the results of code analysis to

develop initial defect patterns and packaged them into interview material so that

the interviewees could understand the contexts of the problem.

The combination of bottom-up knowledge building and top-down knowledge

refinement is essential to the successful construction of defect patterns. Although

the initial defect patterns built from the low-level analysis alone often do not cover

all contexts of interest, their existence plays a critical role in enabling validation and

addition of further knowledge by domain experts.

SE education for debugging

Teaching defect patterns is not a common practice in education. A broader

implication of this work is that it may be worth considering the use of this kind of

educational materials for a generic programming course.

8.1.2 Domain-related contributions

Identifying patterns of software defects in HPC

One of the main contributions of this work is the construction of defect patterns

in HPC software. While practitioners in the HPC community possess a great deal of

knowledge on defects recurring in HPC applications, such knowledge has mostly been

hidden in the brain of individual practitioners. We have identified defect patterns

from empirical data, developed a classification scheme and iteratively refined the
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patterns by getting feedback from experts.

Constructing HPCBugBase

The main product out of this work is an experience base system that stores

and shares the defect patterns constructed above. The system is available publicly

on the web and the content is actively updated and maintained. The information

in the experience base is described at several levels of abstraction so that users with

different interests can access information as it is needed. The system also provides

an interface to accept feedback from users. This contribution provides a starting

point for broader acceptance of the defect patterns into the HPC community.

Development of educational material

Another product is an educational material that can be used to teach the char-

acteristics of common defect types to novice HPC developers and students. Being

able to learn concrete examples of recurring defects for a new language together

with advice for detecting and/or preventing them seems beneficial.

Development of heuristics for code analysis

Another product is a set of heuristics which was developed to mitigate the

labor-intensiveness of a reading-based approach for defect analysis. A preliminary

reliability study suggests that the heuristics can help analysts perform the analysis

consistently.
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Development of base data for further research

All the analysis results are stored into the database. This data, together with

other data we collected, represents the current state of practice in HPC development.

Further research is possible by reusing this data.

8.2 Review of research questions

8.2.1 Questions about the existence of defect patterns

• RQ1-1: What are domain specific defects in HPC? : We have identified a class

of distinctive defects which seem to be closely related to the characteristics

of software development in HPC. One defect type is caused by the parallel

features of HPC languages; One defect type is related to the decomposition of

the problem space; One defect type is related to concurrency and synchroniza-

tion; One defect type is related to side effects of parallelization; One defect

type is related to various performance issues; One defect type is related to

memory management; One defect type is related to algorithms; Finally, one

defect type is related to external libraries and compilers. Although these do

not necessarily appear exclusively in HPC applications, they are considered

particularly important in the HPC domain in terms of frequency, impact and

difficulty in debugging.

• RQ1-2: Can we identify defect patterns (causes, symptoms, potential cures and

preventions, and examples)? : Yes, the knowledge of defect patterns has been
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collected and refined through a series of studies using the iterative methodol-

ogy.

• RQ1-3: Can we define a set of templates to describe information about defects

at different levels of abstraction? : Yes, we have defined templates for defect

types, specific defects and defect instances.

8.2.2 Questions about the collection and description of knowledge

• RQ2-1: Can we build heuristics to detect defects in the code that can be used in

a reliable way by others? : We have developed a set of heuristics to help identify

defects from the change history. The results of the reliability study indicates

the heuristics can be used by other analyst to repeat the code analysis and

the analysis results match to some extent, although there are further rooms

for improvement to increase the completeness of the analysis.

• RQ2-2: Can we classify defects in a way that is clear to experts and allows

them to add information? : Yes, the initial defect types built from the results

of data analysis have been verified by experts and new information has been

added.

• RQ2-3: Is it possible to automate the detection of some classes of HPC de-

fects? : Not in this work. We have built a tool set for assisting code analysis

but our method is still largely manual. We have created a recommendation for

technology developers so that they can develop an automated defect detection

tool for some defects.
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8.2.3 Questions about the refinement of knowledge

• RQ3-1: Can we extract new knowledge by presenting existing knowledge in a

structured way? : Yes, through a series of structured interviews we extracted

new knowledge by presenting existing knowledge

• RQ3-2: Can we build and evolve a defect experience base with usable infor-

mation? : Yes, we have developed a Wiki-based public defect experience base

system which stores and shares defect patterns at various levels of abstraction.

