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The role of reward context has been investigated as an important factor in 

feedback processing. Previous work has demonstrated that the amplitude of the 

feedback negativity (FN) depends on the value of the outcome relative to the 

range of possible outcomes in a given context, not the objective value of the 

outcome. However, some research has shown that the FN does not scale with loss 

magnitude in loss-only contexts, suggesting that some contexts do not show a 

pattern of context-dependence. Time-frequency decomposition techniques have 

proven useful for isolating important activity, and have shown that time-domain 

ERPs can be better represented as separable processes in delta (0-3 Hz) and theta 

(3-7 Hz). Thus, the current study seeks to assess whether the role of context in 

feedback processing is better elucidated using time-frequency analysis. Results 

revealed that theta was more context-dependent and showed a binary response to 

best-worst differences in the gain and even contexts. Delta was more context-

independent: the best outcomes scaled linearly with reward magnitude and best-

worst differences scaled with context valence. Our findings reveal that theta and 

delta are differentially sensitive to context and that context valence may play a 

critical role in determining how the brain processes good and bad outcomes. 
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Chapter 1: Introduction 

Reward processing and performance monitoring have been widely studied 

as important factors underlying cognitive and affective processes. Reward and 

performance monitoring systems are necessary for the adaptation of behavior in 

the pursuit of goals. Furthermore, these systems have been implicated in various 

forms of psychopathology, such as depression, anxiety, substance abuse, and 

behavioral additions. While neuroimaging research has provided some evidence 

for the neural circuitry of reward processing and performance monitoring and 

abnormalities of these circuitries in psychopathology, little is known about how 

the system that determines whether an event is good or bad is influenced by 

context. For example, is the same outcome processed similarly or differently 

across varying contexts? Does the value of $100 differ in the Unites States versus 

a developing country? Most would agree that the value of rewards and losses are 

dependent on the context in which these outcomes occur, but little is known about 

the neural mechanisms underlying processing differences across contexts. 

The role of reward context has been investigated as an important factor in 

feedback processing (Holroyd, Larsen, & Cohen, 2004; Kujawa, Smith, 

Luhmann, & Hajcak, 2013; Nieuwenhuis et al., 2005). Previous work has 

demonstrated that the amplitude of the feedback negativity (FN), a negative-going 

event-related potential (ERP) peaking around 250 ms, depends on the value of the 

outcome relative to the range of possible outcomes in a given context, not the 

objective value of the outcome (Holroyd et al., 2004). However, some research 

has shown that the FN does not scale with loss magnitude in loss-only contexts, 
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suggesting that some contexts do not show a pattern of context-dependence 

reflected in FN amplitude (Holroyd et al., 2004; Kujawa et al., 2013). Time-

frequency decomposition techniques have proven useful for isolating important 

activity, and have shown that time-domain ERPs can be better represented as 

separable processes in delta (0-3 Hz) and theta (3-7 Hz) (Başar, Başar-Eroglu, 

Karakaş, & Schürmann, 2001; Bernat, Malone, Williams, Patrick, & Iacono, 

2007; Cavanagh, Zambrano-Vazquez, & Allen, 2012; Cohen, Elger, & 

Ranganath, 2007; Demiralp, Ademoglu, Istefanopulos, Başar-Eroglu, & Başar, 

2001). Furthermore, recent work has suggested that differences in FN amplitude 

are due in large part to the superposition of a reward positivity (RewP) component 

primarily composed of delta activity and a negative-going deflection consisting of 

theta activity (Bernat, Nelson, Holroyd, Gehring, & Patrick, 2008a; Holroyd, 

Pakzad-Vaezi, & Krigolson, 2008). Thus, while there has been important attention 

on time-frequency decomposition of the FN (Bernat, Nelson, Holroyd, Gehring, 

& Patrick, 2008b; Foti, Weinberg, Dien, & Hajcak, 2011; Holroyd et al., 2008; 

Proudfit, 2015), the current study seeks to assess whether the role of context in 

feedback processing is better elucidated using time-frequency analysis.  

Context and Feedback Processing 

 Holroyd et al. (2004) conducted the initial investigation of the role of 

context in feedback processing. Reward context was operationalized by 

employing a gambling task with three blocks of trials: a block in which 

participants could only win money or break even (gain context), a block in which 

participants could win, lose, or break even (even context), and a block in which 
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participants could only lose money or break even (loss context). Notably, the data 

were collected in two separate experiments: Experiment 1 comprised the even 

context which included best (+10), middle (0), and worst (-10) outcomes, and 

Experiment 2 comprised gain (+5, +2.5, +0) and loss (-0, -2.5, -5) contexts. 

