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Abstract

In this paper we are concerned with the existence of optimal stationary poli-
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merable state space, unbounded cost function, and long run average cost.
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that the risk- sensitive dynamic programming inequality holds, and derive
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1 Introduction

In this paper we are concerned with the existence of optimal stationary poli-
cies for in�nite horizon risk sensitive stochastic control problems with denu-
merable state space, discrete time parameter, unbounded cost function, and
long run average cost. For the risk neutral stochastic control problem, the
same kind of problem has been addressed, see e.g. [CC, CC-S, S1, S2, HL-
L1, HL-L2], exploiting the vanishing discount approach, in which the value
function of the average cost control problem is approximated by the value
function of a sequence of discounted problems. However, for the risk sensitive
control problem there does not seem to be a sequence of discounted control
problems with which we can approximate the value function of the average
cost problem. Therefore, we introduce a dynamic game, and consider both
the discounted and the average cost criteria. Establishing some relationships
(see Theorem 3.1) between the value function of the average cost dynamic
game and the value function of the risk sensitive control problem, it is pos-
sible to approximate the value function of the risk-sensitive control problem
through the value function of a discounted cost dynamic game, which satis-
�es an Isaacs equation. Then, using well-known techniques of the vanishing
discount approach, we prove the existence of a solution to the risk sensitive
dynamic programming inequality (DPI), and derive an optimal stationary
policy. In [HH-M] was proved that there exists a bounded solution to the
risk sensitive dynamic programming equation (DPE), under conditions that
force the controlled process to have very strong recurrence properties for
all stationary policies. In this paper we introduce weaker assumptions, and
prove the existence of a solution to the DPI.

The use of game theory to solve this problem is not surprising, and it has
been explored extensively in the study of risk sensitive control problems [B-J,
F-HH, F-McE, F-McE1, DP-M-R, W]. See also [FG-M], where risk sensitive
control problems for hidden Markov models were treated. A key tool for
establishing the relationships between dynamic games and the risk sensitive
control problem is a variational lemma, that express the duality relationship
between the relative entropy function and the logarithmic moment generating
function. Recently, Dupuis and Ellis [D-E] found interesting applications of
this lemma in their study of representation formulas and weak convergence
methods.

The paper is organized as follows. Section 2 describes the control model
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we will deal with. In Section 3 we introduce some preliminary results, and
�nally section 4 contains the main result.

2 Preliminaries

The control model. Let (S;A; �; c) be a Markov control model [A-B-FG-G-
M, HL-L] satisfying the following. The set S = f0; 1; : : :g is the state space,
endowed with the discrete topology, while A is a Borel space, called the action
or control space. For every x 2 S, there is a nonempty set A(x) � A, which
represents the set of admissible actions when the system is in state x. The
set of admissible pairs is K := f(x; a) : x 2 S; a 2 A(x)g, and is assumed to
be a Borel subspace of S �A. The transition law � is a stochastic kernel on
S given K. Finally, c : K ! IR is a lower semicontinuous (l.s.c.) function,
nonnegative, which represents for the one stage cost.

Assumption A.1.

(i) For each x; y 2 S, the mapping a! �(yjx; a), with a 2 A(x) is l.s.c.

(ii) For each x 2 S;A(x) is a compact subset of A.

De�ne H0 = S, and St = K � Ht�1 if t = 1; 2; : : :. A control policy, or
strategy, is a sequence ~� = f�tg of stochastic kernels on A given Ht that
satisfy the constraint

�t(A(xt)jht) = 1 8ht 2 Ht; t � 0:

The set of policies is denoted by �. A policy ~� 2 � is called a Markov policy if
there exists a sequence of functions f�tg, with �t : S ! P (A), where P (A) is
the set of probability measures on A, such that �t(x)(A(x)) = 1. We denote
by �M the set of Markov policies, and throughout we restrict ourselves,
without loss of generality, to this set of control policies. We denote by F the
set of functions f : S ! A such that f(x) 2 A(x) for all x 2 S. A policy
~� 2 � is stationary if there exists f 2 F such that �t(f(xt)jht) = 1 for all
ht 2 Ht; t � 0; this policy will also be denoted by f 2 F.