8.2.4 Questions about the application of knowledge

• RQ4-1: Can teaching novices about defect patterns reduce the number of defects

made? : Yes, the result of the experiment indicates teaching defect patterns

was effective in reducing the occurrence of total defects and improving the

quality of the final version.

• RQ4-2: Can we provide recommendations to researchers of future defect detec-

tion tools? Can we develop our own data analysis tool based on the recommen-

dations? We have provided some recommendations. We have not developed

our own tools.
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8.3 Lessons learned

8.3.1 Enthusiasm

We have observed that HPC stakeholders generally agree on the importance of

reducing debugging cost and the possibility of mitigating the problem through the

construction of an experience base. The professors who have used the educational

material said the lecture on defects was beneficial for their class. There are also

other professors who volunteered to do the lecture on defects using our material in

a future. They are all potential users of the defect experience base.

8.3.2 Subtleties of questions related to defects

Extracting knowledge of defects from developers involves certain subtleties

that do not exist when asking for other kinds of information, because some people

seem to think that admitting they have made some defects is something embarrass-

ing. When we asked people to provide us with information on any defects, they all

talked about defects in the code written by others rather than themselves. An at-

tempt to ask developers to provide information on the defects they made themselves

could face difficulty.

8.3.3 Diversity of HPC stakeholders

Through the interviews we conducted, we observed that the views on what

defect types are more frequent than others and how they approach the problems
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seem to be diverse.

The views seem to depend on their background and the area of expertise, as

well as the characteristics of the tasks they do.

8.4 Future work

8.4.1 Adoption of the defect experience base

In this dissertation, we developed an experience base system that has basic

functionality. While we have obtained positive feedback from the experts we have

interviewed with, the use of the experience base by general public is scarce. To make

the experience base successful, we must attract many people in the HPC community

to visit and use it. An ultimate goal is to build a group in the HPC community

who are enthusiastic about building and maintaining community knowledge about

defect patterns, and the experience base should serve as a portal for them. Toward

this goal, the implementation of the experience base should be improved as needed.

There are some possible improvements to the system; A better mechanism for

collecting community feedback is desired, as the input and maintenance of the con-

tent is currently heavily dependent on the author. A better mechanism for searching

content from symptoms and/or error messages is also desirable since currently the

queries just look for keywords in the content of each entry.
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8.4.2 Expanding the research scope

There are several possibilities for further research reusing the results of defect

analysis.

Cross-variable analysis

One direction of future research is to conduct analysis across other variables

related to developer productivity. For example, if the execution performance is

measured for all compiling versions, it is possible to correlate it with the defect data

to evaluate the impact of performance defects.

This is expected to lead to deeper understanding of broader productivity issues.

Evaluating new technologies

Another direction is to repeat the empirical study for emerging programming

models being developed in the HPCS project, such as X10 and Chapel. These new

technologies are expected to provide better productivity compared to conventional

languages such as MPI and C. Using the results of this work as a basis, it is now

possible to evaluate how well these new technologies really contribute to the im-

provement of productivity. Occurrence and time to fix for each defect type are

useful measure for comparison.
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Direct analysis of large projects

Yet another direction is to broaden the scope of the reading-based data analysis

to full-scale projects. Directly analyzing real HPC applications can increase the

credibility of the defect patterns. Collecting the code history data specifically for the

study can be challenging. There are confidentiality issues, projects are competing

with each other. Data from public/internal source code repositories are easier to

obtain as many HPC projects use some code management system. However, the

granularity of code commit is much less frequent than per-compile snapshots used

in this work. Many developers test and debug the code before committing it to

the repository, so analyzing code history from the repository doesn’t provide the

information on debugging at the level of individual developers. Of course not all

defects are fixed before the code is committed. It is possible to observe defects

that are hard to find and thus appear in the repository. Another challenge is to

understand the code, as it is likely to be based on much more complex mathematical

background. An analyst may need help from project developers to understand the

meaning of the code.

Assessment of the criticality of defects

Throughout this dissertation, the measure of importance of defects was based

on frequency and duration: defects are worth describing as patterns if they appear

in HPC applications repeatedly, and their impact is large if they stay in the code for

long time (i.e., the defect is hard to find and fix). To further extend the measure, it
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is possible to introduce other measures, such as whether the defect actually causes

a failure or performance degradation in specific execution environments. One ap-

proach is to actually run the code in many environments, measuring execution time

and checking the correctness of output. Another approach is to examine the char-

acteristics of the identified defects and generate test cases that would make these

defects observable in test runs.