Holroyd et al. (2004) evaluated the context-dependence versus independence of 

the FN. Context-dependence refers to the processing of outcomes in a relative 

manner within each context, whereas context-independence refers to the 

processing of outcome values in an absolute manner, independent of context. The 

FN was considered context-dependent if two criteria were met: 1) identical 

outcome values were evaluated differently across contexts (e.g., the zero 

outcomes in the gain and loss contexts) and 2) the same outcome levels (e.g., best 

outcomes) were processed similarly across contexts where outcome levels scaled 

with reward magnitude within context (Holroyd et al., 2004). The FN was deemed 

context-independent if two criteria were met: 1) identical outcome values were 

evaluated similarly across contexts and 2) the same outcome levels were 

processed differently across contexts (Holroyd et al., 2004). Results revealed that 

the FN met criteria for context dependence in some but not all cases (see Figure 

1). Both experiments revealed a main effect of outcome level, suggesting that the 

outcomes were evaluated in a relative, context-dependent manner. The first 

criterion for context dependence was met for the zero conditions in the gain and 

loss contexts (i.e., +0 ≠ -0). In order for the second criterion of context 

dependence to be met, the same outcome levels should be processed similarly 

across contexts and the outcome levels should scale with reward magnitude 
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within context. This criterion was only partially met. The middle outcomes across 

contexts were evaluated similarly but best and worst outcomes were not (see 

Figure 1a). Additionally, the FN amplitude did not differ for middle and worst 

outcomes within each context (see Figure 1a). Furthermore, the breaking even 

outcome accounted for outcome differences in the loss context, as differences 

were not seen between varying loss magnitudes. Because a breaking even 

outcome was included in each context, the contexts did not purely reflect one type 

of outcome valence (either all gains or all losses). If the breaking even outcomes 

were removed and only valenced outcomes were considered, FN differences 

would only be seen in gain-possible contexts (i.e., gain and even) but not in the 

loss context (see Figure 1b). Thus, the loss context does not show a pattern of 

context-dependence when only the loss-valenced outcomes are considered. Taken 

together, these findings suggest that the FN may reflect a combination of context-

dependent and independent processing which may be influenced by the breaking 

even condition. 

 Nieuwenhuis et al. (2005) investigated the role of context on reward-

sensitive brain regions indexed by functional magnetic resonance imaging 

(fMRI). Nieuwenhuis et al. (2005) used a similar task and design as Holroyd et al. 

(2004), except the even context was excluded. The gain context consisted of best 

(+60), middle (+30), and worst (+0) outcomes, and the loss context consisted of 

best (-0), middle (-20), and worst (-40) outcomes. In order to determine which 

brain regions were sensitive to reward, Nieuwenhuis et al. (2005) analyzed the 

blood oxygen level dependent (BOLD) difference between the highest magnitude 
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gain outcome (+60) and the lowest magnitude loss outcome (-40). The regions 

that showed significant BOLD differences were used to evaluate the effects of 

context. In all regions, the zero conditions in the gain and loss contexts were 

significantly different, meeting the first criterion for context-dependence 

(Nieuwenhuis et al., 2005). The second criterion was partially met, with most 

reward regions showing a similar BOLD response to the best outcome in both 

contexts (+60 in gain and -0 in loss; Nieuwenhuis et al., 2005). However, the 

BOLD response did not differ between the middle and worst outcomes, 

suggesting a binary difference between the best outcomes in each context and the 

remaining outcomes (Nieuwenhuis et al., 2005). As in the Holroyd et al. (2004) 

paper, the breaking even condition drove the binary difference between the best 

outcome (-0) and the remaining outcomes (-20 and -40) in the loss context. The 

BOLD response differed between varying gain magnitudes (+60 and +30) but not 

varying loss magnitudes, which is consistent with the FN findings described 

above and other previous work (Holroyd et al., 2004; Yeung & Sanfey, 2004). 

These results provide more evidence of context-dependent processing in gain-

possible contexts and not loss contexts.  

 The previous literature on context has separated contexts into blocks of 

trials within the task (Holroyd et al., 2004; Nieuwenhuis et al., 2005). Kujawa et 

al. (2013) evaluated the context-dependence of the FN by manipulating outcomes 

on a trial level (local outcomes) versus a task level (global outcomes). A cued 

gambling task was utilized, where one cue signaled a gain (+50) or breaking even 

(+0) and the other cue signaled a loss (-25) or breaking even (-0) (Kujawa et al., 
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2013). They hypothesized that if the FN was sensitive to local outcomes, then the 

worst outcomes for each cue would be associated with a relative negativity 

compared to the best outcomes (Kujawa et al., 2013). If the FN were sensitive to 

global outcomes, then a relative negativity would be seen for all non-gain 

outcomes. Results revealed that breaking even for gain (+0) and loss (-0) cues and 

losing (-25) were associated with similar FNs (Kujawa et al., 2013). Only the gain 

outcome (+50) was associated with an enhanced positivity and was significantly 

different than the other outcomes (Kujawa et al., 2013). These results suggest that 

the FN is more sensitive to global than local contexts, such that a relative 

negativity was seen for all non-gain outcomes. FN was found to be a binary 

representation of favorable (+50) compared to unfavorable outcomes (+0, -0, -25) 

(Kujawa et al., 2013). These results indicate that outcomes are not processed in a 

relative, context-dependent manner when the context changes at a local, trial 

level. Rather, context-dependent processing may be differentially elicited when 

trials are presented in a sustained block representing one context, as shown by the 

global context in Kujawa et al. (2013) and the block designs in Holroyd et al. 

(2004) and Nieuwenhuis et al. (2005). 

