
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Generating 3D Models of MEMS Devices by Process Emulation

by S. Bellam, S.K. Gupta, A.K. Priyadarshi

TR 2002-57

Generating 3D Models of MEMS Devices by Process Emulation
S. Bellam, S.K. Gupta, A.K. Priyadarshi

Mechanical Engineering Department and Institute for Systems Research
University of Maryland

College Park, MD 20742

Abstract

MEMS designers often use numerical simulation for detecting errors in the mask layout.
Numerical simulation involves generating 3D models of MEMS device from the mask layout
and process description. The generated models can be meshed and simulated over different
domains. This report describes an efficient algorithm that can generate 3D geometric models of
MEMS devices. Specifically, the algorithm emulates the manufacturing of a single functional
polysilicon layer MEMS devices using the MUMPS™ process.

1. Introduction

MicroElectro Mechanical Systems (MEMS) [Byrz94, Howe90, Tang97] are made up of
extremely small mechanical elements, often integrated together with electronic circuitry.
Micromachining, the enabling technology for MEMS device fabrication, is the technique for
making structures and moving parts whose sizes are in the order of microns. These technologies
are capable of making motors, pivots, linkages, and other mechanical devices of extremely small
sizes. Micromechanical parts tend to be rugged, respond rapidly, use very little power, occupy
very little space and have several other advantages over conventional macro machines. These
devices have wide range of applications - inertial sensors, thermal sensors, optical switches etc.

One of the tools available to a MEMS designer is numerical simulation. Use of numerical
simulation for detecting errors is computationally expensive but useful as it takes lesser time and
is not as expensive as a trial and error design method. Numerical simulation involves developing
the 3D models from the layout and process description. The model is then assigned material
properties depending upon the process description. The model is then meshed either manually or
by using an automatic mesh generator [Lakd99]. The finite/boundary element model is simulated
using finite or boundary element simulation over different domains. Efficient and accurate
emulation algorithms can rapidly generate 3D MEMS device models from the mask layouts. This
will help designers in 3-dimensional visualization and design rule checking. Generating 3D
models is also the first step in numerical simulation of MEMS devices. The generated models
can be meshed and simulated over different domains. Hence efficient emulation algorithms are
needed, as it would help speed up the design process. This report describes an efficient algorithm
that can generate 3D geometric models of MEMS devices manufactured using the MUMPS™
process. This algorithm emulates the MUMPS™ manufacturing process described in [Koes94].

The reminder of this report is organized in the following manner. Section 2 describes
some of the work done in MEMS process emulation. Section 3 describes the background
required to understand this report. Section 4 describes the definitions required for this report.
Section 5 describes the algorithms used to emulate the MEMS device fabrication. Section 6
provides the analysis of the algorithms described in Section 5. Section 7 describes the
implemented system and Section 8 gives some of the results.

2. Related Work

 2

Generating the three-dimensional solid model of the MEMS device involves the emulation or
simulation of MEMS processes from the mask data available in the mask layout file and the
corresponding process description. This geometric model is used for visual inspection and also
for generating finite element meshes for subsequent simulation. The geometry-based algorithms
used for process emulation are fast and usually result in a three-dimensional topography close to
the fabricated reality. In quite a few cases where high aspect ratios are involved, the customary
and desired etchants are highly anisotropic; the transformation from mask to shape is
geometrically complex. In such cases there may be a requirement for generating the topography
starting out with consistent physics-based process simulation algorithms. Process emulation is a
geometry-based modeling approach. Non-idealities of the processes are ignored or simplified,
which allows for the fast creation of the three-dimensional solid model using data from the
design layout and the corresponding process characteristics.

Emmenegger et. al. developed a software called MemCel [Emme98]. It is a prototyping
tool for the three-dimensional visualization and subsequent finite element simulation of MEMS
devices. It generates a cell representation of the three-dimensional topology of the device. The
cell representation correctly reflects the layer structure of the device in the direction of the
normal of the wafer surface. It generates a tensor mesh for the device geometry, considering
mesh generation for device simulations the ultimate goal. Mesh generation for finite element or
boundary element stress analysis places stringent requirements on the fidelity of the resultant
topography, as well as the accuracy of the built-in material stresses due to high temperature
manufacturing processes. Here, only physics-based three-dimensional process simulation will
provide sufficient accuracy. Meshes for solving the Maxell electromagnetic wave equation, e.g.,
by the finite difference time domain method, are somewhat less stringent.