If the initial state x 2 S and ~� 2 �M are given, there exists a unique

probability measure P
~�
x on (
; �), the canonical measurable space that con-

sists of the sample space 
 := (S � A)1 and the corresponding product
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�-algebra �. Further, a stochastic process f(xt; at); t = 0; 1; : : :g is de�ned
in a canonical way, where xt and at denote the state and action at time t,

respectively. The expectation operator with respect to P
~�
x is denoted by E

~�
x.

Next we introduce the risk-sensitive cost criterion. For x 2 S;~� 2 �M ,
the cost functional to be minimized is de�ned by

J(x;~�) = lim sup
T!1



1

T
logE

~�
x expf
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T�1X
t=0

c(xt; at)g;

where 
 > 0 is the risk factor. Throughout, without loss of generality, we set

 = 1. Let

J(x) = inf
�M

J(x;~�)

be the corresponding value function. Then, the problem we are concerned
with is to �nd a policy f 2 F such that

J(x) = J(x; f �):

Assumption A.2 (a) There exists a stationary policy �f 2 F such that

� := J(x; �f)

is �nite and independent of x.
(b)

lim inf
x!1

min
a2A(x)

c(x; a) > �:

Remark 2.1. Assumption A.2 is a slight variation of that used in previous
literature for the risk-neutral average cost criterion [CC,CC-S, B]. However,
the way we approach our problem is technically di�erent, and depends heav-
ily on the introduction of a dynamic game. This idea has been used in
[HH-M], where dynamic programming techniques were used to prove the ex-
istence of optimal solutions to the risk-sensitive stochastic control problem
with bounded cost function, and in [F-HH] for �nite state problems.

In the remainder of this section we shall give a su�cient condition for
Assumption A.2.(a). See [D-S, Theorem 2.1.10]. Let �f 2 F, and let �xt be
the Markov chain with transition kernel �(yjx; �f(x)).
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Let P (S) be the set of probability vectors on S, i.e.

P (S) := f� = (�0; �1; : : :) : �i � 0;
1X
i=0

�i = 1g:

endowed with the weak topology. We denote by Y t the occupation measure of
the Markov chain �xt with initial condition x, and assume that fY tg satis�es
the Large Deviation Principle in P (S) with rate function independen

t of x. Further, let � : P (S)! [0;1] be de�ned by

�(�) =
X
x2S

c(x)�(x):

If � is �nite, continuous, and satis�es, for each x 2 S,

lim
C!1

lim sup
t!1

1

t
logE

�f
xf1f�:�(�)�Cg(Y

t) exp[t�(Y t)]g = �1;

then, according with [D-S, Theorem 2.1.10], �f satis�es Assumption A.2.(a).

3 Stochastic dynamic games

We �x � 2 P (S). The relative entropy function I(�jj�) is a map from P (S)
into the extended real numbers. It is de�ned by

I(�jj�) :=

( P
x2S log(r(x))�(x) if � << �

+1 otherwise

where

r(x) =

(
�(x)
�(x)

if �(x) 6= 0

1 otherwise

The stochastic dynamic game is de�ned as follows (c.f. [F-HH], [HH-
M]). The set S is the state space, while A and P (S) are the control sets
for Player 1 and Player 2, respectively. The reward function is (x; a; �) !
c(x; a)� I(�jj�(�jx; a)), with (x; a; �) 2 K� P (S).

The evolution of the system is as follows. Let xt be the state at time t 2
f0; 1; : : :g, and at; �t the actions chosen by Player 1 and Player 2, respectively.
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Then a reward c(xt; at)� I(�tjj�(�jjxt; at)) is earned, and the system moves
to the next state xt+1 according to the probability distribution �t.