Simulation models

Another direction is to build a model of developer workflow based on the defect

data. The model simulates the development activities using the parameters such as

the occurrence of defects and the time to fix them and derives possible bottlenecks

through simulations.

8.4.3 Improving tool support for data analysis

To improve the efficiency of data analysis, further refinement of the tools is

desirable. Our group is now developing a new tool which can visually display a series

of source files with the changed locations. As we develop various tools, integration

becomes important for efficiency.
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Chapter A

Description of Problems in Classroom Studies

In this chapter, we provide the descriptions of the problems which the HPC

applications we analyzed are solving. The problems range from simple ones used in

classroom studies to real academic projects. Some problems were used in multiple

classroom studies with slightly different settings, such as whether a sequential im-

plementation was provided at the beginning, what hints were given, or what was

grading criteria.

A.1 Problem: Buffon-Laplace

The Buffon-Laplace problem is a kind of random simulation. Imagine that a

needle of length l is dropped onto a floor with a grid of equally spaced parallel lines

distances a and b apart, where l is less then a and b. The probabilty that the needle

will land on at least one line is given by:

p =
2l(a + b)− l2

πab

Thus, by running a Monte-Carlo simulation of needle drops, we can estimate π.

A.2 Problem: Dense matrix-vector multiply

The problem is to implement a parallel program which computes the the prod-

uct of a given dense matrix and a dense vector.
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A.3 Problem: Game of Life

The Game of Life problem is a well-known cellular automaton simulation

named by John Conway. In its basic form, which was employed in all of the studies

we conducted, it is a simulation on a two-dimensional grid space. Each cell in the

grid has either the “alive” or the “dead” status. In every discrete time step (or

“generation”), the cell status is updated based on the number of live neighboring

cells, with the following rules.

• Live cells with 2 or 3 live neighbors will stay alive in the next step

• Dead cells with exactly 3 neighbors will become alive in the next step

• Cells with less than 2 live neighbors or more than 3 live neighbors will die in

the next step

Intuitively, cells with too few neighbors die because of loneliness, and those with

two many neighbors die because of over-population.

This problem has been found interesting because these simple rules can gen-

erate many “interesting” patterns.

A.4 Sharks and fishes

The sharks and fishes problem is similar to Game of Life, but has more complex

cell states and update rules. Each grid cell has either a fish or a shark, or it is empty.

A fish and a shark has an age, which is incremented at each step. The update rules

are as follows:
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• If the cell has a fish:

– It tries to move a neighboring (up, down, left or right) empty cell or stays

in the current cell if no neighboring cell is empty.

– If a fish can move, and if it reaches a breeding age, it leaves behind a fish

of age 0 (“breeds”) and its age is reset to 0.

• If the current state is shark:

– It “eats” a fish (kill the fish and move to that cell) if there is a fish in

any of the neighboring cells. A shark dies if it reaches a starvation age.

– If it reaches to a breeding age, it breeds according to the same rule as a

fish.

A.5 Problem: Grid of resistors

The problem is to compute the voltages and the effective resistance of a 2n+1

by 2n + 2 grid of 1 ohm resistors if a battery is connected to the two center points.

This is a discrete version of finding the lines of force using iron filings for a magnet.

A successive overrelaxation (SOR) method with red-black ordering should be used

to solve the problem.
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A.6 Problem: Laplace’s equation

The problem is to implement a solution to a simple discretization of Laplace’s

equation:

∆T =
∂2T

∂x2
+

∂2T

∂y2
= 0

on a 2-D rectangular grid.

A.7 Problem: Quantom dynamics

The problem is to parallelize a simulation of dynamics of a particle, such as

an electron, which follows the law of quantum mechanics.

A.8 Problem: Sparse matrix-vector multiply

The problem is to implement a algorithm in parallel to multiply a sparse matrix

with a dense vector.

A.9 Problem: Sparse conjugate Gradient

The problem is to solve a symmetric positive definite system of linear equations

A~x = ~b by the conjugate gradient method. It is a iterative approach, and it uses a

function for sparse matrix-vector multiply as a sub-routine.

Each step of the iteration refines an approximated solution ~xk. Set initial

parameter values to ~x0 = 0 and ~r0 = ~d0 = ~b. The parameters are updated with the
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following equations.