DeVoe et. al. developed a software called 3DMX [DeVo98] which generates solid
models for MEMS structures from the given process description and mask layout. It is capable of
modeling a wide range of typical MEMS device features such as conformal and planar surfaces;
vias, etch holes, etc. 3DMX is capable of handling devices with arbitrary aspect ratios, non-
Manhattan geometries and supports both light and dark field layers. The 3DMX software
algorithms are geometry based and cannot achieve the accuracy of physics-based algorithms. By
allowing sufficiently detailed processing rules 3DMX can provide fast generation of solid
models with sufficient accuracy to describe complex MEMS structures produced by a wide
variety of fabrication techniques. The extracted solid models can be used for three-dimensional
visualization, capacitance extraction and coupled system analysis. It emulates sidewall coverage
but cannot support non-vertical sidewalls and rounded corners.
 Osterberg and Senturia developed a script in the I-DEAS macro programming language
called MemBuilder [Oste95]. The input is a 2D-mask layout design in CIF format and a user
designed simple version of the process sequence using the MEMCAD 2.0 Process Editor. It
supports surface micro-machined and wafer bonded processes. MemBuilder mimics the
simplified process by a sequence of operations to create layers in the solid model. It supports
conformal, planar, stacked, via deposit types. Each layer is built by a deposit followed by a
corresponding etch. The constructed solid model is in the I-DEAS environment and can be used
for visual checking and meshed for further analysis using software such ABAQUS, FASTCAP
and CoSolve-EM.

 3

3. Background

The algorithm described in this report has the ability to emulate the manufacturing of a single
functional polysilicon layer MEMS device using the MUMPS™ process. This includes the
deposition and etching of the nitride layer, Poly0, Oxide1 and Poly1 layers. Deposition processes
for the Poly0 and Poly1 layer involve the use of “light mask fields” for patterning. A light mask
field indicates that the material that is to be left behind after development is described in the
mask layout. A dark mask field indicates the opposite. Oxide layer is patterned using dark mask
layouts. Anchors, Dimples and Hole layouts are dark mask layouts and are used to pattern oxide
and polysilicon layouts to open connections to the nitride layer for the Poly1 layer, and to put
holes and dimples in the Poly1 layer.

The first step in creating 3D models of the device is the parsing of the CIF file. The CIF file
contains a set of set of non-intersecting Manhattan rectangles. Each set of rectangles describes
the layout of a mask. A separate list of rectangles is maintained to describe each mask layout.
The largest and smallest co-ordinates of the rectangles are kept track of and are used to create a
rectangle such that it overlaps every rectangle in the device layout. This rectangle is used to
create the nitride layer. The nitride layer is a single cuboid that has co-ordinates so as to overlap
all rectangles from the other layers. The height associated with the cuboid is as defined by the
MUMPS™ process. The Z-Map is a list of cuboids that maintains the up-to-date status of the 3D
model. At the end of the modeling process, this list will contain the list of cuboids that represent
the MEMS device model. A brief description of the emulation process follows:

1. Cuboid corresponding to the nitride layer is created and placed in the list Z-Map. This
corresponds to the nitride layer deposition.

2. The 2D region described by the Poly0 mask layout is extruded and placed on the Z-map.
This corresponds to the Poly0 deposit and etch.

3. The 2D region described by the Anchor1 layout is subtracted from a rectangle whose
dimensions equal the dimensions of the rectangle used to generate the “nitride” cuboid.
The resultant 2D region is extruded and conformably stacked on top of the cuboids in list
Z-Map. This corresponds to the Oxide1 deposit and subsequent etch using the Anchor1
mask layout.

4. The 2D region described by the dimple mask is extruded and placed in the model such
that the top surface of the dimple is in contact with the top surface of the Oxide1 layer.

5. The 2D region described by the Hole1 layer is subtracted from the 2D region described
by the Poly1 mask. The result is extruded and conformably stacked on the current device
model. This corresponds to the deposit of the Poly1 layer and the etch using the Poly1
and Hole1 mask layouts.

6. The cuboids representing the Oxide1 layer in the list Z-Map are deleted. This corresponds
to the oxide release to free the mechanical structure.

4. Definitions

The required definitions for understanding the remainder of this report are described below:
 Rectangle: A geometric shape represented by four parameters Xmin, Ymin, Xmax, Ymax. Each of

the four parameters represents a line and the area bounded by the four lines represents the
rectangle. The line segments formed due to the intersection of the four lines form the edges
of the rectangle. Using the point set notation, rectangle ri can be defined as a set of points:

 4

 ri = {(x,y) | Xmin x Xmax , Ymin y Ymax }
The interior of rectangle ri can be defined as:

 i(ri) = {(x,y) | Xmin < x < Xmax , Ymin < y < Ymax }
The boundary of rectangle ri can be defined as:

 b(ri) = ri – i (ri)
The boundary of Rectangle ri is the union of the four edges El, Et, Er and Eb.

