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High quantum efficiency, robust photocathodes produce picosecond-pulsed, high-

current electron beams for photoinjection applications like free electron lasers. In 

photoinjectors, a pulsed drive laser incident on the photocathode causes photoemission of

short, dense bunches of electrons, which are then accelerated into a relativistic, high 

quality beam. Future free electron lasers demand reliable photocathodes with long-lived 

quantum efficiency at suitable drive laser wavelengths to maintain high current density. 

But faced with contamination, heating, and ion back-bombardment, the highest efficiency

photocathodes find their delicate cesium-based coatings inexorably lost. In answer, the 

work herein presents careful, focused studies on cesium-based photocathodes, 

particularly motivated by the cesium dispenser photocathode. This is a novel device 

comprised of an efficiently photoemissive, cesium-based coating deposited onto a porous 

sintered tungsten substrate, beneath which is a reservoir of elemental cesium. Under 

controlled heating cesium diffuses from the reservoir through the porous substrate and 



across the surface to replace cesium lost to harsh conditions -- recently shown to 

significantly extend the lifetime of cesium-coated metal cathodes. This work first reports 

experiments on coated metals to validate and refine an advanced theory of photoemission 

already finding application in beam simulation codes. Second, it describes a new theory 

of photoemission from much higher quantum efficiency cesium-based semiconductors 

and verifies its predictions with independent experiment. Third, it investigates causes of 

cesium loss from both coated metal and semiconductor photocathodes and reports 

remarkable rejuvenation of full quantum efficiency for contaminated cesium-coated 

surfaces, affirming the dispenser prescription of cesium resupply. And fourth, it details 

continued advances in cesium dispenser design with much-improved operating 

characteristics: lower temperature and cleaner operation. Motivated by dispenser 

integration with semiconductor coatings, initial fabrication of those coatings are reported 

on dispenser-type substrates with measurement of quantum efficiency and analysis of 

thermal stability. Detailed investigations are performed on dispenser substrate preparation

by ion beam cleaning and on dispenser pore structure by electron microscopy and 

focused ion beam milling. The dissertation concludes by discussing implications of all 

results for the demonstration and optimization of the future high quantum efficiency 

cesium dispenser photocathode.
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Chapter 1: Introduction

1.1 Overview

Opening the subject of cesium-based photocathodes, it will be appropriate to pro-

vide motivation for the research herein reported. The story shall then trace backwards

through increasing levels of detail towards the photocathode itself, moving into a summa-

ry of the fundamentals of photocathode performance.

1.2 Motivation

Let us begin with the end in mind. Diverse applications spanning a wide range of

topics, from ship-based missile defense via directed energy, to imaging of time-resolved

nanoscale molecular dynamics, are driving the development of the free electron laser

(FEL) as a light source, and which we are about to introduce in Section 1.2.1. The FEL in

turn, in order to produce a high quality optical beam, must be provided a high quality rel-

ativistic electron beam. This, too, shall be made more clear shortly. The source of choice

for this beam is a particle accelerator driven by a high brightness photoinjector, which

shall be introduced in Section 1.2.2. These can be very large devices, on the scale of tens

of meters to kilometers in length. Our focus now turns to the electron beam itself, in Sec-

tion 1.3, where we define what we mean by a "high quality" electron beam required from

the photoinjector. The photoinjector itself gets its name from the location where the story

begins, and where the electrons are born into the vacuum of the accelerating structure: the

photocathode. So, from a massive machine we have traced our way back to a small, cen-
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timeter-scale device, which emits electrons via the photoelectric effect when triggered by

an incident drive laser pulse striking the photoemissive surface. Next, from this centime-

ter-scale device, we further shrink our scale of investigation in Section 1.4 as we in-

troduce the fundamental operational concepts relating to photocathodes, most of which

are rooted in physics occuring on the nanoscale. The important classes of photocathodes

will be introduced in Section 1.5. We wrap up our introduction with a look in Section 1.7

at a proposed answer to an as-yet-unmet challenge in photocathode technology posed by

the demands of high power FELs: the cesium dispenser photocathode. That challenge, the

fundamental motivation for this research, was summed up by the National Academy of

Sciences in 2009 in these words: "Drive-laser-switched photocathodes are the likely elec-

tron source for megawatt-class free-electron lasers. Photocathodes have been used in ac-

celerator applications for more than 2 decades; however, they have not reached the level

of performance in terms of quantum efficiency and robustness that will likely be required

for a reliable megawatt-class free-electron laser." [1]

1.2.1 Free Electron Lasers

Free electron lasers stand unique among sources of coherent radiation; they can be

designed to emit anywhere within a wide range of wavelengths from infrared to hard x-

rays, they exhibit excellent optical beam quality, and they have the potential to achieve

average power higher than any competing laser technology within certain wavelength

windows. Their "tunability" (or more precisely, their design flexibility in emission wave-
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lengths) and their beam quality enable broad applications in medicine and science, while

their average power promise has drawn intense interest from the defense community.

This introductory sub-section will summarize the basic principles of free electron

lasers which lead to the above mentioned qualities. The next sub-section will briefly in-

troduce how photocathodes, and more broadly, high-brightness photoinjectors, serve as

both an enabling and limiting technological frontier motivating the research contained in

this dissertation.

A brief word of historical introduction is warranted. Free electron lasers, or FELs,

owe their genesis to the work of several early pioneers working independently: of Hans

Motz, who proposed the wiggler magnet configuration in 1951 and later demonstrated

(incoherent) millimeter and nanometer radiation; of Robert Phillips, whose comparatively

low-beam-energy "ubitron" in the late 1970s resembled an FEL while relying on space-

charge waves to produce long-wavelength centimeter to millimeter radiation; and most

notably of John Madey, who in 1970 proposed the concept and name of "free electron

laser" and in 1976 demonstrated laser gain, following that demonstration in 1977 with an

FEL in the optical resonator configuration exhibiting 3.5 micron coherent emission. By

1983, three additional FELs had been demonstrated: the first in Orsay, France, in the visi-

ble; the second in Stanford, California, in the near infrared; and the third in Los Alamos,

New Mexico, in the mid-infrared. Rapid development has continued [2].
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The characteristics of FELs which are listed above (tunability, beam quality, and

average power potential) will now be addressed in turn using fundamental theory and

examples of the state-of-the-art thus far achieved.

Tunable (design wavelength selectable) pulses of light from FELs find diverse ap-

plications. In medicine, laser surgery can be performed much more cleanly using 1-6 mi-

cron short pulses. In physics, ultrafast spectroscopy demands ultrashort-pulse, extreme

ultraviolet radiation. Fast, tunable ultraviolet sources are of great interest to chemists

studying chemical dynamics. Biologists can study protein structure with x-ray radiation.

Propagation of high-power beams in real world (particularly maritime) environments is

aided by using infrared wavelengths which are least absorbed or scattered.

In all these cases, the design tunability of an FEL results from the electron-wig-

gler interaction where the electron beam is caused to radiate. The basic concept of the

wiggler is shown in Figure 1.1: Schematic of an FEL wiggler [3]. A set of permanent

Figure 1.1: Schematic of an FEL wiggler
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magnets is arranged in pairs as shown, where a wiggler period is the distance from a

magnet pair to the next identical pair (in this simplified illustration, every other pair, but

for example in the widely used Halbach configuration, every fourth pair). The alternating

direction of the magnetic field causes the relativistic electron beam to oscillate (to "wig-

gle") transversely to both the direction of propagation and the direction of the magnetic

field. During each bend of the beam, synchrotron radiation is emitted. This can add co-

herently and constructively with the radiation from previous bends as long as the match-

ing condition is obeyed (here generalized for off-axis radiation - for on-axis the third term

in parentheses goes to zero):

(1.1) m =
2c2
mw 1 + 2

K2

+ c2i2c m

where m is the radiation wavelength in the lab frame, mw is the wiggler period in the lab

frame, c is the relativistic factor for the electron beam, i is the emission angle of the ra-

diation being considered, and K  is the so-called "wiggler parameter" given by

(1.2) K = 2rm0c
e
mwB0

with B0 the magnetic field strength at the center of the wiggler, e the fundamental elec-

tric charge, m0 the electron mass, and c the speed of light. In practical units,

(1.3) K = 933.73 mw nm6 @B0 T6 @
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The larger the wiggler parameter, the stronger the electron-wiggler interaction.

The formula can also be interpreted as the number of wiggler wavelengths in the circum-

ference of a cyclotron oscillation.

Two pedagogical notes are made here. This discussion uses K , whereas an older

convention found in some texts [4] is to use the rms wiggler parameter aw = K/ 2 . Ad-

ditionally, throughout this work the term "wiggler" shall be intepreted to generally mean

the alternately poled permanent magnet section of the FEL, regardless of the strength of

the wiggler parameter. This is convenient for brevity, although it glosses over the oft-

drawn distinction between strongly oscillatory wigglers, with K & 1 and in which the

electron beam is non-overlapping with the cones of emitted synchrotron radiation from

each bend, and less strongly oscillatory wigglers termed "undulators", with K K 1 and in

which there is full overlap of the electron beam with the cones of emitted synchrotron ra-

diation, which leads undulators to exhibit interference effects not seen in more strongly

oscillatory devices. The wigglers in many FELs have K K 1.

The matching condition of Eq. (1.1) ensures that in the beam frame, the optical

phase front, traveling at c, slips ahead of the electron beam, traveling just slightly less

than c, by exactly one wavelength for every wiggler period. The wiggler period is

reduced in the beam frame by the Lorentz contraction factor c, and the additional factor
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of 1/2c corrects the radiated wavelength for relativistic Doppler shift from the beam

frame to the lab frame.

Since c is given by the beam energy relative to the electron rest mass mc2 by

E = (c- 1)mc2, we can determine for a given beam energy and desired output wave-

length what wiggler period and magnetic field strength we should design. Conversely,

when a wiggler has been built and installed, the emission wavelength may be tuned oper-

ationally by adjusting either beam energy (c) or magnetic field strength (B0, hence K ,

typically by adjusting the wiggler with a gradual widening or narrowing of the gap be-

tween magnet pairs). Practically speaking, FELs produce light from infrared to hard x-

ray, with wiggler periods tending to be of the order of cm, wiggler parameters about uni-

ty, and beam energies from hundreds of MeV to tens of GeV.

Having determined the parameters which may be varied to tune the radiation

wavelength of an FEL, either in design or in operation, the discussion now turns to

brightness. Brightness is expressed in units of power per unit area per unit solid angle. A

related measure is brilliance (or spectral brightness), which is brightness per percent

spectral bandwidth (See Section 1.3.2). High brightness sources are desireable for sci-

entific applications because of their high beam quality. Achievable brightness is less

amenable to simple analytic expression than is tunability, due to the wide variety of pos-

sible FEL designs and the many factors which can affect power and beam quality. A

modern example of a high-brightness FEL is the Linac Coherent Light Source, or LCLS,
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built at Stanford University. With a peak brilliance approaching 1033 photons per second

per square mm per square mrad per 0.1% bandwidth, it exceeds previous third-generation

synchrotron sources in brilliance by nearly ten orders of magnitude.

High power, related to brightness, may be divided into two categories: high aver-

age power and high peak power. The former finds interest at IR wavelengths from the de-

fense community and from the power-beaming community, and at UV wavelengths from

the lithography community. The latter is well suited to high-density physics studies using

x-ray radiation and to laser machining using near-IR radiation. FELs can achieve very

high power compared to conventional laser sources because the radiation is produced

from the electron beam in a vacuum. Therefore there are none of the material breakdown

concerns of a solid-state or gas laser. In addition, the output optical power is proportional

to the power of the electron beam itself, which can be quite significant in large accelera-

tors. At the time of this writing, the high-average-power record for an FEL was held by

Jefferson Lab with 14.3 kW in the IR. Further power increases can be expected towards

hundred-kilowatt machines and more, as technological challenges are overcome. The

2009 National Research Council report on high-power free-electron laser technology [1]

stated the two "tall poles" in the high-power FEL "tent", the two top technological chal-

lenges to overcome in the quest for higher average power, were high power mirror coat-

ings and robust, efficient photocathodes.
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1.2.2 High Brightness Photoinjectors

Since the FEL undulator interaction requires good overlap of the electron beam

and the radiated photon beam, a very high brightness electron beam is required (see Sec-

tion 1.3.2), and this becomes more stringent with shorter FEL design wavelength. Thus

state-of-the-art high peak brightness photoinjectors with very tightly focused beams are

those found in the shortest wavelength devices in operation: the hard x-ray FELs. And the

technological frontier for photoinjection is also being pushed by those researching high

average power FELs, which likewise require a high brightness photoinjector, in this case

one exhibiting particularly high average current while maintaining beam quality. In both

instances of high brightness, the choice of photocathode and drive laser appropriate to the

application is challenging: hard x-ray FELs tend to be designed with metal cathodes

(SLAC uses copper), whereas the QE of such cathodes is simply too low for the high av-

erage power FEL designs, and the search for improved photocathodes there is ongoing.

1.3 Electron Beams

Two figures of merit are of paramount importance in the production and use of

electron beams (or more generally, charged particle beams) in accelerators and hence in

FELs: emittance and brightness. These are of such importance to the field of photoinjec-

tion that they will be introduced and briefly discussed in dedicated sections in this chap-

ter. By no means is an attempt made at an in-depth derivation or analysis; in fact, excel-
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lent treatments of the subject are found in the literature, notably Reiser's canonical text

[5], and in a more specialized and cathode-specific discussion, in Jensen's book on elec-

tron emission physics [6]. Rather than rederive what has been done, let us here consider a

simple yet practical view of the meaning of these widely used terms and of their reporting

and use.

1.3.1 Emittance

Emittance of an electron beam (or more generally a charged particle beam), at its

simplest, incorporates the ideas of beam size and beam angular spread. If a beam could

somehow be produced in which all electrons travelled along the same vector, indefinitely,

this would be a zero emittance beam. Low emittance beams of electrons are essentially

small diameter, well collimated beams, and as might be guessed, are desireable due to

good preservation of the electron beam quality during propagation through the accelera-

tor and FEL, and as a result to strong interaction at the undulator itself. An equivalent

conceptual understanding identifies the emittance of the beam as related to the volume of

the beam in transverse four-dimensional trace space, where each electron has a given x

and y position and momentum, and the aggregation of all electrons in the beam define an

x and y size of the beam and its x and y momentum distributions (normalized to the lon-

gitudinal momentum, hence the term trace space rather than phase space), which in turn

define how small the beam is and how well collimated.
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Emittance can be quoted in several flavors, and in fact has an unfortunately bewil-

dering array of forms in the literature. Let us start with the simplest case. In one dimen-

sion (say, x, representing one transverse axis of the beam), the trace space is 2D (x and

x'=dvx/dvz), the ideal beam fills an ellipse, and the area of that ellipse divided by pi is the

emittance of the ideal beam:

(1.4)f = r
1

dxdx'##

This is the total emittance of the ideal beam, and is thus seen to have units of length,

since x' is unitless. As an aside, Liouville's theorem can be applied (conservation of phase

space area) and total emittance can be recognized as a conserved quantity.

However, since real beams are not ideal, a much more common representation in

practice than total emittance is the rms emittance, obtained from moments of the (nonide-

al) beam distribution in trace space via:

(1.5)frms = x2 x'2 - xx' 2
^ h

1/2

where the notation of taking a moment of a power of x or x' is defined as usual, here

shown for the first moment of x:

(1.6) x = x n x,x'^ hdxdx'##

with n being the 2D beam distribution, which more generally would represent the projec-

tion of the full 4D representation on to the x-x' space. Rms emittance is conserved under
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linear forces. Growth of rms emittance can occur with nonlinear forces, causing a twist-

ing of the phase space ellipse into a larger, more complex shape.

Since under relativistic acceleration the beam will transform, it is common to de-

fine a normalized rms emittance which is constant under acceleration:

(1.7)fn, rms = bcfrms

where the relativistic factors are quickly identified. A further variation sometimes quoted

is effective normalized rms emittance

(1.8)fn = 4fn, rms

which in fact scales the rms emittance so as to correspond to the total emittance of a

uniform beam.

To complicate matters still more, the units of emittance vary widely from author

to author, with some using mm-mrad, some using nm-rad, some using microns (which are

still units of length and interchangeable with mm-mrad, but have the disadvantage of not

explicitly directing attention to angular divergence) and still others using pi-mm-mrad

(which to the untrained eye can artificially reduce the emittance quoted since, to compare

to units of mm-mrad, the numeric value must then be multiplied by pi).

A related concept to that of transverse emittance of the whole beam (the calcula-

tion of which generally includes every particle in a given bunch projected onto the trans-

verse trace space) is slice emittance, which, as the name suggests, makes several trans-
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verse slices down the length of the beam and projects the emittance from each onto

transverse trace space separately. This concept is often discussed in support of the emit-

tance compensation technique -- further details are a subject of beam dynamics in injec-

tors and as such are beyond the scope of this investigation, but may be found in, for in-

stance, Refs. [7; 8].

1.3.2 Brightness

Brightness of an electron beam, at its simplest, incorporates the ideas of beam

current, transverse size, and collimation; in short, brightness expresses the total beam cur-

rent achieved for a given emittance. Brightness is critical when specifying electron beams

for FELs, since the average power radiated by the FEL will be limited by the average

power of the electron beam (which is proportional to the current) and by its brightness.

Such a limitation comes from the requisite good overlap of the electron beam with the

optical mode in the FEL in order to achieve high gain. It is here that photocathodes, as

part of the larger context of photoinjectors, truly shine: the brightness obtainable from

these electron sources is unparalleled.

A simple formulaic representation for average brightness, assuming an ideal

uniform hyperellipsoidal trace space distribution, is derivable as

(1.9)B =
r2fxfy
2I
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which is a function of the beam current and the x and y emittances, whereas average nor-

malized brightness (which is constant under relativistic acceleration in the same way as

normalized emittance) is then

(1.10)Bn =
bc^ h

2

B
=
r2fn

2

2I

where for simplicity radial symmetry has been assumed. The caveat here is important:

real beams are not uniform and are certainly not hyperellipsoidal in trace space. Howev-

er, the preceding formula is a useful starting point for further discussions because for any

real beam one could imagine an equivalent uniform beam with the same rms volume in

trace space.

The performance of the Boeing APLE, the first high duty factor photoinjector

(25%), which was operated in the early 1990s, was reported at 35 milliamps average cur-

rent with an effective rms emittance of 10 pi mm-mrad, at a beam energy of 5 MeV, such

that the average brightness was 7.2 uA/mm2•mrad2 [9].

One should not confuse average beam brightness (which is calculated from aver-

age beam current) with peak beam brightness (which is calculated from peak current

within a single electron bunch), nor should one confuse beam brightness with a related

quantity from the field of accelerator-based light sources: spectral brightness (photons per

second per unit solid angle per 0.1% spectral bandwidth). Spectral brightness is also
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known as brilliance, often used to characterize synchrotron light sources or FELs, which,

like beam brightness, comes in the average and peak varieties.

1.4 Photocathode Fundamentals

We here discuss several of the more commonly used figures of merit and opera-

tional considerations for photocathodes. This is by no means an exhaustive discussion but

highlights critical factors to be analyzed when selecting a photocathode for a photoinjec-

tion application. In order of discussion, these factors are: quantum efficiency (QE), life-

time (of QE), spectral response, temporal response, damage threshold, and energy spread.

1.4.1 Quantum Efficiency

Quantum efficiency is defined as the ratio of emitted electrons to incident pho-

tons; that is, the fraction (or percentage) of incoming photons which result in a pho-

toemitted electron. The above definition of QE necessarily ignores such nonlinear emis-

sion mechanisms such as two-photon effects, which do not play a significant role even at

the highest generally used photocathode irradiance levels of a few hundred watts per

square centimeter. It likewise assumes the generation of a single photoexcited electron

per photon, again a reasonable assumption for the photon energies of interest, although

some indications of multiple photoexcitations from very high energy photons have been

reported [10]. What QE does include is the optical characteristics of the cathode (re-

flectance, transmittance, absorption, penetration depth), the electron transport characteris-
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tics of the cathode (scattering mechanisms, mean free path/relaxation time), and the sur-

face energy barrier characteristics of the cathode (for metals, work function; for

semiconductors, electron affinity and band structure; in all cases, applied field, tempera-

ture, and surface coatings). QE as stated also assumes that the emission is not space-

charge limited (see the discussion in Section 5.2.1 on the Child-Langmuir law) -- in other

words, that photocurrent is linear with optical intensity in every respect. It is important to

note that QE is a number ratio of electrons to photons and as such is unitless; it is not the

related ratio of electric current density to optical irradiance, a ratio of Coulombs to

Joules. In the latter case, the ratio depends on the energy of the photon; for example, giv-

en the same QE at two wavelengths, the shorter wavelength (and hence higher energy)

photons would require a higher number of microJoules per pulse to produce a bunch con-

taining the same charge (and hence same number of electrons).

QE relates to the electric current density and the optical irradiance via the optical

wavelength and Planck's constant, the speed of light, and the electron charge:

(1.11)QE =
qm
hc

Im
Jm

and can be determined experimentally by measuring the incident laser power and the

resulting emission current, assuming the laser spot size is smaller than the cathode and

the temporal response of the cathode is instantaneous, such that the emitted electron pulse

follows the incident laser pulse exactly (this is not true for real cathode materials as dis-
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cussed in Section 1.4.4, but will not be apparent in the QE measurements reported later

since they are made using CW lasers). Thus a given cathode and drive laser, in practice,

produce a given photocurrent. In convenient units this photocurrent can be expressed as

approximately

(1.12)im mA^ h= 124

m nm^ h
Pm mW^ hQE %^ h

A related photoinjector example is that at the doubled Nd:YAG drive laser wave-

length of 532 nm, with 2% QE, a 1 nC bunch requires roughly a 0.117 nJ laser pulse.

Some photocathode QEs representative of those used in photoinjectors are tabulated in

Table 1.1: Typical peak QE values. Note that QE tends to be low for metals and high for

semiconductors. At its heart this difference can be attributed to better electron transport in

semiconductors, as will be discussed later.

1.4.2 Lifetime

The lifetime of a photocathode -- that is, how long the QE lasts -- is a less well-

defined concept than QE. Why is this the case? Firstly, the lifetime can be expressed un-

der different operating conditions. Some photocathode lifetimes are quoted under storage,

some under intermittent use, some under continuous duty, etc. Secondly, the lifetime is a

function of many environmental and operational variables. The variables of importance

depend on the cathode in question. Among these variables include vacuum pressure, par-
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Cathode
material

m(nm) QE (%) type drive laser  at given  m

Cs3Sb 527 4 semiconductor 2nd harmonic  Nd:YLF

Cs2Te 263 13 semiconductor 4th harmonic Nd:YLF

K2CsSb 527 8 semiconductor 2nd harmonic  Nd:YLF

Na2KSb 532 4 semiconductor 2nd harmonic Nd:YAG

Na2KSb(Cs) 532 10 semiconductor 2nd harmonic Nd:YAG

Mg 266 0.06 metal 4th harmonic Nd:YAG

Cu 266 0.014 metal 4th harmonic Nd:YAG

Ba 337 0.08 alkaline earth N2

(Cs)W 375 0.11 coated metal at UMD teststand, GaN diode

(Cs)GaAs 532 5 NEA 2nd harmonic Nd:YAG

Table 1.1: Typical peak QE values

tial pressure of any contaminating gases (particularly oxidizers), presence of ions and

subsequent back-bombardment in DC vs RF photoinjectors, cathode heating, possible

surface coating evaporation, drive laser induced material changes, etc.

Nevertheless, it is critical in practice to have a cathode which has good lifetime

for the application at hand. The necessary lifetime will of course depend on that applica-

tion but in almost any case longer is better. However, there is a trade-off with QE such

that cathodes exhibiting good QE tend to have low lifetime, whereas low QE cathodes are
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very robust. This trade-off is illustrated in Figure 1.2: QE vs Lifetime of Operational Pho-

tocathodes, which is an original compilation of cathodes (either in-gun or in a gun test

stand, as at Brookhaven) reported in the literature, with the exception of the non-gun cesi-

ated tungsten data from UMD. The references for the data are as follows: (1): Ref. [11];

(2): Ref. [12]; (3): Ref. [13]; (4): Ref. [14]; (5): Ref. [15]; (6): Ref. [16]; (7): Ref. [17]; 

Figure 1.2: QE vs Lifetime of Operational Photocathodes
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(8): Ref. [18]; (9): Ref. [19]. Note that Cs:W was tested at a UV wavelength of 375 nm,

not the 4th harmonic YLF/YAG of the other UV photocathodes. The QE at 266 nm

would be quite a bit higher: the theory of Chapter 6 predicts it is approaching the percent

level. Note also that the lifetime of the bialkali cited was in the Boeing APLE photoinjec-

tor, which was known to have significant problems with water vapor contamination. The

expected lifetime in more typical vacuum conditions would be higher.

In the figure we see clearly that the metal cathodes on the far right exhibit extend-

ed lifetime whereas their QE is abysmal. The semiconductors achieve remarkable QE, but

such QE is achieved in part through delicate surface coatings which result in sensitivity

to vacuum conditions.

Some care is needed in reading the graph. The horizontal axis does not directly re-

port lifetime in a given case. This is because different machines run under widely varying

operating conditions. Making the broad first-order assumption that the dominant lifetime

decay mechanism is vacuum contamination which in turn is linear with background

pressure, the lifetime data has been normalized to an operating pressure of 1x10-9 Torr.

For example, if the reported lifetime were 1000 hours at 1x10-11 Torr, the lifetime shown

above would be reduced from the reported value by a factor of 100, corresponding to an

expected 100-fold increase in contamination rate at 1x10-9 Torr over what that cathode

would have actually experienced at 1x10-11 Torr.
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Clearly, the assumption here is not strictly valid, since contaminant partial

pressure is not linear with total pressure, and since many cathodes have other limiting

mechanisms on lifetime. The case of Cs:GaAs comes to mind, where extracted charge is

a commonly quoted figure for cathode life, rather than time, since Cs:GaAs is typically

used in DC photoinjectors where back-bombardment by ions is what destroys the cathode

QE over time. Nevertheless, in this case the operating pressures are so low as to render

contamination negligible, allowing the back-bombardment to dominate, and at much

higher nanoTorr levels the lifetime would indeed be contamination-limited.

A final note is that certain types of cathodes do not have to be replaced fully when

the QE decays below a certain level. Again taking the case of Cs:GaAs, a recesiation

process is commonly used to restore some of the QE of a given cathode, which can be

pulled from the chamber for the process (or merely retracted into the cathode assembly,

as at Jefferson Lab) and later re-inserted while remaining under vacuum. Other types of

cathodes (dispenser and reservoir cathodes) can be periodically or continuously reju-

venated in-situ under heating. They normally find application as thermionic sources,

though this dissertation treats them in detail as potential photocathodes. See Section 1.7

in this chapter for an introduction.

1.4.3 Spectral Response

Clearly, the wavelength of the drive laser will affect the performance of the pho-

tocathode. Let us contrast the behavior of the metals and coated metals with the semicon-
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ductor photocathodes. Metals and coated metals, as derived in Chapter 6, have a QE

which varies quadratically with the photon energy less the work function, at least in the

visible to near-UV range where useful drive lasers are available. In contrast to metals,

semiconductors such as the alkali antimonides are the same materials as used in the pho-

tomultiplier tube (PMT) industry and, as such, exhibit similar spectral response. For the

photoinjector application and unlike PMTs, the key is to obtain good QE at the specific

drive laser wavelength of choice, and the overall spectral response is not critical. Never-

theless it is instructive to view a selection of typical PMT response curves from industry.

Fig. 1.3 illustrates the response of cesium antimonide; Fig. 1.4, the bialkali cesium potas-

sium antimonide; Fig. 1.5, the bialkali sodium potassium antimonide. Note the sharp on-

set of photoemission (for photon energies above the bandgap). Unlike metals QE does not

improve indefinitely as photon energy is increased; in part this is explained since when

the photon energy exceeds approximately twice the bandgap of the semiconductor, the

photoexcited electrons have enough energy that when halved through elastic scattering

with valence electrons, the final state is still allowed (is above the bandgap). Therefore

significant numbers of final electron-electron scattering states become available and the

electron transport properties of the material degrade.
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       Figure 1.3: 1P28 (Cs-Sb) PMT   Figure 1.4: R464 (K-Cs-Sb) PMT

Figure 1.5: R2557 (Na-K-Sb) PMT
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1.4.4 Temporal Response

Given a short enough laser pulse, the resulting photoemission will not be able to

follow that pulse due to the finite emission time of electrons from the material, and the

electron bunch will be smeared out in time compared to the original optical drive laser

pulse. This finite electron emission time is dominated by the optical penetration depth and

electron escape depth in the material. Cathodes with long optical penetration depth and

long electron escape depth (semiconductors) exhibit longer response times, simply due to

the finite time required for the electrons to transport to the surface for emission. In addi-

tion, some electrons will also be excited near the surface and emitted quickly, hence the

smearing out of the temporal pulse shape and not merely a delay time in emission. Cath-

odes with short optical penetration depth and optical escape depth (metals) only see pho-

toemission from a region very near the surface, and thus are prompt emitters.

Optical penetration depths vary significantly, but in metals tend to be on the order

of tens of nanometers, and in semiconductors on the order of a hundred nanometers. Elec-

tron escape depths in metals are similarly short, since the relaxation time characteristic of

scattering in a metal is a few femtoseconds and for a 1 eV electron a distance of 1

nanometer is travelled in 2 femtoseconds; thus electrons escape from tens of nanometers

deep within the metal. Electron escape depths in semiconductors are longer due a number

of factors. There is reduced electron-electron scattering, such that the relaxation times in

semiconductors are longer than in metals for the energy ranges of interest (eV). There is

also a higher possibility of multiple scattering events before emission since each electron-
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phonon scattering event does not necessarily reduce the electron energy below that re-

quired for photoemission. As a result, a photoexcited electron near the surface but initial-

ly directed unfavorably may actually travel a convoluted path as it undergoes several

electron-phonon interactions before eventually reaching the surface and being emitted.

This is good for QE, since such electrons would have been lost in a typical metal, but not

so good for response time. As the most extreme example of good electron transport in

semiconductors consider the highly regular lattice structure and exquisite purity of III-V

crystals like GaAs grown for the semiconductor industry. Such crystals have a minimum

of lattice defect sites, layer interfaces, or other inhomogeneities in the crystal structure

and so exhibit excellent transport properties. This leads, however, to extended response

times compared to the film-deposited antimonides and tellurides, which means high puri-

ty crystals are not necessarily ideal for photoinjection applications.

Table 1.2: Photocathode Typical Temporal Response shows the typical behavior

of photocathodes used in photoinjectors. Note that an RF photoinjector will require a

more prompt emitter than a DC photoinjector, because in an RF photoinjector the field is

only appropriate for acceleration across a few degrees of phase of the RF field, and for

typical RF klystron frequencies of, say, 700 MHz (L band, used currently at the Los

Alamos NCRF high average power photoinjector) or 2856 MHz (S band, used currently

at the SLAC LCLS x-ray light source), this equates to an electron bunch length of a few

picoseconds, requiring an emitter prompt on the picosecond timescale.
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Cathode Optical Penetra-
tion Depth @ m

(nm)

Escape Depth /
Mean Free Path

(nm)

Dominant Scatter-
ing Process

Response Time

Cu ~13 @ 263 ~1 electron-electron <<ps

K2CsSb ~60 @ 532 ~30 electron-phonon ~1ps

Cs3Sb ~100 @ 532

~20 @ 375

~30 electron-phonon ~1ps

Cs2Te ~12 @ 254 - electron-phonon ~3ps

(Cs)GaAs ~1000 @ 532 ~1000 electron-phonon ~40 ps

~10ps with
150nm epilayer

Table 1.2: Photocathode Typical Temporal Response

These values are approximate; a word regarding their origin or estimation is war-

ranted. Response times are well known in general and have been reported for the materi-

als in question by Moody, for instance [20]. Optical penetration depth is wavelength-de-

pendent, and where not available directly (e.g., Cs3Sb which is found in Sommer [21]), it

can be calculated from the imaginary component of the index of refraction via

d = m/4rk. Electron escape depth is a more hairy beast, but to first order can be approxi-

mated by the mean free path. This approximation assumes escape from a narrow cone of

trajectories and that a single scattering event will preclude emission, so it is a good ap-

proximation for metals and less good for semiconductors. Considering the cathode types

in turn, copper has been well-studied and both the optical penetration depth [22] and the
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relaxation times have been reported. From the relaxation time the mean free path may be

inferred if the energy of the electron is known. For copper, the electron energy has been

obtained by taking the photon energy of the drive laser at 263 nanometers (4.66 eV), sub-

tracting the work function (4.5 eV) lowered by a reasonable operational field via the

Schottky effect (1 MV/m lowering it by 0.04 eV), which leaves a 0.2 eV electron. This

then propagates at 5.9 km/s which means in a typical 5 femtosecond relaxation time, the

mean free path is very approximately 1 nm. For the antimonides, while exact values in

the literature can be hard to come by (for good reason, considering the variation in fabri-

cation procedures, layer inhomogeneity, various doping levels, etc.), the similar structure

and behavior of this class allows us to lump them together in terms of typical absorption

and transport parameters. As confirmation of this, consider that optical penetration depths

for the bialkali cesium potassium antimonide [23] compare very favorably with those re-

ported for cesium antimonide [24]. In addition, mean free paths reported for S-20 (trial-

kali) cathodes [23] are identical to those calculated by Jensen for cesium antimonide. For

the case of cesium telluride which does not, unlike the antimonides, respond in the visi-

ble, the optical constants have been measured [25] from which the optical penetration de-

pth can be calculated. The mean free path or escape depth was not available. Lastly, for

cesiated gallium arsenide, the material has been well studied at the DC photoinjector-dri-

ven FEL at Thomas Jefferson National Accelerator Facility, which first lased in 1998

[26], and by others looking to that material as a candidate for future electron guns [27].
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Interpretation of the approximate values given in Table 1.2 is straightforward;

metals exhibit short escape depths as photoexcited electrons rapidly thermalize through a

multitude of electron-electron scattering events in the highly populated conduction band,

and so many photoexcited electrons are too deep to ever be emitted and are lost, reducing

QE (which is already low due to high reflectivity). Antimonides exhibit deeper optical

penetration but also deeper electron escape depths. Combined with better optical absorp-

tion and lower reflectivity in the first place, this bodes well for QE but increases response

time to the picosecond level. Highly pure and regular crystalline structures such as GaAs

are even better at electron transport but do not respond at the picosecond level and in fact

the NEA characteristic of the cesiated gallium arsenide plays against it from a response

time perspective, because electrons continue to dribble out of the semiconductor at very

low energy after long transport times and many scattering events, since there is no barrier

to cut off the emission at a threshold energy above the bandgap.

A point which is perhaps counterintuitive at first is that ultrashort response times,

as are found in metals, can be equally as undesirable as long response times. This is a

result of the nonideal temporal structure of a high power drive laser pulse itself. No laser

pulse is perfect and a given pulse tends to exhibit fluctuations in power throughout. This

noise results in part from the nonlinear frequency-doubling process typically used for

photocathode drive lasers such as Nd:YAG or Nd:YLF, which takes any initial power

fluctuations on the fundamental and amplifies them to the nth power at the nth harmonic.

If the cathode is prompt enough to track these extremely fast fluctuations and superim-

Chapter 1: Introduction 28



pose them on the electron bunch, a bunch with longitudinally varying charge results.