Time-domain vs. Time-frequency Analysis 

 Conventional FN measures have traditionally been associated with 

negative feedback because the component is diminished or absent following 

positive feedback (Gehring & Willoughby, 2002; Miltner, Braun, & Coles, 1997); 

however, more recent work has suggested modulation of the FN by positive 

feedback. Bernat et al. (2008) and Holroyd et al. (2008) provided initial evidence 
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of a reward positivity (RewP) component, which is enhanced for positive relative 

to negative feedback. This research and other recent work has indicated that 

smaller negative FN amplitude elicited by positive feedback is partially explained 

by the superposition of a heightened slow, positive waveform, the RewP (Bernat 

et al., 2008a; Foti et al., 2011; Holroyd et al., 2008; Kujawa et al., 2013; Proudfit, 

2015). Time-frequency analysis suggests that the RewP is composed primarily of 

delta activity, not theta (Bernat et al., 2011; Bernat et al., 2015). Recent work 

based on temporal-spatial principal component analysis (PCA) and time-

frequency PCA of the FN has indexed a positive amplitude component in delta 

that is increased for gains relative to losses (Bernat, Nelson, & Baskin-Sommers, 

2015; Bernat, Nelson, Steele, Gehring, & Patrick, 2011; Carlson, Foti, Mujica-

Parodi, Harmon-Jones, & Hajcak, 2011; Foti, Weinberg, Bernat, & Proudfit, 

2014; Foti et al., 2011; Weinberg, Riesel, & Proudfit, 2014). Additionally, this 

RewP component has been shown to be sensitive to reward magnitude, relative 

outcome, and outcome expectancy (Bernat et al., 2015, 2008a; Cavanagh, 2015; 

Holroyd, Krigolson, & Lee, 2011; Holroyd et al., 2008; Massey et al., 2015; 

Massey, Bachman, & Bernat, 2016), but the influence of context on the RewP has 

not been evaluated. 

Delta activity associated with the RewP is partially responsible for 

modulations in FN, but time-frequency analysis has revealed that the FN is 

composed of theta activity as well. Regression	analyses using time-frequency 

components as predictors and the FN as the outcome measure have revealed that 

delta and theta contribute unique sources of variance to the FN, such that 
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increased theta reflects losses and increased delta is associated with gains (Bernat 

et al., 2015, 2008a, 2011; Cohen et al., 2007; Nelson, Patrick, Collins, Lang, & 

Bernat, 2011). These findings provide strong evidence that separable neural 

activity indexing losses and gains contribute to the FN. Foti et al. (2014) extended 

this work by applying source localization to time-frequency measures of the FN, 

where two distinct neural generators were identified. Loss-related theta activity 

was localized in the ACC, while gain-related delta activity was focused in the 

striatum (Foti et al., 2014). These results indicate that discrepancies regarding the 

FN and outcome valence can be clarified by time-frequency analytic approaches. 

 Previous research has shown that when outcome stimuli in a gambling 

task provide multiple pieces of information, theta is sensitive to the most primary 

or salient stimulus attributes (often outcome valence – loss vs. gain), while delta 

is modulated by primary as well as more complex secondary characteristics, such 

as reward magnitude and expectancy (Bernat, Nelson, & Baskin-Sommers, 2015; 

Massey et al., 2015; Massey, Bachman, & Bernat, revise and resubmit).  This 

work provides further support that feedback processing is better measured using 

time-frequency analysis, which indexes separable processes in delta and theta that 

underlie the FN. Additionally, this work provides insight into how theta and delta 

may be influenced by context. Because theta has been shown to reflect a more 

binary evaluation of bad vs. good, we predict that theta will show similar best-

worst differences across contexts, indicating a pattern of context-dependent 

processing. Whereas we expect delta to show an overall sensitivity to best versus 

worst outcomes across contexts, we predict that this effect will be qualified by an 
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interaction between outcome and context where delta scales with the magnitude 

of the reward across contexts. Additionally, we expect best-worst differences in 

delta to scale with context valence (gain > even > loss), which is consistent with 

previous research showing outcome valence differences in gain-possible contexts 

but not among varying loss magnitudes in loss contexts (Holroyd et al., 2004; 

Nieuwenhuis et al., 2005). This pattern of effects in delta would be more 

consistent with context-independent processing.  

Current Study 

The current study seeks to build on previous work investigating the role of 

context in reward processing by utilizing time-frequency analysis of the FN. 

Previous research using ERP and fMRI methodology has provided important 

considerations for understanding the context-dependence of reward processing. 

Namely, the breaking even outcome has led to results showing context-dependent 

processing in all contexts. However, when only valenced outcomes are considered 

(i.e., gains and losses), context-dependent processing is only seen in gain-possible 

contexts, as no differences exist between varying loss magnitudes in the loss 

context. Furthermore, context-dependent processing seems to be limited to tasks 

in which trials for a given context are presented in a sustained block. Lastly, the 

ERP studies investigating context used time-domain analysis of the FN, which is 

problematic due to research showing that the FN contains separable underlying 

processes indexed in delta and theta frequency bands.  

The current study utilized a modified version of the gambling task created 

by Holroyd et al. (2004) with one key difference: the current study’s task did not 
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include a breaking even outcome in each context due to the problems described 

above. In removing the breaking even outcome, the current study aims to assess 

processing variations across contexts that purely reflect one type of outcome (all 

gain or all losses) or a combination of both types (as in our even context). Based 

on previous research on context as well as more recent research on time-

frequency analysis of feedback processing, the current study aims to assess: 1) 

whether theta reflects context-dependent processing, 2) whether delta reflects a 

combination of context-independent and dependent processing, and 3) how delta 

and theta are related to modulations of the FN by context. 