 Cuboid: A geometric shape represented by 6 parameters Xmin, Ymin, Zmin, Xmax, Ymax, and Zmax.
Each parameter represents a half-space. The volume bound by these 6 half-spaces represents
the cuboid. Using the point set notation, cuboid ci can be defined as a set of points:
 ci = {(x,y,z) | Xmin x Xmax , Ymin y Ymax , Zmin z Zmax }

 Line Segment: Here a line segment is a geometric entity that is represented by 4 parameters.
The first parameter is a binary parameter and can be either vertical or horizontal. The second
parameter defines line on which the line segment lies (i.e., for horizontal line we store the y
value and for vertical lines we store the x value). The third and fourth parameters are the end
points of the line segment (i.e., for the horizontal line we store the x-coordinates of the two
end points and vice versa).

5. The Emulation Algorithm

This section describes the algorithms used to create the 3D models of MEMS devices.

B

A A

B’

B”

B

A A

B’

B”A

B’

B”

Figure 1. Conformal Stacking of cuboid B over A�

5.1. The Main Algorithm

In the main program, the CIF file is parsed and all rectangles that are used to describe the layouts
of various masks are read and initialized into separate lists. Then the effective layout for each
layer is calculated by subtracting the layouts described by the dark mask layouts from the light
mask layouts. Then these layers are stacked conformably after extrusion. Figure 1 illustrates the
meaning of conformal stacking graphically. Cuboid B is stacked conformably on cuboid A.
Cuboid B is split into two cuboids B’ and B” to facilitate conformal stacking. An intuitive
analogy for conformal stacking would be a snow pile on uneven terrain.

 5

(a) POLY0 (b) ANCHOR1 (c) POLY1(a) POLY0 (b) ANCHOR1 (c) POLY1

Figure 2. Example Mask Layouts.

(b) Z-Map after POLY0 deposit

(c) Z-Map after OXIDE deposit
and ANCHOR1 etch (d) Z-Map after POLY1 deposit

(e) Z-Map after OXIDE release.The side view of the model
described by Z-Map clearly shows the floating poly1 layer

(a) Z-Map after NITRIDE deposit

Poly1

Poly0

(b) Z-Map after POLY0 deposit

(c) Z-Map after OXIDE deposit
and ANCHOR1 etch (d) Z-Map after POLY1 deposit

(e) Z-Map after OXIDE release.The side view of the model
described by Z-Map clearly shows the floating poly1 layer

(a) Z-Map after NITRIDE deposit

Poly1

Poly0

Figure 3. Device Model as described by the cuboids in list Z-Map

 6

Figure 4. 2D region described by the rectangles in list Top-Surface.

Top-Surface is a list of doubles, where each double is an ordered set with the first element
being a rectangle and the second element being the z-coordinate of the plane containing the
rectangle. Z-Map is a list of doubles, where each double is an ordered set with the first element
being a cuboid and the second element indicates the type of the cuboid. Our emulation algorithm
consists of the following steps:
1. Lists Top-Surface, Z-Map, and LNITRIDE are initialized as empty lists. Input CIF file is read

and the lists LPOLY0, LANCHOR1, LDIMPLE, LPOLY1 and LHOLE1 are initialized. The rectangles
described in the CIF file are copied into various lists depending upon the mask layout to
which the rectangles belong. A rectangle R is initialized and the parameters are set such that
R overlaps every rectangle described in the CIF file. R is inserted into the list LNITRIDE. Figure
1 illustrates the three mask layouts Poly0, Anchor1 and Poly1.

2. The effective OXIDE1 2D region is calculated by calling the subtraction algorithm with
LNITRIDE and LANCHOR1 as input arguments. The output is stored in LOXIDE1.

3. The effective POLY1 2D region is calculated by calling the subtraction algorithm with LPOLY1
and LHOLE1 as arguments. The output is stored in LPOHO1.

4. The rectangle in LNITRIDE is extruded to create a cuboid such that the Zmax of the cuboid is set
as 0 and Zmin is set such that the difference between the two is equal to the height of the
nitride layer. The cuboid is inserted into the list Z-Map. The associated type is set as
“NITRIDE”. Figure 3 (a) graphically illustrates the model described by the cuboid in Z-Map
at the end of this step.

5. The rectangles in the list LPOLY0 are extruded such that the height of the cuboids generated
equal the height of the Poly0 layer. The parameter Zmin of the cuboids is set to 0. The cuboids
generated are inserted into list Z-Map. The associated type is set as “Poly0”. Figure 3 (b)
graphically illustrates the model described by the cuboids in list Z-Map at the end of this
step.

6. The subtraction algorithm is called with input arguments LNITRIDE and LPOLY0. The rectangles
from the output list are associated with a z-coordinate of 0 and inserted into the list Top-
Surface.