For each t � 0, let Nt;Kt be the set of feasible histories up to time t
for Player 1 and Player 2, respectively. That is, N0 = S and Nt = (S �

P (S))t � S, while K0 = K and Kt = Kt �K. We say that ~f is stationary
if, for all t � 0; ft = f 2 F is independent of t. A randomized Markov
strategy for Player 1 is a sequence ~� = f�tg of functions from S to P (A),
such that �t (x)(A(x)) = 1; with some abuse in notation, we denote this
set of strategies as �M . A non-randomized Markov strategy for Player 1 is
a sequence ~f = fftg of functions ft from S to A, such that ft(x) 2 A(x).

A non-randomized Markov strategy for Player 2 is a sequence ~� = f�tg of

stochastic kernel �t on S given K. Analogously, ~� is stationary if, for all
t � 0; �t = � : K! P (S).

Let (
; �) be the canonical measurable space. Given the initial state

x 2 S, and strategies ~�; ~�, there exist a unique probability measure P
~�;~�
x and

again, a stochastic process fxt; at; t � 0g is de�ned on (
; �) in a canonical
way, where xt denotes the state at time t of the system, and at is the action

for Player 1. The corresponding expectation operator is denoted by E
~�;~�
x .

Given x 2 S;~�; ~�, de�ne the cost functional

V�(x;~�; ~�) := E
~�;~�
x

1X
t=0

�t[c(xt; at)� I(�tjj�(�jxt; at)] (3.1)

where � 2 (0; 1) is the discount factor. Note that, since c is (possibly)

unbounded, V�(x;~�; ~�) might be undetermined. To avoid this, we restrict the
set of admissible strategies for the second player in the following way. We
consider the measure space (N;M;m), where N is the set of nonnegative
integers, M is the subsets of N, and m is the counting measure. Let 
1 =


 �N; �1 = � �M and P
~�;~�
1 = P

~�;~� � m. Then, we say that ~� is (�; x; ~�)-

admissible if
R
L�dP

~�~�
1 exists, where L� is the random variable de�ned by

L�(!; t) := �t[c(xt; at)� I(�tjj�(�jxt; at)]

We denote this set by Q�(x;~�). Note that this set is not empty; � = � 2

Q�(x;~�). We de�ne, analogously, the value function with average optimality

criterion. Given x 2 S;~�; ~�, we de�ne
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�(x;~�; ~�) := lim sup
T!1

1

T
E
~�;~�
x

T�1X
t=0

[c(xt; at)� I(�tjj�(�jxt; at)]: (3.2)

We say that ~� belongs to the set Q(x;~�) of average cost admissible policies,

if
R

�[0;T ]L1dP

~�;~�
1 exists for each T > 0, where L1 = L� with � = 1. Finally,

we de�ne the upper values of these games, respectively, by

V�(x) := inf
~�

sup
~�2Q(x;~�)

V�(x;~�; ~�)

and
��(x) := inf

~�

sup
~�2Q(x;~�)

�(x;~�; ~�):

The following theorem is the basis for the existence of bounds which are
used in the vanishing discount method.
Theorem 3.1. Fix T > 0 and ~� 2 �M . For each k = 0; : : : ; T � 1 de�ne

�k;T�1(x;~�) := sup
~�2Q(x;~�)

E
~�;~�
x [

T�1X
t=k

(c(xt; at)� I(�tjj�(�jxt; at))jxk = x]

and

Jk;T�1(x;~�) = logE
~�
x exp[

T�1X
t=k

c(xt; at)jxk = x]

Then,

(a) for all x 2 S and k = 0; � � � ; T � 1

�k;T�1(x;~�) � Jk;T�1(x;~�): (3.3)

(b) lim supT!1
1
T
�0;T (x;~�) � J(x;~�)

(c) ��(x) � J(x).