Such a bunch undergoes adverse interactions further down the accelerator and in the FEL,

increasing emittance of the beam or radiating at undesired wavelengths. SLAC LCLS has

described such a "microbunching instability" in detail and in fact has had to compensate

for it with a laser heater technique. All in all, a cathode with a response time on the order

of a picosecond is the "Goldilocks" emitter for RF photoinjection applications: not too

fast, not too slow, but just right.

1.4.5 Additional Considerations

Other considerations come into play when analyzing photocathodes, though they

may have less of a role in determining the appropriate photocathode choice for a given

system. One such consideration is optical damage threshold. High intensity lasers result

in fast heating of the surface, and especially for heat-sensitive coated surfaces or low

thermal conductivity materials under high duty factor, this can potentially result in dam-

age, either simply through localized overheating (and coating evaporation), or, at higher

intensities still, through actual surface processing and plasma formation. Typical drive

lasers do not develop such dangerous intensities, making this effect a less critical one.

Another consideration is transverse energy spread of the emitted electron bunch. This af-

fects beam quality delivered to the accelerator, and is a function of the surface energy

barrier of the photocathode. An electron, in order to be photoemitted, must have a mo-

mentum component perpendicular to the surface equivalent to a kinetic energy exceeding
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the barrier at the surface (assuming low field, then for metals, the work function, and for

semiconductors, the bandgap plus the electron affinity). However, an electron traveling at

some azimuthal angle with respect to the surface normal may still satisfy this condition

while retaining a nonzero surface-parallel momentum component. This transverse mo-

mentum, upon emission, and over the entire population of emitted electrons (which are

emitted over the allowed range of azimuthal angles, and some of which have had their en-

ergy modified through one or multiple scattering events before emission), results in a

transverse energy spread. However, since photoinjectors utilize photons of a few eV at

most, the transverse energy spread resulting will be on the order of an eV as well. After

acceleration to relativistic energies this may only be of concern in the thermal emittance

limit of the cathode which arises from the aforementioned nonzero transverse momenta.

And what of longitudinal energy spread? At relativistic beam energies the beam is effec-

tively "frozen" longitudinally - thus rapid initial acceleration to such energies is desired.

1.5 Photocathode Types

Photocathodes fall broadly into four classes of materials, each with unique emis-

sion properties stemming from optical absorption, electron transport, and emission barrier

characteristics. These classes are: metallic, coated metallic, semiconductor, and negative

electron affinity (NEA) cathodes -- essentially coated semiconductors.
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1.5.1 Metals

Metallic photocathodes are exemplified by the cathode material being an elemen-

tal metal, such as copper, magnesium, lead, niobium, etc. Some cathodes are more suit-

able for room temperature operation (Cu, Mg) while others are preferred in superconduct-

ing cavities (Pb, Nb). Metal cathodes exhibit low QE up to four or five orders of

magnitude below that of the best semiconductor photocathodes, extremely long lifetime

of months or years even under harsh operating conditions, poor or nonexistent visible re-

sponse but improving into the UV, and very prompt emission on the sub-picosecond

scale. Metals are not only used as photoemitters but as field emitters in the form of sharp

tips or of arrays of such tips.

1.5.2 Coated Metals

Coated metals improve the QE of metal photocathodes by adding a low work

function coating to the surface. Coated metals exhibit low but reasonable QE on the order

of a tenth of a percent, shorter lifetime than metals due to the sensitivity of the coating to

contamination, evaporation, or damage, improved visible response, and similarly prompt

emission. Examples include cesiated tungsten and cesiated silver, both of which are dis-

cussed in this work. More commonly such cathodes are not used as photocathodes but

rather as thermionic sources: consider barium, scandate, or M-type dispenser cathodes.

While the coatings on these cathodes may not last long unrejuvenated, they are being
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continuously replenished in situ by a subsurface reservoir of the work function lowering

material. This dispenser concept will be detailed later and its application to photocath-

odes is the thrust of this work.

1.5.3 Positive Electron Affinity Semiconductors

Semiconductors have excellent QEs and in fact hold the record for the highest

QEs ever achieved, on the order of 50% in some vacuum tube devices. This is obtained at

significant cost: lifetime is severely reduced (in some cases to days and in others, mere

hours). Spectral response is good across the visible, generally peaking somewhere be-

tween the green and the near UV, and falling off rather quickly in the red to infrared on

the one hand, and in the UV on the other. Semiconductors are not nearly as prompt emit-

ters as metals, but for those which can be fabricated as thin coatings, reasonable prompt-

ness on the picosecond scale can be achieved readily.

1.5.4 Negative Electron Affinity Semiconductors

When coated with a low work function material, it is possible in some specialized

cases to reduce the electron affinity of the semiconductor to below the bottom of the con-

duction band (hence the term negative electron affinity, or NEA), such that any photoex-

cited electron will have sufficient energy to be emitted. Effectively there is no emission

barrier in such cathodes. The classic example is cesiated gallium arsenide, which is also

attractive as a spin-polarized electron beam source when grown on a gallium arsenide
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phosphate substrate [28]. Other III-V semiconductors can also be NEA. QE can be very

good, more than 5% with a green drive laser for cesiated gallium arsenide. Lifetime is ex-

traordinarily sensitive to vacuum conditions, and with incredible effort (i.e., picoTorr

type vacuum) such cathodes can last for days or weeks of operation [29], but almost ex-

clusively are limited therefore to superconducting photoinjectors with their excellent vac-

uum capabilities. Spectral response is similar to the other semiconductors and like them

can utilize a green drive laser. Temporal response can be poorer, primarily due to the

thickness of the crystals used and the time it takes electrons to trickle out after being

photoexcited.

1.6 Comparison of Emission Mechanisms

Photoemission comprises excitation of an electron by a photon, transport of that

electron to the surface, and emission over the energy barrier. In Fig. 1.6 are contrasted the

emission mechanisms of the thermionic dispenser cathode with the metal and semicon-

ductor photocathodes. The dispenser uses a metal substrate with a low work function

coating like barium, and at elevated temperature (~1000 ºC) significant populations of

electrons in the Maxwell-Boltzmann thermal tail are excited above the vacuum level and

emitted. The room-temperature uncoated metal's work function requires much higher en-

ergy photons for photoemission than the semiconductor where only the band gap and

electron affinity must be overcome. In metals, the conduction band (populated to the Fer-

mi energy at zero temperature) overlaps the valence band. In semiconductors, the band 
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Figure 1.6: Barriers: thermionic, metal, and semiconductor (to scale, zero applied field)

gap separates the conduction and valence bands, with much reduced electron-electron

scattering.

1.7 Dispensers

Since a metal with a low work function coating has much improved electron

emission characteristics over the bare, uncoated metal, cathodes of this sort have long

been studied. But these coatings are susceptible to evaporation or damage, and as such,
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the invention of the dispenser cathode was a significant advance. In this cathode, a porous

metal matrix forms the cathode surface. Either impregnated within the matrix or in a

reservoir behind the porous surface is a work function lowering material. Under heating

this material continuously rejuvenates the surface layer by diffusion. A dispenser of the

reservoir type designed and used at UMD is shown in cross-section in Figure 1.7. Note

the source of free cesium contained within the reservoir, ready for activation under initial

heating which will melt the indium seal and allow the Cs:Bi intermetallic compound to

sublimate cesium into the reservoir, which in turn will allow that cesium to diffuse to the

surface, forming a low work function, improved quantum efficiency partial monolayer

coating.

Figure 1.7: Reservoir Type Dispenser Cathode, cross-section
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Chapter 2: Historical Context

2.1 Electron Emission and the Photoelectric Effect

Electron emission, as a fundamental process in nature, was observed (Nollet,

1749; Morgan, 1785; Hittorf, 1858; Crookes, 1878) and even patented (Edison, 1884)

years before it was understood. The first observation of electron emission which was de-

finitively identified as such was by J. J. Thompson in 1897, whose "cathode rays" were

shown to be beams of negatively charged particles. Thompson also made the first charge-

to-mass ratio measurement of the electron and studied the effect of electric and magnetic

fields on electron beams.

The history of photoemission began in 1885 when Heinrich Hertz, experimenting

with generation and detection of the newly discovered radio waves, observed that ultravi-

olet radiation from the arcing in the generator, when incident on the cathode in the detec-

tor, caused a measurable increase in current. Hertz had discovered the photoelectric effect

[30]. Philipp von Lenard's subsequent experiments, published in 1900, revealed a puz-

zling problem: a threshold wavelength for photoemission existed for any material [31].

Einstein correctly explained this threshold as a quantum effect [32], for which he subse-

quently received the 1921 Nobel Prize.

Thus, by 1905, the identification of the electron and photon and their interaction

through the photoelectric effect was complete. But fundamental identification did not en-

tail an understanding at the nanoscale: the details of photoemission at the nanoscale
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would take decades to develop. For example, work function as a macroscopic concept

was introduced by Kelvin and later Richardson around the turn of the twentieth century,

but its lowering through the dipole interaction of a cesium layer [33; 34], is of more re-

cent vintage.

Much of the motivation for these studies would wait for the discovery of practical

photocathodes. Throughout the twentieth century, the discovery of new and improved

photocathodes would continue albeit at an erratic pace. Photocathode development itself

found a large driver early on in the photomultiplier tube (PMT) industry. More recently,

additional impetus for development of photocathode technology has come from the parti-

cle accelerator community and in particular the demands of high brightness

photoinjectors.

2.2 Photoinjection

2.2.1 Introduction

Early designers of high brightness injectors found challenges with the existing

thermionic cathode technology. A quick comparison of the peak brightness achievable

from a thermionic versus a photocathode source is instructive. Refer to Eq. (1.10) and

note that the proportionality to peak current is linear, and assume similar beam diver-

gence. Since a thermionic cathode is not generally operated with best lifetime at current

densities of much more than 1 A/cm2 (although with much reduced lifetime current den-
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sities in excess of 10-100 A/cm2), and since a photocathode can achieve peak currents on

the order of 100 amps from a 10-millimeter-square drive laser spot, one can estimate to

first order a possible gain of two orders of magnitude in peak brightness from the use of a

photocathode: an order of magnitude from the higher current, and another from the small-

er beam size (and hence smaller emittance). An additional advantage is the critical ability

to quickly switch the electron source on the picosecond time scale thereby creating a

bunch already of the appropriate length for RF linac acceleration, and obviating the need 

Figure 2.1: Transition from thermionic to photo-injection
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for later bunch compression techniques which may be detrimental to emittance. Laser-

switched photocathodes make this possible; with thermionic sources the emission was ei-

ther continuous or the switching was electrically gated and severely limited by the 

switching speed of the high voltage electronics. The development of injectors, from 

thermionic machines requiring bunch compression after the cathode [35], to photoinjec-

tors capable of much lower emittance and producing picosecond electron bunches with-

out compression, is shown in Fig. 2.1, adapted and updated from Ref. [36].

2.2.2 Types of Photoinjectors

A photoinjector is simple in concept: a photocathode emits electrons when trig-

gered by a drive laser pulse, and the electrons are quickly accelerated to relativistic ener-

gies by a strong electric field. Variation in the types of photoinjectors for FELs simply

results from different approaches to the method of generating the accelerating field, and

variation in the types of photocathodes in use stems from the constraints or advantages of

the photoinjector using it, as well as beam requirements from the FEL.

The applied field may be radio frequency (RF) or direct current (DC), and the RF

linear accelerator (linac) accelerating structure into which the beam is injected may be

normal conducting or superconducting. Thus three main categories of photoinjectors, or

guns (as in "electron guns") emerge: normal conducting RF (NCRF), superconducting RF

(SRF), and DC. These shall be briefly introduced in turn. Each category is pushed to
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achieve the highest possible accelerating gradient: high gradient means shorter beamline

to attain a given beam energy, and also has the advantage of quickly accelerating a bunch

of electrons into the relativistic regime where internal repulsive forces of the beam are

less problematic to maintaining beam quality.

RF photoinjectors use an RF cavity (frequencies of order 1 GHz are most com-

mon for high current operation though photoinjectors have been built and tested from 144

MHz to 17 GHz) in order to produce the high fields required to accelerate the electrons.

Short bunches of electrons are required since only a few degrees of phase of the RF field

is suitable for acceleration which preserves good beam quality. These bunches are

produced at exactly the right moment by synchronizing the photocathode drive laser with

the RF klystrons to inject the electron bunch at optimum phase. A solenoid near the cath-

ode provides focusing and allows emittance compensation to further improve beam quali-

ty. RF photoinjectors offer much higher gradient operation than DC guns. In general, the

higher the RF frequency, the higher the gradient which can be achieved: the SPARC-X

2.856 GHz (S-band) photoinjector has 120 MV/m peak [37] and 25 MV/m accelerating

gradients, patterned off of the very similiar LCLS at SLAC.

NCRF guns in particular are the first and most common type of photoinjector.

They involve high power RF with high ohmic losses in the cavity walls and a great deal

of heating. Active cooling of the walls via complex, high-flow-rate cooling channels is

essential to preserve structural integrity and field quality, but still the electric field gradi-

ents achievable are limited in part by the heating of the walls. This is ameliorated by
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operating in pulsed mode (less than 100% duty cycle, where 100% would be defined as

every RF cycle being loaded with an electron bunch) so that overall heating is reduced,

and in pulsed mode NCRF guns have exhibited the highest operational accelerating gradi-

ents of any photoinjection technology. Whereas pulsed mode guns can achieve peak ac-

celerating gradients in excess of 100 MV/m, CW operation is heating-limited to about 10

MV/m [38].

SRF guns can achieve high field in CW operation because they have low losses to

RF heating, with peak accelerating fields of order 20 MV/m demonstrated at the only cur-

rently operational SRF photoinjector, at Rossendorf, Germany [39]. Future designs are

expected to reach 50 MV/m. But SRF guns have their own challenges because they oper-

ate in the superconducting regime, specifically with the liquid helium plants associated

with maintaining large superconducting linacs at 2 K. The extremely high Q (narrow res-

onance) niobium cavities are also an engineering challenge. Nevertheless, high duty fac-

tor/high gradient is a compelling combination that drives development and has led to

planned construction of several devices worldwide.

DC guns were first used with thermionic injection, not photoinjection. But where-

as with thermionic cathodes the field had to be gated to switch the beam, a laser-switched

photocathode allows for a steady DC field. DC gradients are limited by the breakdown of

the dielectric (usually ceramic) insulators used to separate the high voltage components.

Jefferson Lab, for instance, operates in the 350 kV range with about 4 MV/m at the cath-

ode. The lower gradient means lower bunch charge is used in general compared to what
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is possible with RF photoinjectors. DC guns also tend to be larger than RF devices to al-

low larger high voltage standoffs.

2.2.3 Historical Development

NCRF Photoinjectors

The RF photoinjector was first introduced at Los Alamos National Laboratory

(LANL) in 1985 [40] in support of efforts to develop a high power free electron laser.

Emittance compensation was first used to produce higher quality electron beams from RF

photoinjectors in 1989 [7] at the LANL HIBAF machine based on earlier observations of

unexpectedly low emittances downstream from the cathode, and has since become a

widespread technique to achieve low rms emittance in space-charge dominated beams. It

has the happy effect of reducing the required accelerating gradients to preserve good

beam emittance which in turn reduces ohmic heating in a normal conducting RF (NCRF)

gun. The AFEL at LANL was built using lessons learned from HIBAF and achieved 1.6

mm-mrad emittance at 1 nC bunch charge and up to 20 MeV, with a duty factor of 0.01%

[41]. LANL demonstrated first lasing of photoinjector-driven FELs in the infrared [42]

and later in the ultraviolet [43]. Meanwhile, Boeing had built a high duty factor NCRF

gun as part of the Average Power Laser Experiment (APLE) in 1992. The performance of

the Boeing APLE high duty factor photoinjector (25%), with a 35 mA (average) beam

current at 5 MeV had somewhat higher emittance of 5-10 mm-mrad, but high bunch

charge of 1-10 nC. Modern high-average-current NCRF photoinjectors are currently un-
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der development or design at Los Alamos, BESSY in Berlin, and Thomas Jefferson Na-

tional Accelerator Facility [41]. Among lower duty factor machines, the highest bunch

charge photoinjector in the world is at Argonne National Laboratory's AWA facility [44].

This machine delivers up to 160 nC bunches with 8 MeV energy, and routinely produces

60 nC bunches with 7 ps bunch length for a peak current of about 10 kA. This gun uses a

magnesium cathode with a 248 nm drive laser and a QE of 0.014%.

SRF Photoinjectors

Since in NCRF injectors the improvement of high accelerating gradient simulta-

neously with high duty factor leads to unacceptable heating of the structure via RF ohmic

losses, suuperconducting RF (SRF) accelerators are of interest for photoinjection. A pho-

tocathode was first used in an SRF cavity in 1988 at the University of Wuppertal. Cesium

antimonide cathodes used there lived several days in the excellent vacuum of the SRF

cavity but at cryogenic temperatures had QE of at best 5% [45]. A purpose-built SRF gun

was first operated with a photocathode at Forschungzentrum Dresden Rossendorf in 2002

[46], using Cs2Te. The cathode had surprisingly low QE at cryogenic temperatures of at

best 0.25% at 266 nm, and due to this and to limitations of the drive laser, 20 pC bunch

charge was the most achieved, though at a 22 MV/m accelerating gradient with 0.9 MeV

beam energy resulting. New designs at Rossendorf [47] allow emittance compensation to

be used with SRF cavities and are expected to attain 1 mm-mrad emittance with much
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higher 2.5 nC bunch charge. Now under construction here in the U.S. is an SRF injector

at Brookhaven National Laboratory, designed to demonstrate high average current

operation.

DC Photoinjectors

A DC photoinjector with a GaAs photocathode producing a polarized electron

beam was introduced at the Stanford Linear Accelerator Complex (SLAC) in 1977. The

DC photoinjector was first built and operated as a driver for a superconducting linac and

FEL at Jefferson Laboratory in 1996 and has continued to undergo development [14]. It

used from the outset an NEA cesiated gallium arsenide photocathode with 5% QE at 532

nm [48]. It is the world's highest-average-brightness photoinjector in operation [38]. The

machine is used to drive an infrared FEL which currently holds the world record for aver-

age power from an FEL, 14.3 kW at 1.6 microns.

Candidate photocathodes for NCRF, SRF, and DC photoinjectors continue to be

an active, ongoing area of research and development. Continued interest, especially in the

high average power photoinjector regime, is in attaining simultaneously both improved

cathode lifetime and excellent quantum efficiency.

2.3 Photocathodes for Photoinjectors

Since we have introduced four photocathode types in the introductory chapter
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(metallic, coated metallic, semiconductor, and NEA), we shall review the history and util-

ity of each type in photoinjection applications. We shall emphasize in the discussion of

coated metals the overlapping category of dispenser cathodes used as photocathodes. As

these cathodes are introduced, it is important to bear in mind the advice of the National

Research Council's Committee on a Scientific Assessment of FEL Technology for Naval

Applications: "Photocathodes have been used in accelerator applications for more than 2

decades; however, they have not reached the level of performance in terms of quantum

efficiency and robustness that will likely be required for a megawatt-class free electron

laser." [1].

The ideal photocathode for a high-current (1 A average, 1 kA peak) photoinjector

can be sketched. This hypothetical cathode should have an excellent QE of more than

10% so that the average current requirement can be achieved with existing drive laser

technology. High QE in the green would additionally enable the drive laser, typically

Nd:YAG or Nd:YLF, to use frequency doubling, rather than the more power-fluctuation-

prone pulses associated with frequency tripling or quadrupling. The cathode should be re-

sistant to QE degradation in all forms: RF or laser heating, ion bombardment, contamina-

tion. The lifetime should enable reliable operation without the need for frequent change-

out of the cathode, so more than 100 hours is desireable and the longer the better. High

fields of perhaps 50 MV/m will be seen by the cathode and it must be able to maintain

performance these conditions: dark current from field emission must be minimized.

(Small nanoprotrusions with low work function become strong field emitters under ex-
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treme fields.) The particular material in question must also be able to achieve the kind of

current densities required (hundreds of amps per square centimeter) in order to achieve

such high average currents in a small beam. It should have picosecond response time in

order to create short pulses for the RF linac yet average out sub-picosecond power fluctu-

ations on the drive laser. No photocathode currently exists combining all these character-

istics, and the selection of a photocathode for a particular application involves trade-offs

among all points, while research continues to probe possible new technologies. Such is

the focus, indeed, of this work.

2.3.1 Metals

Metal photocathodes are extremely robust but with their deplorable QE have lim-

ited applicability to high average current operation. Nevertheless their use is widespread

where high average current is not an overriding design goal. The Linac Coherent Light

Source (LCLS) at Stanford, which recently demonstrated the world's first lasing at 1.5

Ångströms, uses a copper cathode. A powerful drive laser produces up to one

nanocoulomb per bunch, though the operational bunch charge tends to be less than half

that for emittance reasons. But the repetition rate is extremely low and so the average cur-

rent is likewise low at LCLS. Among other metals, Brookhaven National Laboratory has

demonstrated the use of samarium as a metal photocathode as well as magnesium [16].

Yttrium, oddly enough, is the record-holder in terms of highest current density achieved

from a photocathode [49]. Superconducting guns have investigated niobium [50] and lead
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[51] because of the simplicity of having a photoemitter which is also a superconductive

metal, so that the back wall of the SRF cavity doubles as the cathode.

2.3.2 Coated Metals and Dispensers

The early pioneering work on coated metals (cesiated tungsten being of peculiar

interest to this work, for which the seminal reference is Taylor and Langmuir's in 1933

[52] ) and their emission characteristics, combined with the massive impetus during and

post- World War II with the ensuing effort to develop powerful microwave sources for

radar systems, led to the development of the core technologies required for high power

RF sources [6]. Of these, one was the dispenser cathode, first introduced as a reservoir

type by Phillips Corporation in the 1940s, with impregnated versions appearing the next

decade, further advances to M-type (Os and Ru coated) dispensers in the 1960s, and con-

trolled porosity dispensers beginning in the mid-1970s (developed by L. Falce and others

at NRL, Varian, and Hughes, and featuring uniform emission, reduced Ba evaporation,

and increased lifetime). In all these instances, the dispenser was used as a thermionic

cathode, not a photocathode -- the requirements for extremely high quality, low emittance

beams from the accelerator and FEL community which motivated the development of the

photocathode, were and are not as pressing a factor in microwave sources using

thermionic dispensers; these have rather been concerned with obtaining high current den-

sities while maintaining operational reliability.

Dispensers are of course not the only thermionic source; tungsten (W) and lan-
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thanum hexaboride (LaB6) have a long history of use as thermionic electron emitters.

Among dispensers themselves, there are various flavors: the basic sintered tungsten dis-

penser (using alkali or alkaline earth metals to activate the tungsten surface), the thoriated

tungsten cathode (or filament, as found in the residual gas analyzer in the apparatus de-

scribed in this work), the oxide dispenser cathodes (converting alkaline earth carbonates

to alkaline oxides for emission at somewhat more modest temperatures), the alloy dis-

penser cathodes, and the scandate cathodes. A general historical overview, adapted from

Ref. [53], is shown in Figure 2.2.

Figure 2.2: Historical Development of Dispenser Cathodes as Thermionic Sources
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Of course, the higher the operating current density from a given thermionic

source, the hotter it must run to maintain that, and so the shorter the dispenser lifetime.

One would not expect good lifetime, for instance, from continuously running a thermion-

ic dispenser at 100 A/cm2. As a thermionic source, the dispenser cathode finds applica-

tion in a dizzying array of technologies, including cathode ray tube displays, klystrons in

radar and electronic warfare systems, satellite communication transmitters, magnetrons in

kitchen microwaves, and of course particle accelerators, in the latter case not only some-

times as beam sources but also as components in the klystrons feeding RF to linac accel-

erating cavities.

The direct application of thermionic-type dispensers to photoinjection has been

limited. CANDELA at Orsay in France has reported on the installation and operation of a

calcium aluminum carbonate dispenser utilizing a porous tungsten matrix, illuminated by

a frequency-tripled Ti:sapphire laser, in their S-band gun [54]. This dispenser has a QE of

0.1% and is rejuvenated periodically. Some tests have been performed at Argonne Natio-

nal Laboratory's Ballistic Bunch Compression (BBC) gun with M-type thermionic dis-

pensers in a photoinjection configuration, with excellent results [55]. And at the Universi-

ty of Maryland (UMD), as is detailed in Section 2.4.2, tests of several types of dispensers

as photocathodes were performed although not in a photoinjection configuration [56;

57].

Most if not all of the dispensers discussed above used some species of alkaline

earth metal as the actively diffusing low work function coating. The thrust of this work is
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to introduce and detail the research at the University of Maryland in the development and

characterization of alkali-based coated photoemissive surfaces for dispenser photocath-

ode applications, particularly cesium-based cathodes, in contrast to the alkaline earths

historically used. Maryland is not alone in this effort: other implementations of cesium

dispensers for photoinjection have been studied at, for instance, Los Alamos National

Laboratory [58]. Cesium offers lower temperature operation than the alkaline earths, and

with the smallest electronegativity of any non-radioactive element on the periodic table,

its work function lowering abilities are impressive.

2.3.3 Positive Electron Affinity Semiconductors

Semiconductor cathodes offer unsurpassed QE, but for all their importance, the

development of semiconductor photocathode technology has come in irregular steps --

and for the early discoveries truly involved more art than science [59]. The first of these

fortuitous discoveries was the S1 (silver-oxygen-cesium) photocathode in 1929 by Koller

[60] and Campbell [61]. Searches for better photocathodes with better quantum efficiency

or spectral response were confounded by a lack of understanding of photoemission

physics, and became exercises in trial and error. While the first semiconductor photocath-

ode, cesium antimonide, was found in 1936 [62], it would not be until 1955 that the first

multi-alkali antimonide was discovered [63]. The continued development of semiconduc-

tor photocathodes has often been one punctuated more by luck than guiding insight [59].

At present the most discussed PEA semiconductor cathodes in the photoinjection com-
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munity are those already demonstrated in operating guns: cesium telluride (with UV drive

lasers) and the alkali antimonide family (with UV or green drive lasers).

2.3.4 Negative Electron Affinity Semiconductors

NEA cathodes became some of the first photocathodes to be developed on a strict-

ly scientific footing [59]. They are commonly, though not exclusively III-V semiconduc-

tors, and most famously cesiated gallium arsenide, which is capable of spin-polarized

electron emission if so desired, are used in the highest power superconducting DC FELs

[14], but their sensitivity to vacuum conditions precludes operation in the harsher envi-

ronment of NCRF photoinjectors.

2.4 Foundational Research at UMD

2.4.1 Introduction

Understanding and demonstrating reliable, high-brightness electron emission from

new or refined cathodes has in large part been motivated by the demands of next-genera-

tion free electron lasers (FELs). Here at the University of Maryland, in collaboration with

Dr. Kevin Jensen of the Naval Research Laboratory, a concerted effort has been made for

the past five years to develop the essential physics and engineering of suitable cathodes

for these next-generation FELs. Some of that work is reported in later chapters, but this

summary is meant to place that work in the proper context.
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In 2001, shortly after Dr. Patrick O'Shea was appointed professor to the Electrical

and Computer Engineering department at Maryland and joined the Institute for Research

in Electronics and Applied Physics (IREAP, formerly the Institute for Plasma Research),

he published a review article in Science magazine with co-author Dr. Henry Freund [2]

on the development of FEL technology up until that time.

"The development of linac-based FELs with both higher power and shorter wave-

length was delayed by technological issues. In particular, the electron brightness was the

principal limiting factor. The essential breakthrough was the development of laser-

switched photocathode electron sources (photoinjectors) to replace thermionic cathodes,

improving the electron beam brightness in rf linacs by two orders of magnitude."

Research at Maryland under O'Shea's direction has focused since that time on

photocathodes and their application to high-brightness electron injection, with funding

provided under the Joint Technology Office and the Office of Naval Research. The past

five years (2003-2008) have seen significant advances in our experimental capabilities, in

our demonstrations of new photocathode concepts, in our predictive modeling of photoe-

mission, and in our application of that theory to beam simulation codes.

In the following pages is a summary of our research publications through that

time period: eighteen journal articles and twenty-three conference publications. For clari-

ty of reading, they are broadly categorized into (1) experimental results and (2) theory

and simulation results. Experimental results were conducted serially and are presented
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chronologically. Theoretical and simulation results were sometimes conducted in parallel,

and so are organized topically, reverting to the chronological narrative within those top-

ics. Overall, there naturally follows a logical progression from first principles through

subsequent refinements to our most current understandings of the processes involved.

The intent is to provide a historical walkthrough of the content and context of this

research, and to highlight critical breakthroughs in each case so as to direct the interested

reader to the appropriate publications discussing them.

2.4.2 Experimental Results

2003

Photocathode research at the University of Maryland under O'Shea's leadership,

from the very beginning, centered on the dispenser cathode concept as a means of extend-

ing photocathode life. Dispenser cathodes can continuously or periodically bring fresh

low-work-function material to the surface of the cathode, replenishing lost material and

rejuvenating quantum efficiency (QE). This in-situ rejuvenation makes dispensers an at-

tractive candidate for long-lived, robust, efficient photocathodes. Early work at UMD by

Dr. Don Feldman and graduate student Matt Virgo used existing Scandate dispenser cath-

odes, as reported in Ref. [57], and looked at nonlinear photoelectric emission when using

an infrared drive laser. Scandate cathodes use a porous tungsten matrix impregnated with

scandium and barium oxides, as well as calcium aluminate. Under heating scandium and
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barium diffuse to the surface and lower the workfunction to between 1.5 and 2.0 eV. The

UMD tests used a 4.5 ns pulsewidth Nd:YAG drive laser while varying the electric field

at the cathode between 0 and 2.5 MV/m. The second, third, and fourth harmonics (532,

355, and 266 nm) exhibited normal single photon emission in direct proportion to laser

intensity and independent of applied field up to 2 MV/m. At the fundamental of 1064 nm,

unlike single-photon emission, the photocurrent was found to be a strong function of both

the initial lattice temperature and the applied electric field as well as the laser intensity. It

was immediately noted that the photon energy of 1.17 eV was not sufficient to overcome

the workfunction barrier, nor were there appreciable numbers of electrons in the thermal

distribution with high enough energy to be photoemitted. However, laser heating of the

free electron gas in the metal not only shifted the thermal distribution to higher energies,

but it also explained the nonlinearities in photoemission. Future work at UMD, particular-

ly in collaboration with Dr. Kevin Jensen of NRL in the development of theory to support

predictive simulations, would keep firmly in mind the importance of including the time-

dependent effect of laser heating on photoemission.

2004

In 2004 [64], the UMD group reported on a continued comparison of experiment

to theory, now using three types of dispenser cathodes: B type, scandate, and M type. B

type cathodes consisted of a sintered tungsten matrix impregnated with barium calcium

aluminate, scandate cathodes of the same matrix but using scandium and barium oxides,

and M type of a thin osmium coating on an otherwise B type cathode. Quantum efficien-
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cies were measured for the second through fourth harmonics of a Nd:YAG laser (532,

355, and 266 nm). Even for the third harmonic the QE did not exceed 0.08% for scandate

and 0.26% for M-type cathodes.

The explanation of QE for these three dispenser cathode types was given in a

theoretical model of time-dependent photoemission, but that model contained certain in-

adequacies, and the interested reader should refer rather to the more recent works pub-

lished since that time by Jensen et al. Nevertheless, the 2004 application of a physics-rich

photoemission code as a predictive estimator of performance was an important step

forward.

2005

By 2005 the initial investment in studying photoemission from standard off-the-

shelf dispenser cathodes, which until that time had been primarily operated for thermion-

ic emission, had paid off with a validated, predictive, time-dependent model of QE for

commercial dispenser cathodes as a function of laser pulse width, laser power, applied

field, and temperature.

Therefore the decision was made to fabricate custom dispenser cathodes specifi-

cally with photoemission in mind. The Cs:W system was chosen for this purpose: tung-

sten, because it was readily available in porous sintered form and was proven technology

in thermionic dispenser cathodes, and cesium, because it lowered workfuction more than

Chapter 2: Historical Context 55



any other elemental coating and had been well-studied on tungsten since Langmuir's sem-

inal work in the 1930s.

In preparation for the first tests of a cesium dispenser, an understanding of cesia-

tion of metal surfaces was sought. Graduate student Nathan Moody conducted experi-

ments to carefully evaporate cesium from external sources onto clean metal substrates

(solid tungsten and silver discs) while measuring QE, thereby obtaining an empirical rela-

tion between QE and amount of cesium supplied to the surface by the evaporative

sources. This empirical relation was then compared to predictive theory (Gyftopoulos-

Levine) developed by Jensen which related QE to percent-monolayer coverage of cesium.

As first reported at the 2005 Particle Accelerator Conference Conference [65], agreement

between experiment and theory was notable and confirmed that both arms of the research

program were on the right track. Moody did note, however, that the method of cleaning

the metal substrates prior to cesium deposition by a heat anneal followed by an argon

plasma discharge cleaning did not appear to leave an atomically clean surface, particular-

ly in the case of silver, which could not be annealed above 600ºC without risking evapo-

rating silver and coating the vacuum chamber and viewports. Future work would rectify

this difficulty. 

Later that summer, in the proceedings of the 2005 Free Electron Laser Conference

[66], Moody described the design of the prototype cesium dispenser photocathode. A ce-

sium reservoir was sealed inside a cylindrical steel cell, with one of the cylinder's end

faces being a disk of 60% dense sintered tungsten. The reservoir material was a 5:1 ratio
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of titanium to cesium chromate powders, which when heated to about 600ºC, would react

to produce titanium chromate (a solid remaining in the reservoir) and free cesium. The

cesium could then diffuse to the surface to replace lost cesium and rejuvenate QE. This

design would soon undergo testing in the UMD Photocathode Research Laboratory,

building on the understanding of the QE of cesiated metals already achieved. Critically,

peak QE as a function of cesium coverage occurred at a defined fraction of a monolayer

and thus could be used as a relative indicator of the amount of cesium remaining on the

surface. Measurement of peak QE, therefore, would be a crucial diagnostic in the dis-

penser photocathode tests because it allowed estimation of remaining surface cesium giv-

en changes in quantum efficiency.

2006

In 2006 these experimental results were published in peer-reviewed form, along

with detailed theoretical calculations and comparisons, in Ref. [67]. Additional experi-

ments on cesium-coated silver and tungsten surfaces, and comparison to initial theoretical

models of quantum efficiency as a function of surface coverage, were presented in Ref.

[68].

Also in 2006, at that year's Free Electron Laser Conference, Moody, Feldman,

Montgomery, et al. reported significant experimental progress towards low workfunction

controlled porosity dispenser photocathodes [69]. The prototype dispenser described in

2005 (now with 70% dense sintered tungsten) was tested in two modes of operation: con-
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tinuous rejuvenation (constant elevated temperature) and periodic rejuvenation (operation

at room temperature with brief periods of elevated temperature for rejuvenation). In both

modes the rejuvenation temperature for this cesium based dispenser was dramatically

lower than the early tests of commercial barium-based dispenser cathodes: no more than

160-180ºC in continuous mode, compared to more than 1000ºC for barium dispensers.

In addition, a new method of surface cleaning was introduced: argon ion beam

cleaning. This replaced the problematic anneal and plasma discharge processes used in

prior work, with two major advantages. First, the ion beam treatment produced an atomi-

cally cleaner surface. Second, the time required to ion clean was much less than that re-

quired to anneal and plasma discharge clean. In concert, these advantages allowed a

faster pace of experiments while providing better data with which to confirm dispenser

operation and validate Jensen's model of QE versus coverage.