7. The rectangles from LPOLY0 are appended to the list Top-Surface and the associated z-
coordinate is set equal to the height of the Poly0 deposit. Figure 4 (a) graphically illustrates
an example problem where the layout described by the list Top-Surface at this step is shown.

8. The Conformal-Stacking algorithm is called with the lists LOXIDE1, Z-Map, Top-Surface,
height equal to the Oxide1 deposit height and layer type “OXIDE1” as input arguments.
Figure 3 (c) graphically illustrates the contents of list Z-Map at the end of this step.

(a) Top- Surface after
NITRIDE deposit

(b) Top- Surface after POLY0
deposit. (Rectangles at different

heights in different colors)

(c) Top- Surface after
OXIDE deposit and

ANCHOR1 etch.

(a) Top- Surface after
NITRIDE deposit

(b) Top- Surface after POLY0
deposit. (Rectangles at different

heights in different colors)

(c) Top- Surface after
OXIDE deposit and

ANCHOR1 etch.

 7

9. The Place-Dimples algorithm is called with the lists LDIMPLE, Z-Map and height equal to the
depth of the dimple etch as input arguments.

10. Elements of Top-Surface are used to create a list of rectangles. The subtraction algorithm is
called with this list and LANCHOR1 as input arguments. The rectangles in the output list are
associated with a z-coordinate that is greater then the z-coordinate of the rectangles in Top-
surface that contained them by the height of the oxide deposit. The output is copied to the list
Updated-Top-Surface.

11. The intersection algorithm is called with lists Top-Surface and LANCHOR1 as input arguments.
The output is appended to the Updated-Top-Surface. The rectangles in the output list are
associated with a z-coordinate same as the z-coordinate of the rectangles in Top-surface that
contained them. The elements of the list Top-Surface are deleted and the elements of the list
Updated-Top-Surface are inserted into Top-Surface. Figure 4 (c) graphically illustrates the
content of the list Top-Surface at the end of this step.

12. The Conformal-Map algorithm is called with the lists LPOHO1, Top-Surface, Z-Map, height
equal to the height of the Poly1 deposit and layer type “POLY1” as input arguments. Figure
2 (c) is a graphical representation of an example POLY1 mask layout. Figure 3 (d)
graphically represents the content of the list Z-Map at the end of this step.

13. The cuboids in list Z-Map, which are associated with the type “OXIDE1”, are deleted. Figure
3 (e) graphically represents the content of the list Z-Map. The side view of the model clearly
shows the floating polysilicon layer at the end of the release step.

5.2. The Subtraction Algorithm

Here we discuss an algorithm whose input arguments are two lists A and B. The content of these
lists are non-intersecting Manhattan rectangles. The output is a list of non-intersecting Manhattan
rectangles, which describes the equivalent 2D region when the 2D region described by list B is
subtracted from the 2D region described by list A. Figure 5 illustrates the subtraction of
rectangles of list B from rectangle a.

a

B

(a) For every rectangle
a calculate a ∩ B

Extend
Horizontal
Edges

(b) Extend Horizontal Edges
until they intersect the
boundary or any vertical edge

(c) Split rectangle a using the
horizontal edges into

rectangles a1 – a7

a1

a7

a2

a3

a4

a5 a6

a

B

(a) For every rectangle
a calculate a ∩ B

Extend
Horizontal
Edges

(b) Extend Horizontal Edges
until they intersect the
boundary or any vertical edge

(c) Split rectangle a using the
horizontal edges into

rectangles a1 – a7

a1

a7

a2

a3

a4

a5 a6

a1

a7

a2

a3

a4

a5 a6

Figure 5. Subtraction of list B from rectangle a

Subtract (List A, List B)
1. Initialize a list of rectangles output as an empty list of rectangles.
2. For each element ai of list A do:

a. Build a set of rectangles Ai of list B that overlap with ai.
3. For each element ai of list A, the following steps are carried out

 8

a. Initialize a list of rectangles H as an empty list.
b. Initialize two lists of line segments Vertical and Horizontal as empty lists.
c. For each element b of set Ai the following steps are carried out.

i. If ai b is equal to ai then ai need not be added to the output, therefore
continue with the next element in Step 3.

ii. Find the line segments belonging to the boundary of b that are inside ai. Add
them to Vertical or Horizontal depending upon the orientation of the line
segments. Create a new rectangle using the above line segments and append
the rectangle to list H.

d. If lists Vertical and Horizontal are empty, add ai to output and continue with the next
element in Step 3.

e. Sort the lists Vertical and Horizontal using the line segment element’s second
parameter as primary key and third parameter as secondary key.

f. Build a Quadtree Vertical-Tree using the list Vertical.
g. For each element h of list Horizontal the following steps are carried out

i. If left-end of line segment h is not on b(ai), then it is extended until it
intersects with a line segment from Quadtree Vertical-tree or b(ai). The new
edge is added to the list Horizontal immediately before element h.

ii. If right-end of line segment h is not on b(ai) then it is extended until it
intersects with a line segment from list Vertical or b(ai). The new edge is
added to the list Horizontal immediately after element h.

h. Rectangle ai is split using the edges in Horizontal and the new rectangles that are not
present in H are added to output.