Proof. We �rst prove (3.3) for k = T � 1. Given x 2 S, we assume that

JT�1;T�1(x;~�) <1, since otherwise (3.3) is obvious. Then,
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�T�1;T�1(x;~�) = sup
~�2Q(x;~�)

Z
[c(x; a)�

Z
log[

d�T�1(yjx; a)

d�(yjx; a)
]�T�1[dyjx; a]�T�1(dajx)]

�
Z
c(x; a)�T�1(dajx)

� JT�1;T�1(x;~�):

Now, we assume that (3.3) holds for k = n+ 1 : : : ; T � 1. Let x 2 S be such

that Jn;T�1(x;~�) <1, and choose any ~� 2 Q(x;~�) such that

�n;T�1(x;~�; ~�) := E
~�;~�
x [

T�1X
t=n

[c(xt; at)� I(�tjj�(�jxt; at))]jxn = x]

is nonnegative. Then,

�n;T�1(x;~�; ~�) = E
~�;~�
x [c(xn; an)� I(�njj�(�jxn; an)) +

Z
�n+1;T�1(y; ~�; ~�)�n(dyjxn; an)jxn = x]

� E
~�;~�[c(xn; an)� I(�njj�(�jxn; an)) +

Z
�n+1;T�1(y; ~�)�n(dyjxn; an)jxn = x]

� E
~�;~�[c(xn; an)� I(�njj�(�jxn; an)) +

Z
Jn+1;T�1(y; ~�)�n(dyjxn; an)jxn = x]

=
Z
[c(x; a)� I(�njj�(�jx; a)) +

Z
Jn+1;T�1(y; ~�)�n(dyjx; a)]�n(dajx)

�
Z
[log

Z
ec(x;a)+Jn+1;T�1(y;

~�)�(dyjx; a)]�n(dajx)

� Jn;T�1(x;~�);

where the last inequality is due to Jensen's inequality. The proof of (b)
follows immediately from (a). Now we prove (c). Let � 2 �M , and choose
~� 2 Q(x;~�) such that �(x;~�; ~�) � 0. We shall prove �rst that

�(x;~�; ~�) � J(x;~�): (3.4)

Assume that J(x;~�) <1, since otherwise there is nothing to prove. We �rst

prove that �(x;~�; ~�) < 1. Assume that �(x;~�; ~�) = 1, and let fTng be a
sequence such that
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�(x;~�; ~�) = lim
n!1

1

Tn
E
~�;~�
x [

Tn�1X
t=0

[c(xt; at)� I(�tjj�(�jxt; at))]:

Then, given M > 0, there exists N > 0 such that for n > N

M �
1

Tn
E
~�;~�
x

Tn�1X
t=0

[c(xt; at)� I(�tjj�(�jxt; at))]

�
1

Tn
�0;Tn�1(x;~�)

�
1

Tn
J0;Tn�1(x;~�); (3.5)

where we have used part (a) of the theorem. Therefore, letting n ! 1 in
(3.5), and using part (b), we obtain

M � J(x;~�):

Since M was chosen arbitrarily, this inequality implies that J(x;~�) = 1,

which is a contradiction. Thus �(x;~�; ~�) < 1. Then, using essentially the
same kind of arguments as in (3.5), (3.4) follows.

Lemma 3.2. (a) There exist �0 2 (0; 1) such that for � 2 (�0; 1) and x 2 S

0 � V�(x) <1

and

lim sup
�!1

(1� �)V�(x) � �

(b) The upper value function V� is the minimal nonnegative solution of the
Isaacs equation

V�(x) = inf
a2A(x)

sup
�2�(x;a)

[c(x; a)� I(�jj�(�jjx; a)) + �

Z
V�d�]; (3.6)
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where �(x; a) = f� 2 P (S) : I(�jj�(�jjx; a)) <1g.