Initial activation of the dispenser (reaction of cesium chromate with titanium in

the reservoir, freeing atomic cesium to diffuse to the surface) was successful, and subse-

quent gentle heating produced a peak QE equal to that obtained via external evaporation

of cesium. This strongly implied a uniform surface coverage of cesium for the dispenser,

but which could be achieved via in situ rejuvenation of cesium rather than merely via de-

position from external evaporative sources. Subsequent operation under continuous reju-

venation mode resulted in constant replenishment of the cesium layer, extending 1/e life-

time of QE from 5.2 days for a recesiated but room temperature tungsten surface, to an

astonishing 47 days for the same surface under continuous rejuvenation. In both cases the
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decrease in QE was attributed to a combination of desorption and ion backbombardment

from the applied DC voltage. The overall performance of the prototype cesium dispenser

photocathode suggested that it could serve as a temperature-controlled dispensing plat-

form on which a variety of high QE cesium-based photocathodes could be built.

2007

Following Moody's graduation with the Ph.D. in Electrical Engineering in 2006,

he published the results of the cesium dispenser photocathode tests in Applied Physics

Letters [12]. This paper compared the experimental data with an updated theoretical mod-

el which included a moments-based approach to electron emission probability and a re-

fined model of the temperature and energy dependent electron scattering terms, and in ad-

dition to the theory being free of adjustable parameters, the agreement with experiment

was 30% or better.

Then-graduate student Eric Montgomery, building on Moody's work, reported at

the 2007 Particle Accelerator Conference the first high QE results from UMD [70]. A ce-

sium-antimony (Cs-Sb) cathode with an initial 100 Å thick Sb layer was fabricated with a

QE of 11% at 375 nm. Heating and cooling tests showed that above about 50ºC, the Cs-

Sb cathode began to lose QE. Comparing this with the higher operating temperatures of

the dispenser photocathode at 150ºC or more, it was proposed that both a more tempera-

ture-stable semiconductor and a lower dispenser operational point were desirable. To this

end, Montgomery reported testing of a second-generation dispenser with a minimum

Chapter 2: Historical Context 59



operation temperature of 120 ºC and an activation temperature of 270 ºC, achieved by us-

ing a thinner porous tungsten disc and a different reservoir material. While still falling

short of stable operation with Cs-Sb, this dispenser showed the operating temperature

could be adjusted significantly, justifying the dual focus on optimization of dispenser de-

sign and fabrication of more temperature-stable semiconductors.

2008

A more comprehensive analysis of the results obtained in the second-generation

dispenser and of the fabrication and temperature stability of cesium antimonide was pub-

lished by Montgomery et al. in Ref. [71]. This paper additionally discussed the diffusion

of cesium in a dispenser utilizing a porous substrate and progress on modeling of such a

system for future optimization of controlled porosity dispenser photocathodes.

2.4.3 Theory and Simulation Results

In parallel with experimental efforts by the UMD Photocathode Research Labora-

tory, Dr. Kevin Jensen began developing theoretical models in 2002 to improve our abili-

ty to model, understand, and simulate electron emission in real world applications. Close

collaboration between theory and experiment continued to be emphasized throughout the

program.
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Because several theoretical models for various processes inherent to electron

emission were developed more or less concurrently, the results of theory and simulation

are here presented topically, and chronologically within those topics, rather than forcing

the narrative to strictly follow a timeline as was done for the experimental results dis-

cussed in the prior section.

Thermal-Field Emission Model

Field emission and thermal emission obey well-known equations (the Fowler-

Nordheim and Richardson-Laue-Dushman equations, respectively) which have similar

form. There is a need, however, to handle not only cases of electron emission at elevated

temperature or high field, but elevated temperature and high field. In fact, intermediate

field and temperature ranges do not allow the pure field or pure thermal approximation

and require a combined approach. In Ref. [72] the first effort towards a generalized ther-

mal-field model for electron sources was made. The focus was the emission barrier mod-

els (the extension to photoemission discussed later was also via the barrier approxima-

tion, significant because it treats the low work function, high field regime). Of course the

general thermal-field theory was required to asymptotically limit to the Richardson and

Fowler-Nordheim equations. A convenient dimensionless ratio was introduced to com-

pare the thermal and field scales such that the theory scaled from completely field-dom-

inated to completely thermally-dominated conditions. Validation of these thermal-field
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emission models were was done using the numerical evaluation of an exact tunneling

probability based on the no-image charge barrier. The analysis was considerably extend-

ed and clarified in a subsequent publication, Ref. [73]. In this reference was described a

continued reliance on a numerical approach for solutions - this was computationally ex-

pensive for beam simulation code implementation of the theory. Therefore the theory

was definitively modified and updated in Ref. [22]. Here an analytic model replaced the

numerical approach. Included was a leading order theory suitable for use in PIC (particle-

in-cell) and beam simulation codes (versions of which have been incorporated). Analytic

thermal-field functions of electron emission rather than separate calculations of thermal

and field emission eliminates the need for numerical integration and significantly reduces

execution time and overhead, thereby enabling faster and more accurate computation of

the local current density from electron emission. Perhaps most beneficially, the faster

evaluation enabled consideration of detailed multidimensional cathode structures where

multiple evaluations of current density would be required.

Thermal-Field-Photoemission Model

With a thermal-field framework in hand, based on emission barrier models, the

extension of the generalized theory to include photoemission required that the effect of

the lowered work function of a photocathode be incorporated into the emission barrier.

The model needed to treat the thermal excitation of the initial distribution of electrons be-
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ing photoemitted. In addition, a photoemission model suitable for dispenser cathode

emission modeling needed to treat the case of a surface only partially covered with a low

work function coating. This introduces local nonuniformity of the work function and of

the emitted current density. In 2003 [74] a time-dependent thermal photoemission model

was reported. Salient features of this model included consideration of laser heating of the

electron gas and heating-induced excitations of the background lattice (phonons). The

theory obtained quantitative agreement [57; 64] with measurements of extracted charge

from a scandate dispenser photocathode fields from 0 to 2.5 MV/m, laser intensities from

12 to 22 mJ in 4.5 ns pulses, laser wavelengths at the fundamental and 2nd, 3rd, and 4th

harmonics of a Nd:YAG laser, varying quantum efficiency and varying temperature. But

because heating of the electron gas impacted thermal-field emission as well as photoemis-

sion, the theory was extended to treat emission from laser heated metal needles using a

numerical (rather than analytical) model of the emission current [75]. Importantly, this

led to a consideration of the combined treatment of low workfunction, high fields, pho-

toexcitation, and other effects where the incident electron energy was near the barrier

maximum, but additionally to a consideration of multidimensional emitters (such as field

emission arrays) and the statistical nature of such arrays under the heading of the general

thermal-field-photo model.

The electron transmission probability in the emission model had initially used a

classical, analytical image charge model. The quality of the approximations and of the

resulting equations of electron emission [76] was investigated using a transmission coef-
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ficient and a steady-state (early) version of the Wigner function, or quantum distribution

function, approach. While for field emission the classical and quantum methods were

comparable and verified the approximations made in obtaining the analytic method, of

further interest was the ability of the Wigner approach over the image charge method to

model the dipole layer thought to occur on a surface with a lo work function coating. The

Wigner approach was revisited and refined to this end in a subsequent work, detailing

how surface coatings reduced the emission barrier [68].

When incorporating photoemission there are unique considerations separate from

those made for either the thermal or field emission cases. First, the surfaces may be par-

tially covered with a work function lowering coating and any theory must support such

partial coverage. Second, new material parameters are introduced (such as work function,

optical reflectance, and optical absorption depth). Third, the theory resulting must support

extension to operating conditions and harsh vacuum environments typically found in

present and future high power rf photoinjectors. These ideas are detailed by Jensen in

Ref. [67] along with comparison to experimental results collected by Moody and Mont-

gomery. In this work, Jensen retained a marked emphasis on predicting QE without the

use of adjustable parameters - e.g., using physical constants and literature-reported mater-

ial parameters to the exclusion of any fitting. (As will be discussed in Section 6.1.3, this

work did assume an f-factor of unity which is now understood to be incorrect when

comparing to experiment -- and the variation of f could be cynically considered the use of

a fitting factor, although a tightly constrained one.) In order to achieve the goal of exten-
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sion to operating conditions in high power photoinjectors, the theory included a robust

temperature and time-dependent model. Specifically, temperature was modelled as a

function of laser heating including heat diffusion and transfer of the absorbed drive laser

power to the electrons and then via scattering to the lattice. The local time-dependent

temperature then impacted photoemission via scattering (electron transport to the sur-

face). The resulting emission probability was then affected by the scattering undergone

during transport and by the initial electron gas temperature. The new material parameters

relating to optics were included as wavelength-dependent reflectance and optical penetra-

tion depth. The work function was varied with partial-monolayer coverage via a hard-

sphere Gyftopoulos-Levine type theory.

This detailed model was used for prediction of the QE of bare metals, cesium-

coated metals, and various commercially available dispenser cathodes. It is capable of in-

vestigating temperature evolution of electron emission even when the various processes

involved (gun duty cycle, cathode heating, laser pulse absorption, electron transport scat-

tering, emission barrier tunneling) occur over time scales from seconds (machine opera-

tion scale), to nanoseconds (adjacent pulses in drive laser pulsetrain), to picoseconds (in-

dividual laser pulse duration), to femtoseconds (scattering). All this was achieved with a

minimum of unknown factors, because of the emphasis on avoiding adjustable parame-

ters, drilling down to the basic underlying physics.

It describes the relation of the scattering rates to the heat transport and ultimately

to the QE. And finally, it relates the work function variation due to Cs surface coverage
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non-uniformity to the emission probability. The theory performed exceptionally well by

comparison not only to measurements of QE in the literature, but also to our experiments

measuring the QE of cesiated surfaces and dispenser cathodes.

Moments-based Approach

At the conclusion of Ref. [67] Jensen observed that the most important modifica-

tions yet to be made to the general thermal-field-photoemission theory would be in the

electron transport and emission terms of the QE formulation. For the former (transport)

term, what was needed was a proper quantum mechanical treatment of the scattering

terms (particularly electron-electron and acoustic phonon) and the dependence of those

terms on the initial temperature and energy of the photoexcited electrons, thus more fully

describing the transport attenuation factor that strongly affects the QE. For the latter

(emission) term, what was needed was not the formerly one-dimensional emission equa-

tions that had formed the basis of the general thermal-field and photoemission models

discussed in the earlier theory, but a higher-order model incorporating more than just the

electronic momentum normal to the emitting surface. In Ref. [22], Jensen addressed

both the transport and emission terms, the first providing an important change to the scat-

tering factors, and the second developing a Moments-based approach to QE calculation

(based on integrals of the electronic momentum) that resulted in very good agreement

with both bare metals and with partially cesiated surfaces.  

Chapter 2: Historical Context 66



Application to Emittance and Semiconductor Photoemission

The new Moments-based approach (so-called, but of course also including the

previously described scattering factor contributions as well) was applied quickly to the

problem of emittance of a photocathode. The theoretical intrinsic emittance was calculat-

ed and described using the Moments-based approach in Ref. [77] and later corrected

slightly to include the photon energy in the transverse momentum component by Dowell

and Schmerge in Ref. [78].

A further extension of the theory made possible by the Moments-based apporach

was the treatment of cesium antimonide semiconductor photocathode materials (with an

eye to other semiconductors as well, on the prerequisite that certain material parameters

are reported in the literature). However, because the reflectivity and laser penetration de-

pth parameters are not always readily available for any given semiconductor, particularly

in the wavelength range of interest (as was the case for the 375 nm response of Cs3Sb in

this work), the extension to semiconductor QE and emittance required co-development of

an analytical model of a generic semiconductor [24] to obtain the dielectric constants of

interest in order to calculate those optical parameters and to obtain the effective mass

where literature is ambiguous or nonexistent (as was again the case for Cs3Sb). An ana-

lytical model has the added benefit of avoiding catastrophes where one parameter might

be updated based on new experimental data but other, dependent parameters might be in-

advertently left unchanged.
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The course of theoretical development in photoemission thus spans a wide range

of photocathode technologies, from bare metals, to low workfunction coated surfaces, to

semiconductors. More recently [79] it was further shown that Spicer's earlier, well known

semi-empirical three-step model (which relies on experimental QE data and fitting para-

meters), in fact follows the same form as these newly developed, fundamentally physics-

based models of photoemission. This is important as the models continue to move from

descriptive to predictive applicability.

Application to Field Emission in Accelerators

Also recently, the thermal-field portion of the General Thermal-Field-Photoemis-

sion theory was applied to the problem of Dark Current (generally due to or accompanied

by field emission in accelerator structures). Specifically, the nature of the surface required

to give rise to such emission was investigated. Combined with advances in geometrical

models of emitter sites, the theory treated breakdown and Nottingham heating in acceler-

ators [80].

Conference Publications

The announcement of many of the theoretical results described above were at spe-

cialized conferences and were contained in their conference proceedings, in particular,

the Particle Accelerator Conference [56; 65; 70; 81-84], the International Vacuum Elec-
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tronics Conference [85-89], the Free Electron Laser Conference [66; 69; 90-92], the In-

ternational Vacuum Nanoelectronics Conference [93; 94], and the Directed Energy Sym-

posium [95-98]. In a number of these conferences, results of the application of the

theoretical emission models to beam simulation codes (particularly the PIC code

MICHELLE) [83; 84; 88; 89; 97] and the simulation of surface coating diffusion and

evaporation [71] were presented.
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Chapter 3: A Photocathode Explorer's Roadmap

3.1 Introduction

In the long and colorful history of photocathode discovery and development a re-

curring challenge has been the scarcity of predictive, fundamentally physics-based theo-

retical models of quantum efficiency. Without such a guide, much early work in pho-

tocathode research became, in the spirit of the alchemists of old, an exercise in trial and

error [59]. Such an inefficient approach is not suitable for rapid technological progress.

The continued scientific advancement of the state of the art in photocathode performance

hinges upon the combined efforts of theorists mapping the unknown lands which lie

ahead and experimentalists then venturing into that new territory, map in hand. Thus, in

this work these two common themes run through all such expeditions: to research basic

science underlying cesium dispenser cathode development, and, in the pursuit of that

knowledge, to advance fundamental predictive theory for photocathodes.

This work follows a logical and systematic progression of ideas in the form of

four "expeditions" into the science of cesium-based photocathodes. These forays into the

unknown are intended to both inform and be informed by theoretical support. Expeditions

I and II, the quantum efficiency of cesium-coated metal and cesium-based semiconductor

photocathodes respectively, stand alongside well-developed theory which comes from the

UMD-NRL collaborative effort. Both theory and experiment will be detailed. In contrast,

Expedition III, cesium loss and recesiation studies, while fundamentally building on liter-

ature going back to the 1930s, is intended to inform and support future theoretical work
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on the diffusion and evaporation of cesium in cesium-based coatings. Such work finds its

eventual application in Expedition IV, cesium dispenser photocathode development,

which is very much a groundbreaking effort and is at present wholly experimental in con-

tent -- but the careful optimization of which will rely on the physics-based knowledge ob-

tained from the previous three tasks.

In the following section will be detailed each Expedition and the goals and ap-

proach for the work to be reported in subsequent chapters.

3.2 Expedition Roadmaps

Expedition I: Cesium-Coated Metal Photocathodes

Chapter 6 will discuss the physics of photoemision from metal cathodes and the

impact on the emission barrier seen with the application of sub-monolayer coatings of ce-

sium (and other alkali) metals. Topics include photon absorption, electron transport and

scattering, and the emission barrier. The emphasis will be on the prediction of QE, partic-

ularly as a function of sub-monolayer coverage of the alkali coatings. Experiments with

alkali coatings on tungsten and silver substrates will be reported. The goals of this work

are to refine existing models of coated-metal QE by expanding the body of data to in-

clude other alkali coatings, and this is done by including both potassium and sodium ex-

perimental data in the comparison to theory. As will be discussed, the theory contains a

specific coverage-related factor whose importance to the comparison to experiment had
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been overlooked. The use of the new alkali data reveals the proper comparison techniques

and paves the way for a more broadly applicable predictive theory of the QE of sub-

monolayer coated metals.

Expedition II: Cesium-Based Semiconductor Photocathodes

Chapter 7 takes concepts in modeling photoemission of metals introduced in

Chapter 6 and applies them to the photoemission of semiconductors: optical absorption,

electron transport and scattering and the emission barrier. However, the scattering mecha-

nisms will be different as will be the details of the emission barrier. A comparison to data

in the literature will be given for the representative case of cesium antimonide. Experi-

ments to be reported will be the fabrication and QE testing of both cesium antimonide

and cesium sodium potassium antimonide. The goals of this section are twofold: to com-

pare to and validate theoretical models, and to determine the suitability of semiconductor

photocathode materials for dispenser operation in high average power photoinjectors --

simultaneously exhibiting good quantum efficiency at green wavelengths and good ther-

mal stability for operation on the surface of a heated dispenser.

Expedition III: Cesium Loss and Recesiation Studies

In Chapter 8 will be opened the topics of the mechanisms of cesium loss, the

resulting deleterious impact on QE, and the potential for recesiation of such cathodes.

The overarching goals of this section are: firstly, to support the underlying principle of
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the cesium dispenser, that cesium loss results in QE loss and shorter-lived photocathodes;

secondly, to better understand the mechanisms by which that can occur, both for coated

metals and semiconductors; and thirdly, to demonstrate that the resupply of cesium to a

coated surface which has been contaminated in fact restores QE. The sum total of these

investigations will provide a firm footing for the discussions of dispenser photocathodes

to come in the following chapter.

Expedition IV: Cesium Dispenser Photocathode Development

Chapter 9 will conclude the reporting of experimental results with a comparison

of the cesium dispenser technology introduced by Moody to a second generation dispens-

er. The performance characterization will include activation and operation of the devices

and the resulting QE. The goals of this section are to show that the dispenser design is

flexible, to show that progress has been made in creating a range of possible operating

temperatures and improved cleaner operation, and to probe the interaction of an operating

dispenser with high QE semiconductor cathode materials deposited on its surface. This

chapter will conclude with an eye to future research directions for cesium dispenser pho-

tocathode development.

Like any good explorer, we dare not undertake an expedition without the neces-

sary tools in hand and the knowledge of how to properly use them. Such is the content of

the next two chapters.
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Chapter 4: Experimental Apparatus

4.1 Introduction

The measurement of the quantum efficiency of a photocathode is quite simple in

concept: determine the photocurrent which results from a given incident laser power, and

convert using the electric charge and photon energy to a ratio of emitted electrons to inci-

dent photons. The experimental details, however, are not trivial, and care is essential in

order to ensure repeatability and in order to allow the most accurate comparison to theo-

retical models. Ultrahigh vacuum (UHV) operation is essential. Power-stabilized mW-

class narrow-linewidth light sources are needed. Low noise circuitry is utilized. Fine con-

trol of gas supply rates is important. Sub-Ångström resolution film thickness measure-

ments are required. Ion beam cleaning ensures an atomically clean substrate. And

automation of experimental procedures and data acquisition is incorporated under com-

puter control using LabVIEW wherever possible.

4.2 Vacuum Chamber

4.2.1 Schematic

The quantum efficiency, lifetime, and recesiation of photocathodes is performed

in the vacuum chamber shown in Fig. 4.1, adapted from Ref. [20]. The chamber itself is a
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Figure 4.1: Experimental Chamber, original design by N. Moody

6-way stainless steel cross with 8" Con-Flat flanges. The cathode mount extends horizon-

tally from the cathode feedthrough to the center of the chamber, where the cathode faces

the lasers, ion gun, and evaporative sources of antimony and alkali metals.
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4.2.2 Ultrahigh Vacuum 

A experimental challenge is attaining and maintaining ultrahigh vacuum of up to

1x10-10 Torr (where 760 Torr is one atmosphere). Such vacuum is necessary to limit con-

tamination by the background gas during experiments. For an ideal gas the rule of thumb

from the Langmuir unit is that one monolayer's worth of gas impacts a surface in one sec-

ond at 1x10-6 Torr. Thus if the background gas were to have a sticking coefficient of

100%, it would take roughly 20 minutes at 1x10-9 Torr to fully coat the surface. Such an

extreme is not the case, and in fact the majority of the background gas in the properly

baked-out apparatus does not strongly affect lifetime of photocathodes (H2, Ar, N2), but it

is still imperative to maintain sufficiently high vacuum to allow experiments of several

hours to be conducted without major contaminant-induced surface changes. Thus nano-

Torr or better base pressures and partial pressures for reactive gases (CO, O2, CO2, H2O)

of order 1x10-11 Torr are targeted.

Background gas loads are from several possible sources: real leaks from the out-

side atmosphere, virtual leaks from trapped volumes in low-conductance cavities such as

standard screw threads or from defective welds, material sources like alkali sources or

anything with substantial vapor pressure, and outgassing of all vacuum components, ei-

ther by desorption from the surface or, for hydrogen, by diffusion from the bulk. A heli-

um tank to spray the light, easily diffused gas near suspect areas and a leak-checker or

RGA can be used to locate the position of any real leaks in the system - severe leaks will
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reveal themselves via an atmospheric signature in the RGA spectrum of nitrogen, oxygen,

and water vapor. Leaks are minimized by the use of UHV-qualified components and by

careful inspection of the knife-edges on Con-Flat flanges during removal or installation,

as well as careful cleaning of the copper gaskets which are used when mating the flanges.

Base operating pressure in a leak-tested system is determined by the outgassing

and diffusion from the metal walls of the chamber. An electropolished chamber was se-

lected by Moody to minimize this outgassing by eliminating micro-protrusions and

reducing surface roughness. Electropolishing also inhibits oxidation of the stainless steel

which would normally occur at about 300 ºC -- and such temperatures are routinely ap-

proached immediately adjoining the heaters during a bakeout process.

The chamber is as initially configured in volume and surface area, though with

important upgrades of instrumentation and capabilities. Specifications are:

Construction of main chamber Electropolished 304 stainless steel

Standard Con-Flat flanges 8" (chamber), 6" (cathode), 2.75" (instrumentation and
valves), 1.33" (ion gun gas, Sb source)

Total internal volume 12.1 L

Total internal surface area 15,200 cm2

Ion pumps internal surface area 2,900 cm2

Dimensions (LxHxW) 89.5 x 97.0 x 74.0 cm

Table 4.1: Vacuum chamber specifications
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4.2.3 Bakeout

After atmospheric exposure (such as change-out of alkali sources, cathode re-

placement, quartz crystal replacement or ion gun repair) it is necessary to raise the tem-

perature of the entire apparatus to increase the rate of desorption of contaminants like wa-

ter vapor from the walls of the chamber. This process is termed bakeout and the

procedures are discussed in Section 5.4.1. It is following the bakeout process that the gas

load is sufficiently reduced that nanoTorr pressures are achieved. The bakeout tempera-

tures are controlled by the flow of current through so-called heater tapes: resistive wire

woven through a coarse fiberglass weave into a strip typically 1/2" to 1" wide and 1 to 6'

long. Bakeout cannot be initiated until the volume of gas has been pumped away so that

oxidation of the internals of the chamber is not problematic.

Following a bakeout the evacuation of the vacuum system has reached the third of

four limiting fundamental factors on gas load. Initially pressure is limited by the volume

of gas present, and that is pumped away prior to the bake. The bake then removes much

of the adsorbed surface gases, which is the second limiting factor on vacuum. The third

limiting factor is diffusion of gas (mainly hydrogen) from the bulk of the metal chamber

walls to the surface and into the vacuum. This limit extends to the bottom of the UHV

range at 1x10-12 Torr. XHV vacuum systems below 1x10-12 Torr begin to see effects

from permeation, where gas actually slowly penetrates through the walls into the cham-

ber. This limit is not reached in the experiments reported here.
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4.3 Vacuum Pumps

4.3.1 Choice of Pumps

It is not enough to have low gas load to achieve UHV; high pumping speed is also

necessary. A single pumping technology cannot span the entire 13 order of magnitude

pressure range from 760 torr to 1x10-10 Torr in these experiments. Three stages are used

in the chosen apparatus. A roughing pump is first used to reach about 1 Torr. This pump

is a scroll pump with the feature that it is "dry" --i.e., very clean and does not introduce

pump oil into the system like rotary vane or piston pumps. Secondly, a turbopump with

blades rotating at 1000 Hz is connected to the roughing pump, and stages the vacuum un-

der 1x10-6 Torr. Its base pressure is of order 1x10-8 Torr with a fully baked-out chamber,

but the pumping speed is reduced at lower pressure and so it takes a long time to get

there. In practice it is used to get the chamber pressure below 1x10-7 Torr. Finally, two

ion pumps are used to further reduce the pressure to or below 1x10-9 Torr. The turbop-

ump is isolated from the chamber at this point because the ion pumps are fully capable of

maintaining the vacuum at this level, save in isolated high-gas-load cases such as the

argon release during activation of a Cs:Bi source.
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4.3.2 Scroll (Roughing) Pump

A simple dry scroll pump is integrated with the turbopump to create a "turbop-

umping station" - this is conveniently wheeled for transfer from lab to lab if needed. The

scroll pump is controlled by the same microcontroller as the turbopump and the two work

as a single unit in practice, though if desired the turbopump may be set to the "off" state

and the scroll pump used exclusively. This is advisable only if it is known that an extend-

ed period of pumping will be done in the high pressure regime, because the roughing

pump is dirty compared to the rest of the system even though it is oil-free, and if operated

directly on the chamber below a few Torr, backstreaming of contaminants can be a

problem.

4.3.3 Turbopump

A turbomolecular pump, more commonly referred to as a turbopump or simply a

turbo, uses a stack of counter-rotating vanes with speeds of about 1000 Hz on magnetic

bearings in order to create uni-directional molecular flow of gas. Tolerances are very tight

and so shock to the pump when it is spun up should be avoided. This includes the sudden

release of high pressure gas into the vanes. The results of such an incident can be cata-

strophic: the housing is designed expressly to contain the shrapnel resulting. The turbop-

ump has a remarkable range from 1 Torr down to 1x10-8 Torr. Modern turbopumps are

very reliable and can go for years of continuous operation without needing servicing.
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Turbopumps have a pumping speed which depends on the gas species. The heav-

ier the atom or molecule, the more effective the vanes are at enforcing uni-directional

flow. Hydrogen, as the lightest gas, has a very poor pumping speed.

The turbopumping station is shown in Fig. 4.2. The scroll pump is on the lower

right, the microcontroller on the lower left, and the turbopump behind the fan in left-cen-

ter. The manifold at the top is to allow pressure measurement and integration of an elec-

trically actuated, normally-closed UHV valve so that the chamber is isolated in the event

of power failure.

Figure 4.2: Turbopump station with scroll roughing pump

The manifold itself is detailed in Fig. 4.3. At the left is the port leading to the

turbopumping vanes. The four-way cross connects to a Convectron pressure gauge at the

top and an ion gauge at the bottom, which monitor pressure from atmosphere to 1x10-4
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Torr, and and from 1x10-5 to 1x10-10 Torr, respectively. On the right is the electro-

mechanical valve which is powered by a 24V supply and is only open when energized. If

power is lost for any reason, the valve immediately closes to form a UHV seal. At the top

is seen the flexible electroformed bellows leading to the vacuum chamber. It should be

noted that the more convoluted the path, the more the pumping speed is reduced in the

molecular flow regime (1x10-6 Torr and below). This state is termed "conductance-limit-

ed." If the full pumping speed of the turbopump were desired, a direct connection to the

large 6" flange would be advisable to avoid the conductance limit.

Figure 4.3: Turbopump manifold with pressure gauges and electromechanical valve

4.3.4 Ion Pumps

The ion pumps have the unique feature of the complete absence of moving parts.

Inside the box-like pump housing are two assemblies, the anode and cathode, made from
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a stainless steel multicell structure (reminiscent of honeycomb) and a flat titanium plate

or pair of plates, respectively. The two assemblies are separated by high voltage, typically

5-6 kV. Ion pumps work by the principle of a Penning cell: a uniform magnetic field is

applied from a permanent magnet perpendicular to the plates, causing electrons emitted

by the cathode to spiral around the magnetic field lines on their way to the anode. This in-

creased path length makes collisions of the electrons with background gas more likely.

Collisions ionize the gas, and each ion is then accelerated by the electric field into the ti-

tanium cathode at high energy. Gas is pumped by three methods: reaction with the titani-

um (chemisorption), implantation in the titanium or burial beneath sputtered titanium on

the cathode or cathode-facing surfaces (physisorption), and diffusion into the titanium

(for hydrogen). All processes occur simultaneously and continuously. Sputtering continu-

ally reveals a fresh layer of titanium for reaction while covering over other implanted

ions or covering adsorbed ions on cathode-facing surfaces.

The effectiveness of ion pumps, like turbopumps, is very dependent on gas

species. Hydrogen is pumped differently because accelerated hydrogen ions are low

enough mass that they do not sputter the titanium efficiently. Instead, hydrogen diffuses

into the bulk of the cathode - this process is efficient and can pump hydrogen well - a dis-

tinct advantage over the turbopump. In most cases the hydrogen gas load is high enough,

however, that it remains the dominant species at UHV even with the use of ion pumps.

Noble gases are poorly pumped at low pressure because they do not react with the titani-

um and so the rate is sputtering-dependent which in turn is pressure-dependent. Pumping 
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Gas H2 He CH4 H2O N2 O2 Ar CO2

Mass (amu) 2 4 16 18 28 32 40 44

Diode 220% 2% 90% 100% 85% 70% 5% 100%

Noble Diode 160% 15% 90% 100% 85% 70% 20% 100%

Table 4.2: Ion pumping speeds for common gases relative to water vapor

speeds relative to water vapor for the diode and noble diode pump designs are shown in

Table 4.2 adapted from Ref. [99].

Argon (and by association other inert gases) are commonly associated with the

"argon instability" in diode ion pumps where covered, sputtered-over argon atoms on the

anode can be suddenly released, ionized, and accelerated into the cathode, causing more

sputtering, uncovering more argon in a cascading effect, with a sudden increase in

pressure. The pump becomes a source of argon until the instability passes and if pumping

in isolation can result in periodically spaced spikes in pressure. This can be avoided by

limiting the argon which the pump is forced to deal with, or by selection of a design of

the pump which uses good geometries non-conducive to the instability (e.g., the star-cell/

triode or noble diode designs). Even when argon is not a problem, however, initial pump

behavior following turn-on after a bake-out can involve substantial outgassing which in-

troduces the opportunity for cascading, uncontrolled ionization and discharge from cath-

ode to anode. This is controlled by turning on the pumps with the turbopump also in

operation to remove excess gas.

Chapter 4: Experimental Apparatus 84



Two ion pumps are installed on the chamber: a 40 L/s pump at the top and a 200

L/s pump at the bottom. The dual pumps provide redundancy and also a more even

pumping profile across the chamber. Both pumps' high voltage power supplies are

connected to a battery-powered uninterruptible power supply (UPS) so that UHV is main-

tained even in the event of a power failure. This can be maintained for hours since, de-

spite the high voltage of the pumps, the current used is extremely low. Ion current

measured by the pumps is also indicative of the pressure of the chamber just as in an ion

gauge, so the two pumps also function as two additional pressure monitors for the system.

4.4 Vacuum Monitoring

4.4.1 Pressure Measurement

Two types of pressure gauges are used on the vacuum system. The range from at-

mospheric pressure to 1x10-4 Torr is covered by Convectron gauges. These gauges

measure the degree by which convective cooling affects the power required to maintain

the temperature of a heated filament. This is a function of the properties of the gas

present. Calibration is done with nitrogen, so any other gas will clearly have a convective

cooling effect different from that done with the calibration. This is most evident in the

case of argon where the pressure of a Convectron gauge reads thirty times lower than the

true pressure because the convective cooling from argon is much less than that from ni-

trogen (the mass of an argon atom is heavier and thus there are fewer collisions with the
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filament at a given temperature). A backfill of argon has reached atmospheric pressure of

760 Torr when a nitrogen-calibrated Convectron gauge reads only 24 Torr. The second

type of gauge is the Bayerd-Alpert ion gauge which covers the range from 1x10-5 Torr to

1x10-10 Torr. The ion gauge uses a thermionic filament to emit an electron beam which

ionizes background gas, and then the ion current is measured, from which the pressure of

the system can be deduced.

Convectron gauges are relatively maintenance free. They do need to be mounted

horizontally so that the convection can occur in the same orientation as the internal de-

sign of the gauge. Ion gauges suffer from initially high outgassing of the hot filament fol-

lowing pumpdown after atmospheric exposure, which leads to erroneously high pressure

readings, particularly immediately following turn-on of the gauge. The Granville-Phillips

model 307 gauge controllers are equipped with a "degas" functionality which temporarily

ramps the filament current in order to speed the outgassing process and ready the gauge

for use. The use of degas and the operation of the gauges at pressures over 1x10-5 Torr

should be avoided long-term since this is detrimental to the life of the filament. The

gauge controllers will automatically shut off the gauges to protect the filament at

pressures over 1x10-4 Torr.

4.4.2 Residual Gas Analyzer

The residual gas analyzer, or RGA, uses a thoriated tungsten filament to ionize

background gas, which is then accelerated by high voltage. The operation is similar to a
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mass spectrometer which would send the ions through a bending magnet. The mass of the

ion (the gas species) determines the gyromagnetic radius in the magnetic field and thus

the ion current as a function of position would give the mass spectrum of the background

gas pressure. In practice a more compact device can be built using the same principle but

a combination of RF and DC fields. The Stanford Research Systems RGA 200 (Fig. 4.4)

is the device installed on the test chamber and uses a quadrupole mass filter to select

which mass can pass through the combination of RF and DC fields to reach a sensitive

electrometer. Software automates this process and allows the user to immediately analyze

the spectrum to identify relative percentages of which gas species are present. In addition,

the height of any given spectral peak is a current which indicates the partial pressure of

that gas species. The RGA electrometer is sensitive to ion currents equivalent to 1x10-10

Torr partial pressures. The RGA filament is, like the ion gauges, limited in life and should

never be used above total pressures of 1x10-4 Torr.

Figure 4.4: Stanford Research Systems RGA 200
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4.5 Lasers

4.5.1 Laser Diodes

The measurement of extremely low quantum efficiencies such as those exhibited

by metals at zero or low cesium coverage requires sources intense enough to produce

measurable photocurrent. With the 486 Keithley picoammeter, resolution in the low noise

QE circuit of photocurrent was of order 10 picoamperes. Using Eq. 1.12 and assuming a

QE of 0.01% and a wavelength of half a micron, a source of 2.5 mW is required to

achieve signal-to-noise in photocurrent of 100 (photocurrent of 1 nA). These power lev-

els are not available in narrow-linewidth incoherent sources such as mercury lamps fil-

tered by monochromators. Incoherent sources also suffer from lack of collimation which

can make intensity on the cathode a difficult measurement. Commercially available tun-

able lasers satisfy the requirement but are costly. A compromise was reached in Moody's

design of the test chamber at Maryland with the selection of five laser diodes at five dif-

ferent wavelengths. The diodes chosen spanned the visible range and into the near-in-

frared and near-ultraviolet. The shortest wavelength commercially available diode was

purchased for the measurement of QE in the UV: a gallium nitride diode at 375 nm.