 

  



 

11	

Chapter 2: Methods 

Participants 

 Participants (n = 152) were recruited from undergraduate students at 

Florida State University. Five participants were excluded due to a problem with 

the EEG recording (e.g., experimenter error or software malfunction) and fifteen 

participants were excluded due to an excessive number of EEG artifacts (>33% of 

trials rejected using methods described below). The final sample contained 132 

participants 18 years of age or older (80 females; M age = 19.99, SD = 3.52). The 

final sample was not significantly different than the original sample on key 

demographic variables, including gender and age. Participants were screened for 

visual impairments, neurological conditions, and/or traumatic brain injuries. 

Participants were provided informed consent before starting the study and were 

offered monetary compensation ($10/hr) or course credit for participation. 

Procedures 

EEG data was collected in a sound-attenuated, dimly lit room. 

Experimental stimuli were presented on a 21-inch Dell high-definition CRT color 

monitor, centrally placed at a viewing distance of 100 cm, subtending a visual 

angle of 3.5°. E-Prime version 1.1 was used to present the stimuli, and a PST 

Serial Response Box (Psychology Software Tools, Inc.) was used to collect 

responses to the task. 

Participants performed a modified version the gambling task used in 

(Holroyd et al., 2004), as shown in Figure 2. Each trial consisted of two circles 
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presented side-by-side with a black border and white background. Participants 

were instructed to select one of the circles by pressing the left or right button on 

the button box. The circles remained on the screen until the participant made a 

selection, at which time the selected circle turned red. 1000 ms after the selected 

circle turned red, the participant received monetary feedback inside the circle, 

which was displayed for 1000 ms. Best and worst outcomes were possible in each 

of three context: +5 or +15 in the gain context, +5 or -5 in the even context, and -

5 or -15 in the loss context. The task was divided into six blocks, with two blocks 

for each context (i.e., gain, even, and loss). Each block consisted of 24 trials, 

resulting in 48 trials per context and a total of 144 trials. Blocks were 

counterbalanced across participants such that no one context was presented in two 

consecutive blocks. Participants were informed of the context type before each 

block. They were also told they should respond in a way that maximized their 

earnings, and that they would be given a monetary reward associated with their 

performance at the end of the task. Unbeknownst to the participants, the two 

outcomes in each block were presented at random with an equal probability. All 

participants were given $5.00 at the end of the task. Before the task began, 

participants completed a brief practice. 

Psychophysiological Data Acquisition 

Data were recorded using a Neuroscan 128-channel Quik-Cap (sintered 

Ag-Ag/Cl; non-standard layout) as well as a 128-channel Synamps RT amplifier 

(Neuroscan, Inc.). Ten electrodes around the ears were removed from analysis due 

to inconsistent connection to the scalp across participants, leaving a total of 113 
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EEG channels. Horizontal electrooculogram activity was recorded from 

electrodes placed on the outer canthus of both eyes, while vertical 

electrooculogram activity was recorded from electrodes placed above and below 

the left eye. Impedances were kept below 10 kΩ. EEG signals were vertex 

referenced during recording (directly between Cz and CPz), and re-referenced to 

averaged mastoid signals offline, collected using an analog 0.05 to 200 Hz 

bandpass filter and digitized at 1000 Hz using Neuroscan Acquire 

(Neuroscan,Inc.). 

Data Preprocessing 

 Epochs of three seconds were then taken from 1000 ms pre- to 2000 ms 

post-stimulus onset with a 150 ms pre-stimulus baseline, and were re-referenced 

to averaged mastoid sites. Ocular artifacts were corrected with a regression-based 

algorithm developed by Semlitsch, Anderer, Schuster, & Presslich (1986) in the 

Neuroscan Edit 4.5 software (Neuroscan, Inc.) and downsampled to 128 Hz using 

the Matlab resample function (Mathworks, Inc.), which utilizes an anti-aliasing 

filter before resampling. Then, two criteria for data cleaning were used. In the 

first, trials were rejected if activity at F3 or F4 exceeded ±100 µV in either the 

pre-stimulus period of -1000 to -1 ms, or the post stimulus period of 1 to 2000 ms, 

to remove larger face or eye artifacts not appropriately handled by the Semlitsch 

algorithm. For the second criterion, trials were rejected if activity in any electrode 

exceeded ±150 µV during the same pre- and post-stimulus time periods. Together, 

these removed 9.1% of all trials from analysis. Visual analysis of the averaged 

waveforms indicated that 0.002% of electrodes were disconnected during 
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recording and were replaced with the mean of the nearest neighbors. After 

preprocessing, data were averaged according to the six different outcomes 

specified above under Procedures.  

Subsampling 

 Although data cleaning improves the quality of the data, it removes 

several trials, leaving an uneven number of trials across outcome types and 

participants. Subsampling and bootstrapping during ERP averaging are methods 

that are particularly useful for extracting the maximum amount of variance 

possible in situations with limited data. These approaches are helpful when 

participants have low trial counts for a given outcome type, and they reduce any 

bias associated with an uneven number of trials across outcome types and 

participants. Subsets of five trials for each outcome were subsampled 50 times, 

and then bootstrapped 500 additional times.  