(c) The stationary strategies f �� and ��, with

f ��(x) 2 argminfec(x;a)
Z
e�V�(y)�(dyjx; a)g

and

��(x00jx; a) =
e�V�(x

00)
�(x00jx; a)R

e�V�(y)�(dyjx; a)

are optimal.

Proof. Let �f 2 F be as in Assumption A.2 (a), and let x 2 S be arbitrary,

but �xed. Now let us choose ~� 2 Q(x; �f ) such that V�(x; �f; ~�) � 0. Then,
using a well known Tauberian theorem (see e.g. [S-F]),

lim sup
�!1

(1� �)V�(x; �f; ~�) � �(x; �f; ~�)

� J(x; �f)

= �;

where we have used Theorem 3.1. Part (a) follows in a straightforward
manner.

(b) Let �0 be as in part (a), and let � 2 (�0; 1) be �xed. For each function
 : S ! IR de�ne the operator

T� (x) := min
a2A(x)

fc(x; a) + log
Z
e� (y)�(dyjx; a)g:

It is easy to see that T� is monotone, i.e. if  � �, then T� � T��. Let
 0 � 0 and de�ne

 n+1 := T� n:

Since f ng is a nondecreasing sequence, there exists a nonnegative function
 such that  n "  . Then following analogous arguments to those used
by Hernandez-Lerma and Lasserre [HL-L1, Theorem 3.1], together with the
Lemma A.1, it can be seen that  satis�es the Isaacs equation (3.6). Further,
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 is the minimal nonnegative solution to this equation. Now we shall prove
that  = V�. Let f be a stationary policy such that

f(x) 2 arg min
a2A(x)

fc(x; a) + log
Z
e� (y)�(dyjx; a)g:

Then, for any admissible policy ~� 2 Q(x; f) for the second player and any
n � 1,

 (x) �
nX
t=0

Ef;~�
x �t[c(xt; at)� I(�tjj�(�jxt; at))] + �n+1Ef;~�

x  (xt+1)

�
nX
t=0

Ef;~�
x �t[c(xt; ut)� I(�tjj�(�)jxt; ut))]:

Letting n!1, this implies that

 (x) � V�(x; f; ~�):

Since ~� was chosen arbitrarily, we have that

 (x) � sup
~�2Q(x;f)

V�(x; f; ~�)

� V�(x): (3.7)

To prove the reverse inequality, we shall use the fact that the function  n is
the value function of the n-stage problem with terminal cost zero (c.f. [HL-
L]). The proof of this fact is standard and is left to the reader. Thus, for
each x 2 S,

 n(x) = inf
~�2�M

sup
~�2Q(x;~�)

E
~�;~�
x

n�1X
t=0

�t[c(xt; at)� I(�tjj�(�jxt; at))]:

Then, for any policy ~�; x 2 S and n = 1; 2; : : :

 n(x) � sup
~�2Q(x;~�)

E
~�;~�
x

n�1X
t=0

�t[c(xt; at)� I(�tjj�(�jxt; at))]

� sup
~�2Q(x;~�)

E
~�;~�
x

1X
t=0

�t[c(xt; at)� I(�tjj�(�jxt; at))]
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Therefore,

 (x) � sup
~�2Q�(x;~�)

V�(x;~�; ~�)

and then

 � V�(x):

Together with (3.7), this completes the proof of (b). The rest of the lemma
follows immediately from standard dynamic programming arguments and
Lemma A.1.

Lemma 3.3. There exists a �nite set G such that for each � 2 (�0; 1), with
�0 as in Lemma 3.2, and x 2 S

V�(x)� V�(x�) � 0

for some x� 2 G.
In addition, for any sequence f�ng converging to 1, there exist a subse-

quence f�nkg such that the sequence fx�nkg is constant.

The proof of this lemma is a slight variation of the one given by Cavazos-
Cadena [CC] (see also [CC-S]), and we omit it.