Diode lasers have compact form factors and modest power requirements and can output

tens of mW of optical power. Diodes can be purchased in power-stabilized packages with

built-in thermoelectric coolers which allow <1% peak-to-peak power fluctuations over 8

hours.
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The green laser shown in Fig. 4.5 is not a diode directly outputting green light. In-

stead, in order to obtain the 532 nm wavelength, a diode-pumped solid-state (DPSS) laser

was installed. This laser uses a GaAs diode at 808 nm to pump a Nd:YAG crystal which

achieves population inversion and lases at 1064 nm. The output is frequency-doubled in a

nonlinear KTiOPO4 crystal to obtain 532 nm, power-stabilized to <5% peak-to-peak fluc-

tuations over 8 hours.

Figure 4.5: Diode lasers

4.5.2 Laser Specifications

Laser power for all five lasers used is in the 5-15 mW range. Beams are collimat-

ed and are circular or (in the case of the InGaN and GaN edge-emitting diodes for blue

and UV) elliptical. Spot sizes are 1-3 mm radius in order to avoid unwanted heating ef-

fects or space charge limited emission resulting from too tight a spot and too high an in-
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tensity. Table 4.3 gives the lasing wavelength and corresponding photon energy, color

and nominal power from the laser, where the nominal power is that specified by the man-

ufacturer. Power output does slowly fall over hundreds of hours of use as the diode ages

and is re-calibrated as needed in the course of experiments. The power after four years of

intermittent use (measured June 2009) is also shown - the 375 nm GaN diode has the

shortest lifetime. The current and voltage of each laser specified as well as the linewidth

and power stability achieved by the diode/DPSS.

m Ephoton color Pnominal P4_years voltage current Dm stability

(nm) (eV) (mW) (mW) (V) (mA) (nm) (%)

808 1.53 IR 12.5 13.3 5.0 80 <10 <2

655 1.89 red 10.0 8.7 5.0 85 <10 <2

532 2.33 green 5.0 4.5 3.0 300 <0.1 <5

405 3.06 blue 5.0 5.3 6.5 500 <20 <1

375 3.31 UV 8.0 3.3 6.5 500 <10 <1

Table 4.3: Laser specifications

4.5.3 Robotic Control

The five lasers are mounted on a robotic translational stage actuated by a linear

motor (the LMA-400 by Aerotech Corp.) under LabVIEW computer control. The motion

of the motor (speed, acceleration, drift, etc.) was tuned to match the loaded mass of the

laser assembly when mounted on the translational stage. The lasers take 200 ms to move
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to each new commanded position and the encoded linear motor mount has positioning re-

peatable to 100 nm resolution, more than sufficient to ensure the same region of the cath-

ode is illuminated with each new cycle through the lasers. The rigid optical mounts are

aligned by hand to place each laser spot on the center of the cathode, and the spot posi-

tion is viewed either with wavelength-appropriate laser goggles or with a video camera to

ensure eye safety. A temporarily mounted iris on the viewport during alignment ensures

the beam path is collinear for all lasers, which enables positioning of the thermopile pow-

er meter for automated LabVIEW calibration of laser power as desired.

Figure 4.6: Lasers on robot with thermopile power meter for auto-calibration

4.6 Cathode Flange and QE circuit

4.6.1 QE Measurement Circuit

In order to push the signal-to-noise of the photocurrent as high as possible thereby

enabling measurements of very low QE with reliability and repeatability, the noise in the
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QE measurement circuit must be minimized. This is done in two ways. First, the voltage

applied between anode and cathode is isolated from the rest of the circuitry in the lab.

Second, the coax cable running from voltage supply and picoammeter to anode and cath-

ode feedthroughs is triax with the outer braid grounded to minimize noise pickup. The

circuit is shown in Fig. 4.7.

Figure 4.7: QE circuit diagram

4.6.2 Vacuum Chamber Feedthrough and Connections

The UHV electrical feedthrough for the cathode flange has five electrically isolat-

ed terminals shown in Fig. 4.8: two for the thermocouple plug (top), one for the anode

(lower left), one for the cathode (lower center), and one for AC power to the cathode

heater (lower right). The anode connection doubles as ground for the AC heater power.

Under ion cleaning the connections are changed: a grounded thermocouple plug is

used, the heater and QE circuit are disconnected, and a separate ammeter is connected to
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the anode and the cathode respectively, allowing independent measurement and data ac-

quisition for ion current collected by both anode and cathode. The cathode is biased -90V

with a 10-cell battery pack between the cathode and the ammeter to preferentially direct

ion current to the cathode.

Figure 4.8: Cathode electrical feedthrough

The isolated 450 V supply for the QE circuit (originally 286 V with Moody's design) is

likewise a stack of 9 V batteries in series with pickoff connections to allow a range of

voltages to be selected as the operating point. The low photocurrents drawn during opera-

tion guarantee the batteries will not be depleted within the lifetime of the experiment, but

reasonable care must be taken to shut off the voltage when clipping leads to the
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feedthroughs, lest crossed wires short the battery pack and cause rapid discharging and

overheating with risk of leakage.

Figure 4.9: Isolated low-noise anode-cathode voltage supply

4.6.3 Cathode Heater Power

The AC power to the cathode heater is provided by a variable AC transformer

(variac). The output of the 110 V variac is sent through a stepdown transformer to supply

approximately 0~10 volts AC to the heater coil. During operation the heater draws a few

watts of power. The power draw can be measured at several steady-state temperatures

(shown in Table 4.4) and the results bear some discussion.

Power (W) 5 8 12 23

Temperature (ºC) 200 300 400 600

Table 4.4: Steady-state heater power versus cathode temperature: raw data
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Figure 4.10: Variac (variable AC transformer) for cathode heater power control

The heater power versus equilibrium (steady-state) temperature, following an

analysis developed in discussions with K. Jensen, is plotted in Fig. 4.11 and the fit to a

Stefan-Boltzmann radiation law with a conductive heat loss term is shown. Constants of

the system used in obtaining the fit are given in Table 4.5. The cathode assembly under

UHV is shown to be dominated at operational temperature by conductive cooling down

the cathode stem.

The equation fitted is a steady-state power equation based on the Stefan-Boltz-

mann radiation law with a conductive term dependent on the temperature gradient down

the cathode stem:

(4.1)P = f T^ hAv T4 - T0
4

^ h+ lAstemdT/dx

where A is the surface area of the cathode and cathode mount, and Astem is the average

cross-sectional area of the conductive cooling path over the distance x down the cathode 
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Figure 4.11: Heater power vs cathode temperature and fit to radiative/conductive cooling

stem. The temperature dependence of the emissivity is taken to be [100; 101]:

(4.2)f T^ h= 3~p

8
AeeT

2 + BepT^ h

where Aee is a term in the relaxation time of copper from electron-electron scattering and

Bep is from electron-phonon scattering. The thermal gradient used for the conductive term

is linear:

(4.3)dT/dx = g1 T - g2T0^ h

Fitted in explicit dependence on temperature and with fitting parameters f, g:

(4.4)P = f 3~p

8
AeeT

2 + BepT^ hAv T4 - T0
4

^ h+ g1 T - g2T0^ h
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~p (Cu) 1.64x1016 1/s A (cathode +
mount)

20.48 cm2

Aee (Cu) 4.045x107 1/s•K2 T0 (ambient) 300 K

Bep (Cu) 1.86x1011 1/s•K f 3.74

v  (S-B constant) 5.67x10-12 W/
cm2•K4

g1 0.0263 W/K

l  (Cu) 4.01 W/cm•K g2 0.986

Table 4.5: Heater power calculation constants

where f accounts for emissivity not being that of single-crystal copper, g1 accounts for

the slope of the temperature gradient based on the thermal conductivity of the cathode

stem, its length, and its cross-sectional area, and g2 accounts for the difference from am-

bient room temperature of the heat sink (the chamber wall).

The fitting constants may be interpreted as follows. The emissivity is significantly

larger than for pure crystalline copper (as would be expected from machined copper) and/

or the radiating area is larger than estimated (such as the heater housing). From g2 the

heat sink (chamber wall) is at room temperature. From g1 the effective cross-sectional

cathode stem area divided by the length of the cathode stem (assuming thermal conduc-

tivity of copper) is 0.0066 cm corresponding to an average cross-sectional area of about

7 mm2: since half of the stem is stainless steel as shown in Fig. 4.13 with a thermal con-

ductivity of 1/25 that of copper, this is not at all unreasonable. Overall it is shown that de-
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spite the small stem, the conductive cooling dominates at dispenser operating tempera-

tures and we begin to see contributions from radiative cooling at dispenser activation

temperatures. At anneal-cleaning temperatures radiative cooling would dominate.

4.6.4 Cathode-Anode Assembly

The anode and cathode are mounted as shown in Figs. 4.12 and 4.13. The annular

anode allows collection of photocurrent while permitting laser light and the ion beam to

strike the cathode. It serves a dual purpose as a shadow mask for the rest of the cathode

assembly to protect it from the effects of ion beam sputtering and from conductive metal

deposition on the insulators, which would lead to higher dark current in the QE

measurements.

Figure 4.12: Cathode and anode, side view
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Figure 4.13: Cathode and anode showing standoffs and electrical

Figure 4.14: Silver cathode mount

If a silver or tungsten disc cathode is to be used, the copper dispenser clamp is re-

placed with the direct mount to the heater body as shown in Fig. 4.14. The anode stem is

reduced in length to preserve the anode-cathode separation distance in this case.
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4.7 Gas Supply

4.7.1 Gas Species

Multiple species of gas are required for various experimental procedures and cath-

ode test processes. There are five primary gas species discussed in this work, although the

lab bottle connected to the gas tree is interchangeable. Those five species are as follows:

- Argon (Ar), seven 9's pure, for use during ion bombardment cleaning of the cathode

- Nitrogen (N2), seven 9's pure, for purge or backfill prior to breaking vacuum

- Oxygen (O2), nitrous oxide (N2O), and carbon dioxide (CO2), as oxidizing contam-

inants for cathode contamination and QE lifetime testing

Previous experiments in this experimental chamber with hydrogen as an ion bom-

bardment species (as has been reported by Dowell in Ref. [102]), or for Paschen dis-

charge cleaning, proved unsatisfactory due to an adverse weakening of the springs hold-

ing the quartz crystal of the deposition monitor in place under prolonged exposure to

hydrogen. Therefore that gas was not used during the course of the experiments.

4.7.2 Gas Tree and Valves

Early experiments in this work used the gas tree as designed, and later work in-

volved a significant revision to the design in order to supply multiple gas species for con-

tamination tests. The initial system schematic is shown in Fig. 4.15. Note that a single

line feeds both the fine leak valves on the chamber. The upgraded system schematic is
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shown in Fig. 4.16. Here two separate lines have been used to allow one to be dedicated

to high purity argon for the ion cleaning and the other to be dedicated to contamination

testing via the leak valve at the top of the chamber.

Figure 4.15: Initial gas supply schematic

Figure 4.16: Upgraded gas supply schematic with valve codes
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Figure 4.17: Detail of gas supply tree and valves

Figure 4.18: Detail of miniature regulator and interchangeable lab bottle

The goal in laying out the upgraded multi-gas supply system was in assuring that

the entire tree of gas lines may be evacuated by the roughing pump while allowing clean

supply of argon to the ion gun and alternate supply of selected gases to the main chamber

leak valve. The prior capability to glow discharge clean the chamber had not been used

since commissioning and was deemed unneccessary. This allowed removal of an electro-
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mechanical valve which, although conveniently GPIB relay-controlled, had exhibited

leaks through the 1/4" NPT fitting threads.

Retaining all other capabilities while enabling the new multi-gas supply involved

three steps. First, the 1/4" SS tubing leading to both sapphire seat fine leak valves was

separated into two dedicated lines. Second, the two lines were connected via a manual

valve which would be opened in the event of roughing the second line along with the

first. Third, the gas input to the second line was modified via a second regulator and valve

to allow a small lab bottle of gas to be installed on the frame of the experimental table.

Referring to the valve codes given in Fig. 4.16, the following table illustrates the

open/closed positions of the various valves in the tree in order to operate in each of the

eight normal operating modes. Those eight modes are: A) normal operation during QE

measurement, B) turbopumping of the chamber, C) roughing of the argon line, D) rough-

ing of the entire tree, E) argon leak during ion clean, F) dry nitrogen purge of the cham-

ber, G) gas species 1 leak, H) gas species 2 leak. An open valve is designated by O, a

closed valve by X, and a dash where it is not relevant for the operating mode.

Mode C, roughing of the argon line, can be performed simultaneously with mode

A, normal operation during QE measurement. This was useful when the sapphire leak

valve developed a slow leak even when closed due to wear and possible cracking of the

sapphire seat, and it was important to minimize the amount of argon entering the chamber

and pumped by the ion pumps.
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Mode ECV UHV

1

UHV

2

L-

Gun

L-Top N S-Con S-Top S-Ar S-S1 S-S2

A X X X X X - - - - - -

B O O X X X - - - - - -

C O X O X X O X - - - -

D O X O X X O O O X X X

E O O X O X O X - O - -

F X O O X X O X - O - -

G O X X X O - X O - O X

H O X X X O - X O - X O

Table 4.6: Valve/Pump states during normal operating modes

4.8 Film Deposition and Characterization

4.8.1 Evaporative Sources

Sources used for the initial dispenser tests under Moody and shortly thereafter

were cesium evaporative sources from SAES. They combine cesium chromate and titani-

um with the proprietary St-101 getter compound (with reduction agents zirconium 84%

and aluminum 16%) to achieve a cleaner release. The reaction of the chromate at high

temperature follows the reaction
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2Cs2CrO4 +Ti$ 4Cs+Ti(CrO4) 2

in which each cesium atom gains an electron and each titanium atom loses four. Cesium

vapor is released at about 6 A of current when the source is new. Over the life of the

source that must be increased to maintain evaporation rate, up to approximately 10 A as

the last cesium is released. Generally the sources should be changed at 7-8 A for good

rate control: about 10 heat cycles.

Figure 4.19: Cesium sources, SAES St-101

The SAES sources were not without problems. RGA scans of the background gas

during cesium deposition revealed worrisome levels of water vapor, carbon monoxide,

and carbon dioxide in the chamber which could negatively impact cathode QE. The

sources also were inconsistent; roughly 15% of the sources installed failed to activate or

produce any cesium at all. For these reasons a new kind of source was procured from

Alvatec.

The Alvatec sources (advertised under the Alvasource trade name), like the SAES

sources, are available not only with cesium but with a wide range of materials including
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the alkali earth metals Cs, Na, and K. In preparation for using all three in multialkali anti-

monide fabrication it was necessary to also increase the number of sources on the flange

from two to four (three plus a spare Cs source). The sources and flange upgrade are de-

tailed in Fig. 4.20.

Figure 4.20: Alkali sources, Alvatec: (left) flange assembly, (right) source detail

The antimony source is mounted on the inside face of the 8" flange containing the

sources and the laser viewport and ion gun, as shown in Fig. 4.21. It must achieve much
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higher temperatures than the alkali sources: antimony melts at 631 ºC. The source is a

steel tube with crimped and welded ends and an exit hole facing the cathode. Antimony

pellets are loaded into the hole to replenish the source. A high current DC supply pro-

vides the 40-45 amps needed to run the antimony evaporation. A metal shield prevents

unwanted radiative heating of other sources.

Figure 4.21: Entire 8" flange assembly: alkalis, left; antimony, right

4.8.2 Deposition Monitor

Deposition is measured via a quartz crystal microbalance deposition monitor. The

quartz crystal is mounted in-plane and above the cathode facing all the evaporative

sources. Any material deposited on the cathode is likewise deposited on the deposition

monitor crystal. The crystal and mount are shown during a replacement process in Fig.

4.22. The installed configuration in reference to the cathode-anode assembly is seen in

Fig. 4.23.

Chapter 4: Experimental Apparatus 107



Figure 4.22: Quartz crystal exchange in deposition monitor, face with new installed and
used crystal (left), rear view and spring mount (right)

Figure 4.23: Deposition monitor above anode-cathode assembly inside vacuum chamber

Note the three lines coming into the monitor from above: two for water cooling, one for

electrical. The crystal must be water cooled in order to maintain a constant temperature.

A Swiftech MCP350 pump (350 L/hr, 13' head) is used to circulate the anti-algae-treated

water through Tygon tubing and a fan-cooled radiator from a CPU overclocking kit. It

proved sufficient to use the passively radiative system to maintain a stable monitor read-

ing next to a hot, active dispenser cathode.
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The principle of operation of the deposition monitor is straightforward. The initial

resonance frequency of a freshly installed quartz crystal is 6 MHz. This frequency is

reduced with additional mass deposited on the crystal, and by measuring the frequency

shift, the added mass may be ascertained. Then using standard densities available for

evaporated metal films, mass is converted within the Inficon XTM/2 controller to film

thickness (Ångströms) which is displayed with 1 Å precision and recorded by LabVIEW

with 0.1 Å precision. The film thickness so recorded is approximately, but not exactly,

what is deposited on the cathode. But the sources have a wide enough evaporation angu-

lar distribution that the approximation is a good one.

4.9 Ion Beam Cleaning

4.9.1 Saddle Field Ion Source

Removal of deposited films and a return to a (reproducibly) atomically clean sub-

strate condition for the next series of experiments is enabled by use of the Microbeam-7

saddle field ion source from AtomTech. High purity research grade argon is supplied via

the 1.33" Con-Flat flange, and a 10 kV supply enables acceleration of the ionized argon

atoms. Full control of beam current and energy is possible. The operation of the gun is

not fully efficient and an energy corresponding to about 85% of the applied field is

achieved. Thus for the 6.4-6.5 keV argon ions standard in these experiments, the applied

voltage was about 7.5 kV.
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Figure 4.24: Saddle field ion gun detail, showing beam exit

Figure 4.25: Ion gun and adjustable mount with argon fine leak valve

Distance to the cathode is about 15 centimeters. The beam exiting the gun is not

collimated, so it has spread to cover nearly the entire anode surface by the time it reaches

the cathode. In order to improve the fraction of ion current actually reaching the cathode,
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it is negatively biased 90V below ground during ion cleaning to preferentially attract

argon ions to the cathode rather than the anode.

Argon is supplied via a sapphire-seat precision leak valve. This enables the

pressure of argon inside the gun to be adjusted in order to cause the plasma to "strike"

(where the density of atoms is such that the ionization of one causes it to be accelerated

and ionize more in a cascading effect) and a beam to be created. The gun must not be

over-pressured or a "wide mode" beam will be created which is detrimental to the life of

the gun and is ineffective at providing high ion current to the cathode for cleaning.

Periodic refurbishing is needed since internal parts are slowly eroded by the pass-

ing of the beam and sputtered material is slowly deposited on insulator surfaces. The lat-

ter situation is signaled when initial turn-on of the high voltage results in a high current

draw from the power supply even before the argon has been supplied. Such a condition

indicates a short circuit in the gun. The gun can be removed from the chamber and disas-

sembled and the parts replaced. This was performed once during the course of experi-

ments in this work. Since that time more than 110 Coulombs of beam have been supplied

without the need for additional refurbishing.

The ion gun beam has a line-of-sight propagation at a 13º angle to cathode-sur-

face-normal. In case alignment is not ideal, the gun port is mounted on a manually ad-

justable micrometer-actuated bellows with +/- 20º freedom in the horizontal and vertical

directions. If the cathode has been changed out with one of differing dimensions it will be
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Figure 4.26: Ion beam alignment scans

necessary to perform an alignment of the ion beam to maximize the current on the cath-

ode. The results of such an alignment are shown in Fig. 4.26 using a -90V bias on the

cathode. The peak cathode current achieved here was 1.4 mA with a FWHM range of

0.26 inches and 0.28 inches for the right and left micrometers, respectively. Compare this
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to operation without the -90V bias. The peak cathode current achieved in such a case is

just 0.45 mA, nearly a third that with the bias, and the FWHM is a range of 0.14 inches

on both micrometers. Clearly the bias strongly attracts the beam, for the only way to ex-

plain the wide FWHM of the biased test is that the beam follows the field lines toward the

cathode even when pointed significantly off-center. The difference in peak current is an

indication of the focusing of the beam: with a biased ion current 3.1 times larger, the

beam is reduced in size by biasing by roughly the square root of 3.1, about 56% of its ini-

tial diameter.

4.9.2 Anode Shielding and Cathode Mount Sputtering

As the ion beam is operated, it will not only sputter the cathode but any exposed

surface in the beam path. The copper dispenser mount sputters onto the back of the anode

as shown in Fig. 4.27. The beam also leaves a circle on the anode face where all deposits

have been removed. When the dispenser is removed the outer edge of the lip around the

tungsten face shows additional copper sputtering deposits - see Fig. 4.28. Critically, there

is no direct line-of-sight from sputtered areas to the cathode face.
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Figure 4.27: (left) Anode showing ion beam cleaned area after multiple antimony deposi-
tions, (center) Cathode-facing side of anode showing copper sputtering and discoloration
of exposed, heated, oxidized surface

Figure 4.28: New dispenser, left, versus used dispenser, right, showing faint copper sput-
tering on outer top rim edge
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4.10 Instrumentation Rack

Instruments rack-mounted near the vacuum chamber for experimental measure-

ment and control are viewed in Fig. 4.29. From top to bottom row by row, and left to

right in each row, they are as follows.

- Atomtech 800 series ion gun power supply, 10 kV

- Digitel SPC 40 L/s ion pump controller, Amrel PPS-2016 (alkali source current

supply for evaporative deposition)

- HP 59306A GPIB-controlled relay actuator, SRS SR630 thermocouple monitor

- Digitel MPC 200 L/s ion pump controller

- Granville-Phillips 307 and 330 ionization gauge controllers

- Amrel PPS-2016 (2, alkali source current supplies)

- Keithley 286 picoammeter, Inficon XTM/2 deposition monitor controller

- PC running LabVIEW: automation and control of all GPIB-capable devices

- scratch-built housing for water pump, radiator, and QE circuit voltage supplies

- HP 6681A 0-6V, 0-580A DC power supply (antimony source current supply)
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Figure 4.29: Equipment rack with power supplies, instruments, and LabVIEW PC
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Chapter 5: Experimental Techniques

5.1 Measurement Techniques

5.1.1 Pressure

Pressure was monitored using ion gauges and, at higher pressures such as during

ion cleaning, nitrogen backfill, or atmospheric exposure, Convectron gauges. As men-

tioned previously, Convectron gauges read 30x low for argon since they are calibrated for

nitrogen. Both ion gauges and Convectron gauges were read by the Granville-Phillips

controllers which were in turn connected to the GPIB network and read by LabVIEW.

5.1.2 Laser Power

Laser power was measured by alignment of the lasers with the thermopile detector

(and appropriate safety precautions as in Section 5.5.1) or by LabVIEW control, detector

mounted inside the laser safety housing and lasers commanded to position in turn. Laser

power measurements were reduced 7% to account for viewport reflectance such that the

laser power used in the QE calculations was that incident on the cathode.

5.1.3 Photocurrent

Photocurrent was measured using the Keithley picoammeter. The ammeter has the

ability to measure from the picoamp range all the way to 2.3 milliamps. This range is

covered by five sets of internal circuitry which each have a different dynamic range, the
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highest ending at 2.3 milliamps, the next at 230 microamps, and so on. Switching be-

tween circuits is automatic but can result in momentary open-circuit conditions with un-

physical currents reported. LabVIEW watches for and removes such data.

5.1.4 Coating Coverage

Coverage was measured by the Inficon deposition monitor. The various evapo-

rants were all assigned a "film number" which has the preset values needed for the XTM/

2 controller to convert from the frequency shift of the quartz crystal to a thickness read-

ing in Ångströms. Film numbers are assigned as: 1, Cs; 2, Sb; 3, K; and 4, Na. The moni-

tor was also re-zeroed at the beginning of an experimental run. Finally, it should be noted

that the crystal and monitor do not account for evaporative losses from the sensor, so in

theory the cumulative deposition totals could have been slightly under-reported depend-

ing on the volatility of the evaporant. In all cases here, the monitor reading was stable

within Å/hr after deposition of material indicating such is not a great concern.

5.1.5 Cathode Temperature

Cathode temperature was measured by a K-type thermocouple in the molybdenum

body of the button heater. It does not measure cathode surface temperature directly. Ther-

mal conductivity and reasonably slow temperature changes are assumed to result in small

thermal gradients so the thermocouple reading can reasonably be inferred to indicate ac-

tual surface temperature.
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5.1.6 Background Gas Composition

Background gas composition was measured using the SRS RGA-200. The "200"

indicates a maximum 200 amu in mass scans. For the built-in software analysis package

to work properly in determining relative percent composition of the gases in the chamber,

a range of 1-58 amu must be selected. The filament was turned on only when doing a

scan or an inital outgassing (post-bake) to preserve life of the filament. The filament can

be replaced (shown in Fig. 5.1) but is an extremely delicate, almost surgical operation

which also involves atmospheric exposure to the chamber. It is inconvenient and difficult

and should be avoided by not abusing the filament. A sample RGA scan and analysis

readout are shown in Fig. 5.2 from a mixed contaminant test.

Figure 5.1: RGA filament, thoriated tungsten
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Figure 5.2: RGA scan and background gas analysis

5.2 Measurement Considerations

5.2.1 Space Charge

If the anode-cathode voltage is not high enough, the extraction of sufficient pho-

tocurrent will shield the anode from the cathode and result in a fictitiously low measure-
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ment of QE. This is known as the space charge limit and is characterized by the Child-

Langmuir law, which gives the maximum current extractable for a given voltage:

(5.1)Jmax =
9rd2

1
mc2

q
V3/2

where d  is the cathode-anode separation and V is the applied voltage.

The experimental anode-cathode distance is about 2 cm. With the lower QE cesi-

ated metal experiments the existing apparatus was sufficient to apply an anode-cathode

voltage of 180V and not see space-charge effects in the extracted current. Calculating the

Child-Langmuir limited current from a 4 millimeter square cathode (corresponding to the

approximate size of the laser spot) one obtains 1.2 mA for the space-charge-limited aver-

age current. Typical photocurrents in the cesiated metal experiments using drive lasers of

a few mW were of order 1 uA, much less than this limit.

However, when working with higher QE semiconductors it was necessary to re-

visit this problem. When varying the voltage, if the emission is not space-charge-limited,

the photocurrent will stay constant. In Fig. 5.3 this is shown, plotting extracted current

versus voltage to the 3/2 power so as to show the Child-Langmuir behavior at low volt-

age. The material under test in this data was a cesium antimonide cathode driven by a 6.2

mW 375 nm diode laser at 11% QE. The maximum applied voltage was 180 V.
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Figure 5.3: Space-charge-limited current from high QE Cs3Sb cathode

The early behavior at low voltage sees significant space-charge effects. The late

behavior shows the photocurrent has leveled off versus voltage, indicating the photocur-

rent is no longer limited and must be linear with drive laser intensity. Thus the isolated

voltage supply was increased to a maximum 450V -- approximately 30 kV/m at the cath-

ode. Photocurrent versus applied field is shown in Fig. 5.4 for three Cs3Sb cathodes of

varying thickness. Note the change in the vertical scale between each of the plots due to

the reduced QE of the thinner cathodes. Initial Sb thicknesses of 6, 15, and 40 Å corre-

spond to estimated total cesium antimonide thicknesses of (Ref. [103]) 35.4, 88.5, and

236 Å respectively. (Compare this to the optical penetration depth at 375 nm of 200 Å

and it is clear that thinner cathode QE should indeed be less than ideal.)
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Figure 5.4: QE vs applied field, Cs3Sb

5.2.2 Noise and Error in Photocurrent and Laser Power

Noise is seen in this experiment as the so-called "dark current" present even when

the cathode is not illuminated. The current is measured in the closed circuit and varies de-

pending on the picoammeter setting. With the dynamic range set to a 23 nA maximum

(as is the case for some cesiated metal QE measurements, which are those with the lowest
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photocurrents and hence the most sensitivity to noise) the dark current is an average 0.4

nA. Compared to the photocurrents at the 0.11% QE maximum of cesiated tungsten,

which measure just over 2 nA, signal-to-noise in the experiment is satisfactory. This situ-

ation only improves with the higher QE, hence higher photocurrent, alkali antimonides.

Error in the experiment comes from both random and systematic sources. The

possible sources of systematic errors are discussed first with the steps taken to minimize

them. In the measurement of QE there are only two experimentally determined quantities:

laser power and photocurrent. Each of these two has its own unique considerations re-

garding systematic errors.

Laser power is measured using the PM3Q thermopile detector. A thermopile de-

tector is a stack of thermocouples in series to produce a higher total voltage, and the re-

sponse is directly proportional to the thermal power in the laser beam. As such it is DC

coupled and suitable for CW laser measurement, as in this work, or for average power

measurements of pulsed beams. Thermopile detectors are low impedance devices with

low sensitivity to noise in the associated circuitry, but they are of course quite thermally

sensitive, so they cannot be mounted in an environment of fluctuating temperature or ex-

ternal heat sources other than the laser beam. Using one's hand to hold the detector steady

in the beam path, for instance, results in systematic error and erroneous readings. Another

source of systematic error in the measurement of laser power is failure to account for the

transmittance of the quartz viewport. A clean viewport has a flat transmittance across the

full spectrum of lasers used in this work of 93% (3.5% reflectance at the window inner
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and outer surface), but care must be taken not to allow the viewport to become coated

with thin films which will change the reflectance of the inside surface. This was observed

once following the anneal of a silver cathode, where the temperature of the cathode

resulted in a not insignificant vapor pressure of silver, enough to coat the viewport with a

semitransparent film of silver deposits. Under normal operation or even under annealing

of tungsten with its much lower vapor pressures, this is not a problem. If it does occur the

viewport must be removed and cleaned.

Systematic error in the measurement of photocurrent is more subtle. As previous-

ly discussed in Section 5.2.1, space charge effects are real and deceptive, and if the

measurements are operated with low enough anode-cathode voltage and high enough

photocurrent to enter the space charge regime, the photocurrent and apparent QE will be

artificially depressed. A second source of extraneous photocurrent, this time causing it to

appear higher than normal, is the possibility of photoemission from other surfaces besides

the cathode in the chamber. The energy of the UV and blue lasers in particular (3.31 and

3.06 eV, respectively) are not higher than the workfunction of most bare metals (compare

tungsten at 4.65 eV, silver at 4.26 eV, copper at 4.65 eV, and molybdenum - the cathode

heater casing - at 4.37 eV). However, when coated with work function lowering cesium

as a result of either direct deposits from the wide spray of the evaporative sources or sec-

ondary deposits from migrating cesium, such metals can become photoemissive at the

drive laser wavelength. Cesiated tungsten, for example, has a work function minimum of

1.3 eV. For this reason the laser spots are focused narrowly on the cathode and avoid illu-
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mination of other nearby surfaces. An extremely subtle source of dark current and hence

systematic error in the photocurrent is the operation of ion gauges, which use a hot fila-

ment as previously described to thermionically emit electrons which then ionize the back-

ground gas for measurement. These hot filaments produce ballistically traveling ions

which, if line-of-sight exists between ion gauge and cathode, actually contribute to the

dark current. Characteristically this is a pressure-dependent dark current. In early experi-

ments Moody observed 10 nA dark currents from this source, eliminated by moving ion

gauges to sites in the chamber without line of sight to the cathode and anode assembly.

Finally, significant systematic error can be encountered if operating unknowingly at ele-

vated temperatures where thermionic emission is non-negligible. If thermionic emission

is not recognized and all current is attributed to the photoelectric effect, the resulting QE

calculation will have inflated values. For this reason the LabVIEW code includes the abil-

ity to measure current from the cathode un-illuminated in addition to measuring the cur-

rent for each wavelength of laser. The un-illuminated current is the sum of dark current

and thermionic emission; at higher temperatures thermionic dominates not only dark cur-

rent, but even photocurrent (see Figure 9.8: Activation of 2nd gen. cathode with Alvatec

Cs:Bi reservoir, for an example at temperatures in excess of 300 ºC).

Random error in the measurement of laser power can come from diode tempera-

ture fluctuation, but this specified as better than 5% over 8 hours for the 532 nm DPSS

laser and better than 2% for all other lasers. Random error in the measurement of pho-

tocurrent can come from the noise pick-up of the long, 10' cables between the batteries
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and ammeter and the anode and cathode. By using triaxial cable and grounding the outer

braid this is minimized.

5.2.3 Uncertainty in Calculation of QE

The dependence of QE on laser wavelength, on laser power (cathode-incident,

which includes viewport transmittance) and on the resulting photocurrent is restated:

(5.2)QE =
qm
hc

Pm
I

where the equation is the same as Eq. (1.11) but the total laser power Pm and photocurrent

I have replaced the optical irradiance and current density, assuming laser spot is smaller

than cathode. Laser wavelength is not measured directly in the lab, but is rather reported

upon delivery by the manufacturer; nevertheless it is a measured quantity. Since the three

measured quantities are uncorrelated, the uncertainty in QE is the sum in quadrature of

the relative uncertainties of the variables, obtained via:

(5.3)DQE = QE
m
Dm

a k
2

+ Pm
DPm

a k
2

+ I
DI

a k
2

where of course D denotes uncertainty. The preceding formula presumes a Gaussian sta-

tistical distribution about the mean of a measurement x with standard deviation Dx.

Relative uncertainties for the lasers result from Table 4.3, where power stability is

given and relative uncertainty in wavelength is calculable. Total QE uncertainty is given
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here to demonstrate upper-bound uncertainties for all data sets which follow. The data set

used to obtain typical photocurrent relative uncertainty at peak QE of cesiated tungsten is

shown in Figs. 5.5 and 5.6. The uncertainty in laser power and wavelength dominates, so

all QE data sets share error bars of +/- 2.5% to 5%.

Laser (nm)
m
Dm

Pm
DPm

I
DI

QE
DQE

808 .0124 .02 .009 .0252

655 .0153 .02 .001 .0252

532 .000188 .05 .001 .0500

405 .0494 .01 .0004 .0504

375 .0267 .01 .0005 .0285

Table 5.1: Calculation of relative uncertainty in QE for all laser wavelengths

Figure 5.5: Data set for photocurrent noise (10 hour lifetime measurement, Cs:W)
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Figure 5.6: Photocurrent noise by laser wavelength, first hour of previous figure
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5.3 Automation Techniques

5.3.1 LabVIEW introduction

LabVIEW (a pseudo-acronym for Laboratory Virtual Instrumentation Engineer-

ing Workbench) is a commercially available, widely used graphical programming inter-

face for the control and automation of processes and for the acquisition and display of

data. LabVIEW contains two environments for each user-written program: the front pan-

el, a window containing all displays and controls, and the block diagram, a window con-

taining all variables, formulas, commands, programmatic structures like for loops or if

statements, calls of subroutines, etc. The front panel has the appearance of a dashboard or

instrument panel, while the block diagram is similar in appearance to a circuit diagram.

Each program, with front panel and block diagram together, is called a virtual in-

strument or VI. Programming of a VI begins with the placement of controls or indicators

on the front panel, which automatically show up as variables which can be written to or

read from in the block diagram. Connections, logical operations, programmatic struc-

tures, etc. are then placed and routed in the block diagram to achieve the desired out-

come. A VI may also call other VIs, which are termed sub-VIs in the same sense as sub-

routines. For reliability, ease of development, and quick debugging in this work, modular

programmin was used, with separate experimental functions programmed in separate VIs.