Data Reduction 

Time-Domain amplitude components.  

Time-domain (TD) measures of evoked power were extracted for the 

feedback negativity (FN). The FN was defined as a negative deflection ranging 

between 203 to 352 milliseconds post-outcome stimulus (fit to the edges of the 

FN negative peak in the grand average waveform), consistent with previous work 

(Gehring & Willoughby, 2002; Holroyd & Coles, 2002; Miltner et al., 1997). This 

time range was converted from bins of the 128 Hz resampled signal. For statistical 

analyses, this component was reduced to a group of 9 electrodes (shown in Figure 
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3) clustered around Cz. While the FN has traditionally been quantified at FCz, 

time-frequency analysis has revealed that the FN is composed of fronto-central 

theta activity and central-parietal delta activity. Thus, 9 electrodes centered 

around Cz were used due to their location in the middle of these contributing 

regions. 

Time-Frequency evoked power.  

To evaluate the time-frequency (TF) phase dynamics related to time-

domain ERP signals, TF decompositions were performed upon trial-averaged 

ERPs. This procedure allows phase-consistent evoked ERP activity to be re-

represented in the TF domain, and similar methods have been successfully used to 

evaluate the relationships between time-frequency activity and time-domain ERPs 

in a number of other reports (Bernat et al., 2011; Harper, Malone, Bachman, & 

Bernat, 2016; Harper, Malone, & Bernat, 2014; Nelson et al., 2011). First, 3rd 

order Butterworth filters were used to isolate activity within delta and theta 

frequency ranges, based on the visual inspection of the unfiltered representation 

of time-frequency energy following the outcome stimulus for one second. A 4 Hz 

lowpass filter was employed to isolate delta, and a 3 Hz highpass filter in 

conjunction with an 8 Hz lowpass filter was used for theta. TF decompositions 

were produced using a binomial reduced interference distribution (RID) variant of 

Cohen’s class of time-frequency transformations upon the full epoch of the 

filtered signals, using 32 time bins per second and 2 frequency bins per Hz. The 

RID was chosen to better represent low-frequency activity and avoid smearing the 

representation of such activity in time (Bernat, Williams, & Gehring, 2005a). 
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Principal component analysis (PCA) was then used separately on each filtered TF 

decomposition, using a post-stimulus time window of 0-1000ms and a 0-12 Hz 

frequency window.  The TF-PCA data matrix contained TF points as vectors and 

subject/electrode/trial-averaged scores as rows (a more detailed explanation of 

this process can be found in Bernat et al. (2005)). 

Figure 4 displays the grand-averaged TF-PCA decomposition. Four 

principal components (PCs), explaining 41% of the total variance, were extracted 

from theta as the best representation of the data. PC1 represented medial frontal 

theta during the FN, PC2 reflected theta activity after P3, PC3 represented high 

delta (3 Hz) bilateral occipital activity, and PC4 reflected P2 frontal theta activity. 

A three PC solution was used as the best representation of delta activity during 

feedback processing, which explained 68% of the total variance. PC1 reflected 

low frequency (~1 Hz) slow wave activity, PC2 represented bilateral occipital 

post-P3 activity, and PC3 reflected parietal delta activity (~2 Hz) during the FN 

time window, also known as the RewP. Theta PC1 and delta PC3 were chosen for 

further statistical analysis given a priori hypotheses regarding theta and delta 

activity during the FN time window (see Figure 4). The mean PC-weighted TF 

evoked energy of these two PCs were narrowed down to a subset of 9 electrodes 

each, shown in Figure 3, with delta clustered around a centro-parietal electrode 

and theta clustered around a fronto-central electrode. These clusters were selected 

based on the topographical center of best-worst differences.  

Specific Aims and Hypotheses 

 There are three primary aims of this study. The first is to assess whether 
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theta is primarily context dependent. Previous research has suggested that theta 

represents a more narrow, local process, sensitive to primary task features such as 

best-worst differences (Bernat et al., 2015; Massey et al., 2015, 2016). We thus 

hypothesize as follows (see Figure 5): 

1a. Theta will be associated with similar best/worst differences across 

contexts (context-dependence). 

1b. Theta activity will be different between outcomes of the same absolute 

value across contexts, such as +5 in the gain context and +5 in the even 

context (context-dependence). 

The second aim is to evaluate whether delta reflects both context-dependent and 

context-independent processing. Previous work has shown that delta is increased 

for best/reward outcomes and can index a number of different processes operating 

across lower frequencies, including primary best/worst differences and reward 

magnitude (Bernat et al., 2015). We thus hypothesize as follows (see Figure 5): 

2a. Delta in response to best outcomes across contexts will be associated with 

increases in amplitude linearly related to the amount of reward (context-

independence). 

2b. Best/worst differences in delta will be attenuated in the loss condition, 

relative to the even and gain conditions given previous literature showing 

ERP differences only in gain-possible contexts (context-independence).  