4. The list output is returned.

5.3. The Intersection Algorithm

This section describes an intersection algorithm. Input arguments for this algorithm are two lists
of rectangles A and B. The content of these lists are non-intersecting Manhattan rectangles and
the algorithm’s output is a list of non-intersecting Manhattan rectangles that describes a layout
which is the equivalent to the intersection of the 2D region described by list B and the 2D region
described by list A. This algorithm computes the regular intersection. The algorithm is described
below:

Intersect (List A, List B)
1. Initialize a list of rectangles output as an empty list of rectangles.
2. For each element ai of list A do:

a. Build a set of rectangles Ai from list B that overlap with rectangle ai.
3. For each element ai of list A the following steps are carried out

a. For each element b of set Ai the following steps are carried out.
i. Compute the intersection of i(ai) & i(b). Add the result to output.

4. List output is returned.

5.4. The Conformal Stacking Algorithm

 9

The inputs to the Conformal Stacking algorithm are the lists Z-Map, Top-Surface, A, Height Z
and Layer Type L. List A is a list of non-intersecting Manhattan rectangles. Z-Map is a list of
cuboids each associated with a layer type. Top-Surface is a list of rectangles each associated with
a height. This algorithm updates the state of the 3D model by adding cuboids to Z-Map. The 2D
region described by A is extruded and conformably stacked on the current 3D model. The current
device structure is described by the list of cuboids in Z-Map. The newly created cuboids, which
correspond to the new layer being stacked, are associated with the layer type L and appended to
Z-Map. In this algorithm we create a new data structure H to store the neighborhood information
for every rectangle r in Top-Surface. H is a list of quintuplets whose first element is rectangle r.
Rectangles in Top-Surface that are neighboring rectangles to r are stored in the next four
elements of H, organized in the following manner. The second element of H is a set of rectangles
that are top neighbors of r. The third element of H is a set of rectangles that are the bottom
neighbors of r. The fourth element of H is a set of rectangles that are the right neighbors of r.
The fifth element of H is a set of rectangles that are the left neighbors of r. The conformal
stacking algorithm is described below:

Conformal-Stack (List Z-Map, List A, List Top-Surface, Height Z, Layer Type L)
1. Initialize H.
2. Map the neighborhood of every rectangle in the 2D region described by the set of rectangles

in list Top-Surface and store the map in H. This is done as described in Section 4.3.
3. For each rectangle a of list A the following steps are carried out:

a. Search the rectangles in the list Top-Surface for a rectangle which overlaps with rectangle
a.

b. Split rectangle a recursively, such that split rectangles overlap at the maximum of one
rectangle from the list Top-Surface. The split rectangles are extruded and the cuboids
placed such that the bottom surface (Zmin) of the cuboid is at the same height as the
rectangle it overlaps in list Top-Surface.

c. The parameter Zmax of the cuboids formed in the above step is set equal to the sum of the
parameter Zmin of the cuboid and height Z. The cuboids are associated with the layer type
L and added to the end of the list Z-Map.

4. Return Z-Map.

5.5. The Dimple Placing Algorithm

Input arguments to this algorithm are the lists Z-Map and Dimples. Z-Map is a list of cuboids
each associated with a layer type. Dimples is a list of non-intersecting Manhattan rectangles. The
algorithm models the dimples and adds them to the list Z-Map. Steps in this algorithm are
described below:

Place-Dimples (List Z-Map, List Dimples, Height Z)
1. For each element a in list Dimples do:

a) For each element z associated with the layer type “OXIDE1” in Z-Map do:
If the X-Y projection of z overlaps with rectangle a, extrude a and set the Zmax of
the cuboid equal to the parameter Zmax of cuboid z. Set Zmin such that the
difference between Zmax and Zmin is equal to height Z. Add the cuboid to list Z-
Map and associate it with layer type “DIMPLE”.

 10

6. Analysis of the Algorithm

In this section we discuss the worst-case complexity of the emulation algorithm and other
algorithms described in this report.