This is particularly useful if a function will be used more than once in the process of any

experiment; the same sub-VI can then be called every time.
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The interface of the LabVIEW software with the instrumentation which controls

the experiment is done via the general purpose interface bus (GPIB) standard, IEEE

488.1, originally developed by Hewlett-Packard in the late 1960s under the HP-IB trade

name. GPIB is a parallel data bus with handshaking, with a maximum data transfer speed

of 8 MB/s. The handshake is the initial communication between the controller and device

where the two agree on a common state and optimal data transfer speeds, etc., before pro-

ceeding with reads or writes. In this work, a PCI slot GPIB card contains a GPIB stacking

connector port to run standard GPIB cable from the computer to the devices. The 24-pin

stacking connectors (shown in Fig. 5.7) allow cables to be daisy-chained or connected in

a star configuration from a common central hub, as is done in this apparatus. A maximum

20 meters of cable can be used from the controller card to any device on the network. Un-

der GPIB, the computer uses a standard format to query and command each device,

though the command syntax is device- or manufacturer-specific. A VI is written to con-

trol each device with the appropriate command syntax included. These VIs are then

called by the main program to command or query each instrument.

Figure 5.7: GPIB stacking cable connectors
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5.3.2 QE Measurement

Automation of QE measurement via LabVIEW software uses the following steps:

Initialization

- Re-home linear motor (gives encoder a defined reference point)

- Open and write header information to data file

- Open and initialize variables

- Define states of front panel charts and displays

While Loop (loop until stopped by user command, by timer, or by various errors)

- Review front panel for modifications to laser sequence

- Command next laser in turn to illuminate the cathode

- Acquire all data (photocurrent, calculated QE, pressure, coverage, temperature,
etc.)

- Update plots

- Command instruments with updated settings (heaters, current sources, etc.)

- Write all data to next row in file

Close

- If triggered by a stop condition, print front panel and close file

Table 5.2: LabVIEW QE measurement process summary

5.3.3 Code Enhancements

Existing code at the start of the work presented herein was written by N. Moody

and is detailed in Ref. [20]. Numerous enhancements to the capabilities and operation of

the code were programmed over the course of experiments, with highlights summarized

in Table 5.3.
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- Massive rewrite to "call by reference" for all variables (rather than "call by val-
ue"). Reduces memory use, cleans up block diagram, and allows simpler debugging.

- Plot QE not as one line of all laser wavelengths, but as a separate line for each
laser. Two full measurement cycles are needed before each wavelength has two data
points and can begin plotting a line. Current is plotted point by point immediately.

- Automate laser calibration at the start of every experiment, if needed. Updates
QE calculation directly and includes 93% viweport transmittance.

- "Overnight mode": allows long experimental runs like QE lifetime measure-
ments to use longer laser cycle periods so that the blue and UV diodes may be turned off
while the other lasers are in use. Reduces duty cycle of the limited-life InGaN and GaN
diodes by half or more.

- Allow optional measurement of "dark" cathode current, which for a hot cathode
is the thermionic current. (Commands robot to move all lasers away from viewport.)

- Enable "thermionic correction" where thermionic current is subtracted from
photocurrent during hot cathode operation so QE reported is not artificially inflated.
Does ignore photo-thermal interactions, a good first-order approximation.

- Compute and display QE vs coverage plots live and on screen

- Allow marking of QE vs time plot at key points for later reference

- Display maximum QE numerically as well as graphically

- Record cathode temperature and pressure vs time plots on front panel

- Enable zeroing of any plot at any time

- Write operator name, date, time, filename, and column headers to data file

- Automate front panel chart printing after end of experiment for lab notebooks

- Enable instant screenshots at any time, saved to data folder

- Automate selection of appropriate film constants on deposition monitor when
changing from one evaporation source to another

- Eliminate data artifacts (e.g., erroneously high photocurrents when Keithley
286 switches circuits to shift dynamic range, glitching pressure monitors, etc.)

- End experiment in the following cases: overpressure/poor vacuum, target
coverage, target QE, target experimental run time, user command

- Detailed commenting

Table 5.3: Highlighted LabVIEW code modifications and upgrades
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Figure 5.8: Sample case structure on block diagram, for QE plot settings

A sample case structure from the block diagram is shown in full in Fig. 5.8. A

portion of the block diagram for the main program, EiM_v2_Dispenser.vi, is shown in

Fig. 5.9 (the full diagram is too large to display with legibility), emphasizing the vast

number of inputs and outputs which the call-by-reference scheme organizes and initial-

izes. All variable calls may be searched -- much easier for debugging or modification

than trying to trace clustered wiring diagrams. In Fig. 5.10 the same program is detailed

but in another, later part of the main while loop in the block diagram. The data acquisi-

tion and file write commands are shown. The front panel of the main program is shown in

Fig. 5.11. Programmatic controls are at top left, cathode heater controls top center, laser

controls just below that, and deposition controls at the bottom. A trialkali (cesium sodium

potasium antimonide) fabrication has just been completed. The vertical yellow lines on

the QE vs time plot are markers showing when depositions from the various sources were

begun. The QE vs coverage plot is meaningless for this experiment though for a coated

metal it would show the familiar Gyftopoulos-Levine-like behavior with a peak in QE be-

tween one-half and two-thirds coverage. The pressure, temperature, photocurrent, and

coverage plots versus time have been cleared in preparation for a new experimental run.
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Figure 5.9: Detail of block diagram, showing initialization of reference nodes
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Figure 5.10: Detail of block diagram, showing data acquisition and file write
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Figure 5.11: LabVIEW interface with multialkali fabrication
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5.4 Standard Procedures

5.4.1 Chamber Bakeout/Pumpdown

The length of time the chamber is exposed to atmospheric contamination and at

what humidity largely determines the time required to bake out the vacuum system. In all

cases a bakeout was considered complete when the pressure under turbopumping at the

elevated bake temperature is below 5x10-7 Torr. This could be attained in a few hours

with proper care (example: removing a 2.75" Con-Flat flange with the system over-

pressured with N2, and replacing a blank plate immediately while working with the

flange). With a full chamber opening, a bake of at least 24 hours was needed. With new

components, two or three days may be required.

When the ion pumps are first turned on, the turbopump is left actively pumping on

the chamber for a few minutes. Post-bake this is important to allow the ion pumps to out-

gas. Also, the initial ion pump turn-on can be done at slightly higher than usual voltage if

there has been significant argon pumping by the ion pump. The problem with argon and

the noble gases in general is that they are non-reactive with the titanium walls of the ion

pump and are instead buried by sputtered titanium. If or when a pocket of argon gas so

trapped is uncovered by additional sputtering, a cascading release of more of the trapped

argon can occur - almost as if the pump burped argon. It can be helpful to force this to oc-

cur via elevated operating voltage, when the turbopump is still pumping on the chamber,

so that the excess argon may be removed from the system entirely. With new pumps or
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systems where argon has not been pumped over the long term by the ion pumps, this

should not be necessary.

Local bakeout temperatures anywhere on the apparatus were not allowed to ex-

ceed the temperature limits of the components. Heater tapes can easily approach local

temperatures of 300 ºC, so two examples of where heater tape was not used under any

circumstances were across viewports (the solder will melt) or around bellows (the welds

will develop leaks under stress). Most of the UHV stainless steel components are bake-

able to 450 ºC. Likewise the system was inspected before bakeout to ensure all heat-sen-

sitive components had been either removed (like the RGA head and video camera), or

disconnected (like the Tygon tubing for water circulation through the deposition monitor,

which was tightly clamped and pinched closed on both the supply and return lines before

disconnection because of the 7' head of water above the pump), or at least not in contact

with the heater tape (like any plastic-insulated wires and cables). If increased bakeout

temperature was desired the entire chamber was wrapped in an aluminum foil thermal

blanket, with foil tape to join the edges of each sheet; cathode temperatures of order 200

ºC are reached without the thermal blanket and of order 300 ºC with it. Monitoring of hot

spots with multiple thermocouple positions was employed when using thermal blankets,

particularly near components with lower bakeout limits.

One of the keys to successful experiments is anticipating failure mechanisms and

building fail-safes into the operation of the apparatus. (An example is the UPS backup for

the ion pumps during power outages.) With regard to bakeouts which, under standard
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procedure, run overnight without supervision, the effect of a power outage could be prob-

lematic. If an outage occurred, shutting down the turbopump and heaters, backflow of gas

through the stationary turbopump vanes would occur into the still-hot chamber, increas-

ing the risk of oxidation of components or increased contamination rather than the intend-

ed reduced outgassing. For this reason all bakeout heaters were run through power relays

(Furman MP-20) which have a momentary-off feature. If power is lost, the relay reverts

to the off state until signaled manually to turn on again. This prevents the heaters from

operating on an un-pumped chamber after an outage. Secondly, an electromechanical

valve (ECV) was installed on the turbopumping station with a normally-closed state.

When powered, it opens to allow pumping. By likewise routing power to the ECV

through the momentary power relays, loss of power immediately isolates the chamber

from the pumps to prevent backflow contamination, and the valve does not re-open until

the user arrives to reset the system state. One downside is that readily available ECVs are

not high-conductance (they have small bore sizes) and so the pumping speed of the turbo

station is limited by the valve. Under normal use of the turbo in this work this is not criti-

cal since base pressures are achieved with ion- and not turbo-pumping. There is a slightly

increased pump-down time after an ion clean, still short vs experimental durations.

5.4.2 Ion Beam Cleaning

The ion beam cleaning procedure involves more manual tasks than most because

so much of the equipment or tasks are not GPIB/LabVIEW controllable. It was per-
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formed in 6 stages: pumping and gas preparation, electrical preparation, initialization,

cleaning, pumpdown, and reconnection.

The gas lines of the tree, if not filled with pure argon, were turbopumped for half

an hour and then flushed with argon three times. The turbopump was isolated from the

tree. The lines were then overpressured with pure argon (so any leaks in the swagelok

connections, never designed as high vacuum components, were outward not inward).

With the turbopump isolated and the pressure at 1x10-8 Torr, the valve to the UHV cham-

ber could be safely opened. Ion pumps were turned off.

All unnecessary equipment was turned off -- grounding issues with the ion gun

HV supply had been problematic, causing erratic operation of the Ethernet link to the mo-

tor robot and of the GPIB-controlled relay box for laser power, and though proper

grounding was subsequently installed, it was deemed safest to err on the side of caution.

The QE circuit voltage was turned off and the circuit disconnected. Ammeters were

connected to measure cathode and anode ion current. The thermocouple plug was

grounded to bleed off ion current. The cathode was biased -90V. Prior to leaking argon in

to the gun the ion gauges were turned off.

The LabVIEW program "ion_cleaning_dose_and_current_monitor.vi" was initial-

ized. The ion gun HV supply was turned on, checked for short-circuit current, and then

adjusted as desired. Standard 7.5 kV settings were maintained with currents of a few

microamps.
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The plasma in the gun was "struck" by gradually increasing the argon leak rate us-

ing precision leak valve L-gun. The beam was run to the desired dose (standard was 40

minutes, 1.6x1017 ions). Ion current tended to drop slowly over the first ten minutes as

the gun internals heated and pressure equilibriated. The cleaning was stopped by closing

the argon valve, turning off the high voltage, and stopping the LabVIEW acquisition.

Pumpdown was performed using the turbopump since the ion pumps were not de-

signed for pumping large amounts of noble gases. Base pressure of at least 5x10-7 was

reached before turning on ion pumping and isolating the turbopump again. The -90V bias

was turned off, QE circuit reconnected, ammeter reset for photocurrent (microamps) not

ion current (milliamps), and power restored to any devices powered down. Prior to QE

measurement the robot was re-homed and the laser alignment checked.

5.4.3 Coating Deposition

An ion beam cleaning was performed before coating the cathode. Then the QE

program was initialized. The deposition monitor was re-zeroed if needed. In the main QE

program under the "Evaporation Module" the evaporation of the chosen alkali was initiat-

ed, entering an appropriate current (starting at 3A for a fresh Alvasource and increment-

ing by 0.1 A if needed; 6A for a used source was not unusual). If depositing antimony,

the current was entered directly on the supply, ramping in 1A increments towards 43 A

over about ten minutes assuming the source had already been outgassed. When desired

thickness or QE was approached the source was turned off. The antimony source tended
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to deposit 2-3 Å additional material as it cooled from 43 Amps. The alkali sources were

much more responsive, with 0.1-0.3 Å of additional deposition.

5.4.4 Cathode Heating

In the active QE program the cathode heater button was toggled to turn on the

heater relay. AC heater power was measured using a clamp-on ammeter and standard

voltmeter at the leads at the feedthrough. Power was controlled manually on the variac,

with marked dial locations corresponding to equilibrium temperatures attained at that set-

ting to aid in the process. The step-down transformer at the top rear of the equipment rack

has a toggle switch; that was always in the on state for power to be applied to the cath-

ode. The variac was adjusted as necessary over the course of minutes or hours to achieve

the desired temperature profiles for the experiment.

5.4.5 Controlled Gas Exposure

The QE program was intialized and run throughout. Before introducing contam-

inant gas, the ion pumps were turned off and turbopumping begun on the chamber. The

LabVIEW program (which integrated pressure over time to obtain Langmuirs of ex-

posure) was zeroed and initialized. To start the gas leak into the chamber, the knob on the

precision leak valve L-top was turned one full rotation, then slowly beyond that until the

pressure in the chamber reached the target between 1x10-7 and 1x10-6 Torr. Before the

end of the measurement an RGA scan was run to determine background gas composition.
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This allowed conversion from total Langmuirs of exposure to contaminant Langmuirs of

exposure via the partial pressure of the oxidizing gas present. The filament was turned off

after the scan. The leak valve was closed when the target depreciation was reached. A re-

cesiation was usually performed afterward.

5.4.6 Laboratory close-out

Before leaving the lab the equipment was always placed in a safe state. All lasers

were powered off, at the laser head or at the power supply, particularly the blue and UV

lasers with their shorter life. All high voltage and high current supplies (QE circuit HV

supply, ion gun HV supply, antimony current source) were powered off if not in use. The

turbopump and electromechanical valve were off if not in use, on if pumping down the

gas tree or chamber or during a bakeout. The RGA filament was checked to be off so as

not to burn it out inadvertently.

5.5 Precautions

5.5.1 Laser Safety

The diode and DPSS lasers used in this work are Class 3B: they fall in the wave-

length range of 315 nm to near-IR, between 5 mW and 500 mW. Protective eyewear was

required in the lab when performing alignments. The uninitiated might expect one pair of

laser goggles, but such a pair would be opaque if it truly protected at all wavelengths.
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Two pair are required for full-spectrum protection: the Thorlabs LG3 is orange in color

and protects from 190-532 nm (the UV, blue, and green lasers) with OD 7+, and the

Thorlabs LG4 is blue in color and protects from 190-400, 633, and 662-835 nm (the UV,

green, red, and IR lasers) with OD 5+. (OD, or optical density, refers to the orders of

magnitude by which intensity at a given wavelength is reduced.)

For everyday operations it was inconvenient to wear goggles continuously and to

stock enough for all persons in the lab, so a laser safety housing (Fig. 5.12) is used which

encloses the lasers and translational mount. Black laser fabric hangs from the experiment

side and small hoods of the same fabric cover the beam path to the viewports. A video

camera pointed through the upper viewport allows monitoring of the laser spot position

on the cathode: the camera's GaAs sensor is able to detect the full range of wavelengths.

Figure 5.12: Laser safety housing
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5.5.2 General UHV Cleanliness

Proper procedures are essential to ensure the UHV surfaces are not unnecessarily

contaminated during handling. Particularly the oils found in human fingerprints can result

in significantly increased outgassing and release of carbon-based compounds in the vac-

uum chamber and were strenuously avoided.

Powder-free latex gloves were required at all times, and were only used to handle

clean surfaces. Gloving was done without touching the outside of either glove with an un-

gloved hand. After gloving, hands were kept out of lint-producing pockets and out of

hair, face, etc. If while using gloves the wearer touched un-cleaned surfaces, the gloves

were changed for a fresh pair before returning to work with the UHV components. This

often led to regloving several times during an operation, and it was found useful to have

two people, one gloved and one ungloved to handle both clean and dirty tasks.

The clean-surfaces-only rule required that as a result, all tools, bottles, etc. be

wiped down with an ethanol wipe to remove oils and dust before the final gloving and

UHV work, so that they could be handled by the worker throughout the process.

Kimwipes, the trade name for low-dust absorbent tissues, were used for the ethanol

cleaning. Any dirt or oil removed shows as a dark stain on the white wipe. A surface was

not sufficiently cleaned in the ethanol stage until the wipe came away white every time.

A low dust environment was essential. Short of working in a clean room, the fol-

lowing precautions were helpful. The work area was not in a high foot traffic area and
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was away from any active air ducts since cycling of the HVAC system stirs up dust

which has collected near the outlets. The work area was prepared as in Fig. 5.13 by first

covering all surfaces on which would be laid UHV components with aluminum foil (oil-

free, "dry anneal A" foil is preferred but not always available), and by using wipes or foil

to temporarily cover any components which were not currently being worked on so that

dust is not allowed to settle. All tools and materials were cleaned and laid out in advance.

Tools which contain cadmium or lead or were painted were not used.

Storage under proper conditions was important. Parts which were intended for

long-term storage were wrapped in aluminum foil, and moisture-sensitive materials such

as unused evaporation sources were stored in a desiccator - a glass sealed jar, with desic-

cants in the base, which minimizes humidity during storage. Commonly used desiccants

are deliquescent salts like calcium chloride or other hygroscopic materials like calcium

sulfate and silica gel. The desiccants usually have a colored saturation indicator in them,

often cobalt chloride (CoCl2). Anhydrous cobalt chloride is blue, turns purple when it

bonds with two water molecules, and then pink under further hydration and saturation.

The desiccants were changed before they had reached their absorption capacity and re-

placed with fresh ones; the periodicity with which this is needed depends on humidity

and how often the desiccator is opened and may be months or years. Most used desic-

cants can be recycled if desired by oven drying.
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Figure 5.13: Dust-minimized workspace

5.6 Dispenser Surface Characterization Techniques

5.6.1 Microscopy

In order to characterize the sintered tungsten used in the cesium dispenser pho-

tocathode, two microscopy techniques were used. Optical microscopy was first performed

to get a quick and general look at the surface, and to use depth of field to determine sur-

face roughness. Then electron microscopy was performed to characterize the grains and

pores in sintered tungsten in much finer detail.

In the optical microscope photo shown in Fig. 5.14, many 1-10 micron size grains

of tungsten are visible in random orientations. Full frame width is about 200 microns.

The depth of field in this case, based on the optics used, is also approximately one mi-

cron, and so the surface roughness is inferred to have height variation of that order as

well since some areas of the surface are slightly out of focus beyond the depth of field.

Electron microscopy was then performed to quantify and further detail the observations
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made. The 1-10 micron grain size is shown with the 10 micron length scale in Fig. 5.15.

Note the small sub-micron size pore located almost dead-center. 

Figure 5.14: Optical microscopy of sintered tungsten surface, 70% dense, 1500x

Figure 5.15: E-beam microscopy of sintered tungsten, 70% dense
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This same figure, showing the rear face of the cathode, also reveals a faint con-

centric ring-like striations from mechanical polishing (e.g., a buffing pad on a lathe or

press) which are not found on the front face. The polishing on the back surface would not

have been finished with the same fine grit as the front in order to meet spec. Another ob-

servation is that the cathode is pore-sparse, possibly as a result of over-polishing and fill-

ing in existing pores. The cathode was specified as 70% dense by the manufacturer, Spec-

tra-Mat, but initial imagery does not appear to support this claim. This pore sparsity was

not observed on the more carefully polished front face. This cathode (D02) and in fact its

twin (D03) failed to activate and dispense cesium, whereas an otherwise identical cathode

but from a different polishing batch (D01) activated properly. To investigate the porosity

further the D02 cathode was placed in a 30% dilute hydrogen peroxide etching solution

for one hour. Following this process, the cathode was again placed under the electron mi-

croscope. The results are shown in Fig. 5.16 for the back face of the cathode. Many pores

have been opened up or exposed, and the claim of 70% density appears valid. It was evi-

dently the surface only which had a sparsity of pores. This further emphasizes the need

for care in the polishing process.
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Figure 5.16: E-beam microscopy of sintered tungsten after peroxide etch: (left) surface-
normal viewing angle, (right) glancing viewing angle showing roughness of etched

surface
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5.6.2 Focused Ion Beam Milling

Following the electron microscopy, the pores themselves were investigated using

focused ion beam (FIB) milling. An electron microscope obtains imagery while a tiny,

pico-amp beam of gallium atoms sputters away a very controllable region of the surface.

As illustrated in Fig. 5.17, focused ion beam (FIB) milling was used to probe the subsur-

face structure of the pores seen on the cathode surface. The gallium ion beam at 10 keV

was used to mill away tungsten in a five micron square area while taking electron micros-

copy imagery of the sintered tungsten surface in order to probe pore structure. In Fig.

5.17 the detail of an initial milling sequence is shown, and in Fig. 5.18 the continued se-

ries is illustrated. The scale of the first image is five microns, and of the remaining im-

Figure 5.17: E-beam microscopy of initial ion beam milling
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Figure 5.18: Continuation of milling in previous figure

ages, two microns. The last image is a steeper viewing angle to give perspective and

shows a subsurface grain boundary running left to right near the far edge of the milled re-

gion, not evident in the initial image prior to milling. The pore in question is shown to be

highly irregular in shape, to angle strongly beneath the grain in which it is found, to end

at a subsurface grain boundary, and to fail to intersect with two nearby subsurface pores

in free space but to indirectly connect with them via grain boundary walls.
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Figure 5.19: Gradual extension of pore-adjacent milled profile

Due to the deposition of excess milled tungsten in the pore in Fig. 5.18, a second

technique was used: the milled region was deeply processed adjacent to, but not inter-

secting, another pore. The region was gradually extended towards the top of the imagery

in Fig. 5.19, so the pore was gradually exposed in sub-surface detail without unwanted

deposition of metal within the pore itself. In this case also, the pore appears to end with-

out a free-volume connection to other pores, only one grain width beneath the surface.

The conclusions of this investigation are: first, visible pores on the surface are not

indicative of pore channel continuity on the 10-micron scale; second, pore density on the
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surface may be reduced due to polishing effects; third, pore direction is random and pore

location is not always at grain intersections; fourth, pore size at the surface may grossly

overestimate the pore dimensions subsurface; fifth, individual pore free-volume continu-

ity is highly unlikely to be maintained through a 40-mil (1 mm) thick sintered substrate;

and therefore sixth, cesium diffusion along grain boundaries as well as through pores is

proposed as the mechanism by which is obtained the observed uniform coverage of ce-

sium in dispenser QE tests.

5.7 Ion Beam Cleaning Characterization Techniques

5.7.1 Introduction

Characterization of the ion beam cleaning and its effects on the substrate was very

important because the process preceded every QE experiment in this work. The studies

reported here had two primary goals: determine whether the beam induces surface rough-

ening and of what order, and determine the effectiveness of ion cleaning from a dose per-

spective to quantify the amount needed to remove a monolayer coating completely from

the surface.

5.7.2 Surface Roughening

Minimal indications of crystal-face dependent sputtering rates leading to rough-

ening on the sub-micron scale were found during argon ion cleaning of sintered tungsten
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at 6.5 keV. Shown in Fig. 5.20, from work done in collaboration with A. Balter [104], is

scanning electron microscopy (SEM) and focused ion beam (FIB) imagery of the sintered

tungsten surface. Four images are presented, moving counter-clockwise from the upper

left. Image A is an FIB image; the secondary emission from the FIB which forms the im-

age varies with crystal face, so darker and lighter grains correspond to random orientation

with different crystal faces in view. Image A compares directly to image B, taken via

SEM, as seen by the corner feature in the lower right. Grain correlation is highlighted to

aid identification. It is known that the crystal orientation affects sputtering yield, and the

image A corresponds to before an ion clean while B is post-cleaning: little change is seen

in the macroscopic appearance of the grains, so if any variation in sputtering rate occured

from grain to grain, it is not obvious in this imagery. Images C and D, while not at identi-

cal positions or magnifications (scales of 2 and 1 microns respectively), show typical

grain appearance before (C) and after (D) ion cleaning. There is visible a small increase

in apparent surface roughness, but this may be due to different imagery locations.

Following the acquisition of the imagery, simulation was performed using the

commercial ion implantation program SRIM®, and with the appropriate parameters for a

6.5 keV argon ion beam impacting tungsten the average ion penetration depth in 60%

dense sintered tungsten was estimated at 4.8 nanometers. This is still less than the aver-

age grain size by nearly three orders of magnitude; any processing of varying rates must

occur at the sub-micron scale, so surface roughening grain-to-grain in a single cleaning

must be minimal. Even over extended processing of multiple grain depths, the random
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Figure 5.20: Crystal-face dependent sputtering and roughening of sintered tungsten

grain orientation would tend to average out the crystal face dependent sputter yield effect.

Further insight comes from a 2-micron micro-protrusion, facetiously named "The

Cheeseburger", which was discovered during microscopy and which had acted as a shad-

ow mask for a small semi-circular region of the surface during ion cleaning. Thus a side-

by-side comparison of pre- and post-ion cleaning surface structure on a scale much small-

er than the grain size is enabled. This imagery is shown with 2 micron and 1 micron scale
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size in Fig. 5.21. It is indicative that there may be increased grain smoothness at the 100

nm scale after processing, within the single crystal face of one grain. Interestingly, a very

close look at the shadowed region shows that there are in fact two nearly-overlapping re-

gions of semi-circular shape: this comes from a slight realignment of the ion beam during

processing of the cathode and confirms that the observed feature is indeed shadow mask-

ing from the ion beam cleaning. Perhaps most importantly, it is clear that there is indeed

measurable sputtering of the substrate tungsten atoms during ion cleaning, but this pro-

cessing rate appears to be even, at least within the bounds of a single grain.

Figure 5.21: "The Cheeseburger." Micro-protrusion as shadow mask during ion cleaning

5.7.3 Surface Cleaning Effectiveness

As has been discussed by Moody, 6.5 keV argon ion beam cleaning yields signifi-

cant (factor of 2) improvements in peak QE from cesiated tungsten substrates compared

to anneal-cleaning of identical cathodes of 650 ºC for thirteen hours, as displayed in Fig.
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5.22, adapted from Ref. [20]. Similar results are seen for cesiated silver substrates where

the peak QE improvement of 6.5 keV argon ion beam cleaning over anneal cleaning was

an even more impressive factor of 3 [105].

Since ion cleaning has such a beneficial impact on the atomic cleanliness of the

cathode prior to cesiation, it is used in preference to anneal cleaning in most cases.

(Annealing may still be beneficial when removing antimony if the anneal exceeds the

melting point of antimony -- workable in the case of a tungsten substrate, but inadvisable

for silver which would itself begin to evaporate). Therefore it was important to character-

ize how long a cleaning should last. When experimenting with cesiated silver substrates,

an analysis of a variable duration ion beam cleaning's effect on QE was performed [106].

Figure 5.22: Ion beam cleaning vs anneal cleaning of tungsten, cesiated after cleaning
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Figs. 5.23 and 5.24 show results for a 1 mm radius laser spot at 375 nm on a 1 inch diam-

eter silver cathode with a 6.5 keV Ar ion beam. The latter figure converts thickness to

coverage (% monolayer) using the GL theory peak for Cs:Ag of 53.6% scaled by the

equation i = (x - x0) 53.6/ xpeak - x0^ h6 @ where x0 was the initial Cs thickness (nominally

zero; in practice tenths of an Ångström on the deposition monitor prior to deposition) and

xpeak was thickness at peak QE. The time axis is converted to dose (number of ions) via

ion beam current integrated throughout the cleaning procedure. A monolayer of cesium

is, as would be expected, cleaned off the surface very quickly. Almost no cesium remains

after one minute. Continued cleaning may be beneficial for removing other, more strong-

ly adsorbed contaminants, or in the case of reactive metals after atmospheric exposure,

for removing an oxide or sulfide (tarnished) layer to expose a fresh substrate surface.

Figure 5.23: QE vs ion beam cleaning duration, Cs:Ag
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Figure 5.24: Coverage vs ion dose, Cs:Ag

A double exponential fit was used since at high coverage cesium bonds less strongly to 

the substrate (assumedly why it might sputter more quickly). We can estimate sputtering 

yield by noting cesium has a covalent radius of 2.44 Å whereas silver has an FCC lattice 

constant of 4.09 Å. Assuming then that there are four silver atoms under each cesium 

atom on the [100] face, defining 100% coverage, then for a monolayer coating on a 1" di-

ameter silver cathode there are 1.5x1014 cesium atoms per square centimeter (1.2x1017  

cesium atoms in total), each spaced by twice the lattice constant of silver. 50% coverage 

sputtering yield is, simply reading from the slope of the graph and converting from cover-

age to number of cesium atoms as above, roughly 200 adatoms per Ar+ ion, and 5% 

coverage, roughly 3 adatoms per Ar+ ion. The high coverage sputtering yield is an upper 

bound, since evaporative effects are non-negligible there. It is also likely that the impact 
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of a 6.5 keV argon ion sputters a large number of substrate atoms at the same time as the 

adsorbed cesium atoms. Copper, for example, has an argon sputtering yield at just 3 keV 

of about 10 [107]. With the cascading impact comes heating and desorption of a large 

number of cesium atoms (each of which is known to have an adsorption energy on the or-

der of only an eV). This effect might be more pronounced with silver, which has one of 

the highest sputtering yields of any common metal (as high as 23 atoms/ion with Ar at 10

keV [108]), than with, say, the refractory metals like tungsten where sputtering yields can

be an order of magnitude less.  And in general, such numbers should be approached with 

caution since even in literature it is well known that the same material, ion species and 

energy can exhibit variability in yield of several hundred percent due to differences in 

material preparation, composition, and experimental conditions [107]. Suffice it to say 

that a few minutes' ion cleaning with the apparatus in this work (~0.1 mA/cm2, 6.5 keV) 

is sufficient to completely remove an adsorbed monolayer of cesium. Additional sputter-

ing of the substrate will occur at the same time, though with lower yield.
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Chapter 6: QE of Sub-monolayer Coated Metals

6.1 Theoretical Basis

6.1.1 Introduction

Many of the experiments and theoretical comparisons detailed in this work con-

cern adsorbed partial monolayers of atoms on metallic surfaces, as these surfaces are pre-

cisely those of concern to dispenser photocathodes. The physics of these surfaces and

particularly of photoemission from them is the subject of this chapter section.

Photoemission on a conceptual basis is described by Spicer's well-known three-

step model as follows. First, the incident light penetrates the surface to some depth and

the photon energy is absorbed, contributing to the kinetic energy of an electron in the ma-

terial. Second, that photoexcited electron, able to propagate within the material, proceeds

to travel ballistically and to scatter off of other electrons (electron-electron scattering) or

off of the material lattice structure (electron-phonon scattering). In metals, the former

scattering process dominates; in semiconductors, the latter. If and when the electron

reaches the material-vacuum boundary, it encounters the third step, that of overcoming

the emission barrier given sufficient energy compared to the barrier height or given a

tunneling probability made sufficiently large through a narrowing of the barrier width, the

latter being possible via the application of high electric field and Schottky barrier lower-

ing. Let us consider the third step first, and then return to transport/scattering and photon

absorption. We here consider the case of metals, which have a largely filled conduction

band, a barrier height characterized by the work function, and a Fermi level which is pos-
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itive with respect to the bottom of the conduction band. A later chapter shall contrast the

case of semiconductors, which have a largely vacant conduction band, a barrier height

characterized by the electron affinity and the band gap, and a Fermi level which is dop-

ing-dependent and negative with respect to the bottom of the conduction band.

6.1.2 Effect of Adsorbates on Electron Emission

The height of the emission barrier (in the case of a metal, the work function), is

what is modified by adsorbates on the material. This effect of adsorbate coverage on

work function has been studied since the initial work of DuBridge in 1933 [109] and

more significantly Langmuir's seminal work in that same year [52]. Langmuir's detailed

investigations proposed that the work function as it depended on coverage should also ex-

perience variation with temperature and of course adsorbate vapor pressure. The resulting

theory was not valid for more than low coverage. A more advanced theory would take

three decades to develop, and would be proposed by Gyftopoulos and Levine in Ref.

[110], whose 1962 treatise is hereafter referred to as the GL theory. A further modifica-

tion and refinement of the GL theory, describing the effect on the emission barrier of an

adsorbed partial monolayer of highly electronegative atoms on a metallic substrate, is de-

scribed by Jensen et al. in Ref. [67]. Jensen's particular contributions which appear in this

formulation as well are threefold: to redefine as needed for emphasis on parameters

which compare across various sets of experimental data, to include updated values for
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any empirical parameters since the GL theory was published, and to reduce the number of

parameters to a minimal set.

Following Gyftopoulos and Levine who did away with Langmuir's temperature

dependence and assuming zero vapor pressure of the adsorbate, energetically the barrier

to emission is described by an electronegativity component W i^ h and a dipole compo-

nent d i^ h (derived from a dipole moment W i^ h) which are solely functions of i, which

in turn represents the fractional surface coverage and varies from 0 (no coverage) to 1

(monolayer coverage). We define an effective work function:

(6.1)ze i^ h= W i^ h+ d i^ h

The two components of this effective work function will now be examined in

turn. The electronegativity component is first discussed. Electronegativity refers to the

energy input requisite to separate one electron from its neutral parent atom or molecule,

ionizing that parent. For example, cesium as an atom has an electronegativity of 0.79 on

the Pauling scale and tungsten, 2.36. Thus it takes less energy to remove an electron from

cesium than from tungsten. This has important implications for the theory of photoemis-

sion, as GL theory postulated when looking at the emission barrier's electronegativity

term.

Boundary conditions are placed on the functional form of the function W i^ h, i.e.

the electronegativity of the surface with respect to the vacuum, by the required values of
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the function and its derivative (differentiating with respect to number of adatoms, or equi-

valently by the coverage i) at the extreme cases of zero and monolayer coverage.

(6.2)W 0^ h= zm, W 1^ h= z f , 
di
dW

c m
i=0,1

= 0

where z is the material work function and subscript m and f refer to the metal and adsor-

bate film.

GL theory, in a nod to Occam's razor, postulates that the simplest possible poly-

nomial dependence on coverage should be used which simultaneously satisfies the four

boundary conditions above. That polynomial is:

(6.3)W i^ h= z f + zm - z f^ h 1 + 2i^ h 1 - i^ h
2

or, simplifying,

(6.4)W i^ h= z f + zm - z f^ hH i^ h

where H i^ h= 1- 3i2 + 2i3. Note that H 0^ h= 1 and H 1^ h= 0 as required by the

boundary conditions.