2c. Delta activity will be different between outcomes of the same absolute 

value across contexts, such as +5 in the gain context and +5 in the even 

context (context-dependence). 
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A third aim in this study is to assess the conventional time-domain FN amplitude 

and context-related processing. Based on previous literature, we expect FN to 

show a combination of context-dependence and independence. Given that the 

time-domain FN contains multiple frequency bands reflecting separable 

processes, we do not propose specific hypotheses regarding the relationship 

between context and the FN. However, we do expect theta and delta to contribute 

unique sources of variance to the FN as previous research has shown. 

Data Analysis Plan 

Three measures were analyzed: the FN and the TF principal components 

representing delta and theta. First, each of the three measures was analyzed in 

separate 2 x 3 ANOVAs of outcome (best vs. worst) by context (gain, even, or 

loss). A main effect of outcome is expected if theta is a reflection of context-

dependent evaluation of outcomes. An interaction of outcome and context will be 

seen if delta is a reflection of a combination of context-independent and 

dependent evaluation of outcomes. Furthermore, this interaction will show the 

largest delta to best outcomes in the gain context and the smallest in the loss 

context, and will show little difference in delta across the worst outcomes. 

Additionally, pairwise comparisons will be assessed between outcomes of the 

same absolute value across context, a necessary comparison for determining 

context dependence and independence. Finally, linear regression analysis will be 

used to assess the contributions of delta and theta to the FN.  

Design Considerations 
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The study design was similar to previous research on reward context with 

one key exception: there was no breaking even outcome in each condition. 

Holroyd et al.'s (2004) initial study using this design aimed to assess reward 

context within a reinforcement learning theory framework. The reinforcement 

learning theory of the FN suggests that the monitoring system judges an outcome 

to be favorable or unfavorable based on the range of possible outcomes. Of the 

possible outcomes in a given context, the monitoring system will predict the 

middle value and deviations from this expectation will produce relative increases 

or decreases in FN amplitude. Thus, in order to evaluate reward context under this 

theoretical framework, there must be at least three possible outcomes. It is unclear 

why Holroyd et al. (2004) chose to utilize breaking even as the third outcome 

rather than an additional valenced outcome (i.e., another gain value for the gain 

context and another loss value for the loss context). However, we wanted the gain 

and loss contexts to purely reflect one type of outcome and thus we decided to 

remove the breaking even outcome. 

An additional design consideration was whether or not to inform 

participants about the parameters of each context in advance. Previous research 

utilizing this type of task has informed participants about what types of outcomes 

they will receive in each block, which sets expectations about whether 

participants will be only winning money, only losing money, or a combination of 

both. Because the primary aim was to investigate the role of context, the current 

study informed participants about the block parameters in order to set clear 

expectations about the type of context. Without this expectation set in advance, 
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participants would have to learn the parameters of each block over time and the 

results may not have been as robust. 
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Chapter 3: Results 

Time-domain FN Analysis  

 The first row of Figure 3 displays the average time-domain outcome-

locked ERP waveform for the average of nine electrodes (see Figure 2). The FN is 

evident as the negative deflection peaking approximately 230 milliseconds after 

outcome stimulus onset. The scalp distribution of the FN is parietal, which is 

common when a difference-wave approach is not used. 

To test for the effects of outcome (best vs. worst) and context (gain, even, 

and loss) on the FN, a repeated-measures 2 X 3 ANOVA was performed. For the 

FN, an interaction between outcome and context was found (F(2,130) = 38.36, p 

< .001), where the negative amplitude of the FN scaled with outcome value across 

the best outcomes and was largest in the loss context (see Figure 4). No 

differences were seen between the worst outcomes across contexts (see Figure 4). 

Best-worst differences scaled with the context, where the greatest difference was 

seen in the gain context (see Figure 4).  

Time-frequency Analysis   

The second row of Figure 3 depicts the time-frequency (TF) average 

waveform and PCA decomposition of the outcome-locked ERP for theta and 

delta. The distribution of peak activation is medial frontal for theta and parietal 

for delta. Consistent with prior research (Bernat et al., 2015, 2011) theta activity 

mirrored the FN in terms of latency and enhanced amplitude to loss relative to 

gain feedback. Furthermore, it is apparent that theta negative polarity activity 
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contributes to enhanced negative FN amplitude while positive delta activity 

counteracts the negative amplitude of the FN.  

To test for the effects of outcome and context on theta and delta, we again 

utilized a repeated measure 2 X 3 ANOVA design. For theta, an interaction 

between outcome and context was found (F(2,130) = 26.10, p < .001), where the 

gain and even contexts showed similar best-worst differences and the loss context 

showed no difference (see Figure 4). Thus, there was partial support for 

hypothesis 1a, such that theta showed a pattern of context dependence in the gain 

and even contexts but not the loss context. For delta, an interaction was found 

between outcome and context (F(2,130) = 43.83, p < .001), where, similar to the 

FN, delta scaled with reward magnitude and the largest best-worst difference was 

seen in the gain context. These findings provide strong support for hypotheses 2a 

and 2b, suggesting that delta partially reflects context-independent processing. 