4. Risk-sensitive optimal controls
In this section we present our main result (c.f. [HL-L2] for similar results

in the risk neutral case).

Theorem 4.1. Under Assumptions A.1 and A.2, there exist a number ��

and a (possibly extended) function W on S such that for all x 2 S

e�
�+W (x) � inf

a2A(x)
fec(x;a)

Z
eW (y)�(dyjx; a)g

and the set H := fx 2 S : W (x) is �niteg is not empty.
Moreover, there exists an optimal control f � 2 F whenever the initial state
belongs to H, and

�� = J(x; f �)

for all x 2 H.
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Proof. Let f�ng be a sequence in (0; 1) converging to 1, and take a sub-
sequence (also denoted by f�ng) as in Lemma 3.3, labeling by e the com-
mon value of the sequence fx�ng. Following a standard approach, we de�ne
�n := (1��n)V�n(e); Wn(x) := V�n(x)�V�n(e), andW�(x) := V�(x)�V�(e),
and rewrite (3.6), using Lemma A.1, as

e�n+Wn(x) = min
a2A(x)

fec(x;a)
Z
e�nWn(y)�(dyjx; a)g (4.1)

We de�ne �� := lim supn �n and W (x) := lim infnWn(x); then, taking the
lim infn on both sides of (4.1), and using Fatou's Lemma and Assumption
A.1, we conclude that

e�
�+W (x) � lim inf

n
min
a2A(x)

fec(x;a)
Z
e�nWn(y)�(dyjx; a)g

� min
a2A(x)

fec(x;a)
Z
eW (y)�(dyjx; a)g (4.2)

On the other hand, from the de�nition of the function W , it follows that at
least e belongs to H. Now, let f � 2 F achieve the minimum on the r.h.s. of
(4.2).

It remains to prove that f � is optimal. First, we shall prove that for any
control ~� 2 �M , with J(x;~�) � �, and x 2 S

�� � J(x;~�) (4.3)

Let x 2 S. Then, by Lemma 3.3, for each � 2 (�0; 1),

(1� �)V�(x) = (1� �)W�(x) + (1� �)V�(e)

� (1� �)V�(e);

which implies

�� � lim sup
�!1

(1� �)V�(x) (4.4)

Now let ~� 2 �M arbitrary but �xed, and choose ~� 2 Q(x; �) such that

V�(x;~�; ~�) � 0. Then by a well-known Tauberian theorem and (3.4), we
obtain
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lim sup
�!1

(1� �)V�(x;~�; ~�) � �(x;~�; ~�)

� J(x;~�):

Therefore, it follows that

lim sup
�!1

(1� �)V�(x) � J(x);

which together with (4.4) implies (4.3). We shall prove now that �� �
J(x; f �) whenever x 2 H. From (4.2), we have that for any x 2 H

Ef�

x exp[
T�1X
t=0

c(xt; at)] � e�
�TEf�

x [�T=1
t=0

eW (xt)R
eW (y)�(dyjxt; at)

]

� e�
�T �

eW (x)

inf
x2S u2A(x)

R
eW (y)�(dyjx; a)

;

where the last inequality follows from standard properties of conditional ex-
pectations and the Markov property.
Therefore,

J(x; f �) � ��: (4.5)

Then, (4.5) and (4.3) imply the optimality of f �.
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Appendix

The next lemma establishes a variational formula for the logarithmic moment
generating function. We refer to [D-E, Proposition 4.5.1] for its proof.

Lemma A.1. Let  be a real-valued function de�ned on S bounded from
below, and � a probability measure on P (S). Then

log
Z
e d� = sup

�2�(�)
f
Z
 d�� I(�jj�)g; (A.1)

where �(�) := f� 2 P (S) : I(�jj�) < 1g. Morever, the supremum on the
r.h.s. of (A.1) is attained at �� de�ned by

��(x) :=
e (x)�(x)R
e d�

; x 2 S

whenever
R
e d� is �nite.
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