We turn now to the more involved case of the dipole term of the effective work

function, M i^ h. The crux of GL theory as it concerns the dipole component of the emis-

sion barrier is to consider an adatom and its substrate lattice site as a Pauling molecular

dipole. For a single adatom the dipole moment is therefore proportional to the difference

in electronegativities of the unadsorbed and adsorbed states M0 \ W 0^ h-W 1^ h. In ag-
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gregate the combination across the surface of some occupied and some unoccupied states

results in a coverage dependence M i^ h \ W i^ h-W 1^ h. Now we take the ratio of these

proportionalities to create an equality:

(6.5)
M0

M i^ h
=

W 0^ h-W 1^ h

W i^ h-W 1^ h
=

H 0^ h-H 1^ h

H i^ h-H 1^ h
= H i^ h

where we have simplified using Eq. (6.4) and the values of the polynomial at the bound-

aries of zero and monolayer coverage. We therefore obtain the coverage dependence of

the dipole moment as:

(6.6)M i^ h= M0H i^ h

We postpone the discussion of the constant term in order to note the foregoing

discussion neglects dipole-to-dipole interactions, which at high coverage tend to reduce

the overall moment as individual dipoles begin to cancel each other out. Thus there is an

effective dipole moment therefore which is defined as:

(6.7)Me i^ h= M i^ h- aE i^ h

where there is a depolarizing electric field on any individual dipole induced by neighbor-

ing dipoles, and the polarizability a will be discussed later. As discussed by Topping in

Ref. [111], this field is obtained from the effective dipole moment per adsorbate Me i^ h

and the number of adsorbate atoms per unit area f/ 2rf^ h
2

^ h, where f is a dimensionless

parameter indicative of the fact that the atoms of a monolayer coating will not, in prac-

tice, have exactly the hard sphere separation 2rf (or alternatively, a monolayer coating

Chapter 6: QE of Sub-monolayer Coated Metals 167



covers a fraction of the surface due to polycrystalline-, contamination-, or roughness-re-

lated effects), via:

(6.8)E i^ h= 4rf0

9 f/ 2rf^ h
2

^ h
3/2i3/2Me i^ h

We can now solve the preceding three equations for the effective dipole moment:

(6.9)Me i^ h=
1+ 9a f/ 2rf^ h

2
^ h

3/2i3/2 /4rf0

M0H i^ h

Following Jensen in his book, Electron Emission Physics [6], since this is the ef-

fective dipole moment per adsorbate, we wish to multiply by the number of adsorbates

per unit area f/ 2rf^ h
2

^ hi  and calculate the dipole term in the effective work function as:

(6.10)d i^ h=-Me i^ h f/ 2rf^ h
2

^ hi/f0 =-
f0 + 9a f/ 2rf^ h

2
^ h

3/2i3/2 /4r

M0H i^ h f/ 2rf^ h
2

^ hi

We now turn to the values of M0 and a, the single-adatom dipole moment and

polarizability. The polarizability, again following Jensen, is approximated by:

(6.11)a = 4rf0nrf
3

where rf is the covalent radius of the adsorbate (film) atom, and n is a factor which ac-

counts for the effect of electronic shell structure on the polarizability. If the adatom is al-

kali metal, there is only one valence electron, and n is 1. If the adatom is an alkaline-

earth metal then there are two valence electrons, and n is 1.65. The reduction from 2 is

because of the partial shielding of one valence electron by the other by a factor 0.35 [34].
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For M0, the approach of GL theory is a geometric one, a hard sphere model. The

larger adsorbate, in this case an alkali metal like cesium, is located on top of the lattice of

the substrate. Tungsten and silver, the substrates experimentally used in this work, have

BCC and FCC lattices respectively. And so without loss of applicability to the data herein

reported, we consider an adsorbate alkali atom centered on top of four smaller metallic

substrate atoms, forming a tetrahedral structure. Each substrate atom can be considered to

have its own Pauling dipole Mfm with the adsorbate atom, and the reason to do this is to

then incorporate a depolarization effect between the four substrate atoms in the tetrahe-

dral structure which is best approximated, according to Ref. [112], by

(6.12)Mfm =
1+ a/ 4rf0R

3
^ h

K zm - z f^ h

As Jensen derives in Ref. [67], the constant K is given by f0r02 where r0 is the

constant radius parameter (4.3652 Å in the case of cesium on tungsten), a composite of

factors relating electronegativities and molecular dipole moments. The work functions of

the bare metal zm and the monolayer-coated metal z f have empirical values reported in

the literature. The constant R is the sum of the atomic radii of the adsorbate and substrate,

and the polarizability is as defined previously.

With this tetrahedrally clustered single-substrate-atom dipole moment in hand, we

now sum the contribution of all four substrate atoms, taking the vector component along

the surface normal,
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(6.13)M0 = 4Mfmcos b^ h

where the tetrahedral angle is defined by the hard-sphere center-to-center separations by

(6.14)sin2b = w
2

R
rm

a k
2

The adjustable parameter w , analagously to f for the adsorbate, is used to account for

the substrate atoms not being in a close-packed square lattice, such that w/ 2rm^ h
2 is the

number of substrate atoms per unit area. The factor w is hence dimensionless and is

equal to 1 if the substrate atoms are arranged with a cell size defined by the square of the

hard-sphere radius. We therefore combine the preceding four equations to obtain:

(6.15)M0 = 4
1 + nrf

3 /R3

f0r0
2 zm - z f^ h

1 - w
2

R
rm

a k
2

a k
1/2

Then from Eq. (6.10) we have

(6.16)d i^ h=-
1+ nrf

3 /R3
^ h 1 + 9nf3/2i3/2 /8^ h

4r0
2 zm - z f^ hH i^ h f/ 2rf^ h

2
^ h 1 - w

2
R
rm

a k
2

a k
1/2

i

Now, combining this result with Eqs. (6.1) and (6.4), we finally have an expres-

sion for the effective work function of the substrate-adsorbate surface with functional de-

pendence on i, parameterized by the dimensionless w and f which describe the depar-

ture from an ideal hard-sphere square lattice surface density for the substrate and

adsorbate respectively. The atomic radii are taken as the empirically obtained covalent

radii reported in literature. After simplifying,
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(6.17)ze = z f + zm - z f^ hH i^ h 1 -
1 + nrf

3 /R3
^ h 1 + 9nf3/2i3/2 /8^ h

4r0
2 f/ 2rf^ h

2
^ h 1 - w

2
R
rm

a k
2

a k
1/2

i
f p

Jensen modifies the GL theory by reducing the number of parameters one further,

noting that the relative sizes of the substrate and adsorbate atoms can define a relationship

between the substrate and adsorbate atomic densities per unit area. We here define that

relationship as a monolayer surface density ratio

(6.18)gmf = v f

vm =
f/ 2rf^ h

2

w/ 2rm^ h
2

=
frm

2

wrf
2

This ratio describes the number of substrate atoms per unit cell compared to the monolay-

er number of adsorbate (film) atoms per unit cell. Because the energetically favorable ad-

sorption sites are spaced by the dimensions of the substrate lattice, the monolayer surface

density ratio can be an integer value; for example, Jensen takes gmf = 4 for cesium on

tungsten, while this value is closer to 2 for alkaline earths such as barium on various met-

als. The monolayer surface density ratio is crystal-face dependent and atomic species de-

pendent. With this modification and additional simplification, recalling the polynomial

H i^ h= 1- 3i2 + 2i3 to make the dependence on percent monolayer coverage explicit,

the form of the effective work function is

(6.19)ze = z f + zm - z f^ h 1 - 3i2 + 2i3^ h 1 -
1 + n R

rf
a k

3

a k 1 + 8
9n

fi^ h
3/2

a k

f
rf

2

r0
2

c m 1 -
gmf f
2

R
rf

a k
2

c m
1/2

i
J

L

K
K
KK

N

P

O
O
OO

Notice the functional dependence on fractional monolayer coverage i is only parameter-

ized by f: n is fixed by whether the adsorbate is alkali (1) or alkaline earth (1.65); rf , rm,
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and their sum R are empirical covalent radii from literature; the radius parameter r0 is a

constant of the adsorbate and substrate species, fully determined from literature; gmf is a

constant for a given substrate, adsorbate, and crystal face; and the work functions of

monolayer film z f  and bare substrate zm are also empirical or in literature.

The Gyftopoulos-Levine coverage-dependent work function for cesium on tung-

sten is graphed in Fig. 6.1. The initial value is that of uncoated tungsten, and the final val-

ue is the monolayer coverage value. There is a minimum in the workfunction at 53%

coverage, because as coverage increases further, individual cesium atoms pack close

enough to reduce the dipole moment of adjacent cesium atoms.

Figure 6.1: GL theory: work function of cesium on tungsten
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With the effective work function in hand, the evaluation of (work function depen-

dent) emission terms in the theoretical models for quantum efficiency are now valid for 

partial monolayer coated surfaces. The lowering of the emission barrier by the adsorbed 

alkali atoms has now been accounted for. Where the work function is referenced later in 

the theory, Eq. (6.19) should be used in the case of a coated substrate.

6.1.3 The f-factor

The dependence on the f-factor, f , of the quantum efficiency of an alkali-coated

metal surface is of interest. Following Ref. [113], we consider the following figures dis-

playing the theoretical behavior of QE as a function of coverage for various alkali species

on tungsten.

Figure 6.2: Cs:W study of f
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Figure 6.3: K:W study of f

Figure 6.4: Na:W study of f
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In each figure, there are five wavelengths modelled, each having a family of four curves

corresponding to different f . One should note for Cs:W, the curve families show the ef-

fect of reducing the f-factor from an already high value, whereas for K:W and Na:W the

curve families show the effect of increasing the modelled value of the f-factor from the

initial low value, so that all three of the curve families have comparable values of f . For

very low f , a monotonically increasing function of coverage results, whereas for high

f , a pronounced peak at submonolayer coverage appears.

Also as reported in Ref. [113], when evaluating the quantum efficiency of an al-

kali-coated metal surface using the above work function, the parameter f does not mere-

ly describe the theoretical relationship between adsorbate and substrate surface densities.

It also aids in scaling the data from a quartz microbalance mass measurement to a cover-

age value. This will be detailed in Section 6.2.1.

6.1.4 MFD Formulation of Quantum Efficiency

Introduction

We now turn to the theoretical description of quantum efficiency. As described

earlier, the three-step process of photoemission involves photon absorption, electron tran-

sport, and electron emission. Formulaically this is simply obtained by defining QE as the

ratio of number of emitted electrons to incident photons, which in the steady-state (such

Chapter 6: QE of Sub-monolayer Coated Metals 175



as in UMD experiments with CW lasers) or in perfectly prompt emission (where the

emitted electron bunch exactly follows the temporal behavior of the incident laser pulse):

(6.20)QE =
qm
hc

a k Im
Jm

where Im is the incident optical intensity, Jm is the resulting photoemitted current density,

and qm/hc converts units of current density and optical intensity to numbers of electrons

and photons per unit area, respectively. (Notice the implicit assumption that the emission

area and laser spot size are identical. For negligible heating by the laser spot, such as is

the case with the experiments herein reported, this is a valid assumption.)

It should be stated at the outset that while the above equation is general, the

choice of technique for calculating the photoemitted current density is not. The first tech-

nique historically used by UMD's cathode group was the Modified Fowler-Dubridge ap-

proach (MFD). This will be discussed here for comparison and because it is perhaps more

immediately intuitive, but there are several important inherent assumptions which limit

its accuracy and applicability. The second technique, that currently used, is the Moments-

based approach. This is a more elegant and powerful technique than MFD but has the dis-

advantage of being a bit more mathematically opaque. It is hoped that by presenting the

basic MFD formulation first and detailing the additional physics incorporated by the Mo-

ments-based approach second, a clearer narrative can be established.
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The primary attraction, at least visually, of the MFD formulation of QE is that the

three steps of photoemission are included explicitly term-by-term in the MFD formula-

tion of photoemitted current density:

(6.21)Jm = 1- R m^ h^ h 'c
qm

c mImFmP z,n,m,F,T^ h

so that Eq. (6.20) results in

(6.22)QE = 1- R m^ h^ hFmP z,n,m,F,T^ h

where R is the optical reflectance of the surface (which in the most general form would

depend on incidence angle as well as wavelength, though in practice the incidence angle

is usually fixed); Fm is the transport factor accounting for optical absorption depth, elec-

tron transport, and scattering; and P z,n,m,F,T^ h is the emission probability, where for

completeness it has been expressed with functional dependence not only on work func-

tion, chemical potential and photon energy via wavelength but also on applied electric

field and temperature. Thus the first term corresponds to absorption, the second, Fm , cor-

responds to transport probability to the surface, and the third corresponds to emission

probability, which are the three steps of photoemission to which we continue to refer.

Both the preceding equations assume a substrate substantially thicker than the op-

tical penetration depth such that all photons not reflected are absorbed (i.e., zero transmis-

sion): this is valid since for metals and semiconductors [24] typically used with photoin-

jectors, and with visible or near-infrared drive lasers, that depth is on the order of tens of
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nanometers. (An interesting corollary is that the measurement of thin film thickness with

ellipsometry or reflectometry is not feasible above roughly 100 nanometers.)

Emission Probability

Jensen evaluates the emission probability in the MFD approach as a ratio of

Fowler functions, giving the probability that an electron has an energy greater than the

barrier height, which including the effect of applied field for generality is

(6.23)P =
U bTn6 @

U bT 'c/m- ze i^ h+ 4QF^ h6 @

where 4Q = a fs'c, a fs is the fine structure constant, F is the applied electric field times

the electric charge, and bT is one over the Boltzmann energy kBT . ze i^ h is of course the

(effective) work function which describes the difference between the energy barrier

height and the chemical potential. The Fowler functions themselves are defined by

(6.24)U x^ h= ln 1 + ey
^ hdy

-3

x

#

where an approximation valid to within 1% for all values of x is derived in Ref. [74]:

(6.25)U x^ h=
ex 1 - beax
^ h

2
1
x2 + 6

1
r2 - e-x 1 - be-ax

^ h

x # 0

x 2 0
*

where a = 12
12 - r2

r2 - 12 ln 2^ h
c m; b = 1 -

12
r2

.

Since at room temperature the Boltzmann energy is a fortieth of an eV, and since

for photon energies appreciably higher than the work function (such as is the case with
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photoinjector drive lasers) the difference is on the order of an eV, and since the field term

can be neglected because in this work applied fields are small (in the experiments in this

work, less than 100 kV/m), the argument of the Fowler function in the numerator of Eq.

(6.23) is about 40. Turning to Eq. (6.25), the x greater than zero case is used, and the qua-

dratic term dominates, so we can now write the emission probability as approximately

(6.26)P .
U bTn6 @

U bT hc/m- ze i^ h^ h6 @
.

n2

hc/m- ze i^ h^ h
2

QE is directly proportional to the emission probability, which is in turn quadratically pro-

portional to the difference between photon energy and work function, under the terms of

the approximations used above. This quadratic dependence is observed in experiment.

Electron Transport

With the emission probability in hand, we now turn to the next critical component

of Eq. (6.22), the transport term fm, which is the fraction of excited electrons successfully

reaching the cathode surface. There are several considerations here. First, the photons

which excite the electrons do so at the depth they are absorbed, and this depth of course

varies from case to case. The statistics follow an exponential decay characterized by an

optical penetration depth d (which is in turn derived from the optical constants of the ma-

terial, namely the imaginary part of the optical index of refraction via U x^ h= ln 1 + ey
^ hdy

-3

x

# ) such

that the probability of an electron being excited by a photon at a depth x is:
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(6.27)pabs x^ h \ exp -x/d^ h

Second, the electrons which are excited can then travel in any direction, so we must ac-

count only for those which have an initial momentum component towards the cathode-

vacuum interface. And third, an electron on its way to the surface will undergo scattering

- in metals, primarily electron-electron scattering - and if a single scattering event is suffi-

cient to reduce the electron energy below the work function, the probability of an excited

electron reaching the surface is the probability that it will not undergo a scattering event

during transport. This approximation is harsh, for scattering can not only change an elec-

tron's state unfavorably for emission; it can also change it favorably such that the electron

scatters into an energy state which can be emitted. However, since in a metal (for which

the MFD theory is intended) electron-electron scattering dominates, and since such scat-

tering events tend to reduce the energy of the excited electrons involved, and furthermore

since photon energies of interest are only slightly larger than the work function, our as-

sumption of one scattering event precluding emission is in large part justified. We can

write this probability of reaching the surface as:

(6.28)psurface x,}^ h \ exp -r }^ h/l k^ h^ h

where } is the angle of the excited electron's path relative to the surface normal, r }^ h is

the distance along that path to reach the surface, and l k^ h is the mean free path of the

electron as a function of momentum, and which incorporates the appropriate scattering

factors.
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Before we can write a complete expression for the total probability of an excited

electron reaching the surface, we must also define a supply function which describes the

distribution of electrons having a given momentum along the surface normal. This 1D

supply function is obtained by integrating over all transverse components of the Fermi-

Dirac distribution characterizing the electron energies, and is given by

(6.29) f k^ h= rbT'
2

m
a kln 1 + exp b n- E k^ h^ h^ h6 @

where n is the chemical potential, bT is one over the Boltzmann energy kBT , k is the

electron momentum, m is the electron mass, and E k^ h= '2k2 /2m.

Now, with the supply function, probability of absorption, and probability of

reaching the surface, we can combine factors and integrate over all possible absorption

depths, electron propagation angles, and electron momenta, normalizing to the population

of all excited electrons regardless of whether they propagate towards the surface or

whether they scatter on the way there:

(6.30)Fm =
k2 f k^ h

0

3

# dk sin}d}
0

r

# exp -x/d6 @dx
0

3

#

k2 f k^ h
0

3

# exp -r }^ h/l k^ h6 @sin}d}dk
0

r/2

# exp -x/d6 @dx
0

3

#

Note that we need not write out the integrals over azimuthal angle, since they are

normalized out in the end. Also note the limits of integration for the angle from the sur-

face normal: in the numerator, r/2 , and in the denominator, r. This reflects the fact that

only half the electrons ever have a chance of reaching the surface; half propagate away
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from the surface and deeper into the material. Lastly note that again the assumption of an

infinitely thick absorber is made, which is valid for typical experiments herein reported

where optical penetration depths are tens of nanometers.

Several simplifications may be made in order to permit more ready evaluation of

the scattering factor above. First, only electrons with energies permitting emission need

be considered. Second, the momentum integrations in the numerator and denominator

cancel if the mean free path, which in general is momentum-dependent, is considered a

constant of k = 2m n+ z^ h/'
2 , which is to say that most electrons in metals which can

be emitted have energies very nearly that of the barrier to their emission.

Evaluation of the integrals then gives, first over the depth x where the photon is

absorbed and electron initially excited,

(6.31)
exp -

d
x

9 Cdx
0

3

#

exp -
l k^ h

r }^ h
-
d
x

> Hdx
0

3

#
=

exp -
d
x

9 Cdx
0

3

#

exp -
l k^ hcos}

x
-
d
x

; Edx
0

3

#
=

cos}+
l k^ h

d
cos}

/ fm

and next over the angle with respect to the surface normal,

(6.32)Fm = 2
1

cos}+
l k^ h

d
cos}

sin}d} = 2
1

1 +
l k^ h

d
ln
d+ l k^ h

d
; E' 1

0

r/2

#

where it is worth repeating that we have assumed k = 2m n+ z^ h/'
2 . We note that the

integration in Eq. (6.32) is here performed in the MFD approach but will be delayed in
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the Moments-based approach, discussed in the subsequent section, until transport and

emission are integrated simultaneously.

The one term left undefined thus far for the transport probability is the mean free

path of an electron. Since we have heretofore expressed everything in terms of the elec-

tron wavenumber k, we need merely write the momentum as 'k, so the velocity is 'k/m,

and therefore defining relaxation time x as the time required to travel one mean free path

at a given velocity allows expression of the mean free path in terms of momentum and

such relaxation time:

(6.33)l k^ h= m
'k
x

The relaxation time is a function of both the energy of the photoexcited electron

and the energy of the scatterer. As such, it is also temperature-dependent. In metals the

relaxation time is dominated by elastic electron-electron scattering. In general, if the elec-

trons which are photoexcited are not photoemitted, their energy is dissipated via inelastic

electron-phonon scattering with the lattice over time, re-equilibriating the cathode tem-

perature after every laser pulse. If heat builds up this will impact the scattering via the

relaxation time, hence the quantum efficiency. Such effects can be highly temporal in na-

ture and Jensen's models account for such time-dependence. However, with low power

lasers such as the diodes in this work, such heating is negligible.

It is, nevertheless, critical to identify the appropriate relaxation time to use in Eq.

(6.33). We have already alluded to the two scattering mechanisms present in the electron
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gas model: electron-electron and electron-phonon scattering. Each has a characteristic

relaxation time (in other words, a characteristic mean free path the electrons would expe-

rience if that scattering mechanism were the only one in effect). To combine the two

relaxation times we make use of Matthiessen's Law

(6.34) x
1
=
xee Te^ h

1
+
xep Ti^ h

1

where xee and xep are the electron-electron and electron-phonon relaxation times, respec-

tively, and Te and Ti are the electron and ion (lattice) temperatures. To give an idea of

the magnitude of these terms, Jensen quotes in Ref. [67] the two relaxation times for

tungsten at 300ºC at the Fermi level. For electron-electron scattering the value is 5.26 fs

and for electron-phonon scattering the value is 0.948 fs. For copper at the same tempera-

ture the values are 75.29 fs and 9.383 fs respectively. Using Matthiessen's Law results in

an electron-phonon dominated relaxation time at 300ºC at the Fermi level. With decreas-

ing temperature the electron-phonon scattering also wins out. This is because the relax-

ation times scale with temperature as xee Te^ h \ 1/Te
2 and xep Ti^ h \ 1/Ti [114; 115]. But

again, this is for an electron with an energy at or about the Fermi level. For photoexcited

electrons well above the Fermi level the electron-electron scattering increases rapidly and

the associated relaxation time drops precipitously, because well above the Fermi level

there is no scarcity of initial and final states to scatter through. This is discussed in Ref.

[22], which updates the work in Ref. [67]. Since electron-phonon scattering does not have

such strong dependence on energy above the Fermi level, and remains near its Fermi lev-
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el value even while the electron-electron relaxation time drops rapidly, for photoexcited

electrons in general the electron-electron relaxation time will dominate in metals. (In

semiconductors, the low number of electrons in the conduction band and also the

bandgap-disallowed states mean a return to electron-phonon dominated scattering.)

Optical Considerations

The last and perhaps simplest term in the MFD formulation of QE given by Eq.

(6.22) is the reflectance term. We have already assumed all photons which are not reflect-

ed are absorbed (zero transmission), but since metals, for example, have reflectances of

perhaps 50% or more, this is a non-negligible detractor from the QE attainable by a given

cathode. A non-normal incidence affects the reflectance. In practice, for photoinjectors

utilizing a front-illuminated reflection mode photocathode (not a back-illuminated trans-

mission mode photocathode) there is always a non-normal incidence angle, since the pho-

toemitted electron beam itself must be extracted along the surface normal, hence the drive

laser beam and any associated mirrors or optics cannot use the same path.

6.1.5 The Moments-Based Approach

The above formulation of the quantum efficiency [75] used the Modified Fowler-

Dubridge (MFD) approach. This is an inherently 1D formulation which ignores the sur-

face-transverse momentum of the electrons in transport and at the emission barrier. It

therefore loses validity in cathodes utilizing a low work function coating, when the work
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function is much less than the chemical potential or photon energy, as discussed in Refs.

[67] and [22]. More recently a moments-based approach to the transport and scattering

problem has been developed, which includes a 3D momentum formulation and an ener-

gy-dependent scattering term with quantum mechanically correct formulations incorpo-

rating the initial energy distribution of the electrons [22].

The Moments-based approach modifies the way the photoemission current density

is calculated in Eq. (6.22). It is based on the idea that the transport and emission steps are

not separable. Instead, one can combine both steps in one integral over momentum. Intu-

itively this makes sense: the scattering rate is energy dependent and should be considered

as such after the electron is photoexcited, and then a sum over all electrons satisfying the

conditions for emission should be performed.

In the Moments-based approach, this sum is performed by integrating in momen-

tum space over all electrons propagating towards the surface, with the probabilities of ab-

sorption, initial state occupation, final state non-occupation, transport, and emission

lumped into a total distribution function. Such an integral is recognized as a type of mo-

ment, hence the term "Moments-based". For current density which is required in the cal-

culation of QE, the appropriate integral is the first moment of the surface-normal compo-

nent of momentum, kz = kcos} = 2mE/'2 cos} , where we continue to use } to

define the angle of electron propagation with respect to the surface normal in preference
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to the more conventional i in order to avoid any notational degeneracy with the mono-

layer coverage factor i used extensively in this work. We define

(6.35)M1 kz^ h= 2 2r^ h
-3 kzPtotal E,}^ hk

2 sin}dkd}dz
V/2

###

where we have used spherical coordinates to integrate over momentum space. We are

counting all electron states, so the factor of 2 in front does the double counting for elec-

tron spin. The factor of 2r^ h
-3 is just normalization to the volume in momentum space of

one electron state. V/2 represents the half-sphere of allowed electron vectors which point

towards the surface, defined by the polar angle varying from 0 degrees (surface normal)

to 90 degrees (surface parallel). This assumes that only electrons initially directed to-

wards the surface escape; in reality, a small number of electrons likely begin directed

away from the surface, scatter without loss of sufficient energy to preclude emission, and

are redirected towards the surface. We do not consider such a correction to our simplify-

ing assumptions here, although a Monte Carlo simulation could address the accuracy of

these assumptions if desired.

A transformation to an energy integral via k = 2mE/'2  gives

(6.36)M1 kz^ h= 2 2r^ h
-3 2r^ h2

1
'2

2m
c m

3/2

kzE
1/2Ptotal E,}^ hsin}dEd}

0

3

#
0

r/2

#

and further inserting the definition of the surface-normal component of momentum

kz = kcos} = 2mE/'2 cos}  leads to
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(6.37)M1 kz^ h= r2'4

m2

EPtotal E,}^ hsin}cos}dEd}
0

3

#
0

r/2

#

Since we want photoemission current density to use in Eq. (6.20) to find QE, we must

multiply the first moment (having units of the fourth power of k) by the appropriate con-

stants in order to obtain current density:

(6.38)J =- m
q'

M1 kz^ h

We can express this in the form Jensen uses in Ref. [6] by substituting the

Richardson-Laue-Dushmann constant and Boltzmann constant as appropriate:

(6.39)J =-2
kB

2

ARLD EPtotal E,}^ hsin}cos}dEd}
0

3

#
0

r/2

#

where ARLD =
2r2'3

mqkB
2

.

We turn now to the evaluation of the total emission probability. As stated previ-

ously, this term includes four multiplicative factors: transport probability without scatter-

ing, initial and final occupation probabilities, and emission probability. Within the trans-

port probability we continue to assume one scattering event is sufficient to preclude

emission, which is of course an oversimplification of the problem but a valuable one in

the search for an analytic emission solution. The occupation probabilities are Fermi-Dirac

functions. The transmission probability is energy dependent as before in the MFD ap-

proach, but under MFD it was assumed the entire energy of the photon was funneled into

the surface-normal momentum: an overly optimistic assumption which only works well

when in, for example, metals where the photon energy is typically comparable to the
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work function. We wish to go beyond the range of applicability of MFD (metals) to low

work function surfaces and semiconductors, and so it is critical that we make the trans-

mission probability functionally dependent now on the total excited electron energy times

an appropriate angular factor which takes only the surface-normal component of momen-

tum. Expanding, we write out the factors:

(6.40)Ptotal E,}^ h= fm E+ '~,}^ hfFD E^ h 1 - fFD E+ '~^ h6 @T E+ '~^ hcos
2}^ h

Upon noting photocathodes in this study undergo low-field, near room tempera-

ture operation, which is effectively the zero temperature zero field case, not only do the

Fermi-Dirac distributions become step functions in energy, but the emission probability

itself becomes a step function since the Schottky barrier lowering due to applied field is

negligible at experimentally applied fields of ~10kV/m herein reported, and any tunneling

effects are minimal, so all that is required for emission is for the normal component of

energy to exceed the barrier height. (Although, as an aside, at 1 MV/m fields typical of

thermionic dispenser operation, the lowering is 0.04 eV which has a nontrivial impact on

emission.) This leaves only the transport probability as a function of electron energy and

propagation angle, which was derived previously in Eq. (6.31) as

(6.41) fm E,}^ h=
cos}+ R E^ h

cos}

where R E^ h is the ratio of the optical penetration depth to the mean free path of an elec-

tron; the latter was defined in Eq. (6.33), but we here write explicitly the energy

dependence:
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(6.42)R E^ h=
l E^ h

d
=

'k E^ hx E^ h

md

Looking at these two equations, one would naively think that the smaller the opti-

cal penetration depth, the better the chance of transport without scattering and hence the

higher the QE, and that one could force this by making the cathode thinner. However, re-

call the earlier assumption which still applies here that all photons not reflected are ab-

sorbed. This only holds for cathodes appreciably thicker than the optical penetration de-

pth. If a thinner cathode were to be considered the theory would need to be revisited on

the basis of the thick cathode assumption.

Now, rewriting the total probability of emission with the changes detailed above,

we obtain

(6.43)
Ptotal E,}^ h=

cos}+ R E + '~^ h

cos}
#

1 -H E - n^ h6 @H E + '~- n- z^ hH E + '~^ hcos
2}- n- z^ h

with the initial state Fermi-Dirac step function turning off above the chemical potential,

the final state turning off below the barrier by the amount of the photon energy (below

which a photon could not excite an electron enough to escape), and the transmission

probability turning on at the barrier height. In the integral of Eq. (6.39), then, these step

functions set the limits of integration:

(6.44)J =-2
kB

2

ARLD E
cos}+ R E+ '~^ h

cos}
sin}cos}dEd}

n+z-'~

n

#
arccos { E^ h6 @

r/2

#
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where we have defined { E^ h as the energy ratio n+ z^ h/ E+ '~^ h , which for photoe-

mission is always less than 1. (This ratio comes from solving the step function corre-

sponding to transmission for } , and gives the cosine of the maximum angle from surface

normal for which an electron can still escape, often termed the "escape cone" of the elec-

tron.) We may additionally make the variable substitution x = cos} to get

(6.45)J = 2
kB

2

ARLD E
x+ R E+ '~^ h

x2

dx
{ E^ h

1

# dE
n+z-'~

n

#

As Jensen notes in Ref. [6], the angular integral may be approximated for { . 1

(where the photon energy is just enough to initiate photoemission over the barrier as is

often the case for metals) using

(6.46)
x+ R
x2

1-d

1

# dx =-R2 ln 1 -
1 + R
d

; E+ 1- R^ hd- 2
1
d2 .

1 + R
d

+ O d2^ h

so the current density is

(6.47)J = 2
kB

2

ARLD E
1 + R E+ '~^ h

1 - { E^ h
3

dE
n+z-'~

n

#

which Jensen approximates to leading order as

(6.48)J = 2
kB

2

ARLD

12 n+ z^ h 1 + R n+ '~^ h6 @

'~- z^ h
2 2n+ z- '~^ h

* 4

The dominant quadratic dependence on the photon energy less the work function (or

more precisely, the barrier height above the chemical potential), which was noted previ-

ously in the MFD approach, is seen here again.
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Since we are operating under the thick cathode assumption where every photon

not reflected excites an electron, we may restate the formulation of QE in Eq. (6.22) such

that the transport and emission probability terms are expressed as a current density ratio:

the emitted current to a theoretical "maximum" current defined as containing every pho-

toexcited electron regardless of directional or energetic considerations. This gives the

proportion of absorbed photons that result in emission of an electron; the optical reflec-

tion term gives the proportion of total photons which are absorbed.

(6.49)QE = 1- R^ h Jmax

J '~,z,n^ h

where the maximum current density covers the entire energy range of excited electrons

(still assuming zero temperature) and neither transport losses nor the emission barrier are

included (refer to Eq. (6.45) and note that the transport term of Eq. (6.41) is removed and

the limits of the energy integration are changed to allow escape of all excited electrons,

and that the angular integration is doubled to account for electrons propagating away

from the surface as well as towards it):

(6.50)Jmax = 2
kB

2

ARLD E 2xdx
0

1

# dE
n-'~

n

# =
kB

2

ARLD '~ 2n- '~^ h

QE in the low field, low temperature, thick absorber photocathode is therefore approxi-

mated by the analytic expression:

(6.51)QE = 1 - R^ h
6 n+ z^ h 1 + R n+ '~^ h6 @'~ 2n- '~^ h

'~- z^ h
2 2n+ z- '~^ h
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In the above expression or in the numeric evaluation of the Moments-based ap-

proach, for a coated low work function surface the barrier factor z should of course be

replaced by the effective work function calculated under GL theory with its dependence

on fractional monolayer coverage i.

6.2 Experimental Results

6.2.1 Comparison to Theory

With the foregoing theory in hand it is possible to not only compare to the experi-

mental results for cesiated tungsten, but also for potassium on tungsten and sodium on

tungsten as different alkali sub-monolayer coatings, and for potassium on silver as a sub-

strate with a different lattice constant (the significance of which will become clear short-

ly). This will serve to illustrate not only the correspondence of theory and experiment but

also to show the effect of f-factor on the comparison, which primarily comes to light

through the potassium and sodium data because, as will be seen, f is nearly unity for ce-

sium on tungsten.

When comparing theoretical predictions to experimental data where in the data

the amount of alkali on the surface is given in effective thickness (Å) as read by the depo-

sition monitor, it is necessary to re-scale from effective thickness to to percent monolayer

coverage. There is a linear proportionality between the two. Previously [116] this scaling

was done by first centering the peak QE of experiment with the GL peak, and then scal-

ing the measured coating thickness by the bond length of the bulk adsorbate (twice the
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covalent radius). However, this ignores the true meaning of f-factor as a way of describ-

ing any departure of the actual surface density at monolayer coverage from the idealized

close-packed hard-sphere value:

(6.52)Lmonolayer = t
vactual = t

f•vhard-sphere
= f

1/ 2Rc^ h
3

1/ 2Rc^ h
2

= 2fRc

where Lmonolayer represents the effective thickness of a monolayer (as would be reported

from the deposition monitor in experiment), vactual is the actual surface density of the ad-

sorbate, vhard-sphere is the idealized close-packed hard-sphere surface density (a square lat-

tice spaced by the covalent diameter), t is the bulk density of the adsorbate, and of

course Rc is the covalent radius.

Therefore it is necessary to modify the previous approach and use the scaling relationship

in Eq. (6.53) when converting from effective thickness to percent monolayer coverage:

(6.53)i = i0 + 100%•L/ f•2RC^ h

where L is the effective thickness measured in experiment, f is defined in Eq. (6.52) and

was previously discussed when introducing Eq. 6.8, RC is the covalent radius of the (al-

kali) adsorbate, and i0 is an offset factor accounting for any nonzero initial L in the data

set (an artifact of the time between zeroing the deposition monitor and having the sources

reach evaporation temperature) and for the actual work function of the surface prior to an

experiment (which may differ slightly from the ideal bare metal value).
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Comparison using the above scaling relationship was simply to find the appropri-

ate f-factor by matching the slope of the low-coverage side of the QE peak to theory us-

ing the scaling relation on the data set, with the electronic work function at monolayer

coverage set by the value reported in literature, if available, or by best fit (in the case of

Na:W). Each trial value of f results in adjustments to both the shape of the theoretical

curve (Section 6.1.3) and to the scaling of the data. On each of the following plots the f-

factor so determined is given as well as the literature values of covalent radius and work

function and the coverage offset factor.

Fig. 6.5 shows the comparison for cesiated tungsten, plotting QE vs coverage.

Note the f-factor is nearly unity, which is why previous work overlooked the importance

of f as a data scaling factor. The QE peak of 0.08% in the data is somewhat lower than

expected, since peaks of 0.11% have been seen for ion-cleaned tungsten, but the f-factor

allows for any surface contamination to also be accounted for in an effective lowering of

cesium surface density and allows a more accurate comparison to theory. In Fig. 6.6 the

departure of the f-factor from unity is clear with the K:W system, the same substrate as

for the Cs:W test. This lower f-factor be attributed to the way the potassium adatoms are

arranged on the tungsten surface. Whereas cesium atoms have a covalent diameter of 
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Figure 6.5: Theory vs experiment: cesium on sintered tungsten

Figure 6.6: Theory vs experiment: potassium on sintered tungsten
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Figure 6.7: Theory vs experiment: sodium on sintered tungsten

Figure 6.8: Theory vs experiment: potassium on silver
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5.06 Å, significantly larger than the 3.14 Å BCC lattice constant of tungsten (refer to Fig.