To test the hypotheses that theta and delta amplitudes will be different 

between outcomes of the same absolute value across contexts (indicating context-

dependence), paired sample t-tests were conducted between the +5 outcomes in 

the gain and even contexts as well as the -5 outcomes in the even and loss 

contexts. For theta, both +5 (t(131) = 4.80, p < .001) and -5 (t(131) = 4.30, p < 

.001) comparisons were significantly different across contexts, supporting 

hypothesis 1b and providing more evidence that theta reflects context-dependent 

processing. For delta, results revealed a significant difference between the +5 

outcomes in the gain and even contexts (t(131) = -7.17, p < .001) but no 

difference between the -5 outcomes in the even and loss contexts (t(131) = -.50, p 
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= .62). These findings provide partial support for hypothesis 2c, suggesting that 

delta reflects context-dependent processing in the gain and even contexts but not 

in the loss context.  

Regression analysis predicting the FN with theta and delta, a technique 

used in previous research (Bernat et al., 2015, 2011), indicated that delta and theta 

contribute unique variance to the FN (see Table 1). However, delta accounted for 

more variance in the FN than theta. 

The relationship between context and outcome was more similar across 

delta and theta than expected, especially because there was no difference in theta 

between the two loss magnitudes in the loss context. However, the pattern of 

results in the gain and even contexts were more consistent with the proposed 

hypotheses and appear to show meaningful differences between delta and theta in 

relation to context. Thus, in order to more directly compare context-related 

processing between delta and theta in the gain and even contexts, correlations of 

best-worst differences between the gain and even contexts were performed and 

compared across frequencies. Results revealed a large correlation between best-

worst differences in the gain versus even contexts for theta (r(130) = .60, p < 

.001) but a small correlation for delta (r(130) = .17, p = .05). Fisher’s z-test 

confirms that these correlations are significantly different (z = 4.19, p < .001), 

which reveals that outcome processing in the gain and even contexts was more 

similar in theta than in delta. These findings further support the hypotheses that 

theta reflects more context-dependent processing and delta reflects a combination 

of context-independent and context-dependent processing.    
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Chapter 4: Discussion 

 In the current study, we investigated the role of context in feedback 

processing by using time-frequency analysis to evaluate ERPs in a modified 

gambling task. The primary aims were to: 1) assess whether theta reflects context-

dependent processing, 2) assess whether delta reflects a combination of context-

independent and context-dependent processing, and 3) assess the contributions of 

theta and delta to the FN and the relationship between context and the FN.  

 Neither theta nor delta was completely context-dependent or context-

independent; however, theta met more criteria for context-dependence and delta 

met more criteria for context independence. In support of hypothesis 1a, theta 

showed similar best-worst differences across the gain and even contexts, 

suggesting a pattern of context-dependence. These results are consistent with 

findings suggesting that theta is a binary reflection of best and worst outcomes, 

where theta is enhanced for the worst outcome (Bernat et al., 2015, 2011). 

However, similar best-worst differences were not seen in the loss context, 

suggesting that theta does not reflect context-dependent processing in a loss-only 

context. In support of hypothesis 1b, theta activity was significantly different 

between the +5 outcomes in the gain and even contexts and the -5 outcomes in the 

even and loss contexts, again suggesting that theta reflects context-dependent 

processing. 

 Compared to theta, delta met more criteria for context-independence. In 

support of hypothesis 2a, delta activity to the best outcomes scaled linearly with 

reward magnitude, such that the largest delta activity was seen in the gain context 
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and the smallest was seen in the loss context. These results are consistent with 

previous literature indicating that delta, specifically the reward positivity, scales 

with reward magnitude (Bernat et al., 2015; Proudfit, 2015). Additionally, delta’s 

sensitivity to reward magnitude replicates previous findings suggesting that delta 

is modulated by complex, secondary stimulus characteristics (Bernat et al., 2015). 

In support of hypothesis 2b, best-worst differences in delta were evident in the 

gain and even contexts but not in the loss context, revealing a pattern of context-

independence. These results are consistent with previous research showing 

processing differences in gain-only contexts but not in loss contexts (Holroyd et 

al., 2004; Kujawa et al., 2013; Nieuwenhuis et al., 2005). Delta activity differed 

between outcomes of the same absolute value in the gain and even contexts, 

meeting one criterion for context-dependence. However, this was the only case of 

context-dependence, suggesting that delta is largely context-independent.  

 In order to more directly compare context-related processing between 

theta and delta, correlations of best-worst differences between gain and even 

contexts were compared across frequencies. Best-worst differences in the gain 

and even contexts were significantly correlated in theta and delta, but there was a 

stronger relationship between the gain and even contexts in theta. These findings 

provide further support for the prediction that theta reflects more context-

dependent processing and delta reflects more context-independent processing. 

 Analysis of the FN revealed a similar pattern to delta, where the FN scaled 

with the best outcomes across contexts and showed little change in response to the 

worst outcomes across contexts. Indeed, regression analysis predicting the FN 
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with delta and theta revealed that delta and theta contributed unique sources of 

variance to the FN, but delta accounted for more variance than theta. These results 

are consistent with previous work showing that the superposition of a slow, 

positive wave (i.e., delta) during the FN time-window is partially responsible for 

modulation of the FN (Bernat et al., 2008a; Holroyd et al., 2011, 2008; Proudfit, 

2015). Furthermore, similar processing of losses in loss-only contexts as reflected 

by FN amplitude was shown in the current study and in previous work (Holroyd 

et al., 2004; Nieuwenhuis et al., 2005). The lack of differences among varying 

loss magnitudes in the loss context for delta and theta suggests that both 

frequencies are contributing the null FN effects in the loss context. These findings 

highlight the importance of evaluating time-domain components using time-

frequency measures, as they isolate frequencies that represent distinct processes 

that are convoluted in the time-domain.  