6.1. Analysis of the Subtraction Algorithm

In this section we discuss the complexity of the Subtraction Algorithm. We will designate the
size of the two lists, which serve as input to the algorithm as N, M.
1. Step 2 has a time complexity of O(N log M + I) where I is the number of intersections

between the rectangles of list A and B [Ullm84, McCr80].
2. Step 3-a is an initialization step and has a constant time complexity.
3. Step 3-b is an initialization step and has a constant time complexity.
4. Step 3-c has a time complexity, which is equal to the size of set Ai. Let us assume this to be

Ci for the ith element in list A.
5. Step 3-d has a constant time complexity.
6. Step 3-e has a time complexity of Ci log Ci [Corm89]. The lists Vertical and Horizontal have

a size proportional to the size of the Ai and hence have a size proportional to Ci.
7. Step 3-f has a time complexity of Ci log Ci [Corm89]. The size of list Vertical is proportional

to Ci as stated above.
8. Step 3-g has a time complexity of Ci log Ci. This step is repeated for each element of list

Horizontal, which has a size proportional to Ci and since each of the sub-steps have a time
complexity of log Ci. This is the complexity of a search using the quadtree to find the nearest
edge in the direction of extension. Hence this step has a total time complexity of Ci log Ci
[Corm89].

9. Step 3-h splits the rectangle a using the edges in list Horizontal. The number of rectangles
produced in this step is proportional to the number of edges in list Horizontal and hence the
number of rectangles generated in this step is proportional to Ci. Since list H has to be
searched for each of these rectangles generated and the complexity of a search is log Ci , the
overall complexity of this step is Ci log Ci.

Steps 2-9 are repeated for each element in list A. Hence the total complexity for Step 3 of this

algorithms is ()
1

4 log
N

i i i
i

C C C
=

+∑

Ci corresponds to the number of rectangles produced when splitting the rectangles in A such that
the resultant layout represents the subtracted layout. This is proportional to the number of
intersections between the rectangles in A and B, which is designated as I. There are two
possibilities:
1. The case where each rectangle in B intersects with a maximum of 4 rectangles in A; like

when B represents holes that need to be subtracted from the Poly1 layout represented by A, I
is proportional to M. In this case the overall complexity of this algorithm is O(N log M + I
log M), which is equivalent to O((N+M) log M).

2. In a general case when the above stated assumption is not true Ci has a maximum value of M,
which is based on the assumption that a rectangle from B intersects with every rectangle in A.

 11

The number of rectangles produced in this case is proportional to NM and the overall time
complexity is O(NM log M)

6.2. Analysis of the Intersection Algorithm

In this section we analyze the complexity of the algorithm “Intersect”. We will designate the size
of the two lists, which serve as input to the subroutine as N and M.

1. Step 2 has a time complexity of O(N log M + I) where I is the number of intersections
between the rectangles of list A and B [Ullm84, McCr80]

2. Step 3 is carried out for each element of list A. The Step a has a time complexity which is
equal to the size of the set Ai. Let us assume this to be Ci for the ith element in list A.
Hence Step 3-a has a time complexity proportional to Ci since Step i has a constant time

complexity. Hence the overall complexity for Step 3 is given by:
1

N

i
i

C
=
∑ which is

proportional I, the total number of intersections. Therefore the complexity for this step is
O(I).

Hence total complexity for this algorithm is O(N log M + I) where I represents the total
number of intersections. Hence as described in the previous section, for the general case where
every rectangle of list B intersects with every rectangle of A, the overall worst case time
complexity is O(N log M + NM).

6.3. Analysis of the Conformal-Stacking Algorithm

In this section we discuss the complexity of the algorithm “Conformal-Stack”. We will designate
the size of the two lists Top-Surface and A, which serve as inputs to the algorithm as M and N.
1. Step 2 has a time complexity of M log M. This involves mapping the neighborhood of every

rectangle as in list Top-Surface discussed in Section 4.3.
2. Step 3-a has a time complexity of M since it involves a search in a list of size M.
3. Step 3-b has a time complexity of Ci where Ci is the number of rectangles produced by

splitting.
4. Step 3-c has a time complexity of Ci.

Steps 2-4 are repeated for every element of A hence the complexity of this algorithm

is ()
1

N

i
i

M C
=

+∑ . Ci corresponds to the total number of rectangles produced during splitting. Since

in a general case each rectangle in B can intersect with each rectangle in A, the total number of
rectangles produced is proportional to NM. Hence the overall time complexity for the subroutine
is O(NM).

6.4. Analysis of the Dimple Placing Algorithm

In this section we discuss the complexity of the algorithm “Place-Dimples”. We designate the
size of the two lists Z-Map and A, which serve as input to this algorithm as M and N. Here since

 12

only the Oxide elements of the list Z-Map are considered, M represents the number of Oxide
elements in the list.