6.10 to see how this results in a 4:1 ratio of surface number density of tungsten to that of

cesium on the [100] face), potassium atoms have a covalent diameter of only 4.06 Å.

Therefore they can occupy the same lattice sites as cesium, but being smaller hence far-

ther apart, have a much weaker dipole-dipole interaction -- and the more sparse coverage

at a monolayer is of course the definition of a lower f-factor. Now in Fig. 6.7 for the

Na:W system, the covalent diameter of sodium is 3.14 Å, so they can have a surface

number density equal to that of tungsten and therefore exhibit the close-packing interac-

tion with QE peak similar to cesium. The last example takes another look at potassium,

but this time for a silver substrate. Silver is FCC but has a lattice constant of 4.09 Å

which allows closer packing of the potassium atoms (surface number density still 4:1

with that silver) and a stronger dipole-dipole interaction, which in turn manifests itself in

the higher f-factor for the K:Ag system of 0.8 compared to 0.4 for K:W. In all tungsten

cases the magnitude of the theory compares very well with experiment -- within 12.5% at

the QE peaks. For silver the magnitude of the theory compares with experiment within a

scale factor of 4.2 at the QE peak.

6.2.2 Peak QE Variation between Deposition and Desorption

Some depositions show a QE peak during deposition which is somewhat lower

than the desorption peak during heating of the substrate afterward. Such a case is seen in

the data set illustrated in Fig. 6.9 for cesium on 70% dense sintered tungsten.
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Figure 6.9: Peak QE discrepancy: deposition vs desorption, Cs:W

In order to explain the apparent discrepancy between the initial and final QE

peaks in cesium tests like that shown in Fig. 6.9 (hereafter termed the deposition and des-

orption peaks, respectively) we turn to a discussion of the adsorption of submonolayers of

cesium on tungsten. There are three arguments for peak QE variation: local random ce-

sium adsorption, local substrate nonuniformity including contamination, and global depo-

sition nonuniformity. Each will be considered in turn and the implications discussed.

For the random cesium adsorption argument we use the hard-sphere model to vi-

sualize what is happening on the atomic scale. Tungsten has a BCC lattice with a lattice

constant very nearly equal to the radius of a cesium atom, such that cesium atoms in the
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hard-sphere model sit on four substrate tungsten atoms. A monolayer of cesium on the

[100] face of tungsten is shown in Fig. 6.10.

Figure 6.10: Cs:W, hypothetical 100% uniform coverage, hard sphere model (to scale)

An ideal, evenly spaced half-monolayer simply has half the number of cesium atoms, as

shown in Fig. 6.11.

Figure 6.11: Cs:W, hypothetical 50% uniform coverage, hard sphere model (to scale)

And with the adsorption of cesium atoms on the surface during an external evaporative

deposition one could imagine coverage of 50% but distributed randomly (where for sim-

plicity we have considered only the original monolayer adsorption sites not intermediate

ones) as in Fig. 6.12:
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Figure 6.12: Cs:W, hypothetical 50% random coverage, hard sphere model (to scale)

Clearly the QE in the two illustrated cases of 50% coverage would not be the same be-

cause of the asymmetric dependence of work function on (local) coverage, which was

plotted in Fig. 6.1. The QE of the randomly covered surface, in which most cesium atoms

have an adjacent occupied adsorption site (in contrast to the uniformly covered surface

where no adjacent adsorption sites are occupied), would be reduced. This is because the

dipole lowering of Eq. 6.10 has a maximum effect near 50% coverage (as seen indirectly

in Fig. 6.1 as well) and therefore if an individual atom sees adjacent occupied sites this

reduces the atomic dipole moment locally, and reduces the QE globally.

The random-adsorption argument relies on cesium atoms remaining stationary

throughout the experiment -- frozen on an atomic scale. However, it is known from suc-

cessful dispenser operation that cesium atoms are diffusively mobile over many hundreds

of microns through the tungsten pores and over many microns on the surface at dispenser

operating temperatures of approximately 120 ºC and higher. It would be naive to say that

at room temperature the cesium atoms are frozen in place and cannot hop locally from

adsorption site to adsorption site. A more telling observation is that a properly ion-
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cleaned sintered tungsten surface can exhibit an identical deposition and desorption peak

in QE at room temperature [20]. Since the random-adsorption argument would require

that the randomly deposited submonolayer would result in a lower peak QE during depo-

sition than during desorption, and such is not the case in well-controlled experiment, the

ability of cesium atoms to diffuse on an atomic scale even at room temperature is

indicated.

This is an interesting conclusion to obtain from a space-averaged, time-averaged

measurement like QE, but it is supported by the literature on alkali diffusion on refractory

metal substrates. The problem of hopping is discussed in detail by Gomer [117] and has

been modeled for cesium diffusion [71]. Gomer also notes that adjacent chemisorbed

dipoles of Cs on W are almost purely ionic at low coverages and have an interaction ener-

gy from dipole-dipole repulsion characterized by Jd-d = p2/2r3, where p = 2dq is the ad-

sorbate dipole moment with charge q a distance d above the surface and image charge -q

a distance d below it, and where r is the dipole-dipole separation. For cesium at low

coverage q = e, e being the (positive) unit of charge, corresponding to a nearly ionic ce-

sium adatom. For cesium at higher coverages it is possible to have q 1 0.5e, but this still

results in a strong dipole-dipole repulsion particularly since the atoms are more densely

adsorbed. The dipole-dipole interaction in part mediates the uniformity of coverage ob-

tained by hopping (and may explain some of the strong coverage dependence in the evap-

oration rate as well). However, although we have explained why it is possible to have an
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experiment where the deposition and desorption peak are the same, we are now left with-

out an explanation for cases in experiment where the deposition and desorption peak QEs

are different, so we turn to the remaining arguments of local substrate nonuniformity and

global deposition nonuniformity.

Local nonuniformity of substrate is possible due to different crystal faces, rough-

ness, contamination, etc. The effect is to have large patches of the surface exhibit differ-

ent work functions, different bond strengths with adsorbed cesium, and different QE for

the same surface density of adsorbed cesium atoms. The QE varies because the f-factor

will vary for the different substrate patches. Thus the ideal coverage is not the same in all

areas in order to peak the QE.

If the diffusivity of the cesium were not enough to allow it to move from patch to

patch, at room temperature there would be no improvement in peak QE. Heating would

allow the cesium to diffuse on the micron scale required to traverse such patches and

would allow optimal cesium coverage to be obtained on each patch, thereby maximizing

QE. This would be energetically favorable since it would also maximize the bond

strength of the cesium atoms. This effect is seen in heat-cleaned (anneal-cleaned) sintered

tungsten where the surface still may have patches of contaminants on it. Peak QE during

deposition is indeed lower than during desorption.

A final case not yet explained is why an ion-cleaned surface may exhibit different

QE peaks from deposition and desorption, because in this case the surface should be
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atomically clean and so the patch effect with contaminants does not come into play. As

previously noted, experiments do in fact normally see identical deposition and desorption

peaks for ion-cleaned substrates. The question is then, what is different about the experi-

ments where the QE peaks vary? For this we turn to the global deposition nonuniformity

argument.

Suppose that one of the alkali evaporation sources is not pointed directly at the

cathode. The rate of deposition is fastest in the center of the evaporant "beam" and falls

off from there. If not centered on the cathode a higher deposition rate can occur on one

side of the cathode compared to the other, causing it to go through its maximum-QE

coverage first. By the time the slow-deposition side of the cathode reaches maximum

coverage, the QE of the fast side is already past peak and lowered. The average QE of the

cathode overall is thus reduced, and the peak QE is less than that for a uniformly deposit-

ed cesium sub-monolayer.

After more than a monolayer is deposited and then heating is performed to initiate

fast evaporation, that evaporation has a strong coverage dependent rate (known from

thermionic dispensers to be i n where n is a very large power law depending on adsorbate

and conditions, typically between 10 and 20), tending to result in a faster loss of cesium

from the more cesiated portions and a slower loss from the less cesiated portions, evening

out the coverage overall and hence a resulting in a higher desorption peak QE compared

to the initial deposition peak. (The evaporatively-induced coverage smoothing is also

present for an operating dispenser in which diffusion and evaporation are occurring: this
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may improve the uniformity of emission from a dispenser both globally and locally on

the scale of the pore-to-pore spacing. Of course at temperatures with low evaporation,

diffusion alone can result in more uniform emission.)
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Chapter 7: QE of Semiconductors

7.1 Theoretical Basis

The quantum efficiency of semiconductor photocathodes is a broad topic. The in-

tent here is to provide a useful discussion of why the QE differs so greatly from metals,

what physics is behind that, how the QE of select alkali antimonides in particular can be

effectively modelled using those physics, and how such understanding can guide future

work. This will lead into the presentation of experimental results on the fabrication of al-

kali antimonide photocathodes and some characterization of their properties.

7.1.1 Introduction and Contrast with Metals

In stark contrast to the limited quantum efficiency of metals (which in the case of

copper, for instance, is only 0.014% even at a UV drive laser wavelength of 266 nanome-

ters), the quantum efficiency of semiconductors is quite good: of the order of 1-50%, de-

pending on material choice and drive laser wavelength. Response times are longer than

for metals, from 1-10 picoseconds or more. These longer response times can benficially

damp power fluctuations on the drive laser pulse, but if too long, prevent the emission of

short, well-defined picosecond bunches of electrons for immediate acceleration in the op-

timum few degrees of the RF standing wave in the accelerator cavity.

Better QE stems from differences between metals and semiconductors on all

fronts: in the optical characteristics of the materials, in their scattering and transport prop-

erties, and in the emission barrier. Each of these will now be discussed in turn with ap-

Chapter 7: QE of Semiconductors 206



propriate theoretical support analagous to the successful Moments-based approach used

for metals in Chapter 6.

7.1.2 Moments-Based Approach for Semiconductors

We begin by restating the Moments-based approach for calculating current densi-

ty of Eq. (6.39) and Eq. (6.40) for metals and noting that this is yet to be modified for

semiconductors:

(7.1)J =-2
kB

2

ARLD EPtotal E,}^ hsin}cos}dEd}
0

3

#
0

r/2

#

(7.2)Ptotal Einitial,}^ h= fm E + '~,}^ hfFD E^ h 1 - fFD E + '~^ h6 @T E + '~^ hcos
2}^ h

where for clarity the energy has been emphasized as the initial electron energy before

photoexcitation.

For semiconductors we must incorporate a consistent and appropriate convention

for energy given that the bottom of the conduction band (which, as for metals, is taken as

our zero) is now at the top of a bandgap, and the initial state for a photoexcited electron is

below the bandgap in the valence band. Thus the total photoemission probability as a

function of energy and electron propagation angle with respect to surface normal shall be

defined with reference to the energy of the final state of the electron in the semiconductor,

whereas for metals it was with reference to the initial state.

(7.3)Ptotal Efinal,}^ h= fm E,}^ hfFD E - '~^ h 1 - fFD E^ h6 @T Ecos2}^ h
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As for metals we make the low-temperature approximation which turns the Fer-

mi-Dirac functions into step functions. The transport probability is the same as previously

derived. However, the transmission probability as a function of energy must be modified:

as Jensen discusses in Refs. [79; 118], this is a triangular barrier described by

(7.4)D E k^ h^ h=
2klp + lp

2 + k2
^ hexp - 3f

4
lp

3
a k

4klp

where k = 2mE/' , lp = 2m/'2
^ h

2 E - Ea^ h
2 + p2f4/36 @1/4 , f = 2mF/'2, F is the applied

electric field times the electron charge, and p . 2/5. Under the low field approximation

lp . 2m E- Ea^ h/'
26 @1/2. Also under the low field approximation the transmission proba-

bility described above is zero below the electron affinity, such that tunneling is neglected,

we may make the same step function argument for the turn-on of the transmission proba-

bility as for metals, resulting in an escape cone which places limits on the angular mo-

ments integration. However, unlike for metals, the transmission probability is not con-

stant with respect to electron energy above the escape cone limit. Therefore we write for

semiconductors

(7.5)

Ptotal E,}^ h= fm E,}^ hH E - Ea^ h 1 -H E - '~- Eg^ h^ h6 @H Ecos2}- Ea^ hD Ecos2}^ h

with the transport probability without collision, fm, defined by Eqs. (6.41) and (6.42), and

where Ea is the electron affinity (defined with reference to the bottom of the conduction

band as usual) and Eg is the bandgap.
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Now the step function approximations discussed can be used to place the appro-

priate limits on the angular and energy integrations of Eq. (7.1).

(7.6)J =-2
kB

2

ARLD Efm E,}^ hD Ecos2}^ hsin}cos}dEd}
Ea

'~-Eg

#
arccos Ea/E^ h

r/2

#

Additionally substituting x = cos} yields

(7.7)J = 2
kB

2

ARLD Efm E,x^ hD Ex2
^ hxdEdx

Ea

'~-Eg

#
Ea/E

1

#

with, as for metals,

(7.8)fm E,x^ h=
x+

'k E^ hx E^ h

md
x

.

The important distinctions between the application of the moments approach to current

density for semiconductors and for metals have now been outlined: a careful definition of

energies and limits of integration, and a modified transmission probability, now triangular

not step-like.

The evaluation of QE proceeds as a numerical integration to obtain current densi-

ty, followed by, as for metals, the calculation

(7.9)QE = 1- R^ h Jmax

J '~,z,n^ h

where analogously to the case of metals,

(7.10)Jmax = 4kB
-2ARLD x dx E dE

0

'~-Eg

#
0

1

# =
kB

2

ARLD '~- Eg^ h
2
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7.1.3 Electron Transport and Scattering

The relaxation time found in the transport probability requires reconsideration for

semiconductor materials. The scattering processes emphasized are not the same as for

metals. Matthiessen's rule can still be used to sum contributions from all processes, but

one must consider polar optical phonons, ionized impurities, and acoustic phonons

separately:

(7.11)
x E^ h

1
.
xpo E^ h

1
+
xii E^ h

1
+
xac E^ h

1

In addition the mass found in the transport probability should be considered the effective

mass for semiconductors, which in the "alpha-semiconductor" model [24] is written as

(7.12)m = Eg/R3^ hm0

where the bandgap, Rydberg energy (13.6 eV), and electron rest mass in vacuum are

identified.

In Ref. [79] by Jensen and Montgomery, using cesium antimonide as a representa-

tive semiconductor at a drive laser wavelength of 532 nm, the relaxation times for the

scattering processes mentioned are calculated and reported under realistic conditions. For

a temperature of 300 K and an impurity concentration of 1018 per cubic centimeter, polar

optical photon scattering is found to dominate. The relaxation time for polar optical scat-

tering is calculated under the above conditions as 27 femtoseconds. Acoustic phonon

scattering is much less strong, at 700 femtoseconds, and ionized impurity scattering is

negligibly weak at 4400 femtoseconds. These values will vary with electron energy
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(hence photon energy), with phonon energy (hence temperature), and with impurity

concentration.

7.1.4 Optical Absorption

In Eq. (7.9) the reflectance must be calculated for the semiconductor in question.

Again, this equation makes the thick cathode assumption: that the photocathode thickness

is much greater than the optical penetration depth so that all light not reflected is ab-

sorbed. Just as for metals, the optical constants of the material (n and k, the real and

imaginary parts of the refractive index) are used to calculate R, which for normal inci-

dence is simply:

(7.13)R =
n + 1^ h

2 + k2

n - 1^ h
2 + k2

(The extinction coefficient k can also be used to calculate the optical penetration depth

via d = m/4rk.) The reflectance for semiconductors tends to be lower than for metals:

this is good, since this implies higher absorption and hence higher QE. The optical pene-

tration depth tends to be larger, which along with comparably larger electron escape de-

pth, increases response time compared to metals.

A Lorentz model, fit to literature data, can be used to calculate optical constants if

they are not reported explicitly for the photon energies of interest. This process is detailed

in Ref. [24] fit to data from Ref. [119] and the resulting curves are shown in Fig. 7.1.
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Figure 7.1: Cs3Sb optical parameters

Some experimental variation in these parameters from sample to sample is to be expect-

ed, and can cause the resulting reflectance to vary as well, for example in some multial-

kalis changing R over the range 0.2 to 0.3 for a green drive laser [24]. This should be ex-

pected to cause the QE to differ from experiment, solely due to the variation in optical

parameters, by of order 10% of its calculated value.

7.1.5 Comparison to Literature

The calculated QE of Cs3Sb based on the Jensen semiconductor theory is shown

in Fig. 7.2. It is compared to data from W. E. Spicer, Ref. [120]. Given that there are no

adjustable parameters in the theory, and that some variation in sample properties may be
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expected in practice as discussed for reflectance, it is remarkable that agreement is within

a scale factor of 15%.

Figure 7.2: Theory vs Literature Data: QE of Cs3Sb

7.2 Experimental Results: Cs3Sb

7.2.1 Fabrication

The first alkali antimonide to be discovered as a photocathode material was ce-

sium antimonide. As one of the simpler antimonides to fabricate, it was attractive for this

initial line of research, since the variables in the formation process are fewer than, say,

for the multialkalis. 

The initial experimental tests with cesium antimonide used a thick cathode in or-

der to demonstrate the QE potential of the material. Those results follow. With a thick
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cathode the substrate presumedly contributes little to the optical or transport characteris-

tics of the deposited film.

7.2.2 Measured QE

The fabrication process for cesium antimonide cathodes is shown visually in Fig.

7.3.

Figure 7.3: QE during fabrication of Cs3Sb
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The data shown is for an initial one hundred Ångström layer of antimony on a sin-

tered tungsten substrate, followed by cesium as required to cause the QE to peak. The fi-

nal thickness of the cathode after fabrication cannot be measured, nor can it be inferred

from the amount of cesium deposited since it is unclear how much cesium actually ad-

sorbs and reacts, and how much evaporates during the process of fabrication. However,

the relation between the initial antimony thickness and the final cesium antimonide thick-

ness has been reported to be approximately 1:5.9 [103]. Therefore this implies a final ce-

sium antimonide thickness of approximately 590 Ångströms, which clearly satisfies the

thick cathode assumption in the theory comparison which will follow.

During fabrication the continual external evaporation of cesium onto the hot cath-

ode surface must must be maintained so that, at a minimum, it exceeds the loss of cesium

due to evaporation of cesium from the hot surface. For this reason, when the cathode is

cooled, the deposition of cesium is tapered off until a peak in QE is reached. Additional

improvement in QE occurs after the end of deposition during final cooling.

Unfortunately the experimental apparatus is not fitted with the ability to perform

detailed surface diagnostics which might confirm that the stoichiometry of the cathode is

in fact 3:1 Cs:Sb. Variations in stoichiometry have been reported in the literature [121].

The best indication that near-ideal stoichiometry has been achieved in this case is that the

QE was carefully peaked prior to cooling the cathode. Further support comes from the
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comparison in the next section where experimental data has excellent correspondence to

the independently derived theory already summarized.

In Fig. 7.4 the response of the cathode to cooling following initial fabrication and

the resulting stabilization in QE are shown. In the UHV conditions of the chamber, with

nanotorr vacuum maintained after cooling the sources and cathode and with oxidizing gas

partial pressures at least two orders of magnitude below that (in most cases below the

measurement resolution of the RGA), the cathode lifetime is excellent.

For all alkali antimonide tests, the higher QE achieved than for metals requires a

higher applied field so that the photocurrents resulting from the drive lasers are not space-

Figure 7.4: QE vs temperature during fabrication and cooling
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charge limited, and remain linear with optical power. This was ensured by increasing the

bias voltage of the isolated cathode-anode circuit to achieve up to approximately 30 kV/

m, more than required to achieve linearity. (Alternatively neutral density filters could

have been used to attenuate the laser power.)

7.2.3 Comparison to Theory

The same theory used to calculate the QE of cesium antimonide in Section 7.1

[24] is compared to the peak QE obtained at the five wavelengths measured in Fig. 7.4.

The results are graphed in Fig. 7.5. The theory is not a fit to the data. This is a predictive

theoretical curve based on fundamental constants and measured values reported in litera-

ture, with no scaling or fitting parameters used.

Figure 7.5: QE of Cs3Sb, experimental results vs predictive theory
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While there is no way outside of detailed surface analysis techniques (e.g., x-ray spec-

troscopy or Auger depth profiling) to probe the exact stoichiometry of the cathodes fabri-

cated at Maryland, it is indicated by literature that optimum QE occurs at the proper stoi-

chiometry, and since we have peaked the QE in experiment, it is reasonable to conclude

that the correspondence between data and theory is much more than coincidental. Refer-

ring also to Fig. 7.2 it is clear that these results are consistent with experimental data in

the literature.

7.3 Experimental Results: Na2KSb(Cs)

7.3.1 Fabrication

The trialkali material cesium sodium potassium antimonide, where the bulk is

formed by sodium potassium antimonide and the surface layer is cesium-based, has more

attractive thermal stability than cesium antimonide. (See Section 8.4.) For this reason it

was chosen to follow the cesium antimonide experiments. Fabrication entailed upgrades

to the experimental apparatus to allow multiple alkali sources to be used simultaneously

or in succession. 

As described in Sections 4.8 and 5.4, the cathode test chamber at UMD allows re-

peated deposition and cathode cleaning while monitoring QE during the fabrication

process. Because there is no load-lock on the evaporative source flange, an exchange of

evaporative sources necessitates a return to atmosphere and subsequent bakeout of the
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chamber to achieve ultrahigh vacuum again. Obviously this should be minimized. To that

end, most tests extend life of the sources in the chamber by fabricating thinner cathodes

than are standard elsewhere -- thinner, even, than the optical penetration depth in some

cases -- allowing repeated experimental runs without quickly depleting the evaporative

materials. The QE thereby achieved should not be construed as representative of the max-

imum achievable. However, the response of the material to heating and contamination

and the resulting changes in QE are expected to follow the same behavioral trends as for

thicker cathodes, and as such, allow us to obtain insights into the suitability of such mate-

rials for dispenser applications even though the films in question are thin.

At the same time, thin cathode structure invalidates the assumption of the 1-R

term in the QE calculated by theory, with the potential not only for less absorption in the

cathode itself, but also for interaction with the substrate in the form of interference effects

or photon penetration into the substrate and subsequent photoexcitation there. These are

not addressed by the present form of the theory. Literature data for the trialkali is more

difficult to obtain (and in fact because of the fabrication complexity, wide variation in

such parameters might be expected), and therefore all these points preclude a comparison

of trialkali data to theory such as was performed for cesium antimonide. Nonetheless, the

practical outcome of significant QE with the trialkali material on dispenser-type sub-

strates is an important demonstration and may also serve to guide future theoretical de-

velopment, and is a necessary precursor to future high-QE rejuvenation studies.
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7.3.2 Measured QE

Shown in Fig. 7.6 is the fabrication process for sodium potassium antimonide. Ev-

ident in the process is the cyclical deposition of consecutive layers of antimony, sodium,

and potassium, and the final application of a cesium surface treatment. The sintered tung-

sten substrate (60% dense) was annealed to 700C and then argon ion cleaned for a

standard 40 minutes as detailed in the procedures chapter. The deposition of material was

done consecutively not simultaneously, and the QE was peaked in each step. The se-

quence of depositions is shown in Table 7.1. Total material deposited (not all alkali

would have remained due to evaporation which would be higher for K than Na and high-

est for Cs) was 46 Å Sb, 27 Å Na, 38 Å K, and 27 Å Cs.

Figure 7.6: QE during fabrication of Na2KSb(Cs)
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Material Thickness deposited (Å) Temperature (ºC)

Sb 12 160-155

Na 15 155

K 10 155-145

Sb 15 145

Na 7 145

K 7 145-140

Sb 10 140

K 6 140

Na 3 140

K 7 140

Sb 9 140

K 8 140

Na 2 140

Cs 27 140

Table 7.1: Trialkali fabrication steps

The prompt response of the QE to the end of cesium evaporation and also to the

end of active heating indicates a temperature-sensitive surface equilibrium between the

cesium being added by external evaporative deposition and that being lost by tempera-

ture-dependent evaporation. As confirmation, note the behavior of the green drive laser.

Best QE is obtained at the point in the procedure where the cesium deposition is ended,
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and intentionally prior to cooling the cathode. This allows a subsquent evaporation of ce-

sium and strongly affects the emission barrier, causing the QE in the green to retreat

steeply from its near-percent-level peak. An ideal QE will therefore require a careful ap-

plication and/or maintenance of the correct amount of cesium on the surface.
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Chapter 8: Cesium Loss and Recesiation

8.1 Introduction

The principle of the cesium dispenser photocathode is first, that loss of cesium in

that delicate surface coating contributes to the loss of QE over time, and second, that re-

placing that cesium in situ (where cesium is supplied via diffusion from a subsurface

reservoir to the surface) will rejuvenate the QE, a process known as recesiation. We will

show that cesium lost to heating and evaporation, and the subsequent loss of QE, is rev-

ersible by external recesiation (cesium evaporated from an external source onto the cath-

ode surface) as well as by in situ recesiation, as discussed in Section 8.3.1. Section 8.3.2

addresses the important question of whether recesiation can reverse the QE lost due to

contamination by oxidizing gases which can be found in the vacuum of a photoinjector.

Although the focus in contamination and recesiation experiments detailed here is on ex-

ternal recesiation, the results serve to support in situ recesiation as well, validating the ce-

sium dispenser photocathode concept.

Before opening experimental results we discuss the mechanisms for cesium loss,

and then experimental data from cesiated metals and cesium-based semiconductors.

8.2 Cesium Loss Mechanisms

High efficiency photocathodes often rely on a low work function coating (in this

case, cesium) which is quite sensitive to vacuum conditions and contamination by back-
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ground gases present in the environment of the photoinjector. The reduced lifetime of ce-

sium-based cathodes in operational conditions, as shown in Fig. 1.2, is due in large part

to degradation of the delicate low work function surface conditions characteristic of these

cathodes. Cesium, as the work function lowering material, is unfortunately lost under

several mechanisms, resulting in an increase of the average work function and a reduced

QE and lifetime. Investigation of this process is critical in support of cesium dispenser

photocathode development. The mechanisms for cesium loss discussed here, in turn, are

evaporation, ion back-bombardment, contamination, and dissociation.

8.2.1 Evaporation

Cesium has one of the lowest melting points of any metal at 28.44 ºC, second only

to mercury. It should be no surprise that it then has high vapor pressures and evaporation

rates even at modest temperatures (1 Pa at 144.5 ºC). These bulk properties provide an in-

dication that monolayer and sub-monolayer films of cesium should be prone to evapora-

tion, but the evaporation rates of such coatings will differ from the bulk because cesium

bonds differently to various substrates. For instance, cesium on anneal-cleaned, polished,

polycrystalline tungsten has been measured to have a sub-monolayer evaporation rate of

0.009 Å/s and a multiple-monolayer evaporation rate of approximately 0.214 Å/s at tem-

peratures less than 200 ºC [20]. For comparison, bulk cesium's vapor pressure of 7.5x10-2

Torr at 195 ºC indicates (for a 5 Å monolayer thickness) an evaporation rate of a remark-

ably fast 375,000 Å/s. Evaporation data from semiconductors has been published [122]
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and cesium has been reported to have a vapor pressure equivalent to a sub-monolayer

evaporation rate from sodium potassium antimonide of approximately 0.02 monolayers/

hr at 150 ºC, or 0.00003 Å/s assuming (as for coated metals) a monolayer thickness of the

covalent diameter of cesium, about 5 Å.

8.2.2 Back-bombardment

Under the extremely strong field gradients which accelerate negatively charged

electrons away from the photocathode to high energy, any positive ions present in the

vacuum environment near the cathode will find themselves accelerated in the opposite di-

rection, impacting the cathode at high energy. This is not as critical in RF guns where the

field cycles at frequencies of approximately a gigahertz, but in DC guns back-bombard-

ment is a limiting factor on cathode lifetime. DC gun photocathode lifetimes are often

specified by charge extracted rather than hours, days, or weeks of operation. The cesiated

(NEA) GaAs cathodes at Jefferson Lab's DC photoinjector have a lifetime of 2000 C/

cm2. With an average current of 10 mA this corresponds to a few hundred hours of

operation.

8.2.3 Contamination

Historically there have been numerous examples of the sensitivity of cesium-

based photocathodes to contamination, particularly to reactive gases. The Boeing/LANL

433 MHz RF gun, achieving world-record 32 mA average current under operation in
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1992, was reported as having contamination-limited lifetime of its CsK2Sb cathodes of,

on average, just 2.3 hours. There were elevated levels of water vapor present in the gun

which were particularly detrimental. The cesium telluride (Cs2Te) cathodes used at PITZ

in Germany were discovered in 2007 to exhibit unnaturally low lifetime; subsequent in-

vestigations revealed the presence of fluorine contamination from Teflon parts elsewhere

in the vacuum chamber [123]. In fact, literature on the whole indicates that the operation

of high quantum efficiency photocathodes in RF guns in general has been contamination-

limited.

8.2.4 Dissociation

If a high quantum efficiency cathode such as a member of the alkali antimonide

family is heated during operation in the photoinjector (whether that be RF heating or laser

heating) and the temperature of the cathode rises too high, it is possible for dissociation

of the semiconductor compound to occur. Dissociation energies and their corresponding

(calculated) temperatures of maximum rate of dissociation are shown in Fig. 8.1 for sev-

eral alkali antimonides (adapted from Dolizy and Groliere, Ref. [122] ).

The thermal compatibility of the antimonides (or lack thereof) with dispenser

photocathode technology is of concern in this work. Cesium dispenser operating tempera-

tures are normally in excess of 150 ºC, and therefore it is expected from Fig. 8.1 that the

more temperature-stable antimonides, such as Na2KSb, will prove more suitable as a high

quantum efficiency dispenser coating. Ref. [122] also notes that the loss of cesium from a
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Figure 8.1: Dissociation Energies and Temperatures for Alkali Antimonides

monolayer on the bialkali Na2KSb amounts to 0.02 monolayers per hour at 150 ºC. As

long as the cesium resupply rate from the dispenser exceeds this (as is indicated by dis-

penser tests at Maryland), thermal compatibility is promising.

Having introduced the loss mechanisms for cesium, we now turn to a discussion

of experimental results for cesiated metals and for cesium antimonide: the loss of QE and

its possible recovery via recesiation. Heating and contamination are tested for metals, and

heating for cesium antimonide (since the dissociation energies indicate dissociation and

subsequent loss of cesium during normal dispenser operation is a possible show-stopper

for use of that material with dispenser photocathodes). Back-bombardment is not tested
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directly, but the use of an argon ion gun of 6.5 keV beam energy to clean the cathode

substrate between experiments should indicate that elevated levels of back-bombardment

can be extremely detrimental.

8.3 Cesiated metals

8.3.1 Heating

Following a standard 40-minute, 30 milliCoulomb argon ion beam cleaning at 6.5

keV, cesium was deposited onto a 60% dense porous tungsten substrate from an external

evaporative source (Alvatec). The cathode was then heated to observe the evaporative re-

sponse of the cathode's monolayer cesium coating. This substrate is precisely the type

used in the cesium dispenser, and so the response is also the behavior of cesium evaporat-

ing from the dispenser, isolated from the effect of any cesium resupply.

As the cesium evaporates it retraces the submonolayer peak in QE seen in the ini-

tial deposition. The early-time behavior is faster than the late-time, low-coverage evapo-

ration, illustrating the strong coverage dependence of the evaporation rate even at sub-

monolayer coverages. The retraced peak QE is higher than the initial deposition peak QE,

however. Possible explanations for this, including patchy contamination (unlikely for ion

cleaned substrates) or non-uniform deposition across the cathode face (more likely with

Alvatec sources than with SAES sources because of narrower alkali emission angle),

were discussed at length in Section 6.2.2.
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Figure 8.2: Cs:W deposition (100 ºC)

Figure 8.3: Cs:W evaporation
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8.3.2 Contamination and Recesiation

For contamination and recesiation tests, a peak-QE submonolayer coating of ce-

sium was applied externally onto a polished, polycrystalline silver substrate. Three conta-

minant gas species were tested, based on the fact that oxidizing gases are known to be

detrimental to cathode lifetime in the vacuum of typical photoinjectors [58; 124]: carbon

dioxide, oxygen, and nitrous oxide. Purity of the gas leak was assured by not permitting

background partial pressure >1% for any oxidizer present other than the one under test.

The course of the experiments introduced in Fig. 8.4, are shown in Figs. 8.5, 8.6, and 8.7

[106]. In each case, the initial QE is that of clean silver at 375 nm with an optimal sub-

monolayer coating of cesium. A sharp decrease in QE denotes contamination, and a sub-

sequent increase in QE denotes recesiation. Full rejuvenation of QE was achieved in each

case.

The procedure in each case was as follows: first, a controlled gas leak of a select-

ed contaminant gas known to degrade QE was performed on the chamber and an RGA

analysis of the gas constituency was done to determine the purity of the gas supply. The

chamber was re-evacuated. Next, the 1 inch diameter silver substrate was argon ion

cleaned for 30 minutes at 5 kV and 10 mA. An external evaporative source of cesium

(Alvatec) was heated gently until the optimal sub-monolayer coating of cesium was de-

posited on the silver substrate such that QE was maximized (typically 2-3 Angstroms). A

timed exposure to a carefully monitored pressure of the gas from the controlled leak was

used to contaminate the cathode and cause QE to fall. Immediately following re-evacua-
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tion, the surface was recesiated using the external evaporative source. QE rise was moni-

tored and the recesiation was ended after the QE again peaks. The final QE peak was

compared to the initial QE peak to determine if recesiation was effective in rejuvenating

the cathode.

CO2 tests were conducted using a background gas composition of 75% CO2 and

the remainder residual levels of cathode-inert gases (H2, N2, Ar). N2O tests, due to limita-

tions in the gas supply system, were conducted under a background gas composition of

10.2% N2O and the remainder again cathode-inert gases to the 1% level. O2 tests were

conducted with background gas composition of 15% O2 and the remainder cathode-inert

gases.

 

Figure 8.4: Contamination and recesiation procedure (QE vs time)
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Figure 8.5: Recesiation of Cs:Ag after CO2 contamination

For the case of CO2, repeatability of rejuvenation is shown in Fig. 8.5 after vari-

ous levels of contamination. It is clear that full rejuvenation is possible via recesiation.

The small peaks at the end of each rise in QE are due to slight overcesiation of the sur-

face (past the optimum QE); this is the standard way to ensure that the QE maximum has

in fact been reached.

The O2 test in Fig. 8.6 shows a marked QE enhancement over the initial QE level,

but enhancement of QE in the case of O2 is a known effect seen in, for example, an S-1

photocathode [17]. The continued decay of QE after recesiation is due to residual levels

of oxygen which were slow to turbopump out of the vacuum chamber.
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Figure 8.6: Recesiation of Cs:Ag after O2 contamination

Figure 8.7: Recesiation of Cs:Ag after N2O contamination
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The N2O test in Fig. 8.7 likewise displays full rejuvenation. Note the pronounced

small QE peak both ending the first recesiation and beginning the second contamination.