αk =
~rT

k−1~rk−1

~dT
k−1A

~dk−1

~xk = ~xk−1 + αk
~dk−1

~rk = ~rk−1 − αkA~dk−1

βk =
~rT

k ~rk

~rT
k−1~rk−1

~dk = ~rk + βk
~dk−1

These involve one matrix-vector multiplication and two vector dot products per

iteration.

In a parallel implementation, a matrix and a vector are decomposed by rows. a

matrix-vector product is computed by (1) broadcasting the vector and (2) computing

partial rows of the product. A more optimized version can determine which vector

elements are needed by each process and only send to them instead of broadcasting

the entire vector.

A.10 Problem: Matix power via prefix

The problem is implement a parallel solution for a given n × n matrix A to

compute all its powers A, A2, ..., up to Al.

A.11 Problem: Sorting

The problem is to sort a set of N elements.
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A.12 Problem: LU decomposition

The problem is to implement a parallel solution to LU decomposition, i.e.,

factor a square matrix into two matrices L and U , where L is lower triangular with

ones on its diagonal, and U is upper diagonal.

A.13 Problem: Shallow water model

The problem is to parallelize a simulation of the shallow water model, which

is part of the SPEC benchmark suite.

A.14 Problem: Randomized selection

The problem is for a given a set of N integer elements and an integer k (1 ≤

k ≤ N), find the k-th smallest element in the set in expected linear time.
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Chapter B

Self-reported Defect Forms

B.1 Form 1
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B.2 Form 2
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Chapter C

Educational Material

C.1 Lecture slides for defect patterns
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C.2 Homework

Identify correctness/performance problems in the MPI program given at [URL],

which is supposed to calculate the approximation of the number pi by a Monte Carlo

simulation. For each defect found, describe briefly (1) why it is considered a defect,

(2) which of the defect types presented in the lecture it belongs to (or it belongs to

none), and (3) how it can be fixed.

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define N 1000003L

int main()

{

long n, k, i;

int rank, size;

double x, y;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

srand(time(NULL));
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n = N;

k = 0;

for (i=0; i<n/size; i++) {

char inside;

x = rand()/((double)RAND_MAX);

y = rand()/((double)RAND_MAX);

if (x * x + y * y < 1.0) {

inside = 1;

}

else {

inside = 0;

}

if (rank == 0) {

int j;

if (inside == 1) k = k + 1;

for (j=1; j<size; j++) {

MPI_Status status;

MPI_Recv(&inside, 1, MPI_CHAR, j, 0, MPI_COMM_WORLD, &status);

if (inside == 1) k = k + 1;

}

}

else {

MPI_Send(&inside, 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
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}

}

if (rank == 0) {

printf("%f\n", 4.0 * k / ((double)n));

}

return 0;

}
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Chapter D

Case Study Results

D.1 Results

Reference group

# of defects # of defects # of defects

(Total) (Never resolved) (Resolved)

9 3 6

11 5 6

18 6 12

7 4 3

13 6 7

6 6 0

13 3 10
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(Continued)

# of defects # of defects # of defects

(Total) (Never resolved) (Resolved)

10 7 3

13 7 6

14 4 10

5 5 0

10 7 3

16 9 7

6 6 0

6 3 3

2 2 0

28 5 23

6 3 3

8 4 4

1 1 0

5 4 1

186



Test group

# of defects # of defects # of defects

(Total) (Never resolved) (Resolved)

8 7 1

8 0 8

1 1 0

9 4 5

2 0 2

7 5 2

3 3 0

3 2 1

5 2 3

8 4 4

3 3 0

16 5 11

12 7 5
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D.2 Statistical analysis

F-test (two-sample for variance): the null hypothesis is not rejected and the

conclusion is that the two variances do not differ significantly.

Reference group Test group

Mean 9.857 6.538

Variance 37.03 18.60

F 1.991

P (F ≤ f) one-tail 0.111

F threshold for .05 2.544

t-test (two-sample, assuming equal variances): the difference is significant at

the .05 level for the defects that remained unfixed in the final version as well as the

whole defects, while it is not significant the defects that were resolved during the

development.

Test Value

t (total) 1.714

P (T ≤ t) one-tail (total) 0.04815

t (never resolved) 1.966

P (T ≤ t) one-tail (never resolved) 0.02901

t (resolved) 1.106

P (T ≤ t) one-tail (resolved) 0.1385

t threshold for .05 1.694
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