Our findings also indicate that context valence plays a critical role in 

reward processing. In gain-possible contexts (i.e., the gain and even contexts), 

best-worst differences scaled positively with context valence (gain > even) for 

delta and showed binary differences for theta (gain = even). Alternatively, in the 

context where a gain was not possible (i.e. the loss context), all outcomes were 

processed similarly in delta and theta (i.e. there were no outcome valence 

differences, and amplitudes were the lowest of all contexts). This context valence 

theory may help explain previous work showing no differences between varying 

loss magnitudes in the FN and BOLD signal (Holroyd et al., 2004; Kujawa et al., 

2013; Nieuwenhuis et al., 2005). Evidence from the adaptive gain theory may 
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provide support for this context valence theory (Aston-Jones & Cohen, 2005). 

The adaptive gain theory suggests that when task utility is adequate, participants 

exploit as much reward as possible (Aston-Jones & Cohen, 2005). Thus, in delta, 

a moderate best-worst difference is observed in the even context when there is the 

option of a small reward and a larger best-worst difference is seen in the gain 

context when there is the option of a large reward. However, when task utility 

wanes and becomes less rewarding, participants enter an exploration mode where 

they disengage from the task at hand and explore alternative means for reward 

(Aston-Jones & Cohen, 2005). Thus, it may be that participants became defeated 

in the loss context and disengaged from the task.  

Limitations and Future Directions 

 The context valence explanation is post-hoc and should be explored in 

future work. For example, our work suggests that activity in delta and theta is 

similar for varying amounts of loss in a loss-only context, but future work should 

investigate if these frequencies are modulated when varying loss magnitudes are 

presented in the same context as gains. Additionally, previous work on context 

dependence has employed an additional level – the breaking even outcome. Our 

task only contained gains and losses because we wanted each context to purely 

reflect one type of outcome (e.g., only gains in the gain context). The absence of 

the breaking even outcome in the current study limits the ability to make direct 

comparisons to previous work. 

 Future work should also evaluate how one’s internal context interacts with 

reward context as indexed by theta and delta. For example, how might individual 
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differences in psychopathology influence context-related processes in delta and 

theta? Because theta represents a more basic evaluation of unfavorable vs. 

favorable outcomes, that is similar across contexts (with the exception of the loss 

context), it may be more resilient to psychopathology. Individual differences in 

psychopathology may result in an overall diminution or enhancement of theta, but 

we would expect the unfavorable vs. favorable differences to stay intact. Indeed, 

previous research has shown that theta is less susceptible to individual differences 

in psychopathology, but more work in this area is needed (Bernat et al., 2011). 

Delta reflects a more nuanced evaluation of outcomes, functioning in a context-

dependent and independent way, and perhaps context-related processes in delta 

would be more sensitive to individual differences in psychopathology. Previous 

research has shown modulation of delta in relation to psychopathology (Bernat et 

al., 2011; Foti & Hajcak, 2009; Foti et al., 2014; Proudfit, 2015), but future work 

should assess how psychopathology influences reward processing in varying 

contexts. 

  

Conclusions 

The results of the current study indicate that the role of context in reward 

processing is better elucidated using time-frequency analysis. Theta was more 

context-dependent and showed a binary response to best-worst differences in the 

gain and even contexts. Delta was more context-independent: the best outcomes 

scaled linearly with reward magnitude and best-worst differences scaled with 

context valence. The relationship between context and FN amplitude was similar 
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to that of delta, and delta accounted for more variance in the FN than theta. Our 

findings reveal that theta and delta are differentially sensitive to context and that 

context valence may play a critical role in determining how the brain processes 

good and bad outcomes. 
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Tables 

Table 1.  
 
Multiple regression model of delta and theta predicting FN.  
 

 

 

  

Beta t
Delta .68 26.24***
Theta -.21 -8.29***

Notes: R2 = 0.48

             *p < .05, **p < .01, ***p < .001

FN
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Figures 

 
Figure 1a. Results estimated from Holroyd et al. (2004).  
 

 
Figure 1b. Results estimated for Holroyd et al. (2004) without the breaking even 
outcome. 
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Figure 2. Sequence of stimulus and outcome events in the reward context 
gambling task. 
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Figure 3. Electrode clusters for analysis of delta (blue), theta (red), and FN (black 
border). 
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Figure 4. Time domain and time-frequency (TF) decompositions of outcome-
locked ERPs. The top panel depicts the average unfiltered time-domain waveform 
across all trials. FN was quantified as the negative-going deflection between 203-
352 ms using peak measurement. The bottom panel shows the filtered ERP 
waveforms and the TF-PCA decompositions for theta and delta activity during the 
FN window across all trials. From the topographic maps, theta activity is 
maximal at fronto-central sites and delta is maximal at parietal sites.  
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Figure 6. FN, delta, and theta mean plots showing context (gain, 
even, loss) by outcome (best, worst) relationships. 
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