This behavior is a particularly strong indication that it is cesium loss and not adsorption

of contaminants which is affecting the QE. This is because the peak is characteristic of

the dipole interference effects between adjacent cesium atoms as discussed in depth in

Section 6.1.2 and such effects would not be seen if cesium adsorption sites were being

filled by contaminating atoms.

Figure 8.8: QE of Cs:Ag vs Langmuirs of exposure to CO2

In Figs. 8.8, 8.9, and 8.10 the contamination of cesiated silver as a function of ex-

posure is quantified. Units of Langmuirs are used, where one Langmuir is defined as the

exposure to 1x10-6 Torr of the contaminant gas for 1 second. Results are particularly re-
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peatable for the higher purity CO2 experiments, as would be expected. The two experi-

mental runs in Fig. 8.8 were run with different contamination rates, showing it is not the

rate of contamination but the integrated exposure to contaminants which is important to

QE loss.

The effect of recesiation is likewise quantified in Figs. 8.11, 8.12, and 8.13. QE is

plotted as a function of deposited cesium thickness as compared to the initial cesium de-

position required to reach peak QE on a clean silver substrate. It is important to note for

CO2 and N2O that the amount of cesium required to rejuvenate is very comparable to that

required to initially cesiate a clean surface. This again indicates he process of recesiation

is reversing loss of QE, not overlaying cesium on adsorbed contaminants.

Figure 8.9: QE of Cs:Ag vs Langmuirs of exposure to O2
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Figure 8.10: QE of Cs:Ag vs Langmuirs of exposure to N2O

Figure 8.11: QE of Cs:Ag vs deposition, pre- and post-CO2 contamination
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Figure 8.12: QE of Cs:Ag vs deposition, pre- and post-O2 contamination

Figure 8.13: QE of Cs:Ag vs deposition, pre- and post-N2O contamination
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The known interaction with O2 is also noted [60; 125-127], where in that specific 

case the amount of cesium in recesiation exceeds the initial submonolayer application by 

a factor of 2.

8.4 Semiconductors

8.4.1 Heating

A cesium-antimony cathode was fabricated in-situ on an activated cesium dis-

penser (porous tungsten substrate) as described in Section 9.4 with an initial 100 Å Sb

layer. The cathode formed was stable in UHV at room temperature over several hours 

Figure 8.14: Initial cooling and stability of Cs-Sb cathode formed in-situ on dispenser
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with no observed reduction in QE, as shown in Fig. 8.14. The low QE (of order 1% com-

pared to expectations of 10%) indicates the cathode, while exhibiting better QE than, say,

bare antimony, was not able to achieve optimal 3:1 stoichiometry of Cs3Sb. It is assumed

that the cathode was Sb-rich following the in-situ fabrication process.

The cathode was then subjected to stepwise temperature increases and a return to

room temperature to determine whether QE was irreversibly lost and whether significant

dissociative or evaporative cesium loss could be inferred. The results of this experiment

are shown in Fig. 8.15. When the cathode is heated and then cooled, the QE does not re-

turn to its initial level. Cesium loss is indicated. The cesium antimonide system appears

to be incompatible with operating temperatures of cesium dispenser photocathodes.

Figure 8.15: Re-heating and irreversible QE loss of Cs-Sb cathode despite active

dispenser
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The results of this test instigated a search for more thermally stable high QE ce-

sium-based cathodes. In the next section we discuss the resulting survey of the tempera-

ture stability of various alkali antimonides based on literature data.

8.4.2 Survey of Alkali Antimonide Temperature Stability

Antimony by itself is quite temperature stable. The melting point of antimony is

630 ºC. Vapor pressures of antimony at elevated dispenser operating points in excess of

200 ºC are negligibly low. However, the alkali antimonides have non-negligible vapor

pressures for the alkali metals over the bulk material at temperatures comparable to dis-

penser operating conditions. This should be no surprise given the melting points of ce-

sium, potassium, and sodium are 28.44 ºC, 63.65 ºC, and 97.72 ºC, respectively.

A literature survey revealed an excellent paper by Dolizy and Groliere in 1986 in-

vestigating the vapor pressures of the alkalis over various antimonides [122]. The data

shown in Fig. 8.16 is adapted from their work. The reported vapor pressures are exponen-

tial with temperature; endpoint markers have been added for emphasis. With the vertical

scale being logarithmic the exponential relation is shown as straight lines. Equivalent

evaporation rates have been shown for the given partial pressures of the alkalis. These are

calculated using the definition of the Langmuir unit of gas exposure: a monolayer of

evaporation per second is equivalent to 1x10-6 Torr of pressure. The approximate operat-

ing range of the cesium dispenser is shown. Compatibility between dispenser and anti-

monide is inferred where the equivalent evaporation rate is less than one monolayer per 
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Figure 8.16: Vapor Pressures of Alkalis over Selected Antimonides

hour within the dispenser operating range, since it is known the dispenser can supply a

monolayer per hour to the surface without difficulty. Among cesium-based antimonides

this points clearly to the trialkali Na2KSb(Cs) as the best candidate.

Combined with the unsatisfactory cesium antimonide (Cs3Sb) test results at dis-

penser operating temperatures, this motivated fabrication of the trialkali Na2KSb(Cs), due

to its expected improved thermal stability. Fabrication of and QE measurement of the tri-

alkali material was detailed in Section 7.3 when discussing the QE of semiconductors.
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Chapter 9: Cesium Dispenser Photocathode

9.1 Design and Fabrication

9.1.1 Introduction

Thermionic dispenser cathode technology is well established after five decades of

research, as discussed in Section 2.3.2. These dispensers are, however, designed to oper-

ate at temperatures of order 1000 ºC. Their work functions are lowered by surface coat-

ings of barium, calcium, etc. which are not as effective as cesium coatings. But cesium,

with its low melting point, is incompatible with operating temperatures for thermionic

emission. Even though they are not traditionally used as photoemitters, QE of commer-

cial thermionic dispensers can be measured, and varies with type (from highest to lowest:

M-type, scandate, and B-type), but is about 0.1% at 266 nm and less than 0.01% at 532

nm. A commercial dispenser is shown in Fig. 9.1.

Figure 9.1: Commercial dispenser (thermionic cathode)
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The prototype Maryland cesium dispenser photocathode design is shown in Fig.

9.2, adapted from Ref. [20]. It is comprised of a stainless steel cylinder, nickel-brazed for

a hermetic seal to a porous sintered tungsten disk which fits inside one end of the cylin-

der, and with a stainless steel cap laser-welded onto the other end after the source mater-

ial has been inserted. The laser weld is used in preference to a braze to keep the tempera-

ture of the cathode low enough during the weld process to avoid activation of the cesium

source inside the cylinder.

Figure 9.2: Prototype dispenser from UMD

9.1.2 Canister

The canister of choice is stainless steel. Readily available for machining, stainless

steel also has the added benefit of low thermal conductivity which makes it ideal for laser
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welding. The rear face of the cathode can be laser welded after insertion of the cesium

source into the canister, and the heat transfer to the unactivated cesium source during at-

mospheric exposure is minimized in this way. Heat-induced activation of the cesium

source would result in cesium release and cesium oxide formation at atmosphere, render-

ing the dispenser inoperable.

Figure 9.3: First cesium dispenser cell

The first generation cesium dispenser cell was designed in 2006 by then-UMD

doctoral student Nathan Moody. Fabrication of this and subsequent cathodes have been

performed to spec by B. Vancil of E-beam Incorporated. In the first cell shown there is

some excess braze material: it was unknown how much would be required to get a her-

metic seal. The braze joint in subsequent cathodes has been much cleaner. Nevertheless,

all that is required is that the center, laser-illuminated area of the cathode be free of braze

material and able to freely diffuse cesium. The dispenser is mounted in the QE test cham-

ber in a copper clamp. Copper transfers heat well from the heater assembly to the dis-

penser reservoir.
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Figure 9.4: Dispenser in copper clamp

9.1.3 Sintered Tungsten

The porous front face of the cathode, made from sintered tungsten, has certain de-

sign constraints. The porosity of the tungsten is lower-bounded at 60% density by the

manufacturing process used at Spectra-Mat, the supplier. Less dense tungsten is available

but has a "spongy" appearance and does not have a suitably flat surface for photoemission

experiments. The tungsten can be sintered and machined in various thicknesses. A sub-

mm thin disc is not a problem during manufacturing but can cause other difficulties. Ini-

tially a 40-mil (1 mm) thick, 70% dense sintered tungsten disc was used which had been

well polished. Later a 20-mil (0.5 mm) thick, 60% dense polished sintered tungsten disc

was used. It was found that brazing of the 40-mil thick disc could be done reliably, but

that the geometry of the joint (where the only mated surfaces were the edges of the disc

with the inside walls of the cylinder) made brazing of the 20-mil disc difficult. A hermet-

ic seal (assured via bubble testing) was achieved only one out of four attempts with the

thinner disc. Future iterations of the design will likely contain a braze onto the face of the
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tungsten disc instead of onto the edge, which is not a problem as long as sufficient area in

the dispenser center is clean of braze material to allow the active area to exceed the laser

spot size.

The tungsten substrate/diffusion barrier itself has been characterized in Section

5.6. Optical and electron microscopy were performed and pore structure was analyzed us-

ing focused ion beam milling. The effect of varying porosity and thickness will be in-

troduced in Section 9.2.

9.1.4 Cesium Reservoir Materials

Initially the reservoir material of choice for the prototype dispenser, as designed

by Moody, was a cesium chromate and titanium powder. They were mixed 5:1 by weight

and pressed by hand into small pellets. At a measured activation temperature of 425 ºC

the chromate reacted with the titanium, leaving free cesium in the reservoir. Subsequent

gentler heating was all that was necessary to initiate cesium flow to the surface of the

cathode through the porous tungsten substrate. The problem with the chromate source is

that the release is not as pure as with the alternative: the proprietary cesium-bismuth in-

termetallic compound available from Alvatec, an Austrian company. This material also

has a lower activation temperature of 273 ºC. Because the compound is not air-stable, it is

indium-sealed in an argon atmosphere prior to transfer to the dispenser. Indium melts at

157 ºC, exposing the intermetallic compound and resulting in a momentary release of 
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Figure 9.5: Custom Cs:Bi reservoir cartridge from Alvatec: (left) indium seal, (right) rear

seal

Figure 9.6: Cs:Bi reservoir cartridge and cathode for scale

argon gas. This is followed by activation and sublimation of cesium around the 350 ºC

mark. Once cesium has been released into the reservoir, as in the case of chromate-based

material, a gentle heating is all that is needed to initiate cesium flow.

The cesium cartridge shown in Figs. 9.5 and 9.6 is custom-fabricated by Alvatec

for the UMD dispensers with their highest concentration intermetallic compound (65%
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Cs by weight). It contains approximately 525 milligrams of cesium in an 800 milligram

fill of Cs:Bi. The indium seal is visible in the unused cartridge shown. The cartridge is

air-tight, and to further ensure purity and extend shelf life it is argon-packed until needed

for installation in the dispenser. Following fabrication the dispenser containing the car-

tridge was installed under vacuum within a few days.

9.2 Installation and Activation

9.2.1 Cathode mount

For a dispenser the anode arm is lengthened to give room for the cathode clamp

and dispenser and retain cm-scale spacing between anode and cathode, so that applied

voltages result in the same applied field as in the case of (silver or tungsten) disc cathode

tests. This ensures that the dispenser QE tests will be below the space charge limit using

the same voltage supply as for the disc cathodes. The arrangement is shown in Fig. 9.7.

Figure 9.7: Cathode mounted behind annular anode
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9.2.2 Activation

Prior to activation the dispenser must be outgassed through a slow, gradual heat-

ing. The standard bakeout of the chamber in excess of 150 ºC served this purpose in

preparation for the activation to be performed. The activation process allows for measure-

ment of QE throughout. This experiment is illustrated in Fig. 9.8. The comparison of acti-

vation temperature in the first and second generation dispensers (cesium-chromate-titani-

um pellets versus Alvatec cesium-bismuth intermetallic compounds) is deferred to

Section 9.5.1. In the activation process shown, cesium begins to sublimate shortly before

273 ºC where the first cesium diffuses to the surface to affect the QE, then equilibriates.

At about 333 ºC thermionic emission begins to significantly augment photocurrent.

Figure 9.8: Activation of 2nd gen. cathode with Alvatec Cs:Bi reservoir
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The outgassing corresponding to the activation process described above is shown 

in Fig. 9.9. There is an initial argon release following the melt of the indium seal, and a 

high-temperature argon release of argon trapped in the Cs:Bi compound itself. There is an

initial outgassing of the material which is quickly ameliorated as the free cesium begins 

to act as a getter material.

Figure 9.9: Pressure and temperature of 2nd gen. cathode activation

It should be noted that there is a switch to ion pumping following the initial argon 

release. This is to keep the vacuum pressure as low as possible during the activation. Ion 

pumps do not pump noble gases well, so although the argon release at high temp appears 

comparable to the initial one, it is actually much lower since it occurred during the ion 

pumping phase and the first release was during the turbopumping phase. (The break in 
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the pressure data after the first argon release is due to the switch between pumping 

systems.)

In Fig. 9.10 the activation (heating) of a second-generation dispenser containing

an indium-sealed, argon-packed Cs:Bi compound in the reservoir is compared to an

identically designed but smaller, standard cesium source from Alvatec Gmbh. The behav-

ior in both cases is consistent with the release of argon immediately following the indium

melt (In has a melting point of 157 ºC), a rapid pressure rise as the argon release tem-

porarily overwhelms the pumping system, and then a gradual drop in pressure as the

Figure 9.10: RGA analysis during activation of 2nd gen. cathode vs Cs Alvasource
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source is kept hot. The vacuum further improves upon cooling the source or cathode. 

Note that CO and N2 both have 28 amu and are indistinguishable within the resolution of 

the RGA (a software analysis which assigns a partial pressure or percentage to each can 

give completely different results the next scan). The current through the Alvasource is 

given since a direct temperature measurement is not made, but the thermocouple in the 

dispenser heater assembly allows direct reporting of temperature there. The pumping is 

specified since ion pumps and turbopumps will have a different pumping speed and hence

base partial pressure for a given gas species. The need for multiple systems, as already 

mentioned, is to deal with argon release post-indium melt.

9.3 Rejuvenation

The cathode operated without external coatings simply dispenses cesium to the

surface, coating the sintered tungsten with a submonolayer of cesium and drastically im-

proving the QE. This process can be repeated if cesium is lost to any of the mechanisms

discussed in Chapter 8. The results of a rejuvenation, after having removed all cesium

from the room-temperature dispenser by an ion cleaning, are shown in Fig. 9.11. Uniform

coverage is indicated by achieving comparable quantum efficiency to the peak seen in

previous, externally cesiated sintered tungsten experiments. It is interesting that QE in the

dispenser does not exceed this value - evaporation increases significantly at higher tem-

peratures and coverages, such that the QE levels off. The fact that it levels near the ideal

coverage for maximum QE is not coincidental: when the cesium atoms have a dipole

Chapter 9: Cesium Dispenser Photocathode 252



Figure 9.11: Rejuvenation of 2nd gen. cathode with 60% dense 20-mil thick tungsten disc

moment largely unreduced by other nearby atoms, the adsorption to the surface is like-

wise largely unaffected, as indicated also by the highly coverage-dependent evaporation 

rates left of the peak QE of Fig. 8.3.

The 5-hour rejuvenation test is intentionally run at lower temperature than could 

be used, to allow QE to level off at a minimum operating point. Faster response is easily 

achieved by increasing the operating temperature. Chamber pressure with a hot dispenser 

was only 4x10-9 Torr.
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9.4 In-situ Cs-Sb Fabrication on Dispenser

A cesium-based semiconductor's interaction with an activated dispenser was

probed by depositing an antimony layer on an ion-cleaned dispenser. The procedure re-

leased as much cesium as possible into the antimony, immediately cooling to minimize

cesium loss and maximize QE. Unfortunately the test apparatus had no active cooling, so

the dispenser took about an hour to cool below dissociation temperatures for cesium anti-

monide: ample opportunity for a cesium-poor material to result as shown in Fig. 9.12. A

correct stoichiometry for a cathode of this initial antimony thickness would be expected

to have at least 10% QE (Section 7.2); here only 1.1% is achieved.

Figure 9.12: Dispensed-cesium Cs3Sb fabrication attempt
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The success of the in-situ cesium-antimony trial is that cesium was shown to dif-

fuse through the antimony layer from within the dispenser. The challenge was the thermal

instability of the cesium antimonide itself, which has been discussed at length in Section 

8.4.2. One anomaly in the graph is the small downtick in QE during cooling, at the 150 

ºC mark. The heater here was turned back on with the initial intent to stabilize the tem-

perature and try to improve QE. However, the response of the cathode was nearly imme-

diate and quite detrimental to QE, so the heater was turned off. Such a fast response can-

not be due to a change in bulk stoichiometry, and therefore points toward a surface layer 

with a very temperature-sensitive interplay between cesium being dispensed and evapo-

rated, with cesium diffusing from more highly concentrated regions in the bulk to the sur-

face, and which is constantly losing cesium to evaporation at those temperatures. Any in-

crease of the surface temperature hence the evaporation rate would immediately upset 

this balance and would impact the emission barrier via the electron affinity.

9.5 Dispenser Comparison and Discussion

9.5.1 Comparison

In Table 9.1 are compared the design and operation for the first and second gener-

ation cesium dispenser cathodes, the former having been reported by Moody in Refs. [12;

20] and the latter described in this work.
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Gen. ID Activation Reju-
venate
Turn-On

Normal
Operatio
n

Tung-
sten
Density

Substrate
Thicknes
s

Reservoir:
Cs mass, material

1 D01 425 ºC + ~50 ºC 175 ºC 70% 1.0 mm 200 mg, CrCs2O4:Ti

2 D04 273 ºC + <80 ºC 150 ºC 60% 0.5 mm 500 mg, Cs:Bi

Table 9.1: Comparison of Cesium Dispenser Cathodes

The difference in activation energy is due to the replacement of the chromate with

the Alvatec compound. The difference in rejuvenation turn-on temperature subsequent to

activation between the two dispensers is due in part to the fact that the first test used a

slow, hour-long initial heating profile to reach 50 ºC and the onset of steeply increasing

photoemission, whereas the second test used a more rapid initial heating profile, reaching

80 ºC in twenty minutes where the onset of photoemission was observed. The difference

in normal operation temperature is enabled by the thinner substrate.

9.5.2 Discussion of Future Design Directions

The changes made to the second generation dispenser were a thinner, less dense

tungsten diffusion barrier and a lower activation temperature, cleaner-release cesium

reservoir source. Future cesium dispenser cathodes will continue to refine these two ar-

eas. The diffusion barrier need not be made of porous tungsten; controlled porosity dis-

penser (CPD) technology already exists for thermionic dispensers and could be adapted

to the cesium dispenser photocathode. Advantages would be increased cesium diffusion

uniformity and more design flexibility. The reservoir need not be located directly beneath
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the diffusion barrier; recent work by Moody at LANL has investigated the use of a sepa-

rately heated ampoule of elemental cesium attached to the rear cathode face via tube. Ad-

vantages are separate thermal control of the cathode and reservoir, which results in the

ability to control cesium diffusion rates via concentration gradients separately from the

substrate temperature. Future cesium dispenser cathodes intended for in-gun tests will re-

quire an updated mechanical design as well. The current prototype at Maryland with its

projecting stainless steel lip at the edge of the cathode would be problematic in-gun due

to field emission. A redesign with the dispenser diffusion barrier forming the entire front

face of the cathode, as is the case for the commercial dispenser in Fig. 9.1, would be

straightforward.

The cesium dispenser even in its current configuration has shown good promise

for in-situ rejuvenation of cesium-based photocathodes. The incorporation of a high QE

coating with a dispenser in order to extend lifetime of the high QE material, particularly

under adverse conditions such as contamination or heating, is a natural next step. Appro-

priate design considerations based on lessons learned from this work would include pore

size and spacing (controlled or sintered), substrate coating (bare substrate or metalized

with, say, gold for better thermal and electrical conductivity and possibly better QE), and

most importantly, careful thermal design and choice of a temperature-stable high QE ma-

terial so that operation of the dispenser would be possible without causing uncontrolled

and unrecoverable loss of cesium, and would allow full and repeatable rejuvenation of the

high QE cathode.
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Chapter 10: Conclusion and Outlook

10.1 Summary of Work

The four Expeditions introduced in Chapter 3 and detailed in the body of this dis-

sertation have advanced the cause of basic photocathode science and have led to im-

proved theory and to practical demonstration of improved cesium dispenser prototypes.

These four journeys of inquiry are summarized in the following pages: cesium-coated

metal photocathodes, cesium-based semiconductor photocathodes, cesium loss and rece-

siation studies, and cesium dispenser photocathode development.

10.1.1 Cesium-Coated Metal Photocathodes

Utilizing and expanding upon the versatile experimental apparatus for photocath-

ode research at UMD, the heart of which was designed and built under a previous pro-

gram [20], investigations were continued into coated metal quantum efficiency to further

refine sorely-needed theoretical models of photoemission.

Starting from the substrate itself, an effort was described in Chapter 5 to charac-

terize both the pore structure of sintered tungsten and the effect on that material produced

by ion beam cleaning. Surface variation across multiple grains in polished sintered tung-

sten was on the scale of microns. Variations in polishing effectiveness were observed on

the front and rear faces of the tungsten disc and possible impact on the density of pores

was noted. Where pore sparsity was observed, hydrogen peroxide etching revealed sig-

nificant subsurface porosity in line with specification of 70% density. Pores tracked be-
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neath the cathode surface using focused ion beam milling were discovered to narrow

markedly, angle irregularly and end abruptly. Significant diffusion of cesium along grain

boundaries rather than solely through pores was posited as the mechanism for which

uniform cesium coverage is obtained in the cesium dispenser.

Ion beam cleaning using argon ions was studied since it is used in preference to

less effective anneal cleaning. Surface roughness induced on sintered tungsten was ob-

served but the effects were small from grain to grain. However, visible evidence of sig-

nificant sputtering of the tungsten was found. The effectiveness of ion cleaning of coated

metal substrates was quantified. Cleanings of cesiated silver with 0.1 mA/cm2, 6.5 keV

argon beams for just one to two minutes were sufficient to reduce quantum efficiency to

negligible levels, indicating full adsorbate removal, and in line with previous work on ce-

siated tungsten.

Theory of QE for coated metals was presented, correlating QE with coverage

(maximally 0.11% with 63% coverage of Cs:W at 375 nm). An updated, Moments-based

approach was detailed with a full 3D momentum formulation and an energy-dependent

scattering term. The theory was based on fundamental constants and literature values, and

as such was not a fit to data, but was rather of predictive utility. Comparing the predic-

tions of this theory to experiments with alkali-coated metals resulted both in validation of

the theory and refinement of certain coverage factors in properly comparing to measured

data. Since experiments were in the low-field low-intensity regime, many of the damage

mechanisms which had complicated such comparison in the past were eliminated, and
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agreement of the peak QE of each of the alkalis on tungsten was within 15%. The in-

sights provided by theory allowed discussion of peaks in curves of quantum efficiency

versus surface coverage. Good indications of cesium diffusion at room temperature on

the atomic scale were found, and the importance of both atomic surface cleanliness and

deposition uniformity were re-emphasized based on the interpretation of experimental

results.

10.1.2 Cesium-Based Semiconductor Photocathodes

Theory of quantum efficiency for semiconductor photocathodes was detailed and

the Moments-based approach for coated metals was adapted for this case. Special empha-

sis was placed on the origin of improved quantum efficiency of semiconductors over met-

als: electron transport and scattering processes were discussed and the dominance of po-

lar optical phonon scattering was presented as opposed to the dominance of electron-

electron scattering in metals. Optical constants were shown for the representative case of

cesium antimonide and with absorption, transport, and emission barrier described, predic-

tions of the quantum efficiency of cesium antimonide were compared to literature and to

experiment with excellent results. Agreement with experiment was within 20% across the

photon energy range from IR to UV.

Experimentally, the fabrication of cesium antimonide was reported and discussed,

and of particular interest was the tapering deposition of cesium during cooling required to

obtain good quantum efficiency. With an external cesium source this is straightforward.
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With an in-situ source like a dispenser where cathode temperature and cesium supply are

not independently variable, this is potentially problematic. Nevertheless, quantum effi-

ciencies in excess of 10% in the UV and 3% in the green were demonstrated. The fabrica-

tion of the more thermally stable trialkali, cesium sodium potassium antimonide, was also

reported, enabled by upgraded experimental capabilities. Despite a thin-film deposition,

QE in excess of 1.1% in the UV was shown, and stabilization of QE post-deposition oc-

curred at much higher temperatures than for cesium antimonide: a promising signal for

dispenser compatibility.

10.1.3 Cesium Loss and Recesiation Studies

Four mechanisms for cesium loss in photoinjector operating environments were

introduced: evaporation, back-bombardment, contamination, and dissociation. Evapora-

tion rates for sub-monolayers were emphasized as orders of magnitude less than for bulk

cesium or even for multiple monolayer coatings of cesium on tungsten. Back-bombard-

ment was described as a limiting factor in DC photoinjector cathodes. Contamination was

discussed as the limiting factor on RF photoinjector cathode lifetime. Dissociation was

introduced as a way for alkalis to escape (and subsequently evaporate) from the bulk of

semiconductor compounds, with serious implications for QE lifetime.

Experimental results were presented for evaporation of cesium coatings from

heated tungsten. Strongly coverage-dependent evaporation for sub-monolayer coatings

was indicated. Contamination and recesiation tests for alkali-coated silver were shown.
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Remarkably, repeatable recovery of full QE after contamination was demonstrated, pro-

viding strong support for the cesium dispenser concept as a means of extending the life-

time of contamination limited cathodes in RF photoinjector environments. Experiments

with the heating of cesium antimonide semiconductor cathodes confirmed earlier sus-

picions of the temperature sensitivity of that material and definitively eliminated it as a

candidate coating for reservoir-type cesium dispenser cathode with an embedded heater.

Irreversible loss of QE was shown in conjunction with the heat cycling of an operating

dispenser. A survey of more thermally-stable alkali antimonides was performed and ce-

sium sodium potassium antimonide was identified as a cesium-based candidate material.

10.1.4 Cesium Dispenser Photocathode Development

The design and fabrication of the prototype UMD cesium dispenser photocathode

was discussed. Specific modifications to the design, both in sintered tungsten porosity and

thickness were discussed. Reduced temperature operating points at which cesium was

readily diffused were demonstrated with the thinner and more porous diffusion barriers.

With regard to the choice of reservoir material, formerly used cesium chromate and tita-

nium pellets were replaced by cesium-bismuth intermetallic compounds in custom-fabri-

cated cartridges, and significantly reduced temperature activation (initial release of ce-

sium once the risk of atmospheric contamination is gone and ultrahigh vacuum is

obtained) was shown with very pure cesium release. Activation temperature dropped

drastically from 425 ºC to 273 ºC. Rejuvenation of the QE of the second generation dis-
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penser was demonstrated with QE in excess of 90% of the theoretical maximum. An in-

situ fabrication attempt for cesium antimonide using deposited antimony but dispensed

cesium was reported, and although 1% QE was obtained in the UV, this was an order of

magnitude less than should be achievable for a cathode of that thickness, and so was in

line with previously reported results on the temperature instability of the cesium anti-

monide semiconductor. These results reinforced the need to further research the trialkali

material as a candidate high QE cesium dispenser cathode coating.

10.2 Future Directions

The Irish novelist Joyce Cary wrote, "To sum up complex problems for action is

an act of creative imagination." While each data point and theoretical premise within this

work is examined on scientific principle, answering the question "Where do we explore

from here?" seems at times a creative, an imaginative, indeed an almost prophetic act.

Newton well understood the underpinnings of this farsightedness when he said, "If I have

seen further than others, it is by standing upon the shoulders of giants." From Thompson,

Hertz and von Lenard's observations of an unknown phenomenon in the late nineteenth

century to Einstein's Nobel-winning explanation of photoemission in the early twentieth;

from Taylor and Langmuir's studies of cesium on tungsten in the early thirties to the high

quantum efficiency photocathode discoveries of Spicer, Sommer, and so many others in

the decades since; from Los Alamos' first photoinjector in 1985, to 14.3 kW average

power at 1.6 microns by Jefferson Lab in 2006, to first light at 1.5 Å by Stanford's LCLS
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in 2009, Newton's words ring truer than ever. And so as photocathode explorers we do

pose the question, "Where next does this expedition lead?" Several possible research di-

rections are outlined in the following pages and an effort has been made to order them ap-

propriately for a continued, careful, incremental study of the advancement of cesium dis-

penser photocathodes.

10.2.1 High QE Semiconductor Contamination and Recesiation

With the success of contamination testing and recesiation for cesiated silver

comes a natural experimental continuation. First cesiated tungsten should be tested and

compared to the silver results. Following that, the higher QE semiconductors are of great

interest as well. With controlled contamination comes the ability to quantify the response

of alkali antimonide QE to exposure to various background gases. Since these materials

have contamination-limited lifetimes such results would benefit the larger photoinjector

community immediately. It also remains to be seen whether external recesiation of a

semiconductor results in the same reversibly rejuvenable QE as for cesiated metals,

which is an important indicator for the dispenser cathode's effectiveness with high QE

coatings.

10.2.2 High QE Semiconductor Rejuvenation

Just as the external and in-situ rejuvenation of cesiated metal photocathodes has

been demonstrated at QEs of 0.1% with resulting significantly extended photocathode
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lifetime, so should experiments be conducted with the trialkali and possibly bialkali anti-

monides to demonstrate rejuvenation at the 1-10% QE level and to probe the increased

lifetime which results. The demonstration of extended lifetime of a high QE coating on a

dispenser photocathode is a crucial milestone along the future developmental trajectory

of the technology.

10.2.3 Theory of Cesium Diffusion and Evaporation in Dispensers

The dynamics of cesium in a dispenser are complex. Optimization of a dispenser

diffusion barrier will require a deeper understanding of those dynamics. Specifically a

comprehensive time-dependent theory of cesium diffusion through the porous bulk mate-

rial and across the surface, with the inclusion of evaporative effects and their proper func-

tional dependence upon coverage, will serve to strongly support the development of bet-

ter dispensers with more uniform emission and more ideal operating temperatures.

10.2.4 Alternate Dispenser Diffusion Barrier Designs

Investigations into sintered tungsten of different porosities and thicknesses should

be prioritized. Milling of the back side of the diffusion barrier can allow the mechanical

integrity of a thicker disc to be preserved while testing the diffusion characteristics of a

much thinner barrier. If the desired operating characteristics and emission uniformity can-

not be obtained with sintered tungsten, alternative materials can certainly be considered.

One such option is controlled porosity via laser drilling, ion beam milling, or deep reac-
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tive ion etching. The diameter, spacing, and geometrical arrangement of pores on the sur-

face could then be precisely specified and fabricated, and with theory as a guide could be

optimized for a given operating temperature range.

The possibility of depositing a metallic coating on a different substrate opens new

possibilities for QE and for controlled porosity. Vapor deposition of copper or gold firstly

allows use of insulating substrates like silicon (with the well-developed photolithography

techniques it offers), and secondly allows potentially higher QE with the use of metals

other than tungsten as the cesiated surface while maintaining the porosity of the diffusion

barrier on which it is deposited.

10.2.5 Alternate Dispenser Reservoir Designs

So far two dispenser reservoir designs have been tested at UMD: the cesium chro-

mate and cesium-bismuth systems. Other ways of releasing elemental cesium into the

vacuum environment of the dispenser reservoir are certainly possible. It might be possi-

ble to fabricate an indium-sealed canister like the one for cesium-bismuth but containing

elemental cesium. It is certainly possible to procure glass ampoules commecially contain-

ing cesium in elemental form. Ampoules must be broken by mechanical means however,

and so involve more complexity in reservoir design than a simple heat-activated release

mechanism like an indium seal. Alternatively, the source of cesium can be separated from

the dispenser diffusion barrier altogether and connected only by a long tube. Thermal iso-

lation of the two parts of the dispenser allows independent thermal control of substrate re-
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action temperature and cesium reservoir diffusion temperature. The external cesium

source in ampoule form can additionally be shock-shattered in-vacuum without the need

for complex mechanical breaking techniques.

10.2.6 Enhanced Experimental Capabilities

Quantification of the evaporation of cesium from an operating dispenser is a criti-

cal step prior to inclusion of such a cathode in an in-gun test. Such a test could be done

using a cathode-facing deposition monitor in tandem with a residual gas analyzer.

Improved systems for the controlled introduction of ultrapure contaminant gas

into the cathode chamber would allow more detailed analyses of the contamination-limit-

ed lifetime of both coated metal and semiconductor cathodes.

For coated metal experiments, single-crystal metal substrates could be procured in

place of polycrystalline materials used thus far to allow definitive measurements of crys-

tal-face dependent QE, diffusion, ion cleaning effects, and the like. An even more rigor-

ous comparison to theory of the QE of coated metals would result. A statistical combina-

tion of various crystal faces would then be enabled as a descriptor for polycrystalline

substrates.

Inclusion of a cold finger or liquid nitrogen or helium circulation through a re-

designed cathode stalk would enable QE tests at cryogenic temperatures such as those en-

countered in SRF guns. Cesiated tungsten is predicted to increase in QE by about factor

of 2 (depending on wavelength) at 77K compared to 300K [95]. Cesium antimonide and
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cesium telluride, on the other hand, have shown indications of reduced QE under cryo-

genic conditions [45; 46] and the application of appropriate theory can explain this and

inform further research. Reduced cesium loss would also be expected under cryogenic

conditions and any changes in contamination susceptibility or lifetime compared to room

temperature would benefit cathode design for SRF photoinjectors.

Studies of fabrication of alkali antimonides could benefit from measurement of

film resistivity, which has been indicated in literature [128; 129] to have strong depen-

dence on stoichiometry of the cathode and in fact to exhibit sharp peaks at integer ratios

of the alkali and antimony constituents. Much more precise fabrication of cathode stoi-

chiometry might be enabled without the significant expense of more complex surface

analysis tools such as x-ray diffraction or Auger electron spectroscopy.

10.3 Closing Thoughts

Let us end with the beginning in mind. The themes explored in this work were

motivated by the demands of free electron lasers, which rely on laser-switched high

brightness photocathodes. Free electron lasers offer high brightness in regions of the elec-

tromagnetic spectrum where conventional sources are limited or do not even exist, from

x-ray to terahertz and beyond. Future high average power free electron lasers demand

cathodes with extended lifetime, high quantum efficiency, and fast response time that are

not simultaneously found in any existing combination of gun and cathode, DC or RF,

photo, field, or thermionic. Long-lived photocathodes with excellent quantum efficiency
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to answer this need are promised by cesium dispenser cathode technology. But optimiza-

tion of cesium dispenser cathodes necessitates a working understanding of the fundamen-

tal physics of these devices in order to form a predictive theory both of quantum efficien-

cy and of the function of cesium in operational photocathodes. The theory presented

herein is well-developed and already finds application in particle-in-cell beam code with

a view towards end-to-end free electron laser simulations. The experimental work pre-

sented herein has informed that theory, has provided excellent comparisons with its pre-

dictions, has confirmed the tenets of recesiation in support of the cesium dispenser con-

cept, has demonstrated an advancing cesium dispenser design, and has cast new light on

the compatibility of high quantum efficiency alkali antimonides with operational dispens-

er photocathodes. Ahead, the outlook is bright; may the expedition advance!
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