1. Step a is carried out for every Oxide element of list Z-Map and hence has a complexity of
O(M).

This is repeated for every element A and hence the routine has an overall complexity of O(NM)

6.5. Analysis of the Main Algorithm

In this section we discuss the overall complexity of the algorithm. Here we analyze the main
algorithm from where the other algorithms are called. We denote the number of rectangles used
to describe the layouts of masks POLY0, ANCHOR1, DIMPLE, POLY1 and HOLE1 as N1, N2,
N3, N4 and N5 respectively.

1. Step 1 has a time complexity of
5

1
i

i

N
=
∑ as the operation involves the parsing of the CIF

file to read in the mask data.
2. Step 2 has a time complexity of O(N3 log N3). As the inputs to the subtract algorithm are

such that all of the rectangles in B are wholly contained in the rectangle in A. The number
of rectangles output is O(N3).

3. Step 3 has a time complexity of O((N4+N5) log N5). As the inputs to the subtract
algorithm are such that all of the rectangles in B are wholly contained in the rectangles in
A. The number of rectangles output is O(N4+N5).

4. Step 4 has a constant number of operations associated with it as only a constant number
of operations are carried out.

5. Step 5 has a complexity of O(N1) as the number of operation associated with this step is
proportional to the size of the list POLY0.

6. Step 6 has a complexity of O(N1 log N1). As the inputs to the subtract algorithm are such
that all of the rectangles in list B are wholly contained in the rectangle in A. The number
of rectangles output is the order of N1.

7. Step 7 has a time complexity of O(N1). The number of operations associated with this
step is proportional to the size of the list POLY0.The number of rectangles added to Top-
Surface is equal to the size of list POLY0, which is N1.

8. Step 8 has a time complexity of O(N1N2). As the Conformable-Stack algorithm is called
with inputs, which are lists of sizes N1 and N2.

9. Step 9 has a time complexity of O(N1N2N3). As the dimple placing algorithm is called
with inputs that are lists of sizes N1N2 and N3.

10. Step 10 has a time complexity of O(N1N2logN2). The subtraction algorithm is called with
lists of sizes N1 and N2.

11. Step 11 has a time complexity of O(N1N2logN2). The intersection algorithm is called with
lists of sizes N1 and N2.

12. Step 12 has a time complexity of O(N1N2(N4+N5)). Conformal-Stack algorithm is called
with input lists whose sizes are the order of N1N2 and N4+N5.

13. Step 13 has a time complexity of O(N1N2). The number of operations required to delete
the cuboids of the oxide layer is proportional to the number of Oxide cuboids, which has
an order of N1N2.

Hence the overall time complexity for this algorithm is O(N1N2(logN2+N3+N4+N5)).

 13

7. Implementation

Figure 6. Screen Dump of the system GUI

The system has four modules: the system GUI, CIF file parser, 3D model generator and file
exporter.

The system GUI is written in JAVA and uses its AWT package for rendering the 2D
layouts. A CIF file is chosen from a file select menu. The POLY1 layout is displayed and the
layout can be visually inspected and the GUI can be used to Zoom and Pan the layout image. The
3D model of the MEMS device is generated and written to a file in the format as desired by the
user. Figure 6 shows the screen dump of the system GUI.

The parser reads the CIF file. We assume that the CIF file is generated for the MUMPS™
process. There are two parts to reading a data file: processing the characters and building the
results into a data structure. The former is commonly known as syntax analysis and the latter
semantic analysis [Trim87]. The syntax of the CIF file for the MUMPS™ process is pre-
determined and hard coded in the implementation. Rectangles describing each mask layout are
stored in different lists. The parser is implemented in C.

The modeling engine consists of the algorithms described in this report. The algorithms
were implemented in C++. The 3D device model is represented by a list of cuboids.

The list of cuboids, which represents the 3D device model, can be written to a file in three
formats. It can be written to a file, which can be directly read into the ANSYS finite-element
analysis environment for subsequent meshing and analysis. It can also be written as VRML file.

 14

A VRML file consists of a list of faces that represent the 3D model. Each face is represented by a
set of points. Each point has a 3-dimesional co-ordinate value. Standard headers are added to the
file from a text file stored on the secondary memory device. A VRML model can be viewed
using standard Internet browsers with Cosmo Player. It can also generate an ACIS file containing
a single body, which represents the 3D device model. The ACIS file is generated using the ACIS
6.0 geometric kernel. The ACIS model is compatible with leading CAD/CAE systems and can be
used as starting input for further analysis in these CAD/CAE systems.

8. Results

Section 8.1 shows an example MEMS device model in different environments. Section 8.2 has a
number of example MEMS device models constructed using the algorithms described in this
report.

8.1. Environments for further processing of generated MEMS device models

Figure 7 MEMS model visualized using VRML.

Figure 7 shows a MEMS device model saved in the VRML format, which can be visualized
using a standard Internet browsers installed with Cosmo™ Player. Figure 8 is a screen shot of a
generated MEMS device model imported into a CAD environment. The device model was saved
in the ACIS file format. Figure 9 is a screen shot of generated MEMS device model in the
ANSYS FEA software environment. The device model was written in file format that can be
directly imported into the ANSYS environment.

 15

Figure 8. Generated MEMS device model in a CAD environment.

Figure 9. Generated MEMES device model in the ANSYS FEA software environment.

8.2. Examples

This section shows some example MEMS 3D models generated using algorithms described in
this report. Figure 10 is the B-Rep model of a MEMS resonator. Figure 11 is a model of a
MEMS resonator. Figure 12 is a model of a MEMS pressure sensor. Figure 13 is a model of a

 16

MEMS Z-accelerometer. Figure 14 is a model of a MEMS gyroscope. Figures 15 and 16 are
models of MEMS gyroscopes. Figure 17 shows a model of a MEMS accelerometer.

Figure 10. A MEMS resonator model

 17

Figure 11. A MEMS resonator

 18

 Figure
12. A MEMS pressure sensor

 19

 Figure
13. A MEMS Z-accelerometer

 20

Figure 14. A MEMS gyroscope

 21

Figure 15. A MEMS gyroscope

 22

Figure 16. A MEMS gyroscope

 23

Figure 17. A MEMS Accelerometer

Acknowledgement. This research has been supported by a subcontract on NSF grant
CCR9901171. Opinions expressed in this paper are those of authors and do not necessarily
reflect opinion of the sponsors.

9. References

 [Bryz94] J. Bryzek, K. Petersen and W. McCulley, “Micromachines on the march,” IEEE
Spectrum, May 1994, pp. 20-31.

 [Corm90] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms. New
York, McGraw-Hill, 1990.

 [Devo98] D.L. Devoe, S.B. Green, J.M. Jump, “Automated Solid Model Extraction for
MEMS Visualization”, Proc. Int. Conf. On Modeling and Simulation of Microsystems,
Sensors and Actuators, pp. 292-297, 1998.

 [Emme98]Markus Emmenegger, Krovink J. G. , Baltes Henry, “MemCel An Inexpensive
and Efficient Tool for 3D MEMS Prototyping.” Micro-Electro-Mechanical Systems(MEMS)
ASME 1998 DSC-Vol. 66, p. 559-563

 24

 [Howe90] R.T. Howe, et. al., “Silicon Micromechanics,” IEEE Spectrum, July 1990, pp. 29-
35.

 [Koes94] D.A. Koester, R. Mahadevan, Busbee Hardy and K.W. Markus, Multi-User MEMS
Processes (MUMPs) Design Handbook, available from Cronos Integrated Microsystems,
3026 Cornwallis Road, Research Triangle Park, NC 27709, rev. 6, 2001, 39 pages.
http://www.memsrus.com/cronos/mumps.pdf

 [Lakd99] H. Lakdawala, B. Baidya, T. Mukherjee and G.K. Fedder, “Intelligent Automatic
Meshing of Multi-layer CMOS Micromachined Structures for Finite Element Analysis,”
Proc. of MSM ‘99, San Juan, Puerto Rico, pp. 297-300, April 19-21, 1999.

 [McCo84] S.P. McCormick, “EXCL: A Circuit Extractor for Integrated Circuit Designs”,
Proceedings of the 21st DAC, June 1984, pp. 616-23.

 [Oste95] P. M. Osterberg and S. D. Senturia, ““MEM-BUILDER”:An Automated 3D Solid
Model Construction Program for Microelectromechan-ical Structures,” Technical Digest of
the 8th Int. Conf. on Solid-State Sensors and Actuators (Transducers ‘95), Stockholm
Sweden, v.2, pp. 21-24, June 1995.

 [Tang90] W.C. Tang, T.-C.H. Nguyen, M.W. Judy and R. T. Howe, “Electrostatic-comb
Drive of Lateral Poly-silicon Resonators,” Transducers ‘89, Vol. 2, pp. 328-331, June 1990.

 [Tang97] W.C. Tang, “Overview of Microelectromechanical Systems and Design
Processes,” 34th DAC Pro-ceedings,1997, pp. 670-3.

 [Trim87] S.M. Trimberger, An Introduction to CAD for VLSI, Kluwer Academic Publishers,
1987.

 [Ullm87] J.D. Ullman, Computational Aspects of VLSI, Computer Science Press, 1987.

 [Wagn85] T.J. Wagner, “Hierarchical Layout Verification,” IEEE Design and Test, February
1985, pp. 31-37.

